WO2007026541A1 - スクリーンマスク、半導体装置の製造方法 - Google Patents

スクリーンマスク、半導体装置の製造方法 Download PDF

Info

Publication number
WO2007026541A1
WO2007026541A1 PCT/JP2006/316089 JP2006316089W WO2007026541A1 WO 2007026541 A1 WO2007026541 A1 WO 2007026541A1 JP 2006316089 W JP2006316089 W JP 2006316089W WO 2007026541 A1 WO2007026541 A1 WO 2007026541A1
Authority
WO
WIPO (PCT)
Prior art keywords
mask
screen
pattern
region
screen mask
Prior art date
Application number
PCT/JP2006/316089
Other languages
English (en)
French (fr)
Inventor
Ichirou Hazeyama
Takashi Ohtsuka
Yoshihiro Ono
Yuki Momokawa
Original Assignee
Nec Corporation
Nec Electronics Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation, Nec Electronics Corporation filed Critical Nec Corporation
Publication of WO2007026541A1 publication Critical patent/WO2007026541A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F15/00Screen printers
    • B41F15/14Details
    • B41F15/34Screens, Frames; Holders therefor
    • B41F15/36Screens, Frames; Holders therefor flat
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4867Applying pastes or inks, e.g. screen printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1216Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by screen printing or stencil printing
    • H05K3/1225Screens or stencils; Holders therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N1/00Printing plates or foils; Materials therefor
    • B41N1/24Stencils; Stencil materials; Carriers therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/0665Epoxy resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/0781Adhesive characteristics other than chemical being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/09736Varying thickness of a single conductor; Conductors in the same plane having different thicknesses

