WO2007020754A1 - 溶融ガラスの導管構造、および該導管構造を用いた減圧脱泡装置 - Google Patents

溶融ガラスの導管構造、および該導管構造を用いた減圧脱泡装置 Download PDF

Info

Publication number
WO2007020754A1
WO2007020754A1 PCT/JP2006/312925 JP2006312925W WO2007020754A1 WO 2007020754 A1 WO2007020754 A1 WO 2007020754A1 JP 2006312925 W JP2006312925 W JP 2006312925W WO 2007020754 A1 WO2007020754 A1 WO 2007020754A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten glass
conduit
refractory
layer
vacuum degassing
Prior art date
Application number
PCT/JP2006/312925
Other languages
English (en)
French (fr)
Inventor
Michito Sasaki
Atsushi Tanigaki
Takashi Kijima
Yuusuke Takei
Original Assignee
Asahi Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Company, Limited filed Critical Asahi Glass Company, Limited
Priority to JP2007530923A priority Critical patent/JP5109086B2/ja
Publication of WO2007020754A1 publication Critical patent/WO2007020754A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/42Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls
    • C03B5/43Use of materials for furnace walls, e.g. fire-bricks
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/225Refining
    • C03B5/2252Refining under reduced pressure, e.g. with vacuum refiners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/225Refining

Definitions

  • the present invention relates to a molten glass conduit structure.
  • the conduit structure for molten glass of the present invention can be used as a conduit for molten glass in a glass production apparatus, and can be used as, for example, a riser pipe, a vacuum degassing tank, or a downcomer of a vacuum degassing apparatus.
  • the molten glass conduit structure of the present invention is suitable as a riser pipe, a vacuum degassing tank, or a downcomer of a vacuum degassing apparatus.
  • the present invention also provides a vacuum degassing apparatus using the conduit structure as a molten glass conduit, particularly as a riser pipe, a vacuum degassing tank or a downcomer, and a vacuum degassing method of the molten glass using the vacuum degassing apparatus.
  • a vacuum degassing apparatus using the conduit structure as a molten glass conduit, particularly as a riser pipe, a vacuum degassing tank or a downcomer, and a vacuum degassing method of the molten glass using the vacuum degassing apparatus.
  • a refractory brick may be used as a constituent material of a molten glass conduit formed of a hollow tube.
  • electric bricks are usually used because of their excellent heat resistance and corrosion resistance to molten glass.
  • a molten glass conduit is made using electric bricks, it cannot be made as a seamless hollow tube.
  • a plurality of electric bricks formed in a donut shape having an opening in the center is prepared and stacked to form a hollow tube.
  • donut shaped electric bricks there are cases where donut shaped electric bricks with no joints are used, but a plurality of electric bricks that are formed in a substantially fan shape or wedge shape are prepared, and these are made into circles. It is more common to assemble along the circumferential direction into a donut shape.
  • joint materials are generally less dense than electric bricks, and joint materials that are in direct contact with molten glass are more easily eroded than electric bricks. For this reason, even if there is little erosion of the electric brick itself, there is a problem that the erosion of the joint between the electric bricks proceeds selectively. As a result, the force that can delay the seepage of the molten glass with the joint force is greater than when the joint portion is not filled. If the joint material is eroded, the joint force will also seep out of the molten glass. Become.
  • a knock-up (support structure) is provided around the molten glass conduit.
  • the knock-up presses the conduit toward the center to bring the joints between the electric fingers assembled in a donut shape into close contact.
  • the knock-up has functions such as heat insulation and reinforcement of the conduit.
  • a refractory brick or a solid heat insulating material is usually used.
  • fireproof bricks fired bricks with normal cost are used.
  • fired bricks with desired characteristics are used according to the function required for knock-up. Among them, those excellent in corrosion resistance against molten glass are preferably used.
  • a solid heat insulating material is preferably used in order to exhibit a heat insulating and heat retaining function.
  • the solid heat insulating material is satisfactory in terms of heat insulation and heat retention ability, but among the electric bricks and baked range, the corrosion resistance to the molten glass is inferior to those having excellent corrosion resistance to the molten glass. For this reason, when the molten glass oozes from the joint between the electric bricks constituting the conduit and reaches the solid heat insulating material constituting the backup, the insulated brick may be eroded significantly by the molten glass. If the solid heat insulating material constituting the knock-up is eroded, the life of the vacuum degassing apparatus itself may be shortened.
  • Patent Document 1 discloses that the smoothness is 5 mm or less and the gap between adjacent bricks is 1 mm or less. Patent Document 1 also prevents leakage of molten glass from the pipeline. In order to stop, it is also disclosed that a ramming material is filled in the gap between the inner surface brick layer and the backup brick layer.
  • Patent Document 2 discloses a molten glass conduit structure in which a flow velocity is slow, a joint is formed at a corner, and a cooling pipe is disposed outside the joint.
  • the ramming material filled in the gap between the inner surface brick layer and the backup range layer has a density higher than that of the electric brick. It is inferior. Therefore, the ramming material is gradually eroded by the molten glass that also exudes the joint force reaching the ramming material. Therefore, compared with the case where no ramming material is used, it is possible to delay the arrival of the molten glass that has also exuded joint strength to reach the backup, but if the ramming material is eroded, the molten glass has exuded from the joint portion. Molten glass will reach the backup.
  • Patent Document 1 exudes molten glass from joints by precisely polishing the contact surface between bricks of the inner surface brick layer so that the gap between adjacent bricks is 1 mm or less.
  • the molten glass that exudes was expected to fill the joints, but the joints that were originally dense structures were gradually eroded by the bricks around the joints. There is a possibility of spreading gradually. Therefore, in the long term, it is difficult to prevent the molten glass from seeping out from the joint.
  • Patent Document 1 JP 2000-7346 A (US Pat. No. 6,334,336)
  • Patent Document 2 JP 2003-128422 A
  • the present invention uses molten glass that has oozed from the joints between the electric bricks constituting the conduit without breaking the bricks without using cooling means.
  • Another object of the present invention is to provide a molten glass conduit structure which prevents the solid heat insulating material constituting the conduit knock-up from being eroded.
  • the conduit structure of the molten glass of the present invention is preferably used as a riser pipe, a vacuum degassing tank or a downfall pipe of a vacuum degassing apparatus.
  • the present invention provides a vacuum degassing apparatus using the molten glass conduit structure of the present invention as a molten glass conduit, in particular, ascending pipe, vacuum degassing tank or descending pipe, and melting using the vacuum degassing apparatus.
  • An object of the present invention is to provide a vacuum degassing method for glass.
  • the present invention provides a molten glass conduit structure comprising a conduit and a backup provided around the conduit,
  • the conduit is a hollow tube in which electric bricks are arranged in the longitudinal direction and the circumferential direction,
  • the backup is composed of a refractory layer provided outside the conduit, and a heat insulating material layer provided outside the refractory layer,
  • the refractory layer includes a refractory brick layer formed by disposing a refractory brick along a longitudinal direction and a circumferential direction of the conduit,
  • the heat insulating material layer includes a solid heat insulating material layer formed by disposing a solid heat insulating material along a longitudinal direction and a circumferential direction of the conduit,
  • the electric brick and the refractory regen layer constituting the conduit are configured so that the part that becomes a temperature equal to the pour point of the glass is located in the refractory layer.
  • a molten glass conduit structure (hereinafter referred to as “the conduit structure of the present invention”) is provided.
  • the refractory brick is selected from a group force that can be a fired brick having any of the following characteristics.
  • the solid heat insulating material having any of the following characteristics is selected as a group force that also has a solid heat insulating material force.
  • the conduit structure of the present invention is preferably used as an ascending pipe, a depressurizing degassing tank or a descending pipe of a vacuum degassing apparatus having an ascending pipe, a vacuum degassing tank and a descending pipe.
  • the present invention also provides a vacuum degassing apparatus using the conduit structure of the present invention as a molten glass conduit.
  • the present invention is a method for degassing molten glass using a vacuum degassing apparatus having an ascending pipe, a vacuum degassing tank and a descending pipe,
  • a vacuum degassing method for molten glass using the conduit structure of the present invention is provided in at least one of the ascending pipe, the vacuum degassing tank, and the downcomer.
  • the conduit structure of the present invention does not require a cooling means such as a cooling pipe in order to prevent the molten glass from seeping out. For this reason, the conduit structure is not complicated. In addition, refractory bricks may break due to water leakage from the cooling pipe, or the surrounding area may be contaminated by leaked cooling water. There is no.
  • the solid heat insulating material constituting the knock-up is prevented from being eroded by the molten glass oozing out from the joint portion between the electric bricks constituting the conduit. . For this reason, the lifetime of an apparatus can be extended significantly.
  • FIG. 1 is a cross-sectional view of a vacuum degassing apparatus provided with a molten glass conduit structure of the present invention.
  • FIG. 2 is a partially enlarged view showing a portion including the rising pipe 13 and the backup 15 of FIG.
  • FIG. 3 is a cross-sectional view of FIG. 2 taken along line aa.
  • FIG. 4 is a view similar to FIG. However, the cross-sectional shape of the conduit structure is different from that in Fig. 3.
  • FIG. 1 is a cross-sectional view of a vacuum degassing apparatus having a molten glass conduit structure according to the present invention.
  • the vacuum degassing apparatus 1 shown in FIG. 1 is used for a process in which molten glass G in the melting tank 30 is degassed under vacuum and continuously supplied to the next processing tank 40.
  • the vacuum degassing apparatus 1 has a vacuum housing 11 in which the inside is kept in a vacuum state when used.
  • a decompression defoaming tank 12 is housed and disposed so that its long axis is oriented in the horizontal direction.
  • a rising pipe 13 oriented in the vertical direction is attached to the lower surface of one end of the vacuum degassing tank 12, and a lowering pipe 14 is attached to the lower surface of the other end.
  • the vacuum degassing tank 12 In the vacuum degassing apparatus 1, the vacuum degassing tank 12, the rising pipe 13 and the descending pipe 14 are electric brick hollow tubes having a rectangular cross section. At the lower ends of the ascending pipe 13 and the descending pipe 14, extension pipes 18 and 19 made of platinum or platinum alloy are provided. In the decompression housing 11, a backup 15 is disposed around the ascending pipe 13 and the descending pipe 14.
  • a heat insulating material 22 is disposed around the vacuum degassing tank 12.
  • FIG. 2 is a partially enlarged view showing a portion including the rising pipe 13 and the backup 15 of FIG.
  • FIG. 3 is a cross-sectional view of FIG. 2 taken along line aa.
  • the riser 13 will be described below, but the downcomer 14 has the same configuration.
  • the rising pipe 13 is a hollow pipe having a rectangular cross section, and the cross-sectional shape of the hollow portion forming the flow path of the molten glass is circular.
  • the riser 13 is formed by stacking electric bricks 13a. As shown in FIG. 3, by combining two electric bricks 13a having a rectangular cross section and a semicircular cutout, a hollow tube structure having a rectangular cross section and a circular cross section is formed. The The ascending pipe 13 is formed by stacking such hollow pipe structures. [0022] Between the electric bricks 13a constituting the vicinity of the lower end of the rising pipe 13, a fixing flange 18a provided at the upper end of the extension pipe 18 is inserted.
  • the extension pipe 18 is made of platinum or a gold alloy, and is a cylindrical body having a circular cross section. Further, the lower end of the ascending pipe 13 (the lower end opening of the decompression housing 11) is sealed by a sealing flange 18b provided near the upper end of the extension pipe 18.
  • the type of the electric brick 13a constituting the riser 13 is not particularly limited and may be appropriately selected from those known as electric bricks used as the constituent material of the conduit of the molten glass. Can do. Specifically, ⁇ -alumina-based electric bricks, a, j8-alumina-based electric bricks, ⁇ -alumina-based electric bricks such as alumina-based electric bricks, zirco-urea electric bricks, alumina-zirco-yu-silica ) Electric bricks such as quality electric bricks.
  • alumina electric bricks include: a Asmaric electric bricks, Marsnite (registered trademark, the same shall apply hereinafter) A (Asahi Glass Co., Ltd.), Monoflux A (Sangoban TM Co., Ltd.) ), A, j8—As alumina electric bricks, Marsnite G (made by Asahi Glass Co., Ltd.), Monoflux M (made by Saint-Gobain Thiem Co., Ltd.), Jagaichi M (Sochete / European de Prodeui / Leflatatael), ⁇ -alumina electric bricks, Marsnite U (Asahi Glass Co., Ltd.), Monoflux ⁇ ⁇ (Sangoban Tem Co., Ltd.), Jaguar ⁇ (Sochete ⁇ European de ⁇ Prodeui ⁇ Leflatatael).
  • X-950 manufactured by Asahi Glass Co., Ltd.
  • AZS electric bricks include Zirconite (registered trademark, the same shall apply hereinafter) 1681, Zirconite 1691, Zirconite 1711 (manufactured by Asahi Glass Co., Ltd.), Monoflux S3, Monoflux S4, Monoflux S5 (Sangobaban) CHEM Co., Ltd.), UCOL 50 1, CUALL 1 (COLHART), FC101, FC4101 (Worsch), ZAC168 1, ZAC1711 (Elect Mouth Rephtaltail).
  • the knock-up 15 includes a refractory layer 16 provided outside the riser pipe 13, and a heat insulating material layer 17 provided outside the refractory layer 16.
  • the refractory layer 16 is a refractory brick layer in which refractory bricks 16 a are arranged along the longitudinal direction and the circumferential direction of the riser 13.
  • the heat insulating material layer 17 is a solid heat insulating material layer in which the solid heat insulating material 17a is disposed along the longitudinal direction and the circumferential direction of the riser 13.
  • a refractory layer in the case of a refractory layer, it means a layer including the above-mentioned refractory brick layer, even if it has a configuration other than the refractory brick layer, for example, an amorphous refractory. Good.
  • the refractory brick layers are arranged so as to form two or more layers along the radial direction of the riser pipe, which will be described later.
  • An irregular refractory is filled between the refractory brick layer and the insulating brick layer, and an irregular refractory filled between the riser pipe and the refractory brick layer. Filled materials are also included in the refractory layer.
  • a heat insulating material layer means a layer including the above-described solid heat insulating material layer, and may include a configuration other than the solid heat insulating material layer, for example, an amorphous refractory.
  • the embodiment described later that is, the solid heat insulating material layer is disposed so as to form two or more layers along the radial direction of the riser pipe. Insulating refractories filled in between, and those filled with indeterminate refractories between the solid heat insulating material layer and the vacuum housing are also included in the heat insulating material layer.
  • the refractory brick 16a is a component of the refractory layer 16 (refractory brick layer) provided between the riser 13 and the heat insulating material layer 17, and therefore has excellent heat resistance and corrosion resistance to molten glass. Is required. For this reason, among the fired bricks, those having excellent corrosion resistance against molten glass (hereinafter referred to as “dense fired bricks”) are used as the firebrick 16a.
  • a dense fired brick means a fired brick having any of the following characteristics.
  • the dense fired brick used as the refractory brick 16a preferably has all the above three characteristics.
  • Specific examples of the dense fired brick include a dense alumina-based fired brick, a dense alumina-silica-based fired brick, a dense zirco-arsilica-based fired brick, a dense alumina-zircoua silica-based fired brick, and the like. It is done.
  • Specific examples of the dense alumina silica-based fired brick include CWS, CWR, CW :, TB, RG, NB, CH, SR (manufactured by Asahi Glass Co., Ltd.).
  • Specific examples of dense alumina fired bricks include CWR (manufactured by Asahi Glass Co., Ltd.).
  • Specific examples of dense zirco-archite force-based fired bricks include, for example, ZR (Asahi Glass Co., Ltd.), etc. Is mentioned.
  • the heat insulating material layer 17 (solid heat insulating material layer) mainly functions to insulate and heat the riser tube 13. For this reason, the heat insulating material layer 17 (solid heat insulating material layer) is composed of the solid heat insulating material 17a having an excellent heat insulation capacity.
  • the solid heat insulating material means a solid heat insulating material having any of the following characteristics.
  • solid heat insulating materials satisfying the above characteristics are, for example, SP-10, SP-1K, manufactured by Hinomaru Ceramics Co., Ltd.), RA-10, RA-12, RA-13, A-6, A-7 , B-6, B 7 (manufactured by Hinomaru Ceramic Co., Ltd.) and the like, and heat insulating boards such as microtherm molded bodies (Microtherm) and kao wool boards.
  • the solid heat insulating material 17a used for the heat insulating material layer 17 has all the above three characteristics.
  • a plurality of electric bricks 13a having the same composition or different compositions may be used.
  • they are arranged along the radial direction of the riser 13 so as to form two or more layers.
  • the refractory layer 16 a plurality of refractory bricks 16a having the same composition or different compositions are used, and they are arranged so as to form two or more layers along the radial direction of the rising pipe 13. Is preferred.
  • arranging the refractory bricks 16a so as to form two or more layers along the radial direction of the riser 13 is referred to as "the refractory layer 16 includes two or more refractory brick layers.”
  • the heat insulating material layer 17 it is possible to use a plurality of solid heat insulating materials 17a having the same composition or different compositions and arrange them so as to form two or more layers along the radial direction of the rising pipe 13. preferable.
  • the arrangement of the solid heat insulating material 17a so as to form two or more layers along the radial direction of the riser pipe 13 is referred to as "the solid heat insulating material having two or more heat insulating material layers 17". It includes a layer.
  • the conduit structure of the molten glass according to the present invention is such that when the molten glass passes, the conduit is arranged such that a portion that reaches a temperature such as the flow point of the glass is located in the refractory layer.
  • the pour point of glass varies depending on the type of glass. For example, in the case of alkali-free glass, it is about 900 to 1200 ° C, and in the case of soda lime glass, it is about 850 to 1150 ° C.
  • the glass becomes so viscous that it no longer flows. For this reason, if a portion having a temperature equal to the pour point of the molten glass is located in the refractory layer when passing through the molten glass, the stain from the joints of the electric bricks The molten glass that has come out stops when it reaches the vicinity of the part. Therefore, there is no possibility that the molten glass that has exuded from the joints of the electric brick reaches the heat insulating material layer located outside the refractory layer.
  • Some electric bricks have different thermal conductivities due to different porosities. And the higher the porosity is, the higher the heat insulation and heat retention capability is, the lower the thermal conductivity. Therefore, if the brick with high porosity and low thermal conductivity is used as the electric brick 13a constituting the riser tube 13, the temperature of the molten glass before passing through the electric brick 13a is assumed to be the same. However, the temperature after passing through the electric regenerator 13a is lower than when bricks with low porosity and high thermal conductivity are used.
  • the temperature on the inner wall surface side of the electric brick 13a that is, the temperature on the glass flow path side in contact with the molten glass becomes the temperature of the molten glass before passing through the electric brick 13a.
  • the temperature on the outer wall surface side of the electric brick 13a that is, the wall surface side in contact with the refractory brick 16a becomes the temperature of the molten glass after passing through the electric brick 13a.
  • the temperature on the outer wall surface side of the electric brick 13a is lower than when bricks with a high rate are used. Electric If the temperature on the outer wall surface side of the firewood brick 13a is lowered, the temperature of the refractory brick 16a located outside the firewood brick 13a is naturally lowered.
  • Some densely fired bricks used as refractory bricks 16a have different thermal conductivity due to different porosity. Therefore, among the densely fired bricks, if bricks with high porosity and low thermal conductivity are used, even if the temperature on the inner wall surface side of the refractory brick 16a is the same, the porosity is low and the thermal conductivity is high. The temperature on the outer wall surface side of the refractory brick 16a is lower than when bricks are used.
  • the heat insulation and heat insulation effect of densely fired bricks and bricks varies depending on the thickness of the brick, and the heat insulation effect increases as the brick thickness increases. Therefore, if a brick with a large thickness in the radial direction of the riser 13 is used as the electric brick 13a, the radial direction of the riser 13 can be obtained even if the temperature on the inner wall surface side of the electric brick 13a is the same. The temperature on the outer wall surface side of the electric brick 13a is lower than when bricks with a small thickness are used. However, when a brick with an extremely large thickness in the radial direction of the riser 13 is used as the electric brick 13a, the temperature difference between the inner part and the outer part of the brick increases, and the brick may break. This is the same for the refractory brick 16a.
  • the thickness of the electric brick 13a in the radial direction of the riser 13 cannot be extremely increased because the brick may break due to a temperature difference between the inner portion and the outer portion.
  • the improvement of the heat insulation and heat insulation effect obtained by increasing the thickness of the brick can also be obtained by increasing the number of layers of the electric brick 13a arranged along the radial direction of the riser 13. Therefore, instead of using the electric brick 13a having a large thickness in the radial direction of the riser 13, a plurality of small electric wires 13a having a small thickness in the radial direction of the riser 13 are used, and these are used as the diameter of the riser 13. By arranging the layers so as to form layers along the direction, the thickness of the rising pipe 13 in the radial direction may be made similar. The same is true for the refractory brick 16a.
  • the total thickness in the radial direction of the riser 13 is preferably 30 to 1000 mm, more preferably 50 to 500 mm.
  • the refractory layer 16 In this case, the total thickness of the refractory brick layer in the radial direction of the riser 13 is a force S of 50 to 1500 mm, and more preferably 100 to 1000 mm.
  • the total thickness including the thickness of the layer formed by the amorphous refractory is preferably in the above range.
  • the total thickness of the solid heat insulating material layers in the radial direction of the riser 13 is preferably 50 to 1500 mm, and more preferably 100 to 1000 mm.
  • the total thickness including the thickness of the layer formed by the amorphous refractory is preferably in the above range.
  • conduit structure of the present invention between the riser 13 and the refractory layer 16, more precisely, between the riser 13 and the refractory brick layer, it is possible to prevent seepage of molten glass.
  • it may be filled with castable refractories, or irregular refractories such as plastic refractories or ramming materials.
  • an amorphous refractory may be filled between the refractory layer 16 and the heat insulating material layer 17, more precisely between the refractory brick layer and the solid heat insulating material layer.
  • an amorphous refractory material may be filled between the heat insulating material layer 17 and the decompression housing 11, more precisely, between the solid heat insulation material layer and the decompression housing 11.
  • a regular refractory may be filled.
  • the proportion of the amorphous refractory is preferably 50% by volume or less, particularly 30% by volume or less in terms of retention as a structure.
  • FIG. 4 shows another configuration example of the conduit structure of the present invention, in which a conduit 13 ′ made of electric brick has a circular cross section.
  • a hollow tube having a circular cross section with a circular cross section and a circular cross section is obtained by combining two electric fingers 13a ′ having a semicircular outer shape and a semicircular cutout inside. A structure is formed.
  • a refractory layer 16 ' is provided outside the conduit 13', and a heat insulating material layer 17 'is provided outside the refractory layer 16'.
  • Each of the refractory layer 16 ′ and the heat insulating material layer 17 ′ has a circular cross section.
  • the decompression housing 11 ′ that houses the conduit 13 ′ and its backup (refractory layer 16 ′ and insulation layer 17 ′) also has a circular cross section.
  • the cross-sectional shape of the electric brick conduit may be a shape other than a rectangle or a circle.
  • an elliptic hollow tube may be a polygonal shape other than a rectangle.
  • a hollow tube such as a hexagon or an octagon may be used.
  • the cross-sectional shape of the hollow portion forming the flow path of the molten glass may be a shape other than a circle, for example, an elliptical shape or a polygonal shape such as a rectangle, hexagon, or octagon. Also good.
  • an electric brick having a desired shape may be used according to the cross-sectional shape of the conduit and the cross-sectional shape of the hollow portion.
  • the arrangement of the refractory bricks in the refractory layer and the arrangement of the solid refractories in the heat insulating material layer can be appropriately selected according to the cross-sectional shape of the conduit.
  • a vacuum degassing apparatus using the conduit structure of the present invention is used for at least one of the rising pipe, the vacuum degassing layer, or the descending pipe, and melting is performed.
  • the molten glass supplied from the tank is passed through a vacuum degassing tank that has been depressurized to a predetermined degree of vacuum, and vacuum degassing is performed.
  • the conduit structure of the present invention for at least one of the ascending pipe and the descending pipe, preferably both, so that the leakage of the glass can be more effectively suppressed.
  • the vacuum degassing tank is also under reduced pressure, glass is likely to leak as in the case of the riser and downcomer.
  • the vacuum degassing tank stores more glass than the riser and downcomer, the refractory layer and the heat insulation layer are often thicker.
  • the vacuum degassing tank is supported by the refractory layer and the heat insulating material layer, if the glass ground strength S leaks, the vacuum degassing tank may become structurally unstable.
  • it is preferable that the above-mentioned problems can be solved by using the conduit structure of the present invention in the depressurization defoaming tank.
  • the molten glass is preferably continuously supplied to and discharged from a vacuum degassing tank.
  • the vacuum degassing tank should have an internal temperature range of 1100-1500 ° C, especially 1250-1450 ° C. It is preferable to be heated. It should be noted that the flow rate of molten glass is 1 to: LOOO tons Z days.
  • the vacuum housing When carrying out the vacuum degassing method, the vacuum housing is vacuum sucked from the outside by a vacuum pump or the like, thereby maintaining the inside of the vacuum degassing tank disposed in the vacuum housing in a predetermined vacuum state.
  • the inside of the vacuum degassing tank is preferably decompressed to 38 to 460 mmHg (51 to 613 hPa), more preferably, the inside of the vacuum degassing tank is decompressed to 60 to 253 mm Hg (80 to 338 hPa). I like it! /
  • the glass to be defoamed according to the present invention is not restricted in terms of yarn and composition as long as it is a glass produced by a heat melting method. Therefore, alkali glass such as soda lime silica glass typified by soda lime glass or alkali borosilicate glass may be used. On the other hand, alkali-free glass is suitable because it is used for applications such as display glass substrates that require few defects, since the bubbles are not easily removed during the refining process.
  • each component of the vacuum degassing apparatus can be appropriately selected according to the vacuum degassing apparatus to be used.
  • specific examples of the dimensions are as follows.
  • the outer diameter and inner diameter in a cross-sectional rectangle show the dimension of one side.
  • Length 0.2-6m, preferably 0.4-4m
  • Inner diameter (circular cross section): 0.05-0.8m, preferably 0.1-0.6m
  • the vacuum degassing of molten glass is performed using the vacuum degassing apparatus 1 shown in FIG.
  • the constituent materials of each part of the vacuum degassing apparatus 1 are as follows.
  • Decompression housing 11 Stainless steel
  • Vacuum degassing tank 12 Electric brick
  • Two electric bricks 13a (AZS quality electric brick: Zirconite 1711 (manufactured by Asahi Glass Co., Ltd.) are combined to form the shape shown in FIG. 3, and these are stacked along the longitudinal direction of the riser 13.
  • a backup 15 having the configuration shown in FIG. 2 is disposed around the ascending pipe 13 and the descending pipe 14. That is, the refractory layer 16 is provided outside the riser 13, and the heat insulating material layer 17 is provided outside the refractory layer 16.
  • the refractory layer 16 is a refractory brick layer formed by disposing refractory bricks 16 a (dense fired bricks) along the circumferential direction of the riser 13.
  • the heat insulating material layer 17 is a solid heat insulating material layer in which a solid heat insulating material 17 a is disposed along the circumferential direction of the riser 13.
  • the refractory brick 16a constituting the refractory brick layer and the solid heat insulating material 17a constituting the solid heat insulating material layer are stacked along the longitudinal direction of each layer.
  • a microtherm manufactured by Microtherm
  • the solid heat insulating material layer is filled between the solid heat insulating material layer and the vacuum housing 11.
  • Table 1 shows the specific configuration of the riser 13 and the refractory layer 16 and the heat insulating material layer 17 constituting the backup 15.
  • the downcomer 14 and its backup 15 have the same configuration.
  • ZR-UP Dense Zirco-Arsilica fired brick (Asahi Glass Co., Ltd.)
  • CH-SK34 Dense alumina silica-based fired brick (Asahi Glass Co., Ltd.)
  • TB-P Dense alumina Silica-based fired brick (Asahi Glass Co., Ltd.)
  • Vacuum degassing of the molten glass is performed under the following conditions.
  • Molten glass Soda lime glass (pour point 920 ° C)
  • the electric brick 13a and the refractory material layer 16 constituting the riser 13 are constituted.
  • the solid refractory 17a constituting the heat insulating material layer 17 shows no sign of erosion due to molten glass. Moreover, the crack of a brick does not arise.
  • the conduit structure for molten glass of the present invention can be used as a conduit for molten glass in a glass production apparatus, and is particularly suitable as a riser pipe, a vacuum defoaming tank or a downcomer pipe of a vacuum degassing apparatus. It should be noted that the entire contents of the description, claims, drawings and abstract of Japanese Patent Application No. 2005-238715, filed on August 19, 2005, are hereby incorporated herein by reference. As it is incorporated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Thermal Insulation (AREA)

Abstract

 冷却手段を用いることなしに、導管を構成する電鋳レンガ間の目地部からしみ出した溶融ガラスによって、該導管のバックアップを構成する固形断熱材が浸食されることを防止する溶融ガラスの導管構造、および該導管構造を用いた減圧脱泡装置、ならびに該減圧脱泡装置を用いた溶融ガラスの減圧脱泡方法を提供する。  導管と、該導管の周囲に設けられたバックアップと、で構成される溶融ガラスの導管構造であって、前記導管は、その長手方向および周方向に電鋳レンガを配設してなる中空管であり、前記バックアップは、前記導管の外側に設けられた耐火物層と、該耐火物層の外側に設けられた断熱材層と、で構成され、前記耐火物層は、耐火レンガを前記導管の長手方向および周方向に沿って配設してなる耐火レンガ層を含み、前記断熱材層は、固形耐火物を前記導管の長手方向および周方向に沿って配設してなる固形耐火物層を含み、溶融ガラスの通過時において、該ガラスの流動点と等しい温度になる部位が前記耐火物層内に位置するように、前記導管を構成する電鋳レンガおよび前記耐火レンガ層を構成する耐火レンガを選択する。

Description

明 細 書
溶融ガラスの導管構造、および該導管構造を用いた減圧脱泡装置 技術分野
[0001] 本発明は、溶融ガラスの導管構造に関する。本発明の溶融ガラスの導管構造は、 ガラス製造装置の溶融ガラスの導管として使用することができ、例えば、減圧脱泡装 置の上昇管、減圧脱泡槽または下降管として用いることができる。本発明の溶融ガラ スの導管構造は、減圧脱泡装置の上昇管、減圧脱泡槽または下降管として好適であ る。
また、本発明は、溶融ガラスの導管、特に上昇管、減圧脱泡槽または下降管として 、該導管構造を用いた減圧脱泡装置および該減圧脱泡装置を用いた溶融ガラスの 減圧脱泡方法に関する。
背景技術
[0002] 減圧脱泡装置のようなガラス製造装置において、中空管からなる溶融ガラスの導管 の構成材料として耐火レンガが使用される場合がある。耐火レンガとしては、耐熱性 および溶融ガラスに対する耐食性に優れることから、電铸レンガが通常使用されてい る。
しカゝしながら、電铸レンガを用いて溶融ガラスの導管を作製する場合、継ぎ目の無 い一体の中空管として作製することができない。このため、例えば、中心部に開口部 を有するドーナツ形状に形成された電铸レンガを複数準備し、これを積み重ねること によって中空管とする。ドーナツ形状をした電铸レンガについても、継ぎ目の無いド 一ナツ形状の電铸レンガを用いる場合もあるが、略扇形状または楔形状に形成され た複数の電铸レンガを準備し、これらを円周方向に沿って組み付けてドーナツ形状と するほうが一般的である。
[0003] したがって、電铸レンガを用いて溶融ガラスの導管を作製する場合、中空管の内面 、すなわち、溶融ガラスと直接接触する流路にも電铸レンガ間の目地部が不可避的 に存在する。電铸レンガは、気孔率の低い稠密な組織を有するため、焼成レンガに 比べると目地部からの溶融ガラスのしみ出しは少ないと考えられる。だ力 目地部か らの溶融ガラスのしみ出しを完全に防止することは困難である。
溶融ガラスと直接接触する流路を構成する電铸レンガ間の目地部を目地材で埋め ることも考えられる。し力しながら、一般的に目地材は、電铸レンガに比べてその稠密 度が劣るため、溶融ガラスと直接接触する目地材は電铸レンガに比べて浸食されや すい。このため、電铸レンガ自体の浸食は少なくても、電铸レンガ間の目地部の浸食 は選択的に進むという問題がある。その結果、目地部が埋められていない場合よりも 、目地部力 の溶融ガラスのしみ出しを遅らせることはできる力 目地材が浸食されて しまうと、目地部力も溶融ガラスがしみ出してくることとなる。
[0004] 溶融ガラスの導管の周囲には、ノ ックアップ (支持構造)が設けられている。ノ ックァ ップは、導管を中心方向に押圧することにより、ドーナツ形状に組み付けた電铸レン ガ間の目地部を密着させる。また、ノ ックアップは、導管の断熱保温や補強等の機能 を有している。
ノックアップには、通常耐火レンガゃ固形断熱材が使用される。耐火レンガとして は、コスト面力 通常焼成レンガ等が用いられる。焼成レンガには、様々な種類のも のが存在しており、ノックアップに要求される機能に応じて、所望の特性を有する焼 成レンガが使用される。中でも溶融ガラスに対する耐食性に優れたものが好ましく使 用される。また、バックアップに要求される機能のうち、断熱保温機能を発揮させるた めには、固形断熱材が好ましく用いられる。
[0005] 固形断熱材は、断熱保温能力という点では申し分ないが、電铸レンガゃ、焼成レン ガの中でも溶融ガラスに対する耐食性に優れたものに比べて溶融ガラスに対する耐 食性が劣っている。このため、導管を構成する電铸レンガ間の目地部からしみ出した 溶融ガラス力 Sバックアップを構成する固形断熱材に到達した場合、断熱レンガが溶 融ガラスによって著しく浸食されるおそれがある。ノ ックアップを構成する固形断熱材 が浸食されると、減圧脱泡装置自体の寿命が短くなるおそれがある。
[0006] 減圧脱泡装置の減圧脱泡槽、上昇管および下降管において、管路力 の溶融ガラ スの漏れを防止するため、内表面レンガ層のレンガ同士の接触面を精密研磨して 0. 5mm以下の平滑度に仕上げ、隣接するレンガの隙間を lmm以下にすることが特許 文献 1に開示されている。また、特許文献 1には、管路からの溶融ガラスの漏れを防 止するために、内表面レンガ層とバックアップレンガ層との間の隙間にラミング材を充 填することも開示されて ヽる。
また、溶融ガラスと直接接触する耐火レンガの目地部の浸食を防止し、目地部から の溶融ガラスのしみ出しを防止するために、流路の断面を多角形形状に形成し、溶 融ガラスの流速の遅!、隅部に目地部を形成し、該目地部の外側部に冷却管を配置 した溶融ガラスの導管構造が特許文献 2に開示されている。
[0007] し力しながら、特許文献 1に記載の発明の場合、内表面レンガ層とバックアップレン ガ層との間の隙間に充填されるラミング材は、電铸レンガに比べてその稠密度が劣つ ている。そのため、目地部力もしみ出した溶融ガラスが該ラミング材に達することによ つて、ラミング材は徐々に浸食される。したがって、ラミング材を使用しない場合に比 ベて、目地部力もしみ出した溶融ガラスがバックアップに到達するのを遅らせることは できるが、ラミング材が浸食されてしまうと、目地部からしみ出した溶融ガラスがバック アップに到達することになる。
また、特許文献 1に記載の発明は、内表面レンガ層のレンガ同士の接触面を精密 研磨して、隣接するレンガの隙間を lmm以下にすることにより、目地部からの溶融ガ ラスのしみ出しを遅らせ、しみ出した溶融ガラスが目地部を埋めることを期待したもの であるが、当初は稠密な構造であった目地部も目地部周囲のレンガが徐々に浸食さ れることによって、その隙間が徐々に広がる可能性がある。したがって、長期的に見 た場合、目地部からの溶融ガラスのしみ出しを防止することは困難である。
[0008] 一方、特許文献 2に記載の発明の場合、耐火レンガの目地部の外側部に冷却管等 の冷却手段を設けることが必要であるため、導管構造が複雑になる。また、冷却管か ら水漏れが発生した場合、ヒートショックにより耐火レンガが割れるおそれがある。また 、漏洩した冷却水によって周囲が汚染されるおそれがある。特許文献 2では、耐火レ ンガの厚みを厚くすることなしに目地部の長さを長くするために、目地部を形成する ユニットレンガの両端に、外方向に突出する耳部を設けることにより、目地部が流路 の中心力 放射状に伸びるように形成することを開示している。し力しながら、耐火レ ンガに耳部を設けた場合、レンガの内側部分と外側部分との温度差が大きくなり、レ ンガが割れるおそれがある。 [0009] 特許文献 1:特開 2000— 7346号公報 (米国特許第 6334336号明細書) 特許文献 2 :特開 2003— 128422号公報
発明の開示
発明が解決しょうとする課題
[0010] 本発明は、上記した従来技術における問題点を解決するため、冷却手段を用いな くとも、レンガが割れることなぐ導管を構成する電铸レンガ間の目地部からしみ出し た溶融ガラスによって、該導管のノ ックアップを構成する固形断熱材が浸食されるこ とを防止する溶融ガラスの導管構造を提供することを目的とする。
本発明の溶融ガラスの導管構造は、減圧脱泡装置の上昇管、減圧脱泡槽または 下降管として用いることが好ま 、。
また、本発明は、溶融ガラスの導管、特に上昇管、減圧脱泡槽または下降管として 、本発明の溶融ガラスの導管構造を用いた減圧脱泡装置、および該減圧脱泡装置 を用いた溶融ガラスの減圧脱泡方法を提供することを目的とする。
課題を解決するための手段
[0011] 上記の目的を達成するため、本発明は、導管と、該導管の周囲に設けられたバック アップと、で構成される溶融ガラスの導管構造であって、
前記導管は、その長手方向および周方向に電铸レンガを配設してなる中空管であ り、
前記バックアップは、前記導管の外側に設けられた耐火物層と、該耐火物層の外 側に設けられた断熱材層と、で構成され、
前記耐火物層は、耐火レンガを前記導管の長手方向および周方向に沿って配設 してなる耐火レンガ層を含み、
前記断熱材層は、固形断熱材を前記導管の長手方向および周方向に沿って配設 してなる固形断熱材層を含み、
溶融ガラスの通過時にぉ 、て、該ガラスの流動点と等し 、温度になる部位が前記 耐火物層内に位置するように、前記導管を構成する電铸レンガおよび前記耐火レン ガ層を構成する耐火レンガが選択されてなることを特徴とする溶融ガラスの導管構造 (以下、「本発明の導管構造」という。)を提供する。 [0012] 本発明の導管構造において、前記耐火レンガは、下記特性のいずれ力を有する焼 成レンガカもなる群力も選択されることが好ましい。
かさ比重 (JIS R2205 (1993年)): 1. 0超
熱伝導率(1000°C) :0. 3超(WZmK)
見かけ気孔率 (JIS R2205 (1993年)):60%未満
[0013] 本発明の導管構造において、前記固形断熱材は、下記特性のいずれかを有する 固形断熱材力もなる群力も選択されることが好ましい。
力さ比重 (JIS R2205 (1993年)): 1. 0以下
熱伝導率(1000°C) :0. 3以下 (WZmK)
見かけ気孔率 (JIS R2205 (1993年)):60%以上
[0014] 本発明の導管構造は、上昇管、減圧脱泡槽および下降管を有する減圧脱泡装置 の上昇管、減圧脱泡槽または下降管として用いることが好ま 、。
また、本発明は、溶融ガラスの導管として、本発明の導管構造を用いた減圧脱泡装 置を提供する。
また、本発明は、上昇管、減圧脱泡槽および下降管を有する減圧脱泡装置を用い て溶融ガラスを減圧脱泡する方法であって、
前記上昇管、前記減圧脱泡槽および前記下降管のうち少なくとも一つに、本発明 の導管構造を用いた溶融ガラスの減圧脱泡方法を提供する。
発明の効果
[0015] 本発明の導管構造では、導管を構成する電铸レンガ間の目地部カゝら溶融ガラスが しみ出した場合であっても、しみ出した溶融ガラスが耐火レンガ層を通過して ヽる間 に、溶融ガラスの温度がそのガラスの流動点以下となる。そのため、電铸レンガ間の 目地部からしみ出した溶融ガラスが、耐火レンガ層よりも外側に位置する断熱材層に 到達するおそれがない。したがって、電铸レンガ間の目地部からしみ出した溶融ガラ スによって、ノ ックアップを構成する固形断熱材が浸食されるおそれがない。
本発明の導管構造は、溶融ガラスのしみ出しを防止するために、冷却管等の冷却 手段が不要である。このため、導管構造が複雑にならない。また、冷却管からの水漏 れによって、耐火レンガが割れたり、漏洩した冷却水によって周囲が汚染されるおそ れがない。
[0016] 本発明の減圧脱泡装置では、導管を構成する電铸レンガ間の目地部からしみ出し た溶融ガラスによって、ノ ックアップを構成する固形断熱材が浸食されることが防止さ れている。このため、装置の寿命を大幅に延長することができる。
図面の簡単な説明
[0017] [図 1]図 1は、本発明の溶融ガラスの導管構造を備えた減圧脱泡装置の断面図であ る。
[図 2]図 2は、図 1の上昇管 13とバックアップ 15とを含んだ部位を示した部分拡大図 である。
[図 3]図 3は、図 2を線 a— aで切断した断面図である。
[図 4]図 4は、図 3と同様の図である。但し、導管構造の断面形状が図 3とは異なって いる。
符号の説明
[0018] 1:減圧脱泡装置
11:減圧ハウジング
12:減圧脱泡槽
13:上昇管
13a:電铸レンガ
14:下降管
15:バックアップ
16:耐火物層
16a:耐火レンガ
17:断熱材層
17a:固形耐火物
18, 19:延長管
18a:固定用のフランジ
18b:シーノレ用のフランジ
22:断熱材 30 :溶解槽
40 :処理槽
発明を実施するための最良の形態
[0019] 以下、図面を参照して本発明を説明する。図 1は、本発明の溶融ガラスの導管構造 を備えた減圧脱泡装置の断面図である。図 1に示す減圧脱泡装置 1は、溶解槽 30中 の溶融ガラス Gを減圧脱泡して、次の処理槽 40に連続的に供給するプロセスに用い られるちのである。
減圧脱泡装置 1は、使用時その内部が減圧状態に保持される減圧ハウジング 11を 有する。減圧ハウジング 11内には、減圧脱泡槽 12がその長軸が水平方向に配向す るように収納配置されて 、る。減圧脱泡槽 12の一端の下面には垂直方向に配向す る上昇管 13が、他端の下面には下降管 14が取り付けられている。
減圧脱泡装置 1において、減圧脱泡槽 12、上昇管 13および下降管 14は、矩形の 断面を有する電铸レンガ製の中空管である。上昇管 13および下降管 14の下端には 、それぞれ白金または白金合金製の延長管 18, 19が設けられている。減圧ハウジン グ 11内において、上昇管 13および下降管 14の周囲にはバックアップ 15が配設され ている。
減圧脱泡槽 12の周囲には断熱材 22が配設されている。
[0020] 図 1に示す減圧脱泡装置 1において、上昇管 13とバックアップ 15とを含んだ構造、 および下降管 14とバックアップ 15とを含んだ構造が本発明の導管構造として構成さ れている。図 2は、図 1の上昇管 13とバックアップ 15とを含んだ部位を示した部分拡 大図である。図 3は、図 2を線 a— aで切断した断面図である。以下、上昇管 13につい て説明するが、下降管 14も同様の構成である。
[0021] 図 2および図 3において、上昇管 13は、矩形断面を有する中空管であり、溶融ガラ スの流路をなす中空部分の断面形状は円形である。上昇管 13は、電铸レンガ 13aを 積み重ねることによって形成されている。図 3に示すように、断面矩形で半円形状の 切り欠きを有する電铸レンガ 13aを 2個組み合わせることによって、矩形断面を有し、 中空部分の断面形状が円形の中空管構造が形成される。上昇管 13は、このような中 空管構造を積み重ねることによって形成されている。 [0022] 上昇管 13の下端付近を構成する電铸レンガ 13a間には、延長管 18の上端部に設 けられた固定用のフランジ 18aが挿入されている。なお、延長管 18は、白金または白 金合金製であり、断面円形の筒状体である。また、上昇管 13の下端部 (減圧ハウジ ング 11の下端開口部)は、延長管 18の上端付近に設けられたシール用のフランジ 1 8bによってシールされている。
[0023] 上昇管 13を構成する電铸レンガ 13aの種類は特に限定されず、炉材ゃ溶融ガラス の導管の構成材料として使用される電铸レンガとして公知のものカゝら適宜選択するこ とができる。具体的には、 α アルミナ質電铸レンガ、 a , j8—アルミナ質電铸レンガ 、 β—アルミナ質電铸レンガといったアルミナ質電铸レンガ、ジルコユア質電铸レン ガ、アルミナ—ジルコユア—シリカ(AZS)質電铸レンガといった電铸レンガが挙げら れる。
[0024] アルミナ質電铸レンガの具体例としては、 a アルミナ質電铸レンガとして、マース ナイト (登録商標、以下同じ) A (旭硝子株式会社製)、モノフラックス A (サンゴバン ティー ェム株式会社製)、 a , j8—アルミナ質電铸レンガとして、マースナイト G (旭 硝子株式会社製)、モノフラックス M (サンゴバン ティー ェム株式会社製)、ジャガ 一 M (ソシェテ ·ユーロピアンヌ ·デ ·プロデユイ ·レフラタテール社製)、 β -アルミナ 質電铸レンガとして、マースナイト U (旭硝子株式会社製)、モノフラックス Η (サンゴバ ン ティー ェム株式会社製)、ジャガー Η (ソシェテ ·ユーロピアンヌ ·デ ·プロデユイ · レフラタテール社製)が挙げられる。
[0025] ジルコユア質電铸レンガの具体例としては、 X— 950 (旭硝子株式会社製)が挙げ られる。
[0026] AZS質電铸レンガの具体例としては、ジルコナイト (登録商標、以下同じ) 1681、ジ ルコナイト 1691、ジルコナイト 1711 (旭硝子株式会社製)、モノフラックス S3、モノフ ラックス S4、モノフラックス S5 (サンゴバン ティー ェム株式会社製)、ュ-コール 50 1、ュ-コール 1 (コルハート社製)、 FC101、 FC4101 (ウオルシュ社製)、 ZAC168 1、 ZAC1711 (エレクト口レフタルテール社製)が挙げられる。
[0027] 図 2および図 3に示すように、ノ ックアップ 15は、上昇管 13の外側に設けられた耐 火物層 16と、該耐火物層 16の外側に設けられた断熱材層 17と、で構成される。図2 および図 3において、耐火物層 16は、耐火レンガ 16aを上昇管 13の長手方向およ び周方向に沿って配設してなる耐火レンガ層である。一方、断熱材層 17は、固形断 熱材 17aを上昇管 13の長手方向および周方向に沿って配設してなる固形断熱材層 である。
[0028] ここで、耐火物層と!/ヽつた場合、上記した耐火レンガ層を含んだ層を意味し、耐火 レンガ層以外の構成、例えば、不定形耐火物を含んだものであってもよい。一例を挙 げると、後述する態様、すなわち、上昇管の径方向に沿って、耐火レンガ層が 2層以 上の層をなすように配設されたものであって、耐火レンガ層同士の間に不定形耐火 物が充填されたもの、上昇管と耐火レンガ層との間に不定形耐火物が充填されたも の、および耐火レンガ層と断熱レンガ層との間に不定形耐火物が充填されたものも 耐火物層に含まれる。
[0029] 同様に、断熱材層といった場合、上記した固形断熱材層を含んだ層を意味し、固 形断熱材層以外の構成、例えば、不定形耐火物を含んだものであってもよい。一例 を挙げると、後述する態様、すなわち、上昇管の径方向に沿って、固形断熱材層が 2 層以上の層をなすように配設されたものであって、該固形断熱材層同士の間に不定 形耐火物が充填されたもの、および固形断熱材層と減圧ハウジングとの間に不定形 耐火物が充填されたものも断熱材層に含まれる。
[0030] 耐火レンガ 16aは、上昇管 13と断熱材層 17との間に設けられる耐火物層 16 (耐火 レンガ層)の構成要素であるため、耐熱性および溶融ガラスに対する耐食性に優れ ていることが必要となる。このため、耐火レンガ 16aには、焼成レンガの中でも溶融ガ ラスに対する耐食性に優れるもの(以下、「緻密質焼成レンガ」という。)が用いられる 。本明細書において、緻密質焼成レンガとは、以下の特性のいずれかを有する焼成 レンガを意味する。
かさ比重 (JIS R2205 (1993年)): 1. 0超
熱伝導率(1000°C) :0. 3超(WZmK)
見かけ気孔率 (JIS R2205 (1993年)):60%未満
耐火レンガ 16aとして使用する緻密質焼成レンガは上記の 3特性を全て有すること が好ましい。 [0031] 緻密質焼成レンガの具体例としては、例えば緻密質アルミナ系焼成レンガ、緻密質 アルミナ シリカ系焼成レンガ、緻密質ジルコ-アーシリカ系焼成レンガ、緻密質ァ ルミナ ジルコユア シリカ系焼成レンガ等が挙げられる。緻密質アルミナ シリカ 系焼成レンガの具体例としては、例えば CWS、 CWR、 CW :、 TB、 RG、 NB、 CH、 SR (旭硝子株式会社製)等が挙げられる。緻密質アルミナ系焼成レンガの具体例と しては、例えば CWR (旭硝子株式会社製)等が挙げられる。緻密質ジルコ-アーシリ 力系焼成レンガの具体例としては、例えば ZR (旭硝子株式会社製)等、緻密質アルミ ナージルコ-アーシリカ系焼成レンガの具体例としては、例えば ZM (旭硝子株式会 社製)等が挙げられる。
[0032] 断熱材層 17 (固形断熱材層)は、ノ ックアップ 15の機能のうち、主として上昇管 13 を断熱保温する機能を担う。このため、断熱材層 17 (固形断熱材層)は、断熱保温能 力に優れた固形断熱材 17aで構成される。本明細書において、固形断熱材とは、以 下の特性の ヽずれかを有する固形断熱材を意味する。
力さ比重 (JIS R2205 (1993年)): 1. 0以下
熱伝導率(1000°C) : 0. 3以下 (WZmK)
見かけ気孔率 (JIS R2205 (1993年)):60%以上
上記の特性を満たす固形断熱材の具体例としては、例えば、 SP- 10, SP- 1 K 日の丸窯業株式会社製)、 RA— 10, RA- 12, RA- 13, A— 6, A— 7, B— 6, B 7 (日の丸窯業株式会社製)等のレンガゃ、マイクロサーム成形体 (マイクロサーム 社)やカオウールボード等の断熱ボードが挙げられる。
断熱材層 17に使用する固形断熱材 17aは上記の 3特性を全て有することが好まし い。
[0033] 図 2および図 3において、上昇管 13を径方向に見た場合、上昇管 13を構成する電 铸レンガ 13aは 1層配設されており、耐火物層 16として 1層の耐火レンガ 16a (耐火レ ンガ層)が配設されており、断熱材層 17として 1層の固形断熱材 17a (固形断熱材層 )が配設されている。しかし、これらは上昇管 13を構成する電铸レンガ 13a、耐火物 層 16を構成する耐火レンガ 16a (耐火レンガ層)および断熱材層 17を構成する固形 断熱材 17a (固形断熱材層)の位置関係を示しているのであって、必ずしも、 1層の 電铸レンガ 13a、 1層の耐火レンガ 16a (耐火レンガ層)、および 1層の固形断熱材 17 a (固形断熱材層)を配設することを意味して ヽるのではな!/、。
電铸レンガを用いて減圧脱泡装置の上昇管 13を作製する場合、組成が同一また は組成が異なる電铸レンガ 13aを複数用いてもよい。複数の電铸レンガ 13aを使用 する場合、それらは上昇管 13の径方向に沿って、 2層以上の層をなすように配設さ れる。
[0034] 耐火物層 16の場合、組成が同一または組成が異なる耐火レンガ 16aを複数用いて 、それらを上昇管 13の径方向に沿って、 2層以上の層をなすように配設することが好 ましい。以下、本明細書において、上昇管 13の径方向に沿って 2層以上の層をなす ように耐火レンガ 16aを配設することを、「耐火物層 16が 2層以上の耐火レンガ層を 含む」と言う。
断熱材層 17の場合、組成が同一または組成が異なる固形断熱材 17aを複数用 ヽ て、それらを上昇管 13の径方向に沿って、 2層以上の層をなすように配設することが 好ましい。以下、本明細書において、上昇管 13の径方向に沿って 2層以上の層をな すように固形断熱材 17aを配設することを、「断熱材層 17が 2層以上の固形断熱材 層を含む」という。
[0035] 本発明の溶融ガラスの導管構造は、溶融ガラスの通過時にお!、て、該ガラスの流 動点と等 U、温度になる部位が耐火物層内に位置するように、導管を構成する電铸 レンガおよび耐火レンガ層を構成する耐火レンガが選択されてなることを特徴とする ガラスの流動点とは、ガラスの粘度 7?が log 7? (ポアズ) = 5となる温度であり、ガラス の変形の目安となる温度であって、リリー点(Lillie Point)ともいう。 1ポアズ =0. 1 Pa - s = 0. Ikg/m' sである。ガラスの流動点は、ガラスの種類によって異なる。例え ば無アルカリガラスの場合、 900〜1200°C程度であり、ソーダライムガラスの場合、 8 50〜1150°C程度である。
溶融ガラスの温度が、そのガラスの流動点以下になると、ガラスの粘性が高くなるの でそれ以上流れなくなる。そのため、溶融ガラスの通過時に、該ガラスの流動点と等 しい温度になる部位が耐火物層内に位置していれば、電铸レンガの目地部からしみ 出してきた溶融ガラスは、該部位付近に到達した際にその流れが停止する。したがつ て、耐火物層よりも外側に位置する断熱材層には、電铸レンガの目地部からしみ出し てきた溶融ガラスが到達するおそれがな 、。
[0036] 図 2に当てはめると、上昇管 13を溶融ガラスが通過する際に、該溶融ガラスの流動 点と等しい温度となる部位が耐火物層 16 (耐火レンガ層)内に位置するように、上昇 管 13を構成する電铸レンガ 13aおよび耐火物層 16 (耐火レンガ層)を構成する耐火 レンガ 16aが選択されてなる。より具体的には、上昇管 13を構成する電铸レンガ 13a および耐火物層 16 (耐火レンガ層)を構成する耐火レンガ 16aについて以下の点を 選択する。
•電铸レンガ 13aおよび耐火レンガ 16aの種類
'上昇管 13の径方向における電铸レンガ 13aおよび耐火レンガ 16aの厚み
•上昇管 13の径方向に沿って配置する電铸レンガ 13aおよび耐火レンガ 16aの層数 電铸レンガ 13aおよび耐火レンガ 16aについて、上記の点を選択する際の考え方 について以下に述べる。
[0037] (a)レンガの種類
電铸レンガには、気孔率が異なることによって熱伝導率が異なるものが存在する。 そして、気孔率が高いものほど熱伝導率が低ぐ断熱保温能力が高いものとなる。し たがって、上昇管 13を構成する電铸レンガ 13aとして、気孔率が高く熱伝導率が低 V、レンガを使用した場合、電铸レンガ 13a通過前の溶融ガラスの温度が同一であつ たとしても、気孔率が低く熱伝導率が高いレンガを使用した場合に比べて、電铸レン ガ 13a通過後の温度はより低くなる。
図 2に当てはめると、電铸レンガ 13aの内壁面側、すなわち、溶融ガラスと接触する ガラス流路側の温度が、電铸レンガ 13a通過前の溶融ガラスの温度となる。一方、電 铸レンガ 13aの外壁面側、すなわち、耐火レンガ 16aと接する壁面側の温度が電铸 レンガ 13a通過後の溶融ガラスの温度となる。これに基づいて上記を言い換えると、 気孔率が高く熱伝導率が低い電铸レンガを使用した場合、電铸レンガ 13aの内壁面 側の温度が同一であったとしても、気孔率が低く熱伝導率が高いレンガを使用した場 合に比べて、電铸レンガ 13aの外壁面側の温度はより低くなるということができる。電 铸レンガ 13aの外壁面側の温度が低くなれば、電铸レンガ 13aの外側に位置する耐 火レンガ 16aの温度は当然低くなる。
耐火レンガ 16aとして用いる緻密質焼成レンガにも、気孔率が異なることによって熱 伝導率が異なるものが存在する。したがって、緻密質焼成レンガの中でも、気孔率が 高く熱伝導率が低いレンガを使用すれば、耐火レンガ 16aの内壁面側の温度が同一 であったとしても、気孔率が低く熱伝導率が高いレンガを使用した場合に比べて、耐 火レンガ 16aの外壁面側の温度はより低くなる。
[0038] (b)上昇管の径方向におけるレンガの厚み
電铸レンガゃ緻密質焼成レンガと ヽつたレンガによる断熱保温効果は、レンガの厚 みによって異なり、レンガの厚みが大きくなるほど断熱保温効果が大きくなる。したが つて、電铸レンガ 13aとして、上昇管 13の径方向における厚みが大きいレンガを使用 すれば、電铸レンガ 13aの内壁面側の温度が同一であったとしても、上昇管 13の径 方向における厚みが小さいレンガを使用した場合に比べて、電铸レンガ 13aの外壁 面側における温度はより低くなる。但し、電铸レンガ 13aとして、上昇管 13の径方向 における厚みが極端に大きなレンガを使用した場合、レンガの内側部分と外側部分 との温度差が大きくなるので、レンガが割れるおそれがある。この点については、耐火 レンガ 16aの場合も同様である。
[0039] (c)上昇管の径方向に沿って配置するレンガの層数
上記したように、上昇管 13の径方向における電铸レンガ 13aの厚みは、内側部分と 外側部分との温度差によってレンガが割れるおそれがあるため、極端に大きくするこ とができない。但し、レンガの厚みを大きくすることによって得られる断熱保温効果の 向上は、上昇管 13の径方向に沿つて配置する電铸レンガ 13aの層数を増やすことに よっても得ることができる。したがって、上昇管 13の径方向における厚みが大きい電 铸レンガ 13aを使用する代わりに、上昇管 13の径方向における厚みが小さ ヽ電铸レ ンガ 13aを複数使用し、これらを上昇管 13の径方向に沿って層をなすように配設す ることによって、径方向における上昇管 13の厚みを同程度にしても良い。この点につ いては、耐火レンガ 16aの場合も同様である。
[0040] 上記 (b)および (c)は、言い換えると、上昇管 13を溶融ガラスが通過する際に、該 溶融ガラスの流動点と等 、温度となる部位が耐火物層 16内に位置するように、上 昇管 13の径方向におけるレンガの厚みの合計を選択すればょ 、と 、うこともできる。 すなわち、上昇管 13の径方向に沿って 2層以上の層をなすように電铸レンガ 13aを 配設する場合には、上昇管 13の径方向における電铸レンガの厚みの合計が所定の 厚みとなるように選択すればょ 、ことになる。耐火物層 16につ ヽても同様のことが言 え、この場合、 2層以上の耐火レンガ層を含む場合、これら耐火レンガ層の合計厚み を所定の厚みに選択すればよいことになる。
上昇管 13を構成する電铸レンガ 13aの場合、上昇管 13の径方向における厚みの 合計は、 30〜 1000mmであることが好ましぐ 50〜500mmであることがより好ましい 一方、耐火物層 16の場合、上昇管 13の径方向における耐火レンガ層の厚みの合 計は、 50〜 1500mmであること力 S好ましく、 100〜 1000mmであることがより好まし い。耐火物層 16が不定形耐火物を含有する場合、不定形耐火物がなす層の厚みも 含めた厚みの合計が上記の範囲であることが好ましい。
[0041] 断熱材層 17の場合、上昇管 13の径方向における固形断熱材層の厚みの合計は 5 0〜 1500mmであることが好ましぐ 100〜 1000mmであることがより好ましい。断熱 材層 17が不定形耐火物を含有する場合、不定形耐火物がなす層の厚みも含めた厚 みの合計が上記の範囲であることが好まし 、。
[0042] 本発明の導管構造において、上昇管 13と、耐火物層 16との間、より正確には、上 昇管 13と、耐火レンガ層との間には、溶融ガラスのしみ出し防止やバックアップ 15の 断熱保温能力を高めるために、キャスタブル耐火物、またはプラスチック耐火物また はラミング材といった不定形耐火物を充填してもよい。同様の理由から、耐火物層 16 と、断熱材層 17との間、より正確には、耐火レンガ層と、固形断熱材層との間にも、不 定形耐火物を充填してもよい。また、断熱材層 17と、減圧ハウジング 11との間、より 正確には、固形断熱材層と、減圧ハウジング 11との間にも、不定形耐火物を充填し てもよい。
また、上昇管 13を構成する電铸レンガ 13a同士の間、耐火物層 16を構成する耐火 レンガ層同士の間、または断熱材層 17を構成する固形断熱材層同士の間にも、不 定形耐火物を充填してもよい。なお、不定形耐火物の割合は、全体で 50体積%以 下、特に 30体積%以下であることが、構造物としての保持という点で好ましい。
[0043] 以上、本発明の導管構造について図を用いて説明した力 本発明の導管構造は 図示した形態に限定されない。例えば、電铸レンガ製の導管は、少なくとも中空管構 造であれば特に限定されず、矩形断面以外のものであってもよい。図 4は、本発明の 導管構造の別の構成例を示しており、電铸レンガ製の導管 13'が円形断面を有して いる。図 4において、外形が半円弧状で内側に半円形状の切り欠きを有する電铸レ ンガ 13a'を 2個組み合わせることによって、円形断面を有し、中空部分の断面形状 が円形の中空管構造が形成される。図 4において、導管 13'の外側には耐火物層 1 6'が設けられており、耐火物層 16'の外側には断熱材層 17'が設けられている。耐 火物層 16 'および断熱材層 17'は、それぞれ円形断面を有している。また、導管 13' およびそのバックアップ (耐火物層 16'および断熱材層 17' )を収容する減圧ハウジ ング 11 'も円形断面を有して 、る。
[0044] 電铸レンガ製の導管の断面形状は、矩形または円形以外の形状であってもよぐ例 えば、楕円形状の中空管であってもよぐ断面形状が矩形以外の多角形形状、例え ば、六角形、八角形等の中空管であってもよい。溶融ガラスの流路をなす中空部分 の断面形状も、円形以外の形状であってもよぐ例えば、楕円形状であってもよぐ矩 形、六角形、八角形等の多角形形状であってもよい。電铸レンガ製の導管が、これら 他の形状の中空管である場合、導管の断面形状およびその中空部分の断面形状に 応じて、所望の形状の電铸レンガを使用すればよい。
また、耐火物層における耐火レンガの配置、および断熱材層における固形耐火物 の配置も、導管の断面形状に応じて適宜選択することができる。
[0045] 本発明の溶融ガラスの減圧脱泡方法では、上昇管、減圧脱泡層または下降管のう ち少なくとも一つに、本発明の導管構造を用いた減圧脱泡装置を使用し、溶解槽か ら供給される溶融ガラスを所定の減圧度に減圧された減圧脱泡槽を通過させて減圧 脱泡を行う。
減圧脱泡装置の上昇管および下降管は減圧下におかれているため、溶融ガラスの 圧力が上昇管および下降管の管壁にかかり、常圧にある場合と比較してガラスの素 地が外部に漏れやすくなつている。よって、本発明においては、上昇管および下降 管の少なくとも一方、好ましくはその両方に本発明の導管構造を用いることで、上記 ガラスの漏れをより効果的に抑えることができ好ましい。
また、減圧脱泡槽も減圧下におかれているため、上昇管や下降管の場合と同様に ガラスが漏れやすくなつている。力 Πえて、減圧脱泡槽は、上昇管や下降管の場合と比 較して多くのガラスを蓄えているため、耐火物層や断熱材層の厚さが厚い場合が多 い。さらに減圧脱泡槽は、耐火物層や断熱材層に支えられているため、ガラスの素地 力 Sもれると減圧脱泡槽が構造的に不安定になる場合がある。本発明においては、減 圧脱泡槽に本発明の導管構造を用いることで、上記問題点を解決できることができ 好ましい。
本発明の溶融ガラスの減圧脱泡方法において、溶融ガラスは、減圧脱泡槽に連続 的に供給'排出されることが好ましい。
[0046] 溶解槽力 供給される溶融ガラスとの温度差が生じることを防止するために、減圧 脱泡槽は、内部が 1100〜1500°C、特に 1250〜1450°Cの温度範囲になるように 加熱されていることが好ましい。なお、溶融ガラスの流量が 1〜: LOOOトン Z日であるこ とが生産性の点力も好ま 、。
減圧脱泡方法を実施する際、減圧ハウジングを外部から真空ポンプ等によって真 空吸引することによって、減圧ハウジング内に配置された減圧脱泡槽の内部を、所定 の減圧状態に保持する。ここで減圧脱泡槽内部は、 38〜460mmHg (51〜613hP a)に減圧されていることが好ましぐより好ましくは、減圧脱泡槽内部は 60〜253mm Hg (80〜338hPa)に減圧されて!、ることが好まし!/、。
[0047] 本発明によって脱泡されるガラスは、加熱溶融法により製造されるガラスである限り 、糸且成的には制約されない。したがって、ソーダライムガラスに代表されるソーダライ ムシリカ系ガラスやアルカリホウケィ酸ガラスのようなアルカリガラスであってもよ ヽ。伹 し、清澄工程の際に気泡が除去されにくぐし力も、ディスプレイガラス基板等、特に 欠点が少ないことが要求される用途に使用されることから、無アルカリガラスが好適で ある。
また、無アルカリガラスである場合、減圧脱泡時の温度をある程度の温度まで上げ ることが必要であり、その点を考慮すれば、本発明の効果がより大きく発揮される。
[0048] 減圧脱泡装置の各構成要素の寸法は、使用する減圧脱泡装置に応じて適宜選択 することができる。図 1に示す減圧脱泡槽 12の場合、その寸法の具体例は以下の通 りである。なお、断面矩形における外径および内径は一辺の寸法を示す。
水平方向における長さ: l〜20m
外径 (断面矩形): l〜7m
内径(断面矩形): 0. 2〜3m
上昇管 13および下降管 14の寸法の具体例は以下の通りである。
長さ: 0. 2〜6m、好ましくは 0. 4〜4m
外径(断面矩形): 0. 5〜7m、好ましくは 0. 5〜5m
内径(断面円形): 0. 05〜0. 8m、好ましくは 0. 1〜0. 6m
実施例
[0049] 以下、実施例に基づいて本発明をより具体的に説明する。但し、本発明はこれに限 定されるものではない。
(実施例)
本実施例では、図 1に示す減圧脱泡装置 1を用いて溶融ガラスの減圧脱泡を実施 する。
減圧脱泡装置 1において、上昇管 13、下降管 14およびこれらの周辺部位は、図 2 に示す構造を有している。
減圧脱泡装置 1の各部の構成材料は以下の通りである。
減圧ハウジング 11:ステンレス
減圧脱泡槽 12 :電铸レンガ
上昇管 13,下降管 14 :電铸レンガ
電铸レンガ 13a (AZS質電铸レンガ:ジルコナイト 1711 (旭硝子株式会社製) )を 2 個組み合わせて図 3に示す形状とし、これを上昇管 13の長手方向に沿って積み重 ねる。
延長管 18, 19 :白金
[0050] 上昇管 13、下降管 14の周囲には、図 2に示す構成のバックアップ 15を配設する。 すなわち、上昇管 13の外側に耐火物層 16を設け、耐火物層 16の外側に断熱材層 17を設ける。耐火物層 16は、上昇管 13の周方向に沿って耐火レンガ 16a (緻密質 焼成レンガ)を配設してなる耐火レンガ層である。断熱材層 17は、上昇管 13の周方 向に沿って、固形断熱材 17aを配設してなる固形断熱材層である。耐火レンガ層を 構成する耐火レンガ 16aおよび固形断熱材層を構成する固形断熱材 17aは、各層 の長手方向に沿って積み重ねる。断熱材層 17において、固形断熱材層と、減圧ハ ウジング 11と、の間には、マイクロサーム(マイクロサーム社製)を充填する。
上昇管 13、ならびにバックアップ 15を構成する耐火物層 16および断熱材層 17の 具体的な構成を表 1に示した。なお、下降管 14とそのバックアップ 15も同様の構成 である。
[0051] [表 1]
Figure imgf000020_0001
ZR-UP:緻密質ジルコ-アーシリカ系焼成レンガ (旭硝子株式会社製)
CH-SK34:緻密質アルミナ シリカ系焼成レンガ (旭硝子株式会社製)
TB-P :緻密質アルミナ シリカ系焼成レンガ (旭硝子株式会社製)
SP- 11 :固形断熱材(日の丸窯業株式会社製)
[0052] 溶融ガラスの減圧脱泡を以下の条件で実施する。
減圧脱泡槽 12内温度: 1400°C
減圧脱泡槽 12内圧力: 180mmHg (240hPa)
溶融ガラス:ソーダライムガラス (流動点 920°C)
流量: 50トン 日
[0053] 減圧脱泡実施時、上昇管 13を構成する電铸レンガ 13a、耐火材層 16を構成する 耐火レンガ 16a、および断熱材層 17を構成する固形耐火物 17aおよびマイクロサー ムにつ 1、て、内壁面側の温度(内面温度)および外壁面側の温度 (外面温度)を熱電 対を用いて測定する。結果を表 1に示した。表 1から明らかなように、溶融ガラスの通 過時において、該溶融ガラスの流動点に等しい温度の部位は、耐火物層 16内に位 置している。
減圧脱泡開始カゝら 6ヶ月後、断熱材層 17を構成する固形耐火物 17aには、溶融ガ ラスによる浸食の兆候は認められない。また、レンガの割れも生じない。
産業上の利用可能性
本発明の溶融ガラスの導管構造は、ガラス製造装置の溶融ガラスの導管として使 用することができ、特に減圧脱泡装置の上昇管、減圧脱泡槽または下降管として好 適である。 なお、 2005年 8月 19曰に出願された曰本特許出願 2005— 238715号の明細書 、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開 示として、取り入れるものである。

Claims

請求の範囲
[1] 導管と、該導管の周囲に設けられたバックアップと、で構成される溶融ガラスの導管 構造であって、
前記導管は、その長手方向および周方向に電铸レンガを配設してなる中空管であ り、
前記バックアップは、前記導管の外側に設けられた耐火物層と、該耐火物層の外 側に設けられた断熱材層と、で構成され、
前記耐火物層は、耐火レンガを前記導管の長手方向および周方向に沿って配設 してなる耐火レンガ層を含み、
前記断熱材層は、固形断熱材を前記導管の長手方向および周方向に沿って配設 してなる固形断熱材層を含み、
溶融ガラスの通過時にぉ 、て、該ガラスの流動点と等し 、温度になる部位が前記 耐火物層内に位置するように、前記導管を構成する電铸レンガおよび前記耐火レン ガ層を構成する耐火レンガが選択されてなることを特徴とする溶融ガラスの導管構造
[2] 前記耐火レンガは、下記特性のいずれかを有する焼成レンガカ なる群力 選択さ れる請求項 1に記載の溶融ガラスの導管構造。
かさ比重 (JIS R2205 (1993年)): 1. 0超
熱伝導率(1000°C) : 0. 3超(WZmK)
見かけ気孔率 (JIS R2205 (1993年)):60%未満
[3] 前記固形断熱材は、下記特性のいずれ力を有する固形断熱材力 なる群力 選択 される請求項 1または 2に記載の溶融ガラスの導管構造。
力さ比重 (JIS R2205 (1993年)): 1. 0以下
熱伝導率(1000°C) : 0. 3以下 (WZmK)
見かけ気孔率 (JIS R2205 (1993年)):60%以上
[4] 前記導管の径方向における厚みの合計が 30〜: LOOOmmである請求項 1、 2または
3に記載の溶融ガラスの導管構造。
[5] 前記耐火物層の径方向における厚みの合計が 50〜 1500mmである請求項 1〜4 の!、ずれかに記載の溶融ガラスの導管構造。
[6] 前記断熱材層の径方向における厚みの合計が 50〜 1500mmである請求項 1〜 5 の!、ずれかに記載の溶融ガラスの導管構造。
[7] 上昇管、減圧脱泡槽および下降管を有する減圧脱泡装置の上昇管または下降管 として用いられる請求項 1〜6のいずれかに記載の溶融ガラスの導管構造。
[8] 上昇管、減圧脱泡槽および下降管を有する減圧脱泡装置の減圧脱泡槽として用
V、られる請求項 1〜7の 、ずれかに記載の溶融ガラスの導管構造。
[9] 溶融ガラスの導管として、請求項 1〜8のいずれかに記載の溶融ガラスの導管構造 を用いた減圧脱泡装置。
[10] 減圧脱泡装置の減圧脱泡槽の温度が 1100〜 1500°Cである請求項 9に記載の減 圧脱泡装置。
[11] 上昇管、減圧脱泡槽および下降管を有する減圧脱泡装置を用いて溶融ガラスを減 圧脱泡する方法であって、
前記上昇管、減圧脱泡槽および下降管のうち少なくとも一つに、請求項 1〜7のい ずれかに記載の導管構造を用いた溶融ガラスの減圧脱泡方法。
PCT/JP2006/312925 2005-08-19 2006-06-28 溶融ガラスの導管構造、および該導管構造を用いた減圧脱泡装置 WO2007020754A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007530923A JP5109086B2 (ja) 2005-08-19 2006-06-28 溶融ガラスの導管構造、および該導管構造を用いた減圧脱泡装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005238715 2005-08-19
JP2005-238715 2005-08-19

Publications (1)

Publication Number Publication Date
WO2007020754A1 true WO2007020754A1 (ja) 2007-02-22

Family

ID=37757423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/312925 WO2007020754A1 (ja) 2005-08-19 2006-06-28 溶融ガラスの導管構造、および該導管構造を用いた減圧脱泡装置

Country Status (4)

Country Link
JP (1) JP5109086B2 (ja)
KR (1) KR100922089B1 (ja)
TW (1) TWI394724B (ja)
WO (1) WO2007020754A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009107531A1 (ja) * 2008-02-27 2009-09-03 旭硝子株式会社 溶融ガラスの減圧脱泡装置および減圧脱泡方法
JP2011502932A (ja) * 2007-11-02 2011-01-27 コーニング インコーポレイテッド キャスタブル材料を備えたガラス製造のための耐食性架台
JP2011208223A (ja) * 2010-03-30 2011-10-20 Jfe Steel Corp 溶銑用保持炉
EP2692702A4 (en) * 2011-03-31 2014-08-20 Asahi Glass Co Ltd VACUUM DEGASSING APPARATUS, APPARATUS FOR PRODUCING GLASSWARE AND METHOD FOR PRODUCING GLASSWARE
WO2014174968A1 (ja) 2013-04-24 2014-10-30 旭硝子株式会社 溶融ガラスの導管構造、該導管構造を用いた装置および方法
JP2015169365A (ja) * 2014-03-06 2015-09-28 日本電気硝子株式会社 炉内監視装置
JP2016088754A (ja) * 2014-10-29 2016-05-23 日本電気硝子株式会社 ガラス製造装置及びガラス製造方法
US20210347668A1 (en) * 2018-09-27 2021-11-11 Corning Incorporated Glass forming apparatuses comprising modular glass fining systems

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI826432B (zh) * 2018-04-06 2023-12-21 美商康寧公司 玻璃熔融系統的排放導管
JP7465864B2 (ja) * 2018-09-27 2024-04-11 コーニング インコーポレイテッド モジュール式の溶融ガラス供給装置
WO2022173604A1 (en) * 2021-02-09 2022-08-18 Corning Incorporated Improved glass transport system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1598308A (en) * 1922-11-01 1926-08-31 Cole French Com Pany Method of and apparatus for fining glass
JPH04367518A (ja) * 1991-06-13 1992-12-18 Tanabe:Kk ロックウール用電気溶融炉の炉壁およびその炉壁の構築方法
JP2000007346A (ja) * 1998-06-24 2000-01-11 Asahi Glass Co Ltd 溶融ガラスの減圧脱泡装置およびその製作方法
JP2000159525A (ja) * 1998-11-20 2000-06-13 Asahi Glass Co Ltd 溶融ガラスの導管構造及び溶融ガラスの減圧脱泡装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6286337B1 (en) * 2000-06-29 2001-09-11 Corning Incorporated Tubing system for reduced pressure finer
JP4674432B2 (ja) * 2001-09-28 2011-04-20 旭硝子株式会社 溶融ガラスの導管構造及び溶融ガラスの減圧脱泡装置並びに溶融ガラスの製造方法及びガラス物品の製造方法
JP4061880B2 (ja) * 2001-10-18 2008-03-19 旭硝子株式会社 溶融ガラスの導管構造及び溶融ガラスの減圧脱泡装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1598308A (en) * 1922-11-01 1926-08-31 Cole French Com Pany Method of and apparatus for fining glass
JPH04367518A (ja) * 1991-06-13 1992-12-18 Tanabe:Kk ロックウール用電気溶融炉の炉壁およびその炉壁の構築方法
JP2000007346A (ja) * 1998-06-24 2000-01-11 Asahi Glass Co Ltd 溶融ガラスの減圧脱泡装置およびその製作方法
JP2000159525A (ja) * 1998-11-20 2000-06-13 Asahi Glass Co Ltd 溶融ガラスの導管構造及び溶融ガラスの減圧脱泡装置

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101562409B1 (ko) 2007-11-02 2015-10-21 코닝 인코포레이티드 유리 생산을 위한 내부식성 크래들 및 캐스터블 물질
JP2011502932A (ja) * 2007-11-02 2011-01-27 コーニング インコーポレイテッド キャスタブル材料を備えたガラス製造のための耐食性架台
US8997526B2 (en) 2008-02-27 2015-04-07 Asahi Glass Company, Limited Vacuum degassing apparatus and vacuum degassing method for molten glass
WO2009107531A1 (ja) * 2008-02-27 2009-09-03 旭硝子株式会社 溶融ガラスの減圧脱泡装置および減圧脱泡方法
US8468851B2 (en) 2008-02-27 2013-06-25 Asahi Glass Company, Limited Vacuum degassing apparatus and vacuum degassing method for molten glass
JP5387564B2 (ja) * 2008-02-27 2014-01-15 旭硝子株式会社 溶融ガラスの減圧脱泡装置および減圧脱泡方法
US8347654B2 (en) 2008-02-27 2013-01-08 Asahi Glass Company, Limited Vacuum degassing apparatus and vacuum degassing method for molten glass
JP2011208223A (ja) * 2010-03-30 2011-10-20 Jfe Steel Corp 溶銑用保持炉
US9505645B2 (en) 2011-03-31 2016-11-29 Asahi Glass Company, Limited Vacuum degassing apparatus, apparatus for producing glassware, and method for producing glassware
EP2692702A4 (en) * 2011-03-31 2014-08-20 Asahi Glass Co Ltd VACUUM DEGASSING APPARATUS, APPARATUS FOR PRODUCING GLASSWARE AND METHOD FOR PRODUCING GLASSWARE
WO2014174968A1 (ja) 2013-04-24 2014-10-30 旭硝子株式会社 溶融ガラスの導管構造、該導管構造を用いた装置および方法
JPWO2014174968A1 (ja) * 2013-04-24 2017-02-23 旭硝子株式会社 溶融ガラスの導管構造、該導管構造を用いた装置および方法
US9637407B2 (en) 2013-04-24 2017-05-02 Asahi Glass Company, Limited Molten glass conduit structure, and device and method using conduit structure
JP2015169365A (ja) * 2014-03-06 2015-09-28 日本電気硝子株式会社 炉内監視装置
JP2016088754A (ja) * 2014-10-29 2016-05-23 日本電気硝子株式会社 ガラス製造装置及びガラス製造方法
US20210347668A1 (en) * 2018-09-27 2021-11-11 Corning Incorporated Glass forming apparatuses comprising modular glass fining systems

Also Published As

Publication number Publication date
TW200718664A (en) 2007-05-16
JP5109086B2 (ja) 2012-12-26
KR20080034462A (ko) 2008-04-21
TWI394724B (zh) 2013-05-01
KR100922089B1 (ko) 2009-10-16
JPWO2007020754A1 (ja) 2009-02-19

Similar Documents

Publication Publication Date Title
WO2007020754A1 (ja) 溶融ガラスの導管構造、および該導管構造を用いた減圧脱泡装置
JP6222223B2 (ja) 溶融ガラスの導管構造、該導管構造を用いた装置および方法
TWI395725B (zh) The support structure of the riser or descending tube of the vacuum degassing device
JP5024045B2 (ja) 白金または白金合金製の中空管のバックアップ構造
JP5056415B2 (ja) 溶融ガラスの導管構造
CN102245519B (zh) 熔融玻璃搬运设备构件及玻璃制造装置
JP3823544B2 (ja) 溶融ガラスの減圧脱泡装置およびその製作方法
US20030051509A1 (en) Vacuum degassing apparatus for molten glass
JP3882342B2 (ja) 溶融ガラスの減圧脱泡装置
RU2552567C2 (ru) Устройство вакуумной дегазации, способ вакуумной дегазации расплавленного стекла, устройство и способ получения изделий из стекла
JP3915268B2 (ja) 溶融ガラスの減圧脱泡装置
CN102442756A (zh) 熔融玻璃的导管结构、及使用该导管结构的减压脱泡装置
JP2006219371A (ja) 溶融ガラスの減圧脱泡装置およびその製作方法
CN102442754A (zh) 减压脱泡装置的上升管或下降管的支撑构造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007530923

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06767542

Country of ref document: EP

Kind code of ref document: A1