WO2007018265A1 - 消耗電極式ガスシールドアーク溶接法およびこれに用いられる溶接トーチ - Google Patents

消耗電極式ガスシールドアーク溶接法およびこれに用いられる溶接トーチ Download PDF

Info

Publication number
WO2007018265A1
WO2007018265A1 PCT/JP2006/315831 JP2006315831W WO2007018265A1 WO 2007018265 A1 WO2007018265 A1 WO 2007018265A1 JP 2006315831 W JP2006315831 W JP 2006315831W WO 2007018265 A1 WO2007018265 A1 WO 2007018265A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
consumable electrode
welding
tip
additive
Prior art date
Application number
PCT/JP2006/315831
Other languages
English (en)
French (fr)
Inventor
Makoto Takahashi
Toyoyuki Sato
Terumi Nakamura
Kazuo Hiraoka
Original Assignee
Taiyo Nippon Sanso Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corporation filed Critical Taiyo Nippon Sanso Corporation
Priority to EP06796330A priority Critical patent/EP1930112A1/en
Priority to US11/990,185 priority patent/US20100133240A1/en
Publication of WO2007018265A1 publication Critical patent/WO2007018265A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/38Selection of media, e.g. special atmospheres for surrounding the working area
    • B23K35/383Selection of media, e.g. special atmospheres for surrounding the working area mainly containing noble gases or nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/24Features related to electrodes
    • B23K9/28Supporting devices for electrodes
    • B23K9/29Supporting devices adapted for making use of shielding means
    • B23K9/291Supporting devices adapted for making use of shielding means the shielding means being a gas
    • B23K9/295Supporting devices adapted for making use of shielding means the shielding means being a gas using consumable electrode-wire

