WO2007023873A1 - 焼入れ性、熱間加工性および疲労強度に優れた高強度厚肉電縫溶接鋼管およびその製造方法 - Google Patents

焼入れ性、熱間加工性および疲労強度に優れた高強度厚肉電縫溶接鋼管およびその製造方法 Download PDF

Info

Publication number
WO2007023873A1
WO2007023873A1 PCT/JP2006/316539 JP2006316539W WO2007023873A1 WO 2007023873 A1 WO2007023873 A1 WO 2007023873A1 JP 2006316539 W JP2006316539 W JP 2006316539W WO 2007023873 A1 WO2007023873 A1 WO 2007023873A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel pipe
welded steel
electric resistance
less
fatigue strength
Prior art date
Application number
PCT/JP2006/316539
Other languages
English (en)
French (fr)
Inventor
Tetsuo Ishitsuka
Hiroyuki Mimura
Motofumi Koyuba
Naoki Takasugi
Takahiro Ichiyama
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to ES06796702T priority Critical patent/ES2745078T3/es
Priority to US11/990,477 priority patent/US20090250146A1/en
Priority to EP06796702.6A priority patent/EP1923477B1/en
Priority to JP2007532156A priority patent/JP5005543B2/ja
Publication of WO2007023873A1 publication Critical patent/WO2007023873A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G21/00Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces
    • B60G21/02Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected
    • B60G21/04Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically
    • B60G21/05Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically between wheels on the same axle but on different sides of the vehicle, i.e. the left and right wheel suspensions being interconnected
    • B60G21/055Stabiliser bars
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/40Constructional features of dampers and/or springs
    • B60G2206/42Springs
    • B60G2206/427Stabiliser bars or tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/80Manufacturing procedures
    • B60G2206/82Joining
    • B60G2206/8201Joining by welding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/14Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes wear-resistant or pressure-resistant pipes