Definitions

  • the present invention relates to a screen mask used in screen printing.
  • the present invention also relates to a method of manufacturing a semiconductor device such as a wiring board or a semiconductor package by using the screen mask.
  • FIG. 1 shows a screen 1 used in screen printing technology.
  • the screen 1 is composed of wires 2 and, for example, a mesh is formed by combining the wires 2 in a mesh shape.
  • the diameter of wire 2 is called wire diameter D.
  • a metal wire and a synthetic fiber wire are known. Metal wires are superior in terms of miniaturization, and wire 2 with a wire diameter D of 12 to 13 m is put to practical use as the thinnest one.
  • the number of wires 2 per inch is called “Mesh count", which indicates the roughness of the mesh.
  • Screen ⁇ 1 with 600 meshes has been realized.
  • the value obtained by dividing 1 inch by the number of meshes corresponds to the sum of the wire diameter D and the dimension S of the mesh opening 3. For example, if the number of meshes is 600 and the wire diameter D is 12 m, the dimension S of the mesh opening 3 is about 30 m. The larger the number of meshes, the shorter the length D + S, which means the mesh is more powerful.
  • the "mesh aperture ratio” which is the aperture ratio of the screen 1 is expressed by the following equation using the wire diameter D and the dimension S of the mesh opening 3:
  • the mesh opening ratio can be said to be the ratio of the mesh opening 3 per unit area.
  • the mesh aperture ratio increases as the number of meshes decreases and the wire diameter D decreases. The larger the mesh aperture ratio, the lower the resistance and the easier it is to pass through the paste-like ink cache.
  • a mask pattern corresponding to the pattern May be formed on the screen 1.
  • An example of the mask pattern is shown in Figure 2.
  • the mask layers 4a, 4b and 4c are formed on the screen 1 and formed!
  • Mask openings 5a, 5b, and 5c which are regions where the mask layers 4a, 4b, and 4c are not formed, correspond to a desired print pattern.
  • the mask opening 5b corresponds to a wiring pattern
  • the mask opening 5a corresponds to an independent floating island-like dot pattern.
  • the mask layer 4c located in the mask opening 5c corresponds to the blank pattern.
  • the ratio of the mask aperture 5 per unit area to the mesh aperture ratio is called the “pattern aperture ratio” or “mask aperture ratio”.
  • FIG. 3 is a side view of a screen mask used in actual screen printing.
  • the above-described mesh screen 1 is stretched over a frame 7 having a predetermined size.
  • a mask layer 4 corresponding to a desired printing pattern is formed on the screen 1 by using an emulsion or the like.
  • the screen mask 6 is obtained.
  • This screen mask 6 has mask openings 5d, 5e, 5f corresponding to a desired wiring pattern.
  • FIGS. 4A to 4D Printing process power using the screen mask 6 is schematically shown in FIGS. 4A to 4D.
  • the screen mask 6 is disposed so as to face the substrate 8 or the like substrate 8.
  • a paste 9 containing an adhesive grease is supplied to the screen mask 6.
  • the scraper 10 moves in the direction indicated by the arrow (one X direction).
  • the mask openings 5d, 5e, 5f are filled with the paste 9, as shown in FIG. 4B.
  • the squeegee 11 moves in the direction indicated by the arrow (+ X direction) so as to press the screen mask 6 against the substrate 8.
  • the paste 9 embedded in the mask openings 5d, 5e, 5f is extruded.
  • the pastes 9d, 9e, 9f corresponding to the desired wiring pattern are transferred to the substrate 8.
  • the paste 9 passes through the mask opening 5 of the mask layer 4 and the mesh opening 3 of the screen 1.
  • the above-described mask layer 4 In order to form a fine wiring or a narrow pitch wiring, the above-described mask layer 4 must also be finely tuned. In order to support such a fine mask layer 4, it is necessary to use a screen 1 that is fine to some extent, and it is preferable that the mesh size of the screen 1 is large. For example, referring to FIGS. 1 and 2, when the diameter D1 of the mask layer 4c corresponding to the blank pattern D1 force becomes smaller than the size S of the mesh opening 3, it becomes difficult for the screen ⁇ 1 to hold the mask layer 4c. . In other words, in the case of a fine circuit pattern or a complicated circuit pattern, a screen 1 having a somewhat large mesh number is required.
  • the dimension S of the mesh opening 3 decreases as the number of meshes increases.
  • the mesh opening rate is reduced, and a new problem arises that the paste 9 passes through the screen 1.
  • the wire diameter D In order to increase the mesh aperture ratio while maintaining a certain number of meshes, it is conceivable to reduce the wire diameter D.
  • the fine wire of wire 2 causes the strength of screen 1 to deteriorate, there is a limit to increasing the mesh aperture ratio. With the miniaturization of elements and wiring, the possibility of clogging in the mesh opening 3 is increasing. This problem is particularly noticeable when the particles contained in the paste 9 are large.
  • a conductive adhesive which is one of paste-like materials, generally contains “conductive particles” having a conductive function and “adhesive grease” having a bonding function as main components.
  • metal particles such as silver and copper are often used as the conductive particles.
  • the shape of the metal particles include a spherical shape and a flake shape. From the viewpoint of good fluidity, it is said that spherical metal particles are preferable.
  • a conductive paste containing extremely fine metal particles has been proposed due to the problem of clogging of the mesh opening 3 described above.
  • pastes containing ultrafine metal particles having a particle size of lOOnm or less have also been proposed (see, for example, JP-A-2004-273205, JP-A-2004-247572, JP-A-2002 299833). ).
  • Japanese Patent Application Laid-Open No. 5-124370 discloses a difference in the amount of deformation of the screen ridge caused by pressing of the squeegee. Techniques aimed at suppressing the above are disclosed.
  • a shielding emulsion layer is formed in a pattern on the screen so as to close the eyes.
  • the blocking emulsion layer is formed, and it is a group of openings for passing through the partial force ink. In each of the openings, the islands of the emulsion layer are formed so as to be distributed almost uniformly.
  • Japanese Patent Application Laid-Open No. 6-143855 discloses a technique aimed at eliminating the rising of the edge portion of a printed coating film.
  • the emulsion layer formed on the screen has a two-layer structure of a first emulsion layer and a second emulsion layer.
  • the opening of the first emulsion layer is designed to be smaller than the desired printed shape.
  • the opening of the second emulsion layer is designed to correspond to a desired printing shape.
  • a screen plate disclosed in Japanese Patent Application Laid-Open No. 8-262733 includes a mesh sheet layer and a mask layer integrally formed on one main surface of the mesh sheet layer.
  • the mask layer has a predetermined wiring pattern.
  • the “mesh aperture ratio” of the portion corresponding to the circuit pattern region requiring the film thickness in the wiring pattern is selectively designed to be large. That is, in this prior art, a uniform screen screen as shown in FIGS. 1 and 2 is not used, but a screen screen having an asymmetric mesh pattern is used.
  • JP-A-2004-195858 discloses a screen mask that forms a pattern by extruding a paste material onto a substrate to be printed through a gap.
  • the fine metal wires (wires) that make up the screen cage located in the gap of the screen mask are covered with one or more layers of synthetic resin.
  • pastes containing ultrafine particles having a particle size of lOOnm or less have become important in screen printing as devices and wirings become finer.
  • the inventor of the present application has found the following problems regarding screen printing using the above-described screen mask having a screen wrinkle and a paste material containing fine metal particles having a particle size of 1 OOnm or less.
  • An object of the present invention is to provide a screen printing technique capable of partially controlling a printing thickness in screen printing to a desired value.
  • Another object of the present invention is to provide a screen mask and a screen printing pattern capable of adjusting the film thickness of a paste applied to a printing material in accordance with a desired printing pattern.
  • Still another object of the present invention is to provide a semiconductor device such as a wiring board or a semiconductor package at a low cost by using such a screen mask.
  • the pattern aperture ratio which is the aperture area per unit area of the mask layer, contributes to the printing thickness.
  • the pattern opening ratio which is the aperture area per unit area of the mask layer.
  • the screen mask according to the present invention has a mechanism for adjusting the pattern opening ratio of the mask layer and a mechanism for adjusting the adhesion between the mask layer and the adhesive resin.
  • This controls the permeability of the paste material to part of the mask opening.
  • the screen mask includes a screen ridge, a mask layer, and an adjustment unit.
  • the mask layer is formed so as to be coupled to the screen surface and has a mask opening corresponding to a predetermined printing pattern.
  • the adjustment part is formed on the mask layer so as to change the permeability of the paste material to a part of the predetermined print pattern.
  • the adjustment section is formed in the mask layer so as to change the “pattern aperture ratio”.
  • the adjustment unit has an adjustment pattern different from the predetermined print pattern.
  • the adjustment portion is an additional opening formed in the mask layer, and the additional opening has the adjustment pattern.
  • the additional opening is formed away from the mask opening.
  • the predetermined print pattern includes a first print pattern included in the first area and a second print pattern included in the second area having the same size as the first area.
  • the adjustment pattern includes a first adjustment pattern included in the first area and a second adjustment pattern included in the second area.
  • the first adjustment pattern in which the first print pattern is larger than the second print pattern is smaller than the second adjustment pattern.
  • the first region and the second region are adjacent to each other. The first adjustment pattern and the second adjustment pattern may be provided so that pattern aperture ratios in the first region and the second region are uniform.
  • the adjustment unit is an additional mask formed in the mask layer, and the additional mask may have the adjustment pattern.
  • the additional mask is a beam-like mask provided so as to cross the mask opening.
  • the additional mask is an island mask provided in the mask opening.
  • the additional mask is an annular mask provided in the mask opening.
  • the additional mask thickness is less than the mask layer thickness.
  • the predetermined print pattern includes a first print pattern included in the first area and a second print pattern included in the second area having the same size as the first area.
  • the adjustment pattern includes a first adjustment pattern included in the first area and a second adjustment pattern included in the second area. In this case, it is preferable that the first adjustment pattern that is larger than the second print pattern is larger than the second adjustment pattern.
  • the first adjustment pattern and the second adjustment pattern may be provided so that pattern aperture ratios in the first region and the second region are uniform.
  • the mask layer may have a laminated structure including a first mask layer on the squeegee side and a second mask layer on the printing target side. In this case, the additional mask layer is formed on either the first mask layer or the second mask layer.
  • the additional mask layer is formed on the first mask layer on the squeegee side.
  • the mask layer includes a plurality of mask layers. Of the plurality of mask layers, the opening pattern may be different between the first mask layer and the second mask layer.
  • the adjustment unit is either the first mask layer or the second mask layer.
  • the adjustment unit may be a coating formed on the surface of a part of the opening of the mask layer.
  • the adhesion between the coating and the adhesive resin is different from the adhesion between the surface of the mask layer and the adhesive resin.
  • the coating include a fluorine resin coat and a silicone resin coat.
  • the adhesive resin is an epoxy resin
  • the coating may be a resin coat having a hydroxyl group or a glass coat having a hydroxyl group.
  • the hydroxyl group of these glass may be substituted with an aliphatic group that may be silanized.
  • the above-mentioned paste material preferably contains fine particles having a particle size of 1 nm or more and lOOnm or less.
  • a method for manufacturing a semiconductor device by screen printing is provided.
  • the semiconductor device is, for example, a wiring board or a semiconductor package.
  • the manufacturing method includes (A) a step of providing a screen mask according to a predetermined print pattern, wherein the predetermined print pattern is the same as the first wiring pattern included in the first region and the first region. (B) The first wiring corresponding to the first wiring pattern and the second wiring pattern using a screen mask and a predetermined paste material. Forming a second wiring on the print object in a lump.
  • the step (A) includes (A1) a step of forming a mask layer having a predetermined printing pattern so as to be coupled with the screen ridge, and (A2) a paste material between the first region and the second region. And a step of processing a part of the mask layer so as to have different transparency.
  • the permeability of the paste material is controlled according to the desired film thickness of the first wiring and the desired film thickness of the second wiring.
  • either the additional opening or the additional mask is formed in at least one of the first region and the second region.
  • the first wiring pattern and the second wiring pattern are reduced.
  • a resin coat may be applied on the surface of the opening of the mask layer corresponding to at least one.
  • the method of manufacturing a semiconductor device further includes (C) a step of mounting an element on the first wiring, and (D) a step of curing the first wiring and the second wiring.
  • the step (D) is performed after the step (C).
  • the film thickness of the first wiring is larger than the film thickness of the second wiring.
  • the screen printing technique of the present invention it is possible to partially control the printing thickness in screen printing to a desired value.
  • the screen mask and the screen printing pattern according to the present invention the film thickness of the paste applied to the printed material can be adjusted according to the desired printing pattern.
  • FIG. 1 is a plan view showing a screen ridge used in screen printing.
  • FIG. 2 is a plan view showing an example of a mask layer pattern formed on the screen wall.
  • FIG. 3 is a side view schematically showing the structure of a conventional screen mask.
  • FIG. 4A is a side view schematically showing a screen printing process.
  • FIG. 4B is a side view schematically showing the screen printing process.
  • FIG. 4D is a side view schematically showing the screen printing process.
  • FIG. 5 is a plan view showing a screen mask as a comparative example in the first embodiment.
  • FIG. 6 is a plan view showing a screen mask according to the first embodiment.
  • FIG. 7 is a plan view showing a screen mask as a comparative example in the second embodiment.
  • FIG. 8 is a plan view showing an example of a screen mask according to a second embodiment.
  • FIG. 9 is a plan view showing another example of the screen mask according to the second embodiment.
  • FIG. 10 is a plan view showing still another example of the screen mask according to the second embodiment.
  • FIG. 11 is a side view showing an example of a screen mask according to the third embodiment.
  • FIG. 13 is a side view showing an example of a screen mask according to a third embodiment.
  • FIG. 14 is a side view showing an example of a screen mask according to a third embodiment.
  • FIG. 15 is a plan view showing an example of a screen mask according to the fourth embodiment.
  • FIG. 17 is a side view showing the structure of the semiconductor package according to the fifth embodiment.
  • n is a positive number of 0 or more.
  • the mixing ratio of spherical Ag fine particles, Ag ultra fine particles, and epoxy resin in the conductive adhesive is, for example, 80% by weight, 5% by weight, and 15% by weight, respectively.
  • the screen mask 20 shown in FIG. 5 includes a screen ridge (not shown) and a mask layer 22.
  • the mask layer 22 is formed so as to be bonded to the screen ridge.
  • the screen mesh has 500 meshes, and its wire diameter D is 18 ⁇ m. In that case, the dimension S of the mesh opening is about 33 ⁇ m and the mesh opening ratio is about 42%.
  • the thickness of the emulsion for forming the mask layer 22 is 10 m.
  • the mask layer 22 has mask openings 21a to 21d corresponding to a desired print pattern.
  • the screen mask 20 is used to form a circuit on a glass epoxy substrate, and the desired print pattern is mainly composed of a wiring pattern and an electrode pad pattern.
  • mask openings 21a to 21c correspond to wiring patterns
  • mask openings 21d correspond to electrode pad patterns.
  • the numerical value of represents the dimensions of wiring and wiring pitch (unit: mm). In Fig. 5, the wiring width is designed to be 20 m and the wiring pitch is designed to be 100 m.
  • a screen ridge having a larger mesh opening ratio For example, a screen rod having a mesh power of 00 and a wire diameter D of 18 ⁇ m is applied.
  • the size S of the mesh opening is about 46 ⁇ m, and the mesh opening ratio is about 51%.
  • the print thickness of the pattern corresponding to the mask openings 21a to 21c increases.
  • the print thickness of the pattern corresponding to the mask openings 21d also increases. Also, the difference in printing thickness tended to be larger, which was inappropriate.
