WO2007023789A1 - 有機el素子 - Google Patents

有機el素子 Download PDF

Info

Publication number
WO2007023789A1
WO2007023789A1 PCT/JP2006/316373 JP2006316373W WO2007023789A1 WO 2007023789 A1 WO2007023789 A1 WO 2007023789A1 JP 2006316373 W JP2006316373 W JP 2006316373W WO 2007023789 A1 WO2007023789 A1 WO 2007023789A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing film
organic
power supply
film
sealing
Prior art date
Application number
PCT/JP2006/316373
Other languages
English (en)
French (fr)
Other versions
WO2007023789A8 (ja
Inventor
Hideki Kamata
Original Assignee
Tokki Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005243771A external-priority patent/JP4006456B2/ja
Priority claimed from JP2005335615A external-priority patent/JP3936375B2/ja
Application filed by Tokki Corporation filed Critical Tokki Corporation
Priority to KR1020087003595A priority Critical patent/KR101234948B1/ko
Publication of WO2007023789A1 publication Critical patent/WO2007023789A1/ja
Publication of WO2007023789A8 publication Critical patent/WO2007023789A8/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/179Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • H10K71/421Thermal treatment, e.g. annealing in the presence of a solvent vapour using coherent electromagnetic radiation, e.g. laser annealing

Definitions

  • the present invention relates to an organic EL element.
  • OELD organic EL device
  • a metal thin film such as ITO for an anode electrode is formed on a glass substrate by sputtering or vapor deposition, and an anode electrode wiring pattern is formed through a photolithography process.
  • the shadow mask method is generally used as a method for forming a terminal for supplying power to the OLED described above.
  • Shadow mask materials are similar in thermal expansion coefficient to silicon, ceramic, glass, etc., NAS42 (42% Ni—Fe alloy), low expansion coefficient NAS (36% NiFe alloy), SUS430, etc. It has been adopted.
  • the power supply terminal portion exposed from the power supply opening is, for example, an FPC (Flexible Print Circuit Board) with a driver IC.
  • an FPC Flexible Print Circuit Board
  • ACF Advanced Conductive Film
  • an edge extraction step by a photolithography process after film formation of a final passivation film that is generally employed in a semiconductor device or a TFT device may be applied.
  • this process requires five steps: resist coating, resist exposure, resist development, etching, resist stripping and cleaning.
  • resist coating, resist exposure, resist development, etching, resist stripping and cleaning there is a wet process in the resist development and resist stripping cleaning process, which is an inappropriate process for the OLED manufacturing process, and at the same time becomes a very expensive process.
  • the sealing film has a laminated structure and is composed of an organic layer and an inorganic layer
  • etching is performed.
  • Patent Document 1 Japanese Patent Laid-Open No. 2006-663464
  • the applicant forms a sealing film without using a mask, and then forms a power supply opening only by laser on the terminal part.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2006-663464
  • the present invention has been completed as a result of various studies based on the above Patent Document 1 in order to solve the above-described problems and further improve the sealing performance.
  • the opening end of the film can be concealed by the second sealing film, and the sealing film configuration that realizes a sealing film configuration that can satisfactorily prevent moisture from entering the light emitting part in both the vertical direction and the horizontal direction of the substrate has been realized.
  • An organic EL element in which a sealing film for sealing the light emitting portion 12 is formed on a light emitting portion 12 formed by sequentially laminating an anode, an organic light emitting layer, and a cathode on a substrate 11. Then, a first sealing film 13 for sealing the light emitting part 12 is formed on the light emitting part 12, and one of the first sealing films 13 stacked on the terminal part 14 of the anode or the cathode is formed. By irradiating the portion with laser light, the first sealing film 13 on the terminal portion 14 is removed to form a feeding opening 15, and the light emission is emitted to the terminal portion 14 exposed from the feeding opening 15.
  • the present invention relates to an organic EL element characterized in that the second sealing film 18 is formed on the substrate 11 so as to be completely hidden.
  • an organic EL element in which a sealing film for sealing the light emitting portion 32 is formed on the light emitting portion 32 formed by sequentially laminating an anode, an organic compound layer, and a cathode on the substrate 31.
  • a first sealing film 33 for sealing the light emitting part 32 is formed on the light emitting part 32, and the first sealing film 33 stacked on the terminal part 34 of the anode or the cathode is formed.
  • the first sealing film 33 on the terminal part 34 is removed by irradiating a part of the first sealing film 33 on the terminal part 34, so that the side peripheral part made of the first sealing film 33 and the first sealing film 33
  • the light emitting portion 32 is sealed on the first sealing film 33 and the first power supply
  • a second sealing film 36 that conceals the side periphery and bottom of the opening 35 is formed, and the second sealing film 36 that conceals the bottom of the first feeding opening 35 is irradiated with laser light.
  • the present invention relates to an organic EL element characterized in that a second feeding opening 37 that exposes the portion 34 is formed.
  • the laser light is concealed from the bottom of the first power supply opening 35 so as to leave the second sealing film 36 laminated on the side periphery of the first power supply opening 35.
  • the laser light is concealed from the bottom of the first power supply opening 35 so that the opening area of the second power supply opening 37 is smaller than the opening area of the first power supply opening 35.
  • the laser light is concealed from the bottom of the first power supply opening 35 so that the opening area of the second power supply opening 37 is smaller than the opening area of the first power supply opening 35. 4.
  • first sealing film 13 ⁇ 33 or the second sealing film 18 ⁇ 36 may be used without using a mask. 6.
  • the first sealing film 13 ⁇ 33 or the second sealing film 18 ⁇ 36 is composed of one or a plurality of layers of an organic film, one or a plurality of layers of an inorganic film, or one or a plurality of inorganic films and an organic film. 6.
  • first sealing film 13 ⁇ 33 or the second sealing film 18 ⁇ 36 is composed of one or a plurality of layers of an organic film, one or a plurality of layers of an inorganic film, or one or a plurality of inorganic films and an organic film. 7. The organic EL device according to claim 6, wherein each of the films is laminated.
  • the opening end portion of the first sealing film can be concealed by the second sealing film, and the light emitting portion from both the substrate vertical direction and the substrate horizontal direction can be concealed.
  • a highly reliable organic EL device with excellent sealing performance that realizes a sealing film configuration that can effectively prevent water from entering.
  • an anode having an ITO force anode electrode
  • a hole injection layer CuPc
  • a hole transport layer a-NPD
  • a light emitting layer Alq3 + dopant
  • an electron transport layer Alq3
  • An organic light-emitting layer composed of an electron injection layer (LiF) and a cathode (forced sword electrode) that also has an A1 force are sequentially deposited on a light-emitting portion 12 that seals the light-emitting portion 12.
  • a stop film 13 is formed.
  • the first sealing film 13 is formed on the entire surface of the light-emitting portion 12 without using a mask, and the first sealing film 13 on the anode and cathode terminal portions 14 is formed.
  • the first sealing film 13 is partially removed, and a power supply opening 15 that exposes the terminal portion 14 is formed.
  • a part of the first sealing film 13 formed on the entire surface of the light emitting part 12 is not used to form a sealing film having a power supply opening using a mask as in the prior art.
  • a mask is not necessary, and there is an inconvenience in using the mask, that is, a mask alignment mechanism that has been necessary in the past, a large number of spare masks, and automatic mask exchange.
  • the cost is extremely low, and there is no need to periodically replace and clean the mask, so it is excellent in maintainability.
  • the wet process is not necessary with an extremely simple process, it is possible to form the first sealing film 13 at an extremely low cost as well as to prevent deterioration of the element. Obviously, since the wet process is not necessary with an extremely simple process, it is possible to form the first sealing film 13 at an extremely low cost as well as to prevent deterioration of the element. Obviously, since the wet process is not necessary with an extremely simple process, it is possible to form the first sealing film 13 at an extremely low cost as well as to prevent deterioration of the element. Become.
  • the drive circuit 16 is mounted by connecting the terminal 17 of the drive circuit 16 to the terminal portion 14 exposing the force 15 formed as described above by thermocompression bonding, for example, via the ACF 20. To do.
  • a second sealing film 18 that seals the power supply opening 15 is further formed on the substrate 11.
  • the second sealing film 18 is formed so as to completely hide the power supply opening 15 and the first sealing film 13.
  • the second sealing film 18 is formed on the entire surface of the substrate, it can be formed without using a mask in the same manner as the first sealing film 13.
  • the film when a film is formed on the entire surface of the substrate by, for example, a CVD method or a dip coating method, the film can be formed up to a shadow portion where the wraparound property is high, for example, the bottom of the drive circuit 16 and the substrate 11 The film can be satisfactorily formed in the space between them, and the power supply opening 15 can be reliably sealed by a simple method.
  • the power feeding opening 15 formed by removing the first sealing film 13 by laser processing By sealing with the second sealing film 18, it is possible to more reliably prevent the OLED from being deteriorated by moisture without the need for a mask or a wet process, and there is a defect in the first sealing film 13. In this case, this defective part can be supplemented, and it is possible to manufacture a high-definition organic EL display.
  • an anode made of ITO force
  • a hole injection layer CuPc
  • a hole transport layer a-NPD
  • light emission Light-emitting part formed by sequentially depositing an organic light-emitting layer consisting of a layer (Alq3 + dopant), an electron transport layer (Alq3), an electron injection layer (LiF), and a cathode (forced sword electrode) made of A1.
  • a first sealing film 33 for sealing the light emitting part 32 is formed thereon, and then a laser is applied to a part of the first sealing film 33 laminated on the terminal part 34 of the light emitting part 32. Irradiating and removing the light, a first power supply opening 35 composed of a side peripheral portion (first sealing film 33) and a bottom portion (terminal portion 34 exposed from the first sealing film 33) is formed.
  • a second sealing film 36 is formed on the first sealing film 33 so that the side peripheral portion and the bottom portion of the first feeding opening 35 are also concealed.
  • the second sealing film 36 is laminated on the first sealing film 33, so that even if there are defects in the first sealing film 33 and the second sealing film 36, they can complement each other.
  • it is possible to more reliably prevent moisture from entering the light emitting unit 32 from the direction perpendicular to the substrate.
  • the second sealing film 36 concealing the bottom of the first feeding opening 35 is irradiated with laser light to remove the second sealing film 36 laminated on the bottom,
  • the second feeding opening 37 that exposes the terminal portion 34 in the first feeding opening 35 while maintaining the state where the side periphery of the first feeding opening 35 is concealed by the second sealing film 36 is provided.
  • the side periphery of the first power feeding opening 35 is concealed by the second sealing film 36, so that moisture can be prevented from entering the light emitting part 32 from the direction parallel to the substrate. That is, for example, after the first sealing film is formed on the light emitting portion, the second sealing film is laminated and formed without forming the feeding opening in the first sealing film.
  • the opening end faces (side peripheral parts) of the first sealing film and the second sealing film are exposed, and the substrate parallel direction
  • the state in which the side peripheral portion of the first sealing film 33 is concealed by the second sealing film 36 is maintained.
  • the second sealing film 36 laminated on the side periphery of the first feeding opening 35 is left.
  • Example 1 is an organic material in which a sealing film for sealing the light emitting part 12 is formed on a light emitting part 12 formed by sequentially laminating an anode, an organic light emitting layer, and a cathode on a substrate 11.
  • a first sealing film 13 for sealing the light emitting part 12 is formed on the light emitting part 12, and the first element laminated on the anode or the terminal part 14 of the cathode is an EL element.
  • the first sealing film 13 on the terminal part 14 is removed to form a power supply opening 15, and the power supply opening 15 is exposed to the force.
  • the power supply opening 15 and the first sealing film 13 are completely hidden.
  • a second sealing film 18 is formed on the substrate 11.
  • the organic EL element is manufactured using an organic EL element manufacturing apparatus as shown in FIG.
  • a glass substrate 11 on which an anode wiring ITO electrode formed by a photolithography method is formed is housed in a preparation chamber and evacuated.
  • the gate valve is opened, the glass substrate 11 is moved to the evacuated plasma cleaning chamber, oxygen gas or the like is introduced, oxygen plasma is generated by high frequency, and surface treatment is performed.
  • the glass substrate 11 is moved to the evacuated organic film forming chamber 1 to form a hole injection layer by vapor deposition, and further to the evacuated organic film forming chambers (2 to 4), The substrate 11 is moved, and red, green, and blue light emitting layers are formed.
  • the glass substrate 11 is moved to the evacuated organic film forming chamber 5, and an electron transport layer is deposited. Further, the electron injection layer is vapor-deposited in the film formation chamber 6 after being evacuated, and a force sword wiring electrode film is formed in the vacuum-evacuated metal electrode vapor deposition chamber.
  • the glass substrate 11 is moved to the laser processing chamber 1 evacuated or purged with nitrogen, and a force sword wiring electrode is formed by a laser.
  • the glass substrate 11 is moved to a thin film sealing chamber that is evacuated or purged with nitrogen, A first sealing film 13 is formed.
  • the thin film sealing chamber is provided with a sealing film forming mechanism for forming the first sealing film 13 by a sputtering method or a vacuum vapor deposition method.
  • a layered organic film or one or a plurality of inorganic films or a laminated film formed by laminating one or a plurality of inorganic films and an organic film are formed on substantially the entire surface of the substrate 11 (see FIG. 3).
  • inorganic films examples include silicon oxide film (SiO 2), silicon nitride (SiN, SiON)
  • Alumina Alumina
  • organic film epoxy system, polyimide system,
  • Acrylic, silicon-based, thermosetting, UV curable, or thermosetting and UV curable resins are used.
  • the glass substrate 11 is moved to the laser processing chamber 2, the first sealing film 13 on the terminal portion 14 is removed by a laser, and a power supply terminal portion exposed from the power supply opening 15 is formed.
  • a laser oscillator (light source) that oscillates laser light as a sealing film removing mechanism, and the substrate 11 is driven to transmit laser light from the laser oscillator power on the terminal portion 14.
  • a laser processing apparatus having an X and Y stage on which a substrate 11 is placed is provided as a drive unit that irradiates a predetermined portion of the first sealing film 13, and a gas laser oscillator or a solid is used as a laser oscillator Adopt a laser oscillator.
  • the drive unit for driving the substrate 11 is provided.
  • the drive unit for driving the laser oscillator may be provided.
  • the gas laser oscillator may be CO, KrF, ArF, F, XeCl, XeF or
  • the sealing film removing mechanism is configured to stack a plurality of layers of inorganic films, a plurality of layers of organic films, or one or a plurality of inorganic films and organic films formed by the film forming mechanism.
  • a plurality of layers can be removed at once by irradiating a laser beam having a wavelength corresponding to the wavelength absorption characteristics of one of the layers. That is, the first sealing film made of the laminated film can be removed without having to change the laser type by selecting the same optimum processing conditions that are necessary to remove the laminated film one by one.
  • a laser having a wavelength that can be easily absorbed by the lowermost film is used as the laser (or a laser is used as the lowermost film).
  • the first sealing film 13 can be easily and efficiently removed in one step without the need to remove each layer.
  • the opening for feeding can be formed.
  • the first sealing film 13 on the terminal portion 14 is not completely removed, but is set to be partially removed as shown in FIG. Specifically, a part of the first sealing film 13 on the connection terminal 19 of the terminal portion 14 is set to be removed in a rectangular shape. Therefore, the size of the power supply opening 15 can be minimized, and the sealing action by the first sealing film 13 can be satisfactorily exhibited.
  • a sealing peripheral portion closing mechanism may be provided that closes the peripheral portion of the first sealing film 13 formed on the light emitting portion 12 by irradiating laser light. By closing the sealing peripheral edge in this way, the sealing action is further improved and the deterioration of the element is prevented as much as possible.
  • the sealing peripheral edge closing mechanism may be configured such that the above-described laser processing chamber 2 is also used as the sealing film removing mechanism, or a configuration in which a laser processing chamber is separately provided.
  • the first sealing film 13 is formed only on the organic film formed by adding a thermosetting component only to the peripheral portion irradiated with the laser beam or only to the peripheral portion.
  • the sealing film forming mechanism is set so as to include the organic film containing the thermosetting component to be formed or the organic film formed by containing the thermosetting component over the entire front surface of the substrate. good.
  • the vacuum deposition method has been described on the assumption that the organic film formation in the above examples is a low molecular organic EL material.
  • an inkjet method may be used for organic film formation of a polymer organic EL material.
  • a transfer chamber having a mechanism for transferring a substrate to each processing chamber, a preparation chamber, a plasma cleaning chamber, an organic film formation chamber, a sputtering chamber, a CVD chamber, a metal electrode deposition chamber, a thin film
  • an organic EL device manufacturing apparatus having a sealing chamber and a discharge chamber, at least one processing chamber selected from an organic film forming chamber, a sputter chamber, a CVD chamber, a metal electrode deposition chamber, and a thin film sealing chamber;
  • This is an OLED device manufacturing device that integrates a single or multiple laser processing rooms.
  • processing chamber and the laser processing chamber are arranged around the transfer chamber or at a position along the transfer direction of the transfer chamber.
  • the atmosphere in the organic film forming chamber, the sputtering chamber, the CVD chamber, the metal electrode deposition chamber, the thin film sealing chamber, and the laser processing chamber is a non-vacuum atmosphere or an inert gas such as Ar or a nitrogen gas.
  • the organic film forming chamber is an organic material or a metal material by resistance heating, electron beam heating, high-frequency induction heating, and the like, and a high-molecular organic material by an inkjet method, a spin coating method, It has means for film formation using various printing methods including screen printing or spray printing, and the sputtering chamber uses organic, insulating materials, or other sputtering methods such as conventional, magnetron, ion beam, ECR, etc.
  • the CVD chamber has means for depositing metal materials and insulating materials using reduced pressure, atmospheric pressure, and plasma methods, and the metal electrode deposition chamber has resistance heating, electron beam heating, and high frequency induction for metal materials. It has vapor deposition source heating means such as calorie heat.
  • the thin film sealing chamber is added with a sealing film having a function of preventing water and oxygen in the air atmosphere from coming into direct contact with the surface of the organic EL element by blocking from the air atmosphere.
  • the laser processing chamber has means for covering a transparent conductive film, an organic EL film, a metal electrode film, a ceramic film such as silicon oxide, silicon nitride, and alumina with a laser beam.
  • Example 1 a preparation chamber, a plasma cleaning chamber, an organic film forming chamber 1, an organic film forming chamber 2, and an organic film forming chamber 3 around the transfer chamber having a mechanism for transferring the substrate to the processing chambers.
  • Cathode gold A metal deposition chamber, a laser processing chamber, a thin film sealing chamber, and a discharge chamber are provided.
  • a preparation chamber having a mechanism for transferring the substrate to the processing chambers
  • a plasma cleaning chamber having a mechanism for transferring the substrate to the processing chambers
  • a sputtering chamber transparent conductive film formation
  • a laser processing chamber 1 and an organic film formation
  • the chamber 1, the organic film forming chamber 2, the organic film forming chamber 3, the metal electrode deposition chamber, the laser processing chamber 2, the thin film sealing chamber, and the discharge chamber may be provided.
  • a charging chamber a plasma cleaning chamber, a sputtering chamber (transparent conductive film formation), a laser processing chamber 1, an organic film forming chamber 1, an organic substrate around a transfer chamber having a mechanism for transferring a substrate to each processing chamber
  • a film forming chamber 2 an organic film forming chamber 3, a metal electrode deposition chamber, a laser processing chamber 2, a thin film sealing chamber, a laser processing chamber 3, and a discharge chamber may be provided.
  • a preparation chamber a plasma cleaning chamber, a sputtering chamber (transparent conductive film formation), a laser processing chamber, and a discharge chamber are provided around a transfer chamber having a mechanism for transferring a substrate to each processing chamber. Also good.
  • the charging chamber also serves as the discharge chamber, only the charging chamber may be used.
  • the number of organic film forming chambers may be three, or a single chamber may be used as a matter of course, or may be four or more.
  • each processing chamber and the laser processing chamber are arranged around the transfer chamber (commonly referred to as a cluster method), but each process is sequentially performed in the transfer direction of the transfer chamber as illustrated in FIG. It is also possible to have a configuration in which the chamber and the laser processing chamber are cascaded (commonly called inline method).
  • a driving circuit 16 for driving the organic EL element (light emitting unit 12) is connected and mounted on the organic EL element manufactured as described above.
  • the drive circuit 16 an IC bare chip or an FPC equipped with a driver IC is used.
  • the mounting form may take any form such as a configuration in which an FPC is connected via a TAB, or a COG (Chip On Glass) in which a driver bear chip IC is directly mounted on a substrate.
  • COG Chip On Glass
  • the board is adopted by adopting FPC and connecting the terminal 17 of the drive circuit 16 (FPC with one driver IC) to the connection terminal 19 of the terminal section 14.
  • the drive circuit 16 is mounted on 11. Specifically, the anode terminal portion 14 (ITO film) connection terminal 19 or the cathode terminal portion exposed from the power supply opening 15 formed in the first sealing film 13 as described above.
  • the drive circuit 16 is mounted on the substrate 11 by connecting the 14 connection terminals 19 and the terminal 17 (drive circuit wiring pattern) of the drive circuit 16 by thermocompression bonding through an ACF20 (anisotropic conductive film). ing.
  • Reference numeral 21 in the figure denotes conductive particles contained in ACF20.
  • the drive circuit 16 (driver bare chip IC) is mounted by COG connection, it is drawn out from the organic EL element on the glass substrate that is entirely covered with the first sealing film 13. It is also possible to connect the drive circuit 16 by thermocompression bonding via the ACF 20 by forming a power supply opening on the upper surface of the end of the wiring by laser processing.
  • the second sealing film 18 is formed so as to completely hide both the drive circuit 16 mounted on the substrate 11 and the first sealing film 13 that is the base thereof. Therefore, the power supply opening 15 can be completely sealed easily without using a mask, and the intrusion of oxygen, moisture, etc. in the atmosphere into the power supply opening 15 force, which was the only concern during laser processing, is achieved. It is possible to surely prevent, and the first sealing film 13 on the outer periphery of the first sealing film 13 is completely concealed to realize more reliable sealing.
  • a film formation method such as a dip coating method or a plasma CVD method that can be reliably formed up to a shadow portion such as between the IC bare chip and the substrate 11 having good wraparound is adopted. Preferred.
  • Example 1 the substrate 11 on which the drive circuit 16 is mounted is immersed in a storage tank in which a film forming solution is stored, and then dried and subjected to heat treatment to form a film (dip coating). Act).
  • PCB printed circuit board
  • Example 1 Since Example 1 was as described above, after forming the sealing film without using the metal mask, the power supply terminal portion of the OLED display device was formed using a laser processing technique. This makes it possible to manufacture OLEDs that can ensure panel downsizing and high reliability. For example, by providing a cluster type organic EL device manufacturing device for manufacturing OLEDs with a laser processing chamber (sealing film removal mechanism) and a sealing thin film chamber (sealing film deposition mechanism), High-precision, high-density, high-performance OLEDs can be manufactured.
  • the metal mask crossing mechanism, alignment mechanism, metal mask, deposition mechanism, and other moving mechanisms become unnecessary, and the apparatus is very simple. To do. Therefore, it is possible to improve the operation rate of the equipment by reducing the equipment cost, trouble and maintenance frequency.
  • the metal mask cost can be reduced, the metal mask and the mounting tray can be reduced, and the cleaning process and the running cost can be greatly reduced.
  • the sealing action of the sealing film can be further improved, and the sealing film seals the sealing film. Deterioration of the light emitting part that has been stopped is prevented as much as possible.
  • Example 1 can produce an organic EL display with extremely high quality and high commercial value, as well as being able to produce the organic EL element simply and inexpensively.
  • Example 2
  • Example 2 is a case where a sealing film structure different from that of Example 1 is adopted, and the rest is the same as Example 1.
  • the light emitting unit 32 is formed on the light emitting unit 32 formed by sequentially laminating an anode, an organic compound layer, and a cathode on the substrate 31.
  • An organic EL element formed by forming a sealing film for sealing 32, wherein a first sealing film 33 for sealing the light emitting part 32 is formed on the light emitting part 32, and the anode or the cathode is formed.
  • the first feeding opening 35 composed of the side circumferential portion made of the film 33 and the bottom portion made of the terminal portion 34 force exposed from the first sealing film 33
  • a second sealing film 36 that seals the light emitting part 32 and also conceals the side periphery and bottom of the first feeding opening 35 is formed.
  • the second sealing film 36 concealing the bottom of the power feeding opening 35 is irradiated with laser light to remove the second sealing film 36 laminated on the bottom of the first power feeding opening 35.
  • the second power supply opening 37 that exposes the terminal part 34 is formed in the first power supply opening 35 by exposing the terminal part 34.
  • Example 2 As in Example 1, one or a plurality of organic films, one or a plurality of inorganic films, or one or a plurality of layers are formed on a glass substrate 31 on which an electrode and a light emitting layer are formed. A laminated film formed by laminating an inorganic film and an organic film is formed on substantially the entire surface of the substrate 31 (see FIG. 8. In FIG. 8, the first sealing film 33 is hidden by the second sealing film 36). Is formed on substantially the entire surface of the substrate 31 in the same manner as the second sealing film 36.) Further, in the laser processing chamber 2, the first sealing film 33 on the terminal portion 34 is removed by a laser, and the first power supply A power supply terminal part exposed from the opening 35 is formed (see FIGS. 9 and 10).
  • the glass substrate 31 is moved to the thin film sealing chamber, the light emitting portion 32 is sealed on the first sealing film 33, and a side peripheral portion of the first feeding opening 35 is provided.
  • a second sealing film 36 that covers the bottom is also formed.
  • the first power supply opening 35 includes a side peripheral portion formed of the opening end surface 33a of the first sealing film 33 and the terminal portion 34 from the opening of the first sealing film 33. It is composed of an exposed top surface 34a and a bottom portion.
  • the second sealing film 36 has the same configuration as the first sealing film 33.
  • a thin film sealing chamber for forming the second sealing film 36 may be provided separately.
  • the glass substrate 31 is moved to the laser processing chamber 2 so that the second sealing film 36 laminated on the side periphery of the first feeding opening 35 is left by the laser processing apparatus. Then, the second sealing film 36 laminated on the terminal portion 34 is removed to form a feeding terminal portion exposed from the first feeding opening 35 and the second feeding opening 37 (see FIG. 11).
  • the opening diameter of the second feeding opening 37 is larger than the first feeding opening 35 than the second feeding opening 37.
  • Laminated on the side periphery of the open end side of the The second feeding opening 37 is formed so as to be smaller than the inner diameter of the second sealing film 36.
  • the outer periphery of the second sealing film 36 laminated on the bottom of the first power supply opening 35 is left, and only the central part is removed, and the first power supply opening 35 side is removed.
  • the contact area between the second sealing film 36 on the peripheral portion and the terminal portion 34 is made as large as possible.
  • a drive circuit for driving the organic EL element (light emitting unit 32) is connected to and mounted on the organic EL element thus manufactured via the power supply terminal section, and a controller for controlling the drive circuit or other
  • An organic EL display is manufactured by attaching a printed circuit board (PCB) with electronic components and so on to the substrate 31 and attaching cables and a housing.
  • PCB printed circuit board
  • Example 2 Since Example 2 is as described above, a first sealing film 33 for sealing the light emitting unit 32 is formed on the light emitting unit 32 formed on the substrate 31. A part of the first sealing film 33 laminated on the terminal part 34 is removed by irradiating with laser light, and the side peripheral part (first sealing film 33) and the bottom part (exposed from the first sealing film 33) are removed. After forming the first power supply opening 35 composed of the terminal portion 34), the second sealing film 36 is concealed on the first sealing film 33 on the side periphery and bottom of the first power supply opening 35. The second sealing film 36 is laminated on the first sealing film 33 so that the first sealing film 33 and the second sealing film 36 can be mutually connected even if there is a defect. Therefore, it is possible to more reliably prevent moisture from entering the light emitting portion 32 due to the vertical force of the substrate.
  • the second sealing film 36 that conceals the bottom of the first feeding opening 35 is irradiated with a laser beam to remove the second sealing film 36 laminated on the bottom, thereby removing the first sealing film 36.
  • a second feeding opening 37 that exposes the terminal portion 34 is formed in the first feeding opening 35 while the side periphery of the feeding opening 35 is concealed by the second sealing film 36. Accordingly, the side peripheral portion of the first power feeding opening 35 is concealed by the second sealing film 36, so that it is possible to prevent moisture from entering the light emitting portion 32 in the direction parallel to the substrate. That is, only the terminal portion 34 can be exposed without exposing the side peripheral portion of the first sealing film 33, and the penetration of moisture due to the force of the side peripheral portion of the first sealing film 33 can be sufficiently prevented. It will be possible.
  • the opening diameter of the second power supply opening 37 is stacked on the side peripheral portion on the open end side of the first power supply opening 35 from the second power supply opening 37.
  • Second sealing that conceals the bottom of the first power supply opening 35 so that the diameter of the sealing film 36 is smaller than the inner diameter of the sealing film 36.
  • first sealing film 33 and the second sealing film 36 are formed on substantially the entire surface of the substrate 31 without using a mask, it is inconvenient when using a mask, that is, conventionally required. This eliminates the need for a mask alignment mechanism, a large number of spare masks, automatic mask replacement, etc., which makes it extremely cost-effective and eliminates the need to periodically replace and clean the mask. It will be excellent. Further, the area other than the light emitting portion 32 can be made as small as possible, and further higher density and higher resolution can be realized. In addition, unlike the fluoriso process, since the wet process is not necessary with an extremely simple process, the deterioration of the element can be prevented and the sealing film 33 can be formed at a very low cost.
  • the first sealing film 33 and the second sealing film 36 are each composed of one or a plurality of layers of organic films or one or a plurality of layers of inorganic films or one or a plurality of inorganic films and an organic film. Since the laminated film is formed by laminating, it is possible to more effectively prevent moisture from entering the light emitting portion 32 from the direction perpendicular to the substrate.
  • Example 2 not only reliably prevents moisture from entering the light emitting portion from the direction perpendicular to the substrate, but also reliably prevents moisture from entering from the direction parallel to the substrate. It is an excellent organic EL element with excellent reliability.
  • the present invention is not limited to the first and second embodiments, and the specific configuration of each constituent element can be designed as appropriate.
  • FIG. 1 is a schematic explanatory view of a conventional sealing film forming method.
  • FIG. 2 is a schematic explanatory diagram of a conventional organic EL device.
  • FIG. 3 is a schematic explanatory diagram of a sealing film forming method of Example 1.
  • FIG. 4 is an enlarged schematic explanatory view of a terminal portion in Example 1.
  • FIG. 5 is an enlarged schematic explanatory cross-sectional view of a connection portion between a terminal portion and a drive circuit in Example 1.
  • FIG. 6 is a schematic configuration explanatory view showing an example of a cluster system of an organic EL element manufacturing apparatus.
  • FIG. 7 is a schematic configuration explanatory view showing an example of an in-line method of an organic EL element manufacturing apparatus. [8]
  • FIG. 7 is a schematic explanatory perspective view in which a part of Example 2 is cut away.
  • FIG. 9 is a schematic plan view of the main part of Example 2.
  • FIG. 10 is a schematic cross-sectional view of the main part of Example 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 有機ELディスプレイのダウンサイズ化を図れると共に高信頼性を確保でき、しかも装置の稼働率の向上を図れ、ランニングコストも削減でき、更に、このレーザー加工法により形成された給電用開口部の封止も確実に行える極めて実用性に秀れた有機EL素子を提供するものである。基板11上に陽極,有機発光層,陰極を順次積層して形成される発光部12上に、この発光部12を封止する第一封止膜13を形成し、前記陽極及び陰極の端子部14上に積層された前記第一封止膜13の一部にレーザー光を照射することで、この端子部14上の第一封止膜13を除去して給電用開口部15を形成し、この給電用開口部15から露出する端子部14に前記発光部駆動用の駆動回路16の端子17を接続して駆動回路16を実装した後、この給電用開口部15及び前記第一封止膜13を完全に隠蔽するように基板11上に第二封止膜18を形成する。

Description

明 細 書
有機 EL素子
技術分野
[0001] 本発明は、有機 EL素子に関するものである。
背景技術
[0002] 従来の有機 EL素子(以下、 OELDと 、う。)は、以下のような手順で作製されて!、る
[0003] (1)ガラス基板上にスパッター法若しくは蒸着法でアノード電極用 ITOのような金属 薄膜を成膜し、フォトリソプロセスを経てアノード電極配線パターンを形成する。
[0004] (2)メタルマスクを使用し正孔注入層 (CuPc)、正孔輸送層 ( a— NPD)、発光層( Alq3 +ドーパント)、電子輸送層 (Alq3)、電子注入層(LiF)を順次成膜して有機発 光層を形成した後、更に力ソード電極形成用メタルマスクを用いて金属薄膜 (Al, A1 /Li, Mn, MnZAg〜etc. )を成膜し、力ソード電極配線パターンを形成して発光 部を形成する。
[0005] (3)上記(1)及び(2)のプロセスを経たサンプル (発光部)上に、無機膜の単層若し くは積層、有機膜の単層若しくは積層または無機膜及び有機膜の積層膜から成る封 止膜を成膜する。この場合、図 1, 2に図示したように、端子部 Aをメタルマスク B等で 遮蔽し、この端子部 Aに封止膜 Cが成膜されな 、ようにして給電用端子を形成する必 要がある。尚、図中符号 Dは基板、 Eは発光部である。
[0006] また、何らかの理由でメタルマスクで遮蔽できない場合には、所謂半導体若しくは T FTのフォトリソプロセスの手法を応用する必要がある。
[0007] 上述の OLEDへの給電用端子形成手法としては、現在はシャドーマスク法が一般 的である。シャドーマスクの材料としては、シリコン、セラミック、ガラス等と熱膨張係数 が近 、日本冶金製の NAS42 (42%Ni—Fe合金)や低膨張係数の NAS (36%Ni Fe合金)や SUS430等が採用されている。
[0008] このようにして給電用開口部が形成された有機 EL素子に、この給電用開口部から 露出する給電端子部に例えばドライバー IC付き FPC (Flexible Print Circuit Board) や ICベアチップ等の駆動回路の端子を ACF (Anisotropic Conductive Film)を介し て接続することで、駆動回路を実装する等して有機 ELディスプレイを製造する。
[0009] ところで、 OLEDの信頼性能確保のためには、大気中の酸素及び水分の影響を防 ぐために、有機層と腐食性の高い力ソード電極層を封止膜で完全に被覆する必要が ある。この際、有機層及び力ソード電極層よりも封止層を十分に大きくすればデバイ ス性能は確保できる力 デバイスの素子面積が大きくなつてしまうという問題点が生じ る。
[0010] 従って、デバイスの性能が維持できる最適な封止面積を選択する必要がある。この 際、シャドーマスクを利用して OLEDへの給電端子部の形成をする場合には、マスク のァライメントが必要になる。更に、 OLED表示装置を携帯用等の表示パネルとして 実装するためには、表示部以外の面積は出来る限り小さくした 、と 、う要求がある。 そのため、マスクァライメント精度を高め、設計余裕度を最小限に抑える必要が生じ てくるが、コスト高となるのは避けられない。
[0011] また、封止膜として、無機層と有機層とを交互に複数層成膜する場合には、有機層 用のメタルマスクや無機層用のマスクが必要になる。更に量産ラインではマスクの自 動交換機構も必要になる。そして、無機層と有機層との組み合わせを複数層形成す る場合には、多数の予備マスクが必要となり、非常に複雑で高コストの設備になって しまう。しかも、メタルマスクは定期的に交換洗浄する必要があり、ランニングコストも 非常に高くなつてしまうという問題が発生する。
[0012] このような封止膜成膜時にメタルマスクを使用することによる問題点を解決するため には、封止成膜工程ではメタルマスクを使用しな 、プロセスを採用すれば良 、。
[0013] 例えば半導体デバイスや TFTデバイスで一般的に採用されて ヽる最終パシベーシ ヨン膜成膜後のフォトリソプロセスによる端部引き出し工程を適用すれば良い。しかし 、この工程には、レジスト塗布、レジスト露光、レジスト現像、エッチング、レジスト剥離 洗浄と 5工程が必要となる。更に、レジスト現像及びレジスト剥離洗浄工程において はウエット工程があり、 OLED製造プロセスには不適切な工程であると同時に非常に 高コストプロセスとなってしまうという問題が生じる。
[0014] 更に、封止膜が積層構造で、しかも、有機層と無機層とから成る場合には、エッチ ング工程において、ドライの場合にはエッチングガス、ウエットの場合にはエッチング 液を交換する必要があり、積層数が多くなればなるほどプロセスは一層複雑ィ匕する。
[0015] また、上記有機 EL素子に駆動回路を実装する際、給電用開口部には、例えば給 電端子部が A1等が腐食性金属の場合、 FPC若しくは ICベアチップとの接続部付近 を熱硬化性若しくは UV硬化性等のシリコン榭脂若しくはエポキシ榭脂で固めて給電 端子部の腐食防止対策を講じる場合はあるが、これらの硬化剤には封止性がなぐ 給電用開口部は完全に封止されて 、な 、のが現状である。
[0016] そこで、出願人は、特許文献 1 (特開 2006— 663464号公報)において、マスクを 用いることなく封止膜を成膜した後、端子部上にのみレーザーにより給電用開口部を 形成することで、フォトリソプロセス等の厄介な工程を行う必要なく簡易な方法で上記 の問題点を解決できる有機 EL素子の製造方法を提案している。
[0017] 特許文献 1:特開 2006— 663464号公報
発明の開示
発明が解決しょうとする課題
[0018] 本発明は、上述のような問題点を解決すると共に更なる封止性の向上を図るべく上 記特許文献 1を元に種々検討を行った結果完成したもので、第一封止膜の開口端 部を第二封止膜により隠蔽することができ、基板垂直方向及び基板水平方向の双方 力 の発光部への水分の侵入を良好に阻止できる封止膜構成を実現した極めて封 止性に秀れた信頼性の高い有機 EL素子を提供するものである。
課題を解決するための手段
[0019] 添付図面を参照して本発明の要旨を説明する。
[0020] 基板 11上に陽極,有機発光層,陰極を順次積層して形成される発光部 12上に、こ の発光部 12を封止する封止膜を形成して成る有機 EL素子であって、前記発光部 12 上にこの発光部 12を封止する第一封止膜 13を成膜し、前記陽極若しくは前記陰極の 端子部 14上に積層された前記第一封止膜 13の一部にレーザー光を照射することで 、この端子部 14上の第一封止膜 13を除去して給電用開口部 15を形成し、この給電用 開口部 15から露出する端子部 14に前記発光部駆動用の駆動回路 16の端子 17を接 続して駆動回路 16を実装した後、この給電用開口部 15及び前記第一封止膜 13を完 全に隠蔽するように基板 11上に第二封止膜 18を形成したことを特徴とする有機 EL素 子に係るものである。
[0021] また、基板 31上に陽極,有機化合物層,陰極を順次積層して形成される発光部 32 上に、この発光部 32を封止する封止膜を形成して成る有機 EL素子であって、前記発 光部 32上にこの発光部 32を封止する第一封止膜 33を成膜し、前記陽極若しくは前 記陰極の端子部 34上に積層された第一封止膜 33の一部にレーザー光を照射して、 この端子部 34上の第一封止膜 33を除去することで、前記第一封止膜 33から成る側周 部とこの第一封止膜 33から露出する前記端子部 34力 成る底部とで構成される第一 給電用開口部 35を形成した後、前記第一封止膜 33上に、前記発光部 32を封止する と共に前記第一給電用開口部 35の側周部及び底部をも隠蔽する第二封止膜 36を成 膜し、前記第一給電用開口部 35の底部を隠蔽する第二封止膜 36にレーザー光を照 射して、前記第一給電用開口部 35の底部上に積層される前記第二封止膜 36を除去 して前記端子部 34を露出させることで、前記第一給電用開口部 35内に前記端子部 3 4を露出せしめる第二給電用開口部 37を形成したことを特徴とする有機 EL素子に係 るものである。
[0022] また、前記第一給電用開口部 35の側周部上に積層される前記第二封止膜 36を残 すように前記レーザー光を前記第一給電用開口部 35の底部を隠蔽する第二封止膜 36に照射して除去することで、前記第二給電用開口部 37を形成したことを特徴とする 請求項 2記載の有機 EL素子に係るものである。
[0023] また、前記第二給電用開口部 37の開口面積が、前記第一給電用開口部 35の開口 面積より小さくなるように前記レーザー光を前記第一給電用開口部 35の底部を隠蔽 する第二封止膜 36に照射して除去することで、前記第二給電用開口部 37を形成した ことを特徴とする請求項 2記載の有機 EL素子に係るものである。
[0024] また、前記第二給電用開口部 37の開口面積が、前記第一給電用開口部 35の開口 面積より小さくなるように前記レーザー光を前記第一給電用開口部 35の底部を隠蔽 する第二封止膜 36に照射して除去することで、前記第二給電用開口部 37を形成した ことを特徴とする請求項 3記載の有機 EL素子に係るものである。
[0025] また、前記第一封止膜 13 · 33若しくは前記第二封止膜 18 · 36をマスクを用 、ずに基 板 11 · 31の全表面に成膜することを特徴とする請求項 1〜5のいずれか 1項に記載の 有機 EL素子に係るものである。
[0026] また、前記第一封止膜 13 · 33若しくは前記第二封止膜 18 · 36は、一若しくは複数層 の有機膜または一若しくは複数層の無機膜或いは一若しくは複数の無機膜と有機膜 とを夫々積層して成ることを特徴とする請求項 1〜5のいずれか 1項に記載の有機 EL 素子に係るものである。
[0027] また、前記第一封止膜 13 · 33若しくは前記第二封止膜 18 · 36は、一若しくは複数層 の有機膜または一若しくは複数層の無機膜或いは一若しくは複数の無機膜と有機膜 とを夫々積層して成ることを特徴とする請求項 6記載の有機 EL素子に係るものである 発明の効果
[0028] 本発明は、上述のように構成したから、第一封止膜の開口端部を第二封止膜により 隠蔽することができ、基板垂直方向及び基板水平方向の双方からの発光部への水 分の侵入を良好に阻止できる封止膜構成を実現した極めて封止性に秀れた信頼性 の高い有機 EL素子となる。
発明を実施するための最良の形態
[0029] 好適と考える本発明の実施形態 (発明をどのように実施する力 を、図面に基づい て本発明の作用を示して簡単に説明する。
[0030] 基板 11上に、例えば ITO力も成る陽極 (アノード電極)と、正孔注入層 (CuPc) ,正 孔輸送層 ( a -NPD) ,発光層(Alq3 +ドーパント) ,電子輸送層(Alq3) ,電子注 入層(LiF)から成る有機発光層と、 A1力も成る陰極 (力ソード電極)とを順次成膜して 成る発光部 12上に、この発光部 12を封止する第一封止膜 13を成膜する。
[0031] この際、請求項 1記載の発明においては、例えばマスクを用いずに発光部 12の全 表面に第一封止膜 13を成膜して、陽極及び陰極の端子部 14上の第一封止膜 13の みにレーザー光を照射することで、第一封止膜 13を部分的に除去し、この端子部 14 を露出せしめる給電用開口部 15を形成する。
[0032] 即ち、従来のようにマスクを用いて、給電用開口部を有する封止膜を成膜するので はなぐ発光部 12上の全表面に成膜した第一封止膜 13の一部を除去することで給電 用開口部 15を形成することができるから、マスクが不要となり、マスクを用いる際の不 都合、即ち、従来必要であったマスクのァライメント機構や、多数の予備マスクや、マ スクの自動交 «構等は一切必要なくなり、極めてコスト安となり、し力も、マスクを定 期的に交換洗浄する必要もないから、メンテナンス性にも秀れたものとなる。
[0033] また、有機 EL素子の更なる高密度化 ·高解像度化を図るためには、発光部 12 (表 示部)以外の面積を可及的に小さくする必要があるが、マスクを用いる場合、上述の マスクのァライメント機構の更なる高精度化は非常にコスト高となるため実現は難しく 、ある程度の誤差を見越して余裕をもって発光部同志の間隔を設定しなければなら なかったが、請求項 1記載の発明によれば、マスクのァライメントは必要ないため、上 述のような問題は一切なぐ発光部 12以外の面積を可及的に小さくすることができ、 更なる高密度化 ·高解像度化を実現できることになる。
[0034] また、フォオリソプロセスと異なり、極めて簡易な工程でウエット工程も必要ないから 、素子の劣化を阻止できるのは勿論、極めてコスト安に第一封止膜 13を成膜できるこ とになる。
[0035] 次に、上述のようにして形成した給電用開口部 15力も露出する端子部 14に、駆動 回路 16の端子 17を例えば ACF20を介して熱圧着により接続することで駆動回路 16を 実装する。
[0036] しかし、この状態では、給電用開口部 15が封止されていないため、この給電用開口 部 15から水分等が侵入する可能性がある。
[0037] そこで、請求項 1記載の発明においては、給電用開口部 15を封止する第二封止膜 18を更に基板 11上に成膜する。具体的には、第二封止膜 18は前記給電用開口部 15 及び第一封止膜 13を完全に隠蔽するように形成する。この際、例えば第二封止膜 18 を、基板全表面に成膜するようにすれば、上記第一封止膜 13と同様にマスクを用い ることなく成膜できる。更に、回り込み性が高ぐ影の部分まで成膜可能な成膜方法、 例えば CVD法やディップコーティング法等により基板全表面に成膜した場合には、 例えば駆動回路 16の底部と基板 11との間の空間部にも良好に成膜できることになり、 簡易な手法で確実に給電用開口部 15を封止できることになる。
[0038] 従って、レーザー加工により第一封止膜 13を除去して形成された給電用開口部 15 を第二封止膜 18により封止することで、マスクやウエット工程の必要なしに OLEDの 水分による劣化をより確実に阻止できることになり、また、第一封止膜 13に仮に欠陥 部があった場合いにこの欠陥部を補完することもでき、それだけ高精細な有機 ELデ イスプレイを製造可能となる。
[0039] また、請求項 2記載の発明においては、基板 31上に、例えば ITO力 成る陽極 (ァ ノード電極)と、正孔注入層 (CuPc) ,正孔輸送層 ( a -NPD) ,発光層(Alq3 +ド 一パント),電子輸送層 (Alq3) ,電子注入層 (LiF)から成る有機発光層と、 A1から成 る陰極 (力ソード電極)とを順次成膜して成る発光部 32上に、この発光部 32を封止す る第一封止膜 33を成膜した後、続いて、発光部 32の端子部 34上に積層された第一 封止膜 33の一部にレーザー光を照射して除去し、側周部 (第一封止膜 33)と底部 (第 一封止膜 33から露出する端子部 34)とから成る第一給電用開口部 35を形成する。
[0040] 続いて、第一封止膜 33上に第二封止膜 36を前記第一給電用開口部 35の側周部及 び底部も隠蔽されるように成膜する。これにより第一封止膜 33上に第二封止膜 36が 積層されることで、第一封止膜 33と第二封止膜 36に夫々欠陥があっても相互に補完 することができ、発光部 32への基板垂直方向からの水分の侵入をより確実に阻止で さることになる。
[0041] 続いて、第一給電用開口部 35の底部を隠蔽する第二封止膜 36にレーザー光を照 射して前記底部上に積層される第二封止膜 36を除去して、第一給電用開口部 35の 側周部が第二封止膜 36により隠蔽された状態を保持したまま第一給電用開口部 35 内に端子部 34を露出せしめる第二給電用開口部 37を形成する。
[0042] 従って、第一給電用開口部 35の側周部が第二封止膜 36により隠蔽されることで、発 光部 32への基板平行方向からの水分の侵入も阻止できることになる。即ち、例えば、 第一封止膜を発光部上に成膜した後、この第一封止膜に給電用開口部を形成せず に第二封止膜を積層成膜し、第一封止膜と第二封止膜とにまとめて給電用開口部を 形成する方法を採用した場合、第一封止膜と第二封止膜の開口端面 (側周部)が露 出し、基板平行方向から水分が侵入する可能性が高くなつてしまうが、請求項 2記載 の発明においては、第一封止膜 33の側周部を第二封止膜 36により隠蔽した状態を 保持するように (第一給電用開口部 35の側周部上に積層された第二封止膜 36を残 すように)、第一給電用開口部 35の底部上に積層された第二封止膜 36を除去するか ら、第一封止膜 33の側周部を露出させることなく端子部 34のみを露出させることがで き、この第一封止膜 33の側周部力もの水分の侵入をそれだけ良好に阻止できること になる。
実施例 1
[0043] 本発明の具体的な実施例 1につ 、て図面に基づ!/、て説明する。
[0044] 実施例 1は、基板 11上に陽極,有機発光層,陰極を順次積層して形成される発光 部 12上に、この発光部 12を封止する封止膜を形成して成る有機 EL素子であって、前 記発光部 12上にこの発光部 12を封止する第一封止膜 13を成膜し、前記陽極若しく は前記陰極の端子部 14上に積層された前記第一封止膜 13の一部にレーザー光を 照射することで、この端子部 14上の第一封止膜 13を除去して給電用開口部 15を形成 し、この給電用開口部 15力 露出する端子部 14に前記発光部駆動用の駆動回路 16 の端子 17を接続して駆動回路 16を実装した後、この給電用開口部 15及び前記第一 封止膜 13を完全に隠蔽するように基板 11上に第二封止膜 18を形成したものである。
[0045] 有機 EL素子は、図 6に図示したような有機 EL素子製造装置を用いて製造する。
[0046] 例えば図 6に示すように、フォトリソグラフィ一法により形成されたアノード配線 ITO 電極が形成されたガラス基板 11を仕込み室に収納し、真空排気を行う。次にゲートバ ルブを開け、前記ガラス基板 11を、真空排気されたプラズマ洗浄室に移動し、酸素ガ ス等を導入し、高周波により酸素プラズマを生成し、表面処理を行う。次に真空排気 された有機成膜室 1に前記ガラス基板 11を移動し、正孔注入層を蒸着成膜する、更 に真空排気された各々の有機成膜室(2〜4)に前記ガラス基板 11を移動し、赤、緑、 青各々の発光層を成膜する。
[0047] 更に、真空排気された有機成膜室 5に前記ガラス基板 11を移動し、電子輸送層を 蒸着成膜する。更に真空排気され成膜室 6で電子注入層を蒸着成膜し、真空排気さ れた金属電極蒸着室で力ソード配線電極膜を成膜する。
[0048] 次に真空排気若しくは窒素置換されたレーザー加工室 1に前記ガラス基板 11を移 動し、レーザーにより力ソード配線電極を形成する。
[0049] 次に真空排気若しくは窒素置換された薄膜封止室に前記ガラス基板 11を移動し、 第一封止膜 13を成膜する。
[0050] この薄膜封止室にはスパッタリング法若しくは真空蒸着法により第一封止膜 13を成 膜する封止膜形成機構が設けられており、この封止膜形成機構により、一若しくは複 数層の有機膜または一若しくは複数層の無機膜或いは一若しくは複数の無機膜と有 機膜とを夫々積層して成る積層膜を基板 11の略全面に成膜する(図 3参照)。
[0051] 無機膜としては、例えばシリコン酸ィ匕膜 (SiO ) ,シリコンナイトライド (SiN, SiON)
2
,アルミナ (AIO )等が採用される。また、有機膜としては、エポキシ系,ポリイミド系,
X
アクリル系,シリコン系の、熱硬化型若しくは UV硬化型または熱硬化及び UV硬化 併用型の樹脂等が採用される。
[0052] 更にレーザー加工室 2に前記ガラス基板 11を移動し、レーザーにより端子部 14上の 第一封止膜 13を除去し、給電用開口部 15から露出する給電端子部を形成する。
[0053] レーザー加工室 2には、封止膜除去機構としてのレーザー光を発振するレーザー 発振器 (光源)と、前記基板 11を駆動してレーザー発振器力ゝらのレーザー光を前記 端子部 14上の第一封止膜 13の所定部位に照射せしめる駆動部としての、基板 11が 載置される X, Yステージとを有するレーザー加工装置が設けられており、レーザー 発振器として、ガスレーザー発振器若しくは固体レーザー発振器を採用する。尚、実 施例 1においては、基板 11を駆動する駆動部を設けた構成としているが、レーザー発 振器を駆動する駆動部を設けた構成としても良い。
[0054] 例えば、前記ガスレーザー発振器としては CO , KrF, ArF, F , XeCl, XeF若しく
2 2
は HeCdレーザー発振器を採用すると良ぐ前記固体レーザー発振器としては Tiサ ファイア, YAG若しくは YVOレーザー発振器を採用すると良い。
4
[0055] 具体的には、前記封止膜除去機構は、前記成膜機構によって成膜された複数層の 無機膜若しくは複数層の有機膜或いは一若しくは複数の無機膜と有機膜とを夫々積 層して成る積層膜の内、いずれかの層の波長吸収特性に応じた波長のレーザー光 を照射して複数層を一括除去し得るように構成している。即ち、積層膜を一層ずつ除 去する必要なぐ最適な同一加工条件を選定することにより、レーザー種を変更する 必要なく積層膜から成る第一封止膜を除去できる。例えば、レーザーとして、最下層 の膜が吸収しやす 、波長を有するレーザーを採用し (若しくは最下層の膜としてレー ザ一の波長を吸収しやすい材料力も成るものを採用し)、この最下層の膜を除去する ことでその上に積層される膜をまとめて除去し得るように設定する。尚、最下層でない 膜を除去することで、複数の膜を除去し得るように設定しても良 、。
[0056] 従って、複数の有機膜と無機膜とを積層した積層膜を除去する場合でも、一層ず つ除去する必要なく一の工程で簡易に且つ効率的に第一封止膜 13を除去して給電 用開口部を形成できることになる。
[0057] また、実施例 1においては、端子部 14上の第一封止膜 13を全て除去するのではな ぐ図 4に図示したように一部を除去するように設定している。具体的には端子部 14の 接続端子 19上の一部の第一封止膜 13を長方形状に除去するように設定している。従 つて、給電用開口部 15の大きさは最小で済み、それだけ第一封止膜 13による封止作 用は良好に発揮される。
[0058] また、前記発光部 12上に積層成膜した第一封止膜 13の周縁部をレーザー光を照 射することで閉塞する封止周縁部閉塞機構を備えた構成としても良い。このように封 止周縁部を閉塞することにより、封止作用は一層良好となり、素子の劣化は可及的に 阻止されることになる。具体的には、この封止周縁部閉塞機構は、上述のレーザー加 ェ室 2を封止膜除去機構と兼用する構成としても良いし、別途レーザー加工室を設 ける構成としても良い。
[0059] また、この場合には、前記第一封止膜 13が、前記レーザー光が照射される周縁部 のみに熱硬化性成分を含有させて成膜された有機膜若しくは前記周縁部のみに成 膜される前記熱硬化性成分を含有する有機膜若しくは基板前面全てに渡って熱硬 化性成分を含有させて成膜された有機膜を含むように、前記封止膜形成機構を設定 すると良い。
[0060] 以上、前記実施例についての有機成膜は低分子有機 EL材料を想定し、真空蒸着 法について説明した。
[0061] その他の実施例として高分子有機 EL材料の有機成膜については、インクジェット 法を利用してもよい。
[0062] また、更に高分子有機材料をスピン塗布法、スプレー法を利用する場合には、真空 排気若しくは真空置換された乾燥室を追加したり、有機成膜をレーザー加工室でパ ターン形成する実施例も考えられる。
[0063] その他の実施例として、基板を各処理室に搬送する機構を有する搬送室の周囲に 、仕込み室、プラズマ洗浄室、有機成膜室、スパッター室、 CVD室、金属電極蒸着 室、薄膜封止室及び排出室を有する有機 EL素子製造装置において、有機成膜室、 スパッター室、 CVD室、金属電極蒸着室、薄膜封止室のうちの少なくともいずれか一 台以上の処理室と、一台又は、複数台のレーザー加工室とを一体ィ匕した有機 EL素 子製造装置としている。
[0064] また、前記搬送室の周囲若しくは前記搬送室の搬送方向に沿った位置に前記処 理室を配設すると共に前記レーザー加工室を配設している。
[0065] また、前記有機成膜室、スパッター室、 CVD室、金属電極蒸着室、薄膜封止室及 びレーザー加工室内の雰囲気は、真空雰囲気若しくは Ar等の不活性ガス若しくは 窒素ガスなどによる非酸ィ匕性雰囲気で、且つ露点が 50°C以下の乾燥雰囲気とし ている。
[0066] また、前記有機成膜室は有機材料或!ヽは金属材料を抵抗加熱、電子ビーム加熱、 高周波誘導加熱等の蒸着源加熱手段及び高分子有機材料をインクジェット法、スピ ン塗布法、スクリーン印刷を含む各種印刷法若しくはスプレー印刷法を用いて成膜 する手段を有し、スパッター室は、有機材料或いは絶縁材料をコンベンショナル、マ グネトロン、イオンビーム、 ECR等のスパッタリング法を用いて成膜する手段を有し、 CVD室は金属材料及び絶縁材料を減圧、常圧、プラズマ法を用いて成膜する手段 を有し、金属電極蒸着室は金属材料を抵抗加熱、電子ビーム加熱、高周波誘導カロ 熱等の蒸着源加熱手段を有する。
[0067] また、薄膜封止室は、大気雰囲気と遮断することにより、大気雰囲気中の水及び酸 素が直接有機 EL素子表面と接触することを防止する機能を有する封止膜を付加す る手段を有し、前記レーザー加工室は、透明導電膜、有機 EL膜、金属電極膜、酸ィ匕 シリコン、窒化シリコン、アルミナ等のセラミック膜をレーザー光にてカ卩ェする手段を 有する。
[0068] 実施例 1では、基板を前記各処理室に搬送する機構を有する前記搬送室の周囲 に仕込み室、プラズマ洗浄室、有機成膜室 1、有機成膜室 2、有機成膜室 3、陰極金 属蒸着室、レーザー加工室、薄膜封止室及び排出室を設けた構成としている。
[0069] また、前記基板を前記各処理室に搬送する機構を有する前記搬送室の周囲に、仕 込み室、プラズマ洗浄室、スパッター室 (透明導電膜形成)、レーザー加工室 1、有機 成膜室 1、有機成膜室 2、有機成膜室 3、金属電極蒸着室、レーザー加工室 2、薄膜 封止室及び排出室を設けた構成としても良い。
[0070] また、基板を各処理室に搬送する機構を有する搬送室の周囲に仕込み室、プラズ マ洗浄室、スパッター室 (透明導電膜形成)、レーザー加工室 1、有機成膜室 1、有機 成膜室 2、有機成膜室 3、金属電極蒸着室、レーザー加工室 2、薄膜封止室、レーザ 一加工室 3及び排出室を設けた構成としても良い。
[0071] また、基板を各処理室に搬送する機構を有する搬送室の周囲に、仕込み室、ブラ ズマ洗浄室、スパッター室 (透明導電膜形成)、レーザー加工室及び排出室を設けた 構成としても良い。
[0072] 前記仕込み室が前記排出室を兼ねる場合は、仕込む室のみでも良い。
[0073] また、レーザー加工室を複数室としたが、一室のみで兼用しても良い。
[0074] また、有機成膜室を三室としても良いし、一室で兼用しても良ぐもちろん四室以上 にしても良い。
[0075] また、実施例 1では、搬送室の周囲に各処理室とレーザー加工室を配設 (通称クラ スター方式)したが、図 7に図示したような搬送室の搬送方向に順次各処理室とレー ザ一加工室を縦列 (通称インライン方式)した構成としても良 、。
[0076] 続いて、上述のようにして作製した有機 EL素子に、有機 EL素子 (発光部 12)駆動 用の駆動回路 16を接続実装する。具体的には、駆動回路 16としては、 ICベアチップ やドライバー ICを搭載した FPC等を用いる。
[0077] また、実装形態は、例えば FPCを TABを介して接続する構成や、ドライバーベアチ ップ ICを基板上に直接実装する COG (Chip On Glass)等、いずれの形態をとつても 良い。
[0078] 実施例 1においては、図 4, 5に図示したように FPCを採用し駆動回路 16 (ドライバ 一 IC付 FPC)の端子 17を前記端子部 14の接続端子 19に接続することで基板 11上に 駆動回路 16を実装している。 [0079] 具体的には、上述のようにして第一封止膜 13に形成された給電用開口部 15から露 出する陽極の端子部 14 (ITO膜)の接続端子 19若しくは陰極の端子部 14の接続端子 19と、駆動回路 16の端子 17 (駆動回路配線パターン)とを ACF20 (異方性導電膜)を 介して熱圧着により接続することで、基板 11上に駆動回路 16を実装している。尚、図 中符号 21は ACF20に含まれる導電粒子である。
[0080] 尚、図示しないが、駆動回路 16 (ドライバーベアチップ IC)を COG接続により実装 する場合も、第一封止膜 13により全面を覆われているガラス基板上の有機 EL素子か らの引出し配線の端部上面に、レーザー加工によって給電開口部を形成して、 ACF 20を介することで駆動回路 16を熱圧着により接続することも可能である。
[0081] 続いて、基板 11上に実装した駆動回路 16及びその下地となっている前記第一封止 膜 13のいずれをも完全に隠蔽するように第二封止膜 18を成膜する。従って、マスクを 用いることなく簡易に給電用開口部 15を完全に封止して、レーザー加工時の唯一の 懸念事項であった給電用開口部 15力 の大気中の酸素や水分等の侵入を確実に防 止することが可能となると共にその外周にある第一封止膜 13をも完全に隠蔽すること で、より確実な封止を実現する。成膜方法としては、ディップコーティング法やプラズ マ CVD法等の回り込み性が良ぐ前記 ICベアチップと基板 11との間等、影の部分ま で確実に成膜可能な成膜方法を採用するのが好ま 、。
[0082] 実施例 1においては、前記駆動回路 16を実装した基板 11を成膜溶液が貯留せしめ られた貯留槽に漬けた後、乾燥させて加熱処理を行うことで成膜する(ディップコーテ イング法)。
[0083] 続いて、前記駆動回路 16を制御するコントローラやその他の電子部品などが組み 込まれたプリント基板(PCB: Printed Circuit Board)を基板 11に取り付け、ケーブル や筐体を取り付けることで有機 ELディスプレイを製造する。
[0084] 実施例 1は上述のようにしたから、メタルマスクを用いず封止膜を成膜した後に、そ の OLED表示装置の給電端子部を、レーザー加工手法を用いて形成することにより 、パネルのダウンサイズィ匕と高信頼性を確保できる OLEDの製造が可能になる。例え ば、 OLEDを製造することを目的とするクラスター型有機 EL素子製造装置にレーザ 一加工室 (封止膜除去機構)と封止薄膜室 (封止膜成膜機構)とを設けることにより、 高精度、高密度、高性能の OLEDの製造が可能になる。
[0085] また、封止膜形成機構にメタルマスクを使用しないことにより、メタルマスクの交 « 構、ァライメント機構、メタルマスク及び蒸着トレィ等の移動機構が不要になり、装置 は非常に簡略ィ匕する。そのため、装置コストの低減、トラブル及びメンテナンス頻度の 低減により装置稼働率の向上が図れる。
[0086] 更に、メタルマスクコストの削減、メタルマスク及び装着トレイの削減、これらの洗浄 工程の削減とランニングコストも大幅に削減することが可能になる。
[0087] また、封止膜が積層構造の場合でも、レーザー加工の場合には、異種マスク毎にレ 一ザ一種を変更することなく最適な同一加工条件を選定することにより、給電端子部 の封止膜開口加工が可能となる。
[0088] また、封止膜の周縁部をレーザーを照射することで閉塞するように構成すれば、こ の封止膜の封止作用を一層良好にすることができ、この封止膜により封止された発 光部の劣化は可及的に阻止されることになる。
[0089] 更に、前記給電用開口部からの水分等の侵入を、簡易な手法で確実に防止でき、 それだけ高精細な有機 ELディスプレイを製造可能となる。
[0090] 従って、実施例 1は、前記有機 EL素子を単に安価に且つ効率良く製造できるだけ でなぐ極めて高品質で商品価値の高 、有機 ELディスプレイを製造できることになる 実施例 2
[0091] 実施例 2は、実施例 1とは異なる封止膜構造を採用した場合であり、その余は実施 例 1と同様である。
[0092] 具体的には実施例 2は、図 8〜11に図示したように、基板 31上に陽極,有機化合物 層,陰極を順次積層して形成される発光部 32上に、この発光部 32を封止する封止膜 を形成して成る有機 EL素子であって、前記発光部 32上にこの発光部 32を封止する 第一封止膜 33を成膜し、前記陽極若しくは前記陰極の端子部 34上に積層された第 一封止膜 33の一部にレーザー光を照射して、この端子部 34上の第一封止膜 33を除 去することで、前記第一封止膜 33から成る側周部とこの第一封止膜 33から露出する 前記端子部 34力 成る底部とで構成される第一給電用開口部 35を形成した後、前記 第一封止膜 33上に、前記発光部 32を封止すると共に前記第一給電用開口部 35の側 周部及び底部をも隠蔽する第二封止膜 36を成膜し、前記第一給電用開口部 35の底 部を隠蔽する第二封止膜 36にレーザー光を照射して、前記第一給電用開口部 35の 底部上に積層される前記第二封止膜 36を除去して前記端子部 34を露出させることで 、前記第一給電用開口部 35内に前記端子部 34を露出せしめる第二給電用開口部 3 7を形成したものである。
[0093] 即ち、実施例 2は、実施例 1と同様、電極及び発光層が形成されたガラス基板 31上 に、一若しくは複数層の有機膜または一若しくは複数層の無機膜或いは一若しくは 複数の無機膜と有機膜とを夫々積層して成る積層膜を基板 31の略全面に成膜し (図 8参照。図 8中では第一封止膜 33は第二封止膜 36に隠れているが第二封止膜 36と 同様に基板 31の略全面に成膜される。)、更にレーザー加工室 2においてレーザー により端子部 34上の第一封止膜 33を除去し、第一給電用開口部 35から露出する給 電端子部を形成する(図 9, 10参照)。
[0094] 続いて、前記薄膜封止室に前記ガラス基板 31を移動し、第一封止膜 33上に前記発 光部 32を封止すると共に前記第一給電用開口部 35の側周部及び底部をも隠蔽する 第二封止膜 36を成膜する。具体的には、前記第一給電用開口部 35は、前記第一封 止膜 33の開口端面 33aから成る側周部と、前記端子部 34にして前記第一封止膜 33の 開口部から露出する上面 34aから成る底部とで構成されている。この第二封止膜 36と しては前記第一封止膜 33と同じ構成のものを採用している。尚、第二封止膜 36を成 膜する薄膜封止室を別途設けても良い。
[0095] 更にレーザー加工室 2に前記ガラス基板 31を移動し、上記レーザー加工装置により 、前記第一給電用開口部 35の側周部上に積層される前記第二封止膜 36を残すよう に端子部 34上に積層された第二封止膜 36を除去し、第一給電用開口部 35及び第二 給電用開口部 37から露出する給電端子部を形成する(図 11参照)。
[0096] 具体的には、前記第一給電用開口部 35の側周部上に積層される前記第二封止膜 36を除去しないように、前記第一給電用開口部 35の底部上に積層される前記第二封 止膜 36の一部を除去することで、前記第二給電用開口部 37の開口径が、この第二給 電用開口部 37より前記第一給電用開口部 35の開放端側の側周部上に積層される第 二封止膜 36の内径より径小となるように前記第二給電用開口部 37を形成する。
[0097] 即ち、前記第一給電用開口部 35の底部上に積層される第二封止膜 36の外周部を 残し、中央部のみを除去して、前記第一給電用開口部 35の側周部上の第二封止膜 36と端子部 34との接触面積が可及的に広くなるようにして 、る。
[0098] このようにして作製した有機 EL素子に、前記給電用端子部を介して有機 EL素子( 発光部 32)駆動用の駆動回路を接続実装し、この駆動回路を制御するコントローラや その他の電子部品などが組み込まれたプリント基板(PCB : printed Circuit board)を 基板 31に取り付け、ケーブルや筐体を取り付けることで有機 ELディスプレイが製造さ れる。
[0099] 実施例 2は上述のようにしたから、基板 31上に形成される発光部 32上に、この発光 部 32を封止する第一封止膜 33を成膜し、発光部 32の端子部 34上に積層された第一 封止膜 33の一部にレーザー光を照射して除去し、側周部 (第一封止膜 33)と底部 (第 一封止膜 33から露出する端子部 34)とから成る第一給電用開口部 35を形成した後、 第一封止膜 33上に第二封止膜 36を前記第一給電用開口部 35の側周部及び底部も 隠蔽されるように成膜し、第一封止膜 33上に第二封止膜 36が積層されることで、第一 封止膜 33と第二封止膜 36に夫々欠陥があっても相互に補完することができ、発光部 32への基板垂直方向力 の水分の侵入をより確実に阻止できることになる。
[0100] 更に、第一給電用開口部 35の底部を隠蔽する第二封止膜 36にレーザー光を照射 して前記底部上に積層される第二封止膜 36を除去して、第一給電用開口部 35の側 周部が第二封止膜 36により隠蔽された状態を保持したまま第一給電用開口部 35内 に端子部 34を露出せしめる第二給電用開口部 37を形成するから、第一給電用開口 部 35の側周部が第二封止膜 36により隠蔽されることで、発光部 32への基板平行方向 力もの水分の侵入も阻止できることになる。即ち、第一封止膜 33の側周部を露出させ ることなく端子部 34のみを露出させることができ、この第一封止膜 33の側周部力もの 水分の侵入をそれだけ良好に阻止できることになる。
[0101] また、第二給電用開口部 37の開口径が、この第二給電用開口部 37より前記第一給 電用開口部 35の開放端側の側周部上に積層される第二封止膜 36の内径より径小と なるように前記レーザー光を前記第一給電用開口部 35の底部を隠蔽する第二封止 膜 36に照射して除去することで、前記第二給電用開口部 37を形成するから、端子部 34と第二封止膜 36との接触面積をそれだけ大きく確保でき、封止性を一層向上させ ることがでさる。
[0102] また、第一封止膜 33及び第二封止膜 36は、マスクを用いることなく前記基板 31の略 全面に成膜するから、マスクを用いる際の不都合、即ち、従来必要であったマスクの ァライメント機構や、多数の予備マスクや、マスクの自動交 構等は一切必要なく なり、極めてコスト安となり、し力も、マスクを定期的に交換洗浄する必要もないから、 メンテナンス性にも秀れたものとなる。また、発光部 32以外の面積を可及的に小さく することができ、更なる高密度化 ·高解像度化を実現できることになる。また、フォオリ ソプロセスと異なり、極めて簡易な工程でウエット工程も必要ないから、素子の劣化を 阻止できるのは勿論、極めてコスト安に封止膜 33を成膜できることになる。
[0103] また、第一封止膜 33及び第二封止膜 36は、一若しくは複数層の有機膜または一若 しくは複数層の無機膜或いは一若しくは複数の無機膜と有機膜とを夫々積層して成 る積層膜としたから、基板垂直方向からの発光部 32への水分の侵入を一層良好に阻 止でさること〖こなる。
[0104] 従って、実施例 2は、発光部への基板垂直方向からの水分の侵入を確実に阻止で きるのは勿論、基板平行方向からの水分の侵入をも確実に阻止でき、極めて封止性 に秀れた信頼性の高!、有機 EL素子となる。
[0105] 本発明は、実施例 1, 2に限られるものではなぐ各構成要件の具体的構成は適宜 設計し得るものである。
図面の簡単な説明
[0106] [図 1]従来例の封止膜形成法の概略説明図である。
[図 2]従来例の有機 EL素子の概略説明図である。
[図 3]実施例 1の封止膜形成法の概略説明図である。
[図 4]実施例 1の端子部の拡大概略説明図である。
[図 5]実施例 1の端子部と駆動回路との接続部分の拡大概略説明断面図である。
[図 6]有機 EL素子製造装置のクラスター方式での一例を示す概略構成説明図であ る。 [図 7]有機 EL素子製造装置のインライン方式での一例を示す概略構成説明図である 圆 8]実施例 2の一部を切り欠いた概略説明斜視図である。
圆 9]実施例 2の要部の概略説明平面図である。
[図 10]実施例 2の要部の概略説明断面図である。
圆 11]実施例 2の要部の概略説明断面図である。

Claims

請求の範囲
[1] 基板上に陽極,有機発光層,陰極を順次積層して形成される発光部上に、この発 光部を封止する封止膜を形成して成る有機 EL素子であって、前記発光部上にこの 発光部を封止する第一封止膜を成膜し、前記陽極若しくは前記陰極の端子部上に 積層された前記第一封止膜の一部にレーザー光を照射することで、この端子部上の 第一封止膜を除去して給電用開口部を形成し、この給電用開口部から露出する端 子部に前記発光部駆動用の駆動回路の端子を接続して駆動回路を実装した後、こ の給電用開口部及び前記第一封止膜を完全に隠蔽するように基板上に第二封止膜 を形成したことを特徴とする有機 EL素子。
[2] 基板上に陽極,有機化合物層,陰極を順次積層して形成される発光部上に、この 発光部を封止する封止膜を形成して成る有機 EL素子であって、前記発光部上にこ の発光部を封止する第一封止膜を成膜し、前記陽極若しくは前記陰極の端子部上 に積層された第一封止膜の一部にレーザー光を照射して、この端子部上の第一封 止膜を除去することで、前記第一封止膜から成る側周部とこの第一封止膜から露出 する前記端子部から成る底部とで構成される第一給電用開口部を形成した後、前記 第一封止膜上に、前記発光部を封止すると共に前記第一給電用開口部の側周部及 び底部をも隠蔽する第二封止膜を成膜し、前記第一給電用開口部の底部を隠蔽す る第二封止膜にレーザー光を照射して、前記第一給電用開口部の底部上に積層さ れる前記第二封止膜を除去して前記端子部を露出させることで、前記第一給電用開 口部内に前記端子部を露出せしめる第二給電用開口部を形成したことを特徴とする 有機 EL素子。
[3] 前記第一給電用開口部の側周部上に積層される前記第二封止膜を残すように前 記レーザー光を前記第一給電用開口部の底部を隠蔽する第二封止膜に照射して除 去することで、前記第二給電用開口部を形成したことを特徴とする請求項 2記載の有 機 EL素子。
[4] 前記第二給電用開口部の開口面積が、前記第一給電用開口部の開口面積より小 さくなるように前記レーザー光を前記第一給電用開口部の底部を隠蔽する第二封止 膜に照射して除去することで、前記第二給電用開口部を形成したことを特徴とする請 求項 2記載の有機 EL素子。
[5] 前記第二給電用開口部の開口面積が、前記第一給電用開口部の開口面積より小 さくなるように前記レーザー光を前記第一給電用開口部の底部を隠蔽する第二封止 膜に照射して除去することで、前記第二給電用開口部を形成したことを特徴とする請 求項 3記載の有機 EL素子。
[6] 前記第一封止膜若しくは前記第二封止膜をマスクを用いずに基板の全表面に成 膜することを特徴とする請求項 1〜5のいずれか 1項に記載の有機 EL素子。
[7] 前記第一封止膜若しくは前記第二封止膜は、一若しくは複数層の有機膜または一 若しくは複数層の無機膜或いは一若しくは複数の無機膜と有機膜とを夫々積層して 成ることを特徴とする請求項 1〜5いずれ力 1項に記載の有機 EL素子。
[8] 前記第一封止膜若しくは前記第二封止膜は、一若しくは複数層の有機膜または一 若しくは複数層の無機膜或いは一若しくは複数の無機膜と有機膜とを夫々積層して 成ることを特徴とする請求項 6のいずれか 1項に記載の有機 EL素子。
PCT/JP2006/316373 2005-08-25 2006-08-22 有機el素子 WO2007023789A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020087003595A KR101234948B1 (ko) 2005-08-25 2006-08-22 유기 el 소자의 제조 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005243771A JP4006456B2 (ja) 2005-08-25 2005-08-25 有機elディスプレイの製造方法
JP2005-243771 2005-08-25
JP2005335615A JP3936375B2 (ja) 2005-11-21 2005-11-21 有機el素子の製造方法
JP2005-335615 2005-11-21

Publications (2)

Publication Number Publication Date
WO2007023789A1 true WO2007023789A1 (ja) 2007-03-01
WO2007023789A8 WO2007023789A8 (ja) 2009-08-27

Family

ID=37771534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316373 WO2007023789A1 (ja) 2005-08-25 2006-08-22 有機el素子

Country Status (3)

Country Link
KR (1) KR101234948B1 (ja)
TW (1) TWI429323B (ja)
WO (1) WO2007023789A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010135050A1 (en) * 2009-05-21 2010-11-25 General Electric Company Hermetic electrical package
US8427845B2 (en) 2009-05-21 2013-04-23 General Electric Company Electrical connectors for optoelectronic device packaging
CN112820839A (zh) * 2021-01-07 2021-05-18 深圳市华星光电半导体显示技术有限公司 显示面板及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05101885A (ja) * 1991-10-08 1993-04-23 Tdk Corp 電界発光素子の保護
JP2003272834A (ja) * 2002-03-20 2003-09-26 Denso Corp 表示装置
JP2003323974A (ja) * 2002-04-30 2003-11-14 Casio Comput Co Ltd Elパネル及びその製造方法
JP2004047447A (ja) * 2002-05-15 2004-02-12 Semiconductor Energy Lab Co Ltd 発光装置
JP2004165068A (ja) * 2002-11-14 2004-06-10 Sanyo Electric Co Ltd 有機電界発光パネルの製造方法
JP2005050773A (ja) * 2003-07-31 2005-02-24 Asahi Glass Co Ltd 有機led素子
JP2006066364A (ja) * 2004-07-28 2006-03-09 Tokki Corp 有機el素子の製造装置並びに有機el素子

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004342455A (ja) 2003-05-15 2004-12-02 Tokki Corp フラットパネルディスプレイ製造装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05101885A (ja) * 1991-10-08 1993-04-23 Tdk Corp 電界発光素子の保護
JP2003272834A (ja) * 2002-03-20 2003-09-26 Denso Corp 表示装置
JP2003323974A (ja) * 2002-04-30 2003-11-14 Casio Comput Co Ltd Elパネル及びその製造方法
JP2004047447A (ja) * 2002-05-15 2004-02-12 Semiconductor Energy Lab Co Ltd 発光装置
JP2004165068A (ja) * 2002-11-14 2004-06-10 Sanyo Electric Co Ltd 有機電界発光パネルの製造方法
JP2005050773A (ja) * 2003-07-31 2005-02-24 Asahi Glass Co Ltd 有機led素子
JP2006066364A (ja) * 2004-07-28 2006-03-09 Tokki Corp 有機el素子の製造装置並びに有機el素子

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010135050A1 (en) * 2009-05-21 2010-11-25 General Electric Company Hermetic electrical package
CN102439752A (zh) * 2009-05-21 2012-05-02 通用电气公司 密封电封装件
US8427845B2 (en) 2009-05-21 2013-04-23 General Electric Company Electrical connectors for optoelectronic device packaging
CN112820839A (zh) * 2021-01-07 2021-05-18 深圳市华星光电半导体显示技术有限公司 显示面板及其制备方法

Also Published As

Publication number Publication date
KR101234948B1 (ko) 2013-02-19
WO2007023789A8 (ja) 2009-08-27
KR20080037024A (ko) 2008-04-29
TWI429323B (zh) 2014-03-01
TW200721890A (en) 2007-06-01

Similar Documents

Publication Publication Date Title
KR101011346B1 (ko) 발광 장치 및 그 제작 방법
KR101061388B1 (ko) 성막 장치 및 발광 장치
JP4455937B2 (ja) 成膜源、真空成膜装置、有機elパネルの製造方法
JP5190253B2 (ja) 混合層の作製方法、発光装置の作製方法
JP5072184B2 (ja) 成膜方法
JP2001284042A (ja) 有機el素子
JP4651916B2 (ja) 発光装置の作製方法
JP2007080569A (ja) 有機エレクトロルミネッセンス素子の製造方法
WO2006041240A1 (en) Large-size oled manufacturing apparatus using ink- jet printing techniques and low molecule thermal deposition techniques
JP2010244697A (ja) 有機el装置、有機el装置の製造方法、電子機器
JP3921482B2 (ja) 有機el素子の製造装置並びに有機el素子
JP3936375B2 (ja) 有機el素子の製造方法
WO2007023789A1 (ja) 有機el素子
JP4006456B2 (ja) 有機elディスプレイの製造方法
JP4674848B2 (ja) 有機el素子の製造装置
JP2003272834A (ja) 表示装置
JP2006244906A (ja) 自発光素子の製造方法及び製造装置
JP2007134243A (ja) 表示装置の製造方法およびマスク
JP4641417B2 (ja) 有機el素子の製造装置並びに有機el素子
JP2009283242A (ja) 有機el表示装置
JP5953531B2 (ja) 薄膜製造方法および表示パネルの製造方法、tft基板の製造方法
KR20160066463A (ko) 유기 발광 표시 장치 및 유기 발광 표시 장치 제조 방법
JP2007294413A (ja) 有機elパネル及びその製造方法
US20080268136A1 (en) Method of producing organic light emitting apparatus
JP2004288463A (ja) 製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020087003595

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03-06-2008 )

122 Ep: pct application non-entry in european phase

Ref document number: 06782877

Country of ref document: EP

Kind code of ref document: A1