Definitions

  • the present invention relates to a high strength thick electric resistance welded steel pipe excellent in hardenability, hot bright formability and fatigue strength, which is suitable for a hollow stainless steel pylizer for securing running stability of an automobile, and a method of manufacturing the same. . book
  • Stabilizers which ease rolling of the vehicle body during cornering of the car and ensure vehicle stability during high-speed travel, are also listed as targets.
  • stabilizers were manufactured by processing solid materials such as steel bars into desired shapes, but in order to reduce weight, they are manufactured using hollow materials such as seamless steel pipes and ERW welded steel pipes. Is increasing.
  • an ERW welded steel pipe for use with Stabiraa in WO 2202/070767, by defining the composition, the metallographic structure of the ERW weld portion and the base material portion is uniform. Also disclosed is an ERW welded steel pipe for a hollow stabilizer which has a small difference in hardness between the ERW weld portion and the base material portion and which is excellent in processability, and is disclosed in Japanese Patent Application Laid-Open No. 2 0 0 4 0 1 0 0 9 The publication discloses a hollow-stabilized ERW welded steel pipe which secures hardenability by specifying the content of Ti, N.
  • the ratio t ZD between the thickness t of the steel pipe and the outer diameter D is 20% or more, and the tensile strength is 4 0 0 to 7 5 5 N /
  • An ERW welded steel pipe for hollow stabilizers with a size of 2 mm has been proposed, and it has been disclosed to increase the thickness by reducing diameter rolling.
  • JP-A-2003-203 it is possible to reduce the diameter of an element tube and to obtain a high tensile strength of over 5800 MPa and a yield ratio of 70% or less.
  • a high strength steel tube for automobile structural members excellent in workability that can withstand mouth forming has been proposed, and in addition, JP-A-2008-25992-2 describes a heating temperature in diameter reduction rolling.
  • a method of manufacturing a high tensile steel pipe excellent in composite secondary workability such as bending, diameter reduction, pipe end flattening and the like has been proposed.
  • a forming step of forming a raw material pipe into a stainless steel shape by cold bending, and hardening and tempering of the formed steel pipe In the manufacturing method of the hollow stabilizer which heat-treats, after heat-processing the said raw material to a mother steel pipe, rolling temperature 600-850.
  • a manufacturing method of a hollow expander having excellent fatigue resistance, which is subjected to reduction rolling with a cumulative diameter reduction of 40% or more, is disclosed.
  • an ERW steel pipe for quenching is excellent in workability with the balance being Fe and having a high residual strength after penetration of hydrogen due to corrosion.
  • STEEL VALIER 1 further reduces the diameter of ERW welded steel pipe and reduces the thickness to the required thickness outer diameter ratio.
  • Curved ERW welded steel pipe Form it into the required shape by cold forming such as
  • B-added steel with high hardenability As a stabilizer steel, but B-added steel is poor in hot workability and is prone to cracking during hot forming. Is a major issue.
  • B-added steel may have low fatigue strength, which is an important characteristic for stainless steel.
  • welded steel pipes and high-strength steel pipes are useful as steel pipes for automobile structural members, as described above, they can not sufficiently cope with the problems caused by process changes in the manufacturing process of automobile structural members. In addition, it can not be said that it is sufficient in terms of fatigue characteristics. In view of the above problems, the present invention has sufficient hardenability and
  • An object of the present invention is to provide a high strength thick electric resistance welded steel pipe excellent in inter-row workability and fatigue strength, and a method of manufacturing the same.
  • the thick electric resistance welded steel pipe of the present invention has been made to solve the above-mentioned problems, and by increasing c as much as possible without deteriorating the weldability and toughness, and improving the strength (hardness), N
  • N By strictly limiting the range of the content, it is possible to improve the hot workability and the fatigue strength and further to adjust the composition of the steel material so that the critical cooling rate V c falls within a specific range. Therefore, in the manufacture of the thick electric resistance welded steel pipe according to the present invention, reduction resistance rolling is applied to the electric resistance welded steel pipe with the heating temperature and the reduction rate of the cross section as a specific range.
  • the critical cooling rate V c represented by the formula ⁇ 1> is less than 30 ° CZ s
  • the thickness t and the outer diameter D A high strength thick electric resistance welded welded steel pipe excellent in hardenability, hot workability and fatigue strength characterized in that the ratio t ZD is in the range of from 0.15 or more to 0.30.
  • composition according to any one of (1) to (3) characterized in that it contains, in mass%, Ca: 0.000-0. 05%.
  • the electric resistance welded steel pipe having the component according to any one of (1) to (4) is heated to 800 to 120 ° C., and the reduction in area is 40 to 80
  • the thick electric resistance welded steel pipe of the present invention is extremely excellent in hardenability, it is sufficient, for example, to carry out a hardening process immediately after performing a hot forming process in the manufacture of a member for an automobile structure such as a stabilizer.
  • the quenching effect can be obtained, and the quenching means is not limited to water cooling, and a sufficient quenching effect can be obtained by oil quenching having a smaller cooling rate than water cooling.
  • Fig. 1 is a diagram showing the relationship between the hardening and the amount of hardness after tempering of steel materials for thick-walled ERW welded steel pipes.
  • FIG. 2 is a view showing the relationship between the shear stress value at 850 ° C. and the N content, and is a view for explaining the method of the fatigue test.
  • the inventors examined a method of further strengthening the strength while improving the hardenability, the hot workability and the fatigue strength of the thick electric resistance welded steel pipe for stainless steel.
  • the hardness increases with an increase in the amount of C.
  • Fig. 1 also shows the relationship between the hardness of the 100% and 90% martensite ⁇ structure and the amount of C at the same time, but if the test material 8 and BC at least 90% martensite structure is baked, the conventional material It can be seen that a hardness of 10% or more of the above can be secured. Therefore, as an index of hardenability, for example, the critical cooling which can obtain 90% martensite structure conventionally known from iron and steel 7 4 (1 9 8 8) P 1 0 7 3 Speed V c
  • the components are selected such that the critical cooling rate V c shown by ⁇ 1> is less than 30 ° C.Zsec.
  • the present inventors investigated the cause of the poor hot workability of the B-added steel in the temperature range of 600 ° C. to 900 ° C. where hot forming is performed, and as a result, the N content in the steel is a thermal It was found that the inter-deformation resistance was greatly affected. That is, the inventors found that the N content in the 0.3 C-1.1 M n-0. 0 2 0 T i-0. 0 0 1 3 B steel is 0.1 0 1% to 0. 0. 0. 0. The test material changed in the range of 0. 1% was manufactured, and a uniaxial tensile test was performed at 8500 which is a temperature range actually hot formed, and the reduction value at that time was measured.
  • Figure 2 shows the relationship between the aperture value at 850 ° C and the N content.
  • the reduction value increases, that is, it can be seen that the hot workability is improved.
  • the reduction value increases to 40%, which is the standard at which hot forming can be carried out generally, and when the content of N is less than 0.040%, The squeeze value has reached 50% or more where hot forming can be performed without problems. It has been found that the reason for this is that the amount of T i N precipitated in the temperature range in which hot forming is performed is reduced by the reduction of the N content.
  • the B-added steel in order to suppress the precipitation of BN, which reduces the hardenability improving effect of B, the B-added steel generally contains Ti having a high effect of fixing N, which is why In steel, it was found that the hot workability was not good because of the precipitation of TiN in the temperature range where hot forming was performed.
  • the thick-walled ERW welded steel pipe of the present invention improves the strength and improves the hot workability and the fatigue strength.
  • the critical cooling rate V c is lowered and the hardenability is improved.
  • C is an element that precipitates as a solid solution or carbide in the matrix to increase the strength of the steel.
  • HV 400 As a structural member for automobile structural strength higher than before, at least a hardness of HV 400 is required for a 90% martensite ⁇ structure and at least 0.52% C should be contained. Although it is necessary, if it is contained in excess of 0.4%, the adhesivity and weldability will be degraded, so the content is made in the range of 0.25 0.5%.
  • S 1 is an alloying element that contributes to solid solution strengthening, and it is necessary to contain 0.01% or more in order to obtain the effect. Further, it has an effect of enhancing the resistance to temper softening, To get the effect 0.2
  • the content is more than 0. 0%, the toughness decreases. For this reason, the content is in the range of 0.010%. Preferably, it is 0.205%.
  • Mn is an element improving the hardenability, and if the content is less than 0.8%, the effect of improving the hardenability can not be sufficiently ensured, and if it exceeds 1.5%, welding is performed. And the soundness of welds are adversely affected.
  • the content should be in the range of 0.8 to 1.5% in order to
  • a 1 is an element necessary as a deoxidizing material for molten steel and is also an element for fixing N, its amount greatly affects the grain size and mechanical properties. If the content exceeds 0.5%, the crystal grain size is coarsened and the toughness is lowered, and the content of non-metallic inclusions is apt to generate surface defects in the product. Not less than 5%. Preferably, it is not more than 0.3%.
  • B is an element that significantly improves the hardenability of steel with a small amount of addition, and also has the effect of grain boundary strengthening. If the content is less than 0.000%, the effect of improving hardenability can not be expected, while if it exceeds 0.01%, a coarse B-containing phase tends to be formed, and embrittlement It becomes easy to get up. For this reason, its content is set to from 0. 0 0 0 5% to 0. 0 1%. In addition, Preferably, it is more than 0. 0 0 1 0-0. 0 0 2 0%.
  • N is an element having the effect of precipitating nitride or carbonitride and enhancing the strength.
  • T i N also has the effect of suppressing the coarsening of the grain size at high temperatures and improving the toughness. Therefore, in order to optimize the balance of hot workability, fatigue strength and toughness, the content is made in the range of 0.01 to 0. 05%. In addition, Preferably, it is less than 0. 0 0 2-0. 0 0 4%.