  • the inventor of the present application has focused on “pattern aperture ratio” which is the aperture area per unit area of the mask layer, not the mesh aperture ratio.
  • a screen mask 30 shown in FIG. 6 is proposed.
  • “additional openings 31a to 31g” are formed in a part of the mask layer 22 in addition to the mask openings 21a to 21d corresponding to the desired print pattern.
  • the additional openings 31a to 31g (“adjustment mask openings”) have additional patterns (“adjustment patterns” or “dummy patterns”) different from the desired print pattern.
  • the additional opening 31 is formed away from the mask opening 21 so that the shape of the desired printing pattern does not change.
  • the additional openings 31a to 31g are provided particularly in the regions R2, R4, R6, and R8 adjacent to the region R5.
  • the additional openings 31a to 31g are provided so as to reduce the difference in pattern opening ratio between the region R5 and the adjacent region that are not necessarily provided uniformly.
  • the technique according to the present embodiment is applied to freely controlling a part of the pattern aperture ratio of the mask layer 22 only by suppressing the difference in pattern aperture ratio.
  • a dummy pattern may be provided as appropriate so that the difference in pattern aperture ratio between the first region and the second region increases.
  • the dummy pattern according to the present embodiment makes it possible to selectively control the pattern aperture ratio in a part of the mask layer 22 according to the desired print pattern and print thickness. Thereby, the permeability of the paste material to a part of the printed pattern is controlled, and it becomes possible to form a wiring having a desired film thickness.
  • the pattern aperture ratio of the mask layer is controlled by the mesh aperture ratio of the screen wall.
  • the effect is as follows.
  • a “non-uniform screen ⁇ ” that is formed so that the mesh aperture ratio of a part that is not in a uniform screen ⁇ ⁇ ⁇ is different from the mesh aperture ratio of other parts.
  • Such a non-uniform screen is formed by an additive plating method or the like.
  • it is necessary to apply a certain amount of tension.
  • the tension distribution is biased, so that a large tension cannot be applied to the screen screen.
  • the screen mask according to the present embodiment is suitable for forming fine wirings and semiconductor devices.
  • the screen mask 40 shown in FIG. 7 includes a screen ridge (not shown) and a mask layer 42.
  • the screen is the same as that in the first embodiment.
  • the mask layer 42 is formed so as to be coupled to the screen ridge, and has mask openings 41a and 4 lb corresponding to a desired print pattern.
  • the mask opening 41a is formed in the first region R1, and the mask opening 41b is formed in the second region R2 adjacent to the first region R1.
  • the mask opening 41a corresponds to the wiring pattern
  • the mask opening 4 lb corresponds to the electrode pad pattern.
  • the numerical values in Fig. 7 represent the dimensions of wiring and electrode pads (unit: mm). In Fig. 7, the wiring width is designed to be 20 ⁇ m, and the electrode pad size is designed to be 200 mX 200 ⁇ m.
  • the pattern aperture ratio in the first region R1 is 10%, and the pattern aperture ratio in the second region R2 is 100%.
  • a screen mask 50A shown in FIG. 8 is proposed.
  • an “additional opening” is provided, but according to the second embodiment, an “additional mask” is provided, which is specifically shown in FIG.
  • an additional mask 52a is formed in the second region R2 of the mask layer 42.
  • This additional mask 52a is formed in a “beam shape” and has a mask opening 4.
  • the width of one mask 52a is 20 m.
  • these additional masks 52a are dummy patterns ( It can be said that it has an adjustment pattern.
  • the pattern aperture ratio in the second region R2 changes from 100% force to 60%. Accordingly, the difference between the pattern aperture ratio in the first region R1 and the pattern aperture ratio in the second region R2 is reduced.
  • Screen printing was performed by using such a screen mask 50A. As the paste, the conductive adhesive containing the ultrafine particles described above was used. As a result of screen printing under appropriate printing conditions, the printing thicknesses corresponding to the first region R1 and the second region R2 are substantially uniform.
  • a screen mask 50B shown in FIG. 9 is proposed.
  • a plurality of “island-like” masks 52b are formed in the mask opening 4 lb.
  • the dimension of each mask 52b is 20 m ⁇ 20 m.
  • This additional mask 52b is formed so as to be bonded to the screen ridge in the same manner as the mask layer 42.
  • the pattern aperture ratio in the second region R2 changes to 75%. Since the difference in pattern aperture ratio is reduced, it is possible to achieve a substantially uniform printing thickness under appropriate printing conditions.
  • the island-shaped mask 52b is superior to the beam-shaped mask 52a in terms of symmetry.
  • a screen mask 50C shown in FIG. 10 is proposed.
  • the shape of the additional mask 52 formed in the mask opening 41b is not limited to "beam”, “island", or “annular”.
  • the additional mask 52 may have any shape as long as a bond with the screen is obtained.
  • the thickness of the additional mask 52 is preferably smaller than the thickness of the mask layer 42 so that the shape of the film formed on the printing material through the mask opening 41b does not collapse.
  • the size (area) of the additional mask 52 is preferably extremely small. Note that the “additional opening” shown in the first embodiment may be formed in the first region R1. As a result, the range of applicable printing conditions is widened and suitable.
  • the technique according to the present embodiment is generalized and described as follows.
  • the desired print pattern includes a first print pattern included in the first area and a second print pattern included in the second area adjacent to the first area.
  • the areas of the first region and the second region are the same, and the pattern aperture ratio of the first print pattern in the first region is different from the pattern aperture ratio of the second print pattern in the second region.
  • a dummy pattern may be provided as appropriate so that the difference in pattern aperture ratio between the first region and the second region is reduced.
  • the first print pattern is smaller than the second print pattern
  • the first region may be provided with a first dummy pattern
  • the second region may be provided with a second dummy pattern that is larger than the first dummy pattern.
  • the difference in pattern aperture ratio between the first region and the second region is suppressed. It is more preferable that the pattern aperture ratio is uniform in the first region and the second region.
  • the screen mask 50 it is possible to partially control the printing thickness to a desired value in screen printing using a paste material containing ultrafine particles. That is, the film thickness of the paste applied to the substrate can be adjusted according to the desired print pattern. For example, with the screen mask 50, it is possible to collectively form circuits with no variation in the wiring film thickness.
  • the “additional mask” similar to the second embodiment is formed on the screen mask.
  • the mask layer of the screen mask according to the present embodiment has a laminated structure.
  • descriptions overlapping with those of the second embodiment are omitted as appropriate.
  • the first mask layer 61 has “masks 61 & ⁇ 61 (1” similar to the “additional mask 52” shown in the second embodiment.
  • 61d force Acts as an adjustment unit for controlling the pattern aperture ratio of the desired print pattern, that is, the mask aperture 64 of the first mask layer 61 is smaller than the mask aperture 65 corresponding to the desired print pattern.
  • a mask opening corresponding to a desired print pattern is formed in the first mask layer 61 on the squeegee side, and an additional calorie for controlling the pattern opening ratio in the second mask layer 62 on the print target side.
  • a typical mask may be formed.
  • the additional mask thickness is smaller than the total thickness of the mask layer.
  • additional masks 61a to 61d are provided on the first mask layer 61 on the squeegee side, as shown in FIG. It is possible and preferred.
  • the second mask layer 62 is formed so as to be integrated with the screen 1
  • the first mask layer 61 is formed so as to contact the screen 1.
  • FIG. 13 shows a screen mask 60C as still another modified example.
  • the lean mask 60C includes a first mask layer 61, a second mask layer 62, and a third mask layer 63.
  • the first mask layer 61 is formed at the same level as the screen ⁇ 1
  • the second mask layer 62 is formed so as to be in contact with the first mask layer 61
  • the third mask layer 63 is the second mask. It is formed so as to contact under layer 62.
  • the additional mask is provided on the first mask layer 61 and the second mask layer 62 on the squeegee side.
  • the plurality of mask layers 61 to 63 each have a different mask opening (opening pattern).
  • FIG. 14 shows a screen mask 60D as still another modified example.
  • the first mask layer 61 is formed so as to be in contact with the screen 1 and the second mask layer 62 is formed so as to be in contact with the first mask layer 61. ing. That is, the first mask layer 61 and the second mask layer 62 are bonded to the screen 1. Even in this case, the pattern aperture ratio is controlled by the additional masks 61a to 61d.
  • the mask layer can also be made of metal.
  • a plurality of mask layers produced by a plating method such as an additive method may be attached to each other or may be attached to the screen 1.
  • a fine mask opening pattern can be formed, which is preferable.
  • a plurality of mask layers in which mask openings are formed by an etching method or a laser cage may be attached to each other or may be attached to the screen 1.
  • the printing thickness is partially controlled to a desired value.
  • the film thickness of the paste applied to the substrate can be adjusted according to the desired print pattern.
  • the additional masks 61a to 61d are not necessarily provided so as to be uniformly distributed in all the mask openings. Depending on the desired printing pattern, there may be areas with and without additional masks.
  • the electrode pad corresponding to the mask opening 71f it may be desirable to collectively manufacture wirings and electrode pads having different printing thicknesses.
  • the electrode pad corresponding to the mask opening 71f For example, on the electrode pad corresponding to the mask opening 71f, Consider a case where electrodes of a semiconductor element are connected. In that case, it is desirable that the printed thickness of the electrode pad to be formed is larger than the surroundings. In order to maintain the tackiness of the conductive paste and the sufficient connectivity after curing, the electrode pad thickness should be 20 m or more. Although it is possible to increase the overall printed thickness of the wiring and electrode pads, this is not preferable because the consumption of the conductive paste increases. In FIG. 15, it is difficult to apply the “additional opening” or “additional mask” shown in the above-described embodiment having a high wiring density. In this case, the surface processing according to the present embodiment is effective.
  • a resin coat is applied to the surface of a part of the opening of mask layer 72.
  • a resin coat 73 is formed on the surface of the mask opening 71f.
  • the adhesiveness (adhesiveness) between the adhesive resin in the paste material and the resin coat 73 is different from the adhesiveness between the adhesive resin and the mask layer 72. That is, the resin coating 73 changes the permeability of the paste material to the mask opening 71f.
  • the resin coat 73 serves as an adjusting unit for controlling the permeability of the paste material to the mask opening 71f.
  • the resin coat 73 reduces the adhesiveness between the adhesive resin and the mask opening 71f.
  • the resin coat 73 include a fluorine resin coat and a silicone resin coat.
  • Fluorine resin includes PTFE (tetrafluoroethylene rubber), FEP (tetrafluoroethylene hexafluoropropylene copolymer), PFA (tetrafluoroethylene rubber fluoropropylene vinyl ether), ETFE (tetrafluoroethylene). Chemically modified ethylene copolymer), PVDF (polyvinylidene fluoride), PCTFE (polychlorinated trifluoroethylene), and the like.
  • the printing thickness can be partially freely controlled.
  • a semiconductor device having wirings with different film thicknesses can be manufactured with fewer steps. Consider the case where the first wiring and the second wiring thinner than the first wiring are collectively formed on the substrate or the like.
  • a screen mask shown in any of the first to fourth embodiments is provided. Specifically, first, (I) a mask layer force having a desired printing pattern is formed so as to be combined with the screen.
  • the desired printed pattern includes at least a first wiring pattern for forming the first wiring and a second wiring pattern for forming the second wiring.
  • the permeability of the paste material to some mask openings is controlled.
  • a part of the mask layer is processed so that the permeability of the paste material is different between the first region including the first wiring pattern and the second region including the second wiring pattern.
  • the control of the transparency may be performed according to the desired film thickness of the first wiring and the desired film thickness of the second wiring. If a first interconnect thicker than the second interconnect is desired, the paste material permeability to the first region is designed to be greater than the paste material permeability to the second region.
  • an “additional opening” is formed in a part of the mask layer.
  • the additional opening may be formed at least in the mask layer in the first region.
  • an “additional mask” may be formed on a part of the mask layer.
  • a “grease code” may be applied on the surface of some mask openings.
  • the resin coat may be formed at least on the surface of the mask opening of the mask layer in the first region.
  • the screen mask according to the present invention may be used.
  • a conductive adhesive containing metal particles and adhesive resin is used.
  • the metal particles are preferably a low resistance metal. Examples of such metal particles include gold, silver, copper, platinum, palladium, and composites and alloys containing them.
  • Any adhesive resin may be used as long as sufficient adhesion strength to the substrate 80 can be obtained. Examples of the adhesive resin include epoxy resin, acrylic resin, polyester resin, polyimide resin, polyamide resin, polyurea resin, and composites thereof.
  • the passive component 84 and the semiconductor element 86 are brought into contact with the conductive paste at the electrode 83 and the connection terminal 85, and are held with the tackiness. Thereafter, heat treatment is performed in an oven or the like. The heat treatment conditions depend on the conductive paste used. By this heat treatment, the first wirings 81a to 81d and the second wirings 82a to 82c are cured, and conductivity is exhibited. Conventionally, the wiring formation process and the mounting process are separate, but according to the present embodiment, the wiring formation process and the mounting process are the same process. [0102] According to the present invention, it is possible to collectively form wirings having different film thicknesses. Furthermore, since the thickness of the formed wiring is different, it becomes easy to mount passive components and semiconductor elements.
  • a wiring board on which a plurality of passive components and semiconductor elements are mounted can be manufactured by one screen printing, element mounting, and one heat treatment. This means that the wiring formation process and the mounting process are the same. Therefore, it is possible to provide a wiring board at a low cost.
  • FIG. 17 schematically shows the structure of the semiconductor knockout to be manufactured.
  • a first wiring 91 and a second wiring 92 are formed on the first semiconductor element 90 via a protective film 97.
  • the first wiring 91 is thicker than the second wiring 92.
  • a passive component 94 and a second semiconductor element 96 are mounted on the first wiring 91.
  • the electrode 93 of the passive component 94 and the bump electrode 95 of the second semiconductor element 96 are connected to the first wiring 91. That is, the first wiring 91 is an electrode pad.
  • the second wiring 92 is connected to the first semiconductor element 90 through the electrode 98, and serves as a lead wiring.
  • the first wiring 91 and the second wiring 92 as described above can also be collectively manufactured by using the screen mask according to the present invention.
  • the paste material the above-mentioned conductive adhesive is used.
  • the passive component 94 and the second semiconductor element 96 are mounted before the thermosetting process.
  • a predetermined heat treatment is performed. By this heat treatment, both the first wiring 91 and the second wiring 92 are cured, and conductivity is exhibited.
  • the present invention it is possible to collectively form wirings having different film thicknesses. Furthermore, since the thickness of the formed wiring is different, it becomes easy to mount passive components and semiconductor elements. From these facts, the manufacturing process of the wiring board is simplified. In particular, it becomes possible to manufacture a semiconductor package on which a plurality of passive components and semiconductor elements are mounted by one screen printing, element mounting, and one heat treatment. This means that the wiring formation process and the mounting process are the same. Therefore, it is possible to provide a semiconductor package at a low cost.
  • the heat treatment process is negative for the mounted semiconductor elements. Since the load is applied, it may cause a malfunction. According to the manufacturing method of the present invention, since the number of heat treatment steps is reduced, the load on the semiconductor element is reduced. As a result, the occurrence of defects is suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Printing Plates And Materials Therefor (AREA)

