WO2007026523A1 - 印刷版材料および印刷版の作製方法 - Google Patents

印刷版材料および印刷版の作製方法 Download PDF

Info

Publication number
WO2007026523A1
WO2007026523A1 PCT/JP2006/315796 JP2006315796W WO2007026523A1 WO 2007026523 A1 WO2007026523 A1 WO 2007026523A1 JP 2006315796 W JP2006315796 W JP 2006315796W WO 2007026523 A1 WO2007026523 A1 WO 2007026523A1
Authority
WO
WIPO (PCT)
Prior art keywords
printing plate
layer
plate material
image forming
forming layer
Prior art date
Application number
PCT/JP2006/315796
Other languages
English (en)
French (fr)
Inventor
Takahiro Mori
Original Assignee
Konica Minolta Medical & Graphic, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Medical & Graphic, Inc. filed Critical Konica Minolta Medical & Graphic, Inc.
Priority to JP2007533158A priority Critical patent/JPWO2007026523A1/ja
Publication of WO2007026523A1 publication Critical patent/WO2007026523A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C1/00Forme preparation
    • B41C1/10Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme
    • B41C1/1008Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme by removal or destruction of lithographic material on the lithographic support, e.g. by laser or spark ablation; by the use of materials rendered soluble or insoluble by heat exposure, e.g. by heat produced from a light to heat transforming system; by on-the-press exposure or on-the-press development, e.g. by the fountain of photolithographic materials
    • B41C1/1016Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme by removal or destruction of lithographic material on the lithographic support, e.g. by laser or spark ablation; by the use of materials rendered soluble or insoluble by heat exposure, e.g. by heat produced from a light to heat transforming system; by on-the-press exposure or on-the-press development, e.g. by the fountain of photolithographic materials characterised by structural details, e.g. protective layers, backcoat layers or several imaging layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2210/00Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
    • B41C2210/04Negative working, i.e. the non-exposed (non-imaged) areas are removed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2210/00Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
    • B41C2210/08Developable by water or the fountain solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2210/00Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
    • B41C2210/14Multiple imaging layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2210/00Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
    • B41C2210/22Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation characterised by organic non-macromolecular additives, e.g. dyes, UV-absorbers, plasticisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2210/00Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
    • B41C2210/24Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation characterised by a macromolecular compound or binder obtained by reactions involving carbon-to-carbon unsaturated bonds, e.g. acrylics, vinyl polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2210/00Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
    • B41C2210/26Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation characterised by a macromolecular compound or binder obtained by reactions not involving carbon-to-carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2210/00Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
    • B41C2210/26Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation characterised by a macromolecular compound or binder obtained by reactions not involving carbon-to-carbon unsaturated bonds
    • B41C2210/262Phenolic condensation polymers, e.g. novolacs, resols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2210/00Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
    • B41C2210/26Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation characterised by a macromolecular compound or binder obtained by reactions not involving carbon-to-carbon unsaturated bonds
    • B41C2210/264Polyesters; Polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2210/00Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
    • B41C2210/26Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation characterised by a macromolecular compound or binder obtained by reactions not involving carbon-to-carbon unsaturated bonds
    • B41C2210/266Polyurethanes; Polyureas