  • T i acts to stably and effectively improve hardenability by the addition of B by fixing N in steel as T i N to suppress the precipitation of BN. Therefore, in order to meet the stoichiometry of TIN, the addition of at least 3.42 times the N content is at least necessary, and the N content described above A range of amounts to a range of Ti content is also determined automatically. However, because there is also a portion that precipitates as a carbonate, in order to ensure the fixation of N, the value should be 0.50 or higher, which is higher than the theoretical value, while if it exceeds 0.5% Since the toughness tends to deteriorate, the range is from 0. 0 0 5 to 0. 0 5%. In addition, Preferably, it is 0. 0 1-0. 0 2%.
  • P is an element that adversely affects weld cracking resistance and toughness, so it is limited to not more than 0.5%. Preferably, it is not more than 0.33%.
  • S affects the formation of non-metallic inclusions in steel, degrades the workability such as bendability and flatness of steel pipe, and causes deterioration of toughness and increase in anisotropy and reheat cracking susceptibility.
  • the soundness of welds is adversely affected. Therefore, its content is limited to 0.5% or less. Preferably, it is not more than 0.1%.
  • the thick electric resistance welded steel pipe of the present invention can contain one or more of C r, M o, V, and N i and one or more of no or C a and N b according to need. .
  • Cr is an element improving the hardenability, and also has the effect of precipitating M 2 3 C 6 type carbides in the matrix, and has the action of increasing the strength and refining the carbide. If the content is less than 0.1%, these effects and effects can not be expected sufficiently, and if it exceeds 1%, defects tend to occur during electric resistance welding. Therefore, its content is in the range of 0.;! To 1%. Preferably, it is from 0.:! To 0.6%.
  • Mo is an element having an effect of improving hardenability, and an element having an effect of causing solid solution strengthening. If the content is less than 0.5%, these effects can not be expected sufficiently, while if it exceeds 1%, coarse carbides are easily precipitated and the toughness is deteriorated. Amount shall be in the range of 0.51%. Preferably, it is 0.:! 0.5%.
  • N 1 is an element having an effect of improving hardenability and toughness. If the content is less than 0.1%, the effect can not be expected. On the other hand, if it exceeds 1%, residual r may be present even after quenching, which degrades fatigue durability. Therefore, its content is in the range of 0.1%. In addition, Preferably, it is 0.50 0.5%.
  • V is an element having an effect of improving hardenability, and is an element having an effect of precipitation strengthening by V carbon nitride. If the content is less than 0.01%, these effects can not be sufficiently expected. On the other hand, if the content exceeds 0.5%, coarse carbides are easily precipitated and the toughness is deteriorated. 0 1 0. 5% range. Preferably, it is 0. 0 2 0. 0 5%.
  • Nb In addition to the effect of precipitation strengthening by Nb carbonitrides, Nb has the effect of refining the old austenite grain size and improving the toughness. Furthermore, it has the effect of suppressing surface decarburization.
  • the content is less than 0.01%, the effect of improving the strength and toughness is not sufficient, and if it is contained in excess of 0.1%, the carbide increases and the toughness decreases, so the content is 0.1%. It shall be in the range of 0.1%. Preferably, it is 0. 0 2 0. 0 4%
  • C a is an element having an effect of improving the formability by making the shape of the oxide sulfide spherical. If the content is less than 0 • 00 0 2%, these effects can not be expected sufficiently. On the other hand, if the content exceeds 0. 0 0 5%, oxides in the steel increase and the toughness is deteriorated. 0. 0
  • the thickness t (mm) of the steel pipe The reason why the range of t ZD, which is the ratio of) and the outside diameter D (mm) of the steel pipe, is from 0.15 to 0.30 will be explained.
  • t z D In order to reduce the weight of the stabilizer, it is desirable that t z D be as small as possible. However, the smaller the tD, the larger the main stress applied at the time of use, and the fatigue characteristics deteriorate. On the other hand, as t / D increases, the effect of weight reduction decreases, and it becomes difficult to manufacture ERW steel pipe. In order to secure the minimum fatigue strength, the lower limit of t ZD is set to over 0.15, and the upper limit is set to 0.30 from the viewpoint of manufacturability and weight reduction.
  • the molten steel that has been melted so as to have the required chemical composition is either formed into flakes or after being formed into steel ingots, it is hot-rolled into steel flakes and this flakes or steel flakes are hot-rolled. And hot-rolled steel plate.
  • This hot-rolled steel sheet is made into an electric resistance welded steel pipe by an ordinary method for producing an electric resistance welded steel pipe, for example, electric resistance welding in hot or cold.
  • the ratio of outer diameter to outer diameter of the steel pipe, tZD is from 0.15 to 0.30, and the electric resistance welded steel pipe construction
  • the hot-rolled steel pipe of the present invention of the present invention is directly Can be manufactured.
  • ERW welded steel pipes with a thickness Z outer diameter ratio tZD of less than 0.15 can be manufactured using a conventional ERW welded steel pipe making machine, but t / D exceeds 0.15. It is difficult to directly manufacture the thick electric resistance welded steel pipe of the present invention having t ZD of more than 0.15 to 0.30 in a conventional ERW welded steel pipe pipe making machine because the production capacity is exceeded. Often.
  • the thickness Z outer diameter ratio is 0.1 in a conventional ERW welded steel pipe making machine.
  • Produce ERW welded steel pipe of 5 or less (this is also referred to as a mother pipe), and further subject it to hot reduction with a diameter reduction ratio, and the thickness-to-diameter ratio exceeds 0.15 to 0.3.3. It is intended to produce 0 thick electric resistance welded steel pipe.
  • the diameter reduction rolling can be performed using a straight tire reducer or the like.
  • the steel reducer is a rolling mill equipped with a plurality of rolling stands with 3 rolls or 4 rolls around the rolling axis in series on the rolling axis, and the roll rotation speed of each rolling stand of this rolling mill. Control the tension in the axial direction of the steel pipe (rolling direction) and the compressive force in the circumferential direction by adjusting the rolling force and the rolling force, thereby reducing the diameter to increase the thickness Z outer diameter ratio.
  • Rolling direction Control the tension in the axial direction of the steel pipe (rolling direction) and the compressive force in the circumferential direction by adjusting the rolling force and the rolling force, thereby reducing the diameter to increase the thickness Z outer diameter ratio.
  • the wall thickness is increased, while the wall thickness is reduced due to the tension acting in the axial direction of the steel pipe.
  • the final thickness is determined by the balance between the two. Since the thickness of the steel tube rolled in this way is mainly determined by the tension between the above-mentioned rolling stands, the tension between the rolling stands for obtaining the target thickness can be determined from the rolling theory etc. It is necessary to set the roll rotation speed of each rolling stand so that the tension acts.
  • the ERW welded steel pipe (base pipe) is heated to 800 to 120 ° C., and the reduction of diameter in hot rolling is performed at a reduction rate of 40 to 80%.
  • the thickness Z outer diameter ratio is from 0.15 to 0.30.
  • the cross-sectional reduction rate is (the outer diameter of the steel pipe before diameter reduction-the outer diameter of the steel pipe after diameter reduction)
  • the heating temperature of ERW welded steel pipe during reduction rolling is less than 800 ° C, the deformation resistance is large, while if it exceeds 120 ° C, the generation of heating scale occurs And the surface properties deteriorate. Therefore, the heating temperature is in the range of 800 ° C. to 1200 ° C.
  • the reduction in area during reduction rolling is less than 40%, the compressive force is insufficient, and the thickness outside diameter ratio is less than 0.15. It is difficult to obtain a thick electric resistance welded steel pipe with a ratio of more than 0.15 to 0.30.
  • the reduction in area exceeds 80%, surface reduction of the surface of the steel pipe due to reduction rolling will be significant and it will be difficult to secure a uniform shape. For this reason, the cross-section reduction rate in diameter reduction rolling is set to 40 to 80%.
  • a straight tire reducer used for reducing diameter rolling is a rolling mill equipped with a plurality of rolling stands having three or four rolls around the rolling axis in series on the rolling axis. , Normally, the rolls of the adjacent rolling stands (for example, N and N + 1 rolling stands) are out of phase, 60 ° for 3-roll rolling stand, for 4-roll rolling stand The arrangement is 45 degrees out of phase.
  • the inner surface shape of the cross section (C cross section) perpendicular to the axial direction of the thick ERW welded steel pipe manufactured by reduction rolling is hexagonal when the Stresley Dedeuser has a three-roll rolling stand. If it is equipped with a four-roll rolling stand, it will be octagonal.
  • the rolling phase is one of four continuous rolling stands (for example, N, N + l, N + 2 and N + 3 rolling stands) of one straight stripper. Shifted to 30 °, 60 °, 90 °, and 2 2.5 °, 45 °, for a 4-roll rolling stand. 6 7.
  • the inner surface shape of the section (C section) perpendicular to the pipe axis direction of thick-walled ERW welded steel pipe after reduction rolling has a 3-roll rolling stand respectively If it is equipped with a dodecagon, 4-roll rolling stand, it becomes a dodecagon.
  • the obtained thick electric resistance welded steel pipe was heated to 90.degree. C., water cooled and quenched, and tempering was carried out at 300: x i h r and 350 ° C. x l h r. Test pieces were collected from this steel pipe and subjected to various tests to confirm the characteristics of the thick electric resistance welded steel pipe of the present invention.
  • the hardness was measured at 5 points at the center of the thickness at HV 9.8 N and the average value was obtained.
  • the hot workability was evaluated by the reduction rate of the cross-sectional area of the fractured part at a temperature of 800 ° C. using a uniaxial tensile test piece having a diameter of parallel part of 6 mm.
  • the steels of No. ! to 11 having the chemical composition of the present invention shown in Table 2 have excellent properties in hardness, hot workability and fatigue strength.
  • the steel of No. 12 has a large critical cooling rate V c so that it can not be sufficiently fired, and the amount of C is as low as 0.22%, in an example where sufficient hardness can not be obtained. is there .
  • the steel of No. 13 is an example in which the amount of N was too high, so the hot-rollability was less, ⁇ , and the fatigue characteristics were slightly lower.
  • steel tube N o. a to e is found to have sufficient fatigue strength to rupture repetition number exceeds 5 0 X 1 0 3 times.
  • steel tubes with N o ⁇ f are examples where t ZD is too small to obtain sufficient fatigue strength.