Abstract

 スクリーン印刷における印刷厚みを部分的に所望の値に制御することを目的とする。スクリーンマスク30は、スクリーン紗と、マスク層22と、調整部31とを備える。マスク層22は、スクリーン紗と結合するように形成され、所定の印刷パターンに対応するマスク開口部21を有する。調整部31は、その所定の印刷パターンの一部に対するペースト材料の透過性を変化させるように、マスク層22に形成される。特に、調整部31は、マスク層22のパターン開口率を変化させるようにマスク層22に形成される。

Description

明 細 書
スクリーンマスク、半導体装置の製造方法
技術分野
[0001] 本発明は、スクリーン印刷において用いられるスクリーンマスクに関する。また、本 発明は、そのスクリーンマスクを用いることによって配線基板や半導体パッケージ等 の半導体装置を製造する方法に関する。
背景技術
[0002] 図 1は、スクリーン印刷技術において用いられるスクリーン紗 1を示している。スクリ ーン紗 1はワイヤ 2から構成され、例えばそれらワイヤ 2が網目状に組み合わされるこ とによってメッシュが形成されている。ワイヤ 2の直径は、線径 Dと呼ばれている。この ワイヤ 2の材料としては、金属線材と合成繊維線材が知られている。微細化の面では 金属線材が優れており、最も細いものとしては線径 Dが 12〜13 mであるワイヤ 2が 実用化されている。
[0003] 1インチ当たりのワイヤ 2の本数は、「メッシュ数(Mesh count)」と呼ばれており、それ はメッシュの粗さを示している。最も細力 、ものとしては、メッシュ数が 600であるスクリ ーン紗 1が実現されている。 1インチをメッシュ数で割った値は、線径 Dとメッシュ開口 部 3の寸法 Sとの和に相当する。例えば、メッシュ数が 600であり、線径 Dが 12 mの 場合、メッシュ開口部 3の寸法 Sは約 30 mである。メッシュ数が大きくなるほど、長さ D + Sは短くなり、それはメッシュがより細力 、ことを意味する。
[0004] また、スクリーン紗 1の開口率である「メッシュ開口率」は、線径 Dとメッシュ開口部 3 の寸法 Sを用いて、次の式で表現される:
メッシュ開ロ率=327(0 + 3) 2
メッシュ開口率は、単位面積当たりのメッシュ開口部 3の占める割合と言うこともでき る。このメッシュ開口率は、メッシュ数が小さいほど、また、線径 Dが小さいほど大きく なる。メッシュ開口率が大きいほど、抵抗が小さくなり、ペースト状のインクカ ッシュを 通過しやすくなる。
[0005] あるパターンを基板に印刷するためには、そのパターンに対応したマスクパターン がスクリーン紗 1に形成されればよい。そのマスクパターンの一例が、図 2に示されて ヽる。図 2にお!/ヽて、スクリーン紗 1に ίま、マスク層 4a、 4b、 4c力 ^形成されて!ヽる。マス ク層 4a、 4b、 4cが形成されていない領域であるマスク開口部 5a、 5b、 5cは、所望の 印刷パターンに対応している。例えば図 2において、マスク開口部 5bは、配線パター ンに対応しており、マスク開口部 5aは、独立した浮島状のドットパターンに対応してい る。また、マスク開口部 5c中に位置するマスク層 4cは、抜きパターンに対応している 。メッシュ開口率に対して、単位面積当たりのマスク開口部 5の占める割合は、「パタ ーン開口率」あるいは「マスク開口率」と呼ばれる。
[0006] 図 3は、実際のスクリーン印刷で用いられるスクリーンマスク(screen mask)の側面図 である。まず、上述の網目状のスクリーン紗 1が所定の大きさの枠 (フレーム) 7に張ら れる。続いて、乳剤(emulsion)等を用いることによって、所望の印刷パターンに対応 したマスク層 4がスクリーン紗 1に形成される。これにより、スクリーンマスク 6が得られ る。このスクリーンマスク 6は、所望の配線パターンに対応したマスク開口部 5d、 5e、 5 fを有している。
[0007] このスクリーンマスク 6を用いた印刷工程力 図 4A〜図 4Dに概略的に示されてい る。スクリーンマスク 6は、基板等の被印刷物 8に対向するように配置されている。まず 、図 4Aに示されるように、スクリーンマスク 6に、接着性榭脂を含むペースト 9が供給さ れる。続いて、スクレツパ 10が、矢印で示される方向(一 X方向)に動く。その結果、図 4Bに示されるように、マスク開口部 5d、 5e、 5fが、ペースト 9によって埋められる。次 に、図 4Cに示されるように、スキージ(squeegee) 11が、スクリーンマスク 6を被印刷物 8に押し付けるように、矢印で示される方向(+X方向)に動く。これにより、マスク開口 部 5d、 5e、 5fに埋め込まれたペースト 9が押し出される。その結果、図 4Dに示される ように、所望の配線パターンに対応したペースト 9d、 9e、 9fが被印刷物 8に転写され る。このようなスクリーン印刷工程において、ペースト 9は、マスク層 4のマスク開口部 5 とスクリーン紗 1のメッシュ開口部 3を通過する。
[0008] このような接着性榭脂を有するペースト 9とスクリーンマスク 6とを用いたスクリーン印 刷は、エレクトロニクス分野において、配線基板や半導体素子の接続に用いられてき た。近年、素子の小型化や配線の微細化 ·狭ピッチ化が要求されており、そのような 技術動向にマッチしたスクリーンマスクの開発が望まれて 、る。
[0009] 微細な配線や狭ピッチ配線を形成するためには、上述のマスク層 4も微細に力卩ェさ れなければならない。そのような微細なマスク層 4を支持するためには、ある程度細か いスクリーン沙 1を用いる必要があり、スクリーン紗 1のメッシュ数も大きい方が好まし い。例えば図 1及び図 2を参照して、抜きパターンに対応するマスク層 4cの直径 D1 力 メッシュ開口部 3の寸法 Sよりも小さくなると、スクリーン紗 1がマスク層 4cを保持す ることが難しくなる。つまり、微細な回路パターンや複雑な回路パターンの場合、ある 程度大きいメッシュ数を持つスクリーン紗 1が必要である。
[0010] し力しながら、線径 Dが一定の場合、メッシュ数が増加するにつれてメッシュ開口部 3の寸法 Sは小さくなつてしまう。メッシュ開口部 3の寸法 Sが小さくなると、メッシュ開 口率が小さくなり、ペースト 9がスクリーン紗 1を通過しに《なるという問題が新たに発 生する。ある程度のメッシュ数を保ったまま、メッシュ開口率を増加させるためには、 線径 Dを小さくすることが考えられる。しかし、ワイヤ 2の微細線ィ匕はスクリーン紗 1の 強度劣化の原因となるため、それによるメッシュ開口率の増大には限界がある。素子 や配線の微細化に伴い、メッシュ開口部 3に目詰まりが発生する可能性が高くなつて きている。この問題は、特に、ペースト 9に含まれる粒子が大きいと顕著となる。
[0011] このような課題に対し、ペースト状の材料を改良することも検討されて 、る。ペースト 状材料の一つである導電性接着剤は、一般に、導電性機能を担う「導電性粒子」と 接着機能を担う「接着榭脂」を主要な構成要素として含んで ヽる。このうち導電性粒 子としては、銀や銅などの金属粒子が使用されることが多い。金属粒子の形状として は、球状やフレーク状が挙げられるが、良好な流動性の観点からは、球状の金属粒 子が好適であると言われている。特に、上述のメッシュ開口部 3の目詰まりの問題から 、極めて微細な金属粒子を含む導電性ペーストが提案されている。微細な金属粒子 に関しては、粒子径が lOOnm以下の金属超微粒子を含むペーストも提案されている (例えば、特開 2004— 273205号公報、特開 2004— 247572号公報、特開 2002 299833号公報参照)。
[0012] 尚、スクリーン印刷に関連する技術として、次のものが公知である。
[0013] 特開平 5— 124370号公報には、スキージの押圧によるスクリーン紗の変形量の差 を抑制することを目的とした技術が開示されている。この特開平 5— 124370号公報 に開示されたスクリーンマスクによれば、スクリーン沙に、その目をつぶすように遮蔽 用乳剤層がパターン状に形成されて 1、る。その遮断用乳剤層が形成されて!ヽな 、部 分力 インク通過用の開口群である。その開口部のそれぞれには、乳剤層の島がほ ぼ均一に分布するように形成されて 、る。
[0014] 特開平 6— 143855号公報には、印刷された塗膜のエッジ部の盛り上がりを解消す ることを目的とした技術が開示されている。この特開平 6— 143855号公報に開示さ れたスクリーン印刷版によれば、スクリーンに形成される乳剤層は、第 1の乳剤層と第 2の乳剤層の 2層構造を有する。第 1の乳剤層の開孔部は、所望の印刷形状より小さ くなるように設計される。また、第 2の乳剤層の開孔部は、所望の印刷形状に対応す るように設計される。
[0015] 特開平 8— 262733号公報に開示されたスクリーン版は、メッシュ状シート層と、そ のメッシュ状シート層の一主面に一体的に形成されたマスク層とを備える。マスク層は 、所定の配線パターンを有する。その配線パターンのうち膜厚化を要する回路パター ン領域に対応する部分の"メッシュ開口率"は、選択的に大きく設計される。すなわち 、この従来技術においては、図 1や図 2に示されたような均一のスクリーン紗は用いら れず、非対称なメッシュパターンを有するスクリーン紗が用いられる。
[0016] 特開 2004— 195858号公報には、ペースト材料を被印刷基板に空隙部を通して 押し出してパターンを形成するスクリーンマスクが開示されて 、る。そのスクリーンマス クの空隙部に位置するスクリーン紗を構成する金属細線 (ワイヤ)は、 1層以上の合成 榭脂で被覆されている。
[0017] 上述の通り、粒径が lOOnm以下の超微粒子を含むペーストは、素子や配線の微 細化に伴い、スクリーン印刷において重要になってきている。本願発明者は、上記ス クリーン紗を有するスクリーンマスクと粒径 1 OOnm以下の微細金属粒子を含有する ペースト材料とを用いたスクリーン印刷に関して、次のような問題点を見出した。
[0018] 図 3において、スクリーンマスク 6のマスク開口部 5d、 5e、 5fは、それぞれ異なる面 積を有しているとする。この場合、図 4Dに示されたように、被印刷物 8に塗布されるぺ 一スト 9d、 9e、 9fは、それぞれ膜厚が異なることが明らかになった。具体的には、マス ク開口部 5の面積が大きくなるほど、塗布されるペースト 9は厚くなることが明らかにな つた。つまり、超微粒子を含有するペーストを用いるスクリーン印刷の場合、印刷バタ ーンに依存して印刷厚みにばらつきが生じるという新たな課題が見出された。特に、 回路パターンのような微細なパターンと電極パッドのような大きなパターンとが混在す る場合や、微細な配線パターンの配置に疎密がある場合、上記印刷厚みのばらつき が顕著になることが明らかになった。更に、導電性接着剤のように接着榭脂を含むぺ 一ストの場合、上記傾向がより大きくなることが明らかになった。従って、所望の印刷 ノターンに応じて、塗布されるペーストの膜厚を制御することができる技術が望まれる 発明の開示
[0019] 本発明の目的は、スクリーン印刷における印刷厚みを部分的に所望の値に制御す ることができるスクリーン印刷技術を提供することにある。
[0020] 本発明の他の目的は、被印刷物に塗布されるペーストの膜厚を所望の印刷パター ンに応じて調整することができるスクリーンマスク及びスクリーン印刷パターンを提供 することにある。
[0021] 本発明の更に他の目的は、そのようなスクリーンマスクを用いることにより、低コスト で配線基板や半導体パッケージといった半導体装置を提供することにある。
[0022] 本願発明者は、前述の課題を解決するため種々の検討を行った結果、マスク層の 単位面積当たりの開口面積であるパターン開口率が印刷厚みに寄与することを見出 した。つまり、超微粒子を含むペースト材料を用いるスクリーン印刷においては、マス ク層の開口面積の違い、すなわち、ノターン開口率の違いにより印刷厚みに大きな 差が生じることが見出された。また、本願発明者は、パターン開口率の他に、接着榭 脂とマスク開口部やスクリーン紗との接触面積が印刷厚みの変動に大きく影響を与え ることを見出した。そのため、本発明に係るスクリーンマスクは、マスク層のパターン開 口率を調整する機構や、マスク層と接着樹脂との密着性を調整する機構を有する。こ れにより、マスク開口部の一部に対するペースト材料の透過性が制御される。ペース ト材料の透過性を制御することによって、印刷厚みを部分的に所望の値に制御する ことが可能となる。 [0023] 本発明の第 1の観点において、スクリーンマスクは、スクリーン紗と、マスク層と、調 整部とを備える。マスク層は、スクリーン紗と結合するように形成され、所定の印刷パ ターンに対応するマスク開口部を有する。調整部は、その所定の印刷パターンの一 部に対するペースト材料の透過性を変化させるように、マスク層に形成される。
[0024] このスクリーンマスクにおいて、上記調整部は、「パターン開口率」を変化させるよう にマスク層に形成される。調整部は、所定の印刷パターンと異なる調整パターンを有 する。
[0025] 例えば、調整部は、マスク層に形成された追カ卩的な開口部であり、その追加的な開 口部が上記調整パターンを有する。追カ卩的な開口部は、上記マスク開口部から離れ て形成されている。所定の印刷パターンは、第 1領域に含まれる第 1印刷パターンと、 第 1領域と同じ大きさの第 2領域に含まれる第 2印刷パターンとを含む。また、調整パ ターンは、第 1領域に含まれる第 1調整パターンと、第 2領域に含まれる第 2調整バタ 一ンとを含む。この場合、第 1印刷パターンは第 2印刷パターンより大きぐ第 1調整 ノ《ターンは第 2調整パターンより小さいと好適である。また、第 1領域と第 2領域は隣 接していることが好適である。第 1調整パターン及び第 2調整パターンは、第 1領域と 第 2領域におけるパターン開口率が均一になるように設けられてもよい。
[0026] また、調整部は、マスク層に形成された追カ卩的なマスクであり、その追加的なマスク が上記調整パターンを有していてもよい。例えば、その追カ卩的なマスクは、マスク開 口部を横切るように設けられた梁状のマスクである。あるいは、その追加的なマスクは 、マスク開口部内に設けられた島状のマスクである。あるいは、その追カ卩的なマスクは 、マスク開口部内に設けられた環状のマスクである。追カ卩的なマスクの厚さは、マスク 層の厚さより小さい。
[0027] 所定の印刷パターンは、第 1領域に含まれる第 1印刷パターンと、第 1領域と同じ大 きさの第 2領域に含まれる第 2印刷パターンとを含む。調整パターンは、第 1領域に含 まれる第 1調整パターンと、第 2領域に含まれる第 2調整パターンとを含む。この場合 、第 1印刷パターンは第 2印刷パターンより大きぐ第 1調整パターンは第 2調整バタ ーンより大きいと好適である。第 1調整パターン及び第 2調整パターンは、第 1領域と 第 2領域におけるパターン開口率が均一になるように設けられてもよい。 [0028] 更に、マスク層は、スキージ側の第 1マスク層と、印刷対象側の第 2マスク層とを含 む積層構造を有していてもよい。この場合、上記追加的なマスク層は、第 1マスク層と 第 2マスク層のいずれかに形成される。好適には、追カ卩的なマスク層は、スキージ側 の第 1マスク層に形成される。より一般的には、マスク層は、複数のマスク層を含む。 その複数のマスク層のうち第 1マスク層と第 2マスク層の間で開口パターンが異なって いればよい。上記調整部は、第 1マスク層と第 2マスク層のいずれかである。
[0029] また、調整部は、マスク層の一部の開口部の表面上に形成されるコーティングであ つてもよい。そのコーティングと接着樹脂との接着性は、マスク層の表面と接着樹脂と の接着性と異なる。コーティングとしては、フッ素榭脂コートやシリコーン榭脂コートが 挙げられる。接着樹脂がエポキシ榭脂の場合、コーティングは、水酸基を有する榭脂 コート、あるいは、水酸基を有するガラスコートであってもよい。また、それら榭脂ゃガ ラスの水酸基が、シロキサン化されてもよぐ脂肪族で置換されてもよい。
[0030] 上述のペースト材料は、粒径が lnm以上 lOOnm以下の微細粒子を含有すると好 適である。
[0031] 本発明の第 2の観点において、スクリーン印刷による半導体装置の製造方法が提 供される。ここで、半導体装置とは、例えば、配線基板や半導体パッケージである。そ の製造方法は、 (A)所定の印刷パターンに応じたスクリーンマスクを提供する工程と 、ここで、所定の印刷パターンは、第 1領域に含まれる第 1配線パターンと、第 1領域 と同じ大きさの第 2領域に含まれる第 2配線パターンとを含み、(B)スクリーンマスクと 所定のペースト材料を用いて、第 1配線パターンに対応する第 1配線と、第 2配線パ ターンに対応する第 2配線を一括して印刷対象物に形成する工程とを有する。
[0032] 上記 (A)工程は、(A1)所定の印刷パターンを有するマスク層をスクリーン紗と結合 するように形成する工程と、(A2)第 1領域と第 2領域との間でペースト材料の透過性 が異なるようにマスク層の一部を加工する工程とを有する。
[0033] 上記 (A2)工程において、第 1配線の所望の膜厚と第 2配線の所望の膜厚に応じて 、ペースト材料の透過性が制御される。例えば、上記 (A2)工程において、追加的な 開口部及び追加的なマスクのいずれかが、第 1領域と第 2領域の少なくとも一方に形 成される。また、上記 (A2)工程において、第 1配線パターンと第 2配線パターンの少 なくとも一方に対応するマスク層の開口部の表面上に榭脂コートが施されてもよい。
[0034] 本発明に係る半導体装置の製造方法は、更に、(C)第 1配線に素子を搭載するェ 程と、(D)第 1配線及び第 2配線の硬化を行う工程とを有する。上記 (D)工程は、上 記 (C)工程の後に行われる。第 1配線の膜厚は、第 2配線の膜厚より大きい。
[0035] 上記 )工程において、粒径が lnm以上 lOOnm以下の微細粒子を含有するぺー スト材料が所定のペースト材料として用いられると好適である。
[0036] 本発明に係るスクリーン印刷技術によれば、スクリーン印刷における印刷厚みを部 分的に所望の値に制御することが可能となる。本発明に係るスクリーンマスク及びスク リーン印刷パターンによれば、被印刷物に塗布されるペーストの膜厚を所望の印刷 パターンに応じて調整することが可能となる。また、そのようなスクリーンマスクを用い ることによって、低コストで配線基板や半導体パッケージと 、つた半導体装置を製造 することが可能となる。
図面の簡単な説明
[0037] [図 1]図 1は、スクリーン印刷において用いられるスクリーン紗を示す平面図である。
[図 2]図 2は、スクリーン紗に形成されるマスク層のパターンの一例を示す平面図であ る。
[図 3]図 3は、従来のスクリーンマスクの構造を概略的に示す側面図である。
[図 4A]図 4Aは、スクリーン印刷工程を概略的に示す側面図である。
[図 4B]図 4Bは、スクリーン印刷工程を概略的に示す側面図である。
[図 4C]図 4Cは、スクリーン印刷工程を概略的に示す側面図である。
[図 4D]図 4Dは、スクリーン印刷工程を概略的に示す側面図である。
[図 5]図 5は、第 1の実施の形態における比較例としてのスクリーンマスクを示す平面 図である。
[図 6]図 6は、第 1の実施の形態に係るスクリーンマスクを示す平面図である。
[図 7]図 7は、第 2の実施の形態における比較例としてのスクリーンマスクを示す平面 図である。
[図 8]図 8は、第 2の実施の形態に係るスクリーンマスクの一例を示す平面図である。
[図 9]図 9は、第 2の実施の形態に係るスクリーンマスクの他の例を示す平面図である [図 10]図 10は、第 2の実施の形態に係るスクリーンマスクの更に他の例を示す平面 図である。
[図 11]図 11は、第 3の実施の形態に係るスクリーンマスクの一例を示す側面図である
[図 12]図 12は、第 3の実施の形態に係るスクリーンマスクの一例を示す側面図である
[図 13]図 13は、第 3の実施の形態に係るスクリーンマスクの一例を示す側面図である
[図 14]図 14は、第 3の実施の形態に係るスクリーンマスクの一例を示す側面図である
[図 15]図 15は、第 4の実施の形態に係るスクリーンマスクの一例を示す平面図である
[図 16]図 16は、第 5の実施の形態に係る配線基板の構造を示す側面図である。
[図 17]図 17は、第 5の実施の形態に係る半導体パッケージの構造を示す側面図であ る。
発明を実施するための最良の形態
[0038] 添付図面を参照して、本発明によるスクリーンマスク、スクリーン印刷パターン、及び 配線基板や半導体パッケージの製造方法を説明する。
[0039] 本実施の形態に係るスクリーン印刷おいて、粒径 lnm以上 lOOnm以下の超微細 粒子を含有する導電性ペーストが用いられる。その導電性ペーストとしては、微粒子 と超微粒子を"導電性粒子"として含む導電性接着剤が用いられる。具体的には、そ の導電性接着剤は、 0. 1 m以下の粒子が除去された平均粒径 0. 5 μ mの球状 A g微粒子と、粒径 lOnmの Ag超微粒子とを含む。また、その導電性接着剤は、ェポキ シ榭脂を"接着榭脂 (バインダ榭脂) "として含む。そのエポキシ榭脂は、下記式 (1) で表されるビスフエノール F型エポキシ榭脂およびその誘電体を含んでもょ ヽ。また、 そのエポキシ榭脂は、下記式(2)で表されるビスフエノール A型エポキシ榭脂および その誘電体を含んでもょ 、。 [0040] [化 1]
Figure imgf000012_0001
[0041] [化 2]
Figure imgf000012_0002
[0042] 上記式にぉ 、て、 nは 0以上の正数である。導電性接着剤における球状 Ag微粒子 , Ag超微粒子,及びエポキシ榭脂の混合比率は、例えば、それぞれ 80重量%, 5重 量%,及び 15重量%である。
[0043] 1.第 1の実施の形態
1 - 1.比較例
第 1の実施の形態に係るスクリーンマスクの特徴を分力りやすくするために、まず、 図 5に示される一般的なスクリーンマスクを比較例として説明する。図 5に示されるスク リーンマスク 20は、スクリーン紗(図示されない)とマスク層 22を備えている。マスク層 22は、スクリーン紗と結合するように形成されている。スクリーン紗のメッシュ数は 500 であり、その線径 Dは 18 μ mである。その場合、メッシュ開口部の寸法 Sは約 33 μ m であり、メッシュ開口率は約 42%である。また、マスク層 22を形成するための乳剤の 厚みは 10 mである。
[0044] マスク層 22は、所望の印刷パターンに対応するマスク開口部 21a〜21dを有してい る。本例において、スクリーンマスク 20は、ガラスエポキシ基材上に回路を形成する ために用いられ、上記所望の印刷パターンは、配線パターンや電極パッドパターン で主に構成されている。図 5においては、マスク開口部 21a〜21cが配線パターンに 対応しており、マスク開口部 21dが電極パッドパターンに対応している。また、図 5中 の数値は配線や配線ピッチの寸法(単位: mm)を表している。図 5においては、配線 幅は 20 mに、また、配線ピッチは 100 mに設計されている。
[0045] 上記マスク層 22は、複数の領域に区分けされ得る。例えば図 5に示されるように、 配線ピッチ(100 μ m)に合わせて、マスク層 22は 9つの領域 R1〜R9 (各々のサイズ 力 m X 100 m)に区分けされる。領域 R5は、電極パッドパターンに対応して いる。各領域におけるマスク開口部 21の占める割合、すなわち、各領域における「パ ターン開口率」は、次の通りである:領域 R1〜R3、 R4、 R7〜R9 =約 20%、領域 R5 =約 64%、領域 R6 = 0%。
[0046] 以上に示されたスクリーンマスク 20を用いることによって、スクリーン印刷が実施さ れた。ペーストとしては、上述の超微細粒子を含有する導電性接着剤が用いられた。 その結果、電極パッド (マスク開口部 21d)に対応する膜厚は約 20 mとなり、配線( マスク開口部 21a〜21c)に対応する膜厚は約 8 mとなった。その後、所定の条件 で熱処理が行われると、導電性接着剤が硬化し回路が完成する。この場合、形成さ れる電極パッドの形状は凸形状となる。そのような形状は、ソルダーレジスト層ゃ多層 配線層が形成される場合は好ましくな 、。
[0047] 形成される膜厚(印刷厚み)のばらつきを抑制するために、種々の印刷条件が検討 された。例えば、マスク開口部 21dに対応するパターンの印刷厚みを減少させるため に、スキージ角度、スキージ硬度、スキージ速度、印刷圧力、スクリーンギャップ等を 変更することが考えられる。しカゝしながらこの場合、マスク開口部 21a〜21cに対応す るパターンの印刷厚みも減少してしまい、ところにより断線が発生するという問題が発 生した。逆に、全体的に印刷厚みが増加するように印刷条件が変更されると、断線は 防止されるが、印刷厚みの差は余計に大きくなるという傾向が見られた。
[0048] スクリーン紗に関しても検討が行われた。マスク開口部 21dを通過するペースト量を 抑制するために、メッシュ開口率がより小さいスクリーン紗が適用された。例えば、メッ シュ数が 600であり、線径 Dが 17 mであるスクリーン紗が適用された。この場合、メ ッシュ開口部の寸法 Sは約 25 μ mであり、メッシュ開口率は約 35%となる。このスクリ 一ン紗を有するスクリーンマスクを用いてスクリーン印刷が行われた結果、上記の例と 比較して、マスク開口部 21dに対応するパターンの印刷厚みは小さくなつた。しかし、 マスク開口部 21a〜21cに対応するパターンの印刷厚みも減少してしまい、課題は 完全には解決されな力つた。印刷厚みの差が減少する傾向は見られた力 これ以上 メッシュ数を大きくすることは技術的に難しい。また、断線が発生する印刷条件の範 囲が広くなるという問題も現れる。
[0049] 逆に、メッシュ開口率がより大きいスクリーン紗を適用することも考えられる。例えば 、メッシュ数力 00であり、線径 Dが 18 μ mであるスクリーン紗が適用される。メッシュ 開口部の寸法 Sは約 46 μ mであり、メッシュ開口率は約 51%である。この場合、上記 の例と比較して、マスク開口部 21a〜21cに対応するパターンの印刷厚みは増加す る力 マスク開口部 21dに対応するパターンの印刷厚みも増加する。また、印刷厚み の差はより大きくなる傾向が見られ、不適であった。
[0050] 1 2.本発明に係る実施例
本願発明者は、メッシュ開口率ではなぐマスク層の単位面積当たりの開口面積で ある「パターン開口率」に着目した。上述の通り、図 5においては、領域 R1〜R9の各 々におけるパターン開口率は、次の通りであった:領域 R1〜R3、 R4、 R7〜R9 =約 20%、領域 R5=約 64%、領域 R6 = 0%。これらパターン開口率の差力 印刷圧力 差、すなわちペースト吐出量の差に現れると推定される。
[0051] そこで、図 6に示されるスクリーンマスク 30が提案される。図 6に示されるスクリーン マスク 30によれば、所望の印刷パターンに対応するマスク開口部 21a〜21dの他に 、「追カ卩的な開口部 31a〜31g」がマスク層 22の一部に形成されている。その追加的 な開口部 31a〜31g (「調整マスク開口部」)は、所望の印刷パターンと異なる追カロ的 なパターン(「調整パターン」あるいは「ダミーパターン」 )を有して 、る。所望の印刷パ ターンの形状が変わらないように、追カ卩的な開口部 31は、マスク開口部 21から離れ て形成されている。
[0052] より詳細には、開口部 31a及び 31bは、領域 R2に追カ卩的に形成され、開口部 31c 及び 31dは、領域 R4に追加的に形成され、開口部 31e及び 31fは、領域 R8に追カロ 的に形成されている。また、開口部 31gは、領域 R6に追カ卩的に形成されている。そ の結果、領域 R1〜R9におけるパターン開口率は、次のように変更される:領域 R1, R3, R7, R9=約 20%、領域 R2, R4, R8=約 40%、領域 R5=約 64%、領域 R6 =約 36%。このように、追カ卩的な開口部 31a〜31gは、マスク層 22の各領域のパタ ーン開口率を変化させるための調整部の役割を果たして 、る。
[0053] このようなスクリーンマスク 30を用いることによって、スクリーン印刷が実施された。ぺ 一ストとしては、上述の超微細粒子を含有する導電性接着剤が用いられた。適当な 印刷条件の下でスクリーン印刷が行われた結果、マスク開口部 21a〜21dの全てに 対応する印刷厚みはほぼ均一となり、約 10 mとなった。つまり、電極パッドも配線も 、均一な膜厚で形成することが可能となった。以上に示されたように、パターン開口 率の異なる領域が存在する場合、そのパターン開口率の差を減少させるダミーバタ ーンを設けることによって、印刷厚みの差を抑制することが可能となる。
[0054] ここで、追カ卩的な開口部 31a〜31gは、特に領域 R5に隣接する領域 R2, R4, R6, R8に設けられていることに着目されるべきである。つまり、追カ卩的な開口部 31a〜31 gは、必ずしも均一に設けられているわけではなぐ領域 R5と隣接領域との間のパタ ーン開口率の差を減少させるように設けられている。言い換えれば、所望の印刷パタ ーンに応じて、追加的な開口部 31 (ダミーパターン)が設けられる領域と設けられな い領域があってもよい。図 6に示されるように、少なくともパターン開口率が領域 R5を 中心として段階的に減少していくように、追カ卩的な開口部 31が設けられると好ましい 。これだけでも印刷厚みの差が充分抑制されることが実証された。当然、残りの領域 Rl, R3, R7, R9に追カ卩的な開口部 31が設けられ、各領域間のパターン開口率の 差がより小さくなるように制御されてもよい。その場合、適用可能な印刷条件の範囲が 広がり、更に好適である。最も好適には、全ての領域においてパターン開口率が均 一になるように、追カ卩的な開口部 31が設けられればよい。
[0055] 本実施の形態に係る技術を一般化して述べると、次の通りである。所望の印刷バタ ーンは、第 1領域に含まれる第 1印刷パターンと、その第 1領域に隣接する第 2領域 に含まれる第 2印刷パターンを含むとする。第 1領域と第 2領域の面積は同じであり、 第 1領域における第 1印刷パターンのパターン開口率と、第 2領域における第 2印刷 ノターンのパターン開口率が異なるとする。この場合、第 1領域と第 2領域との間のパ ターン開口率の差が減少するように、適宜ダミーパターンが設けられればよい。例え ば、第 1印刷パターンが第 2印刷パターンより大きい場合、第 1領域には第 1ダミーパ ターンが設けられ、第 2領域には第 1ダミーパターンより大き 、第 2ダミーパターンが 設けられるとよい。これにより、第 1領域と第 2領域との間のパターン開口率の差が抑 制される。第 1領域と第 2領域でパターン開口率が均一になると、より好ましい。
[0056] 更に一般的に述べると、本実施の形態に係る技術は、パターン開口率の差を抑制 することだけでなぐマスク層 22の一部のパターン開口率を自由に制御することに適 用することが可能である。例えば、第 1領域に対応する第 1配線の印刷厚みを、第 2 領域に対応する第 2配線の印刷厚みより大きくしたい場合を考える。その場合は、第 1領域と第 2領域との間のパターン開口率の差が増加するように、適宜ダミーパター ンが設けられればよい。要約すれば、本実施の形態に係るダミーパターンにより、所 望の印刷パターンや印刷厚みに応じて、マスク層 22の一部におけるパターン開口率 を選択的に制御することが可能となる。それにより、印刷パターンの一部に対するぺ 一スト材料の透過性が制御され、所望の膜厚を有する配線を形成することが可能と なる。