Definitions

  • the present invention relates to a consumable electrode type gas shielded arc welding (hereinafter referred to as GMA welding) method and a welding torch used in this welding method. According to the present invention, the amount of dissolved oxygen in the weld metal can be kept extremely low.
  • GMA welding has the advantage of higher deposition speed than GTA welding (Gas Shielded Tangsten Arc Welding).
  • GTA welding Gas Shielded Tangsten Arc Welding
  • oxygen and carbon dioxide such as oxygen
  • concentration of dissolved oxygen in the weld metal is high because only a mixed gas of inert gas and an inert gas such as argon or helium or carbon dioxide is used as the shielding gas.
  • the dissolved oxygen concentration is closely related to the toughness of the weld metal. When the dissolved oxygen concentration is high, there is a problem that the toughness is lowered.
  • the dissolved oxygen concentration in the weld metal shows a value of 150 ppm or more even at the lowest.
  • Japanese Patent Publication No. 61-10255 discloses an arc-stable gas composed of an inert gas and an active gas, particularly a tip of a consumable electrode in an arc.
  • a GMA welding method has been proposed in which the gas is supplied locally toward the center of the arc and shield gas, which is an inert gas force, is supplied toward the molten pool.
  • a welding torch having a double nozzle is used, and for the purpose of reducing spatter, etc., the outer nozzle formed as an annular flow channel surrounding the inner nozzle is diacid oxide.
  • Charcoal A GMA welding method is disclosed in which an inert gas or a mixed gas of an inert gas and a small amount of an active gas is supplied to the inner nozzle.
  • Patent Document 1 Japanese Patent Publication No. 61-10255
  • Patent Document 2 Japanese Patent Publication No. 7-36958
  • the problem in the present invention is that when welding steel materials by the GMA welding method, the dissolved oxygen concentration in the weld metal can be reduced to 130 ppm or less, preferably 10 ppm or less, and the fluctuation of the arc and the arc length can be reduced.
  • the purpose is to achieve good bead formation while maintaining the stability of the arc without fluctuations.
  • a shielding gas such as an inert gas is supplied toward the consumable electrode, and an additive gas consisting of a mixed gas of an acidic gas and an inert gas is provided at the outer periphery of the molten pool. It is a consumable electrode type gas shielded arc welding method characterized by being directed toward the surface.
  • the shield gas is supplied toward the vicinity of the tip of the wear electrode.
  • the consumable electrode type gas shielded arc welding method of the present invention it is preferable to use an additive gas containing 2 to LOvol% of the oxidizing gas which is oxygen.
  • the consumable electrode type gas shielded arc welding method of the present invention it is also preferable to use an additive gas containing 4 to 20 vol% of the oxidizing gas which is carbon dioxide. Further, in the consumable electrode type gas shielded arc welding method of the present invention, an oxidizing gas is used. Force Oxygen and carbon dioxide, and it is preferable to use an additive gas with a total force of 20 vol%, which is the total concentration of oxygen concentration twice the concentration of carbon dioxide!
  • a second aspect of the present invention includes a case, a chip body provided in the case, a chip attached to the tip of the chip body, and a nozzle surrounding the chip.
  • a gap is formed between the tip body, the tip of the gap is used as a shield gas injection port, and a plurality of additive gas injection holes are provided radially at the tip of the case and inside the nozzle.
  • This is a consumable electrode type gas shielded arc welding torch.
  • the oxygen partial pressure in the gas near the arc is extremely low.
  • the partial pressure of oxygen near the consumable electrode tip, the droplet, and the center of the molten pool, where oxygen is likely to dissolve at the highest temperature can be kept low.
  • the additive gas mainly flows outside the arc and reaches the outer edge of the molten pool, so that the arc that contributes to the stability of the cathode spot is stabilized.
  • the dissolved oxygen concentration in the weld metal can be kept very low, and can be 130 ppm or less, preferably 10 ppm or less.
  • the arc is stable and good bead formation is possible.
  • the dissolved nitrogen concentration is also 80 ppm or less, preferably It can be made 60ppm or less, and it can fully exhibit the shielding effect from the atmosphere.
  • FIG. 1 is a longitudinal sectional view showing a main part of an example of a welding torch according to the present invention.
  • FIG. 2 is a cross-sectional view showing the main part of an example of the welding torch of the present invention.
  • FIG. 3 is a simulation diagram showing the concentration distribution of oxygen gas contained in the gas in the torch according to the present invention.
  • FIG. 4 is a schematic diagram showing the flow of shielding gas and additive gas in the present invention.
  • FIG. 5 is a graph showing an appropriate flow rate range of additive gas and shield gas in the present invention in Examples.
  • FIG. 1 and FIG. 2 show an example of the welding torch of the present invention.
  • FIG. 1 is a longitudinal sectional view showing the direction of the broken line in FIG.
  • Case 1 is a hollow cylindrical metal member.
  • the tip body 3 is accommodated via the gap 2 and attached to the torch body.
  • the air gap 2 is a shield gas flow path 2 through which a shield gas, which will be described later, flows, and the interval is about 1.5 mm.
  • the tip body 3 is a rod-shaped metal member, and a tip 4 is detachably attached to the tip of the tip body 3 with the same central axis.
  • the tip 4 is also a rod-shaped metal member that gradually decreases in diameter toward the tip and has a tapered shape.
  • a gas passage 7 for additive gas is formed near the tip of the case 1.
  • the gas passage 7 is formed by scraping a part of the outer periphery of the case 1 to form a circumferential concave groove.
  • the cylindrical gas passage 7 communicates with four injection holes 8 through which the additive gas is injected at the lower portion thereof.
  • injection holes 8 are cylindrical through-holes, and are formed on the front end surface of the case 1 at equal intervals radially, with the axis thereof facing the front end of the chip 4. It is tilted.
  • the angle ⁇ force is 3 to 69 degrees where the axis of the injection hole 8 intersects the horizontal line.
  • a nozzle 9 is attached to the tip of the case 1.
  • the nozzle 9 is a metal member having a cylindrical appearance.
  • the nozzle 9 surrounds the chip 4 and has a tapered shape with its tip side gradually reducing in diameter.
  • two additive gas supply pipes 10 are connected to the base end side of the nozzle 9.
  • the additive gas supply pipe 10 is supplied with an additive gas to be described later, and the additive gas passes through the gas passage 7 and is injected from the four injection holes 8.
  • the tip portion of the shield gas flow path 2 between the case 1 and the chip body 3 is a cylindrical shield gas injection port 11 concentric with the wire 5.
  • the tip of the nozzle 9 extends below the tip of the tip 4 so that the tip of the tip 4 is hidden by the tip of the nozzle 9.
  • a shield gas having an inert gas force such as argon or helium is allowed to flow through the shield gas flow path 2 of the welding torch and ejected from the injection port 11.
  • the additive gas is supplied from the supply pipe 10 and injected from the four injection holes 8 through the gas passage 7.
  • the additive gas a mixed gas composed of an oxygen-containing gas containing oxygen atoms such as oxygen and carbon dioxide and an inert gas such as argon and helium is used.
  • oxygen-containing gas is oxygen
  • the concentration in the mixed gas is 2 to: L0 vol%, more preferably 3 to 7 vol%.
  • concentration is less than 2 vo 1%, the stability of the arc cannot be obtained. Oxygen concentration becomes high, causing malfunction.
  • the concentration in the mixed gas is 4 to 20 vol%, more preferably 6 to 14 vol%, and if it is less than 4 vol%, the arc is still not stable, If it exceeds 20 vol%, the oxygen concentration in the weld metal increases.
  • the total force of the doubled oxygen concentration and the diacid carbon concentration is set to 20 vol%, and 4 vol% If it is less than 20%, the arc will not be stable. If it exceeds 20 vol%, the oxygen concentration in the weld metal will increase.
  • the flow rate of the shielding gas is preferably in the range of about 15 to 30 LZ, which is generally a flow rate used. If it is less than 15LZ, the shield will be defective and unsuitable. If it exceeds 30LZ, the turbulence of the shielding gas will increase and cause the atmosphere to get involved.
  • the flow rate of the additive gas should be appropriately adjusted according to the concentration of the acidic gas in the additive gas and the shield gas flow rate. If the pressure is less than 10 L / min, the effect of the additive gas will not be sufficiently exerted and the flow rate control will be somewhat difficult. It becomes unsuitable for reasons such as.
  • the shield gas flow rate and the additive gas flow rate in the range of (addition gas flow rate) ⁇ (shield gas flow rate + additive gas flow rate) ⁇ 0.3 are preferable.
  • the suitable flow rates of the shielding gas and the additive gas influence each other, and are also influenced by the amount of the oxidizing gas added to the additive gas. For example, when the amount of the acidic gas in the additive gas increases, the additive gas flow rate may be small.
  • the angle of the additive gas injection hole 8 is also affected by the shape of the nozzle 9.
  • the tip of the nozzle 9 is reduced in diameter as shown in FIG. 1, the additive gas flows along the inner wall of the nozzle 9 even if the injection angle is close to 90 degrees. It will be directed to the outer edge of. In this case, it is possible to obtain the same effect as when the injection hole is given an angle.
  • FIG. 3 is a simulation diagram showing the concentration distribution of oxygen gas contained in the gas in the torch according to the present invention.
  • the shielding gas flow rate is 20LZ
  • the additive gas composition is argon and 7% oxygen
  • the result at 3LZ is shown.
  • the gas in the center of the torch where the consumable electrode and arc are present has a low oxygen gas concentration, and it is clear that the gas contains a large amount of oxygen gas close to the outside in contact with the outer edge of the molten pool. is there.
  • simulations were performed under various conditions, and the optimum gas composition, shield gas and additive gas flow rates, and additive gas injection holes 8 were selected, The
  • wire 5 is fed at a feed rate of 4500 to 15000 mmZ, and at the same time, a voltage of 15 to 40 VDC is applied between wire 5 and base material 6, and an arc is blown from wire 5 for welding. .
  • the base material 6 a general steel material is used, and carbon steel, low carbon steel, stainless steel and the like are used.
  • the wire 5 a solid wire having a diameter of about 1.0 to 1.6 mm is used.
  • the welding torch also causes the gas flow as schematically shown in Fig. 4 by flowing the shielding gas and the additive gas.
  • the inside of the nozzle is filled with the shielding gas A ejected from the ejection port 11, and the shielding gas A flows so as to wrap the wire 5 serving as the tip and the anode.
  • the additive gas B flowing in from the four injection holes 8 is influenced by the flow of the shielding gas A flowing so as to wrap the wire 5 and the arc E serving as the tip and the anode, and the outer side of the arc E becomes the base material 6. It flows toward. A small amount of oxidizing gas contained in this additive gas B flows in the vicinity of the outer side of the shield gas and reaches the outer edge of the molten pool where the cathode spot is formed. As a result, the area C from the tip 4 of the tip 4 to the tip of the wire 5 becomes a space in which almost no oxygen is present.
  • the arc E is dropped to form a molten pool in the base material 6. Therefore, the metal forming the molten pool is also free of oxygen.
  • the cathode spot is stabilized by the acidic gas supplied only to the outer periphery of the molten pool shown in region F. As a result, the dissolved oxygen concentration in the weld metal can be reduced to an extremely low value of 130 ppm or less, and at the same time, the arc can be kept stable.
  • GMA welding was performed using low carbon steel SM490A (thickness 12 mm) as the base material 6 and wire 5 (YGW15 diameter 1.2 mm) as the consumable electrode.
  • the oxygen concentration in the base metal was 19 ppm
  • the nitrogen concentration was 54 ppm
  • the oxygen concentration in the wire was 31 ppm
  • the nitrogen concentration was 33 ppm.
  • the distance between the shield gas injection holes 11 in the welding torch is 1.5 mm, the angle ⁇ is 66 degrees, the nozzle opening diameter is 18.5 mm, the distance between the tip end and the nozzle opening end is 4 mm, and the additive gas injection hole 8 is a few of them, with an opening diameter of 1.8 mm and an opening cross-sectional area of 2.55 mm 2 , arranged radially.
  • Chip base material distance 19mm
  • the arc stability was judged from the shape of the current voltage waveform during visual inspection and welding. That is, a stable one until the end of the welding start force is good, and only a small part such as start and end Those that fluctuated only were considered good, and those that fluctuated continuously were considered bad.
  • the bead appearance was judged visually.
  • the bead toes (both bead width along the welding direction and the boundary between the base materials) are aligned in a straight line. Good ones, those with very small disturbances are good, and those meandering larger are bad. It was.
  • the dissolved oxygen concentration was determined by measuring the oxygen concentration in the weld metal part after welding according to the inert gas melting infrared absorption method CilS H1620). The dissolved nitrogen concentration was measured after welding according to the inert gas melting heat conduction method CilS G12 28).
  • the dissolved oxygen concentration is rated as ⁇ (good) when it is less than lOOppm, ⁇ (good) when it is greater than lOOppm but less than 130ppm, and X (bad) when it is greater than 130ppm.
  • the dissolved nitrogen concentration was rated as ⁇ (good) when it was 60 ppm or less, ⁇ (good) when it was greater than 60 ppm and 80 ppm or less, and X (bad) when it was greater than 80 ppm.
  • the appropriate flow rate ranges of the additive gas and shield gas in the present invention are shown in the graph of FIG.
  • the appropriate flow rate range shown by the graph in Fig. 5 plots the additive gas (Tables 1 to 5) with good or good overall judgment. When the plot positions overlap between the additive gases, the one with the lower oxygen concentration is given priority.
  • the dissolved oxygen concentration in the weld metal is 130 ppm or less, and the arc stability is maintained without arc fluctuation or arc length fluctuation.
  • the ranges for the yield gas, additive gas flow rate, and oxidizing gas addition amount were clarified.
  • the consumable electrode type gas shielded arc welding method of the present invention According to the consumable electrode type gas shielded arc welding method of the present invention and the welding torch used therefor, the amount of dissolved oxygen in the weld metal can be suppressed to an extremely low level, and good bead formation can be obtained. As a result, the present invention can provide welds and weldments of this quality that do not impair the toughness of the weld metal, and is extremely useful in industry.

Abstract

 本発明の目的は、不活性ガスからなるシールドガスを消耗電極に向けて供給し、酸化性ガスと不活性ガスとの混合ガスからなる添加ガスを溶融池外縁に向けて供給することを特徴とする消耗電極式ガスシールドアーク溶接法及びこれに用いる溶接トーチを提供することである。本発明によれば、GMA溶接法によって鋼材を溶接する際に、溶接金属中の溶存酸素濃度を100ppm以下にすることができ、かつアークの安定性も維持しつつ、良好なビード形成が得られるようになる。

Description

明 細 書
消耗電極式ガスシールドアーク溶接法およびこれに用いられる溶接トー チ
技術分野
[0001] この発明は、消耗電極式ガスシールドアーク溶接 (Gas Shielded Metal Arc Welding 、以下、 GMA溶接と略す)法とこの溶接法に用いられる溶接トーチに関する。本発明 によれば、溶接金属中の溶存酸素量を極めて低く抑えることができる。
本願は、 2005年 8月 11日に、日本に出願された特願 2005— 232912号に基づき 優先権を主張し、その内容をここに援用する。
背景技術
[0002] GMA溶接にあっては、 GTA溶接(Gas Shielded Tangsten Arc Welding)に比べて 溶着速度が高いという利点があるが、アークの安定性を保っため、酸素や二酸化炭 素などの酸ィ匕性ガスとアルゴン、ヘリウムなどの不活性ガスの混合ガス、もしくは二酸 化炭素のみをシールドガスとして用いることから、溶接金属中の溶存酸素濃度が高い と言う問題がある。溶存酸素濃度は、溶接金属のじん性と深く関係し、溶存酸素濃度 が高いと、じん性が低くなる問題がある。
[0003] 一般的な GMA溶接では、溶接金属中の溶存酸素濃度は、最も低いものでも 150p pm以上の値を示す。
このような溶存酸素濃度が高 、理由は、シールドガス中に含まれて 、る酸ィ匕性ガス 中の酸素原子が溶接時に高温となっている消耗電極先端、溶滴および溶融池に持 ち込まれるためと考えられている。
[0004] このような問題を解決する提案として、特公昭 61— 10255号公報には、不活性ガ スと活性ガスとからなるアーク安定ィ匕ガスと称するガスをアークのうち特に消耗電極先 端、つまりはアーク中心部に向けて局所的に供給し、不活性ガス力 なるシールドガ スを溶融池に向けて供給する GMA溶接法が提案されて ヽる。
[0005] また、特公平 7— 36958号公報には、二重ノズルを有する溶接トーチを用い、スパ ッタ低減等を目的とし、内側ノズルを取り囲む環状流路とした外ノズルには二酸ィ匕炭 素を流し、内ノズルには不活性ガスまたは不活性ガスと少量の活性ガスとの混合ガス を流す GMA溶接法が開示されて 、る。
し力しながら、二重ノズルを用いて、内側流路に不活性ガス力もなるシールドガス、 外側の環状流路に添加ガスを供給してアークを安定させるためには、大量の添加ガ スを供給する必要があり、その結果、溶融池へも大量の酸素が混入することとなり、溶 存酸素濃度の低減は図ることができな 、。
[0006] これら先行発明の溶接法にあっても、溶接金属中の溶存酸素濃度を lOOppm以下 とすることは困難であることが、本願発明者によって確かめられている。
特許文献 1:特公昭 61— 10255号公報
特許文献 2:特公平 7— 36958号公報
発明の開示
発明が解決しょうとする課題
[0007] よって、本発明における課題は、 GMA溶接法によって鋼材を溶接する際に、溶接 金属中の溶存酸素濃度を 130ppm以下、好ましくは lOOppm以下にすることができ 、かつアークのふらつきやアーク長の変動がなくアークの安定性も維持しつつ、良好 なビード形成が得られるようにすることにある。
課題を解決するための手段
[0008] 力かる課題を解決するため、
本発明の第一の態様は、不活性ガスカゝらなるシールドガスを消耗電極に向けて供 給し、酸ィ匕性ガスと不活性ガスとの混合ガスカゝらなる添加ガスを溶融池外縁に向けて 供給することを特徴とする消耗電極式ガスシールドアーク溶接法である。
[0009] 本発明の消耗電極式ガスシールドアーク溶接方法においては、シールドガスを消 耗電極の先端部付近に向けて供給する態様が好ましい。
また、本発明の消耗電極式ガスシールドアーク溶接方法においては、酸化性ガス が酸素であって、これを 2〜: LOvol%含む添加ガスを用いることが好ましい。
[0010] また、本発明の消耗電極式ガスシールドアーク溶接方法にぉ ヽては、酸化性ガス が二酸化炭素であって、これを 4〜20vol%含む添加ガスを用いることも好ましい。 さらに、本発明の消耗電極式ガスシールドアーク溶接方法においては、酸化性ガス 力 酸素と二酸化炭素とであり、二酸化炭素濃度に酸素濃度を 2倍した濃度の合計 力 〜 20vol%とした添加ガスを用いることが好まし!/、。
[0011] 本発明の第二の態様は、ケースと、このケース内に設けられたチップボディと、この チップボディの先端に取り付けられたチップと、このチップを囲むノズルを有し、ケー スとチップボディとの間に空隙が形成され、この空隙の先端部がシールドガスの噴射 口とされ、ケースの先端部で、かつノズルの内側に複数の添加ガスの噴射孔が放射 状に設けられたことを特徴とする消耗電極式ガスシールドアーク溶接用溶接トーチで ある。
発明の効果
[0012] 本発明によれば、溶接時において、陽極となる消耗電極付近には酸素が殆ど存在 しない領域となり、アーク付近のガス中の酸素分圧も極めて低いものとなる。このため 、最も高温で酸素が溶け込み易いと思われる消耗電極先端、溶滴および溶融池中 心付近の酸素分圧を低く保つことができる。また、添加ガスは、主にアークの外側を 流れ、溶融池の外縁に至るため、陰極点の安定に寄与するところが大きぐアークが 安定化する。
[0013] これにより、 GMA溶接において、溶接金属中の溶存酸素濃度を極めて低く抑える ことでき、 130ppm以下、好ましくは lOOppm以下とすることができる。また、アークが 安定し、良好なビード形成が可能となる。
[0014] さらに、大気からのシールド効果が不十分であると、内部欠陥など溶接品質の劣化 原因である窒素が溶接金属中に混入するが、本発明では溶存窒素濃度についても 80ppm以下、好ましくは 60ppm以下とすることができ、大気からのシールド効果も十 分に発揮することができる。
図面の簡単な説明
[0015] [図 1]本発明の溶接トーチの一例の要部を示す縦断面図である。
[図 2]本発明の溶接トーチの一例の要部を示す横断面図である。
[図 3]本発明におけるトーチ内のガス中に含まれる酸素ガスの濃度分布を示すシミュ レーシヨン図である。
[図 4]本発明におけるシールドガスおよび添加ガスの流れを示す模式図である。 [図 5]実施例での本発明における添加ガス及びシールドガスの適正流量範囲を示す グラフである。
符号の説明
1 ケース
2 シールドガス流路 (空隙)
3 チップボディ
4 チップ
5 ワイヤ
6 母材
7 ガス通路
8 噴射孔
9 ノズル
10 供給パイプ
11 噴射口
発明を実施するための最良の形態
[0017] 図 1および図 2は、本発明の溶接トーチの一例を示すものである。図 1は図 2におけ る破線方向を示す縦断面図である。
これらの図において、符号 1は、ケースを示す。このケース 1は、中空の円筒状の金 属製の部材である。このケース 1内には、空隙 2を介してチップボディ 3が収容されて トーチ本体に取り付けられて 、る。
[0018] 空隙 2は、後述するシールドガスが流れるシールドガス流路 2となっており、その間 隔は、 1. 5mm程度とされている。
チップボディ 3は、円棒状の金属部材であって、その先端にはチップ 4が中心軸を 同じくして着脱可能に取り付けられている。チップ 4は、やはり円棒状の金属部材であ つて、その先端に向けて徐々に縮径され、先細りの形状となっている。
[0019] チップボディ 3およびチップ 4の中心軸には、これらを連続して貫通する細径の通 路が形成されており、この通路には、消耗電極となるワイヤ 5が送り出し可能に挿通さ れて 、る。このワイヤ 5の先端からアークが母材 6に向けて飛ぶようになって!/、る。 [0020] このワイヤ 5は、図示しない送出リールから送り出され、チップボディ 3、チップ 4内の 通路を通り、所定の送給速度で連続的に送り出されるようになって 、る。
[0021] また、ケース 1の先端部付近には、添加ガス用のガス通路 7が形成されている。この ガス通路 7は、ケース 1の外周の一部を削り取って周状の凹溝を形成することによつ て作られている。
この円筒状のガス通路 7は、その下部において添加ガスが噴射される 4個の噴射孔 8に連通している。
[0022] これらの噴射孔 8は、円柱状の貫通孔であって、ケース 1の先端面に放射状に均等 に間隔を介して形成されており、その軸線がチップ 4の先端部に向くように傾斜して 形成されている。この例では、図 1にあるように、噴射孔 8の軸線と水平線とが交差す る角度 Θ力 3〜69度となっている。
[0023] また、ケース 1の先端には、ノズル 9が取り付けられている。このノズル 9は、外観が 円筒状の金属製の部材であって、チップ 4を取り囲むとともに、その先端側が徐々に 縮径し、先細りの形状となっている。
さらに、ノズル 9の基端側には、 2本の添加ガス供給パイプ 10が接続されている。
[0024] これらの添加ガス供給パイプ 10には、後述する添加ガスが送られ、この添加ガスが ガス通路 7を通り、 4個の噴射孔 8から噴射されるようになって 、る。
また、ケース 1とチップボディ 3との間のシールドガス流路 2の先端部分は、ワイヤ 5 に対して同心とされた円筒状となったシールドガスの噴射口 11となっている。また、ノ ズル 9の先端部は、チップ 4の先端部よりも下方にまで延び、チップ 4の先端部がノズ ル 9の先端部で隠れるようになって 、る。
[0025] 次に、この溶接トーチを使用した GMA溶接法について説明する。
溶接トーチのシールドガス流路 2にアルゴン、ヘリウムなどの不活性ガス力もなるシ 一ルドガスを流し、噴射口 11から噴出させる。
これと同時に、供給パイプ 10から添加ガスを流し、ガス通路 7を経て、 4個の噴射孔 8から噴射させる。
[0026] 添加ガスには、酸素、二酸ィ匕炭素などの酸素原子を含む酸ィ匕性ガスとアルゴン、へ リウムなどの不活性ガスとからなる混合ガスが用いられる。酸ィ匕性ガスが酸素の場合 には、混合ガス中の濃度が 2〜: L0vol%とされ、より好ましくは 3〜7vol%であり、 2vo 1%未満ではアークの安定性が得られず、 10vol%を越えると溶接金属中の酸素濃 度が高くなり、不具合を来す。
酸ィ匕性ガスが二酸ィ匕炭素の場合には、混合ガス中の濃度が 4〜20vol%とされ、 より好ましくは 6〜14vol%であり、 4vol%未満ではやはりアークが安定せず、 20vol %を越えると溶接金属中の酸素濃度が高くなる。
さらに、酸ィ匕性ガスとして酸素と二酸ィ匕炭素との混合ガスを用いる場合には、 2倍し た酸素濃度と二酸ィ匕炭素濃度との合計力 〜20vol%とされ、 4vol%未満ではやは りアークが安定せず、 20vol%を越えると溶接金属中の酸素濃度が高くなる。
[0027] シールドガスの流量は、一般的に用いられる流量でよぐ概ね 15〜30LZ分の範 囲が好ましい。 15LZ分未満ではシールド不良となり不適である。 30LZ分を超える とシールドガスの流れの乱れが大きくなり、大気を巻き込む原因となる。
[0028] また、添加ガスの流量は、添加ガス中の酸ィ匕性ガス濃度やシールドガス流量に合 わせて適宜調整されるべきである力 概略 1〜: LOLZ分の範囲とされ、 1LZ分未満 では添加ガスの効果が十分に発揮されず、流量制御もやや困難に成り易ぐ 10L/ 分を超えると添加ガスの動圧が高くなりすぎ、ビード形状不良を引起したり、シールド 状態を乱すなどの理由で不適となる。ひとつの指標としては、(添加ガス流量) ÷ (シ 一ルドガス流量 +添加ガス流量)≤0. 3となる範囲のシールドガス流量と添加ガス流 量が好ましい。
[0029] シールドガスと添加ガスの好適な流量は、相互に影響しあ!ヽ、また添加ガス中の酸 化性ガスの添加量にも影響される。例えば、添加ガス中の酸ィ匕性ガスの添加量が大 きくなると、添加ガス流量は少量でもよい。
また、添加ガスの噴射孔 8の開口断面積によっても影響を受け、ある程度大きな開 口断面積を持たせて、添加ガスが拡がって流れ出すようにすることも必要になる。
[0030] 添加ガスの噴射孔 8の角度は、ノズル 9の形状にも影響される。ノズル 9の先端が図 1に示すよう以上に縮径している場合には、噴射角度を 90度に近い角度としても、添 加ガスはノズル 9の内壁に沿って流れるため、結果として溶融池の外縁へ向力うこと になる。 この場合、噴射孔に角度を持たせた場合と同様な効果を得ることができる。
[0031] 図 3は、本発明におけるトーチ内のガス中に含まれる酸素ガスの濃度分布を示すシ ミュレーシヨン図であり、シールドガス流量 20LZ分、添加ガス組成アルゴン一 7%酸 素、添加ガス流量 3LZ分での結果を示している。
消耗電極とアークが存在しているトーチの中央部のガス中は酸素ガス濃度が低く抑 えられており、溶融池外縁と接する外側に近 、ガス中に酸素ガスが多く含まれること が明確である。本発明ではさまざまな条件でシミュレーションを実施しており、添加ガ ス組成やシールドガスと添加ガスの好適な流量、また添加ガスの噴射孔 8などにっ ヽ ても最適なものを選定して 、る。
[0032] ついで、ワイヤ 5を 4500〜15000mmZ分の送給速度で送り出し、同時に直流 15 〜40Vの電圧をワイヤ 5と母材 6との間に印加し、ワイヤ 5からアークを飛ばして溶接 を行う。
母材 6としては、一般の鋼材が用いられ、炭素鋼、低炭素鋼、ステンレス鋼などが用 いられる。また、ワイヤ 5としては、直径 1. 0〜1. 6mm程度のソリッドワイヤなどが用 いられる。
[0033] このようにして溶接トーチカもシールドガスと添加ガスとを流すことにより、図 4に模 式的に示すようなガスの流れが生じる。
ノズル内は、噴射口 11から噴射されたシールドガス Aにより満たされており、シール ドガス Aは、チップ、陽極となるワイヤ 5を包むように流れている。
[0034] 4個の噴射孔 8から流入した添加ガス Bは、チップと陽極となるワイヤ 5およびアーク Eを包むように流れるシールドガス Aの流れに影響されて、アーク Eの外側を母材 6に 向けて流れる。この添加ガス Bに含まれて!/、る少量の酸化性ガスがシールドガスの外 側付近に存在して流れ、陰極点が形成されている溶融池の外縁に至る。これにより、 チップ 4の先端力もワイヤ 5の先端までの領域 Cは、ほとんど酸素が存在しな 、空間 になる。
[0035] そして、ワイヤ 5が溶融して生じた溶滴 Dにも酸素が含まれることがなぐこの状態で アーク E中を滴下し、母材 6に溶融池を形成する。従って溶融池をなす金属にも酸素 が含まれない状態となる。 一方、領域 Fで示す溶融池外縁のみに供給された酸ィ匕性ガスにより陰極点の安定 化が図られる。これにより、溶接金属中の溶存酸素濃度を 130ppm以下と極めて低 い値とすることができると同時に、アークの安定を保つことが可能となる。
実施例
[0036] 以下、実施例について説明する。
図 1および図 2に示した溶接トーチを用い、低炭素鋼 SM490A (厚さ 12mm)を母 材 6とし、ワイヤ 5 (YGW15径 1. 2mm)を消耗電極として GMA溶接を行った。母材 中の酸素濃度は 19ppm、窒素濃度は 54ppmで、ワイヤ中の酸素濃度は 31ppm、 窒素濃度は 33ppmであった。
[0037] 溶接トーチにおけるシールドガスの噴射口 11の間隔は 1. 5mm、角度 Θは 66度、 ノズル開口径は 18. 5mm、チップ先端とノズル開口端との距離は 4mm、添加ガスの 噴射孔 8は、その数力 個で、開口径が 1. 8mm、開口断面積が 2. 55mm2であり、 放射状に配置した。
[0038] 溶接条件は以下の通りとした。
溶接方法: GMA溶接
チップ母材間距離: 19mm
トーチ角度:鉛直
溶接姿勢:下向き
溶接長: 130mm
継手形状:ビードオンプレート溶接
ワイヤ送給速度: 13500mmZ分(約 350〜380A)
設定電圧:スプレー化下限電圧 + 1V
溶接速度: 450mmZ分
[0039] 以上の条件下において、添加ガスの種類、添加ガス流量、シールドガス流量を変 化させて、溶接時のアーク安定性、ビード外観、溶存酸素濃度、溶存窒素濃度につ いて評価した。
アーク安定性にっ 、ては、目視および溶接時の電流電圧波形の形状から判断した 。すなわち、溶接開始力 終了まで安定したものを良好、開始や終了などごく一部の み変動するものを良、それ以外の «続的に変動するものを不良とした。
ビード外観については、目視により判断した。ビード止端部 (溶接方向に沿ったビ ード幅両端と母材の境目)が直線的に揃って 、るものを良好、ごく小さな乱れがある ものを良、それより大きく蛇行するものを不良とした。
溶存酸素濃度は、溶接後に溶接金属部分における酸素濃度を不活性ガス融解 赤外線吸収法 CilS H1620)に従って測定したものである。また、溶存窒素濃度は、 溶接後に溶接金属部分における窒素濃度を不活性ガス融解 熱伝導法 CilS G12 28)に従って測定したものである。
溶存酸素濃度は、 lOOppm以下を〇(良好)、 lOOppmより大きく 130ppm以下を △ (良)、 130ppmより大きい場合を X (不良)とした。溶存窒素濃度は、 60ppm以下 を〇(良好)、 60ppmより大きく 80ppm以下を△ (良)、 80ppmより大きい場合を X ( 不良)とした。
上記判断基準の結果において、全て良好である場合には良好、不良は無いが良 がーつでもある場合は良、一つでも不良がある場合には不良として総合判定を行つ た。その結果を表 1ないし表 5に示す。
また、上記の総合判定の結果に基づいて、本発明における添加ガス及びシールド ガスの適正流量範囲を図 5のグラフに示す。図 5のグラフによって示される適正流量 範囲は、各添加ガス(表 1〜5)において総合判定が良好または良であるものをプロッ トしたものである。各添加ガス間でプロット位置が重なる場合には、酸素濃度が低い 方を優先して記した。
[表 1]
Figure imgf000012_0001
添如ガス: Ar-2%02
Figure imgf000012_0002
判断基準 O: 良好、 Δ: 良、 X :不良
Figure imgf000013_0001
添加カス: Ar- 3%02
Figure imgf000013_0002
判断基準 O:良好、 Δ: 良、 X :不良
添加ガス: Ar- 5%02
Figure imgf000014_0001
判断基準 O :良好、 厶:良, :不良
添加カス. Ar 7%02
Figure imgf000015_0001
判断基準 O:良好、 厶:良、 :不良
¾臧 $ Οik V x ::. , .
Figure imgf000016_0001
以上の結果から、図 5に示される通り、溶接金属中の溶存酸素濃度を 130ppm以 下とし、かつアークのふらつきやアーク長の変動がな 、アークの安定性が保たれるシ 一ルドガス、添加ガスの流量、酸化性ガスの添加量についての範囲が明らかになつ た。
なお、表 1ないし 5、及び図 5に記載された結果は、上記溶接条件、トーチの諸元に 応じて変動するものである。
産業上の利用可能性
本発明の消耗電極式ガスシールドアーク溶接法及びこれに用いられる溶接トーチ によれば、溶接金属中の溶存酸素量を極めて低く抑えることが可能であり、良好なビ ード形成が得られる。その結果、本発明は、溶接金属のじん性を損なうことなぐ本品 質の溶接及び溶接物を提供することが可能であって、産業上極めて有用である。

Claims

請求の範囲
[1] 不活性ガスカゝらなるシールドガスを消耗電極に向けて供給し、酸ィ匕性ガスと不活性 ガスとの混合ガスカゝらなる添加ガスを溶融池外縁に向けて供給することを特徴とする 消耗電極式ガスシールドアーク溶接法。
[2] シールドガスを消耗電極の先端部付近に向けて供給することを特徴とする請求項 1 記載の消耗電極式ガスシールドアーク溶接法。
[3] 酸ィ匕性ガスが酸素であって、これを 2〜: LOvol%含む添加ガスを用いることを特徴と する請求項 1記載の消耗電極式ガスシールドアーク溶接法。
[4] 酸ィ匕性ガスが二酸ィ匕炭素であって、これを 4〜20vol%含む添加ガスを用いること を特徴とする請求項 1記載の消耗電極式ガスシールドアーク溶接法。
[5] 酸ィ匕性ガスが、酸素と二酸化炭素とであり、二酸化炭素濃度に酸素濃度を 2倍した 濃度の合計力 〜20vol%とした添加ガスを用いることを特徴とする請求項 1記載の 消耗電極式ガスシールドアーク溶接法。
[6] ケースと、このケース内に設けられたチップボディと、このチップボディの先端に取り 付けられたチップと、このチップを囲むノズルを有し、ケースとチップボディとの間に 空隙が形成され、この空隙の先端部がシールドガスの噴射口とされ、ケースの先端 部で、かつノズルの内側に複数の添加ガスの噴射孔が放射状に設けられたことを特 徴とする消耗電極式ガスシールドアーク溶接用溶接トーチ。
PCT/JP2006/315831 2005-08-11 2006-08-10 消耗電極式ガスシールドアーク溶接法およびこれに用いられる溶接トーチ WO2007018265A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06796330A EP1930112A1 (en) 2005-08-11 2006-08-10 Method of consumable electrode type gas shield arc welding and welding torch for use therein
US11/990,185 US20100133240A1 (en) 2005-08-11 2006-08-10 Consumable Electrode-Based Gas-Shielded Arc Welding Method and Welding Torch Therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005232912A JP4803355B2 (ja) 2005-08-11 2005-08-11 消耗電極式ガスシールドアーク溶接法およびこれに用いられる溶接トーチ
JP2005-232912 2005-08-11

Publications (1)

Publication Number Publication Date
WO2007018265A1 true WO2007018265A1 (ja) 2007-02-15

Family

ID=37727445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315831 WO2007018265A1 (ja) 2005-08-11 2006-08-10 消耗電極式ガスシールドアーク溶接法およびこれに用いられる溶接トーチ

Country Status (4)

Country Link
US (1) US20100133240A1 (ja)
EP (1) EP1930112A1 (ja)
JP (1) JP4803355B2 (ja)
WO (1) WO2007018265A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008013135A1 (de) * 2008-03-07 2009-09-17 Audi Ag Schutzgasschweißbrenner
CN101890558A (zh) * 2010-07-07 2010-11-24 昆山华恒工程技术中心有限公司 管道mag自动打底焊接方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5205115B2 (ja) 2008-04-16 2013-06-05 株式会社神戸製鋼所 純Arシールドガス溶接用MIGフラックス入りワイヤ及びMIGアーク溶接方法
CN101612688B (zh) * 2008-06-26 2013-10-16 北京石油化工学院 斜特性式脉冲熔化极气体保护焊弧长自动调节方法
JP5218972B2 (ja) * 2008-08-19 2013-06-26 国立大学法人大阪大学 Gma溶接方法
JP5287962B2 (ja) * 2011-01-26 2013-09-11 株式会社デンソー 溶接装置
JP5540391B2 (ja) * 2012-11-15 2014-07-02 国立大学法人大阪大学 Gma溶接方法
US20140138358A1 (en) * 2012-11-21 2014-05-22 General Electric Company Component repair arrangement and method
DE102013015171A1 (de) * 2013-09-12 2015-03-12 Linde Aktiengesellschaft Verfahren zum Metallschutzgasschweißen
DE102014118970A1 (de) * 2014-12-18 2016-06-23 Alexander Binzel Schweisstechnik Gmbh & Co. Kg Vorrichtung zur Schweißdraht- und Prozessgaszuführung einer Schweißvorrichtung
JP6795290B2 (ja) * 2015-07-31 2020-12-02 株式会社神戸製鋼所 ガスシールドアーク溶接方法
MX2018007759A (es) 2016-01-20 2018-08-16 Nippon Steel & Sumitomo Metal Corp Metodo de soldadura electrica por arco con proteccion de gas tipo electrodo consumible y porcion de la soldadura electrica por arco.
US11077524B2 (en) * 2016-01-27 2021-08-03 H.C. Starck Inc. Additive manufacturing utilizing metallic wire
KR101824156B1 (ko) * 2016-04-11 2018-02-01 삼성중공업 주식회사 용접 보조 장치
KR101853956B1 (ko) * 2016-05-04 2018-05-02 삼성중공업 주식회사 수평 맞대기 이음 용접 장치 및 그 방법
JP7063687B2 (ja) * 2018-03-30 2022-05-09 株式会社神戸製鋼所 溶接装置及び溶接装置を用いた溶接方法
JP7166831B2 (ja) * 2018-08-02 2022-11-08 日鉄エンジニアリング株式会社 消耗電極式ガスシールドアーク溶接方法
KR102114639B1 (ko) * 2018-12-05 2020-05-25 창원정공(주) 아크 용접장치
US11673204B2 (en) 2020-11-25 2023-06-13 The Esab Group, Inc. Hyper-TIG welding electrode
WO2023119419A1 (ja) * 2021-12-21 2023-06-29 日立Astemo株式会社 溶接方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5174939A (ja) * 1974-12-25 1976-06-29 Osamu Dewa Nijugasushiirudoshikiaakuyosetsuhooyobidosochi
JPH03142074A (ja) * 1990-10-04 1991-06-17 Daido Steel Co Ltd 2重ガス被包アーク溶接方法
JPH0550247A (ja) * 1991-08-16 1993-03-02 Nichigou Asechiren Kk ダブルガスシールドメタルアーク溶接法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2014226A (en) * 1934-12-28 1935-09-10 Gen Electric Combined electrode holder and nozzle for gas-arc torches
JPS539571B2 (ja) * 1974-11-27 1978-04-06
SE403726B (sv) * 1976-11-05 1978-09-04 Aga Ab Sett och anordning for att reducera bildningen av ozon vid svetsning eller bearbetning medelst elektrisk ljusbage
NL7700971A (nl) * 1977-01-31 1978-08-02 Philips Nv Werkwijze en inrichtning voor het plasma-mig lassen.
DE3773258D1 (de) * 1986-05-18 1991-10-31 Daido Steel Co Ltd Verschleissfeste gegenstaende aus titan oder aus einer titanlegierung.
US5097108A (en) * 1989-03-28 1992-03-17 Cisco Safety, Inc. Conversion convergent nozzle assembly
JPH11291049A (ja) * 1998-04-07 1999-10-26 Mitsubishi Heavy Ind Ltd 溶接トーチ
FR2799143B1 (fr) * 1999-10-05 2001-12-28 Air Liquide Procede et installation de soudage mig de l'aluminium et de ses alliages
US7863538B2 (en) * 2004-03-19 2011-01-04 Hobart Brothers Company Metal-core gas metal arc welding of ferrous steels with noble gas shielding

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5174939A (ja) * 1974-12-25 1976-06-29 Osamu Dewa Nijugasushiirudoshikiaakuyosetsuhooyobidosochi
JPH03142074A (ja) * 1990-10-04 1991-06-17 Daido Steel Co Ltd 2重ガス被包アーク溶接方法
JPH0550247A (ja) * 1991-08-16 1993-03-02 Nichigou Asechiren Kk ダブルガスシールドメタルアーク溶接法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008013135A1 (de) * 2008-03-07 2009-09-17 Audi Ag Schutzgasschweißbrenner
DE102008013135B4 (de) * 2008-03-07 2011-04-28 Audi Ag Schutzgasschweißbrenner
CN101890558A (zh) * 2010-07-07 2010-11-24 昆山华恒工程技术中心有限公司 管道mag自动打底焊接方法

Also Published As

Publication number Publication date
EP1930112A1 (en) 2008-06-11
JP4803355B2 (ja) 2011-10-26
JP2007044736A (ja) 2007-02-22
US20100133240A1 (en) 2010-06-03

Similar Documents

Publication Publication Date Title
WO2007018265A1 (ja) 消耗電極式ガスシールドアーク溶接法およびこれに用いられる溶接トーチ
EP2377637B1 (en) Method of high-current-density gas-shielded arc welding using a flux-cored wire
US8319142B2 (en) Contoured shield orifice for a plasma arc torch
JP5826057B2 (ja) 複合溶接方法及び複合溶接用の溶接トーチ
US20130299463A1 (en) Hybrid welding method and welding torch for hybrid welding
WO2008016084A1 (fr) Procédé de soudage à l'arc sous gaz avec métal tandem, torche de soudage et dispositif de soudage utilisés
JP2009107017A (ja) 溶接部の品質を制御する方法
EP1459830B1 (en) Tig welding method and welded object
WO2012046799A1 (ja) 溶接ガス及びプラズマ溶接方法
US20090071942A1 (en) Method and apparatus of welding with electrical stickout
US7915560B2 (en) TIG welding equipment and TIG welding methods
RU2319584C1 (ru) Способ дуговой наплавки и сварки с комбинированной газовой защитой
JP5078143B2 (ja) 亜鉛めっき鋼板のプラズマ溶接方法
US4161645A (en) Arc welding apparatus and method
JPS597545B2 (ja) 鋼の消耗電極式ア−ク溶接方法
JP3936342B2 (ja) Tig溶接方法
JP6442789B2 (ja) 溶接方法
JPH10225771A (ja) 溶接トーチのシールド構造
JPH0736958B2 (ja) ダブルガスシールドメタルアーク溶接法
JP5472931B2 (ja) プラズマ溶接装置
JP3726813B2 (ja) パウダプラズマ溶接装置と溶接方法
JPS5938073B2 (ja) 非消耗電極式溶接ト−チ
CN103517781A (zh) 使用旋转电弧和Ar/He/CO2气体混合物对不锈钢的MIG/MAG焊接
JPH04157069A (ja) ダブルガスシールドメタルアーク溶接法
JPH09295156A (ja) プラズマ切断方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11990185

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006796330

Country of ref document: EP