Abstract

本発明は、焼入れ性、熱間加工性および疲労強度に優れた高強度厚肉電縫溶接鋼管およびその製造方法を提供するものであり、質量%で、C:0.25~0.4%、Si:0.01~0.50%、Mn:0.8~1.5%、P:0.05%以下、S:0.05%以下、Al:0.05%以下、Ti:0.005~0.05%、B:0.0005~0.01%、N:0.001~0.005%を含有し、 残部がFe及び不可避的不純物からなり、式<1>で表される臨界冷却速度Vcが30℃/s未満であり、肉厚tと外径Dの比であるt/Dが0.15超~0.30の範囲である厚肉電縫溶接鋼管。  logVc=2.94−0.75β     ・・・<1>  ただし、β=2.7C+0.4Si+Mn

Description

焼入れ性、 熱間加工性および疲労強度に優れた高強度厚肉電縫溶接 鋼管およびその製造方法
技術分野
本発明は、 自動車の走行安定性を確保するための中空ス夕ピライ ザ一に適し、 焼入れ性、 熱間明加工性および疲労強度に優れた高強度 厚肉電縫溶接鋼管およびその製造方法に関する。 書
背景技術
自動車の燃費向上対策のひとつと して、 車体の軽量化が進められ ている。 自動車のコーナリ ング時に車体のローリ ングを緩和し、 高 速走行時に車体の安定性を確保するスタビライザーもその対象とし て挙げられている。 従来、 スタビライザーは、 棒鋼などの中実材を 所要の形状に加工して製造されていたが、 軽量化を図るため継目無 鋼管ゃ電縫溶接鋼管などの中空材を使用して製造されることが多く なっている。
スタビラ一ザ一用の電縫溶接鋼管として、 WO 2 0 0 2 / 0 7 0 7 6 7号公報には、 組成を規定することにより、 電縫溶接部及び母 材部の金属組織が均一で、 電縫溶接部及び母材部の硬度差が小さ く 、 加工性に優れた中空スタビライザー用電縫溶接鋼管が開示されて おり、 また、 特開平 2 0 0 4— 0 1 1 0 0 9号公報には、 T i、 N の含有量を規定することによって焼入れ性を確保する中空スタビラ 一ザ一用電縫溶接鋼管が開示されている。
特開 2 0 0 4— 0 0 9 1 2 6号公報には、 鋼管の肉厚 t と外径 D との比 t ZDが 2 0 %以上であり、 引張強度が 4 0 0〜 7 5 5 N / mm2 とする中空スタビライザー用電縫溶接鋼管が提案され、 縮径 圧延によ り肉厚を増加させることが開示されている。
また、 特開 2 0 0 3 — 2 0 1 5 4 3号公報には、 素管を縮径圧延 し、 引張強さが 5 8 0 M P a超、 降伏比が 7 0 %以下であるハイ ド 口フォーミ ングに耐える加工性に優れた自動車構造部材用高強度鋼 管が提案され、 さ らに、 特開 2 0 0 4— 2 9 2 9 2 2号公報には、 縮径圧延における加熱温度、 縮径率などを特定することにより、 曲 げ加工、 縮径加工、 管端扁平加工などの複合二次加工性に優れた高 張力鋼管の製造方法が提案されている。
また、 特開 2 0 0 5 — 0 7 6 0 4 7号公報には、 素材素管を冷間 曲げ加工によりス夕ビラーザ一形状に成形する成形工程と、 この成 形鋼管に焼入れ、 焼き戻し熱処理を施す中空スタビライザーの製造 方法において、 前記素材素 を、 母鋼管に加熱処理を施した後、 圧 延温度 6 0 0〜 8 5 0。C、 累積縮径率 4 0 %以上で絞り圧延を施し たものとする耐疲労特性に優れた中空ス夕ビライザ一の製造方法が 開示されている。
また 、 特許第 3, 6 5 3 8 7 1号公報には、 質量%で、 C : 0
. 1 5 〜 0. 3 %、 M n : 0 . 5〜 2. 0 %、 C u : 0. 0 5〜 0
. 3 0 %を含み、 更に、 S i ≤ 0. 4 1 % 、 P≤ 0. 0 2 %、 A 1
≤ 0. 0 3 %、 N b≤ 0. 0 2 0 %、 B ≤ 0. 0 0 1 %, T i ≤ 0
. 0 1 %、 C r≤ 0. 4 2 %のうち力、ら選択される 1種以上を含有 し、 不可避的不純物として 、 0≤ N i + M o < 0. 1 5 %および S
≤ 0. 0 0 3 %に限定し、 残部が F eからなる加工性に優れ、 腐食 による水素侵入後の残留強度率の高い焼さ入れ用電縫鋼管が開示さ れてい 。
ところで、 例えば、 ス夕ビライザ一は 、 電縫溶接鋼管をさ らに縮 径圧延し、 所要の肉厚 外径比とした厚肉電縫溶接鋼管を、 1 ) 曲 げ加工などの冷間成形加工により所要の形状に成形し'、 これを加熱
、 水冷して焼入れした後、 焼戻しを施すか、 或いは、 2 ) 厚肉電縫 溶接鋼管を加熱し、 プレスなどの熱間成形加工により所要の形状に 成形し、 引き続いて水冷して焼入れした後、 焼戻しを施すことによ つて製造される。 後者の熱間成形加工による方法は、 前者の冷間成 形加工による方法に比べて、 加工成形が容易であり、 複雑な形状に も対応できる点で優れているため、 製造プロセスとして有利である しかしながら、 この方法では、 加熱後成形するので、 焼入れまで の時間が長くなり、 成形した部材の温度が低下すること、 プレス金 型と素材鋼管 (電縫溶接鋼管) との接触による温度の低下、 或いは 加熱スケールの生成による温度の不均一が発生することなどのため に、 全体に十分な焼入れ状態を確保することが困難となり焼入れ不 足の発生が懸念され、 さ らに焼入れ性の優れた鋼管用鋼材が必要で ある。 そのためスタビライザー用鋼には高い焼入れ性を有する B添 加鋼を適用するのが一般的であるが、 B添加鋼は熱間加工性に乏し く、 熱間成型加工時に割れゃ疵が発生しやすいことが大きな問題に なっている。 さ らに、 B添加鋼はス夕ビラーザ一にとつて重要な特 性である疲労強度が低くなる場合がある。
また、 車体の軽量化はさ らに加速化する趨勢にあり、 ス夕ビライ ザ一用の電縫溶接鋼管としてさ らに、 強度の高いものが求められて いる。 発明の開示
上記の W02 0 0 2 / 0 7 0 7 6 7号公報、 特開平 2 0 0 4 - 0 1 1 0 0 9号公報、 特開 2 0 0 4— 0 0 9 1 2 6号公報、 特開 2 0 0 3 - 2 0 1 5 4 3号公報、 特開 2 0 0 4— 2 9 2 9 2 2号公報、 特開 2 0 0 5 - 0 7 6 0 4 7号公報、 特開 2 0 0 5 — 0 7 6 0 4 7 号公報、 特許第 3 6 5 3 8 7 1号などに記載のスタビライザー用電 縫溶接鋼管や高強度鋼管は 自動車構造部材用鋼管として有用では あるが、 上述のように 自動車構造用部材の製造工程におけるプロ セスの変化により生じている問題に対して十分対応できるものでは ない 。 また、 疲労特性の面においても十分なものとは言えない。 本発明は、 上記の問題点に鑑み、 十分な焼入れ性を有すると共に
、 埶間加工性及び疲労強度に優れた高強度厚肉電縫溶接鋼管および その製造方法を提供する とを課題とする。
本発明の厚肉電縫溶接鋼管は、 上記の課題を解決するためになさ れたものであり、 溶接性、 靭性を損なわない程度に極力 cを増やし て強度 (硬度)を向上させると共に、 N含有量の範囲を厳密に限定す ることにより、 熱間加工性や疲労強度を向上させ さ らに鋼材の組 成を臨界冷却速度 V cが特定の範囲となるように a周整する とによ つて、 焼入れ性を確保するようにしたものである そして 本発明 の厚肉電縫溶接鋼管の製造においては、 加熱温度 断面減少率を特 定の範囲として電縫溶接鋼管に縮径圧延を施すちのである
その要旨とするところは以下のとおりである
( 1 ) 質量%で、 C : 0. 2 5〜 0. 4 % S i • 0. 0 1 〜 0.
5 0 % M n : 0. 8〜 : L . 5 % P : 0. 0 5 %以下、 S : 0.
0 5 %以下、 A 1 : 0. 0 5 %以下、 T i : 0 ' 0 0 5〜 0 . 0 5
% B : 0. 0 0 0 5〜 0. 0 1 % N : 0. 0 0 :! 〜 0 0 5 % を含み、 残部が F e及び不可避的不純物からなり、 式 < 1 >で表さ れる臨界冷却速度 V cが 3 0 °CZ s 未満であり、 肉厚 t と外径 Dの 比である t ZDが 0. 1 5超〜 0. 3 0 の範囲であることを特徴と する焼入れ性、 熱間加工性および疲労強度に優れた高強度厚肉電縫 溶接鋼管。
Figure imgf000007_0001
但し、 β = 2 . 7 C + 0 . 4 S i + M n
( 2 ) 質量%で、 さ らに、 C r : 0 . :! 〜 1 %、 Μ ο : 0 . 0 5 〜 1 % , V : 0 . 0 1 〜 0 . 5 %、 Ν i : 0 . ;! 〜 1 %の 1種または 2種以上を含有することを特徴とする ( 1 ) に記載の焼入れ性、 熱 間加工性および疲労強度に優れた高強度厚肉電縫溶接鋼管。
但し、 式ぐ 1〉において、
/3 = 2 . 7 C + 0 . 4 S i + n + 0 . 4 5 N i + 0 . 8 C r + 2 o
( 3 ) 質量%で、 さ らに N b : 0 . 0 1 〜 0 . 1 %を含有すること を特徴とする ( 1 ) また ( 2 ) に記載の焼入れ性、 熱間加工性およ び疲労強度に優れた高強度厚肉電縫鋼管。
( 4 ) 質量%で、 さ らに、 C a : 0 . 0 0 0 2 〜 0 . 0 0 5 %を含 有することを特徴とする ( 1 ) 〜 ( 3 ) のいずれか 1項に記載の焼 入れ性、 熱間加工性および疲労強度に優れた高強度厚肉電縫溶接鋼 管。
( 5 ) ( 1 ) 〜 ( 4 ) のいずれか 1項に記載の成分を有する電縫溶 接鋼管を 8 0 0 〜 1 2 0 0 °Cに加熱し、 断面減少率が 4 0 〜 8 0 % の範囲で縮径圧延することを特徴とする焼入れ性、 熱間加工性およ び疲労強度に優れた高,強度厚肉電縫溶接鋼管の製造方法。
本発明の厚肉電縫溶接鋼管は、 焼入れ性に極めて優れているため 、 スタビライザーなどの自動車構造用部材の製造において、 例えば 熱間成形加工を行った後、 直ちに焼入れ処理を行った場合でも十分 な焼入れ効果を得ることができ、 また、 焼入れ手段も水冷に限らず 、 水冷に比べて冷却速度が小さい油焼入れによっても十分な焼入れ 効果を得ることができる。
また、 熱間加工性に優れているため、 自動車部材を製造するに際 して、 熱間成形しても割れゃ疵が発生しにく レ 加えて、 疲労強度 に優れているため、 繰り返し荷重に対する耐久性が高い。 さ らに、 強度が高いため、 スタビライザーなど 自動車構造用部材をより軽 量化することが可能となる。 面の簡単な説明
図 1 は 、 厚肉電縫溶接鋼管用鋼材の焼入れ、 焼き戻し後の硬さ 量との関係を示す図である
図 2 は 、 8 5 0 °Cでの絞 Ό値と N含有量との関係を示す図であ 疲労試験の方法を説明するための図である。 発明を実施するための最良の形態
発明者らは、 ス夕ビラーザ一用の厚肉電縫溶接鋼管の焼入れ性、 熱間加工性および疲労強度を向上させると共に、 強度をさ らに強化 する方法を検討した。
先ず、 強度について検討を行ない、 C量を変えた表 1 に示すよう な組成の電縫溶接鋼管用の鋼材 (試験材八、 B 、 C ) 、 および比較 の鋼材 (従来材 A, B ) について水冷焼入れ、 焼き戻し後の硬さを 調査した。 図 1 は、 水冷焼入れ、 焼き戻し後の硬さの変化と C の関係を示したものである
図 1 から判るように、 C量が増えるしとによつて硬度が増加 例えば 、 従来材の硬度レべルよりほぼ 1 0 %以上高くなつてお 強度を向上させることがでさることが判 。 なお 、 その効果は
: 0 . 2 5 %以上とすると 、 一層顕著であることがわかる。 表 1 (質量%)
Figure imgf000009_0001
次に、 焼入れ性について検討した。
図 1 には 1 0 0 %および 9 0 %マルテンサイ 卜組織の硬さと C量 の関係も同時に示したが、 試験材八、 B Cは少なく とも 9 0 %マ ルテンサイ ト組織まで焼きが入れば従来材の 1 0 %以上の硬さが確 保できていることがわかる。 従つて、 焼入れ性の指標と しては、 例 えば、 鉄と鋼 7 4 ( 1 9 8 8 ) P . 1 0 7 3 により従来から知ら れている 9 0 %マルテンサイ ト組織が得られる臨界冷却速度 V c
{°C / s e c ) を用いれば良い 。 これは、 通常 、 下記 < 1>式で表 されている
1 o g V c = 2 . 9 4 - 0 . 7 5 ]6 • · · ぐ 1 > ただし β = 2 . 7 C + 0 . 4 S i + M n 、 或いは、 β = 2 ·
7 C + 0 4 S i + M n + 0 . 4 5 N i + 0 . 8 C r + 2 Μ ο 図 1 から 水焼入れでは 9 0 %以上のマルテンサイ 卜組織が得ら れている とは明らかであるが 、 油焼入れの場合には水焼入れに比 ベて冷却速度が大きく減少する 。 通常、 スタビライザ一に用いられ るサイズの鋼管を油焼入れした時に達せられる冷却速度は 3 0 °C / s である 従つて、 油焼入れでも 9 0 %マルテンサイ 卜組織を確保 するために 本発明においては 、 臨界冷却速度 V c を 3 0 C Zsec 未満と した。
上述のように、 素材鋼管の強度を向上させるため ί すとともに、 < 1〉で示される臨界冷却速度 V cが 3 0 °CZsec未 満となるように成分を選択するものである。
次に、 本発明者らは、 熱間加工性および疲労強度を向上させる方 法について検討した。
本発明者らは、 熱間成形が施される 6 0 0〜 9 0 0 °Cの温度域で 、 B添加鋼の熱間加工性が良くない原因を調査した結果、 鋼中 N量 が熱間変形抵抗に大きく影響していることをつきとめた。 すなわち 、 発明者らは、 0. 3 C— 1. 1 M n - 0. 0 2 0 T i - 0. 0 0 1 3 B鋼に対して、 N含有量を 0. 0 1 %〜 0. 0 0 1 %の範囲で 変化させた試験材を製作し、 実際に熱間成形される温度範囲内であ る 8 5 0 で単軸の引張試験を行い、 その際の絞り値を測定した。 図 2 に 8 5 0 °Cでの絞り値と N含有量の関係を示す。
図 2から判るように、 Nの含有量が少なくなるほど絞り値が大き くなつており、 すなわち、 熱間加工性が向上していることがわかる 。 Nの含有量が 0. 0 0 5 %まで下がると、 絞り値は熱間成形が概 ね可能となる基準である 4 0 %まで上昇し、 Nの含有量が 0. 0 0 4 %未満では、 熱間成形が問題なく実施できる 5 0 %以上にまで絞 り値が達している。 この理由は、 N含有量が下がることにより熱間 成形を行う温度域で析出する T i Nの量が低減するためであること を見出した。 すなわち、 一般に B添加鋼には、 Bの焼き入れ性向上 効果を低下させる B Nの析出を抑制するために、 Nを固定する効果 が高い T i を必ず含有させるのであるが、 それが故に B添加鋼では 熱間成形を行う温度域で T i Nが析出するために熱間加工性が良く なかった、 という ことを突き止めたのである。
さ らに T i Nの多量析出は、 スタビライザーの重要な特性である 疲労強度も低下させることも見出した。 また、 T i Nの多量析出は 、 靱性にも不利である。 一方で、 T i Nが適量存在することにより ァ粒の成長が抑制され靱性の向上に寄与する面もある。 従って、 従 来はあまり厳密に管理されていなかった N含有量を厳密に管理する ことにより、 B添加鋼の熱間加工性、 疲労強度、 靱性を望ましいも のにすることが可能となるのである。
このように、 本発明の厚肉電縫溶接鋼管は、 C含有量を高め、 か つ N含有量を少量に抑制することによって、 強度を向上させ、 熱間 加工性および疲労強度を向上させると共に、 その他の成分を適切に 制御することによって、 臨界冷却速度 V c を低く し、 焼入れ性を向 上させたものである。
以下に、 本発明の厚肉電縫溶接鋼管の化学成分について説明する
Cは、 基地中に固溶或いは炭化物と して析出し、 鋼の強度を増加 させる元素である
従来以上に高強度な自動車構造用部材と しては、 9 0 %マルテン サイ 卜組織で少な < とも H V 4 0 0の硬さが要求されるため Cは 0 . 2 5 %以上含有させることが必要であるが、 0 . 4 %を超え て含有すると、 加ェ性や溶接性が劣化するため 、 含有量を 0 . 2 5 0 . 4 %の範囲とする。
S 1 は、 固溶強化に寄与する合金元素であり、 その効果を得るた めには 0 . 0 1 %以上含有することが必要である また、 焼き戻し 軟化抵抗性を高める効果があり、 その効果を得るためには、 0 . 2
5 %以上添加することが必要である。 方 0 . o %を超えて添加 すると靱性が低下する。 このため、 含有 を 0 . 0 1 0 . 5 0 % の範囲とする。 なお、 好ましく は、 0 . 2 5 0 3 5 %である。
M nは、 焼き入れ性を向上させる元素であり、 含有量が 0 . 8 % 未満では焼き入れ性の向上効果を十分に確保する とができず、 ま た、 1 . 5 %を超えると溶接性及び溶接部の健全性にも悪影響を及 ぼすため、 含有量を 0. 8〜 1. 5 %の範囲とする。
A 1 は、 溶鋼の脱酸材として必要な元素であり、 また、 Nを固定 する元素でもあるため、 その量は結晶粒径や機械的性質に大きな影 響を及ぼす。 含有量が 0. 0 5 %を超えると、 結晶粒径が粗大化し て靱性が低下したり、 非金属介在物が多くなつて製品に表面疵が発 生しやすくなるため、 その含有量は 0. 0 5 %以下とする。 なお、 好ましくは、 0. 0 3 %以下である。
Bは、 微量の添加で鋼材の焼き入れ性を大幅に向上させる元素で あり、 また、 粒界強化の効果もある。 含有量が 0. 0 0 0 5 %未満 では焼き入れ性を向上させる効果が期待できず、 一方、 0. 0 1 % を超えると粗大な B含有相を生成する傾向があり、 また脆化が起こ りやすくなる。 このため、 その含有量は 0. 0 0 0 5 %〜 0. 0 1 %とする。 なお、 好ましくは、 0. 0 0 1 0超〜 0. 0 0 2 0 %で ある。
Nは、 窒化物または炭窒化物を析出させ、 強度を高める効果を有 する元素である。 しかし、 B添加鋼においては B Nの析出による焼 入れ性の低下や、 前述のように、 B Nの析出を防止するために添加 される T i によって、 T i Nの析出による熱間加工性や疲労強度の 低下、 さらには靱性の低下が問題となる。 一方で、 T i Nは高温時 でのァ粒径の粗大化を抑制し靱性を向上させる効果も有する。 その ため、 熱間加工性、 疲労強度および靱性のバランスを最適なものと するために、 その含有量は 0. 0 0 1〜 0. 0 0 5 %の範囲とする 。 なお、 好ましくは、 0. 0 0 2〜 0. 0 0 4未満%である。
T i は、 鋼中 Nを T i Nとして固定して B Nの析出を抑制するこ とにより、 B添加による焼き入れ性を安定的かつ効果的に向上させ るために作用する。 従って、 T I Nの化学量論に見合うように、 N 含有量の 3. 4 2倍以上の添加が最低限必要であり、 上述の N含有 量の範囲から T i含有量の範囲も自動的に決定される。 しかし、 炭 化物と して析出する分もあるので、 Nの固定をより確実にするため に、 理論値より も高めの 0. 0 0 5以上と し、 一方、 0. 0 5 %を 超えると靭性が劣化する傾向があるので、 0. 0 0 5〜 0. 0 5 % の範囲とする。 なお、 好ましく は、 0. 0 1〜 0. 0 2 %である。
Pは、 耐溶接割れ性および靱性に悪影響を及ぼす元素であるため 、 0. 0 5 %以下に限定する。 なお、 好ましく は、 0. 0 3 %以下 である。
Sは、 鋼材の非金属介在物の形成に影響し、 鋼管の曲げ性、 扁平 性などの加工性を劣化させると共に、 靱性の劣化や異方性及び再熱 割れ感受性の増大の原因となる。 また、 溶接部の健全性にも影響を 悪影響を及ぼす。 このため、 その含有量は 0. 0 5 %以下に限定す る。 なお、 好ましく は、 0. 0 1 %以下である。
本発明の厚肉電縫溶接鋼管は、 必要に応じて、 C r、 M o、 V、 N i の一種または二種以上、 およびノまたは C a, N bの一種以上 を含有することができる。
C rは、 焼き入れ性を向上させる元素であり、 また、 基地中に M 2 3 C 6 型炭化物を析出させる効果を有し、 強度を高めると共に炭 化物を微細化する作用を有する。 含有量が 0. 1 %未満ではこれら の作用、 効果を十分に期待することはできず、 また、 1 %を超える と電縫溶接時に欠陥を発生しやすくなる。 このため、 その含有量は 0. ;!〜 1 %の範囲とする。 なお、 好ましく は、 0. :!〜 0. 6 % である。
M oは、 焼き入れ性を向上させる効果を有する元素であり、 固溶 強化をもたらす効果を有する元素である。 含有量が 0. 0 5 %未満 ではこれらの効果を十分期待することができず、 一方、 1 %を超え ると粗大炭化物を析出しやすく、 靱性を劣化させるため、 その含有 量は 0. 0 5 1 %の範囲とする。 なお、 好ましく は、 0. :! 0 . 5 %である。
N 1 は、 焼き入れ性及び靱性を向上させる効果を有する元素であ る。 含有量が 0. 1 %未満ではその効果を期待できず、 一方、 1 % を超えると、 焼き入れ後にも残留 rが存在する可能性があり、 疲労 耐久性を劣化させる。 このため、 その含有量は、 0. 1 1 %の範 囲とする。 なお、 好ましくは、 0. 0 1 5 0. 5 %である。
