WO2007018128A1 - 異方性ボンド磁石とそれを用いた直流モータ - Google Patents

異方性ボンド磁石とそれを用いた直流モータ Download PDF

Info

Publication number
WO2007018128A1
WO2007018128A1 PCT/JP2006/315423 JP2006315423W WO2007018128A1 WO 2007018128 A1 WO2007018128 A1 WO 2007018128A1 JP 2006315423 W JP2006315423 W JP 2006315423W WO 2007018128 A1 WO2007018128 A1 WO 2007018128A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic flux
flux density
orientation
magnetic
bonded magnet
Prior art date
Application number
PCT/JP2006/315423
Other languages
English (en)
French (fr)
Inventor
Yoshinobu Honkura
Hironari Mitarai
Hiroshi Matsuoka
Yoji Hashimoto
Original Assignee
Aichi Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corporation filed Critical Aichi Steel Corporation
Priority to US11/990,140 priority Critical patent/US20090127958A1/en
Priority to EP06782283A priority patent/EP1923983A1/en
Publication of WO2007018128A1 publication Critical patent/WO2007018128A1/ja
Priority to US13/067,088 priority patent/US20110248591A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K23/00DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors
    • H02K23/02DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors characterised by arrangement for exciting
    • H02K23/04DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors characterised by arrangement for exciting having permanent magnet excitation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/17Stator cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K13/00Structural associations of current collectors with motors or generators, e.g. brush mounting plates or connections to windings; Disposition of current collectors in motors or generators; Arrangements for improving commutation
    • H02K13/10Arrangements of brushes or commutators specially adapted for improving commutation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K23/00DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors
    • H02K23/40DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors characterised by the arrangement of the magnet circuits

Definitions

  • Rectification means that a motor armature coil (hereinafter referred to as “rectifier coil”) connected to a commutator piece that is short-circuited by a brush moves in a period from when the commutator piece is short-circuited until it is released.
  • rectifying section which is referred to as “rectifying period”.
  • Patent Document 1 in a conventional DC two-pole motor that uses two tile-shaped magnets and does not have a magnetic pole near the mechanical neutral axis, the machine starts from the front end of the magnet armature in the rotational direction. In the direction of the mechanical neutral axis, there is an extension with a magnetic force that gradually increases the magnetic flux density of the same polarity as the main pole. With this configuration, while the rectifying coil moves through the rectifying section, the magnetic flux passing through the rectifying coil is increased to generate a voltage in the direction of the reversal current to compensate for insufficient rectification.
  • Patent Document 2 is one of the angular positions of the rectifying coil at the start of commutation with respect to the position of the magnetic flux minimum part formed at the boundary between the main magnetic pole and the extension part in the motor of Patent Document 1. It is disclosed that the occurrence of sparks is suppressed by adjusting the position of the brush so that the ratio to the commutator angle is within a predetermined range.
  • Patent Document 3 in a conventional DC two-pole motor using two tile-shaped magnets and no magnetic pole near the mechanical neutral axis, the next magnetic pole on the rotation direction side of the armature Rear end force located in the direction opposite to the direction of rotation of the magnet
  • the main magnetic pole (front magnetic pole) generating the magnetic flux penetrating the rectifier coil in the direction of the mechanical neutral axis in the direction opposite to the direction of rotation End magnetic poles are also provided, which also have polar magnet force.
  • the position of the brush is adjusted so that the front end piece of the rectifying coil (the tip coil piece in the rotating direction) reaches the center of the force end magnetic pole near the mechanical neutral axis where no magnetic pole exists.
  • the rectifying coil moves through the rectifying section, the magnetic flux penetrating the rectifying coil is increased to generate a counter electromotive force in the direction of the reversal current to compensate for the insufficient rectification.
  • Patent Document 4 is different from Patent Document 3 in that an end magnetic pole having a reverse polarity is provided in the direction of the mechanical neutral axis from the front end in the rotation direction of the main magnetic pole.
  • the position of the brush is adjusted so that the interval between the end poles in front of the next magnetic pole and the center is the rectifying section.
  • the magnetic flux penetrating the rectifying coil is reduced, and in the second half of the rectifying section, the magnetic flux penetrating the rectifying coil is increased to prevent over-rectification and under-rectification.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-095218
  • Patent Document 2 Japanese Patent Laid-Open No. 2002-084719
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-095229
  • Patent Document 4 Japanese Patent Laid-Open No. 2002-095230
  • an auxiliary magnetic pole is provided in this region by utilizing the fact that no magnet is present near the mechanical neutral axis.
  • the magnetic pole is formed on the circumference of the ring magnet without any breaks, there is no room for forming such a supplementary magnetic pole. It cannot be applied to a magnetic bond magnet.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to realize an anisotropic bonded magnet that improves rectification characteristics in a DC motor. This is to suppress the generation of sparks in a DC motor using a motor and extend its life.
  • Another object is to reduce the cogging torque.
  • an anisotropic bonded magnet formed into a ring shape used for exciting a DC motor having a brush has a magnetic flux density of a normal component in the ring shape within the ring-shaped magnetic pole section. It is an anisotropic bonded magnet characterized by having a magnetic flux density reduction part partially reduced.
  • the present invention is characterized in that a ring magnet having a constant thickness is provided with a magnetic flux density reduction portion in which the magnetic flux density is partially reduced in the magnetic pole section.
  • a magnetic flux density reduction portion By forming the magnetic flux density reduction portion, the rectification characteristics of the DC motor can be improved. Caro ring magnet Since the magnetic flux density reduction portion is formed only by the orientation and magnetization that are not required, the manufacture becomes easy. Further, since the magnetic flux density reduction part is not thinly configured, demagnetization due to a demagnetizing field can be prevented. It is desirable that the magnetic flux density reducing portions be formed in a number corresponding to the number of rectifying coils.
  • the magnetic flux density reducing unit may be formed at least in the magnetic pole section at a position corresponding to the rectifying section, which is a region in which the rear end piece of the rectifying coil moves during rectification.
  • a second invention is an anisotropic bonded magnet formed in a ring shape used for excitation of a DC motor having a brush, wherein the magnetic flux density distribution in one magnetic pole section of the ring shape is the rotation direction of the armature From the neutral axis on the opposite side of the armature, there is a magnetic flux density reduction part whose absolute value rises with a delay with respect to the armature rotation direction.
  • An anisotropic bonded magnet characterized by having an asymmetric distribution that falls more rapidly than rising in the rotational direction.
  • the magnetic flux density distribution of the ring magnet is asymmetric, and the rise of the magnetic flux density from the neutral axis on the opposite side of the armature rotation direction is delayed, and the flux density is increased in the delayed start-up section. It is characterized by having a reduction part.
  • the magnetic flux density reduction unit has a distribution of magnetic flux density of the normal component of the ring shape.
  • the magnetic flux density minimum portion shows a minimum with respect to the position change in the circumferential direction of the ring shape.
  • the magnetic flux density reducing part includes a minimum part of the magnetic flux density. This configuration can improve rectification characteristics.
  • the fourth aspect of the invention is characterized in that the orientation of the magnetic flux density reduction portion mainly includes an orientation component in the circumferential direction of the ring magnet. It is an isotropic bond magnet.
  • the magnetic flux density reduction part is realized by the orientation of the bond magnet.
  • any orientation required to generate magnetic flux that penetrates the armature through the armature such as radial orientation, polar orientation, semi-radial orientation, and axial orientation.
  • the magnetic flux density reduction unit can realize the magnetic flux density reduction unit because the magnetic flux component in the normal direction is small in the magnetic flux density reduction unit due to the magnetization after the orientation treatment.
  • the orientation of the magnetic flux density reduction portion is a distribution in which the direction of the circumferential direction of the ring magnet is gradually changed from the normal direction to the gradually normal direction.
  • the anisotropic bonded magnet according to any one of claims 1 to 4, wherein the anisotropic bonded magnet is characterized.
  • magnetization after the orientation treatment it is possible to form a magnetic flux density reduced portion having a small magnetic component in the normal direction.
  • the magnetic flux density minimum portion can be specifically formed in the magnetic flux density reduction portion.
  • the absolute position of the magnetic flux density penetrating the rectifying coil is influenced by the influence of the magnetic flux density reducing portion when the rectifying coil moves in the rectifying zone when the magnetic flux density reducing portion is formed in the magnetic pole section.
  • the anisotropic bonded magnet according to any one of claims 1 to 5, wherein the anisotropic bonded magnet is formed at an increasing position.
  • the present invention is characterized by the relative positional relationship between the rectifying coil and the magnetic flux density reduction unit.
  • the magnetic flux density increases with the movement of the rectifying coil, so that a voltage (induced electromotive force generated by the rotation of the armature) can be generated in the direction of the reversal current.
  • rectification can be promoted.
  • the relationship between the rectifier coil that satisfies this condition and the magnetic flux density reduction unit is such that the magnetic flux from all the magnetic flux density reduction units and the magnetic flux of the magnetic pole to which the magnetic flux density reduction unit belongs at the start of rectification.
  • the magnetic flux density reduction unit typically has a position of the rear end piece of the rectification coil (the coil piece at the rear end when the rotation direction of the armature is the front) at the start of rectification (the magnetic flux penetrating the rectification coil). Therefore, the position of the coil piece is defined by the position of the trailing edge of the tooth that induces the magnetic flux that the coil piece is struck. It exists in the section until the position is located, that is, the rectifying section. However, while the rectifying coil moves in the rectifying section, the position of the front end piece (front end coil piece with the armature rotation direction in front) (defined by the front end wedge position of the teeth where this coil piece is rolled). Exist in the same magnetic pole.
  • the magnetic flux density reduction portion is formed in the magnetic pole section so as to satisfy such a relationship. At this time, the total magnetic flux passing through the rectifying coil is Can be increased. In this case, unlike the above-mentioned Patent Documents 1 and 2, when the rectification coil moves in the rectification section, the rear end piece of the rectification coil passes through the magnetic flux density reduction unit.
  • both the area where the magnetic flux decreases and the area where the magnetic flux increases along the rotation direction of the armature in the magnetic flux density reduction part This contributes to an increase in the total magnetic flux penetrating the magnetic flux, so that the rate of increase of the magnetic flux with respect to the rotation angle can be increased, and the rectification characteristics can be improved satisfactorily.
  • the magnetic flux density of the magnetic flux density reduction unit penetrating the rectification coil during the rectification period is Small value force close to the value on the neutral axis Large increase to a value close to the saturated steady value. Therefore, the total magnetic flux penetrating the rectifying coil changes in a direction that greatly increases during the rectification period. Therefore, it is possible to effectively compensate for the shortage rectification and effectively prevent the occurrence of sparks.
  • the magnetic flux density reducing portion smoothes the change in magnetic flux density near the neutral axis of the magnetic poles on average, the cogging torque is greatly reduced.
  • the rectification coil exists in the same magnetic pole, and at the start of rectification, the front end piece of the rectification coil is located at the minimum position of the magnetic flux density reduction unit, and at the end of rectification, the rectification coil May be used in such a positional relationship that the position includes the magnetic flux density reduction portion.
  • the rectification coil exists in the same magnetic pole, and at the start of rectification, the rectification coil includes all the magnetic flux density reduction units. At the end of rectification, the rear end piece of the rectification coil is the magnetic flux density reduction unit. The front end piece of the rectifying coil may be located in the same magnetic pole section during the rectification period.
  • the magnetic flux density reducing portion is formed in the magnetic pole section in the rectifying section where the rectifying coil exists in the same magnetic pole, and when the rectifying coil moves in the rectifying section, at least a part of the magnetic flux in the magnetic flux density reducing section.
  • the predetermined magnetic flux may be formed at a position where the predetermined magnetic flux is changed from a position where the rectifying coil penetrates to a position where the rectifying coil does not penetrate.
  • the magnetic flux density reducing part is formed in the magnetic pole section in the rectifying section where the rectifying coil exists in the same magnetic pole, and when the rectifying coil moves in the rectifying section,
  • the rear end piece positioned rearward in the rotation direction may be formed at a position passing through the magnetic flux density reduction unit.
  • the magnetic flux penetrating the rectifying coil increases during the period in which the rectifying coil moves in the rectifying section.
  • a voltage can be induced in the direction of the reversal current in the rectification coil during the rectification period, and the rectification characteristics can be improved.
  • the magnetic flux density reduction unit has an orientation transition in which the orientation distribution gradually turns from the normal direction to the turn direction and gradually becomes the normal direction with respect to the change in the position of the ring magnet in the turn direction. 7. Any one of claims 1 to 6, wherein the region includes at least a middle line of an orientation transition section among regions magnetized by including at least 1Z2 or more in a section in one magnetic pole section. The anisotropic bonded magnet according to item.
  • a magnetic flux density reduction portion can be formed when magnetizing in one direction in one magnetic pole section.
  • the alignment transition section is completely contained in one magnetic pole section, and the middle line of the alignment transition section from the end of the alignment transition section (which is the middle line on the region of the orientation distribution oriented in the circumferential direction) (It does not necessarily mean a geometrical midline), and a region that does not exceed that may exist in other adjacent magnetic pole sections. That is, the midpoint position (middle line) of the section in which the orientation is directed in the circumferential direction is smaller than the remaining 1Z2 as the positional relationship included in one magnetic pole section, and the magnetic field is such that the region exists in the other adjacent magnetic pole section. You may do it. If it does in this way, it will become possible to form the magnetic flux density reduction part of above-mentioned Claims 1-6.
  • An eighth invention is a DC motor including a brush having the anisotropic bonded magnet according to any one of claims 1 to 7.
  • the total magnetic flux passing through the rectifying coil moving in the rectifying section increases, and a voltage is induced in the direction of the reversal current in the rectifying coil. Can be suppressed.
  • the cogging torque can be reduced.
  • the magnetic flux density reduction unit has a characteristic that a certain tooth feels with rotation when an anisotropic bonded magnet is assembled to a motor and the armature is rotated. It is a change characteristic of density. That is, the magnetic flux density distribution that contributes to actual torque generation in the motor. Therefore, the distribution characteristics of this magnetic flux density reduction part are It is not a characteristic obtained by measuring the surface magnetic flux density of an anisotropic bonded magnet alone. The measuring method will be described later.
  • a magnetic flux density reduction portion in which the magnetic flux density is partially reduced is provided in the magnetic pole section. Therefore, the absolute value of the magnetic flux penetrating the rectifying coil Can be increased, and a voltage can be induced in the direction of reversal current. As a result, the reversal of the current in the rectifier coil can be promoted, the rectification characteristics of the DC motor with brushes are improved by compensating for the insufficient rectification, and the occurrence of sparks between the commutator and the brush is effectively suppressed. can do. Further, since the magnetic flux density reduction portion is formed only by orientation and magnetization without processing the ring magnet, the manufacture becomes easy. Further, since the magnetic flux density reduction portion is made thin, demagnetization due to a demagnetizing field can be prevented.
  • the magnetic flux density distribution in one magnetic pole section of the ring shape has an absolute value that is delayed with respect to the rotation direction of the armature from the neutral axis opposite to the rotation direction of the armature. It has an up-force / magnetic-flux-density reduction section, and the neutral axis on the armature rotation direction side has an asymmetric distribution that falls more rapidly than the rise in the armature rotation direction.
  • the absolute value of the magnetic flux penetrating the current coil can be greatly increased, and a large voltage can be induced in the direction of the reversal current.
  • the reversal of current in the rectifier coil can be promoted, and the commutation characteristics of the DC motor with the brush are improved by compensating for the insufficient rectification, and the occurrence of sparks between the commutator and the brush is effectively suppressed. can do.
  • it has a magnetic flux density reduction part that slowly rises by delaying the rise of the neutral axial force magnetic flux density!
  • the cogging torque can be reduced more effectively.
  • the same effects as in claim 1 are obtained.
  • the magnetic flux density reducing section has the magnetic flux density minimum portion indicating the minimum magnetic flux density, the rectification characteristics can be effectively improved.
  • the orientation of the magnetic flux density reduction portion mainly includes an orientation component in the circumferential direction of the ring magnet. Since the magnetic field component in the normal direction can be reduced, sufficient orientation and magnetization can be achieved. wear. As a result, demagnetization due to the armature reaction magnetic flux can be prevented. This is because the orientation direction is perpendicular to the armature reaction magnetic flux and the demagnetization effect does not occur because the orientation is mainly in the circumferential direction.
  • the orientation of the magnetic flux density reduction portion is a distribution that gradually turns from the normal direction to the turn direction and gradually turns to the normal direction with respect to a change in the position of the ring magnet in the turn direction. Therefore, it is possible to effectively form a magnetic flux density reduction portion having a small magnetic flux component in the normal direction. Also, with this configuration, the magnetic flux density minimum portion can be specifically formed in the magnetic flux density reduction portion.
  • the absolute value of the magnetic flux density penetrating the rectifying coil is affected by the influence of the magnetic flux density reducing portion when the rectifying coil moves in the rectifying zone at the formation position of the magnetic flux density reducing portion in the magnetic pole section. Since it is formed at an increasing position, voltage can be induced in the direction of the reversal current in the rectification coil during the rectification period, and the reversal of current can be promoted to compensate for insufficient rectification and improve rectification characteristics. In addition, the occurrence of sparks at the end of rectification can be prevented. In addition, the cogging torque can be reduced as compared with the case where a ring magnet not forming the magnetic flux density reduction portion is used.
  • the magnetic flux density reducing portion is a region including at least the middle line of the orientation transition section among the magnetized regions including at least 1Z2 or more of the orientation transition section in one magnetic pole section.
  • the eighth invention is a brushed DC motor having an anisotropic bonded magnet having the above-described configuration, the occurrence of sparks can be suppressed, and the life of the motor can be prolonged. . Also, the cogging torque can be reduced.
  • FIG. 1 is a cross-sectional view showing a schematic structure of a DC brush motor 20 according to a first embodiment.
  • FIG. 2 Position of teeth, commutator, brush and rectifier coil in motor of Example 1, surface magnetic flux density distribution of anisotropic bonded magnet, magnetic flux penetrating commutator, voltage induced in commutator, different Explanatory drawing which showed the relationship between distribution of magnetic vector of an isotropic bonded magnet, and orientation distribution of an anisotropic bonded magnet.
  • ⁇ 3 An explanatory diagram showing the orientation distribution of the anisotropic bonded magnet after orientation molding.
  • FIG. 5 is a cross-sectional view of an alignment processing apparatus 100 that provides an alignment magnetic field.
  • FIG. 6 is a cross-sectional view showing a schematic structure of a DC brush motor 200 of Example 2.
  • FIG. 7 shows the positions of teeth, commutators, brushes and rectifying coils in the motor of Example 2.
  • FIG. 1 The surface magnetic flux density distribution of the anisotropic bonded magnet, the magnetic flux penetrating the commutator, the voltage induced in the commutator, the distribution of the magnetic vector of the anisotropic bonded magnet, and the orientation distribution of the anisotropic bonded magnet.
  • FIG. 9 is an explanatory diagram showing the magnetic flux distribution of the orientation magnetic field in the orientation molding step of Example 2.
  • FIG. 11 is a characteristic diagram of cogging torque of the motor of Example 2.
  • FIG. 1 is a cross-sectional view showing a schematic structure of a DC brush motor 20 (DC motor) according to the first embodiment.
  • this DC brush motor 20 is formed of an integrally molded anisotropic bond magnet 10 having a constant thickness and ring shape for quadrupole excitation, brushes 5a to 5d, core 6, commutator 8
  • the coil 50 and the yoke material 9 are provided.
  • teeth 7 are formed on the outer end portions of the respective cores 6.
  • the anisotropic bonded magnet 10 has a hollow cylindrical shape, and an N magnetic pole 1, an S magnetic pole 2, an N magnetic pole 3, and an S magnetic pole 4 are formed on the inner surface thereof. These are formed by the normal magnetization of the cylindrical inner surface facing the end surface of the tooth 7.
  • N magnetic pole 1 an S magnetic pole 2
  • N magnetic pole 3 an S magnetic pole 4
  • each magnetic pole 1 to 4 has a magnetic pole length of 1Z2 or less (electrical angle ⁇ ⁇ 2 or less) as measured from the polarity transition point (neutral axis) of the magnetic pole in the armature rotation direction. ),
  • the magnetic flux density reduction parts 1A, 2 ⁇ , 3 ⁇ , and 4 ⁇ are formed locally.
  • the coil is wound on two teeth by lap winding.
  • These magnetic flux density reduction parts 1A, 2 ⁇ , 3 ⁇ , 4 ⁇ are provided in the same number as the number of neutral axes (number of magnetic poles) of the magnetic pole of anisotropic bonded magnet 10, and these settings make it possible to The spark discharge can be suppressed by increasing the magnetic flux penetrating the rectifying coil and promoting the reversal of the current.
  • the DC brush motor 20 of the first embodiment is a four-pole DC motor, and the anisotropic bonded magnet 10 force is applied to the cylindrical inner surface of a soft iron motor housing (yoke material 9). It surrounds the above-mentioned teeth 7 and is arranged so as to face and confront the teeth 7.
  • the number of teeth 7 is 10, and the teeth 7 are formed at every mechanical angle of 36 °. That means Adjacent teeth 7 are formed so that the angle formed by the center line is 36 °.
  • the interval between the commutators 8 is 36 °, and the angle that one commutator 8 faces is about 30 °. The remaining approximately 6 ° is the angle of insulation or air facing between the commutators.
  • the armatures such as the core 6 and the rectifier 8 are driven to rotate in the positive direction of the mechanical angle ⁇ in FIG.
  • FIG. 2 (a) shows the positional relationship of the rectifying coil 50, the commutators 71 and 72, the brush 5a, and the teeth 61 and 62 at the start of rectification in the section of the magnetic pole 1.
  • the rectifying coil 50 is wound around the teeth 61 and 62, and has a positional relationship at a timing when the commutator 71 and the commutator 72 are short-circuited by the brush 5a.
  • the center position of magnetic flux density reduction part 1A (minimum position of magnetic flux density) S2 is located at 12 ° mechanical angle and 4 ⁇ ⁇ 30 electrical angle in the rotational direction from the transition point (neutral axis) S1 of the magnetic pole,
  • the width of the magnetic flux density reduction part 1 mm is set to about 12 ° in mechanical angle and about 4 ⁇ / 30 in electrical angle.
  • the position of the rectifying coil 50 at the rectification start position is indicated by 50a
  • the position of the rectification coil 50 at the rectification end position is indicated by 50b.
  • the rear end piece of the rectifying coil 50 coil piece arranged in parallel with the armature shaft located in the direction opposite to the rotation direction
  • 51 position the tooth 62 around which the rear end piece 51 is wound of the rear end edge 62a
  • the section in which the rectifier coil 50 moves during the rectification period is the rectification section W.
  • this rectification section W can be defined as a section in which the rectification coil moves during a force rectification period that varies depending on how the reference position of the rectification coil 50 is set.
  • the rectifying coil 50 moves in the rectifying section W, the rectifying coil 50 is positioned at the front end piece (a portion disposed in parallel to the axis located on the rotation direction side) 52 (the front end piece).
  • the force moves in the main magnetic pole section and the rear end piece 51 passes through the magnetic flux density reducing portion 1A.
  • the magnetic flux density reduction unit 1 A is located outside the rectifying coil 50, and a magnetic flux having a high magnetic flux density is continuously supplied from the front end piece 52 to the rectifying coil 50. Therefore, the absolute value of the magnetic flux penetrating the rectifying coil 50 As shown in Fig. 2 (c), the total increases.
  • the voltage e induced by the increase in the magnetic flux increases the back electromotive force in the rectification section W as shown in FIG. 2 (d).
  • the magnetic flux passing through the rectifying coil 50 increases the magnetic flux of the main pole! This induced voltage increases The pressure is the direction of the reversal current. Thereby, insufficient rectification can be compensated.
  • the orientation mainly has a circulation direction component.
  • the other magnetic pole part B shows normal direction orientation.
  • Orientation transition section with mechanical angle ⁇ 'and width of about 12 ° (electric angle 4 ⁇ / 30) Repulsive force This is the section where the magnetization orientation is gradually reversed.
  • the anisotropic rare earth magnetic powder is oriented in the normal direction on the side surface of the cylinder.
  • the orientation transition section A the orientation direction of the anisotropic rare earth magnetic powder is smoothly reversed as the mechanical angle changes as shown in the figure.
  • the tangential direction of the cylindrical side faces, and as the neutral axial force of the orientation moves away, the orientation distribution gradually faces the normal direction of the cylindrical side.
  • the central portion S2 of the magnetic flux density reducing portion 1A is positioned at 12 ° from the magnetic pole transition point (the neutral axis of the magnetic pole) S1,
  • the magnetic distribution shown in Fig. 2 (e) can be obtained.
  • the normal component of the magnetic flux density shows the distribution shown in Fig. 2 (b). Since the magnetic flux density reduction section 1A is mainly oriented in the circumferential direction, the orientation direction is perpendicular to the armature reaction magnetic flux, and no demagnetizing action occurs.
  • Nd-Fe- ⁇ in addition to Nd-Fe- ⁇ , Nd-Fe-B-based materials, that is, other rare earth elements such as Nd and Nd, A material containing an additive element can be used. Furthermore, materials containing rare earth elements other than Nd, for example, Sm—Fe—N-based materials, SmCo-based materials, or Nd—Fe—B-based materials, and mixtures thereof can be used.
  • the magnetic flux density reducing portions 1A, 2A, 3A, and 4A are provided on the anisotropic bonded magnet 10.
  • the magnetic flux is formed so as to change very steeply from a position that penetrates the rectifying coil to a position that does not penetrate. This increases the rate of increase of the induced voltage with respect to the rotation angle, facilitating current reversal during the rectification period. Can be made. Therefore, in the DC brush motor 20 of the first embodiment, the occurrence of sparks can be suppressed, and the life of the DC brush motor 20 can be extended.
  • FIG. 3 shows the magnetic orientation of each part of the anisotropic bonded magnet 10 immediately after the orientation molding process according to the present invention. That is, FIG. 3 is a cross-sectional view perpendicular to the axis 11 of the anisotropic bonded magnet 10 and shows the orientation direction of the anisotropic rare earth magnetic powder in the anisotropic bonded magnet 10.
  • an Nd—Fe—B anisotropic rare earth bonded magnet was used as the anisotropic bonded magnet 10.
  • the anisotropic bonded magnet 10 has a hollow cylindrical shape with a wall thickness of about 1.5 mm centering on the shaft 11.
  • the anisotropic bonded magnet 10 having the orientation distribution shown in FIG. 3 is orientation-molded in the cavity 35 of FIG. 4.
  • a core 32 having a soft magnetic force is provided at the center of the shaft 11 shown in FIG. 1 ring 34 is provided.
  • a second ring 36 made of superhard material is provided with a certain gap from the first ring 34.
  • a cavity 35 is formed between the first ring 34 and the second ring 36, and a bond magnet material composed of a magnetic powder and a resin powder is supplied.
  • first dies 38a, 38b, 38c, 38d made up of four fan-shaped ferromagnetic bodies, and a fan-shaped stainless steel provided between the first dies.
  • the second die 40a, 40b, 40c, 40d force S which also has a non-magnetic force such as, is provided.
  • the pole piece 42 has four compartments 43a, 43b, 43c, 43d, and there are spaces 44a, 44b, 44c, 44d for coiling between each compartment. Is formed.
  • a coil 46a is wound around two adjacent spaces, for example, 44a and 44b, so as to enclose a partition 43a therebetween.
  • An orientation magnetic field for orienting the magnetic powder is applied, and after compression molding (after the orientation molding process), the 4-pole anisotropic bonded magnet is magnetized (magnetization process).
  • a soft magnetic yoke was disposed inside the anisotropic bonded magnet 10 and a soft magnetic yoke was also disposed outside the magnetized yoke.
  • a pulse magnetic field having a strength of about 4 T is used, and the magnetization magnetic field is applied to the anisotropic bonded magnet 10 to be magnetized, in the case of the orientation magnetic field described above. It was made to act similarly.
  • the magnetic flux density minimum portion la (Fig. 2 (b)) is placed at the center of the orientation transition section A (the portion (magnetic flux density reduction portion A) arranged in Fig. 3) during orientation.
  • 2a, 3a, 4a (not shown) can be formed, so that the desired minimum magnetic flux density can be formed more easily and reliably than in the past.
  • the apparatus and method disclosed in “JP 2004-23085: Method for Orienting Bonded Magnet for Motor” and “JP 2004-56835: Motor Bond Magnet and Motor” may be used. it can.
  • Example 2 in which a magnetic flux density distribution different from Example 1 is generated will be described.
  • the configuration of the DC brush motor 200 shown in FIG. 6 is the same as that of the first embodiment except for the magnetic flux density distribution of the anisotropic bonded magnet 15.
  • the same parts as those in Example 1 are denoted by the same reference numerals.
  • magnetic flux density reduction portions 1C, 2C, 3C, and 4C are formed.
  • FIG. 7A shows the positional relationship between the rectifying coil 50, the commutators 71 and 72, the brush 5a, and the teeth 61 and 62 at the start of rectification in the magnetic pole 1 section.
  • the rectifying coil 50 has teeth 61, 62 shows the positional relationship at the timing when commutator 71 and commutator 72 are short-circuited by brush 5a.
  • the minimum position K2 of the magnetic flux density reduction part 1C is 10 ° mechanical angle and ⁇ ⁇ 9 electrical angle from the magnetic pole transition point (neutral axis) K1, and the width of the magnetic flux density reduction part 1C.
  • U is set to about 12 ° in mechanical angle and about 4 ⁇ ⁇ 30 in electrical angle.
  • FIG. 7 (b) the definitions of the rectification start position, the rectification end position, the rear end piece, and the front end piece of the rectification coil 50 are the same as those in FIG. 2 (b).
  • the magnetic flux density distribution has a magnetic flux density reduction section U (also a rectifying section).
  • this magnetic flux density reduction unit U the absolute value of the magnetic flux from the neutral axis K1 of the magnetic pole rises with a delay from the rotation direction of the armature. Specifically, when the magnetic flux density moves from the neutral axis K1 of the magnetic pole in the direction of the rotation direction ⁇ , the magnetic flux density takes a small maximum value, then takes a local minimum value, and then gradually increases toward the saturation value.
  • the rectifying coil 50 moves in the rectifying section U
  • the position of the front end piece 52 in the rectifying coil 50 moves in the main magnetic pole section
  • the rear end piece 51 moves in the magnetic flux density reducing unit 1C.
  • the magnetic flux density reduction unit 1C is located outside the rectifying coil 50, and a magnetic flux having a high magnetic flux density is continuously supplied from the front end piece 52 to the rectifying coil 50. Therefore, the absolute value of the magnetic flux penetrating the rectifying coil 50 is As shown by the solid line in Fig. 7 (c), it increases as a whole.
  • the voltage e induced by this increase in magnetic flux increases the back electromotive force in the rectification section U as shown by the solid line in FIG. 7 (d).
  • FIGS. 7 (c) and 7 (d) indicate the amount of magnetic flux and the induced voltage in Example 1 shown in FIGS. 2 (c) and 2 (d). It is understood that the induced voltage is generated in the direction of the reversal current in the rectifying section in the second embodiment more effectively than in the first embodiment. Thereby, generation
  • the magnetic flux density reducing portion 1C is formed as a part of the orientation transition section F and including a middle line of the orientation transition section F.
  • the minimum K2 of the magnetic flux density reduction section 1C that is, the midline of the orientation transition section F is located at a position 10 ° from the neutral axis K1 of the magnetic pole.
  • the magnetic distribution shown in Fig. 7 (e) can be obtained.
  • the normal component of the magnetic flux density shows the distribution shown in Fig. 7 (b). Since the magnetic flux density reduction portion 1C is oriented mainly in the circumferential direction, the orientation direction is perpendicular to the armature reaction magnetic flux, and no demagnetizing action occurs.
  • Example 1 the alignment transition section A, the magnetic flux density reduction units 1A to 4A, and the rectification section W are matched, but in Example 2, the magnetic flux density that matches the rectification section U inside the alignment transition section F. It is characterized by the provision of reduction parts 1C-4C.
  • the magnetic flux density reducing portions 1C, 2C, 3C, 4C on the anisotropic bonded magnet 15 are When the rectification coil moves during the rectification period, the magnetic flux is formed so that the penetrating magnetic flux changes steeply at a position where the position force passes through the rectification coil and does not penetrate. For this reason, since the rate of increase of the induced voltage with respect to the rotation angle can be increased, current reversal during the rectification period can be promoted. Therefore, in the DC brush motor 200 of the second embodiment, the generation of sparks can be suppressed, and the life of the DC brush motor 200 can be extended.
  • Example 2 since the rising force S of the magnetic flux density in the magnetic flux density reduction units 1C, 2C, 3C, and 4C rises with respect to the rotation angle of the armature, In this regard, the magnetic flux penetrating the rectifying coil can be increased rapidly at the end when it is small in the initial stage. As a result, the induced voltage generated in the direction of the reversal current increases, and the occurrence of sparks can be effectively prevented. In addition, the change in the magnetic field between the magnetic poles becomes smooth, Cogging torque is significantly reduced.
  • the magnetic flux density should be reduced at least in the rectification section that is a part of the orientation transition section F, this section is defined as a magnetic flux density reduction unit. did.
  • the magnetic flux density distribution in the orientation transition section is reduced as compared with the case where the magnetic force is applied in the overall force radial orientation in the orientation transition section F. Therefore, the magnetic flux density is also reduced in the previous section from the neutral axis K1 of the magnetic pole to the commutation start position and in the rear section from the commutation end position to the position K3 where the magnetic flux density is saturated. It is called the previous section and the section after magnetic flux density reduction.
  • the present invention is characterized in that a magnetic flux density reduction portion that rises with a delay in the magnetic flux density is formed at least in the rectifying section.
  • the magnetic flux density in the section before the magnetic flux density reduction, the magnetic flux density takes a small maximum value from the neutral axis K1 along the rotation direction. In the section after the reduction of the magnetic flux density, the magnetic flux density gradually increases toward the saturation value of the magnetic flux density.
  • the rectification section may be the above-described magnetic flux density reduction section, it is not necessary to take the small maximum value of the section before the magnetic flux density reduction as in the second embodiment. By not magnetizing this part, it is possible to prevent the maximum value from being generated. Further, there is no need to have a section before magnetic flux density reduction, and this section can be a section in which the magnetic flux density takes a sufficiently small value. Further, the section after the magnetic flux density reduction is not necessary.
  • the magnetic flux density may be configured to change with an inflection point without having the maximum value and the minimum value.
  • the magnetic flux density reduction part it may be a curve (which may have an inflection point) that increases smoothly without having a minimum value and a maximum value.
  • the cogging torque can be reduced by the magnetic flux density reduction unit.
  • the cogging torque is further increased depending on the existence of the section before the magnetic flux density reduction where the magnetic flux density is small, the section after the magnetic flux density reduction where the magnetic flux density is not saturated, or the orientation transition section where the magnetic pole polarity changes after magnetization in the section. Can be reduced.
  • Fig. 9 shows an alignment processing apparatus.
  • the surface of the core 32 is made up of arcuate second dies 40a, 40b, 40c, 40d [non-magnetic members 37a, 37b, 37c, 37d are arranged at opposing positions. Due to the presence of this nonmagnetic member, the magnetic flux can be effectively induced in the circulation direction in the cavity 35, the width of the alignment transition section F can be increased, and the alignment portion in the rotation direction can be lengthened.
  • the alignment processing apparatus of FIG. 10 corresponds to the alignment processing apparatus of FIG. 5 of Example 1, and is applied to the surface of the core 32 composed of soft magnetic force of 14!
  • the configuration is the same except that the nonmagnetic members 37a, 37b, 37c, and 37d are arranged at positions facing the dies 40a, 40b, 40c, and 40d.
  • the anisotropic bonded magnet 15 having the orientation distribution shown in FIG. 8 is orientation-molded in the cavity 35 of FIG. 9.
  • the section of the first die 38a, 38b, 38c, 38d with an angle about the axis 11 and approximately 54 ° corresponds to the section D in FIG.
  • Example 1 since the orientation transition section A is 12 °, the whole area of the orientation transition section A is included in the same magnetic pole, and between the magnetic pole neutral axis and the end of the orientation transition section A.
  • the 6 ° range is oriented in the normal direction.
  • Example 2 since the orientation transition section F is 36 °, the 28 ° range of the orientation transition section F exists in the magnetic pole section of interest, and the remaining 8 ° range is It exists in the adjacent magnetic pole section in the direction opposite to the rotation direction of the armature.
  • the absolute value of the magnetic flux density is the magnetic flux density with respect to the rotation angle of the armature.
  • Magnetic flux density reduction sections 1C, 2C, 3C, and 4C that rise with a delay in the absolute value of can be formed.
  • magnetic flux density minimum portions la (FIG. 7 (b)), 2a, 3a, and 4a (not shown) can be formed in the center of the alignment transition section F during alignment.
  • the width of the nonmagnetic materials 37a to 37d in Fig. 9 and the relative position to the second dies 40a, 40b, 40c, and 40d must be changed. It can be easily realized.
  • FIG. 11 shows the torque fluctuation characteristics during the period when the armature is rotated 18 °.
  • the cogging torque of a motor using an anisotropic bonded magnet that does not have a magnetic flux density reduction part is shown as a comparative example. It is apparent that when the anisotropic bonded magnet of Example 2 is used, the cogging torque is reduced and smooth rotation is realized.
  • the maximum cogging torque is 23.40mN'm
  • the maximum cogging torque is 92.49mN'm
  • the cogging torque can be reduced to about 1Z4. It was.
  • Example 1 the maximum cogging torque was 61.62 mN'm, which could be reduced to about 2Z3.
  • the BHmax of the anisotropic bonded magnet is 21MGOe.
  • the effective magnetic flux is 26.91 kMaxwell in the case of Example 2, 27.56 kMaxwell in the case of the comparative example, and 27.51 kMaxwell in the case of Example 1.
  • the cogging torque which hardly reduces the effective magnetic flux density, can be significantly reduced.
  • the concept of commutation compensation in the motor can be used for a generator.
  • the formation position of the magnetic flux density reduction part in the magnetic pole section is the position where the absolute value of the magnetic flux density penetrating the rectification coil decreases due to the influence of the magnetic flux density reduction part when the rectification coil moves in the rectification section. Need to be formed.
  • a third brush may be provided to change the magnetic flux penetrating the coil.
  • the magnetic flux density reduction unit of the above embodiment may be provided.
  • a soft iron cylinder with a 3 mm gap between the anisotropic bonded magnet and the surface is placed, and a Hall element with a size of 2 mm x 2 mm x 2 mm is placed on the surface of this cylinder. Then, measure the surface magnetic flux density of the anisotropic bonded magnet while rotating the cylinder.
  • the magnetic flux density is measured using an anisotropic bonded magnet with orientation and magnetization according to the above embodiment, the characteristics shown in FIGS. 2 (b) and 7 (b) are obtained.
  • the normal direction of the ring shape is obtained by periodically providing orthogonal areas in which the direction of the orientation magnetic field and the direction of the magnetizing magnetic field are perpendicular to the number of poles of the anisotropic bonded magnet in the circumferential direction of the ring shape.
  • a method for producing an anisotropic bonded magnet, wherein a magnetic flux density reduction portion in which a magnetic flux density of a direction component is reduced is provided in each orthogonal area.
  • the orientation molding process there is an orientation molding process for molding, and a magnetizing process for magnetizing the anisotropic bond magnet by applying a magnetizing magnetic field to the anisotropic bonded magnet oriented by the orientation molding process.
  • the orientation magnetic field is gradually changed with respect to the main section where the magnetic field direction substantially coincides with the normal direction of the ring shape, and the direction of the magnetic field relative to the normal direction of the ring shape with respect to the position change in the circular shape of the ring shape.
  • orientation transition sections It consists of a total of two types of reversal orientation transition sections, which are arranged alternately in the circumferential direction, and in the magnetizing process, each magnetic pole section corresponding to each magnetic pole section formed by the magnetizing process Less orientation transition interval
  • Each of the orientation transition sections is arranged in a magnetizing magnetic field so that a part of each is included.
  • the present invention can be used for a DC motor having a brush that suppresses the generation of sparks.

Abstract

 ブラシ付き直流機の整流特性を改善し、長寿命化すること。  図2のように異方性ボンド磁石の磁極区間に、磁束密度を低減した磁束密度低減部を形成した。磁束密度低減部の磁極区間における形成位置を、整流区間を整流コイルが移動するとき、磁束密度低減部の影響により整流コイルを貫通する磁束密度の絶対値が増大する位置に形成しているので、整流期間中に整流コイルに反転電流の向きに逆電圧を誘起させることができ、電流の反転を促進して、不足整流を補償し整流特性を改善できるので、整流終了時における火花の発生を防止することができる。

Description

明 細 書
異方性ボンド磁石とそれを用いた直流モータ
技術分野
[0001] 従来から、ブラシを用いた直流モータにおいて、整流特性を良好にする各種の技 術が開発されている。整流とは、ブラシによって短絡される整流子片に接続されてい るモータの電機子コイル (以下、「整流コイル」という)が、整流子片が短絡されてから 解除されるまでの期間に移動する整流子コイルの回転方向の後方に位置する後端 片の移動区間(以下、「整流区間」といい、その期間を「整流期間」という)において、 この整流コイルを流れる電流の向きを反転させることを言う。整流終了付近において 、正規の反転電流が流れていない現象を不足整流といい、整流子片がブラシとの接 触力も解離する瞬間にインダクタンスによる逆起電力により、高電圧が間隙にかかり、 急峻な電流が流れて火花が発生する。この火花が整流子やブラシの寿命を短くする 原因となっている。
[0002] この不足整流を改善するために、磁石の磁束密度分布を変化させることにより、整 流期間中に整流コイルを貫通する磁束を変化させて、整流中に整流コイルに反転電 流の向きに電圧を誘起させて、整流コイルのインダクタンスによる電圧を打ち消すよう にした技術が知られている。このような考え方は、整流制御 (火花対応)として 1984 年頃に理論的に確立され、 1990年には実用化されていた。
[0003] 近年、ブラシを有する直流モータにおいては、例えば、下記の特許文献 1〜4に記 載されて!、る技術が知られて 、る。
特許文献 1では、瓦状の磁石を 2枚用い、機械的中性軸付近には磁極が存在しな い従来型の直流 2極モータにおいて、磁石の電機子の回転方向側の前端部から機 械的中性軸の方向に、主磁極と同一極性の磁束密度が漸増する磁石力 なる延長 部を設けている。この構成により、整流コイルが整流区間を移動する間に、整流コィ ルを貫通する磁束を増加させることにより、反転電流の向きに電圧を発生させて、不 足整流を補うようにしている。
[0004] 下記特許文献 2は、特許文献 1におけるモータにぉ 、て、主磁極と延長部との境界 に形成される磁束極小部の位置に対する整流開始時の整流コイルの角度位置の一 整流子角度に対する割合が所定範囲となるようにブラシの位置を調整することで、火 花の発生を抑制することを開示して 、る。
[0005] 下記特許文献 3は、瓦状の磁石を 2枚用い、機械的中性軸付近には磁極が存在し ない従来型の直流 2極モータにおいて、電機子の回転方向側の次の磁極の回転方 向と反対方向に位置する後端部力 回転方向とは逆向きに機械的中性軸の方向に 、整流コイルの貫通する磁束を発生している主磁極 (手前の磁極)と同一極性の磁石 力もなる端部磁極を設けている。この構成により、整流コイルの前端片(回転方向の 先端コイル片)が、磁極の存在しない機械的中性軸付近力 端部磁極の中央までを 整流区間とするようにブラシの位置を調整することで、整流コイルが整流区間を移動 する間に、整流コイルを貫通する磁束を増加させることにより、反転電流の向きに逆 起電力を発生させて、不足整流を補うようにしている。
[0006] 下記特許文献 4は、特許文献 3に対して、主磁極の回転方向の前端部から機械的 中性軸方向に、逆極性の端部磁極を設け、その端部磁極の中央カゝら次の磁極の手 前の端部磁極の中央までの間を整流区間とするようにブラシの位置を調整している。 そして、整流区間の前半では、整流コイルを貫通する磁束を減少させ、整流区間の 後半では、整流コイルを貫通する磁束を増大させることで、過整流と不足整流とを防 止するようにすることが開示されて 、る。
[0007] 特許文献 1 :特開 2001— 095218号公報
特許文献 2 :特開 2002— 084719号公報
特許文献 3 :特開 2002— 095229号公報
特許文献 4:特開 2002— 095230号公報
発明の開示
発明が解決しょうとする課題
[0008] 一方、近年、直流モータや直流発電機の容易組立て性、コギングトルクの低減など の要求が高まっており、出力トルクなどの装置諸元を従来と同等レベル以上に維持し た上で、整流特性を良好にしたり、コギングトルクを減少させたりすることが要求され ている。そのためには、上記の技術と異なり、磁石の貼り付け工程をなくした異方性 のリング磁石を用いる方が有利である。 [0009] し力しながら、リング形状の異方性磁石に、従来の技術を適用することには、以下の 問題がある。
上記特許文献 1〜4のいずれも、機械的中性軸の付近に磁石が存在しないことを 利用して、この領域に、補磁極を設けるようにしたものである。ところが、リング磁石は 、円周上、切れ目なく磁極が形成されているので、このような補磁極を形成できる余 地が存在しないので、上記特許文献 1〜4の技術を、リング形状の異方性ボンド磁石 に適用することはできない。
[0010] また、肉薄のリング形状の異方性ボンド磁石を、さらに、特許文献 1〜4のように厚さ や欠損部を含む形状加工で形成することは、加工精度、部品強度などを考慮すると 困難である。
[0011] さらに、近年、直流モータの小型化や軽量ィ匕の要求が高まっており、出力トルクな どの装置諸元を従来と同等レベル以上に維持した上で、小型化や軽量ィ匕などに十 分に対応していくためには、励磁磁石として、リング形状の高性能の異方性希土類ボ ンド磁石を薄型にして使用するのが有利である。
[0012] 本発明は、上記の課題を解決するために成されたものであり、その目的は、直流モ ータにおける整流特性を改善する異方性ボンド磁石を実現することであり、その磁石 を用いた直流モータにおける火花の発生を抑制して、その寿命を長期化することで ある。
また、他の目的は、コギングトルクを減少させることである。
課題を解決するための手段
[0013] 上記の課題を解決するためには、以下の手段が有効である。
第 1の発明は、ブラシを有する直流モータの励磁に用いられるリング形状に成形さ れた異方性ボンド磁石において、リング形状の磁極区間内に、リング形状の法線方 向成分の磁束密度が部分的に低減された磁束密度低減部を有することを特徴とする 異方性ボンド磁石である。
本発明は、厚さを一定としたリング磁石において、磁極区間内において磁束密度が 部分的に低減された磁束密度低減部を設けたことが特徴である。この磁束密度低減 部の形成により、直流モータの整流特性を良好にすることができる。リング磁石をカロ ェすることなぐ配向、着磁だけで、磁束密度低減部を形成しているので、製造が容 易となる。また、磁束密度低減部を薄く構成していないので、反磁場による減磁を防 止することができる。磁束密度低減部は、整流コイルの数に対応した数だけ形成され ることが望ましい。磁束密度低減部は、少なくとも、整流コイルの後端片が整流中に 移動する領域である整流区間に対応する位置の磁極区間に形成されれば良い。
[0014] 第 2の発明は、ブラシを有する直流モータの励磁に用いられるリング形状に成形さ れた異方性ボンド磁石において、リング形状の一磁極区間における磁束密度分布は 、電機子の回転方向と反対側の中性軸からは、絶対値が電機子の回転方向に対し て遅れて立ち上がる磁束密度低減部を有し、電機子の回転方向側の中性軸に対し ては、電機子の回転方向に対して立ち上がりよりは急激に立ち下がる非対称分布を して 、ることを特徴とする異方性ボンド磁石である。
すなわち、リング磁石の磁束密度分布を非対称にしたことが特徴であり、電機子の 回転方向と反対側の中性軸からの磁束密度の立ち上がりを遅らせて、この立ち上げ の遅れた区間に磁束密度低減部を有することが特徴である。
[0015] 第 3の発明は、磁束密度低減部は、リング形状の法線方向成分の磁束密度の分布 力 リング形状の周回方向の位置変化に対して極小を示す磁束密度極小部を有す ることを特徴とする請求項 1又は請求項 2に記載の異方性ボンド磁石である。
本発明では、磁束密度低減部は磁束密度の極小部を含むことが特徴である。この 構成により整流特性を改善することができる。
[0016] 第 4の発明は、磁束密度低減部の配向は、リング磁石の周回方向の配向成分を主 として有することを特徴とする請求項 1乃至請求項 3の何れか 1項に記載の異方性ボ ンド磁石である。
本発明は、磁束密度低減部を、ボンド磁石の配向により実現したものである。磁束 密度低減部以外の主磁極部の配向は、ラジアル配向、極配向、セミラジアル配向、 アキシャル配向など、電機子に対して磁束を貫通させる磁束を発生するに必要な任 意の配向を用いることができる。この構成により、配向処理の後の着磁により、磁束密 度低減部では、法線方向の磁ィ匕成分が小さいので、磁束密度低減部を実現すること ができる。 [0017] 第 5の発明は、磁束密度低減部の配向は、リング磁石の周回方向の位置の変化に 対して、法線方向から漸次周回方向を向き、漸次法線方向となる分布であることを特 徴とする請求項 1乃至請求項 4の何れか 1項に記載の異方性ボンド磁石である。 このような配向処理の後の着磁により、法線方向の磁ィヒ成分の小さい磁束密度低 減部を形成することができる。また、この構成により、磁束密度低減部において、磁束 密度極小部を具体的に形成することができる。
[0018] 第 6の発明は、磁束密度低減部の磁極区間における形成位置は、整流区間を整流 コイルが移動するとき、磁束密度低減部の影響により整流コイルを貫通する磁束密 度の絶対値が増大する位置に形成されていることを特徴とする請求項 1乃至請求項 5の何れか 1項に記載の異方性ボンド磁石である。
[0019] 本発明は、整流コイルと磁束密度低減部との相対位置関係に特徴を有するもので ある。この位置関係にある時に、整流コイルの移動に伴い磁束密度が増大するので 、反転電流の向きに電圧 (電機子の回転により生じる誘導起電力)を発生させること ができる。これにより、整流を促進させることができる。この条件を満たす整流コイルと 磁束密度低減部との関係は、典型的には、整流開始時においては、全ての磁束密 度低減部からの磁束とその磁束密度低減部が属する磁極の磁束とが整流コイルを 貫通し、整流終了時において、磁束密度低減部力 の磁束が整流コイルを貫通しな くなり、磁束密度低減部が属する磁極力 の磁束だけが整流コイルを貫通するような 位置関係である。すなわち、磁束密度低減部は、典型的には、整流開始時における 整流コイルの後端片 (電機子の回転方向を前方とした時の後端のコイル片)の位置( 整流コイルを貫通する磁束が電磁気的特性を決定するので、このコイル片の位置は 、このコイル片が卷かれる磁束を誘導するティースの後端エッジの位置で定義する。 )から、整流終了時の整流コイルの後端片が位置するまでの区間、すなわち、整流区 間に存在する。ただし、整流区間を整流コイルが移動する間、前端片 (電機子の回転 方向を前方とした前端のコイル片)の位置 (このコイル片が卷かれるティースの前端ェ ッジ位置で定義する。)は、同一磁極内に存在する。
[0020] このような関係を満たすように、磁束密度低減部を磁極区間内に形成する。この時 、整流コイルを貫通する全磁束は、整流区間を整流コイルが移動する間において、 増加させることができる。この関係の場合には、上記した特許文献 1、 2と異なり、整流 区間を整流コイルが移動する時、整流コイルの後端片が磁束密度低減部を通過する こと〖こなる。磁束密度低減部が極小値を有する場合には、磁束密度低減部における 電機子の回転方向に沿って、磁束が低下する領域と、磁束が増大する領域とのいず れの領域も、整流コイルを貫通する全磁束の増加に寄与することから、回転角に対 する磁束の増加率を大きくすることができ、整流特性を良好に改善することができる。
[0021] また、磁束密度低減部を電機子の回転角に対して遅れて立ち上げる磁束密度分 布で構成することにより、整流期間において、整流コイルを貫通する磁束密度低減部 の磁束密度が、中性軸上の値に近い小さい値力 飽和した定常値に近い値まで、大 きく増加することになる。したがって、整流コイルを貫通する全磁束が整流期間にお いて、大きく増加する方向に変化する。したがって、有効に不足整流を補償すること ができ、火花の発生を効果的に防止することができる。また、この磁束密度低減部は 、磁極の中性軸付近での磁束密度の変化を平均的になだらかにするので、コギング トルクが大きく減少する。
[0022] また、整流区間において、整流コイルは同一磁極内に存在し、整流開始時におい て、整流コイルの前端片が磁束密度低減部の極小位置に位置し、整流終了時にお いて、整流コイルが磁束密度低減部を含む位置にするような位置関係で用いても良 い。
また、整流区間において、整流コイルは同一磁極内に存在し、整流開始時におい て、整流コイルが全ての磁束密度低減部を含み、整流終了時において、整流コイル の後端片が磁束密度低減部の極小位置付近に位置するようにし、整流コイルの前端 片は、整流期間中、同一磁極区間に存在するようにして用いても良い。
また、磁束密度低減部の磁極区間における形成位置は、整流区間において、整流 コイルは同一磁極内に存在し、整流区間を整流コイルが移動するとき、磁束密度低 減部の磁束の少なくとも一部の所定磁束を整流コイルが貫通する位置から、所定磁 束を整流コイルが貫通しない位置に変化させる位置に形成しても良い。
また、磁束密度低減部の磁極区間における形成位置は、整流区間において、整流 コイルは同一磁極内に存在し、整流区間を整流コイルが移動するとき、整流コイルの 回転方向の後方に位置する後端片が磁束密度低減部を通過する位置に形成されて いても良い。
以上の場合において、整流コイルが整流区間を移動する期間において、整流コィ ルを貫通する磁束は増加することになる。これにより、整流期間中に、整流コイルに 反転電流の向きに電圧を誘起させることができ、整流特性を改善することができる。
[0023] 第 7の発明は、磁束密度低減部は、リング磁石の周回方向の位置の変化に対して 、配向分布が、法線方向から漸次周回方向を向き、漸次法線方向となる配向遷移区 間の少なくとも 1Z2以上を一磁極区間に内包して磁化された領域のうち、配向遷移 区間の少なくとも中線を含む領域であることを特徴とする請求項 1乃至請求項 6の何 れカ 1項に記載の異方性ボンド磁石である。
このような配向遷移区間を設けた後に、一磁極区間において一方向に磁ィ匕させると き、磁束密度低減部を形成することができる。配向遷移区間は一磁極区間に完全に 内包されて 、ても良ぐ配向遷移区間の端から配向遷移区間の中線 (周回方向に配 向している配向分布の領域上の中線であって、必ずしも幾何学的な中線を意味しな い)を越えない領域が、他の隣接磁極区間に存在していても良い。すなわち、配向が 周回方向を向く区間の中点位置(中線)が、一磁極区間に内包される位置関係として 、残り 1Z2より小さ 、領域が他の隣接磁極区間に存在するように磁ィ匕するようにして も良い。このようにすると、上記した請求項 1〜6の磁束密度低減部を形成することが 可能となる。
[0024] 第 8の発明は、請求項 1乃至請求項 7の何れか 1項に記載の異方性ボンド磁石を有 したブラシを有した直流モータである。この場合にも、整流区間を移動する整流コィ ルを貫通する全磁束は、増大することになり、整流コイルには、反転電流の向きに電 圧が誘起されることになり、火花の発生を抑制することができる。また、コギングトルク を減少、させることができる。
[0025] なお、上記の全発明にお ヽて、磁束密度低減部の特性は、異方性ボンド磁石をモ ータに組み付けて、電機子を回転させた時に、あるティースが回転と共に感じる磁束 密度の変化特性である。すなわち、モータにおける現実のトルク発生に寄与する磁 束密度分布である。したがって、この磁束密度低減部の分布特性は、電機子を設け ずに、異方性ボンド磁石単体での表面磁束密度の測定により得られる特性ではな ヽ 。測定方法については、後述する。
発明の効果
[0026] 本発明は、厚さを一定としたリング磁石において、磁極区間内において磁束密度が 部分的に低減された磁束密度低減部を設けて ヽるので、整流コイルを貫通する磁束 の絶対値を増大させることができ、反転電流方向に電圧を誘起させることができる。こ の結果、整流コイルにおける電流の反転を促進させることができ、不足整流を補償し てブラシを有した直流モータの整流特性を良好にし、整流子とブラシ間の火花の発 生を有効に抑制することができる。また、リング磁石を加工することなぐ配向、着磁だ けで、磁束密度低減部を形成しているので、製造が容易となる。また、磁束密度低減 部を薄く構成して 、な 、ので、反磁場による減磁を防止することができる。
[0027] 第 2の発明は、リング形状の一磁極区間における磁束密度分布は、電機子の回転 方向と反対側の中性軸からは、絶対値が電機子の回転方向に対して遅れて立ち上 力 ¾磁束密度低減部を有し、電機子の回転方向側の中性軸に対しては、電機子の 回転方向に対して立ち上がりよりは急激に立ち下がる非対称分布をしているので、整 流コイルを貫通する磁束の絶対値を大きく増大させることができ、反転電流方向に大 きな電圧を誘起させることができる。この結果、整流コイルにおける電流の反転を促 進させることができ、不足整流を補償してブラシを有した直流モータの整流特性を良 好にし、整流子とブラシ間の火花の発生を有効に抑制することができる。また、中性 軸力 磁束密度の立ち上げを遅延させて緩やかに立ち上げている磁束密度低減部 を有して!/ヽるので、磁束密度低減部を形成しな ヽリング磁石を用いた場合に比べて、 さらに効果的にコギングトルクを減少させることができる。その他、請求項 1と同様な効 果を奏する。
[0028] 第 3の発明は、磁束密度低減部は、磁束密度の極小を示す磁束密度極小部を有し ているので、効果的に整流特性を改善することができる。
[0029] 第 4の発明は、磁束密度低減部の配向は、リング磁石の周回方向の配向成分を主 として有するようにしていることから、配向処理の後の着磁により、磁束密度低減部で は、法線方向の磁ィ匕成分を小さくできるので、配向および着磁を十分に行うことがで きる。この結果、電機子反作用磁束による減磁を防止することができる。これは、主と して周回方向に配向されているため、電機子反作用磁束に対して配向方向が垂直 になり、減磁作用が生じないためである。
[0030] 第 5の発明は、磁束密度低減部の配向は、リング磁石の周回方向の位置の変化に 対して、法線方向から漸次、周回方向を向き、漸次、法線方向にとなる分布としてい るので、法線方向の磁ィ匕成分の小さい磁束密度低減部を効果的に形成することがで きる。また、この構成により、磁束密度低減部において、磁束密度極小部を具体的に 形成することができる。
[0031] 第 6の発明は、磁束密度低減部の磁極区間における形成位置を、整流区間を整流 コイルが移動するとき、磁束密度低減部の影響により整流コイルを貫通する磁束密 度の絶対値が増大する位置に形成して 、るので、整流期間中に整流コイルに反転 電流の向きに電圧を誘起させることができ、電流の反転を促進して、不足整流を補償 し整流特性を改善できるので、整流終了時における火花の発生を防止することがで きる。また、磁束密度低減部を形成しないリング磁石を用いた場合に比べて、コギン グトルクを減少させることができる。
[0032] 第 7の発明は、磁束密度低減部を、配向遷移区間の少なくとも 1Z2以上を一磁極 区間に内包して磁化された領域のうち、配向遷移区間の少なくとも中線を含む領域と することにより、所望の目的の磁束密度分布を有した磁束密度低減部を容易に磁極 区間において形成することができる。
[0033] 第 8の発明は、上記構成の異方性ボンド磁石を有したブラシ付き直流モータである ので、火花の発生を抑制することができるので、モータの寿命を長期化することがで きる。また、コギングトルクを低減することができる。
図面の簡単な説明
[0034] [図 1]実施例 1の DCブラシモータ 20の概略構造を示す断面図。
[図 2]実施例 1のモータにおけるティース、整流子、ブラシおよび整流コイルの位置と 、異方性ボンド磁石の表面磁束密度分布、整流子を貫通する磁束、整流子に誘起さ れる電圧、異方性ボンド磁石の磁ィヒベクトルの分布、異方性ボンド磁石の配向分布と の関係を示した説明図。 圆 3]配向成形後の異方性ボンド磁石の配向分布を示した説明図。
圆 4]配向成形工程における配向磁場の磁束分布を示す説明図。
[図 5]配向磁場を供する配向処理装置 100の断面図。
[図 6]実施例 2の DCブラシモータ 200の概略構造を示す断面図。
[図 7]実施例 2のモータにおけるティース、整流子、ブラシおよび整流コイルの位置と
、異方性ボンド磁石の表面磁束密度分布、整流子を貫通する磁束、整流子に誘起さ れる電圧、異方性ボンド磁石の磁ィヒベクトルの分布、異方性ボンド磁石の配向分布と の関係を示した説明図。
圆 8]実施例 2の配向成形後の異方性ボンド磁石の配向分布を示した説明図。
[図 9]実施例 2の配向成形工程における配向磁場の磁束分布を示す説明図。
圆 10]実施例 2の配向磁場を供する配向処理装置の断面図。
[図 11]実施例 2のモータのコギングトルクの特性図。
符号の説明
20 : DCブラシモータ
10, 15 : 異方性ボンド磁石
1, 3 : 異方性ボンド磁石 10の内径側面の N極
2, 4 : 異方性ボンド磁石 10の内径側面の S極
mA: 磁束密度低減部 (m= l, 2, 3, 4)
ma: 磁束密度極小部 (m= l, 2, 3, 4)
5 : ブラシ
50 : 整流コイル
51 : 後端片
52 : j端片
1A, 1C : 磁束密度低減部
F : 配向遷移区間
S1 : 中性軸
S2 : 極小部
Ml : 酉 S向の中'性軸 発明を実施するための最良の形態
[0036] 以下、本発明を具体的な実施例に基づいて説明する。
ただし、本発明の実施形態は、以下に示す個々の実施例に限定されるものではな い。
実施例 1
[0037] 図 1は、本実施例 1の DCブラシモータ 20 (直流モータ)の概略構造を示す断面図 である。本図 1に示すように、この DCブラシモータ 20は、一体に成形された厚さ一定 でリング形状の 4極励磁用の異方性ボンド磁石 10、ブラシ 5a〜5d、コア 6、整流子 8 、コイル 50、及びヨーク材 9を有している。また、各コア 6の外方端部には、ティース 7 が形成されている。異方性ボンド磁石 10は中空の円筒形であり、その内側面上には 、 N磁極 1、 S磁極 2、 N磁極 3、及び S磁極 4が形成されている。これらは、ティース 7 の端面に対畤する上記の円筒形の内側面の法線方向の着磁によって形成されたも のである。図 1において、ブラシ 5a、 5cにおいて短絡が開始されると、ブラシシ 5b、 5 dによる短絡が解除される。また、電機子が回転して、ブラシシ 5a、 5cによる短絡が解 除されると、ブラシ 5b、 5dによる短絡が開始されるように構成されている。したがって 、図 1のタイミングでは、ブラシ 5a、 5cにおいて短絡が開始されるので、ブラシ 5a、 5c によって短絡される 2つの整流コイル 50だけが表記されている。
[0038] また、各磁極 1〜4には、磁極の極性の遷移点(中性軸)から電機子の回転方向に 測定して、磁極の長さの 1Z2以下 (電気角にして π Ζ2以下)の領域に、それぞれ局 所的に磁束密度低減部 1A, 2Α, 3Α, 4Αが形成されている。コイルは 2つのティー スに重ね巻きで巻かれている。これらの磁束密度低減部 1A, 2Α, 3Α, 4Αは、異方 性ボンド磁石 10の磁極の中性軸の数 (磁極の数)と同数設けられており、これらの設 定により、整流区間において、整流コイルを貫く磁束を増大させて、電流の反転を促 進させることにより、火花放電を抑制することができる。
[0039] 本実施例 1の DCブラシモータ 20は、 4極の直流モータであって、軟鉄製のモータ ハウジング (ヨーク材 9)の筒状の内側面に、上記の異方性ボンド磁石 10力 上記の ティース 7を囲んで、ティース 7に接近対畤する様に対向配置されている。ティース 7 の個数は 10個であり、そのティース 7が、機械角 36° 毎に形成されている。つまり、 隣り合うティース 7は、その中心線のなす角が 36° となるように形成されている。また 、整流子 8の間隔は、 36° であり、一つの整流子 8が面する角度は約 30° である。 残りの約 6° が整流子間に存在する絶縁体又は空気の面する角度である。コア 6、整 流子 8など力 成る電機子は、ブラシ 5に対する直流電流の供給により図 1の機械角 Θの正の向きに回転駆動される。
[0040] 図 2の(a)は、磁極 1の区間における整流開始時の整流コイル 50、整流子 71、 72、 ブラシ 5a、ティース 61、 62の位置関係を示している。整流コイル 50は、ティース 61、 62に卷かれており、整流子 71と整流子 72とがブラシ 5aにより短絡されるタイミングで の位置関係である。磁束密度低減部 1Aの中央位置 (磁束密度の極小位置) S2は、 磁極の遷移点(中性軸) S1から回転方向に機械角で 12° 、電気角で 4 π Ζ30の位 置にあり、その磁束密度低減部 1 Αの幅は、機械角で約 12° 、電気角で約 4 π /30 に設定している。
[0041] 図 2 (b)では、整流開始位置での整流コイル 50の位置を 50aで示し、整流終了位 置での整流コイル 50の位置を 50bで示している。整流コイル 50の後端片(回転方向 と逆方向に位置する電機子軸に平行に配設されているコイル片) 51の位置 (その後 端片 51が巻かれるティース 62の後端エッジ部 62aの位置で定義する)基準にして、 整流期間中に整流コイル 50の移動する区間が整流区間 Wである。勿論、この整流 区間 Wは、整流コイル 50の基準位置のとり方により変化する力 整流期間中に整流 コイルが移動する区間として定義できる。
[0042] また、整流コイル 50が整流区間 Wを移動する時、整流コイル 50は前端片(回転方 向の側に位置する軸に平行に配設されている部分) 52の位置 (その前端片 52が卷 かれるティース 6 laの前端エッジ部 6 laの位置で定義する)力 主磁極区間内を移動 し、後端片 51が磁束密度低減部 1 Aを通過する。この時、磁束密度低減部 1 Aは、整 流コイル 50の外部に位置し、前端片 52から磁束密度の高い磁束が整流コイル 50に 供給され続けるので、整流コイル 50を貫通する磁束の絶対値は、図 2 (c)に示すよう に、全体として、増加する。そして、この磁束の増加により誘導される電圧 eは、図 2 (d )に示すように、整流区間 Wにおいて、逆起電力が増大することになる。整流コイル 5 0を貫通する磁束は、主磁極の磁束を増力!]させる方向に増加するので、この誘起電 圧は、反転電流の向きとなる。これにより、不足整流を補償することができる。
[0043] 図 2 (b)に示すような、磁束密度分布を発生させる異方性ボンド磁石の配向は、図 2
(f)、図 3に示すように構成されている。磁束密度低減部 1Aでは、配向は、周回方向 成分を主として有している。他の磁極部分 Bでは、法線方向の配向を示している。機 械角 Θ ' で幅約 12° (電気角で 4 π /30)の配向遷移区間 Α力 磁化の配向が徐 々に反転する区間である。主要区間 Bにおいては、異方性希土類磁性体粉末は円 筒側面の法線方向に配向されている。また、配向遷移区間 Aにおいては、図示する ように機械角の推移に伴って、異方性希土類磁性体粉末の配向方向は、滑らかに反 転する。すなわち、異方性希土類磁性体粉末は、配向の中性軸 Mn (n= l, 2, 3, 4 )に近づくに連れて徐々に磁石の円筒側面の周回接線方向を向き、配向の中性軸 においては円筒側面の周回接線方向となり、配向の中性軸力 遠ざかるに連れて徐 々に円筒側面の法線方向を向ぐ配向分布をしている。
[0044] このような配向の後に、図 3に示すように、磁束密度低減部 1Aの中央部 S2が磁極 遷移点(磁極の中性軸) S1から 12° の位置に位置するようにして、区間 Yl、 Y3を N 極、区間 Υ2、 Υ4を S極に着磁をすることで、図 2 (e)のような磁ィ匕分布を得ることがで きる。この結果として、磁束密度の法線成分は、図 2 (b)の様な分布を示す。磁束密 度低減部 1Aは、主として周回方向に配向されているため、電機子反作用磁束に対 して配向方向が垂直になり、減磁作用が生じない。
[0045] 異方性希土類ボンド磁石の材料としては、 Nd— Fe— Βの他にも、 Nd— Fe— B系 材料、即ち、例えば Ndと Ndの他の希土類元素を含んでいたり、その他の添加元素 を含んでいたりする材料を用いることができる。更に、 Nd以外の希土類元素を含んだ 材料、例えば、 Sm— Fe— N系材料、 SmCo系材料、または、 Nd— Fe— B系材料と これらの混合物質を用いることができる。
[0046] 本実施例 1の DCブラシモータ 20においては、図 1、図 2に具体的に示した様に、異 方性ボンド磁石 10上に磁束密度低減部 1A, 2A, 3A, 4Aは、その磁束が、整流コ ィルが整流期間に移動する時、整流コイルを貫通する位置から貫通しない位置に変 化する位置に、非常に急峻に変化するように形成されている。このため、回転角に対 する誘導電圧の増加率を大きくできるので、整流期間中における電流の反転を促進 させることができる。したがって、本実施例 1の DCブラシモータ 20では、火花の発生 を抑制することができ、 DCブラシモータ 20の寿命を長期化することが可能となる。
[0047] 以下、 DCブラシモータ 20が備える上記の異方性ボンド磁石 10の構成や製造手順 にって説明する。
図 3に、本発明に係わる配向成形工程の実施直後における上記の異方性ボンド磁 石 10の各部の磁ィ匕の配向を示す。即ち、図 3は、この異方性ボンド磁石 10の軸 11 に垂直な横断面図であり、この異方性ボンド磁石 10における異方性希土類磁性体 粉末の配向方向を示している。異方性ボンド磁石 10には、 Nd— Fe— B系の異方性 希土類ボンド磁石を用いた。異方性ボンド磁石 10は軸 11を中心とする肉厚約 1. 5m mの中空円筒形状をして 、る。
[0048] 配向成形工程では、磁場配向と圧縮成形を同時に行うため、磁場中加熱圧縮成形 を実施した。また、この時の磁場中加熱圧縮成形の条件は、金型温度を 120°C、成 形圧力を 3. Ot/cm2 、成形時間を 15secとし、磁極周期の主要区間 Bにおける配 向磁場の強さは 0. 80Tとした。
[0049] 図 3に示した配向分布を有した異方性ボンド磁石 10は、図 4のキヤビティ 35の中で 配向成形されるが、この時、図 3の配向の中性軸 Mlは、図 4の Φ =0° の位置に形 成される。即ち、円弧状の第 2ダイス 40a、 40b、 40c、 40dの軸 11を中心とする角度 、およそ 12° の区間が図 3の配向遷移区間 Aに相当する。また、第 1ダイス 38a、 38 b、 38c、 38dの軸 11を中心とする角度、およそ 78° の区間が、図 3の区間 Bに相当 する。
[0050] 図 5に示す配向処理装置 100においては、図 3の軸 11が配置される中心部に軟磁 性体力も成るコア 32と、その周囲には、超硬材カも成る円筒状の第 1リング 34が配設 されている。その第 1リング 34と一定の間隙を設けて、超硬材カも成る第 2リング 36が 設けられている。第 1リング 34と第 2リング 36との間に、キヤビティ 35が形成され、磁 性体粉末と榭脂粉末から構成されたボンド磁石原料が供給される。
[0051] 第 2リング 36の外側には、 4分割された扇形の強磁性体カゝら成る第 1ダイス 38a、 38 b、 38c、 38dと、各第 1ダイス間に設けられた扇形のステンレス等の非磁性体力も成 る第 2ダイス 40a、 40b、 40c、 40d力 S設けられている。金型 30の外側には、円形のポ ールピース 42力 己設されており、そのポールピース 42は 43a、 43b、 43c、 43dの 4 区画を有しており、各区画の間にコイルを卷くためのスペース 44a、 44b、 44c、 44d が形成されている。隣接する 2つのスペース、例えば、 44aと 44bとに、その間の区画 43aを内包するようにコイル 46aが巻かれる。
[0052] 上記の構成の装置において、図 3に示すような配向処理を施すことが可能となる。
磁性体粉末を配向させるための配向磁場を印カロして、圧縮成形した後(配向成形 工程の後)に、 4磁極異方性ボンド磁石に着磁する (着磁工程)。次に、着磁工程で は、着磁ヨークとして、異方性ボンド磁石 10の内側に軟磁性ヨークを配置し、また外 側にも軟磁性ヨークを配置した。そして、この時の着磁磁場としては、強さ約 4Tのパ ルス磁場を用いて、その着磁磁場を着磁対象である上記の異方性ボンド磁石 10に 対して前述の配向磁場の場合と同様に作用させた。
[0053] ただし、着磁工程では、前述の配向成形工程における配向磁場に対して、着磁磁 場を約 12° ずらして着磁した。即ち、図 1の Θ ^ 12° の位置に配向成形工程後の 中性軸 Mlが配置され、同様に、 Θ = 102° 、 192° 、 282° の位置に、それぞれ、 配向成形工程後の中立点 M2、 M3、 M4が配置される様に設定して着磁を行った。
[0054] この様な設定によれば、配向時に配向遷移区間 A (図 3に配置されていた部位 (磁 束密度低減部 A) )の中央に、磁束密度極小部 la (図 2 (b) , 2a, 3a, 4a (図示略)が それぞれ形成されるので、従来よりも容易かつ確実に、所望の磁束密度極小部を形 成することができる。この様な配向ゃ着磁処理には、例えば「特開 2004— 23085 : モータ用異方性ボンド磁石の配向処理方法」や「特開 2004— 56835:モータ用ボン ド磁石及びモータ」などに開示されている装置や方法等を用いることもできる。
実施例 2
[0055] 次に、実施例 1とは異なる磁束密度分布を発生させた実施例 2について説明する。
図 6に示す DCブラシモータ 200の構成は、異方性ボンド磁石 15の磁束密度分布を 除いて、実施例 1と同一である。実施例 1と同一部分については、同一符合を付した 。各磁極 1〜4には、磁束密度低減部 1C, 2C, 3C, 4Cが形成されている。
[0056] 図 7の(a)は、磁極 1の区間における整流開始時の整流コイル 50、整流子 71、 72、 ブラシ 5a、ティース 61、 62の位置関係を示している。整流コイル 50は、ティース 61、 62に卷かれており、整流子 71と整流子 72とがブラシ 5aにより短絡されるタイミングで の位置関係である。磁束密度低減部 1Cの極小位置 K2は、磁極の遷移点(中性軸) K1から回転方向に機械角で 10° 、電気角で π Ζ9の位置にあり、その磁束密度低 減部 1Cの幅 Uは、機械角で約 12° 、電気角で約 4 π Ζ30に設定している。
[0057] 図 7 (b)において、整流コイル 50の整流開始位置、整流終了位置、後端片、前端 片の定義は、図 2 (b)と同一である。
図 7 (b)に示すように磁束密度分布は、磁束密度低減部 U (整流区間でもある)を有 している。この磁束密度低減部 Uは、磁極の中性軸 K1からの磁束の絶対値が電機 子の回転方向に対して遅れて立ち上がつている。詳しくは、磁束密度は、磁極の中 性軸 K1から回転方向 Θの向きに移動すると、小さな極大値をとり、その後、極小値を とり、その後、飽和値に向力つて徐々に増大する。
[0058] 整流コイル 50が整流区間 Uを移動する時、整流コイル 50は前端片 52の位置が、 主磁極区間内を移動し、後端片 51が磁束密度低減部 1Cを移動する。この時、磁束 密度低減部 1Cは、整流コイル 50の外部に位置し、前端片 52から磁束密度の高い 磁束が整流コイル 50に供給され続けるので、整流コイル 50を貫通する磁束の絶対 値は、図 7 (c)の実線に示すように、全体として、増加する。そして、この磁束の増加 により誘導される電圧 eは、図 7 (d)の実線で示すように、整流区間 Uにおいて、逆起 電力が増大することになる。整流コイル 50を貫通する磁束は、主磁極の磁束を増加 させる方向に増加するので、この誘起電圧は、反転電流の向きとなる。これにより、不 足整流を補償することができる。なお、図 7 (c)と (d)における破線は、図 2 (c)と (d)に 示す実施例 1の磁束量と誘起電圧を示している。実施例 2の方が、実施例 1よりも効 果的に整流区間において、反転電流の向きに誘起電圧が発生されていることが理解 される。これにより、さらに、火花の発生が効果的に防止される。
[0059] 図 7 (b)に示すような、磁束密度分布を発生させる異方性ボンド磁石の配向は、図 7
(f)、図 8に示すように構成されている。機械角 Θで幅約 36° (電気角で 4 π ΖΐΟ)の 配向遷移区間 F力 磁ィ匕の配向が徐々に反転する区間である。主要区間 Dにおいて は、異方性希土類磁性体粉末は円筒側面の法線方向に配向されている。また、配向 遷移区間 Fにおいては、図示するように機械角の推移に伴って、異方性希土類磁性 体粉末の配向方向は、滑らかに反転する。すなわち、異方性希土類磁性体粉末は、 配向の中性軸 Mn (n= l, 2, 3, 4)に近づくに連れて徐々に磁石の円筒側面の周回 接線方向を向き、配向の中性軸においては円筒側面の周回接線方向となり、配向の 中性軸力 遠ざかるに連れて徐々に円筒側面の法線方向を向ぐ配向分布をしてい る。本実施例では、磁束密度低減部 1Cは、この配向遷移区間 F内であって、配向遷 移区間 Fの中線を含む一部の区間として形成されている。
[0060] このような配向の後に、図 8に示すように、磁束密度低減部 1Cの極小 K2、すなわ ち配向遷移区間 Fの中線が磁極の中性軸 K1から 10° の位置に位置するように、区 間 Yl、 Υ3を Ν極、区間 Υ2、 Υ4を S極に着磁をすることで、図 7 (e)のような磁ィ匕分布 を得ることができる。この結果として、磁束密度の法線成分は、図 7 (b)の様な分布を 示す。磁束密度低減部 1Cは、主として周回方向に配向されているため、電機子反作 用磁束に対して配向方向が垂直になり、減磁作用が生じない。
実施例 1では配向遷移区間 Aと磁束密度低減部 1A〜4Aと整流区間 Wとを一致さ せているが、実施例 2では、配向遷移区間 Fの内部に整流区間 Uと一致する磁束密 度低減部 1C〜4Cを設けたことが特徴である。
[0061] 本実施例 2の DCブラシモータ 200においては、図 6、図 7に具体的に示した様に、 異方性ボンド磁石 15上の磁束密度低減部 1C, 2C, 3C, 4Cは、その磁束が、整流 コイルが整流期間に移動する時、整流コイルを貫通する位置力 貫通しない位置に 変化する位置に、貫通磁束が急峻に変化するように形成されている。このため、回転 角に対する誘導電圧の増加率を大きくできるので、整流期間中における電流の反転 を促進させることができる。したがって、本実施例 2の DCブラシモータ 200では、火 花の発生を抑制することができ、 DCブラシモータ 200の寿命を長期化することが可 能となる。
特に、本実施例 2では、磁束密度低減部 1C, 2C, 3C, 4Cでの磁束密度の立ち上 力 Sりが電機子の回転角に対して遅れて立ち上がつていることから、整流区間におい て、整流コイルを貫通する磁束は、初期において小さぐ終期において急激に大きく することが可能となる。この結果、反転電流の向きに発生する誘導電圧が大きくなり、 火花の発生を効果的に防止できる。また、磁極間の磁ィ匕の変化も滑らかとなるので、 コギングトクルが顕著に減少する。
[0062] また、上記実施例 2の説明では、配向遷移区間 Fの中の一部である整流区間が少 なくとも磁束密度が低減されていれば良いので、この区間を磁束密度低減部と定義 した。しかし、配向遷移区間 Fの全体力ラジアル配向で磁ィ匕させた場合に比べれば、 配向遷移区間の磁束密度分布は、低減されている。したがって、磁極の中性軸 K1 から整流開始位置までの前区間、整流終了位置から磁束密度が飽和する位置 K3ま での後区間も、磁束密度は低減されているので、この区間を磁束密度低減前区間、 磁束密度低減後区間という。本発明は、磁束密度が遅れて立ち上がる磁束密度低 減部が少なくとも整流区間に形成されていることを特徴とする。
上記実施例では、磁束密度低減前区間では、磁束密度は、回転方向に沿って中 性軸 K1から小さい極大値をとる。また、磁束密度低減後区間では、磁束密度は、磁 束密度の飽和値に向力つて緩やかに増加している。
しかし、本発明は、少なくとも整流区間が上記の磁束密度低減部であれば良いの で、実施例 2のような磁束密度低減前区間の小さな極大値をとる必要はない。この部 分を着磁しないことにより極大値が発生しないようにすることができる。また、磁束密 度低減前区間がなくとも良いし、この区間を磁束密度が十分に小さい値をとる区間と することも可能である。また、磁束密度低減後区間はなくとも良い。
また、中性軸 K1から磁束密度が飽和する位置 K3までの区間において、磁束密度 は、極大値、極小値を有せずに、変曲点を有して変化するように構成しても良い。同 様に、磁束密度低減部において、極小値、極大値を有せずに、滑らかに増加する曲 線 (変曲点があっても良い)であっても良い。
磁束密度低減部によりコギングトルクを減少させることができる。また、磁束密度の 小さな磁束密度低減前区間、磁束密度が飽和していない磁束密度低減後区間の存 在、又は、区間内において着磁後の磁極極性が変化する配向遷移区間により、より コギングトルクを減少させることができる。
[0063] 以下、 DCブラシモータ 20が備える上記の異方性ボンド磁石 15の製造手順につて 説明する。
図 9に、配向処理装置を示す。実施例 1の図 4の製造装置に対して、軟磁性体から 成るコア 32の表面咅 こお!ヽて、円弧状の第 2ダイス 40a、 40b、 40c、 40d【こ対向す る位置に非磁性部材 37a、 37b、 37c、 37dが配列されている。この非磁性部材の存 在により、キヤビティ 35内において周回方向へ磁束を効果的に誘導させることができ 、配向遷移区間 Fの幅を大きくし、周回方向の配向部分を長くすることができる。図 1 0の配向処理装置は実施例 1の図 5の配向処理装置に対応するものであって、軟磁 '14体力、ら成るコア 32の表面咅にお!/ヽて、円弧状の第 2ダイス 40a、 40b、 40c、 40d に対向する位置に非磁性部材 37a、 37b、 37c、 37dが配列されている点が異なる他 は、同一の構成である。
[0064] 図 8に示した配向分布を有した異方性ボンド磁石 15は、図 9のキヤビティ 35の中で 配向成形されるが、この時、図 8の配向分布の中性軸 Mlは、図 4の Φ =0° の位置 に形成される。良口ち、円弧状の第 2ダイス 40a、 40b、 40c、 40dの軸 11を中 、とする 角度、およそ 36° の区間が図 8の配向遷移区間 Fに相当する。また、第 1ダイス 38a 、 38b、 38c、 38dの軸 11を中心とする角度、およそ 54° の区間が、図 8の区間 Dに 相当する。
[0065] 上記の構成の装置において、実施例 1と同様にして、図 8に示すような配向処理を 施すことが可能となる。その後、実施例 1と同様に異方性ボンド磁石 15を着磁させる ただし、着磁工程では、前述の配向成形工程における配向磁場に対して、着磁磁 場を約 10° ずらして着磁した。即ち、図 6の Θ ^ 10° の位置に配向成形工程後の 中性軸 Mlが配置され、同様に、 Θ = 100° 、 190° 、 280° の位置に、それぞれ、 配向成形工程後の中立点 M2、 M3、 M4が配置される様に設定して着磁を行った。 この時、実施例 1では、配向遷移区間 Aは 12° であるので、配向遷移区間 Aの全領 域が同一磁極に包含され、磁極中性軸と配向遷移区間 Aの端部との間の 6° の範囲 は法線方向の配向となっている。
これに対して、実施例 2では、配向遷移区間 Fは 36° であるので、配向遷移区間 F のうち 28° の範囲が注目している磁極区間内に存在し、残りの 8° の範囲は、電機 子の回転方向に対して逆方向の隣接磁極区間に存在する。
[0066] この様な設定によれば、磁束密度の絶対値が電機子の回転角に対して、磁束密度 の絶対値が遅れて立ち上がる磁束密度低減部 1C, 2C, 3C, 4Cを形成することがで きる。また、配向時に配向遷移区間 Fの中央に、磁束密度極小部 la (図 7 (b) ) , 2a, 3a, 4a (図示略)をそれぞれ形成することができる。
[0067] なお、配向遷移区間 Fの幅や配向分布を変更するには、図 9における非磁性体 37 a〜37dの幅や第 2ダイス 40a、 40b、 40c、 40dに対する相対位置を変更することで 、容易に実現できる。
[0068] 次に、本実施例のコギングトルクを測定した。その結果を図 11に示す。図 11は電 機子を 18° 回転させた期間のトルクの変動特性である。磁束密度低減部を有しない 異方性ボンド磁石を用いたモータのコギングトルクを比較例として示す。実施例 2の 異方性ボンド磁石を用いた場合には、明らかに、コギングトルクは減少して、滑らかな 回転が実現されていることが理解される。本実施例 2の場合には、最大コギングトルク は 23. 40mN 'mであり、比較例の場合には、最大コギングトルクは 92. 49mN 'mで あり、従来の約 1Z4にコギングトルクを低減できた。また、実施例 1の場合には、最大 コギングトルクは 61. 62mN 'mであり、約 2Z3に低減できた。比較例、実施例 1、 2 共に、異方性ボンド磁石の BHmaxは、 21MGOeである。有効磁束は、実施例 2の場 合が、 26. 91kMaxwellであり、比較例の場合が 27. 56kMaxwellであり、実施例 1の 場合が、 27. 51kMaxwellである。有効磁束密度をほとんど低下させることなぐコギン グトルクを顕著に低下できた。
[0069] 上記のモータにおける整流補償の考え方は、発電機に用いることができる。その場 合には、磁束密度低減部の磁極区間における形成位置を、整流区間を整流コイル が移動するとき、磁束密度低減部の影響により整流コイルを貫通する磁束密度の絶 対値が減少する位置に形成することが必要となる。
[0070] また、モータの回転速度を変更するために、コイルを貫通する磁束を変化させるた めに、第 3ブラシを設ける場合があるが、その第 3ブラシでの火花の発生を防止する ためには、第 3ブラシに対する整流区間において、上記実施例の磁束密度低減部を 設けても良い。
[0071] 実施例 2における図 2 (b)、図 7 (b)に示す異方性ボンド磁石の磁束密度分布は 、異方性ボンド磁石をモータに組み付けて、電機子を回転させた時に、あるティース が感じる磁束密度である。この場合に、ティースと異方性ボンド磁石との間隙は、 0. 3 〜 lmmと非常に狭いので、ティースの前面にホール素子などの感磁素子を設けるこ とは困難である。し力しながら、電機子を組み付けない状態で、異方性ボンド磁石の 表面磁束密度分布を測定しても、磁気回路が現実のモータと異なるので、ティースが 回転と共に感じる磁束密度を測定することはできない。そこで、電機子の代りに、異 方性ボンド磁石と表面との間隔を 3mmとした軟鉄製の円柱を配置し、この円柱の表 面に 2mm X 2mm X 2mmの大きさのホール素子を配置して、円柱を回転しながら、 異方性ボンド磁石の表面磁束密度を測定する。上記実施例による配向と着磁を行つ た異方性ボンド磁石を用いて、磁束密度を測定すると、図 2 (b)、図 7 (b)の特性が得 られる。
以下、本明細書において、以下の発明を認識することができる。
1)ブラシを有する直流モータに用いられるリング形状に成形された異方性ボンド磁 石の製造方法であって、異方性ボンド磁石の材料に対して配向磁場を与えて異方性 ボンド磁石を成形する配向成形工程と、配向成形工程によって配向成形された異方 性ボンド磁石に対して着磁磁場を与えて異方性ボンド磁石に着磁する着磁工程とを 有し、異方性ボンド磁石上に、配向磁場の向きと着磁磁場の向きとが直交する直交 区域を、リング形状の周回方向に周期的に異方性ボンド磁石の極数分設けることに よって、リング形状の法線方向成分の磁束密度が低減された磁束密度低減部を各直 交区域に設けることを特徴とする異方性ボンド磁石の製造方法。
2)ブラシを有する直流モータに用いられるリング形状に成形された異方性ボンド磁 石の製造方法であって、異方性ボンド磁石の材料に対して配向磁場を与えて異方性 ボンド磁石を成形する配向成形工程と、配向成形工程によって配向成形された異方 性ボンド磁石に対して着磁磁場を与えて異方性ボンド磁石に着磁する着磁工程とを 有し、配向成形工程において配向磁場を、磁場の方向がリング形状の法線方向に実 質的に一致する主要区間と、リング形状の法線方向に対する磁場の向きがリング形 状の周回方向の位置変化に対して徐々に反転する配向遷移区間の計 2種類の区間 の周回方向における交互配列によって構成し、着磁工程において、着磁処理によつ て形成される各磁極に対応する各磁極区間の区間内に、各配向遷移区間の少なくと も一部分がそれぞれ含まれる様に、各配向遷移区間を着磁磁場内に配置することを 特徴とする異方性ボンド磁石の製造方法。
産業上の利用可能性
本発明は、火花の発生を抑制したブラシを有する直流モータに用いることができる

Claims

請求の範囲
[1] ブラシを有する直流モータの励磁に用いられるリング形状に成形された異方性ボン ド磁石において、
前記リング形状の磁極区間内に、前記リング形状の法線方向成分の磁束密度が部 分的に低減された磁束密度低減部を有することを特徴とする異方性ボンド磁石。
[2] ブラシを有する直流モータの励磁に用いられるリング形状に成形された異方性ボン ド磁石において、
前記リング形状の一磁極区間における磁束密度分布は、電機子の回転方向と反対 側の中性軸からは、絶対値が電機子の回転方向に対して遅れて立ち上がる磁束密 度低減部を有し、電機子の回転方向側の中性軸に対しては、電機子の回転方向に 対して立ち上がりよりは急激に立ち下がる非対称分布をしていることを特徴とする異 方性ボンド磁石。
[3] 前記磁束密度低減部は、
前記リング形状の法線方向成分の磁束密度の分布が、前記リング形状の周回方向 の位置変化に対して極小を示す磁束密度極小部を有する
ことを特徴とする請求項 1又は請求項 2に記載の異方性ボンド磁石。
[4] 前記磁束密度低減部の配向は、前記リング磁石の周回方向の配向成分を主として 有することを特徴とする請求項 1乃至請求項 3の何れか 1項に記載の異方性ボンド磁 石。
[5] 前記磁束密度低減部の配向は、前記リング磁石の周回方向の位置の変化に対し て、法線方向から漸次周回方向を向き、漸次法線方向となる分布であることを特徴と する請求項 1乃至請求項 4の何れか 1項に記載の異方性ボンド磁石。
[6] 前記磁束密度低減部の前記磁極区間における形成位置は、整流区間を整流コィ ルが移動するとき、前記磁束密度低減部の影響により前記整流コイルを貫通する磁 束密度の絶対値が増大する位置に形成されていることを特徴とする請求項 1乃至請 求項 5の何れか 1項に記載の異方性ボンド磁石。
[7] 前記磁束密度低減部は、前記リング磁石の周回方向の位置の変化に対して、配向 分布が、法線方向から漸次周回方向を向き、漸次法線方向となる配向遷移区間の 少なくとも 1Z2以上を一磁極区間に内包して磁化された領域のうち、前記配向遷移 区間の少なくとも中線を含む領域であることを特徴とする請求項 1乃至請求項 6の何 れか 1項に記載の異方性ボンド磁石。
請求項 1乃至請求項 7の何れか 1項に記載の異方性ボンド磁石を有したブラシを有 した直流モータ。
PCT/JP2006/315423 2005-08-08 2006-08-03 異方性ボンド磁石とそれを用いた直流モータ WO2007018128A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/990,140 US20090127958A1 (en) 2005-08-08 2006-08-03 Anisotropic Bonded Magnet and Direct Current Motor Using the Same
EP06782283A EP1923983A1 (en) 2005-08-08 2006-08-03 Anisotropic bond magnet and dc motor employing it
US13/067,088 US20110248591A1 (en) 2005-08-08 2011-05-06 Anisotropic bonded magnet and direct current motor using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-230177 2005-08-08
JP2005230177 2005-08-08
JP2005297013A JP4093263B2 (ja) 2005-08-08 2005-10-11 異方性ボンド磁石とそれを用いた直流モータ。
JP2005-297013 2005-10-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/067,088 Division US20110248591A1 (en) 2005-08-08 2011-05-06 Anisotropic bonded magnet and direct current motor using the same

Publications (1)

Publication Number Publication Date
WO2007018128A1 true WO2007018128A1 (ja) 2007-02-15

Family

ID=37727313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315423 WO2007018128A1 (ja) 2005-08-08 2006-08-03 異方性ボンド磁石とそれを用いた直流モータ

Country Status (4)

Country Link
US (2) US20090127958A1 (ja)
EP (1) EP1923983A1 (ja)
JP (1) JP4093263B2 (ja)
WO (1) WO2007018128A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6009140B2 (ja) * 2010-09-17 2016-10-19 マブチモーター株式会社 Dcモータ
JP2013090437A (ja) * 2011-10-18 2013-05-13 Mitsuba Corp 電動モータ
CN105659477A (zh) * 2013-09-26 2016-06-08 领土替代能源有限责任公司 超导电动机和发电机
KR101711511B1 (ko) * 2016-10-12 2017-03-02 주식회사 코아비스 자동차 연료펌프용 dc 모터
JP7327947B2 (ja) * 2019-02-25 2023-08-16 ニデックプレシジョン株式会社 モータ
DE102019216273A1 (de) * 2019-10-23 2021-04-29 Robert Bosch Gmbh Elektrische Maschine
CN113315274B (zh) * 2021-06-15 2022-08-12 郑州大学 一种直插式槽导体可变磁极磁场调制复合电机

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001095218A (ja) 1999-05-21 2001-04-06 Asmo Co Ltd 直流機
JP2002078252A (ja) * 2000-08-31 2002-03-15 Asmo Co Ltd 直流機及びその製造方法
JP2002084719A (ja) 2000-09-07 2002-03-22 Asmo Co Ltd 直流機
JP2002095230A (ja) 2000-09-13 2002-03-29 Asmo Co Ltd 直流機
JP2002095229A (ja) 2000-09-13 2002-03-29 Asmo Co Ltd 直流機
JP2004023085A (ja) 2002-06-20 2004-01-22 Aichi Steel Works Ltd モータ用異方性ボンド磁石の配向処理方法
JP2004023915A (ja) * 2002-06-18 2004-01-22 Asmo Co Ltd 直流機
JP2004056835A (ja) 2002-05-28 2004-02-19 Aichi Steel Works Ltd モータ用ボンド磁石及びモータ
JP2005012945A (ja) * 2003-06-19 2005-01-13 Asmo Co Ltd 直流機及びその製造方法
JP2005027491A (ja) * 2003-06-10 2005-01-27 Asmo Co Ltd 直流機

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4185262A (en) * 1977-08-01 1980-01-22 Matsushita Electric Industrial Co., Ltd. Magnet device
US6720697B2 (en) * 2000-12-18 2004-04-13 Asmo Co., Ltd. Direct-current motor
JP2003257762A (ja) * 2002-02-27 2003-09-12 Hitachi Ltd リング磁石とその製造法及び回転子と回転機並びにその磁界発生装置及びリング磁石製造装置
US6992553B2 (en) * 2002-06-18 2006-01-31 Hitachi Metals, Ltd. Magnetic-field molding apparatus
US7560841B2 (en) * 2003-07-22 2009-07-14 Aichi Steel Corporation, Ltd. Thin hybrid magnetization type ring magnet, yoke-equipped thin hybrid magnetization type ring magnet, and brush-less motor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001095218A (ja) 1999-05-21 2001-04-06 Asmo Co Ltd 直流機
JP2002078252A (ja) * 2000-08-31 2002-03-15 Asmo Co Ltd 直流機及びその製造方法
JP2002084719A (ja) 2000-09-07 2002-03-22 Asmo Co Ltd 直流機
JP2002095230A (ja) 2000-09-13 2002-03-29 Asmo Co Ltd 直流機
JP2002095229A (ja) 2000-09-13 2002-03-29 Asmo Co Ltd 直流機
JP2004056835A (ja) 2002-05-28 2004-02-19 Aichi Steel Works Ltd モータ用ボンド磁石及びモータ
JP2004023915A (ja) * 2002-06-18 2004-01-22 Asmo Co Ltd 直流機
JP2004023085A (ja) 2002-06-20 2004-01-22 Aichi Steel Works Ltd モータ用異方性ボンド磁石の配向処理方法
JP2005027491A (ja) * 2003-06-10 2005-01-27 Asmo Co Ltd 直流機
JP2005012945A (ja) * 2003-06-19 2005-01-13 Asmo Co Ltd 直流機及びその製造方法

Also Published As

Publication number Publication date
JP4093263B2 (ja) 2008-06-04
US20090127958A1 (en) 2009-05-21
EP1923983A1 (en) 2008-05-21
JP2007074887A (ja) 2007-03-22
US20110248591A1 (en) 2011-10-13

Similar Documents

Publication Publication Date Title
JP5784724B2 (ja) 永久磁石型回転電機の製造方法
US8018111B2 (en) Hybrid-type synchronous machine
JP3816727B2 (ja) 永久磁石式リラクタンス型回転電機
WO2007018128A1 (ja) 異方性ボンド磁石とそれを用いた直流モータ
WO2005104337A1 (ja) 4磁極モータ用異方性ボンド磁石、それを用いたモータ及び4磁極モータ用異方性ボンド磁石の配向処理装置
JPH0824420B2 (ja) 永久磁石界磁式直流機
US20070132333A1 (en) Self magnetizing motor and method for winding coils on stator thereof
CN1327594C (zh) 混合励磁无刷爪极电动机
JP2000050543A (ja) 永久磁石埋め込みモータ
JPH08126279A (ja) ブラシレスdcモータ
JP2005124335A (ja) スイッチドリラクタンスモータ及びその制御方法
US6987340B2 (en) DC motor with brushes
KR100451418B1 (ko) 이중고정자구조의 직류전동기
JP2002084719A (ja) 直流機
JP2004343842A (ja) 回転電機用ロータ
JP2831123B2 (ja) 永久磁石型直流機
JP2005312166A (ja) 4磁極モータ用異方性ボンド磁石及びそれを用いたモータ
JP4013916B2 (ja) 4磁極モータ用異方性ボンド磁石の配向処理装置
JPH07118895B2 (ja) 回転電機
JP2002101622A (ja) 磁石の製造方法
JP3706056B2 (ja) 直流機
JP3706057B2 (ja) 直流機
JPH0140313Y2 (ja)
JPH0628945Y2 (ja) 永久磁石型電動機
JPS60167310A (ja) 異方性円筒磁石の着磁方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680037291.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006782283

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11990140

Country of ref document: US