Definitions

  • the present invention relates to a printing plate material, and more particularly to a printing plate material capable of image formation by a computer 'toe' plate (CTP) method.
  • CTP computer 'toe' plate
  • An infrared laser recording system having a wavelength of near infrared to infrared is mainly used for image formation of a thermal processless plate.
  • Thermal processless plates that can form images using this method are broadly divided into an ablation type and a thermal fusion image layer development type.
  • thermoplastic fine particles are also plasticized by pressure, the image forming layer that has been subjected to pressure such as scratches is pressed by arrows, the thermoplastic fine particles are pressed against each other, and pressed against the uneven surface of the substrate. As a result, the ink becomes adherent, that is, scratch marks are smeared. For this reason, it is necessary to handle the printing plate material very delicately, and there is a concern that productivity may be lowered, for example, the frequency of re-preparation of the plate due to the occurrence of dirt.
  • thermoplastic fine particles alone does not provide sufficient image area strength and adhesion strength between the image area and the substrate surface, and printing durability and chemical resistance are insufficient. .
  • a printing plate material which is improved in handling and properties by providing an overcoat layer of water-soluble celluloses on an image forming layer having hydrophobized precursor fine particles such as thermoplastic fine particles.
  • an overcoat layer of water-soluble celluloses on an image forming layer having hydrophobized precursor fine particles such as thermoplastic fine particles.
  • Patent Document 1 Japanese Patent Laid-Open No. 9-123387
  • Patent Document 2 JP-A-9-123388
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-19318
  • An object of the present invention is to provide a printing plate material which is excellent in printability and printing durability in printing, and hardly causes scratches and stains.
  • a printing plate material having a heat-sensitive image forming layer and a constituent layer on a substrate, wherein the heat-sensitive image forming layer contains a silicate and a carbonate, and the constituent layer forms the base and the heat-sensitive image forming member.
  • a printing plate material wherein the printing plate material is provided between the first layer and the second layer, and at least one of the constituent layer and the heat-sensitive image forming layer contains a photothermal conversion agent.
  • the content of silicate in the image forming layer is 10 to 80% by mass in terms of SiO,
  • a printing plate material having a thermal imaging layer on a substrate having a hydrophilic layer A printing plate material, wherein the heat-sensitive image forming layer contains a silicate, a carbonate and a photothermal conversion agent.
  • the content of silicate in the image forming layer is 10-80% by mass in terms of SiO
  • a method for preparing a printing plate comprising a step of performing on-press development by removing an exposed portion.
  • the heat-sensitive image forming layer (hereinafter simply referred to as an image forming layer) of the printing plate material of the present invention contains a silicate and a carbonate.
  • silicate examples include alkali metal silicates such as sodium silicate, potassium silicate, and lithium silicate, and organic base salts such as ammonium silicate and organic amine silicate.
  • alkali metal silicates such as sodium silicate, potassium silicate, and lithium silicate
  • organic base salts such as ammonium silicate and organic amine silicate.
  • lithium silicate can be particularly preferably used.
  • Examples of the carbonate include organic salts such as ammonium carbonate, guanidine carbonate, and amine carbonate.
  • a highly water-soluble carbonate that can be said to be a basic carbonate can be preferably used.
  • a highly water-soluble carbonate is a carbonate that dissolves 5 g or more in 25 ° C water lOOg. Of these, guanidine carbonate can be preferably used.
  • a coating film containing a silicate is improved in water resistance by neutralization with carbonic acid.
  • silicates lithium silicate is used as a carbon dioxide gas-absorbing material. When lithium silicate is heated, it reacts rapidly with carbonic acid from around 100 ° C to form lithium carbonate, improving water resistance.
  • the water-solubility of the image forming layer before heating is improved and the image of the heating portion is increased.
  • the water resistance of the forming layer can be improved, and the SZN for image formation is very good.
  • the printing plate material having an image forming layer of the present invention uses the difference in water resistance between a heated part (exposed part) and an unheated part (unexposed part) to develop an image by developing with an aqueous developer. Can get. It is also possible to obtain an image by attaching it to the plate cylinder of the printing press as it is undeveloped and supplying the fountain solution or dampening solution and ink to the plate surface while rotating the plate cylinder and developing it on the machine. it can.
  • an image forming layer composed of silicate and carbonate (and preferably hydrophilic fine particles described later) has hydrophilicity even when the heating portion (exposed portion) is cured. Therefore, by forming this image forming layer on a substrate having an oleophilic surface, the image forming layer in the unheated portion (unexposed portion) is removed by aqueous liquid development or on-machine development, and the oleophilic substrate is removed. The surface is exposed and becomes a positive plate with ink on the unheated part (unexposed part).
  • the silicate content (SiO equivalent) in the image forming layer is preferably 10 to 80% by mass.
  • the content of carbonate in the image forming layer is preferably 5 to 50% by mass, more preferably 10 to 40% by mass.
  • the image forming layer of the present invention further has an average particle size of 50 ⁇ ! It is preferable to contain fine particles of ⁇ 5 m.
  • the shape may be a spherical shape, a polyhedral shape, a flat plate shape, a needle shape, or an indefinite shape, or may be porous.
  • the particle diameter is defined as the diameter of a circle having the same area as the projected image of the particle.
  • the particle size is obtained by measuring an electron micrograph image of 10,000 to 50,000 times the particle size, and the average particle size is the particle size of 100 arbitrarily selected particles. Average.
  • the average particle diameter of the fine particles can be measured by using an image analysis apparatus, LUZEX series, manufactured by Reco.
  • the fine particles have a function of improving developability of an unheated portion (unexposed portion) of the image forming layer.
  • An average particle size of 50 nm or more shows an effect of improving developability, and an average particle size of 5 / z m or less has an effect of improving the resolution during image formation.
  • hydrophilic fine particles can be used as the fine particles.
  • the hydrophilic fine particles function as a development accelerator in the heat-absorbing hot part (unexposed part), and function as a reinforcing agent for the coating film (image) in the heated part (exposed part).
  • hydrophilic fine particles examples include inorganic particles (silica, alumina, aluminosilicate, titanium oxide, zirconium oxide, etc.), organic particles (cellulose, calcium alginate, chitosan, etc.), organic particles made of inorganic materials. Any of the coated particles can be used.
  • a positive plate using the lipophilic surface substrate as described above can be used, but the hydrophilic surface substrate is used and the lipophilic surface material described later is used.
  • an embodiment having an overcoat layer it is possible to obtain a negative plate in which ink is deposited on the heating part (exposure part).
  • Lipophilic fine particles can also be used as the fine particles.
  • the lipophilic fine particles function as a development accelerator in the non-heated part (unexposed part), and function as a coating film (image) reinforcing agent and an ink adhesion imparting agent in the heated part (exposed part). . Therefore, in this embodiment, by using a hydrophilic surface base material, it is possible to obtain a negative plate on which a heated portion (exposed portion) is filled with ink. Further, as an aspect having a lipophilic overcoat layer described later, ink deposition property can be improved.
  • thermoplastic fine resin fine particles such as heat-melting wax and heat-fusible polymer
  • resin fine particles having low thermoplasticity that is, having heat resistance of 150 ° C. or higher. Low thermoplasticity!
  • the resin particles have low plasticity due to pressure, there is no concern that the scratch marks are pressed onto the surface of the base material and become ink-implanted and become soiled by printing.
  • fine particle blocked isocyanate compound can be used as the fine particles.
  • Blocked isocyanate compound fine particles also function as a development accelerator in the non-heated area (unexposed area), and in the heated area (exposed area), the coating film (image) reinforcing agent and ink adhesion are imparted. It functions as an agent.
  • an organic base carbonate is used as the carbonate compound, the organic base and the isocyanate regenerated by heat undergo a cross-linking reaction in the heating section (exposure section), thereby further improving the water resistance and strength of the coating film. The effect to improve is acquired and preferable.
  • the blocked isocyanate compound used in the present invention is a reaction compound of an isocyanate compound, a polyol and an isocyanate group blocking agent (hereinafter also simply referred to as a blocking agent).
  • the blocking agent is a compound having a group that undergoes an addition reaction with an isocyanato group to form a urethane bond or a urea bond.
  • an alcohol-based blocking agent such as methanol or ethanol, a phenol-based blocking agent such as phenol or talesol, or formaldehyde.
  • the addition amount of the blocking agent is 1.0 to 1.1 equivalents relative to the isocyanate group of the isocyanate compound by combining the active hydrogen group in the blocking agent and the active hydrogen group of the polyol described below. It is preferable to make it contain.
  • the dissociation temperature of the blocking agent is preferably 80 to 200 ° C, more preferably 80 to 160 ° C, and more preferably 80 to 130 ° C.
  • An isocyanate compound is a compound having an isocyanato group (one NCO), and is an aromatic polyisocyanate [diphenol-noremethane diisocyanate (MDI), tolylene diisocyanate (TDI), polyphenol.
  • tolylene diisocyanate is particularly preferable because of its fast reactivity.
  • the storage stability of the blocked isocyanate compound can be improved.
  • the image strength when an image is formed by heating is improved, and the printing durability is improved.
  • Polyols include propylene glycol, triethylene glycol, glycerin, trimethylol methane, trimethylol propane, pentaerythritol, neopentino glycol, 1,6-hexylene glycol, butanediol, hexamethylene glycol, xylylene
  • Polyhydric alcohols such as lenglycol, sorbitol, sucrose, polyether polyols, polytetramethylene ether polyols obtained by addition polymerization of these polyhydric alcohols or polyamines with ethylene oxide or propylene oxide, or both, Polycarbonate polyols, poly-strength prolataton polyols, and the above polyhydric alcohols such as adipic acid, phthalic acid, isophthalic acid, terephthalic acid, sebacic acid, fumaric acid, Maleic acid, poly ester polyols obtained by reacting a polybasic acid such as Azerain acid
  • propylene glycol triethylene glycol, glycerin, trimethylomonoremethane, trimethylolpropane, pentaerythritol, neopentyl glycol, 1,6-hexylene glycol, butanediol, hexamethylene glycol, xylylene glycol
  • a polyol having a weight average molecular weight of 50 to 5,000, such as sorbitol, can be preferably used, and a low molecular weight polyol having a molecular weight of about 50 to 500 can be particularly preferably used.
  • the amount of polyol added is preferably 1.0 to 1.1 equivalents relative to the isocyanate group of the isocyanate compound, as described above, based on the amount of active hydrogen combined with the polyol and blocking agent.
  • the range in which the hydroxyl group in the polyol is 0.1 to 0.9 equivalent relative to the isocyanate group of the isocyanate compound is preferred, with 0.2 to 0.7 equivalent being particularly preferred. In this range, the storage stability of the blocked isocyanate compound is particularly improved.
  • the isocyanate compound is heated to about 40 to 120 ° C in an inert gas atmosphere under water-free conditions and blocked while stirring.
  • a method may be mentioned in which a predetermined amount of the agent is dropped and mixed, and the reaction is allowed to take several hours while stirring.
  • any solvent may be used.
  • known catalysts such as organometallic compounds, tertiary amines, metal salts and the like can be used.
  • organometallic catalysts include tin-based catalysts such as stannous octoate, dibutyltin diacetate, and dibutyltin dilaurate, and lead-based catalysts such as lead 2-ethylhexanoate.
  • tin-based catalysts such as stannous octoate, dibutyltin diacetate, and dibutyltin dilaurate
  • lead-based catalysts such as lead 2-ethylhexanoate.
  • octane isobaric metal salt catalysts include, for example, cobalt naphthenate, naphthene Examples include acid calcium and lead naphthenate lithium oxide.
  • the amount of these catalysts to be used is generally 0.001 to 2 parts by mass, preferably
  • the state in which the blocked isocyanate compound is contained in the coating liquid is as a dispersion.
  • the contained state is preferable.
  • the aqueous image forming layer coating solution is an aqueous dispersion of a blocked isocyanine compound.
  • the blocked isocyanate compound of the present invention is prepared by reacting the isocyanate compound and the polyol with the remaining isocyanate group and the blocking agent after the reaction of the isocyanate compound and the polyol with the force of reacting the blocking agent and the polyol with the isocyanate compound.
  • the remaining isocyanate group and polyol may be reacted.
  • the preferred average molecular weight of the blocked isocyanate compound is preferably a weight average molecular weight of 500 to 2,000, and more preferably 600 to 1,000. Within this range, the balance between reactivity and storage stability is good.
  • the blocked isocyanate compound obtained as described above can be made into an aqueous dispersion by, for example, adding a surfactant and water, and vigorously mixing and stirring the mixture using a homogenizer or the like. I'll do it.
  • the surfactant examples include ionic surfactants such as sodium dodecylbenzenesulfonate, sodium lauryl sulfate, sodium dodecyl diphenyl ether disulfonate, sodium dialkyl ester sulfonate, polyoxyethylene alkyl ester, Non-ionic surfactants such as polyoxyethylene alkylaryl ethers, or alkylbetaine-type salts such as lauryl betaine and stearyl betaine salts, lauryl ⁇ -alanine, lauryldi (aminoethyl) glycine, octyldi (Aminoethyl) Both amino acid type surfactants such as glycine can be mentioned. These can be used alone or in combination of two or more. Of these, nonionic surfactants are preferred.
  • ionic surfactants such as sodium dodecylbenzenesulfonate, sodium lauryl sulfate, sodium dodecy
  • the solid content of the aqueous dispersion of the blocked isocyanate compound is preferably 10 to 80% by mass.
  • the addition amount of the surfactant is preferably 0.01 to 20% by mass in the solid content of the aqueous dispersion.
  • the organic solvent can be removed as an aqueous dispersion.
  • the content of fine particles in the image forming layer is preferably 1 to 40% by mass, and preferably 2 to 20% by mass. More preferable.
  • Amount with the [0054] image-forming layer preferably is 0. l ⁇ 3gZm 2 instrument 0. 2 ⁇ 1. 5gZm 2 and more preferably
  • the printing plate material of the present invention can be provided with ink depositing properties by providing an oleophilic overcoat layer.
  • Any material may be used for the oleophilic overcoat layer as long as it has ink inking properties.
  • a known thermosetting resin such as thermoplastic resin.
  • thermosetting resin examples include urea resin, melamine resin, phenol resin, epoxy resin, unsaturated polyester resin, alkyd resin, urethane resin and the like.
  • thermoplastic resins include ethylene polymers, polyamide resins, polyester resins, polyurethane resins, polyolefin resins, acrylic resins, and salt vinyl resins.
  • a layer formed by forming a film of these resin emulsions which is preferably formed by coating with an aqueous paint coating. It is preferable that Particularly preferred materials include acrylic resin emulsions and urethane resin emulsions.
  • the lipophilic overcoat layer preferably has physical properties that are high in strength and are easily removed by on-press development. This means that it is preferable that the layer itself has the property of breaking while not extending too much. For this reason, it can be crosslinked using a crosslinking agent, or it can be combined with an inorganic material to impart a hard and brittle property.
  • the amount of force of the lipophilic overcoat layer preferably is 0. 01 ⁇ 3gZm 2 fixture 0. l ⁇ lgZm 2 is more preferable.
  • the constituent layer is a layer provided between the image forming layer and the substrate.
  • a photothermal conversion material is contained in one of the constituent layers or in the image forming layer.
  • the constituent layer according to the present invention include a hydrophilic layer and a lipophilic layer described later.
  • it is preferable that a photothermal conversion material is contained in the image forming layer.
  • the amount of the light-to-heat conversion material contained in the component layer or in the image forming layer is preferably 1 to 40% by mass, more preferably 2 to 20% by mass, based on the solid content.
  • the printing plate material of the present invention contains a photothermal conversion agent in any of the constituent layers.
  • Infrared absorbing dyes (IR dyes) and pigments can be used as photothermal conversion agents.
  • Organic compounds such as cyanine dyes, chromium dyes, polymethine dyes, azurenium dyes, squalium dyes, thiopyrylium dyes, naphthoquinone dyes, anthraquinone dyes, which are general IR dyes, Examples thereof include phthalocyanine-based, naphthalocyanine-based, azo-based, thioamide-based, dithiol-based, and indoor-phosphorus-based organometallic complexes.
  • the combined power of S can be used alone or in combination of two or more.
  • a composite can also be preferably used.
  • Examples of the pigment include carbon black, graphite, metal, metal oxide and the like.
  • the particle size (d50) is preferably 10 nm or less, more preferably 50 nm or less.
  • fine particles having an average particle diameter of 0.5 ⁇ m or less, preferably 10 nm or less, and more preferably 50 nm or less can be used.
  • any metal can be used as long as it has an average particle size of 0.5 ⁇ m or less, preferably lOOnm or less, more preferably 50 nm or less.
  • the shape may be any shape such as a spherical shape, a piece shape, or a needle shape. Colloidal metal fine particles (Ag, Au, etc.) are particularly preferable.
  • the metal oxide it is possible to use a material that exhibits a black color in the visible light castle, or a material that has conductivity or is a semiconductor.
  • Examples of the former include black iron oxide and black composite metal oxides containing two or more metals.
  • Examples of the latter include SnO doped with Sb (ATO) and In O (I with Sn added)
  • TiO TiO reduced from TiO (titanium oxynitride, generally titanium black), etc.
  • metal oxides can also be used as a core material (BaSO, TiO, 9A112 ⁇ 0, K O
  • nTiO etc. coated can also be used. Their average particle size is 0.5 m
  • it is preferably 10 nm or less, more preferably 50 nm or less.
  • black iron oxide and black composite metal oxides containing two or more metals are more preferred materials.
  • Black iron oxide (Fe 2 O 3) has an average particle diameter of 0.01 to 1 ⁇ m, and has an acicular ratio (major axis diameter).
  • the particles have a Z short axis diameter in the range of 1 to 1.5, and have a substantially spherical force (acicular ratio 1) or octahedral shape (acicular ratio approximately 1.4). It is preferable.
  • black acid iron oxide particles include TAROX series manufactured by Titanium Industry Co., Ltd.
  • As the spherical particles BL-100 (average particle size 0.2 to 0.6! 11), 61 ⁇ -500 (average particle size 0.3 to 1. O / z m), or the like can be preferably used.
  • octahedrally shaped particles include ABL-203 (average particle size 0.4 to 0.5 / ⁇ ⁇ ), ABL-204 (average particle size 0.3 to 0.4 / ⁇ ⁇ ), ABL-205. (Average particle diameter 0.2 to 0.3 / ⁇ ⁇ ), ABL-207 (average particle diameter 0.2 / zm), etc. can be preferably used.
  • particles whose surface is coated with an inorganic material such as SiO are also preferably used.
  • Such particles include spherical particles coated with SiO: BL-20
  • octahedral particles ABL—207A (average particle size 0.2 m).
  • the black composite metal oxide include Al, Ti, Cr, Mn, Fe, Co, Ni, Cu, It is a complex metal oxide composed of two or more metals selected from Zn, Sb and Ba. These can be produced by the methods disclosed in JP-A-8-27393, JP-A-9-25126, JP-A-9-230, JP-A-9-241529, JP-A-10-231441, and the like.
  • the composite metal oxide is particularly preferably a Cu-Cr Mn-based or CuFe Mn-based composite metal oxide.
  • a Cu—Cr—Mn system it is preferable to perform the treatment disclosed in JP-A-8-27393 in order to reduce the elution of hexavalent chromium.
  • These composite metal oxides have good coloration with respect to the amount added, that is, good photothermal conversion efficiency.
  • These composite metal oxides preferably have an average primary particle size of 1 ⁇ m or less.
  • a range of 01-0.5 m is more preferable.
  • the photothermal conversion ability with respect to the added amount becomes better, and when the average primary particle size is within the range of 0.01 to 0.5 / zm, Photothermal conversion ability becomes better.
  • the photothermal conversion ability with respect to the amount of added calories is greatly affected by the degree of dispersion of the particles, and the better the dispersion, the better.
  • a dispersing agent can be appropriately used for dispersion.
  • the amount of the dispersant added is preferably from 0. 1 to 5% by weight, more preferably from 0.1 to 2% by weight, based on the composite metal oxide particles.
  • the substrate is a plate or film that can carry the image forming layer, and a known material used as a substrate of a printing plate can be used.
  • a metal plate, a plastic film, paper treated with polyolefin, a composite substrate obtained by appropriately bonding the above materials, and the like can be given.
  • the thickness of the substrate is not particularly limited as long as it can be attached to a printing press! /, But generally 50 to 500 ⁇ m can be handled! / Easy!
  • Examples of the metal plate used as the base material include iron, stainless steel, aluminum, and the like.
  • Aluminum is also particularly preferable in terms of the relational force between specific gravity and rigidity.
  • the aluminum plate is usually used after degreasing with alkali, acid, solvent, etc. to remove the oil used in rolling and scraping existing on the surface.
  • degreasing treatment degreasing with an alkaline aqueous solution is particularly preferable. Also, contact with the coating layer In order to improve the adherence, it is preferable to perform easy adhesion treatment or undercoat layer coating on the coated surface. For example, a method of immersing in a solution containing a coupling agent such as a silicate silane coupling agent, a method of sufficiently drying after applying the solution.
  • Anodizing treatment is also considered as a kind of easy adhesion treatment and can be used.
  • a combination of anodizing treatment and the above dipping or coating treatment can also be used.
  • an aluminum substrate roughened by a known method that is, an aluminum substrate having a hydrophilic layer obtained by subjecting so-called aluminum sand to a hydrophilic treatment, is used as a substrate having a hydrophilic layer. It can also be used.
  • plastic film examples include polyethylene terephthalate (PET), polyethylene naphtharate (PEN), polyimide, polyamide, polycarbonate (PC), polysulfone, polyphenylene oxide, and cellulose esters.
  • PET polyethylene terephthalate
  • PEN polyethylene naphtharate
  • PC polycarbonate
  • PET and PEN are preferable.
  • the undercoat layer includes a layer containing gelatin or latex.
  • the undercoat layer may contain an organic or inorganic known conductive material.
  • a substrate provided with a back surface coating layer can also be preferably used.
  • the preferred mode when the hydrophilic surface is provided by hydrophilizing the surface of the base material is when an aluminum base material is used, and since the hydrophilic layer is provided on the aluminum base material, the surface is roughened and used. .
  • a degreasing treatment Prior to roughening (graining treatment), it is preferable to perform a degreasing treatment in order to remove the rolling oil on the surface.
  • a degreasing treatment using a solvent such as trichlene or thinner an emulsion degreasing treatment using an emulsion such as kesilon or triethanol, or the like is used.
  • an alkaline aqueous solution such as sodium hydroxide can be used for the degreasing treatment. When alkaline aqueous solution is used for degreasing, it is removed only by the above degreasing Unable to remove dirt and acid film.
  • the substrate is immersed in an acid such as phosphoric acid, nitric acid, sulfuric acid, chromic acid, or a mixed acid thereof, and desmut treatment is performed. It is preferable to apply.
  • the roughening method include a mechanical method and a method of etching by electrolysis.
  • the mechanical surface roughening method used is not particularly limited, but a brush polishing method and a Houng polishing method are preferable.
  • the electrochemical surface roughening method is not particularly limited, but a method of electrochemical surface roughening in an acidic electrolyte is preferable.
  • the surface is roughened by the electrochemical surface roughening method, it is preferably immersed in an acid or alkali aqueous solution in order to remove aluminum scraps on the surface.
  • the acid include sulfuric acid, persulfuric acid, hydrofluoric acid, phosphoric acid, nitric acid, hydrochloric acid, and the like.
  • the base include sodium hydroxide, potassium hydroxide, and the like.
  • the amount of aluminum dissolved on the surface is preferably 0.5 to 5 g / m 2 .
  • it is preferable to carry out a neutralization treatment by dipping in an acid such as phosphoric acid, nitric acid, sulfuric acid, chromic acid or a mixed acid thereof after dipping treatment with an alkaline water solution.
  • the mechanical surface roughening treatment method and the electrochemical surface roughening method may each be used alone for roughening, or the mechanical surface roughening treatment method followed by electrochemical surface roughening. It may be roughened by applying the method.
  • an anodizing treatment can be performed. Any known anodizing method can be used as the anodizing method. By performing the anodizing treatment, an oxide film is formed on the support.
  • the anodized support may be subjected to a sealing treatment if necessary.
  • These sealing treatments should be performed using known methods such as hot water treatment, boiling water treatment, steam treatment, sodium silicate treatment, dichromate aqueous solution treatment, nitrite treatment, and ammonium acetate treatment. I can do it.
  • water-soluble rosin such as polyvinylphosphonic acid, polymers and copolymers having sulfonic acid groups in the side chain, polyacrylic acid, water-soluble metal salts (boron Zinc acid, etc.), or a primer coated with a yellow dye, amine salt or the like is also suitable.
  • special A sol-gel treated substrate in which a functional group capable of causing an addition reaction by a radical as disclosed in Kaihei 5-304358 is covalently used is also preferably used.
  • the hydrophilic layer is a layer that can be a non-image area where printing ink does not deposit during printing, and is a layer formed on a substrate or a surface layer when a substrate surface is hydrophilized.
  • the hydrophilic layer contains a hydrophilic material.
  • a printing plate material having a heat-sensitive image forming layer on a substrate having a hydrophilic layer, wherein the heat-sensitive image forming layer contains a silicate, a carbonate and a photothermal conversion agent is a preferred embodiment. one of.
  • One aspect of the printing plate material used in the present invention is an aspect having a hydrophilic layer on a substrate.
  • the hydrophilic layer may be a single layer or a plurality of layers.
  • the amount with the parent aqueous layer, 0. 1 ⁇ : LOg / m 2 is preferred instrument 0. 2-5 g / m 2 is more preferable.
  • hydrophilic material used in the hydrophilic layer a hydrophilic material that is substantially insoluble in water is preferable, and a metal oxide is particularly preferable.
  • metal oxide fine particles are preferred. Examples include colloidal silica, alumina sol, titania sol, and other metal oxide sols.
  • the form of the metal oxide fine particles may be spherical, needle-like, feather-like, or any other form.
  • the average particle size it is also possible to use several kinds of metal oxide fine particles having different average particle sizes, preferably 3 to: LOOnm. Further, surface treatment may be performed on the particle surface.
  • the metal oxide fine particles can be used as a binder by utilizing the film forming property. It is suitable for use in a hydrophilic layer where the decrease in hydrophilicity is less than when an organic binder is used.
  • colloidal silica can be particularly preferably used.
  • Colloidal silica has the advantage of high film-forming properties even under relatively low temperature drying conditions, and can provide good strength.
  • the colloidal silica preferably includes necklace-shaped colloidal silica and fine particle colloidal silica having an average particle size of 20 nm or less. Further, the colloidal silica preferably exhibits alkalinity as a colloidal solution.
  • Necklace-shaped colloidal silica is a general term for an aqueous dispersion of spherical silica having a primary particle diameter of the order of meters.
  • the necklace-like colloidal silica means “pearl necklace-like” colloidal silica in which spherical colloidal silica having a primary particle diameter of 10 to 50 nm is bonded to a length of 50 to 400 nm.
  • a pearl necklace shape (that is, a pearl necklace shape) means that an image of colloidal silica particles joined together in a shape like a pearl necklace!
  • the bond between the silica particles constituting the necklace-shaped colloidal silica is presumed to be one of Si—O—Si in which the SiOH group present on the surface of the silica particle is dehydrated.
  • Specific examples of the colloidal silica in the form of necklace include “Snowtex PS” series manufactured by Nissan Chemical Industries.
  • Product names include “Snowtex—PS—S (average particle size in the connected state is about 110 nm)”, “Snowtex PS—M (average particle size in the connected state is about 120 nm)” and “ SNOWTEX PS—L (average particle size in the connected state is about 170 nm) ”, and the corresponding acidic products are“ SNOWTEX—PS—S—0 ”and“ SNOWTEX One PS— “M-0” and “Snowtex PS—L-0”.
  • the colloidal silica has a stronger binding force as the particle size is smaller.
  • alkali-based ones are highly effective in suppressing the occurrence of scumming, so it is particularly preferable to use an alkaline colloidal silica force.
  • Average particle size force Alkaline colloidal silica in this range includes “Snowtex 1-20 (particle size 10-20nm)”, “Snowtex 1 30 (10-20nm)”, “ “Snowtex I 40 (10-20nm)”, “Snow Tex N (particle size 10-20nm)", “Snow Tex S (8: L lnm)”, “Snow Tex XS (4- 6nm) '' It is.
  • Colloidal silica having an average particle size of 20 nm or less is particularly preferable because it can be further improved in strength while maintaining the porosity of the layer when used in combination with the above-mentioned necklace-like colloidal silica force.
  • the ratio of colloidal silica Z necklace-like colloidal silica having an average particle size of 20 nm or less is preferably 95Z5 to 5Z95 (mass ratio), more preferably 70/30 to 20/80, and even more preferably 60Z40 to 30Z70.
  • the hydrophilic layer preferably contains porous metal oxide particles as the metal oxide.
  • porous metal oxide particles porous silica, porous aluminosilicate particles or zeolite particles can be preferably used.
  • Porous silica particles are generally produced by a wet method or a dry method.
  • the gel obtained by neutralizing the silicate aqueous solution is dried and pulverized, or the precipitate deposited by neutralization is pulverized.
  • the dry method it is obtained by burning silicon tetrachloride silicon with hydrogen and oxygen and precipitating silica.
  • the porosity and particle size of these particles can be controlled by adjusting the production conditions.
  • the porous silica particles those capable of obtaining a gel force of a wet method are particularly preferable.
  • Porous aluminosilicate particles are produced, for example, by the method described in JP-A-10-71764. That is, amorphous composite particles synthesized by hydrolysis using aluminum alkoxide and silicon alkoxide as main components. The ratio of alumina to silica in the particles can be synthesized in the range of 1: 4 to 4: 1. In addition, particles produced by adding other metal alkoxides at the time of production as composite particles of three or more components can also be used in the present invention. The porosity and particle size of these composite particles can also be controlled by adjusting the production conditions.
  • the porosity of the particles is preferably 1. OmlZg or more in terms of the pore volume before dispersion. 1. More preferably 2 mlZg or more. 1. 8 to 2.5 mlZg More preferably.
  • the average particle size is preferably substantially 1 ⁇ m or less in a state of being contained in the hydrophilic layer (including when crushed during dispersion), and 0.5 m or less. It is even better to be.
  • the average particle diameter of the porous inorganic particles is preferably substantially 1 ⁇ m or less, more preferably 0.5 m or less, when contained in the hydrophilic layer. .
  • the hydrophilic layer of the printing plate material of the present invention may contain layered mineral particles as a metal oxide.
  • layered mineral particles include clay minerals such as kaolinite, rhosite, talc, smectite (montmorillonite, noiderite, hectorite, sabonite, etc.), vermiculite, my strength (mica), chlorite, and hyde mouth tar.
  • Site layered polysilicate (kaneneite, macatite, arlite, magadiite, kenyanite, etc.).
  • the higher the charge density of the unit layer (unit layer) the higher the polarity and the higher the hydrophilicity.
  • the charge density is preferably 0.25 or more, more preferably 0.6 or more.
  • layered minerals having such a charge density include smectite (charge density 0.25 to 0.6, negative charge), vermiculite (charge density 0.6 to 0.9, negative charge) and the like.
  • synthetic fluorine mica is preferable because it can be obtained with a stable quality such as particle size. Further, among the synthetic fluorine mica, those which are free swellable are more preferable, which are swellable.
  • intercalation compounds of the above-mentioned layered minerals such as billard crystals
  • those subjected to ion exchange treatment, surface treatment silane coupling treatment, compounding treatment with organic noinda) Etc.
  • surface treatment silane coupling treatment, compounding treatment with organic noinda
  • the average particle size is 20 / zm or less in the state of being contained in the layer (including the case of undergoing the swelling process and dispersion peeling process).
  • the average aspect ratio is 20 or more, and the average particle diameter is 5 m or less, and the average aspect ratio is 50 or more. More preferably, the average particle size is: L m or less, and the average aspect ratio is 50 or more.
  • the particle size is in the above range, the continuity and flexibility in the planar direction, which are the characteristics of the thin layered particles, are imparted to the coating film, and it is difficult for cracks to occur, and a tough coating film can be obtained in a dry state.
  • a coating solution containing a large amount of particulate matter sedimentation of the particulate matter can be suppressed by the thickening effect of the layered clay mineral.
  • the content of the layered mineral particles is preferably 0.1 to 30% by mass, more preferably 1 to 10% by mass, based on the entire layer.
  • swellable synthetic fluorinated mica is preferred because smectite is effective even when added in a small amount.
  • Layered mineral particles are added as powder to the coating solution.
  • a gel in which layered mineral particles are swollen alone in water is used. After preparation, it is preferable to add to the coating solution.
  • a silicate aqueous solution can also be used as another additive material.
  • Alkali metal silicates such as sodium silicate, potassium silicate and lithium silicate are preferred.
  • the SiO / M0 ratio is such that the pH of the entire coating solution when adding silicate does not exceed 13.
  • an inorganic polymer or an organic-inorganic hybrid polymer by a so-called sol-gel method using a metal alkoxide can also be used.
  • sol-gel method for example, the force described in “Application of the sol-gel method” (published by Zakuna Sakuo, Zagne Jofusha) or cited in this book. Can be used.
  • the hydrophilic layer may contain a hydrophilic organic resin!
  • hydrophilic organic resins include polyethylene oxide, polypropylene oxide, polybutyl alcohol (PV A), polyethylene glycol (PEG), polybutyl ether, styrene butadiene copolymer, and conjugation series of methyl methacrylate-butadiene copolymer.
  • PV A polybutyl alcohol
  • PEG polyethylene glycol
  • polybutyl ether polybutyl ether
  • styrene butadiene copolymer polybutyl ether
  • conjugation series of methyl methacrylate-butadiene copolymer examples include resins such as polymer latex, acrylic polymer latex, vinyl polymer latex, polyacrylamide, and polyvinyl pyrrolidone.
  • cationic resin that may contain cationic resin includes polyalkylene polyamines such as polyethyleneamine and polypropylene polyamine or derivatives thereof, tertiary amino groups and quaternary compounds. Examples thereof include acrylic resin having an ammonium group and diacrylamine. Cationic rosin may be added in the form of fine particles. Examples thereof include cationic microgels described in JP-A-6-161101.
  • the hydrophilic organic resin contained in the hydrophilic layer is water-soluble, and at least a part of the hydrophilic organic resin can be eluted in water while remaining in a water-soluble state. It exists in the state.
  • the water-soluble material contained in the hydrophilic layer is preferably a saccharide.
  • a saccharide an oligosaccharide, which will be described in detail later, can be used, but it is particularly preferable to use a polysaccharide.
  • polysaccharides starches, celluloses, polyuronic acids, pullulans and the like can be used.
  • Carboxymethyl celluloses, particularly cellulose derivatives such as methylcellulose salts, carboxymethylcellulose salts, hydroxyethylcellulose salts and the like are preferred. Of these, sodium salt is more preferred. This is because inclusion of a polysaccharide in the hydrophilic layer provides an effect of forming the surface shape of the hydrophilic layer in a favorable state.
  • the hydrophilic layer may contain a photothermal conversion material such as an infrared absorbing dye.
  • Infrared absorbing dyes include cyanine-based, croconium-based, polymethine-based, azurenium-based, sculium-based, thiopyrylium-based, naphthoquinone-based, anthraquinone-based organic compounds such as phthalocyanine-based, naphthalocyanine-based, azo-based, and thiamide-based dyes. , Dithio-inole and indo-phosphorus organometallic complexes.
  • the surface of the hydrophilic layer preferably has a concavo-convex structure with a pitch of 0.1 to 50 m like the aluminum grain of the PS plate.
  • This concavo-convex structure improves water retention and image area retention.
  • Such a concavo-convex structure can be formed by containing an appropriate amount of a filler having an appropriate particle size in the hydrophilic layer.
  • the alkaline colloidal silica and the water-soluble material described above are used in the hydrophilic layer coating solution. It is preferable that a structure having better printing performance can be obtained by containing a polysaccharide and forming it by causing phase separation when the hydrophilic layer is applied and dried.
  • the form of the concavo-convex structure is determined depending on the type and amount of alkaline colloidal silica, the type and amount of water-soluble polysaccharides, the type and amount of other additives, and the amount of coating liquid. It is possible to appropriately control the solid content concentration, wet film thickness, drying conditions, and the like.
  • the pitch of the concavo-convex structure is more preferably 0.2 to 30 ⁇ m, and further preferably 0.5 to 20 ⁇ m. Further, a concavo-convex structure having a multiple structure in which a concavo-convex structure with a smaller pitch is formed on the concavo-convex structure with a large pitch may be formed.
  • the surface roughness is preferably 100 to 1000 nm with Ra, more preferably 150 to 600 nm, and more preferably S.
  • the film thickness of the hydrophilic layer is 0.01 to 50 ⁇ m, preferably 0.2 to 10 ⁇ m, and more preferably 0.5 to 3 / ⁇ ⁇ .
  • the hydrophilic layer coating solution for forming the hydrophilic layer is water-soluble for the purpose of improving the coating property.
  • the surfactant can be contained. Silicon-based or fluorine-based surfactants can be used, but it is particularly preferable to use a surfactant containing Si element because there is no fear of causing printing stains.
  • the content of the surfactant is preferably from 0.01 to 3% by mass, more preferably from 0.03 to 1% by mass, based on the entire hydrophilic layer (solid content as the coating solution).
  • the hydrophilic layer of the present invention may contain a phosphate.
  • the hydrophilic layer coating solution is preferably alkaline, it is preferable to add the phosphate as trisodium phosphate or disodium hydrogen phosphate. By adding phosphate, the effect of improving the mesh opening during printing can be obtained.
  • the addition amount of phosphate is preferably 0.1 to 5% by mass, and more preferably 0.5 to 2% by mass as an effective amount excluding hydrate.
  • a substrate having a lipophilic surface can be used.
  • this include general resin base materials, undercoat resin base materials, lipophilic layer-forming resin base materials, and lipophilic layer-forming aluminum plates.
  • a substrate having an oleophilic layer is preferred.
  • it can be used as a film-forming solvent used in the oleophilic ink-receiving layer of a thermosensitive lithographic printing original plate described in JP-A-2002-86946.
  • Soluble lipophilic organic polymers specifically polyesters, polyurethanes, polyureas, polyimides, polysiloxanes, polycarbonates, phenoxy resins, epoxy resins, phenol 'formaldehyde resins, alkylphenols' formaldehyde resins , Polyvinyl acetate, acrylic resin and copolymers thereof, polybuluphenol, polybutyl halogenated phenol, methacrylic resin and copolymers thereof, acrylamide copolymer, methacrylamide copolymer, polyvinyl formal, polyamide, poly Bulbutylal, polystyrene, cellulose ester resin Polysalt-vinyl is a polysalt-vinylidene, etc .; or the monomers shown in paragraphs (0022) to (0026) of the patent (1) to (12) are usually 10,000 to Examples include substrates having a lipophilic layer formed from a copolymer having a molecular weight of 200,000.
  • LOgZm 2 is preferably instrument 0. 2 ⁇ 5gZm 2 is more preferable.
  • On-press development that is, removal of the unexposed portion of the image forming layer on the printing press is performed by a watering roller or an ink roller while rotating the plate cylinder. This can be done by contacting one.
  • the force that can be performed by a sequence such as the following example can be performed by various sequences that are not limited to these.
  • the water amount adjustment that can be adjusted to increase or decrease the amount of dampening water required at the time of printing is divided into multiple steps or changed in a stepless manner. You may go.
  • on-press development is generally performed using the sequence (1). This is because the image forming layer in the non-image area is swollen with water and then removed by ink tack using an ink roller, and the on-press development is completed quickly.
  • Base material 1 Base material having a hydrophilic surface
  • An aluminum plate (material 1050, tempered H16) with a thickness of 0.24 mm is immersed in a 1% aqueous solution of sodium hydroxide at 50 ° C and dissolved so that the dissolution amount is 2 g / m 2 . After washing with water, it was immersed in a 5% nitric acid solution at 25 ° C for 30 seconds, neutralized, and then washed with water.
  • the aluminum plate an electrolytic solution containing hydrochloric acid llgZL and aluminum 1. 5GZL, was subjected to electrolytic surface roughening treatment at the peak current density 80AZdm 2 with an alternating current of a sine wave. The distance between the electrode and the sample surface at this time was 10 mm. Electrolytic surface roughening treatment is performed in 4 steps, and the amount of electricity processed (at the time of anode) is 50 CZdm 2 for a total of 2 It was treated quantity of electricity OOCZdm 2 and (at a positive polarity). In addition, a rest period of 4 seconds was provided between each surface roughening treatment.
  • the surface is immersed in a 10% phosphoric acid aqueous solution maintained at 50 ° C and etched so that the amount of dissolution including the smut of the roughened surface becomes 0.6 gZm 2. And washed with water. Then in, at a current density of 4AZdm 2 with aqueous 20% sulfuric acid, subjected to anodic oxidation treatment under the condition to form the biasing amount 2. 5gZm 2 anodic oxidation skin film was further washed with water.
  • the surface roughness of the substrate 1 measured by the following method was Ra of 0.27 ⁇ m.
  • Substrate 2 Substrate having a lipophilic surface
  • An aluminum plate (material 1050, tempered H16) with a thickness of 0.24 mm is immersed in a 1% aqueous solution of sodium hydroxide at 50 ° C and dissolved so that the dissolution amount is 2 g / m 2 . After washing with water, it was immersed in a 10% nitric acid aqueous solution at 25 ° C for 30 seconds, neutralized, and then washed with water. Next, it was dried at 100 ° C for 3 minutes.
  • a lipophilic layer coating solution which will be described later, was applied to this using a wire bar and dried at 200 ° C for 30 seconds. Drying with the amount of the lipophilic layer was adjusted to 1. 5gZm 2. This was aged at 55 ° C. for 24 hours to obtain a substrate 2 which is an aluminum plate on which a lipophilic layer was formed.
  • Substrate 3 Substrate having a hydrophilic surface
  • a hydrophilic layer coating solution described later was applied using a wire bar and dried at 200 ° C. for 30 seconds to obtain a hydrophilic layer-formed substrate.
  • the dry weight of the hydrophilic layer was adjusted to 3.0 g / m 2 . This was aged at 55 ° C. for 48 hours to obtain a base material 3 which is an aluminum plate having a hydrophilic layer formed on a lipophilic layer.
  • composition was sufficiently mixed, stirred and filtered to obtain a coating solution for a lipophilic layer having a solid content of 20%.
  • Colloidal silica alkaline
  • Snowtex- xs Snowtex- xs (Nissan Chemicals, solid content 20%)
  • Acrylic emulsion AE986A (JSR, Tg: 2 ° C, solid content 35.5%)
  • Carbon black pigment particles SD9020 (Dainippon Ink Co., Ltd., true specific gravity of about 2. Og / cm 3 , average primary particle size lOOnm or less, solid content 30%) aqueous dispersion 6. 67 parts
  • Porous metal oxide particles Shilton JC-20 Mozuwai Chemical Co., Ltd., Porous alumino-silica single particle, average particle size 2 ⁇ m) 2.00 parts
  • Si-based surfactant FZ2161 manufactured by Nippon Car Company 4.00 parts Pure water 21.42 parts
  • the material excluding the surfactant having the following composition was mixed and dispersed for 10 minutes at 10,000 rotations using a homogenizer. Next, a surfactant was added thereto, and the mixture was weakly stirred and then filtered to obtain a hydrophilic layer coating solution having a solid content of 30%.
  • Colloidal silica alkaline
  • Snowtex- xs (Nissan Chemical Co., Ltd. average particle size 5nm
  • Black iron oxide pigment particles ABL-207 manufactured by Titanium Industry Co., Ltd., true specific gravity of about 5. Og / cm 3 , octahedral shape, average particle size 0.2 ⁇ , specific surface area 6.7 m 2 / g, Hc: 9. 95 kA / m, as: 85.
  • Each composition shown in Table 1 was sufficiently mixed and stirred, and filtered to obtain a coating solution for an image forming layer (1 g (5) having a solid content of 5%.
  • the image forming layer coating liquids (1) to (4) are respectively applied to the surface of the lipophilic layer of the substrate 2 using a fiber bar and dried at 55 ° C. for 3 minutes. Materials 1 to 4 were obtained. Drying with the amount of the image forming layer was adjusted to 0. 8gZm 2.
  • the image forming layer coating solution (5) is applied to the surface of the hydrophilic layer of the substrate 3 using a wire par, dried at 55 ° C for 3 minutes, and a printing plate material which is a negative plate 5 Got.
  • the dry weight of the image forming layer was adjusted to 0.8 g / m 2 .
  • Each printing plate material was wound around the exposure drum and fixed.
  • a laser beam with a wavelength of 830 nm and a spot diameter of about 18 m was used, and an image was formed with 175 lines at 2,400 dpi (dpi is the number of dots per inch or 2.54 cm).
  • the exposed image contains a solid image and a 1 to 99% halftone dot image.
  • Exposure energy was 300miZcm 2. In the positive plate and the negative plate, exposure was performed with the exposed portion Z unexposed portion reversed.
  • the exposed printing plate material was directly attached to the plate cylinder, and 500 sheets were printed using the same printing conditions and printing sequence as the PS plate.
  • DAIYA IF-1 manufactured by Mitsubishi Heavy Industries, Ltd. was used as the printing machine, coated paper, dampening water (fast mouth mark 3: manufactured by Nikken Chemical Laboratory), 2% solution, ink (manufactured by Toyo Ink Co., Ltd.) : Toyo King No, TY M red).
  • the printing paper was changed to high-quality paper, and up to 10,000 sheets were printed.
  • a good image is defined as having no background stain and a solid image density of 1.5 or higher. At this time, if the density of the solid image portion is less than 1.5 even on the 500th printed matter due to poor ink depositability in the image area, the “thick ink depositability” If the above solid image did not remain on the printed material, “image formation failure” was indicated, and if soiling occurred, “dirt NG” was indicated.
  • Scratch marks were made on the non-image area of the printing plate material after exposure using a scratch tester manufactured by HEIDON. Use a 0.3mm ⁇ sapphire stylus as the stylus, 50-300g The scratches were made by changing the load in increments of 25g. Printing was performed using a printing plate material with scratch marks, and scratch marks were evaluated using the 50th printed material after printing. The maximum load was used as an index of the scratch marks because the scratch marks could not be confirmed as dirt on the printed material. If the scratch marks could not be detected due to dirt, it was judged impossible. A larger load is better.
  • a scratch mark was made on the non-image area of the printing plate material after exposure with a nail. Printing was performed using a printing plate material with scratch marks, and the printing force was also evaluated on a three-point scale using the 50th printed material to visually check the degree of scratch marks. In addition, it was determined that the scratch marks could not be distinguished due to soil contamination!
  • the printed matter was sampled every 1,000 prints, and the degree of image deterioration in the solid image area and the degree of background contamination in the non-image area were confirmed.
  • the point at which blurring was visually confirmed in the solid image portion or the point at which scumming was visually confirmed in the non-image portion was defined as the printing end point, and the number of printed sheets was used as an index of printing durability.
  • the printing plate material of the present invention has good printing properties, scratch resistance, and printing durability.
  • Printing plate materials 3 and 4 which do not contain carbonate, have no water resistance in both the exposed area and the unexposed area of the image forming layer without aging treatment. It becomes.
  • the aging treatment is performed, the water resistance of the entire image forming layer is improved, the removability of the unexposed portion is deteriorated, and the ink deposit is poor.
  • Stearic acid amide emulsion (L-271: manufactured by Chukyo Yushi Co., Ltd.) was mixed to a solid content of 10%, diluted with pure water to a solid content of 5%, and filtered. Thus, a coating solution for an oleophilic overcoat layer was obtained.
  • the image forming layer coating solution prepared in Examples 1 and 2 was applied to the grain surface of the substrate 1 using a wire bar as shown in Table 4, and dried at 55 ° C for 3 minutes. .
  • the drying amount of the image forming layer was set to 0.8 gZm 2 .
  • the lipophilic overcoat layer was applied on the image forming layer using a wire bar and dried at 55 ° C. for 3 minutes.
  • the dry weight of the lipophilic overcoat layer was adjusted to 0.3 gZm 2 .
  • an aging treatment at 40 ° C. for 48 hours was performed to obtain printing plate materials 6 to 12 as negative plates.
  • Printing plate materials 6 to 12 were subjected to image formation and printing by exposure in the same manner as in Example 1, and evaluation was performed for each printed matter. The results are shown in Table 4.
  • the printing plate material of the present invention has good printing properties, scratch resistance, and printing durability.
  • the printing plate materials 11 and 12 that do not contain carbonate are ground stains that have poor removability in the unexposed areas of the image forming layer containing lipophilic particles.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Printing Plates And Materials Therefor (AREA)
  • Materials For Photolithography (AREA)

Abstract

 本発明は、基材上に感熱画像形成層および構成層を有する印刷版材料であって、該感熱画像形成層が珪酸塩及び炭酸塩を含有し、該構成層は該基材と該感熱画像形成層との間に設層されており、該構成層および感熱画像形成層の少なくとも一方が光熱変換剤を含有することを特徴とする印刷版材料であり、印刷での刷出し性、耐刷性およびスクラッチ跡汚れ防止性に優れる印刷版材料及び印刷版の作製方法が提供できる。

Description

明 細 書
印刷版材料および印刷版の作製方法
技術分野
[0001] 本発明は印刷版材料に関し、特にコンピューター 'トウ'プレート (CTP)方式により 画像形成が可能な印刷版材料に関する。
背景技術
[0002] 現在、印刷の分野にぉ 、ては、印刷画像データのデジタルィ匕に伴 、、 CTP方式に よる印刷が行われるようになって来ている力 この印刷においては、安価で取扱いが 容易で、従来の所謂 PS版と同等の印刷適性を有した CTP方式用印刷版材料が求 められている。
[0003] 特に近年、特別な薬剤による現像処理が不要であるダイレクトイメージング (DI)性 能を有し、この機能を備えた印刷機に適用可能であり、また PS版と同等の使い勝手 を有するものとして、汎用タイプのプロセスレスプレートが求められている。
[0004] サーマルプロセスレスプレートの画像形成に主として用いられるのは、近赤外〜赤 外線の波長を有する赤外線レーザー記録方式である。この方式で画像形成可能な サーマルプロセスレスプレートには、大きく分けてアブレーシヨンタイプと熱融着画像 層機上現像タイプが存在する。
[0005] アブレーシヨンタイプとしては、例えば特開平 8— 507727号、同 6— 186750号、 同 6— 199064号、同 7— 314934号、同 10— 58636号、同 10— 244773号に記載 されて!/、るものが挙げられる。
[0006] これらは、例えば、基材上に親水性層と親油性層とを何れかの層を表層として積層 したものである。表層が親水性層であれば、画像様に露光し、親水性層をアブレート させて画像様に除去して親油性層を露出することで画像部を形成することができる。 ただし、アブレートした表層の飛散物による露光装置内部の汚染が問題となるため、 露光装置には特別な吸引装置が必要となる場合があり、露光装置に対する汎用性 は低い。
[0007] 他方、アブレーシヨンを生じることなく画像形成が可能であり、かつ特別な現像液に よる現像処理や拭取り処理が不要とされているのが熱融着画像層機上現像タイプで ある。これには、感熱画像形成層に熱可塑性微粒子と水溶性高分子化合物の結合 剤とを用いた、印刷機上で湿し水又はインクを用いて現像することが可能な CTP用 印刷版材料が開示されている (例えば、特許文献 1、特許文献 2参照)。感熱画像形 成層の露光部は熱可塑性微粒子の熱融着によって耐水性や機械的強度が向上し、 湿し水への溶解性 ·分散性が低下、又、インキタックによっても引き剥がされなくなる ため、印刷時に支持体上に画像部として残存する。未露光部は、湿し水中に溶解 · 分散するか、もしくはインキタックにより引き剥がされてインキ中に移行することによつ て除去される。
[0008] しかし、熱可塑性微粒子は圧力によっても可塑性を生じるため、スクラッチ等の圧 力を受けた画像形成層は、矢張り、熱可塑性微粒子同士が圧着し、又、基材凹凸面 に押し付けられて接着した状態となり、インキ着肉性を有するようになる、つまりは、ス クラッチ跡汚れを生じる。このため、印刷版材料を非常にデリケートに取り扱う必要が あり、又、汚れ発生による版の再作製の頻度が高くなる等、生産性の低下を招く懸念 がある。
[0009] 又、熱可塑性微粒子の熱融着のみでは、画像部強度及び画像部と基材表面との 接着強度は十分とは言えず、耐刷性ゃ耐薬品性は不十分なものである。
[0010] これに対して、熱可塑性微粒子等の疎水化前駆体微粒子を有する画像形成層の 上に、水溶性セルロース類のオーバーコート層を設けることによって取扱 、性を向上 させた印刷版材料が提示されている (例えば特許文献 3参照)。しかし、このような構 成では、取扱い性は向上するものの、刷出し時の画像部へのインク着肉が遅くなり、 一方、未露光部の機上現像性も劣化して、損紙枚数が増大することになる。又、ォー バーコート層は画像部の強度向上には寄与していないため、耐刷性の向上も期待で きない。
[0011] このように、機上現像タイプの印刷版材料においては、耐刷性ゃ耐薬品性とスクラ ツチ跡汚れ性とを共に改善することは困難であった。
特許文献 1:特開平 9— 123387号公報
特許文献 2:特開平 9— 123388号公報 特許文献 3:特開 2002— 19318号公報
発明の開示
発明が解決しょうとする課題
[0012] 本発明の目的は、印刷での刷出し性、耐刷性に優れ、かつスクラッチ跡汚れを生じ 難ヽ印刷版材料を提供することにある。
課題を解決するための手段
[0013] 本発明の上記目的は、下記構成により達成される。
1.基材上に感熱画像形成層および構成層を有する印刷版材料であって、該感熱画 像形成層が珪酸塩及び炭酸塩を含有し、該構成層は該基材と該感熱画像形成層と の間に設層されており、該構成層および感熱画像形成層の少なくとも一方が光熱変 換剤を含有することを特徴とする印刷版材料。
2.前記珪酸塩が珪酸リチウムであることを特徴とする 1に記載の印刷版材料。
3.前記感熱画像形成層が更に平均粒径が 50ηπι〜5 /ζ mの粒子を含有することを 特徴とする 1又は 2に記載の印刷版材料。
4.前記粒子が、金属酸ィ匕物またはブロック化イソシァネートイ匕合物であることを特徴 とする 3に記載の印刷版材料。
5.前記感熱画像形成層が、光熱変換剤を含むことを特徴とする 1乃至 4のいずれか 1項に記載の印刷版材料。
6.前記感熱画像形成層上に親油性オーバーコート層を有することを特徴とする 1乃 至 5の 、ずれか 1項に記載の印刷版材料。
7.前記構成層が金属酸ィ匕物を含む親水性層であることを特徴とする 1乃至 6のいず れカ 1項に記載の印刷版材料。
8.前記構成層が親油性有機高分子を含む親油性層であることを特徴とする 1乃至 6 の!ヽずれか 1項に記載の印刷版材料。
9.前記画像形成層中の珪酸塩の含有量が、 SiO換算量で、 10〜80質量%であり、
2
炭酸塩の含有量が 5〜50質量%であることを特徴とする 1乃至 8のいずれか 1項に記 載の印刷版材料。
10.親水性層を有する基材上に感熱画像形成層を有する印刷版材料であって、該 感熱画像形成層が珪酸塩、炭酸塩および光熱変換剤を含有することを特徴とする印 刷版材料。
11.前記珪酸塩が珪酸リチウムであることを特徴とする 10に記載の印刷版材料。
12.前記感熱画像形成層が更に平均粒径が 50ηπι〜5 /ζ mの粒子を含有することを 特徴とする 10又は 11に記載の印刷版材料。
13.前記粒子が、金属酸ィ匕物またはブロック化イソシァネートイ匕合物であることを特 徴とする 12に記載の印刷版材料。
14.前記感熱画像形成層上に親油性オーバーコ一ト層を有することを特徴とする 10 乃至 13のいずれか 1項に記載の印刷版材料。
15.前記画像形成層中の珪酸塩の含有量が、 SiO換算量で、 10〜80質量%であり
2
、炭酸塩の含有量が 5〜50質量%であることを特徴とする 1乃至 8のいずれか 1項に 記載の印刷版材料。
16. 1乃至 15の 、ずれか 1項に記載の印刷版材料を画像露光する工程および平版 印刷機上で画像露光された印刷版材料に湿し水を供給し、前記感熱画像形成層の 未露光部を除去して機上現像を行う工程を有することを特徴とする印刷版の作製方 法。
発明の効果
[0014] 本発明の構成により、印刷での刷出し性、耐刷性およびスクラッチ跡汚れ防止性に 優れる印刷版材料及び印刷版の作製方法が提供できる。
発明を実施するための最良の形態
[0015] 以下、本発明を詳細に説明する。
[0016] 〈感熱画像形成層〉
本発明の印刷版材料の感熱画像形成層(以下、単に画像形成層と記す)は、珪酸 塩と炭酸塩を含有する。
[0017] 珪酸塩としては、珪酸ナトリウム、珪酸カリウム、珪酸リチウム等のアルカリ金属珪酸 塩や、珪酸アンモ-ゥム、有機ァミンの珪酸塩等の有機塩基塩が挙げられる。これら の中でも、特に珪酸リチウムを好ましく用いることができる。
[0018] 炭酸塩としては、炭酸アンモ-ゥムや、炭酸グァ-ジン、ァミン炭酸塩等の有機塩 基の炭酸塩と言える、水溶性の高い炭酸塩を好ましく用いることができる。水溶性の 高い炭酸塩とは、 25° Cの水 lOOgに 5g以上溶解する炭酸塩をいう。これらの中でも 特に炭酸グァ-ジンを好ましく用いることができる。
[0019] 珪酸塩を含有する塗膜は、炭酸で中和することで耐水性が向上することが知られて いる。珪酸塩の中でも、珪酸リチウムは炭酸ガス吸収素材として用いられており、珪酸 リチウムを加熱すると、 100°C付近から急激に炭酸と反応して炭酸リチウムを形成し、 耐水性は向上する。
[0020] 本発明では、画像形成層に珪酸塩と炭酸供給源である水溶性炭酸塩とを混合して 用いることで、加熱前の画像形成層の水溶性を向上させると共に、加熱部の画像形 成層の耐水性を向上させることができ、画像形成の SZNが非常に良好となる。
[0021] 本発明の画像形成層を有する印刷版材料は、加熱部 (露光部)と未加熱部 (未露 光部)の耐水性の差を利用して、水性現像液での現像により画像を得ることができる 。又、未現像のまま印刷機の版胴に取り付けて、版胴を回転させながら湿し水、もしく は湿し水とインキを版面に供給して機上現像することで画像を得ることができる。
[0022] 例えば、珪酸塩と炭酸塩 (及び好ましくは、後述する親水性微粒子)とで構成される 画像形成層は、加熱部 (露光部)は硬化しても親水性を有する。従って、親油性表面 を有する基材上に、この画像形成層を形成することで、水性液現像もしくは機上現像 によって未加熱部 (未露光部)の画像形成層が除去され、親油性基材表面が露出し て未加熱部 (未露光部)にインキ着肉するポジ版となる。
[0023] 画像形成層中の珪酸塩の含有量 (SiO換算量)は、好ましくは、 10〜80質量%、よ
2
り好ましくは、 20〜70質量%である。画像形成層中の炭酸塩の含有量は、好ましく は、 5〜50質量%、より好ましくは、 10〜40質量%である。
[0024] (微粒子)
本発明の画像形成層は、更に平均粒径が 50ηπ!〜 5 mの微粒子を含有すること が好ましい。形状は、球状、多面体状、平板状、針状、不定形状の何れの形状でもよ ぐ多孔質であってもよい。ここで、粒径とは粒子の投影像と同面積を有する円の直 径で定義される。 該粒径は、粒子の 10000— 50000倍の電子顕微鏡写真像を測 定することによって得られ、平均粒径は、任意に選択された 100個の粒子の粒径の 平均である。該微粒子の平均粒径は、 -レコ (株)製の画像解析装置、ルーゼックス( LUZEX)シリーズを用いて測定することができる。
[0025] 該微粒子は、画像形成層の未加熱部 (未露光部)の現像性を向上させる機能を有 する。 50nm以上の平均粒径では、現像性向上効果を示し、 5 /z m以下の平均粒径 では、画像形成時の解像度を向上させる効果がある。
[0026] 上記微粒子としては、親水性微粒子を用いることができる。親水性微粒子は、非力口 熱部 (未露光部)においては現像促進剤として機能し、加熱部(露光部)においては 塗膜 (画像)の補強剤として機能する。
[0027] 親水性微粒子としては、無機粒子 (シリカ、アルミナ、アルミノシリケート、チタ二了、 ジルコユア等の金属酸化物)、有機粒子(セルロース、アルギン酸カルシウム、キトサ ン等)、有機粒子を無機素材で被覆した粒子の何れも用いることができる。
[0028] 親水性微粒子を用いる態様にぉ 、てはスクラッチ跡力インキ着肉性となって印刷で 汚れとなる懸念がなくなる。
[0029] 微粒子として親水性微粒子を含有する態様では、前述のような親油性表面基材を 用いたポジ版とすることができるが、親水性表面基材を用い、かつ、後述する親油性 のオーバーコート層を有する態様とすることで、加熱部(露光部)にインキ着肉するネ ガ版とすることちでさる。
[0030] 微粒子として親油性微粒子を用いることもできる。親油性微粒子は、非加熱部 (未 露光部)においては現像促進剤として機能し、加熱部 (露光部)においては塗膜 (画 像)の補強剤、及びインキ着肉性付与剤として機能する。従って、この態様では親水 性表面基材を用いることで、加熱部 (露光部)〖こインキ着肉するネガ版とすることがで きる。又、更に、後述する親油性のオーバーコート層を有する態様として、インキ着肉 '性を向上させることちできる。
[0031] 上記親油性微粒子としては、熱可塑性榭脂微粒子 (熱溶融性ワックス、熱融着性ポ リマー等)を用いることができる。しかし、親油性微粒子としては、熱可塑性の低い、 つまりは 150°C以上の耐熱性を有する榭脂微粒子を用いることが好ましい。熱可塑 性の低!、榭脂粒子は圧力による可塑性も低!、ため、スクラッチ跡が基材表面に圧着 してインキ着肉'性となって印刷で汚れとなる懸念がなくなる。 [0032] 微粒子として、微粒子状のブロック化イソシァネートイ匕合物を用いることもできる。ブ ロック化イソシァネートイ匕合物微粒子も、非加熱部 (未露光部)においては現像促進 剤として機能し、加熱部 (露光部)においては塗膜 (画像)の補強剤、及びインキ着肉 性付与剤として機能する。炭酸塩ィ匕合物として有機塩基の炭酸塩を用いた場合には 、加熱部 (露光部)においては、有機塩基と熱で再生したイソシァネートが架橋反応 し、塗膜の耐水性、強度をより向上させる効果が得られ好ましい。
[0033] (ブロック化イソシァネートイ匕合物)
本発明で用いられるブロック化イソシァネートイ匕合物は、イソシァネートイ匕合物とポリ オールとイソシァネート基のブロック化剤(以下、単にブロック化剤ともいう)との反応 化合物である。
[0034] ブロック化剤は、イソシアナト基に付加反応しウレタン結合、ゥレア結合を生ずる基 を有する化合物であり、例えばメタノール、エタノール等のアルコール系ブロック剤、 フエノール、タレゾール等のフエノール系ブロック剤、ホルムアルドキシム、ァセトアル ドキシム、メチルェチルケトキシム、メチルー iーブチルケトキシム、シクロへキサノンォ キシム、ァセトキシム、ジァセチノレモノ才キシム、ベンゾフエノン才キシム等の才キシム 系ブロック剤、ァセトァ-リド、 ε—力プロラタタム、 y—ブチ口ラタタム等の酸アミド系 ブロック剤、マロン酸ジメチル、ァセト酢酸メチル等の活性メチレン系ブロック剤、ブチ ルメルカブタン等のメルカブタン系ブロック剤、琥珀酸イミド、マレイン酸イミド等のイミ ド系ブロック剤、イミダゾール、 2—メチルイミダゾール等のイミダゾール系ブロック剤、 尿素、チォ尿素等の尿素系ブロック剤、 N—フエ-ルカルバミン酸フエ-ル等のカル ノ ミン酸系ブロック剤、ジフエ-ルァミン、ァ-リン等のアミン系ブロック剤、エチレンィ ミン、ポリエチレンィミン等のイミン系ブロック剤などが挙げられる。これらの中では、特 にォキシム系ブロック剤を用いることが好まし 、。
[0035] ブロック化剤の付加量としては、ブロック化剤中の活性水素基と後述のポリオール の活性水素基とを合わせてイソシァネートイ匕合物のイソシアナト基に対して 1. 0〜1. 1当量となるように含有させることが好ま 、。
[0036] ブロック化剤の解離温度としては、 80〜200°Cであることが好ましぐ 80〜160°Cで あることがより好ましぐ 80〜130°Cであることがより好ましい。 [0037] イソシァネートイ匕合物は、イソシアナト基(一 NCO)を有する化合物であり、芳香族 ポリイソシァネート [ジフエ-ノレメタンジイソシァネート(MDI)、トリレンジイソシァネート (TDI)、ポリフエ-ルポリメチレンポリイソシァネート(粗製 MDI)、ナフタレンジイソシ ァネート (NDI)等];脂肪族ポリイソシァネート [1, 6—へキサメチレンジイソシァネー HHDI)、リジンジイソシァネート(LDI)など];脂環式ポリイソシァネート [イソホロンジ イソシァネート(IPDI)、ジシクへキシノレメタンジイソシァネート(水添 MDI)、シクロへ キシレンジイソシァネート等];芳香脂肪族ポリイソシァネート [キシリレンジイソシァネ ート(XDI)、テトラメチルキシレンジイソシァネート (TMXDI)等];これらの変性物(ビ ユーレット基、イソシァヌレート基、カルポジイミド基、ォキサゾリジン基含有変性物な ど);及び、これらのポリイソシァネートと重量平均分子量 50〜5, 000の活性水素含 有ィ匕合物から成る末端イソシアナト基を有するウレタンプレボリマー等が挙げられる。 又、特開平 10— 72520号に記載のポリイソシァネートイ匕合物も好ましく用いることが できる。
[0038] 上記の中では特にトリレンジイソシァネートが、反応性が速く好ましい。
[0039] ポリオールを付加させることにより、ブロック化イソシァネートイ匕合物の保存安定性を 向上させることができる。又、加熱して画像を形成した際の画像強度が向上し、耐刷 性が向上する。
[0040] ポリオールとしては、プロピレングリコール、トリエチレングリコール、グリセリン、トリメ チロールメタン、トリメチロールプロパン、ペンタエリスリトール、ネオペンチノレグリコー ル、 1, 6—へキシレングリコール、ブタンジオール、へキサメチレングリコール、キシリ レングリコール、ソルビトール、蔗糖などの多価アルコール、これらの多価アルコール あるいはポリアミンにエチレンオキサイド又はプロピレンオキサイドを、あるいは両者を 付加重合して得られるポリエーテルポリオール類、ポリテトラメチレンエーテルポリオ ール類、ポリカーボネートポリオール類、ポリ力プロラタトンポリオール類、更に上記多 価アルコールと例えばアジピン酸、フタル酸、イソフタル酸、テレフタル酸、セバシン 酸、フマル酸、マレイン酸、ァゼライン酸などの多塩基酸とを反応させて得られるポリ エステルポリオール類、ポリブタジエンポリオール類、アクリルポリオール類、ヒマシ油 、ポリエーテルポリオール又はポリエステルポリオールにビニルモノマーをグラフトして 得られるポリマーポリオール類、エポキシ変性ポリオール類などが挙げられる。
[0041] これらの中では、プロピレングリコール、トリエチレングリコール、グリセリン、トリメチロ 一ノレメタン、トリメチロールプロパン、ペンタエリスリトール、ネオペンチルグリコール、 1 , 6—へキシレングリコール、ブタンジオール、へキサメチレングリコール、キシリレング リコール、ソルビトール等、重量平均分子量 50〜5, 000のポリオールを好ましく使用 することができ、特に分子量 50〜500程度の低分子量ポリオールをより好ましく使用 できる。
[0042] ポリオールの付カ卩量としては、前述のようにポリオールとブロック化剤とを合わせた 活性水素の量力 イソシァネートイ匕合物のイソシアナト基に対して 1. 0〜1. 1当量が 好ましいが、ポリオール中のヒドロキシル基がイソシァネートイ匕合物のイソシアナト基 に対して 0. 1〜0. 9当量となるような範囲が好ましぐ特に 0. 2〜0. 7当量が好まし い。この範囲において特にブロック化イソシァネートイ匕合物の保存安定性が向上する
[0043] イソシァネートイ匕合物のブロック化方法としては、例えば、イソシァネートイ匕合物を無 水の条件下、不活性ガス雰囲気下で 40〜120°C程度に加温し、攪拌しながらブロッ ク化剤を所定量滴下して混合し、攪拌を続けながら数時間かけて反応させるという方 法が挙げられる。
[0044] この際、何らかの溶媒を用いることもできる。又、公知の触媒、例えば有機金属化合 物、第 3級ァミン、金属塩等を用いることもできる。
[0045] 有機金属触媒としては、例えばスタナスォクトエート、ジブチルチンジアセテート、ジ ブチルチンジラウレート等の錫系触媒、 2—ェチルへキサン酸鉛等の鉛系触媒など 力 第 3級ァミンとしては、例えばトリェチルァミン、 N, N—ジメチルシクロへキシルァ ミン、トリエチレンジァミン、 N, N' —ジメチルピペラジン、ジァザビシクロ(2, 2, 2) オクタン等力 金属塩触媒としては、例えばナフテン酸コバルト、ナフテン酸カルシ ゥム、ナフテン酸鉛酸化リチウム等が挙げられる。これら触媒の使用量は、ポリイソシ ァネート組成物 100質量部に対し、通常 0. 001〜2質量部、好ましくは 0. 01〜1質 量部である。
[0046] ブロック化イソシァネートイ匕合物が塗布液中に含有される状態としては分散物として 含有される状態が好ましい。即ち水系画像形成層用塗布液は、ブロック化イソシァネ 一トイ匕合物の水分散物である態様が好まし 、。
[0047] 本発明のブロック化イソシァネート化合物は、ブロック化剤及びポリオールをイソシ ァネートイ匕合物と反応させる力 先にイソシァネートイ匕合物とポリオールとを反応させ た後に、残ったイソシアナト基とブロック化剤とを反応させてもよぐ又、先にイソシァ ネートイ匕合物とブロック化剤とを反応させた後に、残ったイソシァネート基とポリオ一 ルとを反応させてもよい。
[0048] ブロック化イソシァネート化合物の好ましい平均分子量としては、重量平均分子量 で 500〜2, 000であること力 子ましく、 600〜1, 000であること力 ^より好まし!/、。この 範囲で反応性と保存安定性とのバランスが良好となる。
[0049] 上述のようにして得られたブロック化イソシァネートイ匕合物は、例えば界面活性剤と 水とを加えて、ホモジナイザ等を用いて強力に混合攪拌することで水分散物とするこ とがでさる。
[0050] 界面活性剤としては、例えばドデシルベンゼンスルホン酸ナトリウム、ラウリル硫酸 ナトリウム、ドデシルジフヱ-ルエーテルジスルホン酸ナトリウム、琥珀酸ジアルキルェ ステルスルホン酸ナトリウム等のァ-オン系界面活性剤、ポリオキシエチレンアルキル エステル、ポリオキシエチレンアルキルァリールエーテル等のノ-オン系界面活性剤 、あるいはラウリルべタイン、ステアリルべタインの塩などのアルキルべタイン型の塩、 ラウリル一 β—ァラニン、ラウリルジ (アミノエチル)グリシン、ォクチルジ (アミノエチル) グリシンなどのアミノ酸型の両界面活性剤などを挙げることができる。これらは単独で 又は 2種以上組み合わせて用いることができる。これらの中ではノ-オン界面活性剤 が好ましい。
[0051] ブロック化イソシァネートイ匕合物の水分散物の固形分としては、 10〜80質量%であ ることが好ましい。界面活性剤の添加量としては、水分散物の固形分中の 0. 01〜2 0質量%であることが好まし 、。
[0052] イソシァネートイ匕合物のブロック化反応等に有機溶媒を用いた場合には、水分散物 として力 有機溶媒を除去することもできる。
[0053] 画像形成層中の微粒子の含有量は、 1〜40質量%が好ましぐ 2〜20質量%がよ り好ましい。
[0054] 画像形成層の付量は、 0. l〜3gZm2が好ましぐ 0. 2〜1. 5gZm2がより好ましい
[0055] 〈親油性オーバーコート層〉
本発明の印刷版材料は、親油性のオーバーコート層を設けてインキ着肉性を付与 することができる。親油性のオーバーコート層は、インク着肉性を有していれば、どの ような素材を用いてもよい。例えば、公知の熱硬化性榭脂ゃ熱可塑性榭脂などを用 いることがでさる。
[0056] 熱硬化性榭脂の具体例としては、尿素樹脂、メラミン榭脂、フエノール榭脂、ェポキ シ榭脂、不飽和ポリエステル榭脂、アルキド榭脂、ウレタン榭脂等を挙げることができ る。又、熱可塑性榭脂の具体例としては、エチレン系重合体、ポリアミド系榭脂、ポリ エステル系榭脂、ポリウレタン系榭脂、ポリオレフイン系榭脂、アクリル系榭脂、塩ィ匕ビ 二ル系榭脂、セルロース系榭脂、ロジン系榭脂、ポリビュルアルコール系榭脂、ポリビ 二ルァセタール系榭脂、アイオノマー榭脂、石油系榭脂等の榭脂類;天然ゴム、スチ レンブタジエンゴム、イソプレンゴム、クロロプレンゴム、ジェン系コポリマー等のエラス トマ一類;エステルガム、ロジンマレイン酸榭脂、ロジンフエノール榭脂、水添ロジン等 のロジン誘導体;並びにフエノール榭脂、テルペン榭脂、シクロペンタジェン榭脂、芳 香族系炭化水素榭脂等の高分子化合物を挙げることができる。
[0057] これらの素材は溶剤に溶解して塗布することもできる力 本発明においては、水系 塗料カゝら塗布形成することが好ましぐこれらの榭脂のエマルジョンを造膜させて形成 した層であることが好ましい。特に好ましい素材としては、アクリル系榭脂ェマルジヨン 、ウレタン系榭脂ェマルジヨン等を挙げることができる。
[0058] 親油性オーバーコート層は、高強度で、かつ機上現像で除去され易い物性を有し ていることが好ましい。これは層自体が余り伸延しない内に破断する特性を有するこ とが好ましいと言うことである。このため、架橋剤を用いて架橋したり、無機素材と複合 化して硬くて脆い性質を付与したりすることができる。
[0059] 親油性オーバーコート層の付量は、 0. 01〜3gZm2が好ましぐ 0. l〜lgZm2が より好まし 、。 [0060] 〈構成層〉
本発明において、構成層は、画像形成層と基材との間に設けられる層である。 構 成層の ヽずれかにまたは画像形成層に光熱変換材を含有する。本発明に係わる構 成層としては、後述の親水性層、親油性層が挙げられる。本発明においては、画像 形成層に光熱変換材を含有することが好ま ヽ。構成層の!ヽずれかにまたは画像形 成層に含有する光熱変換材の量は、固形分に対して、好ましくは、 1〜40質量%、よ り好ましくは、 2〜20質量%である。
[0061] (光熱変換剤)
本発明の印刷版材料は、構成層の何れかに光熱変換剤を含有する。光熱変換剤 として赤外吸収色素 (IR色素)、顔料が使用できる。
[0062] 一般的な IR色素であるシァニン系色素、クロコ-ゥム系色素、ポリメチン系色素、ァ ズレニウム系色素、スクヮリウム系色素、チォピリリウム系色素、ナフトキノン系色素、 アントラキノン系色素などの有機化合物、フタロシアニン系、ナフタロシアニン系、ァゾ 系、チォアミド系、ジチオール系、インドア-リン系の有機金属錯体などが挙げられる 。具体的には、特開昭 63— 139191号、同 64— 33547号、特開平 1— 160683号、 同 1— 280750号、同 1— 293342号、同 2— 2074号、同 3— 26593号、同 3— 309 91号、同 3— 34891号、同 3— 36093号、同 3— 36094号、同 3— 36095号、同 3 42281号、同 3— 97589号、同 3— 103476号等に記載のィ匕合物力 S挙げられる。 これらは 1種又は 2種以上を組み合わせて用いることができる。又、特開平 11— 240 270号、同 11— 265062号、特開 2000— 309174号、同 2002— 49147号、同 20 01— 162965号、同 2002— 144750号、同 2001— 219667号に記載のィ匕合物も 好ましく用いることができる。
[0063] 顔料としては、カーボンブラック、グラフアイト、金属、金属酸化物等が挙げられる。
[0064] カーボンブラックとしては特にファーネスブラックやアセチレンブラックの使用が好ま しい。粒度(d50)は lOOnm以下であることが好ましぐ 50nm以下であることが更に 好ましい。
[0065] グラフアイトとしては、平均粒径が 0. 5 μ m以下、好ましくは lOOnm以下、更に好ま しくは 50nm以下の微粒子を使用することができる。 [0066] 金属としては、平均粒径が 0. 5 μ m以下、好ましくは lOOnm以下、更に好ましくは 50nm以下の微粒子であれば如何なる金属でも使用することができる。形状としては 球状、片状、針状等、何れの形状でもよい。特にコロイド状金属微粒子 (Ag、 Au等) が好ましい。
[0067] 金属酸ィ匕物としては、可視光城で黒色を呈して 、る素材、又は素材自体が導電性 を有するか、半導体であるような素材を使用することができる。
[0068] 前者としては、黒色酸化鉄や 2種以上の金属を含有する黒色複合金属酸化物が挙 げられる。後者とては、例えば Sbをドープした SnO (ATO)、 Snを添カ卩した In O (I
2 2 3
TO)、 TiO、 TiOを還元した TiO (酸化窒化チタン、一般的にはチタンブラック)等
2 2
が挙げられる。又、これらの金属酸化物で芯材(BaSO、 TiO、 9A1 Ο · 2Β 0、 K O
4 2 2 3 2 2
•nTiO等)を被覆したものも使用することができる。これらの平均粒径は、 0. 5 m
2
以下、好ましくは lOOnm以下、更に好ましくは 50nm以下である。
[0069] これらの光熱変換剤の内、黒色酸化鉄や 2種以上の金属を含有する黒色複合金属 酸化物が、より好ましい素材として挙げられる。
[0070] 黒色酸化鉄 (Fe O )としては、平均粒子径 0. 01〜1 μ mであり、針状比(長軸径
3 4
Z短軸径)が 1〜1. 5の範囲の粒子であることが好ましぐ実質的に球状 (針状比 1) である力 もしくは 8面体形状 (針状比約 1. 4)を有していることが好ましい。このような 黒色酸ィ匕鉄粒子としては、例えばチタン工業社製の TAROXシリーズが挙げられる。 球状粒子としては、 BL— 100 (平均粒径 0. 2〜0. 6 !11)、:61^— 500 (平均粒径0. 3〜1. O /z m)等を好ましく用いることができる。又、 8面体形状粒子としては、 ABL— 203 (平均粒径 0. 4〜0. 5 /ζ πι)、 ABL— 204 (平均粒径 0. 3〜0. 4 /ζ πι)、 ABL— 205 (平均粒径 0. 2〜0. 3 /ζ πι)、 ABL— 207 (平均粒径 0. 2 /z m)等を好ましく用 いることがでさる。
[0071] 更に、これらの粒子表面を SiO等の無機物でコーティングした粒子も好ましく用い
2
ることができ、そのような粒子としては、 SiOでコーティングされた球状粒子: BL— 20
2
0 (平均粒径 0. 2〜0. 3 /ζ πι)、 8面体形状粒子: ABL— 207A (平均粒径 0. 2 m) が挙げられる。
[0072] 黒色複合金属酸化物としては、具体的には、 Al、 Ti、 Cr、 Mn、 Fe、 Co、 Ni、 Cu、 Zn、 Sb、 Baから選ばれる 2種以上の金属から成る複合金属酸化物である。これらは 、特開平 8— 27393号、同 9— 25126号、同 9— 23 0号、同 9— 241529号、同 10— 231441号等に開示される方法により製造することができる。
[0073] 複合金属酸化物としては、特に Cu— Cr Mn系又は Cu Fe Mn系の複合金属 酸ィ匕物であることが好ましい。 Cu— Cr— Mn系の場合には、 6価クロムの溶出を低減 させるために、特開平 8— 27393号に開示される処理を施すことが好ましい。これら の複合金属酸化物は、添加量に対する着色、つまり、光熱変換効率が良好である。
[0074] これらの複合金属酸ィ匕物は平均 1次粒子径が 1 μ m以下であることが好ましぐ 0.
01-0. 5 mの範囲にあることがより好ましい。平均 1次粒子径が 1 m以下とするこ とで、添加量に対する光熱変換能がより良好となり、平均 1次粒子径が 0. 01〜0. 5 /z mの範囲とすることで添加量に対する光熱変換能がより良好となる。ただし、添カロ 量に対する光熱変換能は、粒子の分散度にも大きく影響を受け、分散が良好である ほど良好となる。
[0075] 従って、これらの複合金属酸化物粒子は、層の塗布液に添加する前に、別途公知 の方法により分散して、分散液 (ペースト)としておくことが好ましい。分散には適宜分 散剤を使用することができる。分散剤の添加量は複合金属酸ィ匕物粒子に対して 0. 0 1〜5質量%が好ましぐ 0. 1〜2質量%がより好ましい。
[0076] 〈基材〉
基材は、画像形成層を担持し得る板状体あるいはフィルム体であり、印刷版の基材 として使用される公知の材料を使用することができる。例えば、金属板、プラスチック フィルム、ポリオレフイン等で処理された紙、上記材料を適宜貼り合わせた複合基材 等が挙げられる。基材の厚さとしては、印刷機に取り付け可能であれば特に制限され るものではな!/、が、 50〜500 μ mのものが一般的に取り扱!/ヽ易!、。
[0077] 基材として用いられる金属板としては、鉄、ステンレス、アルミニウム等が挙げられる 力 比重と剛性との関係力も特にアルミニウムが好ましい。アルミニウム板は、通常、 その表面に存在する圧延 ·卷取り時に使用されたオイルを除去するためにアルカリ、 酸、溶剤等で脱脂した後に使用される。
[0078] 脱脂処理としては、特にアルカリ水溶液による脱脂が好ましい。又、塗布層との接 着性を向上させるために、塗布面に易接着処理や下塗り層塗布を行うことが好ましい 。例えば、珪酸塩ゃシランカップリング剤等のカップリング剤を含有する液に浸漬する カゝ、液を塗布した後、十分な乾燥を行う方法が挙げられる。陽極酸化処理も易接着 処理の 1種と考えられ、使用することができる。陽極酸化処理と上記浸漬又は塗布処 理を組み合わせて使用することもできる。
[0079] 又、公知の方法で粗面化されたアルミニウム基材、所謂アルミ砂目に親水化処理を 施したものを親水性層として有するアルミニウム基材を、親水性層を有する基材とし て使用することもできる。
[0080] プラスチックフィルムとしては、ポリエチレンテレフタレート(PET)、ポリエチレンナフ タレート(PEN)、ポリイミド、ポリアミド、ポリカーボネート(PC)、ポリスルホン、ポリフエ 二レンオキサイド、セルロースエステル類等を挙げることができる。特に PET、 PENが 好ましい。
[0081] これらプラスチックフィルムは塗布層との接着性を向上させるために、塗布面に易接 着処理や下塗層塗布を行うことが好ましい。易接着処理としては、コロナ放電処理や 火炎処理、プラズマ処理、紫外線照射処理等が挙げられる。又、下塗層としては、ゼ ラチンやラテックスを含む層等が挙げられる。下塗層に、有機又は無機の公知の導 電性素材を含有させることもできる。
[0082] 又、裏面の滑り性を制御する (版胴表面との摩擦係数を低減させる等)目的で、裏 面コート層を設けた基材も好ましく使用することができる。
[0083] (親水性表面基材)
基材の表面を親水化して親水性層を設ける場合の好ま ヽ態様は、アルミニウム基 材を使用する場合であり、アルミニウム基材に親水性層を設けるため、表面を粗面化 して用いられる。
[0084] 粗面化 (砂目立て処理)するに先立って、表面の圧延油を除去するために脱脂処 理を施すことが好ましい。脱脂処理としては、トリクレン、シンナー等の溶剤を用いる 脱脂処理、ケシロン、トリエタノール等のェマルジヨンを用いたェマルジヨン脱脂処理 等が用いられる。又、脱脂処理には、水酸ィ匕ナトリウム等のアルカリ水溶液を用いるこ ともできる。脱脂処理にアルカリ水溶液を用いた場合、上記脱脂処理のみでは除去 できない汚れや酸ィ匕皮膜も除去することができる。唯、アルカリ水溶液を用いた場合 、支持体の表面にはスマットが生成するので、この場合には、燐酸、硝酸、硫酸、クロ ム酸等の酸、あるいはそれらの混酸に浸漬し、デスマット処理を施すことが好ましい。 粗面化の方法としては、例えば機械的方法、電解によりエッチングする方法が挙げら れる。
[0085] 用いられる機械的粗面化法は特に限定されるものではな 、が、ブラシ研磨法、ホー ユング研磨法が好ましい。電気化学的粗面化法も特に限定されるものではないが、 酸性電解液中で電気化学的に粗面化を行う方法が好ましい。
[0086] 上記の電気化学的粗面化法で粗面化した後、表面のアルミニウム屑等を取り除くた め、酸又はアルカリの水溶液に浸漬することが好ましい。酸としては、例えば硫酸、過 硫酸、弗酸、燐酸、硝酸、塩酸等が用いられ、塩基としては、例えば水酸ィ匕ナトリウム 、水酸ィ匕カリウム等が用いられる。これらの中でもアルカリ水溶液を用いるのが好まし い。表面のアルミニウムの溶解量としては 0. 5〜5g/m2が好ましい。又、アルカリ水 溶液で浸漬処理を行った後、燐酸、硝酸、硫酸、クロム酸等の酸あるいは、それらの 混酸に浸漬し中和処理を施すことが好まし ヽ。
[0087] 機械的粗面化処理法、電気化学的粗面化法は、それぞれ単独で用いて粗面化し てもよいし、又、機械的粗面化処理法に次いで電気化学的粗面化法を行って粗面化 してちよい。
[0088] 粗面化処理の次には、陽極酸ィ匕処理を行うことができる。用いることができる陽極酸 化処理の方法には特に制限はなぐ公知の方法を用いることができる。陽極酸化処 理を行うことにより支持体上には酸化皮膜が形成される。
[0089] 陽極酸化処理された支持体は、必要に応じ封孔処理を施してもよい。これら封孔処 理は、熱水処理、沸騰水処理、水蒸気処理、珪酸ナトリウム処理、重クロム酸塩水溶 液処理、亜硝酸塩処理、酢酸アンモ-ゥム処理等、公知の方法を用いて行うことがで きる。
[0090] 更に、これらの処理を行った後に、水溶性の榭脂、例えばポリビニルホスホン酸、ス ルホン酸基を側鎖に有する重合体及び共重合体、ポリアクリル酸、水溶性金属塩 (硼 酸亜鉛など)もしくは、黄色染料、アミン塩等を下塗りしたものも好適である。更に、特 開平 5— 304358号に開示されるようなラジカルによって、付加反応を起し得る官能 基を共有結合させたゾル ゲル処理基板も好適に用いられる。
[0091] 〈親水性層〉
親水性層とは、印刷時印刷インキの着肉しない非画像部となり得る層で、基材上に 設層された層あるいは基材表面を親水化した時の表面層である。又、親水性層は親 水性素材を含む。本発明においては、親水性層を有する基材上に感熱画像形成層 を有する印刷版材料であって、感熱画像形成層が珪酸塩、炭酸塩および光熱変換 剤を含有する印刷版材料は好ましい態様の一つである。
[0092] 本発明に用いる印刷版材料の態様の一つとして、基材上に親水性層を有する態様 が挙げられる。親水性層は 1層であってもよいし、複数の層から形成されてもよい。親 水性層の付量としては、 0. 1〜: LOg/m2が好ましぐ 0. 2〜5g/m2がより好ましい。
[0093] 親水性層に用いられる親水性素材としては、実質的に水に不溶で親水性の素材が 好ましぐ特に金属酸ィ匕物が好ましい。
[0094] 金属酸ィ匕物としては、金属酸化物微粒子が好ま ヽ。例えばコロイダルシリカ、アル ミナゾル、チタニアゾル、その他の金属酸化物のゾル等が挙げられる。
[0095] 金属酸ィ匕物微粒子の形態としては、球状、針状、羽毛状、その他の何れの形態で もよい。平均粒径としては、 3〜: LOOnmであることが好ましぐ平均粒径が異なる数種 の金属酸ィ匕物微粒子を併用することもできる。又、粒子表面に表面処理が為されても よい。
[0096] 上記金属酸ィ匕物微粒子はその造膜性を利用して結合剤としての使用が可能である 。有機の結合剤を用いるよりも親水性の低下が少なぐ親水性層への使用に適して いる。
[0097] 上記の中でも、特にコロイダルシリカが好ましく使用できる。コロイダルシリカは、比 較的低温の乾燥条件であっても造膜性が高いという利点があり、良好な強度を得るこ とがでさる。
[0098] 上記コロイダルシリカとしては、ネックレス状コロイダルシリカ、平均粒径 20nm以下 の微粒子コロイダルシリカを含むことが好ましぐ更に、コロイダルシリカはコロイド溶 液としてアルカリ性を呈することが好ま 、。 [0099] ネックレス状コロイダルシリカとは 1次粒子径カ mのオーダーである球状シリカの水 分散系の総称である。ネックレス状コロイダルシリカとは、 1次粒粒子径が 10〜50nm の球状コロイダルシリカが 50〜400nmの長さに結合した「パールネックレス状」のコ ロイダルシリカを意味する。パールネックレス状 (即ち真珠ネックレス状)とは、コロイダ ルシリカのシリカ粒子が連なって結合した状態のイメージが真珠ネックレスの様な形 状をして!/、ることを意味して 、る。ネックレス状コロイダルシリカを構成するシリカ粒子 同士の結合は、シリカ粒子表面に存在する - SiOH基が脱水結合した— Si— O - Si 一と推定される。ネックレス状のコロイダルシリカとしては、具体的には日産化学工業 社製の「スノーテックス PS」シリーズ等が挙げられる。
[0100] 製品名としては「スノーテックス— PS— S (連結した状態の平均粒子径は 110nm程 度)」、「スノーテックス PS— M (連結した状態の平均粒子径は 120nm程度)」及び 「スノーテックス PS— L (連結した状態の平均粒子径は 170nm程度)」があり、これ らに、それぞれ対応する酸性の製品が「スノーテックス— PS— S— 0」、「スノーテック ス一 PS— M— 0」及び「スノーテックス PS— L— 0」である。
[0101] ネックレス状コロイダルシリカを添加することにより、層の多孔性を確保しつつ、強度 を維持することが可能となり、層の多孔質ィ匕材として好ましく使用できる。
[0102] これらの中でも、アルカリ性である「スノーテックス PS— S」、「スノーテックス PS— M 」、 「スノーテックス PS— L」を用いると、親水性層の強度が向上し、又、印刷枚数が多 V、場合でも地汚れの発生が抑制され、特に好ま 、。
[0103] 又、コロイダルシリカは粒子径が小さいほど結合力が強くなることが知られており、 本発明には平均粒径が 20nm以下であるコロイダルシリカを用 ヽることが好ましく、 3 〜15nmであることが更に好ましい。又、前述のようにコロイダルシリカの中ではアル カリ性のものが地汚れ発生を抑制する効果が高いため、アルカリ性のコロイダルシリ 力を使用することが特に好ましい。
[0104] 平均粒径力この範囲にあるアルカリ性のコロイダルシリカとしては日産化学社製の「 スノーテックス一 20 (粒子径 10〜20nm)」、 「スノーテックス一 30 (同 10〜20nm)」、 「スノーテックス一 40 (同 10〜20nm)」、 「スノーテックス一 N (粒子径 10〜20nm)」、 「スノーテックス一 S (同 8〜: L lnm)」、 「スノーテックス一 XS (同 4〜6nm)」が挙げら れる。
[0105] 平均粒径が 20nm以下であるコロイダルシリカは前述のネックレス状コロイダルシリ 力と併用することで、層の多孔質性を維持しながら、強度を更に向上させることが可 能となり、特に好ましい。平均粒径が 20nm以下であるコロイダルシリカ Zネックレス 状コロイダルシリカの比率は 95Z5〜5Z95 (質量比)が好ましぐ 70/30~20/8 0がより好ましぐ 60Z40〜30Z70が更に好ましい。
[0106] 親水性層は、金属酸ィ匕物として多孔質金属酸ィ匕物粒子を含むことが好ましい。多 孔質金属酸ィ匕物粒子としては、多孔質シリカ又は多孔質アルミノシリケート粒子もしく はゼオライト粒子を好ましく用いることができる。
[0107] 多孔質シリカ粒子は一般に湿式法又は乾式法により製造される。湿式法では、珪 酸塩水溶液を中和して得られるゲルを乾燥、粉砕するか、中和して析出した沈降物 を粉砕することで得られる。乾式法では、四塩ィ匕珪素を水素と酸素と共に燃焼し、シ リカを析出することで得られる。これらの粒子は製造条件の調整により多孔性や粒径 を制御することが可能である。多孔質シリカ粒子としては、湿式法のゲル力も得られる ものが特に好ましい。
[0108] 多孔質アルミノシリケート粒子は、例えば特開平 10— 71764号に記載されている 方法により製造される。即ち、アルミニウムアルコキシドと珪素アルコキシドを主成分と して加水分解法により合成された非晶質な複合体粒子である。粒子中のアルミナとシ リカの比率は 1 :4〜4: 1の範囲で合成することが可能である。又、製造時にその他の 金属のアルコキシドを添加して 3成分以上の複合体粒子として製造したものも本発明 に使用できる。これらの複合体粒子も製造条件の調整により多孔性や粒径を制御す ることが可能である。
[0109] 粒子の多孔性としては、分散前の状態で細孔容積で 1. OmlZg以上であることが 好ましぐ 1. 2mlZg以上であることがより好ましぐ 1. 8〜2. 5mlZgであることが更 に好ましい。
[0110] 平均粒径としては、親水性層に含有される状態で (分散時に破砕された場合も含め て)、実質的に 1 μ m以下であることが好ましぐ 0. 5 m以下であることが更に好まし い。 [0111] 多孔質無機粒子の平均粒径としては、親水性層に含有されている状態で、実質的 に 1 μ m以下であることが好ましぐ 0. 5 m以下であることが更に好ましい。
[0112] 又、本発明の印刷版材料の親水性層は金属酸ィ匕物として、層状鉱物粒子を含ん でもよい。この層状鉱物粒子としては、カオリナイト、ノ、ロイサイト、タルク、スメクタイト( モンモリロナイト、ノイデライト、ヘクトライト、サボナイト等)、バーミキユライト、マイ力( 雲母)、クロライトといった粘土鉱物及び、ハイド口タルサイト、層状ポリ珪酸塩 (カネマ イト、マカタイト、アイァライト、マガディアイト、ケニヤアイト等)等が挙げられる。中でも 、単位層(ユニットレイヤー)の電荷密度が高いほど極性が高ぐ親水性も高いと考え られる。好ましい電荷密度としては 0. 25以上、更に好ましくは 0. 6以上である。この ような電荷密度を有する層状鉱物としては、スメクタイト(電荷密度 0. 25〜0. 6,陰電 荷)、バーミキユライト (電荷密度 0. 6〜0. 9,陰電荷)等が挙げられる。特に、合成弗 素雲母は粒径等安定した品質のものを入手することができ好ましい。又、合成弗素 雲母の中でも、膨潤性であるものが好ましぐ自由膨潤であるものが更に好ましい。
[0113] 又、上記の層状鉱物のインターカレーシヨンィ匕合物(ビラードクリスタル等)や、ィォ ン交換処理を施したもの、表面処理 (シランカップリング処理、有機ノインダとの複合 化処理等)を施したものも使用することができる。
[0114] 層状鉱物粒子のサイズとしては、層中に含有されている状態で (膨潤工程、分散剥 離工程を経た場合も含めて)、平均粒径 (粒子の最大長)が 20 /z m以下であり、又、 平均アスペクト比 (粒子の最大長 Z粒子の厚さ)が 20以上の薄層状であることが好ま しぐ平均粒径が 5 m以下であり、平均アスペクト比が 50以上であることが更に好ま しぐ平均粒径が: L m以下であり、平均アスペクト比が 50以上であることが更に好ま しい。粒子サイズが上記範囲にある場合、薄層状粒子の特徴である平面方向の連続 性及び柔軟性が塗膜に付与され、クラックが入り難く乾燥状態で強靭な塗膜とするこ とができる。又、粒子物を多く含有する塗布液においては、層状粘土鉱物の増粘効 果によって粒子物の沈降を抑制することができる。
[0115] 層状鉱物粒子の含有量としては、層全体の 0. 1〜30質量%であることが好ましぐ 1〜10質量%であることがより好ましい。特に膨潤性合成弗素雲母ゃスメクタイトは少 量の添加でも効果が見られるため好ましい。層状鉱物粒子は、塗布液に粉体で添加 してもよ!、が、簡便な調液方法 (メディア分散等の分散工程を必要としな!、)でも良好 な分散度を得るために、層状鉱物粒子を単独で水に膨潤させたゲルを作製した後、 塗布液に添加することが好まし 、。
[0116] 親水性層には、その他の添加素材として、珪酸塩水溶液も使用することができる。
珪酸ナトリウム、珪酸カリウム、珪酸リチウムといったアルカリ金属珪酸塩が好ましぐ その SiO /M O比率は珪酸塩を添加した際の塗布液全体の pHが 13を超えない範
2 2
囲となるように選択することが無機粒子の溶解を防止する上で好ましい。
[0117] 又、金属アルコキシドを用いた、所謂ゾルーゲル法による無機ポリマーもしくは有機 無機ハイブリッドポリマーも使用することができる。ゾルーゲル法による無機ポリマ 一もしくは有機 無機ハイブリッドポリマーの形成については、例えば「ゾル ゲル法 の応用」(作花済夫著 Zァグネ承風社発行)に記載される力、又は本書に引用される 文献に記載の公知の方法を使用することができる。
[0118] 親水性層中には親水性有機榭脂を含有させてもよ!ヽ。親水性有機榭脂としては、 例えばポリエチレンオキサイド、ポリプロピレンオキサイド、ポリビュルアルコール(PV A)、ポリエチレングリコール(PEG)、ポリビュルエーテル、スチレン ブタジエン共重 合体、メチルメタクリレートーブタジエン共重合体の共役ジェン系重合体ラテックス、 アクリル系重合体ラテックス、ビニル系重合体ラテックス、ポリアクリルアミド、ポリビ- ルピロリドン等の樹脂が挙げられる。
[0119] 又、カチオン性榭脂を含有してもよぐカチオン性榭脂としては、ポリエチレンァミン 、ポリプロピレンポリアミン等のようなポリアルキレンポリアミン類又はその誘導体、第 3 級アミノ基ゃ第 4級アンモ-ゥム基を有するアクリル榭脂、ジアクリルァミン等が挙げら れる。カチオン性榭脂は微粒子状の形態で添加してもよい。これは、例えば特開平 6 —161101号に記載のカチオン性マイクロゲルが挙げられる。
[0120] より好まし 、態様としては、親水性層中に含有される親水性有機榭脂は水溶性であ り、かつ、少なくともその一部が水溶性の状態のまま、水に溶出可能な状態で存在す ることが挙げられる。
[0121] 親水性層に含有される水溶性素材としては、糖類が好ましい。糖類としては、後に 詳細に説明するオリゴ糖を用いることもできるが、特に多糖類を用いることが好ましい [0122] 多糖類としては、澱粉類、セルロース類、ポリウロン酸、プルラン等が使用可能であ る力 特にメチルセルロース塩、カルボキシメチルセルロース塩、ヒドロキシェチルセ ルロース塩等のセルロース誘導体が好ましぐカルボキシメチルセルロースのナトリウ ム塩ゃアンモ-ゥム塩がより好ましい。これは、親水性層に多糖類を含有させることに より、親水性層の表面形状を好ま ヽ状態形成する効果が得られるためである。
[0123] 又、親水性層は、例えば赤外線吸収色素などの光熱変換素材を含んでもよい。赤 外線吸収色素としては、シァニン系、クロコニゥム系、ポリメチン系、ァズレニウム系、 スクヮリウム系、チォピリリウム系、ナフトキノン気、アントラキノン系色素等の有機化合 物、フタロシアニン系、ナフタロシアニン系、ァゾ系、チォアミド系、ジチォ一ノレ系、ィ ンドア-リン系の有機金属錯体等が挙げられる。
[0124] 親水性層の表面は、 PS版のアルミ砂目のように 0. 1〜50 mピッチの凹凸構造を 有することが好ましぐこの凹凸により保水性や画像部の保持性が向上する。このよう な凹凸構造は、親水性層に適切な粒径のフィラーを適切な量含有させて形成するこ とも可能であるが、親水性層の塗布液に前述のアルカリ性コロイダルシリカと前述の 水溶性多糖類とを含有させ、親水性層を塗布、乾燥させる際に相分離を生じさせて 形成することがより良好な印刷性能を有する構造を得ることができ、好ましい。
[0125] 凹凸構造の形態 (ピッチ及び表面粗さ等)は、アルカリ性コロイダルシリカの種類及 び添加量、水溶性多糖類の種類及び添加量、その他添加材の種類及び添加量、塗 布液の固形分濃度、ウエット膜厚、乾燥条件等で適宜コントロールすることが可能で ある。
[0126] 凹凸構造のピッチとしては 0. 2〜30 μ mであることがより好ましぐ 0. 5〜20 μ mで あることが更に好ましい。又、ピッチの大きな凹凸構造の上に、それよりもピッチの小 さい凹凸構造が形成されているような多重構造の凹凸構造が形成されていてもよい。
[0127] 表面粗さとしては、 Raで 100〜1000nmが好ましぐ 150〜600nm力 Sより好ましい o又、親水'性層の膜厚としては、 0. 01〜50 μ mであり、好ましくは 0. 2〜10 μ mで あり、更に好ましく ίま 0. 5〜3 /ζ πιである。
[0128] 又、親水性層形成のための親水性層塗布液には、塗布性改善等の目的で水溶性 の界面活性剤を含有させることができる。珪素系、又は弗素系等の界面活性剤を使 用することができるが、特に Si元素を含む界面活性剤を使用することが印刷汚れを 生じる懸念がなぐ好ましい。界面活性剤の含有量は親水性層全体 (塗布液としては 固形分)の 0. 01〜3質量%が好ましぐ 0. 03〜1質量%が更に好ましい。
[0129] 又、本発明の親水性層は燐酸塩を含むことができる。本発明では親水性層の塗布 液がアルカリ性であることが好ましいため、燐酸塩としては燐酸三ナトリウムや燐酸水 素ニナトリウムとして添加することが好ましい。燐酸塩を添加することで、印刷時の網 の目開きを改善する効果が得られる。燐酸塩の添加量としては、水和物を除いた有 効量として、 0. 1〜5質量%が好ましぐ 0. 5〜2質量%が更に好ましい。
[0130] 〈親油性表面基材〉
本発明の一態様として、親油性表面を有する基材を使用することができる。これ〖こ は、一般的な樹脂基材、下引き形成樹脂基材、親油性層形成樹脂基材、親油性層 形成アルミニウム板などが挙げられる。本発明において、親油性層を有する基材が 好ましぐ例えば、特開 2002— 86946号に記載の感熱性平版印刷用原板の親油性 インキ受容層に用いられる、被膜形成能のある溶媒に可溶な親油性の有機高分子、 具体的には、ポリエステル、ポリウレタン、ポリウレア、ポリイミド、ポリシロキサン、ポリ力 ーボネート、フエノキシ榭脂、エポキシ榭脂、フエノール'ホルムアルデヒド榭脂、アル キルフエノール'ホルムアルデヒド榭脂、ポリビニルアセテート、アクリル榭脂及びその 共重合体、ポリビュルフエノール、ポリビュルハロゲン化フエノール、メタクリル榭脂及 びその共重合体、アクリルアミド共重合体、メタクリルアミド共重合体、ポリビニルホル マール、ポリアミド、ポリビュルブチラール、ポリスチレン、セルロースエステル榭脂、 ポリ塩ィ匕ビニルゃポリ塩ィ匕ビユリデン等;又は同特許の段落「0022」〜「0026」に記 載の(1)〜(12)に示すモノマーを、その構成単位とする通常 1万〜 20万の分子量を 持つ共重合体から形成される親油性層を有する基材が挙げられる。
[0131] 親油性層の付量は、 0. 1〜: LOgZm2が好ましぐ 0. 2〜5gZm2がより好ましい。
[0132] 〈機上現像方法〉
ここで、機上現像の方法について説明する。機上現像、即ち、印刷機上での画像 形成層の未露光部の除去は、版胴を回転させながら水付けローラーやインキローラ 一を接触させて行うことができる。具体的には、下記に挙げる例のようなシークェンス によって行うことができる力 これらに限定されるものではなぐ種々のシークェンスに よって行うことができる。又、その際、印刷時に必要な湿し水水量に対して、水量を増 カロさせたり減少させたりといった水量調整を行ってもよぐ水量調整を多段階に分け て、又は無段階に変化させて行ってもよい。(1)印刷開始のシークェンスとして、水付 けローラーを接触させて版胴を 1〜数十回転させ、次いでインキローラーを接触させ て版胴を 1〜数十回転させ、次いで印刷を開始する。(2)印刷開始のシークェンスと して、インキローラーを接触させて版胴を 1〜数十回転させ、次いで水付けローラー を接触させて版胴を 1〜数十回転させ、次いで印刷を開始する。(3)印刷開始のシ ークエンスとして、水付けローラーとインキローラーとを実質的に同時に接触させて版 胴を 1〜数十回転させ、次いで印刷を開始する。
[0133] 上記シークェンスの中では、一般的に(1)のシークェンスを用いて機上現像が行わ れる。これは、非画像部の画像形成層を水により膨潤させた後に、インキローラーに よるインキタックで除去するという方法力 より効率的で、機上現像が速やかに終了す るためである。
実施例
[0134] 以下、実施例により本発明を説明するが、本発明の実施態様はこれらに限定され ない。尚、特に断りない限り、実施例中の「部」は「質量部」を、「%」は「質量%」を表 す。
[0135] 〈基材の作製〉
基材 1:親水性表面を有する基材
厚さ 0. 24mmのアルミニウム板(材質 1050,調質 H16)を、 50°Cの 1%水酸化ナト リウム水溶液中に浸漬し、溶解量が 2g/m2になるように溶解処理を行い、水洗した 後、 25°Cの 5%硝酸水溶液中に 30秒間浸漬し、中和処理した後、水洗した。
[0136] 次いで、このアルミニウム板を、塩酸 llgZL及びアルミニウム 1. 5gZLを含有する 電解液により、正弦波の交流を用いてピーク電流密度 80AZdm2の条件で電解粗 面化処理を行った。この際の電極と試料表面との距離は 10mmとした。電解粗面化 処理は 4回に分割して行い、 1回の処理電気量(陽極時)を 50CZdm2とし、合計で 2 OOCZdm2の処理電気量(陽極時)とした。又、各回の粗面化処理の間に 4秒間の休 止時間を設けた。
[0137] 電解粗面化後は、 50°Cに保たれた 10%燐酸水溶液中に浸漬して、粗面化された 面のスマットを含めた溶解量が 0. 6gZm2になるようにエッチングし、水洗した。次い で、 20%硫酸水溶液中で 4AZdm2の電流密度で、付量 2. 5gZm2の陽極酸化皮 膜を形成させる条件で陽極酸化処理を行い、更に水洗した。次いで、水洗後の表面 水をスクイーズした後、 70°Cに保たれた 0. 5%の燐酸二水素ナトリウム水溶液に 15 秒間浸潰して水洗を行った後、 80°Cで 5分間乾燥して基材 1を得た。
[0138] 下記方法で測定した基材 1の表面粗さは Raで 0. 27 μ mであった。
[0139] (表面粗さの測定方法)
試料表面に白金ロジウムを 1. 5nmの厚さで蒸着した後、 WYKO社製の非接触 3 次元粗さ測定装置 RST plusを用いて 20倍の条件(222. 4 mX 299. 4 mの測 定範囲)で測定し、傾き補正及び Median Smoothingのフィルターを掛けて測定 データを処理して Ra値を求めた。測定は一試料にっ 、て測定箇所を変えて 5回行 ヽ 、その平均を求めて Ra値とした。
[0140] 基材 2:親油性表面を有する基材
厚さ 0. 24mmのアルミニウム板(材質 1050,調質 H16)を、 50°Cの 1%水酸化ナト リウム水溶液中に浸漬し、溶解量が 2g/m2になるように溶解処理を行い、水洗した 後、 25°Cの 10%硝酸水溶液中に 30秒間浸漬し、中和処理した後、水洗した。次い で、 100°Cで 3分間乾燥した。
[0141] これに、後述する親油性層塗布液をワイヤーバーを用いて塗布し、 200°Cで 30秒 間乾燥した。親油性層の乾燥付量は 1. 5gZm2となるように調整した。これを 55°Cで 24時間エイジングして、親油性層を形成したアルミニウム板である基材 2を得た。
[0142] 基材 3 :親水性表面を有する基材
上記基材 2の親油性層上に、後述する親水性層塗布液をワイヤーバーを用いて塗 布し、 200°Cで 30秒間乾燥して親水性層形成基材を得た。親水性層の乾燥付量は 3. 0g/m2となるように調整した。これを 55°Cで 48時間エイジングして、親油性層上 に親水性層を形成したアルミニウム板である基材 3を得た。 [0143] 〈親油性層塗布液の作製〉
下記組成を十分に混合 ·攪拌し、濾過して、固形分 20%の親油性層用塗布液を得 た。
[0144] (親油性層用塗布液)
コロイダルシリカ(アルカリ系) スノーテックス—xs (日産化学社製,固形分 20%)
50. 00咅
アクリルェマルジヨン AE986A(JSR社製, Tg:2°C,固形分 35. 5%)
15. 31咅
カーボンブラック顔料粒子 SD9020(大日本インキ社製,真比重約 2. Og/cm3, 平均 1次粒径 lOOnm以下,固形分 30%)水分散物 6. 67部
多孔質金属酸化物粒子 シルトン JC— 20 (水澤ィ匕学社製,多孔質アルミノシリケ一 卜粒子,平均粒径 2 μ m) 2. 00部
グジセローノレポジグジシジノレエーテノレ 0. 60咅
Si系界面活性剤 FZ2161 (日本ュ-カー社製)の 1%水溶液 4. 00部 純水 21.42部
〈親水性層塗布液の作製〉
下記組成の界面活性剤を除く素材をホモジナイザを用いて 10, 000回転で 10分 間混合'分散した。次いで、これに界面活性剤を添加して弱攪拌した後、濾過して固 形分 30%の親水性層塗布液を得た。
[0145] (親水性層用塗布液)
コロイダルシリカ(アルカリ系) スノーテックス— xs (日産化学社製,平均粒径 5nm
,固形分 20%) 78. 75部
黒色酸化鉄顔料粒子 ABL— 207(チタン工業社製,真比重約 5. Og/cm3,八 面体形状,平均粒径 0. 2μτα,比表面積 6. 7m2/g, Hc:9. 95kA/m, as:85.
7Am2/kg, ar/as:0. 112) 14. 10部
燐酸三ナトリウム · 12水和物(関東ィ匕学社製試薬)の 10%水溶液 1. 20部 Si系界面活性剤 FZ2161 (日本ュ-カー社製)の 1%水溶液 3. 00部 純水 2. 95部 実施例 1
〈画像形成層塗布液の作製〉
表 1の各組成を十分に混合'攪拌し、濾過して固形分 5%の画像形成層用塗布液 ( 1ト(5)を得た。
[0146] [表 1]
Figure imgf000028_0002
[0147] [化 1]
IR- 1
Figure imgf000028_0001
[0148] 〈印刷版材料の作製〉
前記基材 2の親油性層表面に、上記画像形成層塗布液(1)〜 (4)を、それぞれヮ ィヤーバーを用いて塗布し、 55°Cで 3分間乾燥し、ポジ版である印刷版材料 1〜4を 得た。画像形成層の乾燥付量は 0. 8gZm2になるように調整した。
[0149] 又、基材 3の親水性層表面に、上記画像形成層塗布液(5)をワイヤーパーを用い て塗布し、 55°Cで 3分間乾燥し、ネガ版である印刷版材料 5を得た。画像形成層の 乾燥付量は 0. 8g/m2になるように調整した。 [0150] 〈印刷版材料のエイジング処理〉
得られた各印刷版材料につ!、て、エイジング処理なしの試料(20°Cで 24時間保管 )と、 60°C · 24時間のエイジング処理を施した試料とを作製した。
[0151] 〈赤外線レーザー方式による画像形成〉
各印刷版材料を露光ドラムに巻き付け固定した。露光には波長 830nm、スポット径 約 18 mのレーザービームを用い、 2, 400dpi (dpiは 1インチ即ち 2. 54cm当たり のドット数)、 175線で画像を形成した。露光した画像はベタ画像と 1〜99%の網点 画像とを含むものである。露光エネルギーは 300miZcm2とした。尚、ポジ版とネガ 版とでは露光部 Z未露光部を反転して露光を行った。
[0152] 〈機上現像と印刷〉
露光後の印刷版材料を、そのまま版胴に取り付け、 PS版と同様の印刷条件及び刷 出しシークェンスを用いて 500枚の印刷を行った。
[0153] このとき、印刷機は三菱重工業社製 DAIYA IF— 1を用い、コート紙、湿し水(ァ スト口マーク 3 :日研化学研究所製) 2%溶液、インキ (東洋インキ社製:トーヨーキング ノ、ィュ-ティ M紅)を使用した。次いで、印刷用紙を上質紙 (しらおい)に変えて、更 に、 1万枚まで印刷を行った。
[0154] 〈印刷評価〉
印刷物について以下の評価を行った。
[0155] 《 j出し性》
刷り始めてから何枚目の印刷物で良好な画像が得られるかを求めた。良好な画像 とは、地汚れがなぐかつ、ベタ画像部の濃度が 1. 5以上であることとした。尚、この 際、画像部のインク着肉性不良により、 500枚目の印刷物でも上記ベタ画像部の濃 度が 1. 5未満であった場合には「インキ着肉性不良」、 500枚目の印刷物で上記べ タ画像が残って ヽなかった場合は「画像形成不良」、地汚れを生じた場合は「汚れ N G」とした。
[0156] 《スクラッチ跡汚れ 1》
露光後の印刷版材料の非画像部領域に、 HEIDON社製スクラッチ試験機を用い てスクラッチ跡を付けた。触針として 0. 3mm φのサファイア触針を用い、 50〜300g 迄 25g刻みで荷重を変化させてスクラッチ跡を付けた。スクラッチ跡を付けた印刷版 材料を用いて印刷を行 、、刷出しから 50枚目の印刷物を用いてスクラッチ跡汚れを 評価した。印刷物上でスクラッチ跡が汚れとして確認できな 、最大荷重をスクラッチ 跡汚れの指標とした。地汚れによりスクラッチ跡の汚れが判別できな 、場合は判別不 能とした。荷重が大きい方が良好である。
[0157] 《スクラッチ跡汚れ 2》
露光後の印刷版材料の非画像部領域に爪でスクラッチ跡を付けた。スクラッチ跡を 付けた印刷版材料を用いて印刷を行 、、刷出し力も 50枚目の印刷物を用いてスクラ ツチ跡汚れの程度を目視で 3段階評価した。尚、地汚れによりスクラッチ跡の汚れが 判別できな!ヽ場合は判別不能とした。
[0158] 〇:汚れが殆ど確認できな!/、
△:僅か〖こ汚れが確認できる
X:はっきりと汚れが確認できる
《耐刷性》
印刷 1, 000枚毎に印刷物をサンプリングし、ベタ画像部の画像劣化の程度及び非 画像部の地汚れの程度を確認した。ベタ画像部において、 目視でカスレが確認でき た時点、又は、非画像部において、 目視で地汚れが確認できた時点を耐刷終点とし 、その印刷枚数を耐刷性の指標とした。
[0159] 結果を纏めて表 2に示す。
[0160] [表 2]
スクラッチ
印刷版材料画像形成層エイジング刷出し性 スクラッチ 耐刷性
跡汚れ 1
No. 塗布液 No. 処理 (枚) 跡汚れ 2 (枚)
(g)
20 >300 〇 > 10, 000
1 (実施例) (1)
有 30 >300 〇 > 10, 000
15 >300 〇 > 10, 000
2 (実施例) (2)
有 20 >300 〇 >10,000 無 汚れ NG 判別不能 判別不能 0
3 (比較例) (3)
有 着肉不良 >300 〇 0 無 汚れ NG 判別不能 判別不能 0
4(比較例) (4)
有 着肉不良 >300 〇 0 無 20 75 X 4,000
5 (比較例) (5)
有 40 50 X 5,000
[0161] 表 2から、本発明の印刷版材料は、良好な刷出し性、耐スクラッチ汚れ性、耐刷性 を有することが判る。炭酸塩を含有しない印刷版材料 3と 4は、エイジング処理なしで は、画像形成層は露光部 Z未露光部共に耐水性が低いため、画像形成層全体が機 上現像で除去されて全面汚れとなる。一方、エイジング処理を施すと、画像形成層全 体の耐水性が向上し、未露光部の除去性が悪くなってインキ着肉不良となる。
[0162] 実施例 2
〈画像形成層塗布液の作製〉
表 3の各組成を十分に混合'攪拌し、濾過して固形分 5%の画像形成層用塗布液( 6)〜(9)を得た。
[0163] [表 3]
Figure imgf000032_0001
[0164] 〈親油性オーバーコート層塗布液の作製〉
造膜性アクリルエマルシヨン (WSA— 900:大日本インキ社製)を固形分として 90%
、ステアリン酸アミドエマルシヨン (L— 271:中京油脂社製)を固形分として 10%とな るように混合し、液の固形分が 5%となるように純水で希釈した後、濾過して親油性ォ 一バーコート層用塗布液を得た。
[0165] 〈印刷版材料の作製〉
前記基材 1の砂目表面に、実施例 1、 2で作製した画像形成層塗布液を、表 4に示 したように、それぞれワイヤーバーを用いて塗布し、 55°Cで 3分間乾燥した。画像形 成層の乾燥付量は 0. 8gZm2になるようにした。次いで、表 4に記載があるものは、 画像形成層上に親油性オーバーコート層をワイヤーバーを用いて塗布し、 55°Cで 3 分間乾燥した。親油性オーバーコート層の乾燥付量は 0. 3gZm2になるようにした。 次いで、 40°C'48時間のエイジング処理を施して、ネガ版である印刷版材料 6〜 12 を得た。
[0166] 〈印刷評価〉
印刷版材料 6〜: 12について、実施例 1と同様に露光による画像形成、印刷を行い、 印刷物につ 1、て評価を行った。結果を表 4に示す。
[0167] [表 4]
Figure imgf000033_0001
表 4から、本発明の印刷版材料は、良好な刷出し性、耐スクラッチ汚れ性、耐刷性 を有することが判る。炭酸塩を含有しない印刷版材料 11と 12は、親油性粒子を含有 する画像形成層未露光部の除去性が悪ぐ地汚れとなる。

Claims

請求の範囲
[I] 基材上に感熱画像形成層および構成層を有する印刷版材料であって、該感熱画像 形成層が珪酸塩及び炭酸塩を含有し、該構成層は該基材と該感熱画像形成層との 間に設層されており、該構成層および感熱画像形成層の少なくとも一方が光熱変換 剤を含有することを特徴とする印刷版材料。
[2] 前記珪酸塩が珪酸リチウムであることを特徴とする請求の範囲第 1項に記載の印刷 版材料。
[3] 前記感熱画像形成層が更に平均粒径が 50ηπ!〜 5 μ mの粒子を含有することを特 徴とする請求の範囲第 1又は 2項に記載の印刷版材料。
[4] 前記粒子が、金属酸ィ匕物またはブロック化イソシァネートイ匕合物であることを特徴と する請求の範囲第 3項に記載の印刷版材料。
[5] 前記感熱画像形成層が、光熱変換剤を含むことを特徴とする請求の範囲第 1乃至 4 項の 、ずれか 1項に記載の印刷版材料。
[6] 前記感熱画像形成層上に親油性オーバーコート層を有することを特徴とする請求の 範囲第 1乃至 5項のいずれか 1項に記載の印刷版材料。
[7] 前記構成層が金属酸ィ匕物を含む親水性層であることを特徴とする請求の範囲第 1乃 至 6項の 、ずれか 1項に記載の印刷版材料。
[8] 前記構成層が親油性有機高分子を含む親油性層であることを特徴とする請求の範 囲第 1乃至 6項のいずれか 1項に記載の印刷版材料。
[9] 前記画像形成層中の珪酸塩の含有量が、 SiO換算量で、 10
2 〜80質量%であり、炭 酸塩の含有量が 5〜50質量%であることを特徴とする請求の範囲第 1乃至 8項のい ずれか 1項に記載の印刷版材料。
[10] 親水性層を有する基材上に感熱画像形成層を有する印刷版材料であって、該感熱 画像形成層が珪酸塩、炭酸塩および光熱変換剤を含有することを特徴とする印刷版 材料。
[II] 前記珪酸塩が珪酸リチウムであることを特徴とする請求の範囲第 10項に記載の印刷 版材料。
[12] 前記感熱画像形成層が更に平均粒径が 50ηπ!〜 5 μ mの粒子を含有することを特 徴とする請求の範囲第 10又は 11項に記載の印刷版材料。
[13] 前記粒子が、金属酸ィ匕物またはブロック化イソシァネートイ匕合物であることを特徴と する請求の範囲第 12項に記載の印刷版材料。
[14] 前記感熱画像形成層上に親油性オーバーコート層を有することを特徴とする請求の 範囲第 10乃至 13項のいずれか 1項に記載の印刷版材料。
[15] 前記画像形成層中の珪酸塩の含有量が、 SiO換算量で、 10〜80質量%であり、炭
2
酸塩の含有量が 5〜50質量%であることを特徴とする請求の範囲第 1乃至 8項のい ずれか 1項に記載の印刷版材料。
[16] 請求の範囲第 1乃至 15項の 、ずれか 1項に記載の印刷版材料を画像露光する工程 および平版印刷機上で画像露光された印刷版材料に湿し水を供給し、前記感熱画 像形成層の未露光部を除去して機上現像を行う工程を有することを特徴とする印刷 版の作製方法。
PCT/JP2006/315796 2005-08-30 2006-08-10 印刷版材料および印刷版の作製方法 WO2007026523A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007533158A JPWO2007026523A1 (ja) 2005-08-30 2006-08-10 印刷版材料および印刷版の作製方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005249022 2005-08-30
JP2005-249022 2005-08-30

Publications (1)

Publication Number Publication Date
WO2007026523A1 true WO2007026523A1 (ja) 2007-03-08

Family

ID=37805097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315796 WO2007026523A1 (ja) 2005-08-30 2006-08-10 印刷版材料および印刷版の作製方法

Country Status (4)

Country Link
US (1) US20070049493A1 (ja)
JP (1) JPWO2007026523A1 (ja)
CN (1) CN101253054A (ja)
WO (1) WO2007026523A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008080644A (ja) * 2006-09-27 2008-04-10 Fujifilm Corp 平版印刷版原版およびその製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008238573A (ja) * 2007-03-27 2008-10-09 Fujifilm Corp 平版印刷版原版および印刷方法
CN103879168B (zh) * 2012-12-21 2016-02-17 乐凯华光印刷科技有限公司 一种长印程热敏版
KR101594565B1 (ko) * 2013-01-23 2016-02-17 디아이씨 가부시끼가이샤 수용층 형성용 조성물, 그것을 사용해서 얻어지는 수용 기재, 인쇄물, 도전성 패턴 및 전기 회로

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3971660A (en) * 1974-04-04 1976-07-27 Eastman Kodak Company Lithographic printing plate comprising hydrophilic layer of polyvinylacetate crosslinked with tetraethylorthosilicate
JP2001064425A (ja) * 1999-09-01 2001-03-13 Konica Corp 熱溶融性微粒子及び平版印刷版材料
JP2002011842A (ja) * 2000-05-03 2002-01-15 Presstek Inc 非融除性湿式印刷部材による平版印刷イメージング
JP2003312159A (ja) * 2002-02-25 2003-11-06 Fuji Photo Film Co Ltd 平版印刷用原版

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002225411A (ja) * 2001-01-30 2002-08-14 Konica Corp 印刷方法および印刷装置
JP3849579B2 (ja) * 2002-05-30 2006-11-22 コニカミノルタホールディングス株式会社 印刷版材料
US6969575B2 (en) * 2002-08-29 2005-11-29 Fuji Photo Film Co., Ltd. On-press developable lithographic printing plate precursor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3971660A (en) * 1974-04-04 1976-07-27 Eastman Kodak Company Lithographic printing plate comprising hydrophilic layer of polyvinylacetate crosslinked with tetraethylorthosilicate
JP2001064425A (ja) * 1999-09-01 2001-03-13 Konica Corp 熱溶融性微粒子及び平版印刷版材料
JP2002011842A (ja) * 2000-05-03 2002-01-15 Presstek Inc 非融除性湿式印刷部材による平版印刷イメージング
JP2003312159A (ja) * 2002-02-25 2003-11-06 Fuji Photo Film Co Ltd 平版印刷用原版

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008080644A (ja) * 2006-09-27 2008-04-10 Fujifilm Corp 平版印刷版原版およびその製造方法

Also Published As

Publication number Publication date
CN101253054A (zh) 2008-08-27
US20070049493A1 (en) 2007-03-01
JPWO2007026523A1 (ja) 2009-03-05

Similar Documents

Publication Publication Date Title
WO2006129506A1 (ja) 画像記録材料および画像記録材料の画像形成方法
EP1564020B1 (en) Printing plate precursor material
WO2007145048A1 (ja) 平版印刷版、平版印刷版材料、平版印刷版材料用支持体および平版印刷方法
JP3885668B2 (ja) 平版印刷版材料および平版印刷版材料の固定方法
JP2007015212A (ja) 平版印刷用親水性基板
JP2006272782A (ja) 平版印刷版
WO2007026523A1 (ja) 印刷版材料および印刷版の作製方法
JP3626380B2 (ja) 印刷版及び画像形成方法
JP2005305689A (ja) 印刷版材料および印刷方法
JP3901565B2 (ja) 感熱性平版印刷版用原板
EP1541346B1 (en) Process for making planographic printing plates, and printing process
JP2006248143A (ja) 印刷版材料
WO2007034642A1 (ja) 平版印刷版材料、その製造方法、画像形成方法、画像形成装置、印刷方法
JP2007083417A (ja) 印刷版材料
WO2007018013A1 (ja) 印刷版材料
JP2005335272A (ja) 印刷版材料および印刷方法
JP3797542B2 (ja) 感熱性平版印刷版用原板
JP2006110884A (ja) 印刷版材料
JP2023020769A (ja) 機上現像型平版印刷版原版、及び印刷版の作製方法
JP2006313241A (ja) 印刷版材料、印刷版材料の画像形成方法及び感熱画像形成層用感熱性組成物
JP2006198926A (ja) 平版印刷方法
JP2009090621A (ja) 平版印刷版の修正方法及び平版印刷版材料
JP4306257B2 (ja) 印刷版材料及び印刷方法
JP2008201105A (ja) 平版印刷版原版および平版印刷方法
JP3790963B2 (ja) 感熱性平版印刷版用原板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680031296.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007533158

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06782601

Country of ref document: EP

Kind code of ref document: A1