Vは、 焼き入れ性を向上させる効果を有する元素であり、 V炭窒 化物による析出強化の効果を有する元素である。 含有量が 0. 0 1 %未満ではこれらの効果を十分期待することができず、 一方、 0. 5 %を超えると粗大炭化物を析出しやすく、 靱性を劣化させるため 、 その含有量は 0. 0 1 0. 5 %の範囲とする。 なお、 好ましく は、 0. 0 2 0. 0 5 %である。
N bは、 N b炭窒化物による析出強化の効果を有するのに加えて 、 旧オーステナイ ト粒径を微細化し、 靭性を向上させる効果を有す る。 さ らに、 表面の脱炭を抑制する効果がある。
含有量が 0. 0 1 %未満では、 強度、 靱性の向上効果が十分では なく 0 . 1 %を超えて含有すると炭化物が増加し 、 靱性が低下す のため、 その含有量は 0. 0 1 0. 1 %の範囲とする。 な お、 好ましく は 0. 0 2 0. 0 4 %である
C aは酸化物 硫化物の形状を球状にして、 加ェ性を向上させる 効果を有する元素である 。 含有量が 0 • 0 0 0 2 %未満ではこれら の効果を十分期待する とができず、 一方 0 . 0 0 5 %を超える と鋼中酸化物が増えて靱性を劣化させるため その含有量は 0 . 0
0 0 2 0. 0 0 5 %の範囲とする。 なお 好ましく は、 0. 0 0
0 2 0. 0 0 4 %であ 0
次に、 本発明の厚肉電縫溶接鋼管において 鋼管の肉厚 t ( m m ) と鋼管の外径 D (mm) との比である t ZDの範囲を 0. 1 5超 〜 0. 3 0のとした理由について説明する。
スタビライザーの軽量化のためには t Z Dが小さいほど望ましい 。 しかし、 tノ Dが小さいほど使用時に加わる主応力が大きくなる ために疲労特性が低下する。 一方、 t /Dが大きくなると軽量化の 効果が少なくなるのに加えて、 電縫鋼管の製造が困難になる。 最低 限の疲労強度を確保するために t ZDの下限を 0. 1 5超、 製造性 と軽量化の観点から上限を 0. 3 0に定めた。
本発明の厚肉電縫溶接鋼管の製造方法について説明する。
所要の化学組成を有するように溶製した溶鋼を、 铸造して铸片と するか、 或いは一旦鋼塊とした後、 熱間圧延して鋼片とし、 この铸 片または鋼片を熱間圧延して熱間圧延鋼板とする。
この熱間圧延鋼板を通常の電縫溶接鋼管の製造方法、 例えば熱間 或いは冷間での電気抵抗溶接により電縫溶接鋼管とする。
本発明の肉厚電縫溶接鋼管は、 上述のように鋼管の肉厚ノ外径の 比、 t ZD、 を 0. 1 5超〜 0. 3 0とするものであり、 電縫溶接 鋼管造管機の能力がこのような範囲の肉厚/外径比の電縫溶接鋼管 の造管能力を有する場合は、 上記の熱間圧延鋼板を用いて直接、 本 発明の肉厚電縫溶接鋼管を製造することができる。
しかしながら、 電縫溶接鋼管は、 肉厚が厚いほど、 管の外径が小 さいほど、 また鋼管用鋼材の強度が高いほど製造が困難となる。 一 般に肉厚 Z外径比 t ZDが 0. 1 5以下の電縫溶接鋼管は、 通常の 電縫溶接鋼管造管機により製造可能であるが、 t /Dが 0. 1 5を 超えると製造能力を超えるため通常の電縫溶接鋼管造管機では、 t ZDが 0. 1 5超〜 0. 3 0とする本発明の厚肉電縫溶接鋼管を直 接製造することは困難となることが多い。
従って、 通常の電縫溶接鋼管の造管機にて肉厚 Z外径比が 0. 1 5以下の電縫溶接鋼管 (これを母管とも称する) を製造し、 さ らに 、 これに熱間で縮径圧延を施して肉厚ノ外径比が 0 . 1 5超〜 0 . 3 0の厚肉電縫溶接鋼管を製造するものである。
縮径圧延は、 ス ト レツチレデューサーなどを用いて行う ことがで きる。
ステレツチレデューサ一は、 圧延軸の周り に 3 ロール或いは 4 口 ールを有する圧延スタン ドを複数、 圧延軸に直列に備えた圧延装置 であり、 この圧延装置の各圧延スタン ドのロール回転数及び圧下力 を調整することにより、 鋼管の管軸方向 (圧延方向) の張力及び円 周方向の圧縮力を制御し、 これによつて肉厚 Z外径比を増加させる 縮径圧延を行う ことができる。
すなわち、 縮径圧延においては、 鋼管の外径の圧下力により外径 が縮小される一方で肉厚は増加するが、 他方、 鋼管の管軸方向に働 く張力により肉厚が減少するので、 両者のバランスにより最終の肉 厚が決定される。 このように縮径圧延した鋼管の肉厚は、 上記圧延 スタン ドの間の張力により主と して決定されるので、 目標肉厚を得 るための圧延スタン ド間の張力を圧延理論などから求め、 その張力 が働く ように各圧延スタン ドのロール回転数を設定することが必要 である。
上述のように、 本発明は、 上記電縫溶接鋼管(母管)を 8 0 0〜 1 2 0 0 °Cに加熱し、 断面減少率 4 0〜 8 0 %で熱間での縮径圧延を 施して、 肉厚 Z外径比を 0 . 1 5超〜 0 . 3 0 と した厚肉電縫溶接 鋼管とするものである。
ここで、 断面減少率とは、 (縮径前の鋼管の外径ー縮径後の鋼管 の外径) Z縮径前の鋼管の外径 X I 0 0 ( % ) である。
縮径圧延時の電縫溶接鋼管の加熱温度は、 8 0 0 °C未満では変形 抵抗が大きく、 一方、 1 2 0 0 °Cを超えると、 加熱スケールの発生 が著しくなり表面性状が劣化する。 このため、 加熱温度は、 8 0 0 〜 1 2 0 0 °Cの範囲とする。
また、 縮径圧延時の断面減少率が 4 0 %未満では圧縮力が不十分 であり、 肉厚 外径比が 0. 1 5以下の電縫溶接鋼管 (母管) から 肉厚ノ外径比が 0. 1 5超〜 0. 3 0の厚肉電縫溶接鋼管とするこ とが困難である。 一方、 断面減少率が 8 0 %を超えると、 縮径圧延 による鋼管の表面疵の発生が著しくなりまた、 均一な形状の確保が 困難になる。 このため、 縮径圧延における断面減少率は 4 0〜 8 0 %とする。
なお、 本発明の肉厚電縫溶接鋼管が縮径圧延により製造されたも のであるか否かは、 管軸方向に垂直な断面 (C断面) の内面の角張 り状態の観察或いは、 肉厚測定によって判断することができる。 例えば、 縮径圧延に用いられるス ト レツチレデューサ一は、 上述 のように、 圧延軸の周り に 3 ロール或いは 4 ロールを有する圧延ス ダン ドを複数、 圧延軸に直列に備えた圧延装置であり、 通常、 隣合 う圧延スタン ド (例えば、 Nおよび N + 1圧延スタン ド) のロール は位相がずらされており、 3 ロール圧延スタン ドの場合は 6 0 ° 、 4 ロール圧延スタン ドの場合は 4 5 ° だけ位相をずら した配置とな つている。
従って、 縮径圧延によって製造された厚肉電縫溶接鋼管の管軸方 向に垂直な断面 ( C断面) の内面形状は、 ス トレッチレデユーザー が 3 ロールの圧延スタン ドを備える場合は六角形、 4 ロールの圧延 スタンドを備える場合は八角形となる。
また、 ス トレツチレデューサ一の連続する 4つの圧延スタン ド ( 例えば、 N、 N + l 、 N + 2、 N + 3圧延スタン ド) において口一 ルの位相を、 3 ロール圧延スタン ドの場合に 3 0 ° 、 6 0 ° 、 9 0 ° とずら し、 4 ロール圧延スタン ドの場合に 2 2. 5 ° 、 4 5 ° 、 6 7. 5 ° 、 とずら した場合は、 縮径圧延後の厚肉電縫溶接鋼管の 管軸方向に垂直な断面 (C断面) の内面形状は、 それぞれ、 3 ロー ル圧延スタン ドを備える場合は、 十二角形、 4ロール圧延スタン ド を備える場合は、 十六角形となる。
このように、 厚肉電縫溶接鋼管の管軸方向に垂直な断面の内面形 状が、 上述のような多角形状を形成している場合は、 この厚肉電縫 溶接鋼管が縮径圧延により製造されたものであることがわかる。 実施例
表 2に示す組成を有する各種鋼を溶製し、 錡片に铸造した。 この 铸片を 1 1 5 0 °Cに加熱し、 圧延仕上げ温度 8 9 0 °C、 巻き取り温 度 6 3 0でで熱間圧延し、 板厚 6 mmの鋼板とした。 この熱間圧延 鋼板を所定の幅にスリ ッ ト し、 高周波電縫溶接により外径 9 0 mm の電縫溶接鋼管 (母管) と した。 引き続き高周波誘導加熱により こ の鋼管を 9 8 0 °Cに加熱した後、 縮径圧延を施し、 肉厚 7 mm、 外 径 3 5 mm、 の肉厚電鏠溶接鋼管と した。
また、 表 2の N o . 1鋼にて製造した電縫溶接鋼管について、 縮 径圧延における断面減少率を変化させ、 肉厚 5〜 7. 5 mm、 外径 3 0〜 3 5 mmの肉厚電縫溶接鋼管を製造した。 .
得られた厚肉電縫溶接鋼管を 9 6 0 °Cに加熱し水冷して、 焼入れ を行い、 3 0 0 : x i h r、 および 3 5 0 °C X l h rの焼き戻しを 行なった。 この鋼管より試験片を採取して各種の試験を行い、 本発 明の厚肉電縫溶接鋼管の特性を確認した。
硬さは肉厚中心部を H V 9. 8 Nで 5点計測し平均値を求めた。 熱間加工性は、 平行部の直径が 6 mmの単軸引張試験片を用いて 、 8 5 0 °Cで引張り、 破断部の断面積の減少率により評価した。
また、 疲労特性は、 ばね論文集、 2 8 ( 1 9 8 3 ) P . 4 6に記 載の方法により、 図 3 に示すような曲げ半径 6 0 m mで曲げた疲労 試験片を採取し、 片側を固定して、 同一直径の中実材で第一主応力 振幅が 6 0 O M P a となるような応力条件で両振りの疲労試験を実 施し、 破断繰り返し数を求めた。
これらの特性の結果を表 2および表 3 に示す。
表 2
Figure imgf000020_0001
表 3
Figure imgf000021_0001
表 2に示した、 本発明の化学成分を有する N o . ;! 〜 1 1 の鋼は 、 硬さ、 熱間加工性および疲労強度において優れた特性を有してい ることがわかる。
それに対して、 N o . 1 2の鋼は臨界冷却速度 V cが大きいため に焼きが十分に入らず、 C量も 0. 2 2 %と低く十分な硬さが得ら れなかつた例である 。 N o . 1 3の鋼は N量が高すぎたため熱間加 ェ性が亜、 < 、 また疲労特性もやや低めであった例である。 N o . 1
4の鋼は C量が不足していたため、 3 0 0 °Cでの焼き戻しでも、 自 動車構造用部材として最低限必要な硬さが得られなかつた例である 表 3 に示した、 本発明鋼管 N o . a〜 eは、 破断繰り返し数が 5 0 X 1 0 3 回を超える十分な疲労強度を有していることがわかる。 それに対して、 N o . f の鋼管は、 t ZDが小さすぎて十分な疲 労強度が得られなかった例である。

Claims

質量%で
C 0 2 5 〜 0 . 4 % 、
S i - 0 0 1 〜 0 . 5 0 %、
M n ; 0 • 8 〜 1 . 5 % 、
P • 0 • 0 5 %以下、
S • 0 • 0 5 %以下、
A 1 • 0 0 5 %以下、
T i • 0 • 0 0 5 〜 0 . 0 5 %、
B • 0 • 0 0 0 5 〜 0 . 0 1 %、
N • 0 0 0 1 〜 0 . 0 0 5 %
を含み、 残部が F e及び不可避的不純物からなり、 式 < 1 >で表さ れる臨界冷却速度 V cが 3 0 °CZ s 未満であり、 肉厚 t と外径 Dの 比である t ZDが 0 . 1 5超〜 0 . 3 0の範囲であることを特徴と する焼入れ性、 熱間加工性および疲労強度に優れた高強度厚肉電縫 溶接鋼管。
l o g V c = 2 . 9 4 - 0 . 7 5 ]S < 1 >
但し、 β = 2 . 7 C + 0 . 4 S i + M n
2 . 質量%で、 さ らに、
C r : 0 . 1 〜 1 %、
M o : 0 . 0 5 〜 1 %、
V : 0 . 0 1〜 0 . 5 %、
N i : 0 . 1 〜 1 %の 1種または 2種以上を含有することを特徴 とする.請求項 1 に記載の焼入れ性、 熱間加工性および疲労強度に優 れた高強度厚肉電縫溶接鋼管。
但し、 式 < 1 〉において、 β = 2. 7 C + 0. 4 S i + M n + 0. 4 5 N i + 0. 8 C r + 2 M o
3. 質量%でさ らに、
N b : 0. 0 1 〜 0. 1 %を含有することを特徴とする請求項 1 または 2 に記載の焼入れ性、 熱間加工性および疲労強度に優れた高 強度厚肉電縫溶接鋼管。
4. 質量%で、 さ らに、 C a : 0. 0 0 0 2〜 0. 0 0 5 %を含 有することを特徴とする請求項 1 〜 3 のいずれか 1 項に記載の焼入 れ性、 熱間加工性および疲労強度に優れた高強度厚肉電鏠溶接鋼管
5. 請求項 1 〜 4のいずれか 1 項に記載の成分を有する電縫溶接 鋼管を 8 0 0〜 1 2 0 0 °Cに加熱し、 断面減少率が 4 0〜 8 0 %の 範囲で縮径圧延することを特徴とする焼入れ性、 熱間加工性および 疲労強度に優れた高強度厚肉電縫溶接鋼管の製造方法。
PCT/JP2006/316539 2005-08-22 2006-08-17 焼入れ性、熱間加工性および疲労強度に優れた高強度厚肉電縫溶接鋼管およびその製造方法 WO2007023873A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ES06796702T ES2745078T3 (es) 2005-08-22 2006-08-17 Tubería de acero soldada de alta resistencia de calibre grueso y resistencia eléctrica excelente en la capacidad de endurecimiento, la trabajabilidad en caliente y la resistencia a la fatiga y método de producción de la misma
US11/990,477 US20090250146A1 (en) 2005-08-22 2006-08-17 High Strength Thick-Gauge Electric-Resistance Welded Steel Pipe Excellent in Hardenability, Hot Workability and Fatigue Strength and Method of Production of the Same
EP06796702.6A EP1923477B1 (en) 2005-08-22 2006-08-17 Highly strong, thick electric resistance-welded steel pipe excellent in quenching property, hot forming processability and fatigue strength, and method for manufacture thereof
JP2007532156A JP5005543B2 (ja) 2005-08-22 2006-08-17 焼入れ性、熱間加工性および疲労強度に優れた高強度厚肉電縫溶接鋼管およびその製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-239953 2005-08-22
JP2005240130 2005-08-22
JP2005239953 2005-08-22
JP2005-240130 2005-08-22

Publications (1)

Publication Number Publication Date
WO2007023873A1 true WO2007023873A1 (ja) 2007-03-01

Family

ID=37771616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316539 WO2007023873A1 (ja) 2005-08-22 2006-08-17 焼入れ性、熱間加工性および疲労強度に優れた高強度厚肉電縫溶接鋼管およびその製造方法

Country Status (6)

Country Link
US (1) US20090250146A1 (ja)
EP (1) EP1923477B1 (ja)
JP (1) JP5005543B2 (ja)
KR (1) KR20080034958A (ja)
ES (1) ES2745078T3 (ja)
WO (1) WO2007023873A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013175821A1 (ja) 2012-05-25 2013-11-28 新日鐵住金株式会社 中空スタビライザ並びに中空スタビライザ用鋼管及びその製造方法
JP2015168845A (ja) * 2014-03-06 2015-09-28 新日鐵住金株式会社 疲労特性に優れた中空材とその製造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5303842B2 (ja) * 2007-02-26 2013-10-02 Jfeスチール株式会社 偏平性に優れた熱処理用電縫溶接鋼管の製造方法
US20110253265A1 (en) * 2010-04-15 2011-10-20 Nisshin Steel Co., Ltd. Quenched and tempered steel pipe with high fatigue life, and its manufacturing method
KR101271781B1 (ko) * 2010-12-23 2013-06-07 주식회사 포스코 내마모성, 내식성 및 저온인성이 우수한 오일샌드 슬러리 파이프용 강판 및 그 제조방법
JP5892267B2 (ja) * 2013-01-31 2016-03-23 Jfeスチール株式会社 電縫鋼管
CN103938098A (zh) * 2014-04-21 2014-07-23 河北钢铁股份有限公司唐山分公司 一种超高强度钢管及其连续生产方法
MX2019002073A (es) * 2016-10-24 2019-07-01 Jfe Steel Corp Tubos de acero soldados por resistencia electrica para estabilizadores huecos delgados de alta resistencia, y metodos para fabricar los mismos.
CA3123534C (en) * 2018-12-19 2023-05-23 Jfe Steel Corporation Electric resistance welded steel pipe or tube
KR20200136722A (ko) * 2019-05-28 2020-12-08 현대자동차주식회사 차체 멤버 성형방법
CN112359278B (zh) * 2020-10-19 2021-08-24 中天钢铁集团有限公司 一种工程机械齿轮用钢的制备法及其锻件的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58123858A (ja) * 1982-01-16 1983-07-23 Nisshin Steel Co Ltd 中空状スタビライザ−用電縫鋼管用鋼
JPH05302119A (ja) * 1992-03-27 1993-11-16 Sumitomo Metal Ind Ltd 高強度自動車部品の製造方法
JP2004011009A (ja) * 2002-06-11 2004-01-15 Nippon Steel Corp 中空スタビライザー用電縫溶接鋼管
JP2005076047A (ja) * 2003-08-28 2005-03-24 Jfe Steel Kk 耐疲労特性に優れた中空スタビライザの製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03162524A (ja) * 1989-11-22 1991-07-12 Sumitomo Metal Ind Ltd 低温靭性に優れた高張力継目無鋼管の製造法
JPH0565541A (ja) * 1991-09-10 1993-03-19 Kawasaki Steel Corp 延性および3点曲げ特性に優れている自動車用高強度電縫鋼管の製造方法
JP3653871B2 (ja) * 1996-06-17 2005-06-02 Jfeスチール株式会社 加工性と耐久性にすぐれた焼入れ用電縫鋼管およびその製造方法
CA2381405C (en) * 2000-06-07 2008-01-08 Nippon Steel Corporation Steel pipe excellent in formability and method of producing the same
JP3699394B2 (ja) * 2001-12-26 2005-09-28 住友鋼管株式会社 機械構造用電縫鋼管の熱処理方法
JP2004009126A (ja) * 2002-06-11 2004-01-15 Nippon Steel Corp 中空スタビライザー用電縫溶接鋼管
JP4485148B2 (ja) * 2003-05-28 2010-06-16 Jfeスチール株式会社 冷間鍛造加工性と転造加工性に優れた高炭素鋼管およびその製造方法
JP4379085B2 (ja) * 2003-11-07 2009-12-09 Jfeスチール株式会社 高強度高靭性厚鋼板の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58123858A (ja) * 1982-01-16 1983-07-23 Nisshin Steel Co Ltd 中空状スタビライザ−用電縫鋼管用鋼
JPH05302119A (ja) * 1992-03-27 1993-11-16 Sumitomo Metal Ind Ltd 高強度自動車部品の製造方法
JP2004011009A (ja) * 2002-06-11 2004-01-15 Nippon Steel Corp 中空スタビライザー用電縫溶接鋼管
JP2005076047A (ja) * 2003-08-28 2005-03-24 Jfe Steel Kk 耐疲労特性に優れた中空スタビライザの製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013175821A1 (ja) 2012-05-25 2013-11-28 新日鐵住金株式会社 中空スタビライザ並びに中空スタビライザ用鋼管及びその製造方法
JP2015168845A (ja) * 2014-03-06 2015-09-28 新日鐵住金株式会社 疲労特性に優れた中空材とその製造方法

Also Published As

Publication number Publication date
EP1923477B1 (en) 2019-07-24
US20090250146A1 (en) 2009-10-08
ES2745078T3 (es) 2020-02-27
KR20080034958A (ko) 2008-04-22
JP5005543B2 (ja) 2012-08-22
EP1923477A4 (en) 2015-04-01
JPWO2007023873A1 (ja) 2009-03-26
EP1923477A1 (en) 2008-05-21

Similar Documents

Publication Publication Date Title
WO2007023873A1 (ja) 焼入れ性、熱間加工性および疲労強度に優れた高強度厚肉電縫溶接鋼管およびその製造方法
CN104395487B (zh) 空心稳定杆和空心稳定杆用钢管及其制造方法
CN110100032B (zh) 屈服比低且均匀延伸率优异的回火马氏体钢及其制造方法
US7048811B2 (en) Electric resistance-welded steel pipe for hollow stabilizer
JP5124866B2 (ja) ハイドロフォーム用電縫管及びその素材鋼板と、これらの製造方法
JP6851269B2 (ja) フェライト系ステンレス鋼板、鋼管および排気系部品用フェライト系ステンレス部材ならびにフェライト系ステンレス鋼板の製造方法
JP4837601B2 (ja) 中空部品用鋼管及びその製造方法
KR20070094801A (ko) 오스테나이트계 철-탄소-망간 합금 강판의 제조 방법 및이것으로 제조된 강판
JP2002241838A (ja) 二相ステンレス鋼管の製造方法
WO2011151908A1 (ja) エアバッグ用鋼管とその製造方法
JP4811288B2 (ja) 高強度冷延鋼板およびその製造方法
WO2011145234A1 (ja) 低サイクル疲労特性に優れた自動車足回り部品とその製造方法
CN108699656B (zh) 钢材和油井用钢管
JP4770922B2 (ja) エアバッグ用鋼管とその製造方法
WO2015146141A1 (ja) 高強度で耐食性に優れたスタビライザー用鋼と、それを用いた車両用スタビライザーおよびその製造方法
JP5092481B2 (ja) 高強度冷延鋼板およびその製造方法
KR20130020811A (ko) 에어백용 강관의 제조 방법
CN101248202A (zh) 淬透性、热加工性及疲劳强度优异的高强度厚壁电焊钢管及其制造方法
CN113631731A (zh) 厚钢板及其制造方法
TW202210637A (zh) 由一鋼組合物製造高強度鋼管及其組件的方法
JP2007056283A (ja) 焼入れ性及び耐脱炭性に優れた高強度厚肉電縫溶接鋼管およびその製造方法
JP5499560B2 (ja) 成形性と耐ねじり疲労特性に優れた自動車足回り部材用高張力鋼材及びその製造方法
WO2017144419A1 (en) Hot formed part and method for producing it
CN108699650B (zh) 轧制线材
JP4734812B2 (ja) 高強度かつ延性に優れた電縫鋼管およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680030653.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007532156

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1166/DELNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 11990477

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020087004225

Country of ref document: KR

Ref document number: 2006796702

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE