WO2007023557A1 - 電子部品試験装置および電子部品試験装置における温度制御方法 - Google Patents

電子部品試験装置および電子部品試験装置における温度制御方法 Download PDF

Info

Publication number
WO2007023557A1
WO2007023557A1 PCT/JP2005/015481 JP2005015481W WO2007023557A1 WO 2007023557 A1 WO2007023557 A1 WO 2007023557A1 JP 2005015481 W JP2005015481 W JP 2005015481W WO 2007023557 A1 WO2007023557 A1 WO 2007023557A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
electronic component
test
correction value
measuring device
Prior art date
Application number
PCT/JP2005/015481
Other languages
English (en)
French (fr)
Inventor
Shigeru Hosoda
Masaaki Ogawa
Original Assignee
Advantest Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corporation filed Critical Advantest Corporation
Priority to CNA2005800514038A priority Critical patent/CN101248361A/zh
Priority to JP2007531999A priority patent/JPWO2007023557A1/ja
Priority to US11/990,435 priority patent/US7768286B2/en
Priority to KR1020087006854A priority patent/KR100930657B1/ko
Priority to PCT/JP2005/015481 priority patent/WO2007023557A1/ja
Priority to TW095130792A priority patent/TW200720681A/zh
Publication of WO2007023557A1 publication Critical patent/WO2007023557A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • G01R1/0408Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets
    • G01R1/0433Sockets for IC's or transistors
    • G01R1/0441Details
    • G01R1/0458Details related to environmental aspects, e.g. temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks
    • G01R31/2891Features relating to contacting the IC under test, e.g. probe heads; chucks related to sensing or controlling of force, position, temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor

Definitions

  • the present invention relates to an apparatus for testing an electronic component such as an IC device, and relates to an electronic component test apparatus capable of performing temperature control of the electronic component, and a temperature control method in a powerful electronic component test apparatus. Is.
  • Testing of an IC device using an electronic component testing apparatus is performed, for example, as follows. After transporting the IC device under test above the test head to which the socket is attached, press the IC device under test and attach it to the socket so that the connection terminal of the socket contacts the external terminal of the IC device under test. Let As a result, the IC device under test is electrically connected to the tester body through the socket, test head and cable. Then, by applying a test signal supplied to the test head through the cable from the tester body cable to the IC device under test, and sending a response signal that also reads the IC device power under test to the tester body through the test head and the cable, Measure the electrical characteristics of the IC device under test
  • the above test is often performed by applying thermal stress to the IC device under test.
  • a method of applying thermal stress to the IC device under test for example, a method in which the IC device under test is heated to a predetermined set temperature with a heat plate before being transported to the test head is used. Conveying (sucking) the IC device under test 'A heater is installed in the pressing device, and the IC device under test is heated by the heater.
  • the temperature of the IC device under test that is measured using a thermal diode is not always accurate. If the measured temperature is used as it is, the heating temperature of the IC device under test is accurate. It is difficult to control.
  • the present invention has been made in view of such a situation, and an electronic component test apparatus capable of accurately performing temperature control of an electronic component while utilizing a temperature detector inside the electronic component. It is an object to provide a temperature and temperature control method.
  • the present invention provides a first temperature measurement for measuring an internal temperature of the electronic component based on a detection signal from a temperature detector provided inside the electronic component.
  • a second temperature measuring device for measuring a reference temperature wherein the second temperature measuring device is arranged outside the electronic component and is capable of measuring the temperature of the electronic component while being thermally coupled to the electronic component.
  • a temperature control device that is thermally coupled to the electronic component and can control the temperature of the electronic component by heating or heat absorption; and the temperature control device and the electronic component in a state where the temperature is set to a predetermined constant temperature.
  • a calibration that calculates a correction value for the first temperature measuring device from a difference between the first measured temperature by the first temperature measuring device and the second measured temperature that is a reference temperature by the second temperature measuring device.
  • Means In an actual operation, the internal temperature of the electronic device under test is measured by the first temperature measurement device, and the first measurement temperature and the correction value calculated by the calibration means are used to measure the internal temperature.
  • an electronic component test apparatus characterized in that an internal temperature of an electronic component is specified, and the temperature control device is heated or absorbed to control the internal temperature of the electronic component to a predetermined temperature (Invention 1). ).
  • Examples of the temperature detector provided inside the electronic component include a thermal diode, a static electricity protection diode, and the like. It is sufficient that the temperature detector is useful for measuring the temperature of the electronic component by any method that does not need to measure the temperature of the electronic component.
  • the temperature detector may be a thermal diode formed in the electronic component (Invention 2).
  • the temperature of electronic components subject to testing may fluctuate dynamically, in general, thermal diodes have a fast response to temperature detection. It is possible to test while maintaining the temperature range.
  • the second temperature measuring device may be a pusher that presses an external terminal of the electronic component toward a socket of a connection partner and is thermally coupled to the electronic component. It is preferably provided (Invention 3). Since the pusher is in direct contact with the electronic component, it is possible to accurately measure the temperature of the electronic component by providing a second temperature measuring device on the pusher.
  • the temperature control device is provided on a pusher that presses an external terminal of the electronic component toward a socket of a connection partner and is thermally coupled to the electronic component.
  • U prefer (Invention 4). Since the pusher is in direct contact with the electronic component, it is possible to effectively control the temperature of the electronic component by providing a temperature control device on the pusher.
  • the calibration means is executed when changing the type of the electronic device under test (Invention 5), or the operator is changed when changing the type of the electronic device under test. It is preferable to include means for prompting execution of the calibration means (for example, displaying a message on a monitor, voice guidance from a speaker, etc.) (Invention 6).
  • the correction values acquired by the calibration means usually have different forces for each type of electronic component. Note that if the calibration means is executed for every electronic device under test, the effect on the throughput will increase.
  • the calibration means is executed before starting the test for each lot of electronic parts (Invention 7), or the test for each lot of electronic parts. Before starting, it is preferable to provide means for prompting the operator to execute the calibration means (for example, displaying a message on a monitor, voice guidance from a speaker, etc.) (Invention 8). This is because even if the type of electronic component is the same, the correction value may change due to changes in the characteristics of the electronic component or the temperature detector inside it due to differences in the process of each lot.
  • the internal temperature (junction temperature) of the electronic component is measured based on the detection signal of the temperature detector force provided inside the electronic component.
  • the temperature of the reference of the electronic component is measured by a temperature measuring device that is disposed outside the electronic component and is thermally coupled to the electronic component, and the difference between the two measured temperatures is the temperature Calculate and save the correction value of the detector, and measure the internal temperature of the electronic component based on the detection signal of the temperature detector force of the electronic component to be tested during actual operation.
  • the electronic component is heated or absorbed to control the internal temperature of the electronic component to a predetermined temperature.
  • a temperature control method for electronic component testing equipment It takes to provide a temperature control method (invention 9).
  • the correction value is calculated at the time of switching the type of the electronic device under test (Invention 10). In particular, the calculation of the correction value is performed on the electronic component lock. It is preferable to perform the test before each test (Invention 11).
  • the present invention relates to a first temperature measurement device that receives a signal of a temperature detector force provided inside an electronic component and measures the internal temperature of the electronic component, and an outside of the electronic component.
  • a second temperature measuring device for measuring a reference temperature, wherein the temperature of the electronic component can be measured in a state where the electronic component is thermally coupled to the electronic component;
  • a first temperature measuring device that is capable of controlling the temperature of the electronic component by heating or endotherm, and the temperature control device and the electronic component at a predetermined constant temperature.
  • Calibration means for calculating a correction value for the first temperature measuring device from a difference between the first measured temperature by the second measured temperature and a second measured temperature that is a reference temperature by the second temperature measuring device.
  • Electronic component test featuring Providing an apparatus (invention 12). The invention's effect
  • FIG. 1 is a plan view showing an electronic component testing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a partial cross-sectional view (A-A cross-section) side view of the electronic device test apparatus in FIG.
  • FIG. 3 is a cross-sectional view (cross-sectional view taken along the line BB in FIG. 1) showing details of the contact portion of the test head in the electronic component testing apparatus.
  • Temperature application device (Temperature control device)
  • Temperature sensor (second temperature measuring device)
  • Temperature measurement device (first temperature measurement device)
  • the electronic component testing apparatus 1 includes an electronic component handling device (hereinafter referred to as a “nonder”) 10, a test head 20, and a tester body 30. Is electrically connected via a cable 40.
  • a nonder electronic component handling device
  • test head test head
  • tester body 30 tester body
  • the handler 10 is provided with a substrate 109. On the substrate 109, an empty tray 101, a supply tray 102, a classification tray 103, two XY transport devices 104, 105, a heat plate 106, and two buffer units are provided. 108 is provided. Further, an opening 110 is formed in the substrate 109. As shown in FIG. 2, the contact of the test head 20 arranged on the back side of the handler 10 is provided. The IC device D is attached to the part 201 through the opening 110 of the substrate 109.
  • the electronic component testing apparatus 1 sequentially transports the pre-test IC device (an example of an electronic component) D mounted on the supply tray 102 of the handler 10 by the two XY transport devices 104 and 105. At the same time, the IC device D is pressed against the contact portion 201 of the test head 20 by one X—Y transfer device 105, and the test of the IC device D is performed through the test head 20 and the cable 40. It is configured to be stored in the classification tray 103 according to the result.
  • the pre-test IC device an example of an electronic component
  • an IC device D that includes a thermal diode as a temperature detector is a test target. Both terminals of the thermal diode are connected to the external terminals of IC device D.
  • the transition characteristics of the forward voltage obtained when a small constant current is passed through the thermal diode vary depending on the integrated circuit formation, but it is constant particularly in the case of IC devices related to the same manufacturing process or the same production lot. The transition characteristics are shown. That is, the forward voltage value and the temperature coefficient ⁇ V / ° C. at a certain junction temperature show approximate characteristics in the same manufacturing process or the same production lot. Therefore, by measuring the voltage of this thermal diode, the junction temperature (junction temperature) of the integrated circuit and hence the temperature of IC device D can be accurately determined.
  • junction temperature junction temperature
  • One XY transport device 104 includes two rails 104a provided along the X-axis direction, and a rail 104b movably attached to the two rails 104a along the Y-axis direction.
  • the mounting base 104c is movably attached to the rail 104b, and the two IC device adsorption devices 104d are attached to the mounting base 104c. Since the rail 104b is movable in the X-axis direction and the mounting base 104c is movable in the Y-axis direction, the IC device suction device 104d is separated from the classification tray 103, the supply tray 102, the empty tray 101, and the heat tray. It is possible to move to a region that reaches the first buffer 106 and the two buffer units 108.
  • the lower end portion of the IC device adsorption device 104d is provided with an adsorption portion 14 that can adsorb the IC device D.
  • Axis actuator (not shown) moves through the rod in the Z-axis direction (ie up and down) It is possible.
  • the other XY transport device 105 includes two rails 105a provided along the X-axis direction, and a rail 105b movably attached to the two rails 105a along the Y-axis direction.
  • the mounting base 105c is movably attached to the rail 105b, and the two IC device adsorption devices 105d are attached to the mounting base 105c. Since the rail 105b is movable in the X-axis direction and the mounting base 105c is movable in the Y-axis direction, the IC device suction device 105d has a region between the two buffer units 108 and the test head 20. It is possible to move.
  • the IC device D is adsorbed to the lower end portion of the IC device adsorption device 105d, and the adsorbed IC device D is pressed against the contact portion 201 of the test head 20.
  • a suction / pressing part 15 is provided, and this suction / pressing part 15 can be moved in the Z-axis direction (that is, upward and downward) via a rod 151 by a Z-axis actuator (not shown). .
  • two IC device suction devices 105d are provided on the mounting base 105c, two IC devices D can be sucked, transported, pressed and released at a time. It is.
  • the two buffer units 108 are configured to be reciprocally movable between the operation regions of the two XY transfer devices 104 and 105 by a rail 108a and an actuator (not shown).
  • the upper buffer unit 108 in FIG. 1 performs the work of transferring the IC device D conveyed from the heat plate 106 to the test head 20, and the lower buffer unit 108 in FIG. Work out the IC device D. Due to the presence of these two buffer units 108, the two XY transport devices 104 and 105 can operate simultaneously without interfering with each other.
  • the supply tray 102 provided in the operation region of the XY transport device 104 on the substrate 109 is a tray on which the IC device D before the test is mounted, and the classification tray 103 is the IC that has been tested.
  • This tray stores device D classified into categories according to test results.
  • four trays 103 are provided.
  • the heat plate 106 provided on the substrate 109 is a metal plate provided with, for example, a heater, and a plurality of recesses 106a into which the IC device D is dropped are formed.
  • the IC device D before the test is transferred from the supply tray 102 by the XY transport device 104.
  • the heat plate 106 is a heating source for applying a predetermined heat stress to the IC device D. After the IC device D is heated to a predetermined temperature by the heat plate 106, the upper buffer section 108 in FIG. It is attached to the contact part 201 of the test head 20 via the connector.
  • a socket 202 having a probe pin 202a as a connection terminal is fixed to the contact portion 201 of the test head 20.
  • the probe pins 202a are provided in the number and pitch corresponding to the connection terminals of the IC device D, and are panel-biased upward.
  • the probe pin 202a is electrically connected to the tester body 30 via the test head 20.
  • a socket guide 203 having an opening 203a and a guide pin 203b is attached to the socket 202, and is sucked and held by the sucking and pressing portion 15 of the IC device sucking device 105d.
  • IC device D force Pressed against the socket 202 through the opening 203a of the socket guide 203! /
  • the suction / pressing portion 15 includes a pusher 150 attached to the lower end portion of the rod 151 and a pusher base 152 into which the pusher 150 is fitted. As described above, when the IC device D is pressed against the socket 202, the guide pin 203b provided in the socket guide 203 is inserted into the guide hole 152a formed in the pusher base 152, whereby the IC device D And socket 202 are aligned.
  • a temperature sensor 154 capable of measuring the temperature of the IC device D held by the suction / pressing unit 15 is provided at the lower end of the pusher 150. Further, inside the pusher 150, a temperature application device 153 capable of heating or cooling the IC device D that is adsorbed and held by the adsorption / pressing portion 15 is provided. As the temperature application device 153, for example, a heater, a Peltier element, a refrigerant, or the like can be used. Temperature sensor 154 and temperature The degree applying device 153 is electrically connected to a temperature control unit (not shown). Note that a heat insulating material is preferably interposed between the temperature sensor 154 and the temperature application device 153.
  • the socket 202 is provided on the socket board 204, and the performance board 5 is disposed below the socket board 204.
  • the performance board 5 is provided with a temperature measuring device 51 that can measure the temperature of the IC device D by measuring the voltage of the thermal diode in the IC device D.
  • the temperature measuring device 51 is electrically connected to a temperature control unit (not shown) which is the same as the temperature sensor 154 and the temperature applying device 153.
  • the temperature sensor 154 of the pusher 150 measures the reference temperature also used for temperature calibration of the temperature measuring device 51 using the thermal diode in the IC device D. It is preferable to apply a stable material with little change over time.
  • the handler 10 is provided with a monitor (display device) (not shown). This monitor displays a message to prompt the operator to perform calibration, which will be described later, when switching the type of IC device D and before starting the test for each lot of IC device D. Also good.
  • a control means for prohibiting the execution of the test may be provided if desired.
  • calibration is executed as follows before switching the type of the IC device D and before starting the test for each lot of the IC device D. This calibration may be performed automatically or manually.
  • the IC device suction device 104d of the XY transport device 104 sucks and holds the IC device D mounted on the supply tray 102 of the handler 10 and transfers it to the recess 106a of the heat plate 106, and on the recess 106a.
  • IC device D is released.
  • the IC device D is heated to a predetermined temperature (for example, 60 ° C.) by being left on the heat plate 106 for a predetermined time.
  • the IC device adsorption device 104d of the XY transport device 104 adsorbs and holds the IC device D heated to a predetermined temperature by the heat plate 106, and is attached to the buffer unit 108 located at the left end in FIG. 1 of the rail 108a.
  • the buffer unit 108 on which the IC device D is mounted moves to the right end of the rail 108a in FIG.
  • the IC device suction device 105d of the XY transport device 105 sucks and holds the IC device D on the buffer unit 108 that has moved and transfers it to the contact unit 201 of the test head 20.
  • the pusher 150 of the IC device suction device 105d presses the IC device D against the socket 202 of the contact portion 201 through the opening 110 of the substrate 109, and contacts the external terminal of the IC device D to the probe pin 202a of the socket 202. .
  • the measurement temperature T of the IC device D is measured by the temperature sensor 154 of the pusher 150, and a constant current is applied to the thermal diode in the IC device D by the temperature measurement device 51 of the performance board 5.
  • the measured voltage value is measured, and the measured temperature T of IC device D is determined based on the measured voltage value. Measurement temperature T at this time
  • the temperature control unit calculates a difference (T -T) between the measured temperature T measured by the temperature sensor 154 and the non-calibrated measured temperature T measured by the temperature measuring device 51, and registers this as a correction value T (
  • the difference 2 ° C is registered as the correction value T.
  • the device is tested under almost the same set temperature conditions in both the high temperature test and the Z low temperature test, so there is no need to calibrate the entire temperature range. If you want to perform the test at any set temperature condition, calculate the difference (T- ⁇ ) at multiple temperature points (eg 120 ° C, 100 ° C, 80 ° C) (for example, 2 ° C, 0 ° C, —2
  • the correction value T acquired as described above usually differs depending on the type of IC device D.
  • the operation until the IC device D is brought into contact with the socket 202 is the same as the operation in the calibration.
  • Pusher 150 force C device D is pressed against socket 202 of contact portion 201, and when the external terminal of IC device D is connected to probe pin 202a of socket 202, temperature measuring device 51 uses thermal diode in IC device D. Is measured to obtain the measured temperature T of IC device D, and the information is sent to the temperature controller.
  • the temperature control unit reads the correction value T registered in the calibration, and performs the temperature measurement.
  • the temperature application device 153 inside the pusher 150 is controlled so that the IC device D reaches the target temperature. In addition, control the temperature of the heat plate 106.
  • the measured temperature T force measured by the temperature measuring device 51 is 9 ° C, and the correction value T is 2
  • the actual temperature T of IC device D is judged to be 61 ° C, and the target temperature is 6
  • the temperature applying device 153 inside the pusher 150 is controlled so that the temperature of the IC device D is lowered by 1 ° C. Also, for example, when the measured temperature T force measured by the temperature measuring device 51 is 7 ° C and the correction value T is 2 ° C, the actual temperature of the IC device D is
  • T is 59 ° C and the target temperature is 60 ° C, the temperature of IC device D is 1 ° C.
  • the temperature application device 153 inside the pusher 150 is controlled so as to rise.
  • the device test When the device test is started while the temperature control of the IC device D is continuously maintained as described above, a test signal is applied to the IC device D from the tester body 30 through the test head 20, and the IC A response signal from device D is sent to tester body 30 through test head 20. As a result, pass / fail judgment of IC device D and ranking by performance are performed.
  • the power consumption of IC device D is a force that fluctuates dynamically depending on the test conditions. Since the thermal diode in IC device D has a high-speed temperature response of several milliseconds, it is practical. The test can be performed while maintaining a predetermined temperature range.
  • the IC device adsorption device 10 of the XY transport device 105 5d transfers the tested IC device D to the buffer 108 located at the right end in FIG. 1 of the rail 108a, and the buffer 108 moves to the left end in FIG.
  • the IC device suction device 104d of the XY transport device 104 holds the tested IC device D from the buffer unit 108, and stores it in the classification tray 103 according to the test result.
  • the measured temperature of IC device D using a thermal diode or the like existing inside IC device D is a force that may not always be accurate.
  • the correction value by calibration is used.
  • the IC device D can be accurately controlled using the thermal diode's high-speed temperature detection response.
  • the handler 10 may be a force chamber type handler which is a chamberless type handler.
  • the temperature may be applied to the IC device D by air circulating in the chamber.
  • the power of measuring the temperature of the IC device using the thermal diode in the IC device is not limited to this.
  • the internal temperature (junction temperature) in the IC device is not limited to this.
  • the temperature of the IC device may be measured using other measurable temperature detectors (temperature dependent elements). For example, if there are input terminals or output terminals that are not used during test execution, or if there is an obstacle to the execution of the test! /, Or if there are input terminals or output terminals, these input terminals or output terminals, these input terminals or output terminals An electrostatic protection diode connected to may be applied. However, in this case, since it is easily affected by power supply noise, a process for removing power supply noise is required. In addition, other temperature-dependent factors that correlate with the junction temperature in the IC device may be used.
  • the correction value T may be acquired at a constant temperature state! Therefore, IC device
  • the correction value T can be obtained under any of the conditions of no power consumption without supplying power or the conditions close to actual operation with constant power supplied to the IC device. Electricity When applying an electrostatic protection diode to temperature measurement at the time of power supply, it is possible to prevent the influence of power supply noise by measuring the temperature immediately after turning off the power supply. .
  • the thermal tester body 30 side described above also uses the thermal diode for temperature detection in the IC device. You may want to use it. In this case, whether the current to be applied to the thermal diode is supplied from the temperature measuring device 51 side or the tester main body 30 side is determined in advance, and the temperature measuring device 51 sends the voltage signal at both ends of the thermal diode. By connecting to receive, it can be used by both. As a result, both the tester body 30 side and the handler 10 side can keep track of the IC device junction temperature.
  • connection configuration in which the temperature measurement device 51 receives a signal from the thermal diode in the IC device has been described.
  • the connection configuration in which the tester body 30 side can receive the thermal diode signal is described.
  • the voltage value measured on the tester body 30 side or the measured measurement temperature T may be supplied to the temperature measurement device 51 on the nodola 10 side.
  • both the tester body 30 side and the handler 10 side can keep track of the IC device junction temperature.
  • the electronic component testing apparatus and temperature control method of the present invention are useful for performing tests that require accurate temperature control of electronic components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

 ICデバイスDの内部に設けられたサーマルダイオードの電圧に基づいてICデバイスDの温度を測定する温度測定装置51と、プッシャ150に設けられた温度センサ154および温度印加装置153と、所定のICデバイスDについての温度測定装置51による測定温度と温度センサ154による測定温度との差から補正値を算出するキャリブレーション手段とを備えており、実稼動中に温度測定装置51によって被試験ICデバイスDの温度を測定し、得られた測定温度とキャリブレーション手段で算出した補正値とに基づいて温度印加装置153を制御する電子部品試験装置1。

Description

明 細 書
電子部品試験装置および電子部品試験装置における温度制御方法 技術分野
[0001] 本発明は、 ICデバイスなどの電子部品を試験するための装置であって、電子部品 の温度制御を行うことのできる電子部品試験装置、および力かる電子部品試験装置 における温度制御方法に関するものである。
背景技術
[0002] ICデバイス等の電子部品の製造過程においては、最終的に製造された電子部品 を試験する電子部品試験装置が必要とされて ヽる。
[0003] 電子部品試験装置を用いた ICデバイスの試験は、例えば、次のようにして行われる 。ソケットが取り付けられたテストヘッドの上方に、被試験 ICデバイスを搬送した後、 被試験 ICデバイスを押圧してソケットに装着することによりソケットの接続端子と被試 験 ICデバイスの外部端子とを接触させる。その結果、被試験 ICデバイスは、ソケット、 テストヘッドおよびケーブルを通じてテスタ本体に電気的に接続される。そして、テス タ本体カゝらケーブルを通じてテストヘッドに供給されるテスト信号を被試験 ICデバイス に印加し、被試験 ICデバイス力も読み出される応答信号をテストヘッドおよびケープ ルを通じてテスタ本体に送ることにより、被試験 ICデバイスの電気的特性を測定する
[0004] 上記試験は、被試験 ICデバイスに熱ストレスを与えて行うことが多 、。被試験 ICデ バイスに熱ストレスを与える方法として、例えば、被試験 ICデバイスをテストヘッドに 搬送する前に、予めヒートプレートにより所定の設定温度に加熱しておく方法が用い られる力 さら〖こ、被試験 ICデバイスを搬送 (吸着) '押圧する装置にヒータを設け、そ のヒータにより被試験 ICデバイスを加熱することも行われている。
[0005] 被試験 ICデバイスの加熱温度を正確に制御するには、被試験 ICデバイスの温度 を測定することが必要である。ここで、 ICデバイスの種類によっては、その内部にサ 一マルダイオードを備えて!/、るものがあり、このサーマルダイオードの電圧を計測す ることにより、被試験 ICデバイスの温度を測定することが可能である。 発明の開示
発明が解決しょうとする課題
[0006] し力しながら、サーマルダイオードを利用して測定する被試験 ICデバイスの温度は 必ずしも正確でない場合が多ぐその測定温度をそのまま利用したのでは、被試験 I cデバイスの加熱温度を正確に制御することは難しい。
[0007] 本発明は、このような実状に鑑みてなされたものであり、電子部品の内部の温度検 出器を利用しつつ、電子部品の温度制御を正確に行うことのできる電子部品試験装 置および温度制御方法を提供することを目的とする。
課題を解決するための手段
[0008] 上記目的を達成するために、第 1に本発明は、電子部品の内部に設けられた温度 検出器からの検出信号に基づいて前記電子部品の内部温度を測定する第 1の温度 測定装置と、前記電子部品の外部に配設されて前記電子部品に熱的に結合された 状態で前記電子部品の温度を測定することのできる、基準の温度を測定する第 2の 温度測定装置と、前記電子部品に熱的に結合されて加熱または吸熱により前記電 子部品を温度制御することのできる温度制御装置と、前記温度制御装置と前記電子 部品とを所定の一定温度にした状態における、前記第 1の温度測定装置による第 1 測定温度と前記第 2の温度測定装置による基準の温度である第 2測定温度との差か ら、前記第 1の温度測定装置に対する補正値を算出するキャリブレーション手段と、 を備え、実稼動中において、前記第 1の温度測定装置によって被試験電子部品の内 部温度を測定し、得られた第 1測定温度と前記キャリブレーション手段で算出した補 正値とに基づいて前記電子部品の内部温度を特定し、前記温度制御装置を加熱ま たは吸熱制御して前記電子部品の内部温度を所定温度にする、ことを特徴とする電 子部品試験装置を提供する (発明 1)。
[0009] 電子部品の内部に設けられた温度検出器としては、例えば、サーマルダイオード、 静電気保護用ダイオード等が挙げられる。この温度検出器は、電子部品の温度計測 を本来の目的とする必要はなぐ何らかの方法により電子部品の温度計測に役立つ ものであれば足りる。
[0010] 一般的に、電子部品の内部に設けられた温度検出器を利用した電子部品の測定 温度は、必ずしも正確でない場合があるが、上記発明(発明 1)のようにキヤリブレー シヨン手段で算出した補正値を用いることにより、電子部品の内部に設けられた温度 検出器を利用して電子部品の正確な温度を取得することができ、したがって、より正 確に電子部品の温度制御を行うことが可能となる。
[0011] 上記発明(発明 1)において、前記温度検出器は、前記電子部品内に形成されたサ 一マルダイオードであってもよ 、 (発明 2)。試験に付されて 、る電子部品の温度は動 的に変動することがあるが、一般的にサーマルダイオードは温度検出に関して高速 な応答性を有しているため、温度変化する電子部品を所定の温度範囲に維持しなが ら試験することが可能となる。
[0012] 上記発明(発明 1)において、前記第 2の温度測定装置は、前記電子部品の外部端 子を接続相手のソケット方向へ押圧し、かつ前記電子部品に熱的に結合するプッシ ャに設けられていることが好ましい (発明 3)。プッシャは電子部品に直接接触するた め、第 2の温度測定装置をプッシャに設けることにより、電子部品の温度を正確に測 定することが可能である。
[0013] 上記発明(発明 1)において、前記温度制御装置は、前記電子部品の外部端子を 接続相手のソケット方向へ押圧し、且つ前記電子部品に熱的に結合するプッシャに 設けられて 、ることが好ま U、 (発明 4)。プッシャは電子部品に直接接触するため、 温度制御装置をプッシャに設けることにより、電子部品の温度制御を効果的に行うこ とが可能である。
[0014] 上記発明(発明 1)においては、被試験電子部品の品種切り替え時に、前記キヤリ ブレーシヨン手段を実行すること (発明 5)、あるいは、被試験電子部品の品種切り替 え時に、オペレータに対して前記キャリブレーション手段の実行を促す手段 (例えば 、モニタへのメッセージの表示、スピーカからの音声案内等)を備えていることが好ま しい (発明 6)。キャリブレーション手段によって取得する補正値は、通常、電子部品 の品種毎に異なる力もである。なお、全ての被試験電子部品毎にキャリブレーション 手段を実行すると、スループットに与える影響が大きくなる。
[0015] また、上記発明(発明 1)においては、電子部品のロット毎の試験開始前に、前記キ ヤリブレーシヨン手段を実行すること (発明 7)、あるいは、電子部品のロット毎の試験 開始前に、オペレータに対して前記キャリブレーション手段の実行を促す手段 (例え ば、モニタへのメッセージの表示、スピーカからの音声案内等)を備えていることが好 ましい (発明 8)。電子部品の品種が同じでも、ロット毎のプロセスの違いにより電子部 品またはその内部の温度検出器の特性が変化して補正値が変わる場合があるから である。
[0016] 第 2に本発明は、あら力じめ、電子部品の内部に設けられた温度検出器力もの検 出信号に基づ 、て前記電子部品の内部温度 (ジャンクション温度)を測定するととも に、前記電子部品の外部に配設されて前記電子部品に熱的に結合された温度測定 装置によって前記電子部品の基準の温度を測定し、前記で測定された両測定温度 の差力 当該温度検出器の補正値を算出して保存しておき、実稼動中に試験に付さ れる電子部品の温度検出器力 の検出信号に基づいて当該電子部品の内部温度 を測定して得られた内部測定温度と、当該電子部品と同一品種の電子部品につい て保存されている前記補正値とに基づいて、当該電子部品を加熱または吸熱して当 該電子部品の内部温度を所定温度に制御する、ことを特徴とする電子部品試験装 置における温度制御方法を提供する (発明 9)。
[0017] 上記発明(発明 9)においては、前記補正値の算出を、被試験電子部品の品種切り 替え時に行うことが好ましく (発明 10)、特に、前記補正値の算出を、電子部品のロッ ト毎の試験開始前にも行うことが好ま 、(発明 11)。
[0018] 第 3に本発明は、電子部品の内部に設けられた温度検出器力 の信号を受けて前 記電子部品の内部温度を測定する第 1の温度測定装置と、前記電子部品の外部に 配設されて前記電子部品に熱的に結合された状態で前記電子部品の温度を測定す ることのできる、基準の温度を測定する第 2の温度測定装置と、前記電子部品に熱的 に結合されて加熱または吸熱により前記電子部品を温度制御することのできる温度 制御装置と、前記温度制御装置と前記電子部品とを所定の一定温度にした状態に おける、前記第 1の温度測定装置による第 1測定温度と前記第 2の温度測定装置に よる基準の温度である第 2測定温度との差から、前記第 1の温度測定装置に対する 補正値を算出するキャリブレーション手段と、を備えることを特徴とする電子部品試験 装置を提供する (発明 12)。 発明の効果
[0019] 本発明によれば、電子部品の内部の温度検出器を利用しつつ、電子部品の温度 制御を正確に行うことができる。
図面の簡単な説明
[0020] [図 1]図 1は、本発明の一実施形態に係る電子部品試験装置を示す平面図である。
[図 2]図 2は、図 1における電子部品試験装置の部分断面 (A— A断面)側面図である
[図 3]図 3は、同電子部品試験装置におけるテストヘッドのコンタクト部の詳細を示す 断面図(図 1の B— B断面図)である。
符号の説明
[0021] 1…電子部品試験装置
10· ··電子部品ハンドリング装置 (ハンドラ)
20· ··テストヘッド
150· ··プッシャ
153…温度印加装置 (温度制御装置)
154…温度センサ (第 2の温度測定装置)
51 · ··温度測定装置 (第 1の温度測定装置)
D—ICデバイス (電子部品)
発明を実施するための最良の形態
[0022] 以下、本発明の実施形態を図面に基づいて説明する。
図 1および図 2に示すように、電子部品試験装置 1は、電子部品ハンドリング装置( 以下「ノヽンドラ」という。 ) 10とテストヘッド 20とテスタ本体 30とを備え、テストヘッド 20と テスタ本体 30とはケーブル 40を介して電気的に接続されている。
[0023] ハンドラ 10には基板 109が設けられており、基板 109上に空トレイ 101、供給トレィ 102、分類トレィ 103、 2つの X—Y搬送装置 104, 105、ヒートプレート 106および 2 つのバッファ部 108が設けられている。また、基板 109には開口部 110が形成されて おり、図 2に示すように、ハンドラ 10の背面側に配置されたテストヘッド 20のコンタクト 部 201には、基板 109の開口部 110を通じて ICデバイス Dが装着されるようになって いる。
[0024] 電子部品試験装置 1は、ハンドラ 10の供給トレィ 102に搭載された試験前の ICデ バイス (電子部品の一例) Dを、 2つの X—Y搬送装置 104, 105によって順次搬送す るとともに、一方の X—Y搬送装置 105によってテストヘッド 20のコンタクト部 201に押 し付け、テストヘッド 20およびケーブル 40を介して ICデバイス Dの試験を実行した後 、試験済みの ICデバイス Dを試験結果に従って分類トレィ 103に格納するように構成 されている。
[0025] なお、本実施形態では、内部に温度検出器としてのサーマルダイオードを備えてい る ICデバイス Dを試験対象とする。サーマルダイオードの両端子は ICデバイス Dの外 部端子に接続されているものとする。サーマルダイオードに微少な一定の電流を流し たときに得られる順方向の電圧の推移特性は、集積回路の形成形態により異なるが 、特に同一製造プロセス又は同一生産ロットに係る ICデバイスの場合には一定した 推移特性を示す。即ち、あるジャンクション温度における順方向電圧値と温度係数 Δ V/°Cとは、同一製造プロセス又は同一生産ロットの場合、近似した特性を示す。こ のため、このサーマルダイオードの電圧を測定することにより、集積回路のジャンクシ ヨン温度 (接合部温度)、ひいては ICデバイス Dの温度を的確に知ることができる。 以下、各装置について説明する。
[0026] 一方の X— Y搬送装置 104は、 X軸方向に沿って設けられた 2本のレール 104aと、 Y軸方向に沿って 2本のレール 104aに移動可能に取り付けられたレール 104bと、レ ール 104bに移動可能に取り付けられた取付ベース 104cと、取付ベース 104cに取り 付けられた 2つの ICデバイス吸着装置 104dとを備えている。レール 104bは X軸方 向に移動可能であり、取付ベース 104cは Y軸方向に移動可能であるため、 ICデバ イス吸着装置 104dは、分類トレィ 103から、供給トレィ 102、空トレイ 101、ヒートプレ ート 106および 2つのバッファ部 108に至る領域まで移動することができる。
[0027] 図 2および図 3に示すように、 ICデバイス吸着装置 104dの下端部には、 ICデバイ ス Dを吸着することのできる吸着部 14が設けられており、この吸着部 14は、 Z軸ァク チユエータ(図示せず)によってロッドを介して Z軸方向(すなわち上下方向)に移動 可能となっている。
[0028] なお、本実施形態では、取付ベース 104cに 2つの ICデバイス吸着装置 104dが設 けられているため、一度に 2個の ICデバイス Dを吸着、搬送および解放することが可 能である。
[0029] 他方の X— Y搬送装置 105は、 X軸方向に沿って設けられた 2本のレール 105aと、 Y軸方向に沿って 2本のレール 105aに移動可能に取り付けられたレール 105bと、レ ール 105bに移動可能に取り付けられた取付ベース 105cと、取付ベース 105cに取り 付けられた 2つの ICデバイス吸着装置 105dとを備えている。レール 105bは X軸方 向に移動可能であり、取付ベース 105cは Y軸方向に移動可能であるため、 ICデバ イス吸着装置 105dは、 2つのバッファ部 108とテストヘッド 20との間の領域を移動す ることがでさる。
[0030] 図 2および図 3に示すように、 ICデバイス吸着装置 105dの下端部には、 ICデバイ ス Dを吸着するとともに、吸着した ICデバイス Dをテストヘッド 20のコンタクト部 201に 押し付けることのできる吸着 ·押圧部 15が設けられており、この吸着 ·押圧部 15は、 Z 軸ァクチユエータ(図示せず)によってロッド 151を介して Z軸方向(すなわち上下方 向)に移動可能となっている。
[0031] なお、本実施形態では、取付ベース 105cに 2つの ICデバイス吸着装置 105dが設 けられているため、一度に 2個の ICデバイス Dを吸着、搬送、押圧および解放するこ とが可能である。
[0032] 2つのバッファ部 108は、レール 108aおよびァクチユエータ(図示せず)によって 2 つの X—Y搬送装置 104, 105の動作領域の間を往復移動可能となるように構成さ れている。図 1中上側のバッファ部 108は、ヒートプレート 106から搬送されてきた IC デバイス Dをテストヘッド 20へ移送する作業を行い、図 1中下側のバッファ部 108は、 テストヘッド 20でテストを終了した ICデバイス Dを払い出す作業を行う。これら 2つの バッファ部 108の存在により、 2つの X— Y搬送装置 104, 105は互いに干渉し合うこ となく同時に動作できるようになって 、る。
[0033] 基板 109上において X—Y搬送装置 104の動作領域に設けられた供給トレィ 102 は、試験前の ICデバイス Dを搭載するトレイであり、分類トレィ 103は、試験済みの IC デバイス Dを試験結果に応じたカテゴリに分類して格納するトレイであり、本実施形態 では分類トレィ 103は 4つ設けられている。
[0034] また、基板 109上に設けられたヒートプレート 106は、たとえばヒータを備えた金属 製のプレートであって、 ICデバイス Dを落とし込む複数の凹部 106aが形成されてお り、この凹部 106aに供給トレィ 102から試験前の ICデバイス Dが X—Y搬送装置 104 により移送されるようになっている。ヒートプレート 106は、 ICデバイス Dに所定の熱ス トレスを印加するための加熱源であり、 ICデバイス Dはヒートプレート 106で所定の温 度に加熱された後、図 1において上側のバッファ部 108を介してテストヘッド 20のコン タクト部 201に装着されるようになって 、る。
[0035] 図 3に示すように、テストヘッド 20のコンタクト部 201には、接続端子であるプローブ ピン 202aを有するソケット 202が固定してある。プローブピン 202aは、 ICデバイス D の接続端子に対応する数およびピッチで設けられており、上方向にパネ付勢されて いる。このプローブピン 202aは、テストヘッド 20を介してテスタ本体 30に電気的に接 続されている。
[0036] ソケット 202には、図 3に示すように、開口部 203aおよびガイドピン 203bを有するソ ケットガイド 203が装着されており、 ICデバイス吸着装置 105dの吸着'押圧部 15に 吸着保持された ICデバイス D力 ソケットガイド 203の開口部 203aを通じてソケット 2 02に押し付けられるようになって!/、る。
[0037] 吸着 ·押圧部 15は、ロッド 151の下端部に取り付けられたプッシャ 150と、プッシャ 1 50が嵌合するプッシャベース 152とを備えている。上記のように、 ICデバイス Dがソケ ット 202〖こ押し付けられるとき、ソケットガイド 203に設けられたガイドピン 203bが、プ ッシャベース 152に形成されたガイド孔 152aに挿入され、これにより ICデバイス Dとソ ケット 202との位置合わせが行われる。
[0038] プッシャ 150の下端部には、吸着 ·押圧部 15が吸着保持している ICデバイス Dの 温度を測定することのできる温度センサ 154が設けられている。また、プッシャ 150の 内部には、吸着 ·押圧部 15が吸着保持して ヽる ICデバイス Dを加熱または冷却する ことのできる温度印加装置 153が設けられている。温度印加装置 153としては、例え ば、ヒータ、ペルチェ素子、冷媒等を使用することができる。温度センサ 154および温 度印加装置 153は、図示しない温度制御部に電気的に接続されている。なお、温度 センサ 154と温度印加装置 153との間には、断熱材を介在させることが好ましい。
[0039] ソケット 202は、ソケットボード 204上に設けられており、ソケットボード 204の下側に はパフォーマンスボード 5が配置されている。パフォーマンスボード 5には、 ICデバイ ス D内のサーマルダイオードの電圧を計測して ICデバイス Dの温度を測定することの できる温度測定装置 51が設けられている。この温度測定装置 51は、温度センサ 154 および温度印加装置 153と同じぐ図示しない温度制御部に電気的に接続されてい る。
[0040] なお、プッシャ 150の温度センサ 154は、 ICデバイス D内のサーマルダイオードを 利用した温度測定装置 51の温度校正用にも使用する基準の温度を測定するため、 白金温度センサのように、経時変化が小さく安定したものを適用することが好ましい。
[0041] ハンドラ 10には、図示しな!、モニタ(表示装置)が設けられて 、る。このモニタには、 ICデバイス Dの品種切り替え時および ICデバイス Dのロット毎の試験開始前に、オペ レータに対して後述するキャリブレーションの実行を促すよう、メッセージが表示され るようになっていてもよい。また、 ICデバイスの品種切り替え時において、未だキヤリ ブレーシヨンが行われていない場合は、所望により、試験の実行を禁止する制御手 段が設けられていてもよい。
[0042] 本実施形態に係る電子部品試験装置 1では、 ICデバイス Dの品種切り替え時およ び ICデバイス Dのロット毎の試験開始前に、次のようにしてキャリブレーションを実行 する。このキャリブレーションは、自動的に実行してもよいし、マニュアルによって実行 してちよい。
[0043] X—Y搬送装置 104の ICデバイス吸着装置 104dは、ハンドラ 10の供給トレィ 102 に搭載された ICデバイス Dを吸着保持してヒートプレート 106の凹部 106aまで移送 し、その凹部 106a上で ICデバイス Dを解放する。 ICデバイス Dは、ヒートプレート 10 6で所定の時間放置されることにより、所定の温度 (例えば 60°C)に加熱される。 X— Y搬送装置 104の ICデバイス吸着装置 104dは、ヒートプレート 106で所定の温度に 加熱された ICデバイス Dを吸着保持し、レール 108aの図 1中左端に位置しているバ ッファ部 108に移送して、ノ ッファ部 108上で ICデバイス Dを解放する。 [0044] ICデバイス Dが載置されたバッファ部 108は、レール 108aの図 1中右端まで移動 する。 X— Y搬送装置 105の ICデバイス吸着装置 105dは、移動してきたバッファ部 1 08上の ICデバイス Dを吸着保持し、テストヘッド 20のコンタクト部 201に移送する。そ して、 ICデバイス吸着装置 105dのプッシャ 150は、基板 109の開口部 110を通じて I Cデバイス Dをコンタクト部 201のソケット 202に押し付け、 ICデバイス Dの外部端子 をソケット 202のプローブピン 202aにコンタクトさせる。
[0045] このとき、プッシャ 150の温度センサ 154によって ICデバイス Dの測定温度 Tを測 定するとともに、パフォーマンスボード 5の温度測定装置 51によって、 ICデバイス D内 のサーマルダイオードに一定の電流を印加したときの電圧値を計測し、当該計測し た電圧値に基づいて ICデバイス Dの測定温度 Tとする。このときの測定温度 Tの値
2 2 は、終始一貫して用いられる非校正の温度値と仮定する。これらの情報は、温度制 御部に送信される。
[0046] 温度制御部は、温度センサ 154による測定温度 Tと、温度測定装置 51による非校 正の測定温度 Tとの差 (T -T )を算出して、これを補正値 Tとして登録 (記憶)する
2 1 2 3
。例えば、温度センサ 154による測定温度 T力 S60°C、温度測定装置 51による非校 正の測定温度 Tが 58°Cであった場合、その差 2°Cを補正値 Tとして登録する。ここ
2 3
で、デバイスは、高温試験 Z低温試験の何れにおいても、ほぼ一定した設定温度条 件で試験実施される場合が多いので、全温度範囲に対する校正を行う必要性はな い。なお、任意の設定温度条件で試験実施したい場合には、複数の温度ポイント (例 えば 120°C, 100°C, 80°C)における差 (T— Τ )を各々算出(例えば 2°C, 0°C, —2
1 2
°C)する。これから、係数は(2°C— (- 2°C) ) / (120°C-80°C) =0. 1として得られ る。得られた係数を補正値 Tと共に登録しておくことで、任意の設定温度条件で運
3
用可能になる。
[0047] 以上のようにして取得する補正値 Tは、通常、 ICデバイス Dの品種により異なるた
3
め、上記キャリブレーションは、 ICデバイス Dの品種切り替え時に行う。また、 ICデバ イス Dの品種が同じでも、ロット毎のプロセスの違いにより ICデバイス Dのサーマルダ ィオードの特性がわずかに変化し得るため、上記キャリブレーションは、 ICデバイス D のロット毎の試験開始前にも行うことが望ましい。 [0048] 次に、実稼動時における電子部品試験装置 1の動作を説明する。
ICデバイス Dをソケット 202にコンタクトさせるまでの動作は、上記キャリブレーション における動作と同じである。
[0049] プッシャ 150力 Cデバイス Dをコンタクト部 201のソケット 202に押し付け、 ICデバィ ス Dの外部端子がソケット 202のプローブピン 202aに接続したら、温度測定装置 51 によって、 ICデバイス D内のサーマルダイオードの電圧を計測して ICデバイス Dの測 定温度 Tを求め、その情報を温度制御部に送信する。
4
[0050] 温度制御部は、キャリブレーションで登録された補正値 Tを読み出し、上記温度測
3
定装置 51で測定された測定温度 Tに補正値 Tを加えた値 (T +T )を、 ICデバイ
4 3 4 3
ス Dの実際の温度 Tとして使用する。そして、実際の温度 Tが目的とする温度とずれ
5 5
ている場合には、 ICデバイス Dが目的温度となるように、プッシャ 150内部の温度印 加装置 153を制御する。また、それに加えて、ヒートプレート 106の温度制御を行って ちょい。
[0051] 例えば、温度測定装置 51で測定された測定温度 T力 9°Cであり、補正値 Tが 2
4 3
°Cであった場合には、 ICデバイス Dの実際の温度 Tを 61°Cと判断し、 目的温度が 6
5
0°Cであった場合には、 ICデバイス Dの温度が 1°C下がるように、プッシャ 150内部の 温度印加装置 153を制御する。また、例えば、温度測定装置 51で測定された測定温 度 T力 7°Cであり、補正値 Tが 2°Cであった場合には、 ICデバイス Dの実際の温度
4 3
Tを 59°Cと判断し、 目的温度が 60°Cであった場合には、 ICデバイス Dの温度が 1°C
5
上がるように、プッシャ 150内部の温度印加装置 153を制御する。
[0052] 上記のようにして ICデバイス Dの温度制御が連続的に維持されながらデバイス試験 が開始されると、 ICデバイス Dにはテスタ本体 30からテストヘッド 20を通じてテスト信 号が印加され、 ICデバイス Dからの応答信号はテストヘッド 20を通じてテスタ本体 30 に送られる。これにより、 ICデバイス Dの良否判定、性能別のランク分けが行われる。 ここで、 ICデバイス Dの消費電力は試験条件により動的に変動する力 ICデバイス D 内のサーマルダイオードが数ミリ秒程度の高速な温度検出の応答性を有しているの で、実用的に所定の温度範囲を維持して試験を行うことができる。
[0053] ICデバイス Dの試験が終了したら、 X—Y搬送装置 105の ICデバイス吸着装置 10 5dは、試験済みの ICデバイス Dをレール 108aの図 1中右端に位置しているバッファ 部 108に移送し、バッファ部 108は図 1中左端まで移動する。 X— Y搬送装置 104の I Cデバイス吸着装置 104dは、試験済みの ICデバイス Dをバッファ部 108から吸着保 持し、試験結果に従って分類トレィ 103に格納する。
[0054] 一般的に、 ICデバイス Dの内部に存在するサーマルダイオード等を利用した ICデ バイス Dの測定温度は、必ずしも正確でない場合がある力 上記のようにキヤリブレー シヨンによる補正値を用いることにより、サーマルダイオードの高速な温度検出の応 答性を利用して ICデバイス Dの的確な温度制御が可能となる。
[0055] 以上説明した実施形態は、本発明の理解を容易にするために記載されたものであ つて、本発明を限定するために記載されたものではない。したがって、上記実施形態 に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物を も含む趣旨である。
[0056] 例えば、上記ハンドラ 10は、チャンバレスタイプのハンドラである力 チャンバタイプ のハンドラであってもよい。この場合、プッシャ 150の温度印加装置 153に加えて又 はプッシャ 150の温度印加装置 153に替えて、チャンバ内を循環するエアによって I Cデバイス Dに温度を印加してもょ ヽ。
[0057] また、本実施形態では、 ICデバイス内のサーマルダイオードを利用して ICデバイス の温度を測定した力 本発明はこれに限定されるものではなぐ ICデバイス内の内部 温度 (ジャンクション温度)が測定可能な他の温度検出器 (温度依存要素)を利用し て ICデバイスの温度を測定してもよい。例えば、試験実行時に使用されない入力端 子や出力端子が存在する場合や、試験の実行に支障とならな!/、入力端子や出力端 子が存在する場合においては、それらの入力端子や出力端子に接続されている静 電気保護用ダイオードを適用してもよい。但し、この場合には電源ノイズの影響を受 け易くなるため、電源ノイズを除去する処理が必要となる。さらには、 ICデバイス内の ジャンクション温度と相関関係を示す他の温度依存要素を利用してもよい。
[0058] また、補正値 Tの取得は、一定の温度状態で行えばよ!、。従って、 ICデバイスに
3
電源を供給しない無消費電力とした条件、または ICデバイスに一定電力を供給した 実稼働に近い条件、の何れの条件でも補正値 Tを取得することができる。なお、電 源供給時において、静電気保護用ダイオードを温度測定に適用する場合には、電 源供給を OFFした直後に温度測定することで、電源ノイズの影響を受けな 、ようにす ることが可能である。
[0059] また、本実施形態では、 ICデバイス内のサーマルダイオードを温度測定装置 51の みが利用する場合にっ 、て説明した力 テスタ本体 30側でも ICデバイス内の温度検 出にサーマルダイオードを使用したい場合がある。この場合には、サーマルダイォー ドに印加する電流を温度測定装置 51側から供給するか、テスタ本体 30側から供給 するかを予め決めておき、サーマルダイオードの両端の電圧信号を温度測定装置 5 1が受けるように接続することで、両者にて利用することができる。これにより、テスタ 本体 30側とハンドラ 10側との両者で ICデバイスのジャンクション温度の状況を常時 把握できる。
[0060] また、本実施形態では、 ICデバイス内のサーマルダイオードからの信号を温度測 定装置 51が受信する接続構成で説明したが、テスタ本体 30側でサーマルダイォー ドの信号を受信できる接続構成とし、テスタ本体 30側で計測した電圧値または演算 処理した測定温度 Tをノヽンドラ 10側の温度測定装置 51に供給するようにしてもょ ヽ
2
。これにより、テスタ本体 30側とハンドラ 10側との両者で ICデバイスのジャンクション 温度の状況を常時把握できる。
産業上の利用可能性
[0061] 本発明の電子部品試験装置および温度制御方法は、電子部品の正確な温度制御 を必要とする試験を行うのに有用である。

Claims

請求の範囲
[1] 電子部品の内部に設けられた温度検出器からの検出信号に基づいて前記電子部 品の内部温度を測定する第 1の温度測定装置と、
前記電子部品の外部に配設されて前記電子部品に熱的に結合された状態で前記 電子部品の温度を測定することのできる、基準の温度を測定する第 2の温度測定装 置と、
前記電子部品に熱的に結合されて加熱または吸熱により前記電子部品を温度制 御することのできる温度制御装置と、
前記温度制御装置と前記電子部品とを所定の一定温度にした状態における、前記 第 1の温度測定装置による第 1測定温度と前記第 2の温度測定装置による基準の温 度である第 2測定温度との差から、前記第 1の温度測定装置に対する補正値を算出 するキャリブレーション手段と、を備え、
実稼動中において、前記第 1の温度測定装置によって被試験電子部品の内部温 度を測定し、得られた第 1測定温度と前記キャリブレーション手段で算出した補正値 とに基づ 1、て前記電子部品の内部温度を特定し、前記温度制御装置を加熱または 吸熱制御して前記電子部品の内部温度を所定温度にする、
ことを特徴とする電子部品試験装置。
[2] 前記温度検出器は、前記電子部品内に形成されたサーマルダイオードであること を特徴とする請求項 1に記載の電子部品試験装置。
[3] 前記第 2の温度測定装置は、前記電子部品の外部端子を接続相手のソケット方向 へ押圧し、かつ前記電子部品に熱的に結合するプッシャに設けられていることを特 徴とする請求項 1に記載の電子部品試験装置。
[4] 前記温度制御装置は、前記電子部品の外部端子を接続相手のソケット方向へ押 圧し、且つ前記電子部品に熱的に結合するプッシャに設けられていることを特徴とす る請求項 1に記載の電子部品試験装置。
[5] 被試験電子部品の品種切り替え時に、前記キャリブレーション手段を実行すること を特徴とする請求項 1に記載の電子部品試験装置。
[6] 被試験電子部品の品種切り替え時に、オペレータに対して前記キャリブレーション 手段の実行を促す手段を備えたことを特徴とする請求項 1に記載の電子部品試験装 置。
[7] 電子部品のロット毎の試験開始前に、前記キャリブレーション手段を実行することを 特徴とする請求項 1に記載の電子部品試験装置。
[8] 電子部品のロット毎の試験開始前に、オペレータに対して前記キャリブレーション手 段の実行を促す手段を備えたことを特徴とする請求項 1に記載の電子部品試験装置
[9] あら力じめ、電子部品の内部に設けられた温度検出器からの検出信号に基づいて 前記電子部品の内部温度を測定するとともに、前記電子部品の外部に配設されて前 記電子部品に熱的に結合された温度測定装置によって前記電子部品の基準の温度 を測定し、前記で測定された両測定温度の差から当該温度検出器の補正値を算出 して保存しておき、
実稼動中に試験に付される電子部品の温度検出器力 の検出信号に基づいて当 該電子部品の内部温度を測定して得られた内部測定温度と、当該電子部品と同一 品種の電子部品につ 、て保存されて 、る前記補正値とに基づ 、て、当該電子部品 を加熱または吸熱して当該電子部品の内部温度を所定温度に制御する、 ことを特徴とする電子部品試験装置における温度制御方法。
[10] 前記補正値の算出は、電子部品の品種切り替え時に行うことを特徴とする請求項 9 に記載の電子部品試験装置における温度制御方法。
[11] 前記補正値の算出は、電子部品のロット毎の試験開始前に行うことを特徴とする請 求項 9に記載の電子部品試験装置における温度制御方法。
[12] 電子部品の内部に設けられた温度検出器からの信号を受けて前記電子部品の内 部温度を測定する第 1の温度測定装置と、
前記電子部品の外部に配設されて前記電子部品に熱的に結合された状態で前記 電子部品の温度を測定することのできる、基準の温度を測定する第 2の温度測定装 置と、
前記電子部品に熱的に結合されて加熱または吸熱により前記電子部品を温度制 御することのできる温度制御装置と、 前記温度制御装置と前記電子部品とを所定の一定温度にした状態における、前記 第 1の温度測定装置による第 1測定温度と前記第 2の温度測定装置による基準の温 度である第 2測定温度との差から、前記第 1の温度測定装置に対する補正値を算出 するキャリブレーション手段と、
を備えることを特徴とする電子部品試験装置。
PCT/JP2005/015481 2005-08-25 2005-08-25 電子部品試験装置および電子部品試験装置における温度制御方法 WO2007023557A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CNA2005800514038A CN101248361A (zh) 2005-08-25 2005-08-25 电子器件测试装置与电子测试装置中的温度控制方法
JP2007531999A JPWO2007023557A1 (ja) 2005-08-25 2005-08-25 電子部品試験装置および電子部品試験装置における温度制御方法
US11/990,435 US7768286B2 (en) 2005-08-25 2005-08-25 Electronic device testing apparatus and temperature control method in an electronic device testing apparatus
KR1020087006854A KR100930657B1 (ko) 2005-08-25 2005-08-25 전자부품 시험장치 및 전자부품 시험장치에서의온도제어방법
PCT/JP2005/015481 WO2007023557A1 (ja) 2005-08-25 2005-08-25 電子部品試験装置および電子部品試験装置における温度制御方法
TW095130792A TW200720681A (en) 2005-08-25 2006-08-22 Electronic component test apparatus and temperature control method in electronic component test apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/015481 WO2007023557A1 (ja) 2005-08-25 2005-08-25 電子部品試験装置および電子部品試験装置における温度制御方法

Publications (1)

Publication Number Publication Date
WO2007023557A1 true WO2007023557A1 (ja) 2007-03-01

Family

ID=37771315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/015481 WO2007023557A1 (ja) 2005-08-25 2005-08-25 電子部品試験装置および電子部品試験装置における温度制御方法

Country Status (6)

Country Link
US (1) US7768286B2 (ja)
JP (1) JPWO2007023557A1 (ja)
KR (1) KR100930657B1 (ja)
CN (1) CN101248361A (ja)
TW (1) TW200720681A (ja)
WO (1) WO2007023557A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013124935A (ja) * 2011-12-14 2013-06-24 Nec Fielding Ltd ストレステストシステムおよびその方法、ストレステスト制御装置およびその制御方法と制御プログラム、冷却加熱装置、および、テストプログラム
JP5916025B1 (ja) * 2015-12-11 2016-05-11 上野精機株式会社 電気特性テスト装置
JP2017032303A (ja) * 2015-07-29 2017-02-09 日立オートモティブシステムズ株式会社 バーンイン試験装置及び方法
WO2020129351A1 (ja) * 2018-12-21 2020-06-25 株式会社 Synax ハンドラ
CN113182198A (zh) * 2020-01-14 2021-07-30 鸿劲精密股份有限公司 具温控单元的测试装置及其应用的测试分类设备
US11353500B2 (en) 2019-01-15 2022-06-07 Synax Co., Ltd. Contactor and handler

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7969175B2 (en) 2009-05-07 2011-06-28 Aehr Test Systems Separate test electronics and blower modules in an apparatus for testing an integrated circuit
JPWO2011007419A1 (ja) * 2009-07-14 2012-12-20 株式会社アドバンテスト 電子部品押圧装置、電子部品試験装置及びインタフェース装置
JP5601863B2 (ja) * 2010-03-29 2014-10-08 三菱電機株式会社 電力半導体装置
US8854069B2 (en) * 2011-01-05 2014-10-07 Texas Instruments Incorporated Production integrated circuit test handler using microcontroller reading a thermal diode of a device under test for temperature control
JP6067705B2 (ja) * 2011-08-17 2017-01-25 ラム リサーチ コーポレーションLam Research Corporation 多重ヒータ配列の温度監視及び制御のためのシステムと方法
KR20140080750A (ko) * 2012-12-14 2014-07-01 한국전자통신연구원 반도체 소자 테스트 장치
US9470720B2 (en) * 2013-03-08 2016-10-18 Sandisk Technologies Llc Test system with localized heating and method of manufacture thereof
US10914635B2 (en) 2014-09-29 2021-02-09 Rosemount Inc. Wireless industrial process monitor
JP2016188782A (ja) * 2015-03-30 2016-11-04 セイコーエプソン株式会社 電子部品搬送装置および電子部品検査装置
CN105157865B (zh) * 2015-08-17 2017-07-11 济南晶恒电子有限责任公司 二极管的热焊接试验台及试验方法
TWI603172B (zh) * 2015-10-26 2017-10-21 陽榮科技股份有限公司 Ic溫控裝置及方法
KR102175798B1 (ko) * 2015-11-13 2020-11-06 주식회사 아이에스시 인터페이스 모듈 및 이를 포함하는 반도체 소자 테스트 장치
KR102478111B1 (ko) * 2016-07-27 2022-12-14 삼성전자주식회사 테스트 장치
US10479495B2 (en) * 2016-08-10 2019-11-19 Bell Helicopter Textron Inc. Aircraft tail with cross-flow fan systems
US10514416B2 (en) * 2017-09-29 2019-12-24 Advantest Corporation Electronic component handling apparatus and electronic component testing apparatus
CN110618370B (zh) * 2018-06-04 2022-02-01 苏州能讯高能半导体有限公司 测试装置
JP7143134B2 (ja) * 2018-07-26 2022-09-28 株式会社アドバンテスト ロードボード及び電子部品試験装置
CN111951878A (zh) * 2019-05-16 2020-11-17 第一检测有限公司 检测设备、芯片承载装置及电连接单元
KR102295435B1 (ko) 2020-03-12 2021-08-31 에이엠티 주식회사 미세 피치를 갖는 디바이스의 얼라인 및 테스트장치 그리고 디바이스의 얼라인방법
WO2022111821A1 (en) * 2020-11-30 2022-06-02 Advantest Corporation Electronic component handling apparatus and testing method
US11573267B1 (en) * 2021-11-12 2023-02-07 Advantest Corporation Electronic component handling apparatus and electronic component testing apparatus
CN114442694B (zh) * 2021-12-31 2023-03-21 重庆长安新能源汽车科技有限公司 一种自校准的碳化硅电机控制器结温估算方法
JP2023116053A (ja) * 2022-02-09 2023-08-22 株式会社アドバンテスト 電子部品ハンドリング装置、及び、電子部品試験装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001165990A (ja) * 1999-12-07 2001-06-22 Seiko Epson Corp 電子デバイスの温度制御方法及び装置
JP2004245756A (ja) * 2003-02-17 2004-09-02 Alps Electric Co Ltd ジャンクション温度の推定方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0964128A (ja) * 1995-08-28 1997-03-07 Hitachi Ltd バーンイン方法および装置
JP3784884B2 (ja) * 1996-05-15 2006-06-14 エスペック株式会社 試料実測式環境試験装置
JPH09312359A (ja) * 1996-05-22 1997-12-02 Nec Gumma Ltd 半導体集積回路の内部温度測定方法ならびにこれを用い た半導体集積回路の冷却方法および冷却装置
JP2000035462A (ja) * 1998-07-16 2000-02-02 Advantest Corp 半導体試験装置
SG98373A1 (en) * 1998-11-25 2003-09-19 Advantest Corp Device testing apparatus
JP4054473B2 (ja) * 1999-02-22 2008-02-27 株式会社アドバンテスト 電子部品試験装置および電子部品の試験方法
WO2003075025A1 (fr) * 2002-03-07 2003-09-12 Advantest Corporation Dispositif d'essai de composants electroniques
JP4086613B2 (ja) * 2002-10-09 2008-05-14 Necエレクトロニクス株式会社 半導体装置および内部温度測定方法
US7345495B2 (en) * 2004-06-30 2008-03-18 Intel Corporation Temperature and voltage controlled integrated circuit processes

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001165990A (ja) * 1999-12-07 2001-06-22 Seiko Epson Corp 電子デバイスの温度制御方法及び装置
JP2004245756A (ja) * 2003-02-17 2004-09-02 Alps Electric Co Ltd ジャンクション温度の推定方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013124935A (ja) * 2011-12-14 2013-06-24 Nec Fielding Ltd ストレステストシステムおよびその方法、ストレステスト制御装置およびその制御方法と制御プログラム、冷却加熱装置、および、テストプログラム
JP2017032303A (ja) * 2015-07-29 2017-02-09 日立オートモティブシステムズ株式会社 バーンイン試験装置及び方法
JP5916025B1 (ja) * 2015-12-11 2016-05-11 上野精機株式会社 電気特性テスト装置
WO2020129351A1 (ja) * 2018-12-21 2020-06-25 株式会社 Synax ハンドラ
JP2020101448A (ja) * 2018-12-21 2020-07-02 株式会社 Synax ハンドラ
US11231456B2 (en) 2018-12-21 2022-01-25 Synax Co., Ltd. Handler
US11353500B2 (en) 2019-01-15 2022-06-07 Synax Co., Ltd. Contactor and handler
CN113182198A (zh) * 2020-01-14 2021-07-30 鸿劲精密股份有限公司 具温控单元的测试装置及其应用的测试分类设备
CN113182198B (zh) * 2020-01-14 2023-08-29 鸿劲精密股份有限公司 具温控单元的测试装置及其应用的测试分类设备

Also Published As

Publication number Publication date
JPWO2007023557A1 (ja) 2009-02-26
US7768286B2 (en) 2010-08-03
KR100930657B1 (ko) 2009-12-09
US20090051381A1 (en) 2009-02-26
TWI300485B (ja) 2008-09-01
TW200720681A (en) 2007-06-01
CN101248361A (zh) 2008-08-20
KR20080040016A (ko) 2008-05-07

Similar Documents

Publication Publication Date Title
WO2007023557A1 (ja) 電子部品試験装置および電子部品試験装置における温度制御方法
US6552561B2 (en) Apparatus and method for controlling temperature in a device under test using integrated temperature sensitive diode
EP3045921B1 (en) Prober
EP1574865B1 (en) Pressing member and electronic component handling device
US20060164111A1 (en) Temperature sensing and prediction in IC sockets
CN101495821A (zh) 集成电路插座中的温度感测与预测
KR20080009017A (ko) 프로버 및 탐침 접촉 방법
KR101841627B1 (ko) 고정 유닛, 고정구, 핸들러 장치 및 시험 장치
US9874602B2 (en) Test board support platform for supporting a test board
JP4514787B2 (ja) 電子部品試験装置および電子部品試験装置における温度制御方法
KR20180028759A (ko) 테스트 핸들러
US6978541B1 (en) Apparatus and methods to enhance thermal energy transfer in IC handler systems
KR100702021B1 (ko) 반도체 장치용 컨택터 장치 및 반도체 장치의 시험 방법
US20070132471A1 (en) Method and apparatus for testing integrated circuits over a range of temperatures
US11828794B2 (en) Placement table, testing device, and testing method
KR20070070769A (ko) 반도체 패키지의 테스트 소켓 장치
JPH1144727A (ja) 回路基板検査装置
KR100505070B1 (ko) 반도체 소자 테스트 핸들러의 소자 온도 측정장치
KR102202079B1 (ko) 온도 측정 장치 및 이를 이용하는 테스트 핸들러의 온도 교정 방법
JP3597937B2 (ja) 試料加熱装置
KR100505072B1 (ko) 반도체 소자 테스트 핸들러의 소자 온도 측정장치
JPH1019958A (ja) Icのインサーキットテスタによる足浮き検出方法並びに接触式ヒータープローブ
JPH08213438A (ja) 検査方法及び検査装置
KR20020078718A (ko) 반도체 소자 검사용 테스트 핸들러의 콘텍터 모듈
JPH1183955A (ja) 回路基板検査装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007531999

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580051403.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087006854

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11990435

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 05774655

Country of ref document: EP

Kind code of ref document: A1