[0057] 1 - 3.効果
本実施の形態に係るスクリーンマスク 30によれば、超微粒子を含有するペースト材 料を用いるスクリーン印刷において、印刷厚みを部分的に所望の値に制御すること が可能となる。つまり、被印刷物に塗布されるペーストの膜厚を所望の印刷パターン に応じて調整することが可能となる。例えば、そのスクリーンマスク 30によって、配線 膜厚にばらつきのない回路を一括して形成することが可能である。連続する領域 (R1 〜R9)に関しては、少なくともパターン開口率が段階的に変化するようにダミーパタ ーンが設けられると好適である。当然、全ての領域におけるパターン開口率が同じに なるようにダミーパターンが設けられてもよい。その場合は、適用可能な印刷条件の 範囲が広がり、更に好適である。
[0058] 本実施の形態によれば、スクリーン紗のメッシュ開口率ではなぐマスク層のパター ン開口率が制御される。それによる効果は次の通りである。例として、一様なスクリー ン紗ではなぐ一部のメッシュ開口率が他の部分のメッシュ開口率と異なるように形成 された"非一様なスクリーン紗"を考える。そのような非一様なスクリーン紗は、アディ ティブメツキ法などで形成される。印刷位置精度を向上させるため、スクリーン紗には ある程度のテンションをかける必要がある。し力しながら、非一様なスクリーン紗の場 合、テンションの分布に偏りが生じるため、大きなテンションをスクリーン紗にかけるこ とができなくなってしまう。テンションの減少は印刷位置精度の劣化を招くため、非一 様なスクリーン紗を微細な配線パターンに適用することは難しい。一方、本実施の形 態によれば、メッシュ開口率ではなくパターン開口率が制御されるため、原則として一 様なスクリーン紗を用いることが可能である。従って、大きなテンションをスクリーン紗 にかけることができ、印刷位置精度が向上する。すなわち、本実施の形態に係るスク リーンマスクは、微細な配線や半導体装置の形成に適している。
[0059] 2.第 2の実施の形態
2- 1.比較例
第 2の実施の形態に係るスクリーンマスクの特徴を分力りやすくするために、まず、 図 7に示される一般的なスクリーンマスクを比較例として説明する。図 7に示されるスク リーンマスク 40は、スクリーン紗(図示されない)とマスク層 42を備えている。スクリー ン紗は、第 1の実施の形態におけるものと同様である。マスク層 42は、スクリーン紗と 結合するように形成されており、所望の印刷パターンに対応するマスク開口部 41a、 4 lbを有している。
[0060] マスク開口部 41aは、第 1領域 R1に形成されており、マスク開口部 41bは、第 1領 域 R1に隣接する第 2領域 R2に形成されている。マスク開口部 41aは配線パターンに 対応しており、マスク開口部 4 lbは電極パッドパターンに対応している。また、図 7中 の数値は配線や電極パッドの寸法(単位: mm)を表している。図 7においては、配線 幅は 20 μ mに、また、電極パッドのサイズは 200 mX 200 μ mに設計されている。 第 1領域 R1におけるパターン開口率は 10%であり、第 2領域 R2におけるパターン開 口率は 100%である。
[0061] 以上に示されたスクリーンマスク 40を用いることによって、スクリーン印刷が実施さ れた。ペーストとしては、上述の超微細粒子を含有する導電性接着剤が用いられた。 その結果、電極パッド (マスク開口部 41b)に対応する膜厚は約 20 mとなり、配線( マスク開口部 41a)に対応する膜厚は約 10 mとなった。その後、所定の条件で熱 処理が行われると、導電性接着剤が硬化し回路が完成する。この場合、形成される 電極パッドの形状は凸形状となる。そのような形状は、ソルダーレジスト層ゃ多層配 線層が形成される場合は好ましくない。
[0062] 2- 2.本発明に係る実施例
マスク層 42の一部のパターン開口率を制御するために、図 8に示されるスクリーン マスク 50Aが提案される。第 1の実施の形態によれば"追加的な開口部"が設けられ たが、第 2の実施の形態によれば"追加的なマスグ'が設けられる。具体的には、図 8 に示されるように、マスク層 42の第 2領域 R2に追カ卩的なマスク 52aが形成されている 。この追カ卩的なマスク 52aは、 "梁状"に形成されており、マスク開口部 4 lbを横切るよ うに設けられている。 1本のマスク 52aの幅は、 20 mである。本実施の形態によれ ば、これら追カ卩的なマスク 52a (調整マスク部)が、ダミーパターン (調整パターン)を 有していると言える。
[0063] 追カロ的なマスク 52aにより、第 2領域 R2におけるパターン開口率は、 100%力ら 60 %に変化する。従って、第 1領域 R1におけるパターン開口率と第 2領域 R2における パターン開口率との差が縮小する。このようなスクリーンマスク 50Aを用いることによつ て、スクリーン印刷が実施された。ペーストとしては、上述の超微細粒子を含有する導 電性接着剤が用いられた。適当な印刷条件の下でスクリーン印刷が行われた結果、 第 1領域 R1と第 2領域 R2に対応する印刷厚みはほぼ均一となる。
[0064] このように、追加的なマスク 52aは、マスク層 42の一部のパターン開口率を変化さ せるための調整部の役割を果たしている。図 8に示されたマスク 52aは、梁状に形成 されており、所望の印刷パターンに対応したマスク層 42と直接つながっている。スクリ ーンマスク 50Aとしての強度を確保できる点で、梁状のマスク 52aは好適である。
[0065] 変形例として、図 9に示されるスクリーンマスク 50Bが提案される。このスクリーンマス ク 50Bによれば、複数の"島状"のマスク 52bが、マスク開口部 4 lb内に形成されてい る。各マスク 52bの寸法は、 20 m X 20 mである。この追加的なマスク 52bは、マ スク層 42と同様にスクリーン紗に結合するように形成される。追カ卩的なマスク 52bによ り、第 2領域 R2におけるパターン開口率は 75%に変化する。パターン開口率の差が 減少するため、適当な印刷条件下でほぼ均一な印刷厚みを実現することが可能なる 。島状のマスク 52bは、対称性の観点において、梁状のマスク 52aより優れている。 [0066] 更に他の変形例として、図 10に示されるスクリーンマスク 50Cが提案される。このス クリーンマスク 50Cによれば、 "環状"のマスク 52cが、マスク開口部 41b内に形成され ている。各環の幅やピッチは 20 mである。この追加的なマスク 52cは、マスク層 42 と同様にスクリーン紗に結合するように形成される。追加的なマスク 52cにより、第 2領 域 R2におけるパターン開口率は 60%に変化する。パターン開口率の差が減少する ため、適当な印刷条件下でほぼ均一な印刷厚みを実現することが可能なる。環状の マスク 52cは、対称性の観点において、梁状のマスク 52aより優れている。
[0067] マスク開口部 41b内に形成される追加的なマスク 52の形状は、 "梁状"、 "島状"、 " 環状"に限られない。スクリーン沙との間で接合が得られれば、追カ卩的なマスク 52は 如何なる形状を有していてもよい。また、マスク開口部 41bを通って被印刷物に形成 される膜の形状がくずれないように、追カ卩的なマスク 52の厚さはマスク層 42の厚さよ り小さいことが好適である。あるいは、追カ卩的なマスク 52の寸法(面積)が極めて小さ いことが好ましい。尚、第 1領域 R1に、第 1の実施の形態で示された「追加的な開口 部」が形成されてもよい。それにより、適用できる印刷条件範囲が広がり、好適である
[0068] 以上に示されたように、パターン開口率の異なる領域が存在する場合、そのパター ン開口率の差を減少させる追カ卩的なマスク 52を設けることによって、印刷厚みの差を 抑制することが可能となる。ここで、追カ卩的なマスク 52は、必ずしも全てのマスク開口 部 41に均一に分布するように設けられる必要はない。所望の印刷パターンに応じて 、追加的なマスク 52 (ダミーパターン)が設けられる領域と設けられない領域があって もよい。また、追カ卩的なマスク 52の厚さとマスク層 42の厚さは同一である必要はない
[0069] 本実施の形態に係る技術を一般化して述べると、次の通りである。所望の印刷パタ ーンは、第 1領域に含まれる第 1印刷パターンと、その第 1領域に隣接する第 2領域 に含まれる第 2印刷パターンを含むとする。第 1領域と第 2領域の面積は同じであり、 第 1領域における第 1印刷パターンのパターン開口率と、第 2領域における第 2印刷 ノターンのパターン開口率が異なるとする。この場合、第 1領域と第 2領域との間のパ ターン開口率の差が減少するように、適宜ダミーパターンが設けられればよい。例え ば、第 1印刷パターンが第 2印刷パターンより小さい場合、第 1領域には第 1ダミーパ ターンが設けられ、第 2領域には第 1ダミーパターンより大き 、第 2ダミーパターンが 設けられるとよい。これにより、第 1領域と第 2領域との間のパターン開口率の差が抑 制される。第 1領域と第 2領域でパターン開口率が均一になると、より好ましい。
[0070] 更に一般的に述べると、本実施の形態に係る技術は、パターン開口率の差を抑制 することだけでなぐマスク層 42の一部のパターン開口率を自由に制御することに適 用することが可能である。例えば、第 1領域に対応する第 1配線の印刷厚みを、第 2 領域に対応する第 2配線の印刷厚みより大きくしたい場合を考える。その場合は、第 1領域と第 2領域との間のパターン開口率の差が増加するように、追加的なマスク 52 が適宜設けられればよい。要約すれば、本実施の形態に係るマスク 52により、所望 の印刷パターンや印刷厚みに応じて、マスク層 42の一部におけるパターン開口率を 選択的に制御することが可能となる。それにより、印刷パターンの一部に対するぺー スト材料の透過性が制御され、所望の膜厚を有する配線を形成することが可能となる
[0071] 2- 3.効果
本実施の形態に係るスクリーンマスク 50によれば、超微粒子を含有するペースト材 料を用いるスクリーン印刷において、印刷厚みを部分的に所望の値に制御すること が可能となる。つまり、被印刷物に塗布されるペーストの膜厚を所望の印刷パターン に応じて調整することが可能となる。例えば、そのスクリーンマスク 50によって、配線 膜厚にばらつきのない回路を一括して形成することが可能である。
[0072] ダミーパターン(追カ卩的なマスク 52)は、必ずしも全てのマスク開口部 41に均一に 分布するように設けられる必要はない。所望の印刷パターンに応じて、追加的なマス ク 52が設けられる領域と設けられない領域があってもよい。第 1の実施の形態と同様 に、連続する領域に関しては、少なくともパターン開口率が段階的に変化するように ダミーパターンが設けられると好適である。当然、全ての領域におけるパターン開口 率が同じになるようにダミーパターンが設けられてもよい。その場合は、適用可能な印 刷条件の範囲が広がり、更に好適である。
[0073] 3.第 3の実施の形態 第 3の実施の形態において、スクリーンマスクには、第 2の実施の形態と同様の"追 加的なマスク"が形成される。但し、本実施の形態に係るスクリーンマスクのマスク層 は、積層構造を有する。本実施の形態において、第 2の実施の形態と重複する説明 は適宜省略される。
[0074] 図 11は、本実施の形態に係るスクリーンマスク 60Aの構造を概略的に示す側面図 である。このスクリーンマスク 60Aは、マスク層として第 1マスク層 61と第 2マスク層 62 を有している。第 1マスク層 61は、スキージと接触する側(+Z方向側)に形成されて いる。一方、第 2マスク層 62は、スキージと接触する側と反対側(-Z方向側)に、つ まり、印刷対象側に形成されて 、る。
[0075] 第 2マスク層 62は、所望の印刷パターンに相当するマスク開口部 65を有している。
一方、第 1マスク層 61は、第 2の実施の形態で示された"追カ卩的なマスク 52"と同様 の「マスク61&〜61(1」を有してぃる。これらマスク 61a〜61d力 所望の印刷パターン のパターン開口率を制御するための調整部の役割を果たす。つまり、第 1マスク層 61 のマスク開口部 64は、所望の印刷パターンに対応したマスク開口部 65よりも小 さい。これにより、第 2の実施の形態と同様の効果が得られる。
[0076] また、スキージ側の第 1マスク層 61に、所望の印刷パターンに相当するマスク開口 部が形成され、印刷対象側の第 2マスク層 62に、パターン開口率を制御するための 追カロ的なマスクが形成されてもよい。いずれにせよ、追カ卩的なマスクの厚さは、マスク 層全体の厚さよりも小さくなる。但し、図 11に示されたように追カ卩的なマスク 61a〜61 dがスキージ側の第 1マスク層 61に設けられる場合、それらマスク 61a〜61dによるべ 一ストの滲みを完全に回避することが可能であり、好適である。
[0077] 図 11において、第 2マスク層 62は、スクリーン紗 1と一体となるように形成されており 、第 1マスク層 61は、スクリーン沙 1の上に接触するように形成されている。
[0078] 図 12には、変形例としてのスクリーンマスク 60Bが示されている。図 12において、 第 1マスク層 61が、スクリーン紗 1と一体となるように形成されており、第 2マスク層 62 は、第 1マスク層 61の下に接触するように形成されている。この場合、追加的なマスク 61 a〜6 Idとスクリーン沙 1との結合が強まり、好適である。
[0079] 図 13には、更に他の変形例としてのスクリーンマスク 60Cが示されている。このスク リーンマスク 60Cは、第 1マスク層 61、第 2マスク層 62、第 3マスク層 63を有している。 第 1マスク層 61はスクリーン紗 1と同じレベルに形成されており、第 2マスク層 62は第 1マスク層 61の下に接触するように形成されており、第 3マスク層 63は第 2マスク層 6 2の下に接触するように形成されている。追カ卩的なマスクは、スキージ側の第 1マスク 層 61と第 2マスク層 62に設けられている。また、複数のマスク層 61〜63は、それぞ れ異なるマスク開口部(開口パターン)を有している。具体的には、第 2マスク層 62の マスク開口部 65は、第 1マスク層 61のマスク開口部 64より大きぐ第 3マスク層 63の マスク開口部 66は、第 2マスク層 62のマスク開口部 65より大きい。このように、第 1マ スク層 61に形成されるマスク開口部 64を最も小さく設計することによって、スクリーン マスク 60C全体としての強度を保つことが可能であり、好適である。
[0080] 図 14には、更に他の変形例としてのスクリーンマスク 60Dが示されている。このスク リーンマスク 60Dにおいて、第 1マスク層 61はスクリーン紗 1の下に接触するように形 成されており、第 2マスク層 62は、第 1マスク層 61の下に接触するように形成されてい る。つまり、第 1マスク層 61と第 2マスク層 62が、スクリーン沙 1に張り合わされている。 この場合でも、追カ卩的なマスク 61a〜61dによってパターン開口率が制御される。
[0081] 本実施の形態に係るスクリーンマスク 60の製造方法は、次の通りである。例えばマ スク層は感光性榭脂(乳剤)で形成される。まず、第 1マスク層 61あるいは第 2マスク 層 62となる感光性榭脂がスクリーン沙 1に塗布された後、マスク開口部 64又は 65が 形成される。次に、残りのマスク層となる感光性榭脂が、既に形成されたマスク層上に 塗布された後、その残りのマスク層のマスク開口部が形成される。あるいは、残りのマ スク層は、別途作成された後に、既に形成されたマスク層と張り合わされてもよい。
[0082] また、マスク層は、金属で作製することも可能である。例えば、アディティブ法などの めっき法で作製された複数のマスク層が互いに張り合わされ、また、スクリーン沙 1に 張り合わされてもよい。この場合、微細なマスク開口パターンを形成することが可能で あり、好適である。また、エッチング法やレーザカ卩ェなどでマスク開口部が形成された 複数のマスク層が互いに張り合わされ、また、スクリーン紗 1に張り合わされてもよい。
[0083] 本実施の形態に係るスクリーンマスク 60によれば、超微粒子を含有するペースト材 料を用いるスクリーン印刷において、印刷厚みを部分的に所望の値に制御すること が可能となる。つまり、被印刷物に塗布されるペーストの膜厚を所望の印刷パターン に応じて調整することが可能となる。例えば、そのスクリーンマスク 60によって、配線 膜厚にばらつきのない回路を一括して形成することが可能である。尚、追加的なマス ク 61a〜61dは、必ずしも全てのマスク開口部に均一に分布するように設けられる必 要はない。所望の印刷パターンに応じて、追加的なマスクが設けられる領域と設けら れな 、領域があってもょ 、。
[0084] 4.第 4の実施の形態
4 1.構造
接着樹脂と超微粒子とを含有するペースト材料を用いたスクリーン印刷においては 、ノターン開口率に加えて、接着樹脂とマスク開口部やスクリーン沙との接触面積( 密着性能)が印刷厚みの変動に影響を与えることが見出された。第 4の実施の形態 によれば、マスク開口部の一部に、接着榭脂に対する接着性を低下又は向上させる ための表面処理 (コーティング)が施される。これにより、所望の印刷パターンの一部 に対するペースト材料の透過性が制御され、接触面積による影響が制御される。
[0085] 図 15は、本実施の形態に係るスクリーンマスク 70を示す平面図である。このスクリ ーンマスク 70は、スクリーン紗(図示されない)とマスク層 72を備えている。スクリーン 紗は、第 1の実施の形態におけるものと同様である。マスク層 72は、スクリーン紗と結 合するように形成されており、所望の印刷パターンに対応するマスク開口部 71a〜71 fを有している。マスク開口部 71a〜71eは、配線幅 20 mの配線パターンに対応し ている。また、マスク開口部 71fは、 60 m四方の電極パッドパターンに対応している
[0086] このスクリーンマスク 70力 同ーの面積(100 111 100 111)を有する領域1^1〜1^ 4に区分けされた場合、各領域におけるパターン開口率は次のようになる:領域 Rl = 約 50%、領域 R2=約 40%、領域 R3 =約 50%、領域 R4 =約 40%。この場合、各 領域におけるパターン開口率はほぼ均一なので、ほぼ均一な膜厚を有する配線と電 極パッドが形成される。
[0087] し力しながら、場合によっては、印刷厚みの異なる配線と電極パッドを一括して作製 することが望まれるケースもある。例えば、マスク開口部 71fに対応した電極パッドに、 半導体素子の電極が接続されるケースを考える。その場合、形成される電極パッドの 印刷厚みは周りよりも大きくなることが望ましい。導電性ペーストのタック性や硬化後 の十分な接続性を保持するためには、電極パッドの厚さが 20 m以上であることが 望ま 、。配線と電極パッドの印刷厚みを全体的に増加させることも可能であるが、 導電ペーストの消費量が増大するため、それは好ましくない。また、図 15においては 、配線密度が高ぐ既出の実施の形態で示された"追加的な開口部"や"追加的なマ スグ'を適用することが困難であるとする。そのような場合に、本実施の形態に係る表 面処理は有効である。
[0088] 本実施の形態によれば、マスク層 72の一部の開口部の表面上に、榭脂コートが施 される。具体的には、図 15において、マスク開口部 71fの表面上に榭脂コート 73が 形成されている。ペースト材料中の接着樹脂と上記榭脂コート 73との間の接着性 (密 着性)は、その接着樹脂とマスク層 72との間の接着性と異なる。すなわち、榭脂コート 73によって、マスク開口部 71fに対するペースト材料の透過性が変化する。言い換え れば、榭脂コート 73は、マスク開口部 71fに対するペースト材料の透過性を制御する ための調整部の役割を果たす。
[0089] 本例においては、榭脂コート 73によって、接着樹脂とマスク開口部 71fとの接着性 が低減する。その榭脂コート 73としては、フッ素榭脂コートやシリコーン榭脂コートな どが挙げられる。フッ素榭脂としては、 PTFE (4フッ化工チレン榭脂)、 FEP (4フツイ匕 エチレン 6フッ化プロピレン共重合体)、 PFA (4フッ化工チレンバーフロロプロピンビ -ルエーテル)、 ETFE (4フッ化工チレン共重合体)、 PVDF (ポリビ-リンデンフル オライド)、 PCTFE (ポリクロ口トリフルォロエチレン)などが挙げられる。
[0090] 一部だけに榭脂コート 73が施されたスクリーンマスク 70は、例えば次のようにして 作製される。まず、マスク開口部 71f以外のマスク開口部力 後で除去可能な材料で マスキングされる。続いて、上記フッ素榭脂が塗布され、焼付けが行われる。その後、 上記マスキングがはずされる。あるいは、全体的にフッ素榭脂が塗布された後、レー ザ加工などで不要なフッ素榭脂が除去されてもよい。
[0091] また、接着榭脂がエポキシ榭脂、特にビスフエノーノレ F型エポキシ榭月旨ゃビスフエノ ール A型エポキシ榭脂である場合 (それらの誘導体である場合やそれらを含む榭脂 である場合も含む)、水酸基を有する榭脂ゃガラス力 一部のマスク開口部の表面に コーティングされてもよい。その場合、コーティングされた部分と接着樹脂との接着性 が増加する。また、榭脂ゃガラスの水酸基がシロキサン化された場合、あるいは、脂 肪族で置換された場合、コーティングされた部分と接着樹脂との接着性が低下する。 このようにして、ペースト材料とマスク開口部との接着性を部分的に制御することが可 能となる。
[0092] 以上に説明されたスクリーンマスク 70を用いることによって、スクリーン印刷が実施 された。ペーストとしては、上述の超微細粒子を含有する導電性接着剤が用いられた 。適当な印刷条件の下でスクリーン印刷が行われた結果、マスク開口部 71a〜71eに 対応する配線は、 10 mの厚さを有するように形成され、同時に、マスク開口部 71f に対応する電極パッドは、 20 mの厚さを有するように形成された。このように、一回 のスクリーン印刷で、所望の膜厚分布を実現することが可能となる。
[0093] 本実施の形態に係るスクリーンマスク 70によれば、超微粒子を含有するペースト材 料を用いるスクリーン印刷において、印刷厚みを部分的に所望の値に制御すること が可能となる。つまり、被印刷物に塗布されるペーストの膜厚を所望の印刷パターン に応じて調整することが可能となる。例えば、そのスクリーンマスク 60によって、配線 膜厚の異なる回路を一括して形成することが可能である。当然、配線膜厚のばらつき を抑えるために、本実施の形態が適用されてもよい。
[0094] 5.第 5の実施の形態
上述の通り、第 1〜第 4の実施の形態に係るスクリーンマスクを用いることによって、 印刷厚みを部分的に自由に制御することが可能となる。このスクリーンマスクを応用 することによって、膜厚の異なる配線を有する半導体装置をより少ない工程で製造す ることが可能となる。以下、第 1の配線と、第 1の配線より薄い第 2の配線を、基板等に 一括して形成する場合を考える。
[0095] まず、第 1〜第 4の実施の形態のいずれかで示されたスクリーンマスクが提供される 。具体的には、まず、(I)所望の印刷パターンを有するマスク層力 スクリーン紗と結 合するように形成される。所望の印刷パターンは少なくとも、第 1の配線を形成するた めの第 1配線パターンと、第 2の配線を形成するための第 2配線パターンを含んでい る。次に、(Π)既出の実施の形態で示されたように、一部のマスク開口部に対するぺ 一スト材料の透過性が制御される。特に、第 1配線パターンを含む第 1領域と、第 2配 線パターンを含む第 2領域との間で、ペースト材料の透過性が異なるようにマスク層 の一部が加工される。その透過性の制御は、第 1配線の所望の膜厚と第 2配線の所 望の膜厚に応じて行われればよい。第 2配線より厚い第 1配線が望まれる場合、第 1 領域に対するペースト材料の透過性が、第 2領域に対するペースト材料の透過性より 大きくなるように設計される。
[0096] 例えば、第 1の実施の形態で示されたように、マスク層の一部に"追カ卩的な開口部" が形成される。その追加的な開口部は、少なくとも第 1領域におけるマスク層に形成 されればよい。あるいは、第 2、第 3の実施の形態で示されたように、マスク層の一部 に"追カ卩的なマスグ,が形成されればよい。その追カ卩的なマスクは、少なくとも第 2領域 におけるマスク層のマスク開口部の中に形成されればよい。第 1〜第 3の実施の形態 に係るスクリーンマスクが用意される場合、上記 (I)工程と (Π)工程は、同時に実行さ れてもよい。またあるいは、第 4の実施の形態で示されたように、一部のマスク開口部 の表面上に"榭脂コード'が施されてもよい。その榭脂コートは、少なくとも第 1領域に おけるマスク層のマスク開口部の表面に形成されればよい。
[0097] スクリーンマスクが準備されたら、そのスクリーンマスクと所定のペースト材料を用い ることによってスクリーン印刷が実行される。ペースト材料としては、接着榭脂と粒径 力 S lnm以上 lOOnm以下の超微細粒子とを含有する導電性接着剤が用いられる。そ の結果、第 1配線パターンに対応する第 1の配線と、第 2配線パターンに対応する第 2の配線が、基板等に一括して形成される。形成された第 1の配線の膜厚は、形成さ れた第 2の配線の膜厚より大きい。
[0098] より具体的な例を、図 16を参照しながら説明する。図 16には、製造対象である配線 基板の構造が模式的に示されている。この配線基板において、基板 80としては例え ば PETが用いられている。その基板 80上に、配線パターンとして、第 1配線 81a〜8 Idと第 2配線 82a〜82cが形成されている。第 1配線 81a〜81dと第 2配線 82a〜82 cの膜厚は異なっている。第 1配線 81a、 81b上には、例えば受動部品 84が搭載され ている。受動部品 84の電極 83が、第 1配線 81a、 81bに接続されている。一方、第 1 配線 81c、 81d上には、例えば半導体素子 86が搭載されている。半導体素子 86の 接続端子 85が、第 1配線 81c、 81dに接続されている。つまり、第 1配線 81a〜81d は、電極パッドである。
[0099] 第 1配線 81a〜81dには受動部品 84や半導体素子 86が搭載されるため、その第 1 配線 81a〜81dの膜厚は 10 /z m以上が望ましい。その膜厚が 10 mより小さい場合 、充分な接続強度が得られない。一方、第 2配線 82a〜82cの膜厚は 10 m以上で ある必要はなぐその膜厚は 1 μ m以上 10 m未満の膜厚であればよい。その膜厚 が 10 /z m以上の場合、必要以上のコストがかかるため好ましくない。尚、十分な実装 信頼性の観点から、: m以上の膜厚は必要とされる。
[0100] このように膜厚の異なる第 1配線 81a〜81dと第 2配線 82a〜82cを一括して形成 するために、本発明に係るスクリーンマスクが用いられればよい。ペースト材料として は、金属粒子と接着榭脂を含有する導電性接着剤が用いられる。金属粒子は、低抵 抗金属であることが望ましい。そのような金属粒子として、金、銀、銅、白金、パラジゥ ム、また、それらを含む複合体や合金が挙げられる。接着榭脂は、基板 80に対する 接着強度が十分得られるものであれば何でもよい。例えば、接着榭脂として、ェポキ シ榭脂、アクリル榭脂、ポリエステル榭脂、ポリイミド榭脂、ポリアミド榭脂、ポリ尿素榭 脂や、それらの複合体が挙げられる。
[0101] まず、上述のスクリーンマスクと導電性接着剤とを用いて、スクリーン印刷が行われ る。その結果、基板 80上に、膜厚の異なる第 1配線 81a〜81dと第 2配線 82a〜82c がー括して形成される。この時点で、第 1配線 81a〜81dと第 2配線 82a〜82cは、導 電性ペースト状である。その後、熱硬化処理の前に、受動部品 84や半導体素子 86 が搭載される。具体的には、第 1配線 81a、 81b上に、受動部品 84が搭載され、第 1 配線 81c、 81d上に半導体素子 86が搭載される。受動部品 84や半導体素子 86は、 電極 83や接続端子 85で導電性ペーストと接触し、そのタック性で保持される。その 後、オーブン等で熱処理が行われる。熱処理条件は使用される導電性ペーストに依 存する。この熱処理により、第 1配線 81a〜81d及び第 2配線 82a〜82cは共に硬化 し、導電性が発現する。従来、配線形成工程と実装工程は別であつたが、本実施の 形態によれば、配線形成工程と実装工程は同一の工程となる。 [0102] 本発明によれば、膜厚の異なる配線を一括して形成することが可能となる。更に、 形成される配線の膜厚が異なるため、受動部品や半導体素子を搭載することが容易 になる。これらのこと〖こより、配線基板の製造工程が単純化される。特に、複数の受動 部品や半導体素子を搭載した配線基板を、一回のスクリーン印刷、素子搭載、及び 一回の熱処理で作製することが可能になる。これは、配線形成工程と実装工程が同 一になつたことを意味している。従って、低コストで配線基板を提供することが可能に なる。
[0103] 更に他の例を、図 17を参照しながら説明する。図 17には、製造対象である半導体 ノ ッケージの構造が模式的に示されている。この半導体パッケージにおいて、第 1半 導体素子 90上に、保護膜 97を介して、第 1配線 91及び第 2配線 92が形成されてい る。第 1配線 91は第 2配線 92より厚い。第 1配線 91上には、受動部品 94や第 2半導 体素子 96が搭載されている。受動部品 94の電極 93や第 2半導体素子 96のバンプ 電極 95が、第 1配線 91に接続されている。つまり、第 1配線 91は、電極パッドである 。一方、第 2配線 92は、電極 98を介して第 1半導体素子 90に接続されており、引き 出し配線の役割を果たす。
[0104] このような第 1配線 91と第 2配線 92も、本発明に係るスクリーンマスクを用いることに よって一括して作製することが可能である。ペースト材料としては、上述の導電性接 着剤が用いられる。ペースト状の第 1配線 91と第 2配線 92が保護膜 97上に塗布され た後、熱硬化処理前に、受動部品 94や第 2半導体素子 96が搭載される。その後に、 所定の熱処理が行われる。この熱処理によって、第 1配線 91及び第 2配線 92は共に 硬化し、導電性が発現する。
[0105] このように、本発明によれば、膜厚の異なる配線を一括して形成することが可能とな る。更に、形成される配線の膜厚が異なるため、受動部品や半導体素子を搭載する ことが容易となる。これらのこと〖こより、配線基板の製造工程が単純ィ匕される。特に、 複数の受動部品や半導体素子を搭載した半導体パッケージを、一回のスクリーン印 刷、素子搭載、及び一回の熱処理で作製することが可能になる。これは、配線形成 工程と実装工程が同一になったことを意味している。従って、低コストで半導体パッケ ージを提供することが可能になる。熱処理工程は、搭載されている半導体素子に負 荷をかけるため、不具合発生の原因となり得る。本発明に係る製造方法によれば、熱 処理工程の回数が低減されるため、半導体素子への負荷が低減される。これにより、 不具合の発生が抑制される。

Claims

請求の範囲
[1] スクリーン紗と、
前記スクリーン紗と結合するように形成され、所定の印刷パターンに対応するマスク 開口部を有するマスク層と、
前記所定の印刷パターンの一部に対するペースト材料の透過性を変化させるよう に前記マスク層に形成された調整部と
を具備する
スクリーンマスク。
[2] 請求の範囲 1に記載のスクリーンマスクであって、
前記調整部は、パターン開口率を変化させるように前記マスク層に形成される スクリーンマスク。
[3] 請求の範囲 2に記載のスクリーンマスクであって、
前記調整部は、前記所定の印刷パターンと異なる調整パターンを有する スクリーンマスク。
[4] 請求の範囲 3に記載のスクリーンマスクであって、
前記調整部は、前記マスク層に形成された追加的な開口部であり、前記追加的な 開口部が前記調整パターンを有する
スクリーンマスク。
[5] 請求の範囲 4に記載のスクリーンマスクであって、
前記追加的な開口部は、前記マスク開口部力 離れて形成されている スクリーンマスク。
[6] 請求の範囲 4又は 5に記載のスクリーンマスクであって、
前記所定の印刷パターンは、
第 1領域に含まれる第 1印刷パターンと、
前記第 1領域と同じ大きさの第 2領域に含まれる第 2印刷パターンと
を含み、
前記調整パターンは、
前記第 1領域に含まれる第 1調整パターンと、 前記第 2領域に含まれる第 2調整パターンと
を含み、
前記第 1印刷パターンは、前記第 2印刷パターンより大きぐ
前記第 1調整パターンは、前記第 2調整パターンより小さい
スクリーンマスク。
[7] 請求の範囲 6に記載のスクリーンマスクであって、
前記第 1調整パターン及び前記第 2調整パターンは、前記第 1領域と前記第 2領域 におけるパターン開口率が均一になるように設けられる
スクリーンマスク。
[8] 請求の範囲 6又は 7に記載のスクリーンマスクであって、
前記第 1領域と前記第 2領域は隣接している
スクリーンマスク。
[9] 請求の範囲 3に記載のスクリーンマスクであって、
前記調整部は、前記マスク層に形成された追加的なマスクであり、前記追加的なマ スクが前記調整パターンを有する
スクリーンマスク。
[10] 請求の範囲 9に記載のスクリーンマスクであって、
前記追加的なマスクは、前記マスク開口部を横切るように設けられた梁状のマスク である
スクリーンマスク。
[11] 請求の範囲 9に記載のスクリーンマスクであって、
前記追カ卩的なマスクは、前記マスク開口部内に設けられた島状のマスクである スクリーンマスク。
[12] 請求の範囲 9に記載のスクリーンマスクであって、
前記追カ卩的なマスクは、前記マスク開口部内に設けられた環状のマスクである スクリーンマスク。
[13] 請求の範囲 9乃至 12のいずれかに記載のスクリーンマスクであって、
前記所定の印刷パターンは、 第 1領域に含まれる第 1印刷パターンと、
前記第 1領域と同じ大きさの第 2領域に含まれる第 2印刷パターンと
を含み、
前記調整パターンは、
前記第 1領域に含まれる第 1調整パターンと、
前記第 2領域に含まれる第 2調整パターンと
を含み、
前記第 1印刷パターンは、前記第 2印刷パターンより大きぐ
前記第 1調整パターンは、前記第 2調整パターンより大きい
スクリーンマスク。
[14] 請求の範囲 13に記載のスクリーンマスクであって、
前記第 1調整パターン及び前記第 2調整パターンは、前記第 1領域と前記第 2領域 におけるパターン開口率が均一になるように設けられる
スクリーンマスク。
[15] 請求の範囲 9乃至 14のいずれかに記載のスクリーンマスクであって、
前記追カ卩的なマスクの厚さは、前記マスク層の厚さより小さい
スクリーンマスク。
[16] 請求の範囲 9乃至 14のいずれかに記載のスクリーンマスクであって、
前記マスク層は、
スキージ側の第 1マスク層と、
印刷対象側の第 2マスク層と
を含み、
前記追加的なマスク層は、前記第 1マスク層と前記第 2マスク層のいずれかに形成 された
スクリーンマスク。
[17] 請求の範囲 16に記載のスクリーンマスクであって、
前記追加的なマスク層は、前記第 1マスク層に形成された
スクリーンマスク。
[18] 請求の範囲 2に記載のスクリーンマスクであって、
前記マスク層は、複数のマスク層を含み、
前記複数のマスク層のうち第 1マスク層と第 2マスク層の間で開口パターンが異なり 前記調整部は、前記第 1マスク層と前記第 2マスク層のいずれかである スクリーンマスク。
[19] 請求の範囲 1に記載のスクリーンマスクであって、
前記ペースト材料は、接着榭脂を含有し、
前記調整部は、前記マスク層の一部の開口部の表面上に形成されるコーティング であり、
前記コーティングと前記接着樹脂との接着性は、前記マスク層の表面と前記接着榭 脂との接着性と異なる
スクリーンマスク。
[20] 請求の範囲 19に記載のスクリーンマスクであって、
前記コーティングは、フッ素榭脂コート、及びシリコーン榭脂コートのいずれかであ る
スクリーンマスク。
[21] 請求の範囲 19に記載のスクリーンマスクであって、
前記接着榭脂は、エポキシ榭脂であり、
前記コーティングは、水酸基を有する榭脂コート、及び水酸基を有するガラスコート のいずれかである
スクリーンマスク。
[22] 請求の範囲 19に記載のスクリーンマスクであって、
前記接着榭脂は、エポキシ榭脂であり、
前記コーティングは、水酸基がシロキサン化された榭脂コート、及び水酸基がシロキ サン化されたガラスコートのいずれかである
スクリーンマスク。
[23] 請求の範囲 19に記載のスクリーンマスクであって、 前記接着榭脂は、エポキシ榭脂であり、
前記コーティングは、水酸基が脂肪族で置換された榭脂コート、及び水酸基が脂肪 族で置換されたガラスコートの 、ずれかである
スクリーンマスク。
[24] 請求の範囲 1乃至 23のいずれかに記載のスクリーンマスクであって、
前記ペースト材料は、粒径が lnm以上 lOOnm以下の微細粒子を含有する スクリーンマスク。
[25] スクリーン印刷による半導体装置の製造方法であって、
(A)所定の印刷パターンに応じたスクリーンマスクを提供する工程と、 ここで、前記所定の印刷パターンは、
第 1領域に含まれる第 1配線パターンと、
前記第 1領域と同じ大きさの第 2領域に含まれる第 2配線パターンと を含み、
(B)前記スクリーンマスクと所定のペースト材料を用いて、前記第 1配線パターンに 対応する第 1配線と、前記第 2配線パターンに対応する第 2配線を一括して印刷対象 物に形成する工程と
を有し、
前記 (A)工程は、
(A1)前記所定の印刷パターンを有するマスク層をスクリーン紗と結合するように形 成する工程と、
(A2)前記第 1領域と前記第 2領域との間で前記ペースト材料の透過性が異なるよ うに前記マスク層の一部をカ卩ェする工程と
を有し、
前記 (A2)工程において、前記第 1配線の所望の膜厚と前記第 2配線の所望の膜 厚に応じて、前記ペースト材料の透過性が制御される
半導体装置の製造方法。
[26] 請求の範囲 25に記載の半導体装置の製造方法であって、
前記 (A2)工程において、追カ卩的な開口部及び追カ卩的なマスクのいずれかが、前 記第 1領域と前記第 2領域の少なくとも一方に形成される
半導体装置の製造方法。
[27] 請求の範囲 25に記載の半導体装置の製造方法であって、
前記 (A2)工程において、前記第 1配線パターンと前記第 2配線パターンの少なくと も一方に対応する前記マスク層の開口部の表面上に榭脂コートが施される
半導体装置の製造方法。
[28] 請求の範囲 25乃至 27のいずれかに記載の半導体装置の製造方法であって、 更に、
(C)前記第 1配線に素子を搭載する工程と、
(D)前記第 1配線及び前記第 2配線の硬化を行う工程と
を有し、
前記 (D)工程は、前記 (C)工程の後に行われる
半導体装置の製造方法。
[29] 請求の範囲 28に記載の半導体装置の製造方法であって、
前記第 1配線の膜厚は、前記第 2配線の膜厚より大きい
半導体装置の製造方法。
[30] 請求の範囲 25乃至 29のいずれかに記載の半導体装置の製造方法であって、 前記 )工程において、粒径が lnm以上 lOOnm以下の微細粒子を含有するぺー スト材料が前記所定のペースト材料として用いられる
半導体装置の製造方法。
PCT/JP2006/316089 2005-08-29 2006-08-16 スクリーンマスク、半導体装置の製造方法 WO2007026541A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-247044 2005-08-29
JP2005247044 2005-08-29

Publications (1)

Publication Number Publication Date
WO2007026541A1 true WO2007026541A1 (ja) 2007-03-08

Family

ID=37808641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316089 WO2007026541A1 (ja) 2005-08-29 2006-08-16 スクリーンマスク、半導体装置の製造方法

Country Status (1)

Country Link
WO (1) WO2007026541A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010023352A (ja) * 2008-07-18 2010-02-04 Ricoh Co Ltd スクリーン版、層間絶縁膜、回路基板、アクティブマトリックス回路基板及び画像表示装置
JP2014078587A (ja) * 2012-10-10 2014-05-01 Mitsubishi Electric Corp 半導体装置の製造方法
ES2467641A1 (es) * 2014-03-27 2014-06-12 Thick Imaging, S. L. U. Máscara para impresión y operación digital, y procedimientos de operación e impresión en un sustrato a partir de esta máscara
JP2015012071A (ja) * 2013-06-27 2015-01-19 トッパン・フォームズ株式会社 配線基板及びその製造方法
JP2019003140A (ja) * 2017-06-19 2019-01-10 ミタニマイクロニクス九州株式会社 スクリーンマスク及びスクリーンマスクの製造方法
JP2019049640A (ja) * 2017-09-11 2019-03-28 アルパイン株式会社 表示装置用のカバー板の製造方法、および前記カバー板を使用した表示装置の製造方法
JP2019181904A (ja) * 2018-04-18 2019-10-24 太陽誘電株式会社 印刷用孔版及びその製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60175659U (ja) * 1984-04-27 1985-11-21 日本電気株式会社 印刷用スクリ−ン
JPH03126636U (ja) * 1990-04-04 1991-12-20
JPH06143855A (ja) * 1992-11-06 1994-05-24 Matsushita Electric Ind Co Ltd スクリーン印刷版およびその製造方法
JPH09248975A (ja) * 1996-03-18 1997-09-22 Matsushita Electric Ind Co Ltd スクリーン版およびそれを用いたプリント配線板の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60175659U (ja) * 1984-04-27 1985-11-21 日本電気株式会社 印刷用スクリ−ン
JPH03126636U (ja) * 1990-04-04 1991-12-20
JPH06143855A (ja) * 1992-11-06 1994-05-24 Matsushita Electric Ind Co Ltd スクリーン印刷版およびその製造方法
JPH09248975A (ja) * 1996-03-18 1997-09-22 Matsushita Electric Ind Co Ltd スクリーン版およびそれを用いたプリント配線板の製造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010023352A (ja) * 2008-07-18 2010-02-04 Ricoh Co Ltd スクリーン版、層間絶縁膜、回路基板、アクティブマトリックス回路基板及び画像表示装置
JP2014078587A (ja) * 2012-10-10 2014-05-01 Mitsubishi Electric Corp 半導体装置の製造方法
JP2015012071A (ja) * 2013-06-27 2015-01-19 トッパン・フォームズ株式会社 配線基板及びその製造方法
ES2467641A1 (es) * 2014-03-27 2014-06-12 Thick Imaging, S. L. U. Máscara para impresión y operación digital, y procedimientos de operación e impresión en un sustrato a partir de esta máscara
WO2015144967A2 (es) 2014-03-27 2015-10-01 Thick Imaging, S.L.U. Máscara para impresión y operación digital, y procedimientos de operación e impresión en un sustrato a partir de esta máscara
JP2019003140A (ja) * 2017-06-19 2019-01-10 ミタニマイクロニクス九州株式会社 スクリーンマスク及びスクリーンマスクの製造方法
JP2019049640A (ja) * 2017-09-11 2019-03-28 アルパイン株式会社 表示装置用のカバー板の製造方法、および前記カバー板を使用した表示装置の製造方法
JP2019181904A (ja) * 2018-04-18 2019-10-24 太陽誘電株式会社 印刷用孔版及びその製造方法
JP2022103274A (ja) * 2018-04-18 2022-07-07 太陽誘電株式会社 印刷用孔版及びその製造方法
JP7381651B2 (ja) 2018-04-18 2023-11-15 太陽誘電株式会社 印刷用孔版及びその製造方法

Similar Documents

Publication Publication Date Title
WO2007026541A1 (ja) スクリーンマスク、半導体装置の製造方法
EP1880862B1 (en) Screen printing plate
US8037596B2 (en) Method for manufacturing a wiring board
US20120247817A1 (en) Conductive particles, conductive paste, and circuit board
JP2009033084A (ja) 印刷回路基板及びその製造方法
JPWO2010103941A1 (ja) フレキシブル基板
JP4898748B2 (ja) スクリーン版、層間絶縁膜、回路基板、アクティブマトリックス回路基板及び画像表示装置
JP7243065B2 (ja) シート材、メタルメッシュ、配線基板及び表示装置、並びにそれらの製造方法
US9674952B1 (en) Method of making copper pillar with solder cap
US20240057259A1 (en) Flexible printed circuit board, cof module, and electronic device comprising the same
JP4297617B2 (ja) 抵抗器を製作する方法
JP2015056561A (ja) プリント配線板及びその製造方法
TW201414386A (zh) 印刷電路基板之製造方法
CN111696930A (zh) 内埋元件封装结构、内埋式面封装基板及其制造方法
JP2013118222A (ja) プリント配線板の製造方法
JP2022066525A (ja) 多層基板、および、部品実装基板
US7931973B2 (en) Manufacturing method of metal structure in multi-layer substrate and structure thereof
CN109496065B (zh) 一种阻抗的制作方法
JP4114576B2 (ja) 多層配線基板およびその製造方法
JP2014036220A (ja) プリント回路基板及びその製造方法
TWI429347B (zh) 金屬導電線路結構及其製作方法
JP2010171125A (ja) 半導体装置およびその製造方法
EP2161973A1 (en) A structure and manufacturing method of metal wiring on multilayered board
TWI484880B (zh) 印刷電路板之製作方法
JP5400597B2 (ja) 半導体装置及び電子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06796449

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP