WO2007018121A1 - 窒化ガリウム等のiii族窒化物の成膜方法 - Google Patents

窒化ガリウム等のiii族窒化物の成膜方法 Download PDF

Info

Publication number
WO2007018121A1
WO2007018121A1 PCT/JP2006/315404 JP2006315404W WO2007018121A1 WO 2007018121 A1 WO2007018121 A1 WO 2007018121A1 JP 2006315404 W JP2006315404 W JP 2006315404W WO 2007018121 A1 WO2007018121 A1 WO 2007018121A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
gallium
nitrogen
discharge space
film
Prior art date
Application number
PCT/JP2006/315404
Other languages
English (en)
French (fr)
Inventor
Takahiro Nagata
Toyohiro Chikyo
Tsuyoshi Uehara
Original Assignee
National Institute For Materials Science
Sekisui Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute For Materials Science, Sekisui Chemical Co., Ltd. filed Critical National Institute For Materials Science
Priority to US11/997,980 priority Critical patent/US20090170294A1/en
Priority to JP2007529531A priority patent/JPWO2007018121A1/ja
Priority to EP06782264A priority patent/EP1916704A4/en
Publication of WO2007018121A1 publication Critical patent/WO2007018121A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/10Heating of the reaction chamber or the substrate
    • C30B25/105Heating of the reaction chamber or the substrate by irradiation or electric discharge
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Definitions

  • the present invention relates to a method for forming a group III nitride film such as gallium nitride (GaN), aluminum gallium nitride (AlGaN), aluminum nitride (A1N), indium nitride (InN) on a substrate.
  • a group III nitride film such as gallium nitride (GaN), aluminum gallium nitride (AlGaN), aluminum nitride (A1N), indium nitride (InN) on a substrate.
  • Group III nitride semiconductors such as GaN, AlGaN, A1N, and InN are expected to be applied not only to light emitting devices but also to high frequency devices.
  • the following are examples of conventional methods for forming a group III nitride film.
  • Patent Document 1 JP-A-10-106958
  • Patent Document 2 JP-A-4-164859
  • Non-Patent Document 1 Development of Compound Semiconductors ⁇ Application Trends Electronic Materials (2004) pl8-41
  • Non-Patent Document 2 Advanced 'Electronics 1-21 Group III Nitride Semiconductor Yasuaki Akasaki Hakufukan (1999)
  • the growth of group III nitride films is greatly related to the ratio of group III source material to reactive nitrogen source (V / III ratio).
  • V / III ratio is controlled by raising the pressure to about several Pa under vacuum.
  • the growth temperature must be as high as 1000 ° C or higher for the thermal decomposition of the ammonia. For this reason, Si or a polymer material cannot be used as a substrate, and the application range is limited. In addition, large-scale abatement equipment and high vacuum equipment for ammonia are required.
  • the present invention has been made in view of the above circumstances, and it is an object of the present invention to enable the expansion of the application range by lowering the substrate temperature and simplify the equipment.
  • the present invention is a method of growing group III nitride on a substrate, comprising:
  • a contact step in which nitrogen introduced into the discharge space and a metal compound containing a group III metal are brought into contact with the substrate such that the V / III ratio is 10 to 100000;
  • the V / III ratio refers to the ratio between the supply partial pressure of the Group V raw material and the supply partial pressure of the Group III raw material.
  • the lattice mismatch rate of the substrate with respect to the group III nitride is preferably as small as 0 to 20%. However, this does not apply to a-plane sapphire. In actual crystal growth, depending on the atomic arrangement, epitaxial growth may occur even if the lattice mismatch rate is large. This tendency is particularly noticeable for substances with strong c-axis orientation, such as GaN and ZnO. This is also true for c-plane safia.
  • the lattice mismatch rate is defined by the following equation.
  • a is the lattice constant in the a-axis direction of the nitride thin film, and a is the a-axis direction of the substrate crystal
  • the V / III ratio may be within the above range when the plasma gas contacts the substrate.
  • the V / III ratio changes depending on the location (e.g., Ga as the gas flows toward the downstream side) If the group III raw material is consumed and the V / III ratio is increased, etc.), contact the substrate only where the V / III ratio is within the desired range.
  • the Group III metal should be selected from Ga, Al, and In forces.
  • the Group III nitride should preferably be selected from GaN, AlGaN, A1N, and InN.
  • gallium nitride When a gallium-containing compound is used as the metal compound, gallium nitride (GaN) is generated as the group III nitride.
  • the gallium-containing compound is trimethylgallium ((CH 2) Ga, also referred to as “TMG” hereinafter).
  • TAG Triethylgallium
  • GaH quinutaridin galane
  • triclonal gallium GaCl, hereinafter also referred to as “TCG”
  • TCG triclonal gallium
  • Mudimethylamide (Ga [N (CH)]), hereinafter also referred to as “DMEGA”. ) Etc. may be used.
  • Al nitride (A1N) is generated as the group m nitride.
  • the aluminum-containing compound is triethylaluminum ((C H) A1, hereinafter referred to as “TEA”.
  • 1-methylpyrrolidinalan (A1H: N (CH) (C H), hereinafter referred to as “1-MPA”
  • DMAH Dimethylaluminum hydride
  • the substrate is preferably selected from c-plane sapphire, a-plane sapphire, ZnO, GaN, SiC, and GaAs.
  • a gallium-containing compound is used as the metal compound, and a V / III specific power of OOOO to 100,000 is obtained, GaN is epitaxially grown. Can be made. If the V / III ratio is about 10 to: LOOO, GaN polycrystals can be obtained.
  • the substrate is an aluminum-containing substrate such as sapphire (Al 2 O 3)
  • the group III raw material By using a gallium-containing compound as the metal compound, aluminum gallium nitride (AlGaN) can be grown as the group III nitride on the substrate without adding an aluminum-containing compound separately. GaN can be grown on this AlGaN layer.
  • AlGaN aluminum gallium nitride
  • the substrate is preferably heated to 500 to 700 ° C in order to prevent organic compounds originating from the organic components of the Group III raw material from entering the film. More preferably, the temperature is preferably about 650 ° C. The upper limit of the substrate temperature may be about 700 ° C, and does not need to be as high as 1000 ° C or higher. A sufficient reaction rate can be secured at such a substrate temperature. Further, the organic component in the group III raw material can be vaporized and removed from the substrate, and the organic component can be prevented from being mixed into the film.
  • the lower limit of the substrate temperature is preferably set according to the thermal decomposition temperature of the metal compound for the group III raw material.
  • the lower limit of the substrate temperature can be set to about 300 ° C. Near this lower temperature limit, GaN polycrystal and amorphous can be obtained.
  • the substrate temperature is preferably about 400 ° C or higher, more preferably 450 to 500 ° C or higher! /.
  • the lower limit of the substrate temperature is about 200 ° C if a GaN polycrystal or amorphous is obtained. If there is, it can be set to about 300 ° C.
  • the substrate temperature is 350 to 450 ° C or higher.
  • the lower limit of the substrate temperature can be set to 150 to 250 ° C in view of the literature on 1-MPA, a similar material (ULVAC TECHNICAL JOURNAL No.59 2003 P.25).
  • the film forming process is more preferably performed in a pure nitrogen (including unavoidable impurities) atmosphere, which is preferably performed in a nitrogen atmosphere.
  • the nitrogen concentration as the atmosphere is preferably 99.9 vol% or more.
  • the pressure of the atmosphere can be appropriately set within a range where atmospheric pressure plasma such as nitrogen is obtained, and is preferably set within a range of 40 to LOOkPa. It is preferable to apply a voltage between a pair of electrodes under an atmosphere of nitrogen or the like near atmospheric pressure.
  • the electrode structure is preferably a parallel plate electrode.
  • the plasma irradiation method may be a direct method in which the substrate is disposed directly inside the discharge space between the pair of electrodes.
  • a remote device in which the substrate is disposed outside the discharge space and the plasma gas generated in the discharge space is blown onto the substrate. It may be a method.
  • the input voltage may be of a magnitude that allows stable discharge between the electrodes due to nitrogen or the like.
  • Vpp 300 to 1000 V is appropriate.
  • the frequency is, for example, 10 to 30 kHz.
  • the voltage waveform is, for example, a force that is a bipolar nors, but is not limited thereto.
  • the distance between the pair of electrodes is set so as to generate an atmospheric pressure plasma discharge between these electrodes, and is set in the range of about several millimeters to several millimeters.
  • the thickness of the gap between the substrate facing surface of one electrode and the substrate is preferably 0.1 to 5 mm, and more preferably about 0.5 mm.
  • a group III nitride such as GaN can be grown on a substrate such as sapphire using nitrogen plasma near atmospheric pressure.
  • the V / III ratio can be increased sufficiently and the reaction rate can be increased.
  • the substrate temperature can be lowered as compared with the case of using conventional ammonia, and the selection range of the substrate material can be expanded, and the application range of the group III nitride semiconductor can be expanded. Large-scale abatement equipment and high-vacuum equipment are not required, and the equipment can be simplified.
  • FIG. 1 is a circuit configuration diagram of an atmospheric pressure nitrogen plasma CVD apparatus according to an embodiment of the present invention.
  • FIG. 2 is an ⁇ -20 scan diffractogram of the sample of Example 1.
  • FIG. 3 is an analysis diagram of the sample of Example 1 by a pole figure method.
  • FIG. 4 is a spectrum diagram of light emission in the discharge space according to Reference Experiment 11.
  • FIG. 5 is a spectrum diagram of light emission from the discharge space in Reference Experiment 12
  • FIG. 6 is a two-dimensional X-ray diffraction image of the sample of Example 2.
  • FIG. 7 is a photoluminescence spectrum diagram of the sample of Example 2.
  • the display below “@” in the figure indicates the measured temperature.
  • FIG. 8 is a force sword minence spectrum diagram of the sample of Example 2, wherein (a) shows the measurement results at room temperature and 20 K at the portion where the film thickness of the sample is large; (b) shows a comparison of the measurement results at room temperature at a location where the film thickness is large and a location where the film thickness is smaller than that, and (c) shows the measurement at a location where the film thickness is small. The measurement results at each measurement temperature are shown.
  • FIG. 9 is a cross-sectional TEM photograph of the sample of Example 2. (a) shows a relatively large scale, and (b) shows a relatively small scale.
  • FIG. 10 is a cross-sectional TEM photograph of a portion different from FIG. 9 of the sample of Example 2.
  • FIG. 11 X-ray diffraction photographs of Example 2, where (a) is point a in Fig. 10, (b) is point b in Fig. 10, (c) is point c in Fig. 10, and (d) is This is a photograph of point d in Fig. 10.
  • FIG. 13 is a photograph showing a pole figure of a sample film-formed at a substrate temperature of 400 ° C. in Example 3.
  • FIG. 14 is a graph showing measurement results of light transmittance of the sample in FIG.
  • FIG. 15 is an ⁇ -20 scan pattern of a sample film-formed at a substrate temperature of 350 ° C. in Example 3.
  • FIG. 16 is a two-dimensional X-ray diffraction image of the sample in FIG.
  • FIG. 17 (a) is a graph showing the results of measuring the lower limit applied voltage at which stable discharge can be obtained in Reference Experiment 3-1, while changing the substrate temperature and process gas. 5 is a graph showing a supply current at a lower limit voltage of (a).
  • FIG. 18 is a spectrum diagram of light emission from the discharge space in Reference Experiment 3-1.
  • FIG. 19 The results of Reference Experiment 3-2 are shown.
  • (A) is a photomicrograph of the substrate surface when the substrate temperature is 500 ° C and the process gas is blown onto the substrate without being converted to plasma.
  • (b) ( In (a), it is a photomicrograph when the substrate temperature is 650 ° C.
  • (c) is a two-dimensional X-ray diffraction image of the same sample as (b).
  • Carrier MFC Carrier Mass Flow Controller
  • the present invention is applied to the formation of a CVD film of a group III nitride such as GaN, AlGaN, A1N, or InN on a substrate.
  • a group III nitride such as GaN, AlGaN, A1N, or InN
  • a substrate made of c-plane sapphire or a-plane sapphire (Al 2 O 3) is coated with GaN.
  • the film is formed.
  • N is used as the Group V raw material.
  • the group III raw material for example, TMG is used.
  • V / III ratio is selected from 10 to: LOOOOO.
  • TMG of Group III raw material is added to N of Group V raw material in an amount specified by the above V / III ratio.
  • a process gas such as a mixed gas of G is introduced into the plasma space. This breaks down N
  • N radicals are obtained.
  • N but also TMG is decomposed, and Ga radical, Ga
  • active species such as ON are generated.
  • the plasma gas containing these active species contacts the sapphire substrate. Thereby, a GaN layer can be grown.
  • FIG. 1 shows an example of a direct atmospheric pressure nitrogen plasma CVD apparatus 10 for carrying out the method of the present invention.
  • the CVD apparatus 10 includes a reactor 11 and a gas supply system 20 that supplies reaction gas to the reactor 11.
  • the reactor 11 includes a chamber 12, a pair of electrodes 13 and 14, and a heater 15.
  • the space 11a in the channel 12 is filled with pure nitrogen gas (N). Nitrogen pressure in chamber 12
  • a pair of electrodes 13 and 14 and a heater 15 are accommodated in the chamber 12.
  • the pair of electrodes 13 and 14 are opposed to each other in the vertical direction to constitute a parallel plate electrode.
  • the upper electrode 13 is connected to the power supply 30 and constitutes a hot electrode.
  • the lower electrode 14 is electrically grounded to form a ground electrode.
  • a solid dielectric layer (not shown) is provided on each of the lower surface of the hot electrode 13 and the upper surface of the ground electrode 14. The thickness of the solid dielectric layer is preferably about 1 mm.
  • the solid dielectric layer may be provided on at least one of the electrodes.
  • the voltage waveform, voltage, frequency, and the like of the power supply 30 are not limited to the above, and can be appropriately changed.
  • a substrate 90 made of c-plane sapphire or a-plane sapphire to be processed is arranged at the center of the upper surface of the ground electrode 14.
  • the ground electrode 14 also serves as a substrate mounting table.
  • the gap between the surfaces of the solid dielectric layers of the upper and lower electrodes 13, 14 is, for example, lmm
  • the thickness of the substrate 90 is, for example, 0.5 mm
  • the lower surface of the solid dielectric layer of the hot electrode 13 The gap between the substrate and the upper surface of the substrate 90 is, for example, 0.5 mm.
  • the above dimensions can be changed as appropriate.
  • a shallow recess may be formed on the upper surface of the ground electrode 14 to accommodate the substrate 90! /.
  • a heater 15 is disposed below the ground electrode 14.
  • a heater 15 may be embedded in the ground electrode 14.
  • the ground electrode 14 is heated by the heater 15, and the substrate 90 is heated via the ground electrode 14.
  • the heating temperature of the substrate 90 is preferably about 650 ° C.
  • the gas supply system 20 to the reactor 11 is configured as follows.
  • N supply path 22 extends from the N tank 21 of the group V raw material.
  • N supply channel 22 has a main
  • a sflow controller 23 (hereinafter referred to as “main MFC” t) and an on-off valve V22 are also provided in order with upstream force.
  • a carrier supply path 24 is branched from an N supply path 22 on the upstream side of the main MFC 23.
  • a carrier mass flow controller 25 hereinafter referred to as “carrier MFC”
  • carrier MFC carrier mass flow controller
  • V24 on-off valve
  • the thermostatic chamber 26 stores Group III raw material TMG.
  • the thermostat 26 keeps the temperature of the TMG at 0 ° C, for example.
  • the boiling point of TMG at atmospheric pressure is 55.7 ° C, and the melting point is 15.9 ° C.
  • the TMG at 0 ° C in the thermostat 26 is in the liquid phase.
  • the downstream end opening of the carrier supply path 24 is located below the TMG liquid level in the thermostatic chamber 26.
  • a TMG-added bottle 27 extends from above the TMG liquid level in the thermostatic chamber 26.
  • An on-off valve V27 is provided on the TMG-attached bottleneck 27.
  • the downstream end of the TMG addition path 27 is joined to the N supply path 22 downstream from the on-off valve V22.
  • a common supply path 29 extends from a junction 28 between the N supply path 22 and the TMG addition path 27.
  • the passage 29 is provided with an opening control valve V29.
  • the downstream end of the common supply path 29 is inserted into the chamber 12 of the reactor 11 and opened so as to face one end of the interelectrode space 11a.
  • the force discharge path 41 at the other end of the interelectrode space 11a extends.
  • the discharge passage 41 is provided with an opening control valve V41.
  • a rotary pump 40 is connected to the downstream end of the discharge path 41.
  • a purge path 42 extends from the junction 28 and is connected to the rotary pump 40.
  • an exhaust passage 43 extends from the chamber 12 of the reactor 11 and is connected to the rotary pump 40 via the turbomolecular pump 44.
  • the atmospheric pressure nitrogen plasma CVD apparatus 10 having the above configuration is used as follows.
  • the gas supply system 20 is purged by opening the purge passage 42. After the purge operation, close the purge passage 42 with the open / close valve V42.
  • the air in the chamber 12 of the reactor 11 is exhausted by the turbomolecular pump 44, and N is supplied from the N tank 21 into the chamber 12 instead, and the chamber 12 is filled with pure nitrogen.
  • the nitrogen pressure in the chamber 12 is maintained at 40 kPa near atmospheric pressure.
  • a sapphire substrate 90 is set at the center of the ground electrode 14. This board 90 heater 1
  • N flows from the N tank 21 to the N supply path 22.
  • Part of N is the carrier supply path 24
  • the main MFC23 adjusts the N flow rate of the N supply path 22, and the carrier M
  • N in the carrier supply path 24 is blown into the liquid phase TMG in the thermostatic chamber 26.
  • TMG is bubbled and vaporized.
  • the amount of TMG vaporization is N flow in the carrier supply path 24.
  • TMG is cooled to 0 ° C in a thermostatic chamber 26
  • the amount of evaporation other than publishing can be ignored, and the amount of vaporization can be controlled accurately.
  • the vaporized TMG and N of the carrier are connected to N of the N supply path 22 via the TMG supply path 27.
  • a process gas is produced by adding a predetermined amount of TMG to N.
  • This process gas is introduced into the interelectrode space 11 a of the reactor 11 through the common supply path 29.
  • the power source 30 is driven, and an electric field is applied between the pair of electrodes 13 and 14.
  • an atmospheric pressure glow discharge is generated between the electrodes 13 and 14, and the interelectrode space 11a becomes a discharge space.
  • N in the process gas is decomposed and nitrogenated.
  • a GaN layer can be formed on the surface of the sapphire substrate 90.
  • a thin layer of AlGaN can be formed at the interface between the sapphire substrate 90 and the GaN layer.
  • the GaN layer is laminated on the AlGaN layer. It is speculated that A1 in AlGaN also provided sapphire substrate power. Therefore, it is not necessary to add a separate A1 source to the process gas to form the AlGaN layer.
  • a film having a component different from that of GaN can be stacked.
  • nitrogen plasma near atmospheric pressure is used, the V / III ratio in the reaction field can be increased, and the reaction rate can be increased.
  • the sapphire substrate 90 is disposed at the center of the ground electrode 14, where the plasma state is almost uniform with little disturbance of the electric field, and is uniform. With this,
  • the film quality of GaN can be made uniform.
  • the reaction rate can be further increased, and the organic compound derived from the methyl group of TMG can be vaporized, and the organic compound is mixed into the film. Can be prevented.
  • the treated gas containing the organic compound is sucked into the discharge passage 41 from the interelectrode space 11a and discharged.
  • the heating temperature of the substrate 90 may be about 650 ° C. This substrate temperature is considerably lower than 1000 ° C in the conventional film formation method using ammonia, and the high temperature equipment can be simplified. Detoxification equipment is also unnecessary. It can also be applied to substrates with low heat resistance, and the range of substrate selection can be expanded. The applicability can be expanded to substrates with high polymer material strength such as flexible film.
  • the N supply path 22 is connected by the main MFC 23.
  • N flow rate can be adjusted and the carrier MFC25 can adjust the N flow rate of the carrier supply path 24.
  • the V / III ratio on the sapphire substrate 90 can be adjusted by the two MFCs 23 and 25, and thus the crystal structure of GaN can be selected.
  • V / III ratio on the sapphire substrate 90 is about 10,000 to 100,000
  • GaN can be epitaxially grown.
  • the V / III ratio is about 10 to L000, polycrystalline GaN can be obtained.
  • the substrate temperature during the reaction is preferably about 400 ° C or higher for obtaining an epitaxial crystal, and about 300 ° C or higher for obtaining a polycrystal.
  • the substrate ZnO, SiC, GaAs or the like may be used instead of c-plane or a-plane sapphire.
  • a substrate having a small lattice mismatch with the film to be obtained is suitable as a substrate.
  • a smaller lattice mismatch rate is preferable, for example, about 0 to 20%.
  • the lattice mismatch of c-plane sapphire to GaN is 16%.
  • TEG, QUG, 1-MPG may be used instead of TMG, TCG, DMEGA, or the like may be used.
  • the lower limit of the substrate temperature range can be made about 100 ° C lower than TMG. That is, when obtaining an epitaxial crystal, the substrate temperature can be about 300 ° C. or more, and when obtaining a polycrystal, the substrate temperature can be about 200 ° C. or more.
  • Process gas N + TMG is present on the sapphire substrate 90 from one end of the discharge space 1 la.
  • the initial V / III ratio may be adjusted to the desired V / III ratio on the board 90 in anticipation of this consumption.
  • a good process gas N + TMG is introduced into the discharge space 11a until it reaches the substrate 90
  • the desired V / III ratio may be obtained on the substrate 90 by adjusting the distance at.
  • the V / III ratio may be adjusted to be substantially constant everywhere on the substrate 90.
  • a so-called remote method in which the substrate is arranged outside the plasma space may be adopted.
  • TMG may be sprayed onto the substrate.
  • film formation was performed under the following conditions.
  • N flow rate in N supply path 22 300sccm
  • N flow rate of carrier supply path 24 lsccm
  • Example 1 When the sample obtained by the treatment of Example 1 was analyzed by the ⁇ -20 scan of the X-ray diffraction method, diffraction from 0002 plane of GaN was confirmed as shown in FIG. Moreover, when the above sample was analyzed by the pole figure method, as shown in FIG. 3, the 6-fold symmetry derived from the hexagonal structure of the GaN single crystal was confirmed. From the above, it was confirmed that the GaN film grows epitaxially in the 001 direction on the sapphire substrate.
  • the light emission from the interelectrode space 11a was analyzed by the spectroscopic analyzer 50.
  • the substrate temperature (Tsub) was 650 ° C, and only nitrogen was supplied to the interelectrode space 11a.
  • Tsub substrate temperature
  • the inset enclosed by a broken line frame is an enlarged portion of the wavelength of 350 to 400 nm, and the peak of ion species (390 nm) that causes damage to the film was not confirmed.
  • Processing pressure (nitrogen atmosphere pressure): 40kPa ⁇ 2kPa
  • Example 2 a film forming process was performed under the following conditions using an apparatus having the same configuration as in FIG.
  • N flow rate of carrier supply path 24 0.5ccm
  • FIG. 6 shows a two-dimensional X-ray diffraction image of the sample obtained by the processing of Example 2.
  • the central white dot is a c-plane sapphire image. On the right side, an image showing epitaxial GaN was confirmed.
  • Measurement temperature 10 points in the range of 5K to 300K
  • FIG. 8 shows the force sword luminescence spectrum of the sample of Example 2.
  • the beam energy was 5 keV.
  • a sharp peak appeared at around 3.4 eV corresponding to the band edge of GaN at a measurement temperature of extremely low temperature (@ 20K).
  • R.T. room temperature
  • the peak shifted to around 3.7 eV. This is due to the effect of light emission with material strength different from that of GaN in the deep part of the film. This substance is presumed to be AlGaN from its luminescence energy.
  • the lower spectrum of Fig. 8 (b) is an enlarged view of the peak around room temperature in Fig. 8 (a). Furthermore, when a force sword luminescence measurement was performed at room temperature at a point where the film thickness was thinner than the measurement point of (a) above in the above sample, it was shown in the upper spectrum of the same figure (b). As shown in the figure, the peak was further shifted to the higher energy side. It is considered that the light emission of the AlGaN becomes more dominant at the thin point.
  • Forced sword luminescence is suitable for the analysis of deep AlGaN layers where the penetration depth is larger than that of photoluminescence.
  • photoluminescence is suitable for analyzing only the surface GaN layer without being affected by the AlGaN layer.
  • FIGS. 9 (a) and 9 (b) a black interface layer considered to be AlGaN was confirmed between the sapphire substrate and the GaN film.
  • the thickness of the interface layer was about 2-3 nm.
  • FIG. 11 an X-ray diffraction image (Fig. 11) of the sample was taken.
  • the photographing points were set at a plurality of locations a to d on a line straddling both sides across the interface between the sapphire substrate and the GaN film.
  • the interface between the sapphire substrate and the GaN film forms a diagonal line rising to the right.
  • the photographing point b is almost located on this interface.
  • the upper side (imaging point a side) of the interface is the GaN film
  • the lower side (imaging points c and d side) is the sapphire substrate.
  • FIG. 11 (a) is a diffraction photograph of the photographing point a
  • FIG. 11 (a) is a diffraction photograph of the photographing point a
  • FIG. 11 (b) is a diffraction photograph of the photographing point b
  • FIG. 11 (c) is a diffraction photograph of the photographing point c
  • Fig. (D) is a diffraction photograph of the photographing point d.
  • nitrogen plasma was generated by introducing only nitrogen into the interelectrode space 11a. This nitrogen plasma was directly applied to the center of the sapphire substrate. Thereafter, the ⁇ rocking curve of the sapphire substrate was measured.
  • the results are shown in FIG.
  • the shaded area in the figure is the area directly exposed to the nitrogen plasma at the center of the substrate, that is, the direct plasma area, and the left and right outside of the shaded area is the remote plasma area where the plasma is not directly applied.
  • the direct plasma region it was confirmed that the full width at half maximum was larger than that in the remote plasma region, and the crystallinity was lowered.
  • A1 in the sapphire substrate is thought to contribute to the formation of the interface AlGaN layer.
  • Example 3 the substrate temperature was set to 400 ° C lower than that of Example 1 and Example 2 (650 ° C), and the film formation process was performed.
  • Other processing conditions are as follows.
  • N flow rate of carrier supply path 24 0.5ccm
  • FIG. 13 shows a pole figure of the sample obtained by the above processing. 650 ° C field Compared with Fig. 3 (Fig. 3), although the sharpness was slightly biased, 6-fold symmetry appeared.
  • FIG. 14 When the light transmittance of the sample was measured, as shown in FIG. 14, a gentle gradient was observed near the band edge (wavelength 360 nm) of the GaN epitaxial.
  • GaN can be epitaxially grown even at a substrate temperature of 400 ° C.
  • the substrate temperature should be about 650 ° C.
  • the film formation was performed under the same processing conditions as in the case where the substrate temperature was 350 ° C and the others were 400 ° C.
  • the processed substrate was scanned by ⁇ -2 ⁇ , as shown in Fig. 15, a diffraction peak from the 0002 plane of GaN appeared, although it was slower than the substrate temperature of 650 ° C (Fig. 2).
  • a two-dimensional X-ray diffraction image was taken, as shown in Fig. 16
  • a GaN crystal image appeared, although it was not as clear as when the substrate temperature was 650 ° C (Fig. 6).
  • GaN can be deposited even at a substrate temperature of about 350 ° C.
  • the relationship between the substrate temperature, applied voltage, and current was measured.
  • the measurement conditions are as follows.
  • Processing pressure (nitrogen atmosphere pressure): 40kPa ⁇ 2kPa
  • the N flow rate in the carrier supply path 24 was set at two levels of 0.5 sccm and Osccm. 0. At 5sccm
  • the process gas introduced into the plasma space 11a is a mixed gas of nitrogen and TMG (N + TM
  • the process gas is only nitrogen.
  • the lower limit applied voltage at which the discharge between the electrodes 13 and 14 becomes stable and the supply current to the electrode 13 when the lower limit voltage was applied were measured for each substrate temperature.
  • Process gas is a mixed gas of nitrogen and TMG (N + TMG) and the substrate temperature is 650 ° C
  • Ga radicals were confirmed at wavelengths of 403 nm and 417 nm.
  • the process gas is a mixed gas of nitrogen and TMG (N + TMG), and the substrate temperature is always constant.
  • TMG requires a certain temperature to be able to be decomposed by plasma even at room temperature, and to make Ga more radical.
  • the lower limit of the substrate temperature is preferably about 300 ° C.
  • TEG, QUG, 1-MPG, etc. can be thermally decomposed even at temperatures as low as 100 ° C from TMG. Therefore, when these are used as Group III materials, the lower limit of the substrate temperature can be set around 200 ° C. wear.
  • the present invention is applicable to the manufacture of semiconductor elements such as light emitting elements and high frequency elements, for example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

【課題】 大気圧プラズマを用いてGaN等のIII族窒化物を成膜する。 【解決手段】  リアクタチャンバ12内を40kPa程度の略大気圧の純窒素で満たす。電極14上にc面サファイア基板90を載置する。ヒータ15で基板温度を650°Cにする。電極13,14間に電界を印加して放電空間11aを形成する。ガス供給系20においてN2にトリメチルガリウムを微量添加し、放電空間11aに供給し、サファイア基板90に接触させる。基板90上でのV/III比が10~100000となるようにする。

Description

明 細 書
窒化ガリウム等の m族窒化物の成膜方法
技術分野
[0001] この発明は、基板に窒化ガリウム(GaN)、窒化アルミニウムガリウム (AlGaN)、窒 化アルミニウム (A1N)、窒化インジウム (InN)等の III族窒化膜を成膜する方法に関 する。
背景技術
[0002] GaN、 AlGaN, A1N、 InN等の III族窒化物半導体は、発光素子のみならず高周波 素子への応用も期待される。 III族窒化物の成膜方法の従来例として以下のものが挙 げられる。
1)アンモニアを利用した MOCVD
2)高真空プラズマを利用した MBE
3)アンモニアを利用した高真空での MBE
4)高真空プラズマを利用した MOCVD
5)超高真空下でのレーザーアブレーシヨン
特許文献 1 :特開平 10— 106958号公報
特許文献 2 :特開平 4— 164859号公報
非特許文献 1:化合物半導体の開発 ·応用動向 電子材料 (2004)pl8-41 非特許文献 2 :アドバンスト'エレクトロニクス 1-21 III族窒化物半導体 赤崎勇著 培 風館 (1999)
発明の開示
発明が解決しょうとする課題
[0003] GaN等の III族窒化物半導体の応用分野を、 LEDをはじめとする光学デバイスだけ でなく高周波素子等の電子デバイスにも広げるには、基板としてサファイアだけでな く Siや高分子材料等にも適応できることが望まれる。
一方、 III族窒化物膜の成長には III族原料と反応性窒素源の比 (V/III比)が大きく 関与している。上記の 1)、 3)等の成膜方法では、アンモニアを窒素源とし、その圧力 を真空下で数 Pa程度まで上げることにより V/III比を制御している。しかし、アンモ- ァの熱分解のために成長温度を 1000°C以上もの高温にする必要がある。そのため 、基板として Siや高分子材料を用いることが出来ず、応用範囲が制限されている。ま た、アンモニアのための大掛力りな除害設備や高真空装置を必要とする。
本発明は、上記事情に鑑みてなされたものであり、基板温度を下げて適用範囲の 拡大を可能にするとともに、設備の簡素化を図ることを目的とする。
課題を解決するための手段
[0004] 発明者らは、上記目的を達成するために、大気圧プラズマ(大気圧近傍でのグロ一 放電などによるプラズマ)を用いて GaN等の III族窒化物を成膜することを発案し、鋭 意研究を行い、下記の通り本発明を完成させた。
本発明は、基板に III族窒化物を成長させる方法であって、
大気圧近傍の雰囲気下で一対の電極間に電界を印加することにより放電空間を形 成する放電形成工程と、
この放電空間に導入した窒素と、 III族金属を含む金属化合物とを、 V/III比が 10〜 100000となるようにして前記基板に接触させる接触工程と、
を含むことを特徴とする。
[0005] ここで、 V/III比とは、 V族原料の供給分圧と III族原料の供給分圧の比を 、う。
前記 III族窒化物に対する前記基板の格子不整合率は、小さいほど好ましぐ例え ば 0〜20%である。ただし、 a面サファイアはこの限りでない。実際の結晶成長では原 子配列によっては格子不整合率が大きくてもェピタキシャル成長することがある。特 に GaNや ZnOなどのように c軸配向性の強い物質はこの傾向が顕著である。 c面サフ アイァもこの傾向がある。
格子不整合率は、下式で定義される。
格子不整合率 = (a -a )ム
film sub sub
ここで、 a は、窒化物薄膜の a軸方向の格子定数であり、 a は、基板結晶の a軸方
film sub
向の格子定数である。
[0006] V/III比は、プラズマガスが基板と接触する時点で上記範囲内にあればよい。場所 によって V/III比が変化する場合 (例えばガス流の下流側に向力うにしたがって Ga等 の III族原料が消費され V/III比が大きくなる等)、 V/III比が所望範囲になる場所でだ け基板と接触するようにするとよ 、。
[0007] 前記 III族金属は、 Ga、 Al、 In力 選択されるのが好ましぐ得るべき III族窒化物は 、 GaN、 AlGaN、 A1N、 InNから選択されるのが好ましい。
前記金属化合物としてガリウム含有化合物を用いると、前記 III族窒化物として窒化 ガリウム (GaN)が生成される。
前記ガリウム含有ィ匕合物は、トリメチルガリウム((CH ) Ga、以下「TMG」ともいう。
3 3
)、トリェチルガリウム((C H ) Ga、以下「TEG」ともいう。)、キヌタリジンガラン (GaH
2 5 3
: N (C H )、以下「QUG」ともいう。)、 1-メチルピロリジンガラン(GaH: N (CH ) (
3 7 13 3 3
C H )、以下「1-MPG」ともいう。)の群力 選択されるのが好ましい。前記ガリウム含
4 4
有化合物として、上記の他、トリクロ口ガリウム (GaCl、以下「TCG」ともいう。)、ガリウ
3
ムジメチルアミド(Ga [N (CH ) ] )、以下「DMEGA」ともいう。)等を用いてもよい。
2 3 2 6
これらガリウム含有ィ匕合物の 2つ以上を含む混合物を用いてもょ 、。
[0008] 前記金属化合物としてアルミニウム含有化合物を用いると、前記 m族窒化物として 窒化アルミニウム (A1N)が生成される。
前記アルミニウム含有化合物は、トリェチルアルミニウム((C H )A1、以下「TEA」
2 5
ともいう。)、 1-メチルピロリジンァラン(A1H: N (CH ) (C H )、以下「1- MPA」とも
3 3 4 4
いう。)、ジメチルアルミニウムハイドライド((CH ) A1H、以下「DMAH」ともいう。)、
3 2
アルミニウムジメチルアミド(Al [N (CH ) ]、以下「DMEAA」ともいう。)、キヌクリジ
2 3 2 6
ンァラン (A1H : N (C H )、以下「QUA」ともいう)の群から選択されるのが好ましい
3 7 13
。これらアルミニウム含有ィ匕合物の 2つ以上を含む混合物を用いてもょ 、。
[0009] 前記基板は、 c面サファイア、 a面サファイア、 ZnO、 GaN、 SiC、 GaAsから選択さ れるのが好ましい。
[0010] 前記基板として、 c面又は a面のサファイア基板を用い、前記金属化合物としてガリ ゥム含有化合物を用い、さらに V/III比力 OOOO〜100000になるようにすると、 GaN をェピタキシャル成長させることができる。また、 V/III比を 10〜: LOOO程度にすれば、 GaNの多結晶を得ることができる。
[0011] 基板がサファイア (Al O )等のアルミニウム含有基板である場合、前記 III族原料用 の金属化合物としてガリゥム含有化合物を用いることにより、アルミニウム含有ィ匕合物 を別途添加しなくても、前記基板上に前記 III族窒化物として窒化アルミニウムガリウム (AlGaN)を成長させることができる。この AlGaNの層の上に GaNを成長させること ができる。
[0012] 成膜反応自体は基板の加熱をあまり要さないが、 III族原料の有機成分に起因する 有機化合物が膜に混入するのを防止するために、基板を好ましくは 500〜700°C、 より好ましくは 650°C程度にするのが好ましい。基板温度の上限は 700°C程度でよく 、 1000°C以上もの高温にする必要はない。この程度の基板温度で反応レートを十分 に確保することができる。また、 III族原料中の有機成分を気化させて、基板上から除 去でき、有機成分が膜に混入するのを防止できる。
[0013] 前記基板温度の下限は、前記 III族原料用の金属化合物の熱分解温度に応じて設 定するのが好ましい。
前記金属化合物が TMGである場合、基板温度の下限は、 300°C程度に設定可能 である。この下限温度近くでは GaNの多結晶やアモルファスを得ることができる。 Ga Nのェピタキシャル結晶を得るには、基板温度を約 400°C以上にするのが好ましぐ 450乃至 500°C以上にするのがより好まし!/、。
[0014] TEG、 QUG、 1-MPGは、 TMGより 100°C程度低くても熱分解可能であることが知 られている。したがって、前記金属化合物が、 TEG、 QUG、 1-MPGである場合、基 板温度の下限は、 GaNの多結晶やアモルファスを得るのであれば 200°C程度、 Ga Nのェピタキシャル結晶を得るのであれば 300°C程度に設定可能である。好ましくは 、 TEGの場合、基板温度を 350乃至 450°C以上にする。 QUGについては発明者ら の実験(雰囲気圧: 2 X 10E_8Torr、供給圧: 5 X 10E"5)により約 200〜300。Cで G aに分解されることが確認済みである。 1- MPGの場合、類似材料である 1- MPAに関 する文献 (ULVAC TECHNICAL JOURNAL No.59 2003 P.25)に鑑みると、基板温度 の下限を 150乃至 250°Cに設定可能である。
[0015] 成膜処理は、窒素雰囲気下で行なうのが好ましぐ純窒素 (不可避的不純物を含む )雰囲気下で行なうのがより好ましい。前記雰囲気としての窒素濃度は、 99. 9vol% 以上であるのが好ましい。 [0016] 前記雰囲気の圧力は、窒素等の大気圧プラズマの得られる範囲で適宜設定可能 であり、 40〜: LOOkPaの範囲で設定するのが好ましい。この大気圧近傍の窒素等の 雰囲気下で一対の電極間に電圧を印加するのが好ま 、。
[0017] 電極構造は、平行平板電極が好ま ヽ。プラズマ照射方式は、基板を一対の電極 間の放電空間の内部に直接配置するダイレクト方式であってもよぐ基板を放電空間 の外部に配置し、放電空間で生成したプラズマガスを基板に吹き付けるリモート方式 であってもよい。
[0018] 投入電圧は、窒素等によって電極間で安定な放電が立つ大きさであればよい。例 えば、窒素雰囲気圧が 40kPa程度の場合、 Vpp = 300〜1000V程度が相応しい。 周波数は、例えば 10〜30kHzである。電圧波形は、例えばバイポーラノルスであ る力 これに限定されるものではない。
一対の電極間の距離は、これら電極間で大気圧プラズマ放電が形成されるような大 きさとし、 0.数 mm〜数 mm程度の範囲で設定する。
ダイレクト方式において一方の電極の基板対向面と基板との間の隙間の厚さは、好 ましくは 0. l〜5mmであり、より好ましくは 0. 5mm程度である。
発明の効果
[0019] 本発明によれば、大気圧近傍の窒素プラズマを用い、サファイアなどの基板に Ga Nなどの III族窒化物を成長させることができる。 V/III比を十分に大きくでき、反応レー トを高めることができる。基板温度は従来のアンモニアを用いる場合と比べ低温ィ匕す ることができ、基板材料の選択範囲を広げることができ、ひいては III族窒化物半導体 の応用範囲を広げることができる。大掛かりな除害設備や高真空装置も不要で設備 の簡素化を図ることができる。
図面の簡単な説明
[0020] [図 1]本発明の実施形態に係る大気圧窒素プラズマ CVD装置の回路構成図である
[図 2]実施例 1の試料の ω— 2 0スキャン回折図である。
[図 3]実施例 1の試料の pole figure法による解析図である。
[図 4]参考実験 1 1による放電空間の発光のスペクトル図である。 [図 5]参考実験 1 2による放電空間からの発光のスペクトル図である。
[図 6]実施例 2の試料の 2次元 X線回折画像である。
[図 7]実施例 2の試料のフォトルミネセンススペクトル図である。図中の「@」以下の表 示は測定温度を示す。
[図 8]実施例 2の試料の力ソードミネセンススペクトル図であり、(a)は、上記試料の膜 厚の大きい箇所における室温及び 20Kの温度下での測定結果を示したものであり、 (b)は、上記膜厚の大きい箇所とそれより膜厚が小さい箇所での室温下における測 定結果を比較して示したものであり、(c)は、上記膜厚が小さい箇所での測定温度ご との測定結果を示したものである。
[図 9]実施例 2の試料の断面 TEM写真であり、 (a)はスケールを相対的に大きくした ものであり、 (b)はスケールを相対的に小さくしたものである。
[図 10]実施例 2の試料の図 9とは異なる箇所の断面 TEM写真である。
[図 11]実施例 2の X線回折写真であり、それぞれ (a)は図 10の a地点、(b)は図 10の b地点、(c)は図 10の c地点、(d)は図 10の d地点を撮影したものである。
圆 12]参考実験 2による窒素プラズマ照射後のサファイア基板上の各場所に対する 半値幅( ωロッキングカーブ)を示すグラフである。
[図 13]実施例 3において基板温度 400°Cで成膜処理した試料の極点図形を示す写 真である。
[図 14]図 13の試料の光透過性の測定結果を示すグラフである。
[図 15]実施例 3において基板温度 350°Cで成膜処理した試料の ω— 2 0スキャン回 折図である。
[図 16]図 15の試料の 2次元 X線回折画像である。
[図 17] (a)は、参考実験 3— 1において、安定放電の得られる下限の印加電圧を、基 板温度及びプロセスガスを変えて測定した結果を示すグラフであり、(b)は、(a)の下 限電圧における供給電流を示すグラフである。
[図 18]参考実験 3—1における放電空間からの発光のスペクトル図である。
[図 19]参考実験 3— 2の結果を示し、(a)は、基板温度を 500°Cとし、プロセスガスを プラズマ化せずに基板に吹き付けた場合の基板表面の顕微鏡写真であり、(b)は、( a)において基板温度を 650°Cとした場合の顕微鏡写真であり、(c)は、(b)と同じ試 料の 2次元 X線回折画像である。
符号の説明
10 成膜装置
11 リアクタ
11a 電極間の放電空間
12 チャンバ
13 上側のホット電極
14 下側のアース電極
15 ヒータ
20 ガス供給系
21 Nタンク
2
22 N供給路
2
23 メインマスフローコントローラ(メイン MFC)
V22 開閉弁
24 キャリア供給路
25 キャリアマスフローコントローラ(キャリア MFC)
V24 開閉弁
26 恒温槽
27 TMG添加路
V27 開閉弁
28 N供給路と TMG添加路との合流部
2
29 共通供給路
V29 開度調節弁
30 電源
41 排出路
V41 開度調節弁
40 ロータリーポンプ 42 パージ路
43 排気路
44 ターボモレキュラーポンプ
V42 開閉弁
50 分光分析器
90 サファイア基板
発明を実施するための最良の形態
[0022] 本発明は、基板に GaN、 AlGaN、 A1N、 InN等の III族窒化物を CVD成膜するの に適用される。
この実施形態では、 c面サファイア又は a面サファイア (Al O )からなる基板に GaN
2 3
の成膜を行なうものとする。
[0023] V族原料には、 Nを用いる。
2
[0024] III族原料としては、例えば TMGを用いる。
V/III比は 10〜: LOOOOOの範囲で選択する。
[0025] V族原料の Nに III族原料の TMGを上記 V/III比で規定される量だけ添加する。添
2
加手段は、 Nによるパブリングを用いることができる。添カ卩によって得られた Nと TM
2 2
Gの混合ガスカゝらなるプロセスガスをプラズマ空間に導入する。これにより、 Nが分解
2 され Nラジカル等が得られる。また、 Nだけでなく TMGも分解し、 Gaラジカル、 Gaィ
2
オン等の活性種が生成するものと推察される。これら活性種を含むプラズマガスがサ ファイア基板に接触する。これにより、 GaN層を成長させることができる。
以下、詳述する。
[0026] 図 1は、本発明方法を実施するダイレクト方式の大気圧窒素プラズマ CVD装置 10 の一例を示したものである。 CVD装置 10は、リアクタ 11と、このリアクタ 11に反応ガ スを供給するガス供給系 20とを備えている。
[0027] リアクタ 11は、チャンバ 12と、一対の電極 13, 14と、ヒータ 15を有している。チャン ノ 12内の空間 11aは、純窒素ガス(N )で満たされている。チャンバ 12内の窒素圧
2
は、 40kPa程度に設定されている。
[0028] チャンバ 12の内部に一対の電極 13, 14とヒータ 15が収容されている。 一対の電極 13, 14は、互いに上下に対向し、平行平板電極を構成している。上側 の電極 13は、電源 30に接続され、ホット電極を構成している。下側の電極 14は、電 気的に接地され、アース電極を構成している。ホット電極 13の下面及びアース電極 1 4の上面には、それぞれ固体誘電体層(図示せず)が設けられている。固体誘電体層 の厚さは、 1mm程度が好ましい。固体誘電体層は、少なくとも一方の電極に設けて あればよい。
[0029] 電源 30は、バイポーラパルス波形の電圧を Vpp = 500V、周波数 30kHz程度で出 力するようになっている。電源 30の電圧波形、電圧、周波数等は、上記に限定される ものでなぐ適宜設定変更することができる。
電源 30からホット電極 13への電圧供給により、一対の電極 13, 14間に電界が印 加され、電極間空間 11aが放電空間となる。
[0030] アース電極 14の上面の中央部に、処理対象の c面サファイア又は a面サファイアか らなる基板 90が配置されるようになっている。アース電極 14は、基板載置台を兼ねて いる。
[0031] 上下の電極 13, 14の固体誘電体層の表面間のギャップは、例えば lmmであり、 基板 90の厚さは、例えば 0. 5mmであり、ホット電極 13の固体誘電体層の下面と基 板 90の上面との間のギャップは、例えば 0. 5mmである。上記の寸法は適宜変更す ることがでさる。
アース電極 14の上面に基板 90を収容する浅 、凹部を形成してもよ!/、。
[0032] アース電極 14の下側にヒータ 15が配置されている。アース電極 14の内部にヒータ 15を埋め込んでもよい。ヒータ 15によってアース電極 14が加熱され、このアース電 極 14を介して基板 90が加熱されるようになっている。基板 90の加熱温度は、 650°C 程度が好ましい。
[0033] リアクタ 11へのガス供給系 20は、次のように構成されている。
V族原料の Nタンク 21から N供給路 22が延びている。 N供給路 22には、メインマ
2 2 2
スフローコントローラ 23 (以下「メイン MFC」 t 、う)と開閉弁 V22が上流側力も順次設 けられている。
[0034] メイン MFC23より上流側の N供給路 22からキャリア供給路 24が分岐されている。 キャリア供給路 24には、キャリアマスフローコントローラ 25 (以下「キャリア MFC」 t\ヽ う)と開閉弁 V24が上流側力も順次設けられている。キャリア供給路 24の下流端は、 恒温槽 26の内部に挿入され、そこで開口されている。
[0035] 恒温槽 26には III族原料の TMGが蓄えられている。恒温槽 26は、 TMGの温度を 例えば 0°Cに保っている。ちなみに、 TMGの大気圧での沸点は 55. 7°Cであり、融 点は一 15. 9°Cである。恒温槽 26内の 0°Cの TMGは液相になっている。この恒温槽 26内の TMGの液面より下にキャリア供給路 24の下流端開口が位置している。
[0036] 恒温槽 26の TMGの液面より上から TMG添カ卩路 27が延びている。 TMG添カ卩路 2 7には開閉弁 V27が設けられている。 TMG添加路 27の下流端は、開閉弁 V22より 下流の N供給路 22に合流されている。
2
[0037] N供給路 22と TMG添加路 27との合流部 28から共通供給路 29が延びている。共
2
通供給路 29には開度調節弁 V29が設けられている。共通供給路 29の下流端は、リ ァクタ 11のチャンバ 12内に挿入され、電極間空間 11aの一端部に臨むように開口さ れている。
[0038] 電極間空間 11aの他端部力 排出路 41が延びている。排出路 41には開度調節弁 V41が設けられている。排出路 41の下流端にロータリーポンプ 40が接続されている また、上記合流部 28からパージ路 42が延び、ロータリーポンプ 40に接続されてい る。
さらに、リアクタ 11のチャンバ 12から排気路 43が延び、ターボモレキュラーポンプ 4 4を介してロータリーポンプ 40に接続されて!、る。
[0039] 上記構成の大気圧窒素プラズマ CVD装置 10は、次のように使用される。
予め、パージ路 42を開いてガス供給系 20内をパージしておく。パージ操作後、開 閉弁 V42でパージ路 42を閉じる。
また、リアクタ 11のチャンバ 12内の空気をターボモレキュラーポンプ 44で排気し、 代わりに Nタンク 21から Nをチャンバ 12内に供給し、チャンバ 12内を純窒素で満た
2 2
す。このチャンバ 12内の窒素圧を大気圧近傍の 40kPaに維持する。
したがって、高真空にする必要がなぐ大掛力りな真空設備は不要である。 [0040] アース電極 14の中央部にはサファイア基板 90をセットする。この基板 90をヒータ 1
5に つて 650oC〖こカロ する。
[0041] 次いで、 Nタンク 21から Nを N供給路 22に流す。 Nの一部はキャリア供給路 24
2 2 2 2
に分流させる。そして、メイン MFC23で N供給路 22の N流量を調節し、キャリア M
2 2
FC25でキャリア供給路 24の N流量を調節する。 N供給路 22の N流量 (キャリア供
2 2 2
給路 24への分流分を除く。)は、例えば 200〜500sccmであり、キャリア供給路 24 の N流量は、例えば 0. 5〜: Lsccmである。
2
[0042] キャリア供給路 24の Nは、恒温槽 26の液相 TMGの内部に吹出される。これにより
2
、 TMGがバブリングされて気化される。 TMGの気化量は、キャリア供給路 24の N流
2 量に依存する。 TMGは、恒温槽 26で 0°Cに冷却されているのでパブリング以外の蒸 発量をほとんど無視でき、気化量を正確にコントロールすることができる。
[0043] 気化した TMGは、キャリアの Nと共に TMG供給路 27を経て N供給路 22の Nと
2 2 2 合流する。これにより、 Nに所定の微量の TMGを添カ卩してなるプロセスガスが出来
2
る。このプロセスガスが、共通供給路 29を経て、リアクタ 11の電極間空間 11aに導入 される。
[0044] 上記のガス供給操作と併行して、電源 30を駆動し、一対の電極 13, 14間に電界を 印加する。これにより、電極 13, 14間に大気圧グロ一放電が立ち、電極間空間 11a が放電空間になる。この放電空間 11aにおいてプロセスガス中の Nが分解され、窒
2
素プラズマが形成される。 TMGも分解するものと推察される。
[0045] この電極間空間 11aのプラズマガスがサファイア基板 90と接触することにより、サフ アイァ基板 90の表面に GaNの層を形成することができる。
[0046] し力も、サファイア基板 90と GaN層との界面には、 AlGaNの薄い層を形成できる。
この AlGaN層の上に上記 GaN層が積層される。 AlGaN中の A1は、サファイア基板 力も提供されたものと推察される。したがって、 AlGaN層を形成するためにプロセス ガスに A1源を別途混入させておく必要はない。
[0047] 成長膜成分が AlGaNから GaNに変わる前に成膜処理を停止することにすれば、 A
IGaN層のみを形成することができる。その後、別のプロセスにより、 AlGaN層の上に
GaNとは異なる成分の膜を積層することができる。 [0048] 大気圧近傍の窒素プラズマを用いて 、るので、反応場での V/III比を大きくでき、反 応レートを稼ぐことができる。
サファイア基板 90は、アース電極 14の中央部に配置されており、そこでは電界の 乱れがほとんど無ぐプラズマ状態が安定し、かつ均一になっている。これによつて、
GaNの膜質を均一にすることができる。
[0049] ヒータ 15による基板 90の加熱によって、反応レートを一層高めることができるととも に、 TMGのメチル基に起因する有機化合物を気化させることができ、膜に有機化合 物が混入するのを防止することができる。この有機化合物を含む処理済みのガスは、 電極間空間 11aから排出路 41に吸込まれ、排出される。
[0050] 基板 90の加熱温度は 650°C程度で済む。この基板温度は、従来のアンモニアを用 いた成膜方法における 1000°Cと比べると相当に低温であり、高温設備を簡素化でき る。除害設備も不要である。また、耐熱性が低い基板にも適用可能であり、基板の選 択範囲を広げることができる。フレキシブルフィルムなどの高分子材料力もなる基板 などにも適用可能性が広がる。
[0051] 大気圧窒素プラズマ CVD装置 10によれば、メイン MFC23によって N供給路 22
2 の N流量を調節でき、キャリア MFC25によってキャリア供給路 24の N流量ひいて
2 2 は TMGの添力卩量を調節できる。したがって、 2つの MFC23, 25によってサファイア 基板 90上での V/III比を調節することができ、これにより、 GaNの結晶構造を選択す ることがでさる。
すなわち、サファイア基板 90上での V/III比が 10000〜100000程度になるように すると、 GaNをェピタキシャル成長させることができる。 V/III比を 10〜: L000程度にな るようにすると、多結晶の GaNを得ることができる。
ェピタキシャル結晶を得るには反応時の基板温度を約 400°C以上、多結晶を得る には約 300°C以上とするのが好ましい。
[0052] 本発明は、上記実施形態に限定されるものではない。
基板として、 c面又は a面サファイアに代えて、 ZnO、 SiC、 GaAs等を用いることにし てもよい。得ようとする膜に対する格子の不整合性が小さいものが基板として適して いる。格子不整合率は小さいほうが好ましぐ例えば 0〜20%程度である。ちなみに GaNに対する c面サファイアの格子不整合率は 16%である。
[0053] Ga原料として、 TMGに代えて、 TEG、 QUG、 1-MPGを用いてもよぐその他、 T CG、 DMEGAなどを用いてもよい。
TEG、 QUG、 l-MPGを用いる場合、基板温度範囲の下限を TMGより 100°C程 度低くすることができる。すなわち、ェピタキシャル結晶を得る場合、基板温度を約 3 00°C以上とすることができ、多結晶を得る場合、基板温度を約 200°C以上とすること ができる。
[0054] プロセスガス(N +TMG)が放電空間 1 laの一端部からサファイア基板 90の在る
2
中央部まで流れる間に TMGが消費される場合、この消費量を見込んで、基板 90上 でちようど所望の V/III比になるようにイニシャルの V/III比を調節することにしてもよい プロセスガス (N +TMG)が放電空間 11aに導入されてカゝら基板 90上に達するま
2
での距離を調節することにより、基板 90上でちょうど所望の V/III比になるようにしても よい。
放電空間 11aでのガス流れを制御することにより、 V/III比が基板 90上のどの場所 でも略一定になるように調節してもよ 、。
V/III比が所望範囲になる場所以外の場所では基板 90上にマスクをすることにして ちょい。
[0055] Nと TMGは、予め混合して電極間に導入するのに代えて、互いに別経路で電極
2
間に導人することにしてちょい。
プラズマ照射構造として、基板をプラズマ空間の外部に配置する所謂リモート方式 を採用してもよぐその場合、 Nのみを電極間に通して基材に吹き付けるとともに、別
2
途、 TMGを基材に吹き付けることにしてもよい。
実施例 1
[0056] 実施例を説明する。本発明が、この実施形態に限定されるものでないことは言うま でもない。
図 1の装置 10を用い、下記の条件で成膜処理を行なった、
N供給路 22の N流量: 300sccm キャリア供給路 24の N流量: lsccm
2
基板: C面サファイア
基板温度: 650°C
処理圧力: 40kPa
電圧形態: バイポーラパルス波
投入電圧: Vpp = 500V
周波数: 30kHz
成長時間: 30min
[0057] この実施例 1の処理で得た試料を、 X線回折法の ω— 2 0スキャンにより解析したと ころ、図 2に示すように、 GaNの 0002面からの回折が確認された。また、上記試料を pole figure法により解析したところ、図 3に示すように、 GaN単結晶のへキサゴナル 構造に由来する 6回対称が確認された。以上から、サファイア基板上に GaN膜が 00 01方向にェピタキシャル成長して ヽることが確認された。
[0058] [参考実験 1 1]
図 1の装置 10において、電極間空間 11aからの発光を分光分析器 50で分析した。 基板温度 (Tsub)は 650°Cとし、窒素のみを電極間空間 11aに供給した。その結果、 図 4に示すように、窒素の 2ndポジティブシステムに起因するピークが現れ、窒素プラ ズマの生成が確認された。大気圧プラズマであるため、主なピークは、減圧プラズマ の場合(414nm = 2. 997eV)より高エネルギー側である 337nm以下の 2ndポジテ イブ領域に現れることが確認された。
同図において破線枠で囲む挿入図は、波長 350〜400nmの部分を拡大したもの であり、膜へのダメージの原因となるイオン種のピーク(390nm)は確認されなかった
[0059] [参考実験 1 2]
さらに、別の分光分析器を用い、電極間空間 11aからの発光を下記の条件下で分 祈した。
処理圧力(窒素雰囲気圧) :40kPa± 2kPa
供給ガス: 窒素のみ、 400sccm 基板温度: 室温
結果を図 5に示す。同図左下に拡大して示すように、窒素イオンに対応する波長 39 lnmではピークが現れず、窒素イオンは確認されな力つた。一方、同図右下に拡大 して示すように、窒素ラジカルに対応する波長 822nmにはピークが出ており、窒素ラ ジカルの存在が確認された。
実施例 2
[0060] 実施例 2として、図 1と同様の構成の装置を用い、下記の条件下で成膜処理を行な つた o
N供給路 22の N流量: 400sccm
2 2
キャリア供給路 24の N流量: 0. 5ccm
2
基板: C面サファイア
基板温度: 650°C
処理圧力: 40kPa± 2kPa
周波数: 30kHz
成長時間: 30min
[0061] 図 6は、実施例 2の処理で得られた試料の 2次元 X線回折画像を示したものである。
中心の白点は c面サファイアの像である。その右側にェピタキシャル GaNを示す像 が確認された。
[0062] また、実施例 2で得た試料のフォトルミネセンススペクトルを測定した。測定条件は 以下の通りである。
励起光源: HeCdレーザー(325nm)
フィルター: 370nm
レーザパワー: 3mW 測定波長: 350ηπ!〜 700nm
測定温度: 5K〜300Kの範囲で 10点
図 7に示すように、 GaNのバンド端の発光が確認された。このバンド端の発光は、室 温条件でも確認できた。測定温度が低温になるほど、スペクトルがよりシャープになつ [0063] さらに、 c面サファイア基板と GaN層との界面には、 AlGaNと推定される層が確認さ れた。
図 8は、実施例 2の試料の力ソードルミネセンススペクトルを示したものである。ビー ムエネルギーは 5keVとした。同図(a)に示すように、極低温(@ 20K)の測定温度下 では、 GaNのバンド端に対応する 3. 4eV付近に鋭いピークが現れた。一方、測定温 度が室温(@R. T. )になるとピークが 3. 7eV付近にシフトした。これは、膜の深い箇 所の GaNとは異なる物質力もの発光の影響によるものである。この物質は、その発光 エネルギー等から AlGaNと推定される。
[0064] 図 8 (b)の下側のスペクトルは、同図(a)の室温下でのピーク周辺を拡大したもので ある。さらに、上記試料における上記 (a)の測定ポイントより膜厚の薄いポイントにつ V、て室温下で力ソードルミネセンス測定を行なったところ、同図(b)の上側のスぺタト ルに示すように、ピークがさらに高エネルギー側へ少しシフトした。膜厚の薄いポイン トでは、上記 AlGaNの発光がより支配的になると考えられる。
[0065] 測定ポイントを上記膜厚の薄いポイントに固定する一方、測定温度を変化させなが ら、力ソードルミネセンス測定を行なった。その結果、図 8 (c)に示すように、測定温度 が低温になるにしたがって、 AlGaNのドナーァクセプタ対とドナー束縛励起子とのピ ーク分離が確認された。
[0066] 力ソードルミネセンスは、フォトルミネセンスより進入深さが大きぐ深部の AlGaN層 の解析に適している。一方、フォトルミネセンスは、 AlGaN層に影響されることなく表 層の GaN層のみを解析するのに適している。
[0067] さらに、上記試料の断面を透過型電子顕微鏡にて観察した。その結果、図 9 (a)及 び (b)に示すように、サファイア基板と GaN膜との間に、 AlGaNと考えられる黒色の 界面層が確認された。界面層の厚さは、約 2〜3nmであった。
[0068] さらに、上記試料の X線回折像(図 11)を撮影した。図 10に示すように、撮影ポイン トは、サファイア基板と GaN膜の界面を挟んで両側に跨る線上の複数箇所 a〜dとし た。なお、図 10において、サファイア基板と GaN膜の界面は、右上がりの対角線状を なしている。この界面上に撮影ポイント bがほぼ位置している。界面より上側 (撮影ボイ ント aの側)が GaN膜であり、下側 (撮影ポイント c, dの側)がサファイア基板である。 [0069] 図 11 (a)は、撮影ポイント aの回折写真であり、同図(b)は、撮影ポイント bの回折写 真であり、同図(c)は、撮影ポイント cの回折写真であり、同図(d)は、撮影ポイント dの 回折写真である。撮影ポイント aでは単結晶の回折像が得られ、 GaNがェピタキシャ ル成長して ヽることが確認された。撮影ポイント bの回折像は撮影ポイント aとは異なつ ており、これにより、界面層には GaNとは異なる結晶が生成されることが確認された。 この界面結晶が AlGaNであると推定される。
[0070] サファイア基板内における界面に近い側の撮影ポイント cでは、そこより深い撮影ポ イント dより像が少しぼやけており、結晶性が低下していることが確認された。これは、 GaN成膜時にプラズマに晒されたためと考えられる。
[0071] 〔参考実験 2〕
参考として、窒素のみを電極間空間 11aに導入して窒素プラズマを生成した。この 窒素プラズマをサファイア基板の中央部に直接照射した。その後、サファイア基板の ωロッキングカーブを測定した。
[0072] 結果を図 12に示す。同図の斜線部は、基板の中央部の窒素プラズマに直接晒さ れた領域すなわちダイレクトプラズマ領域であり、斜線部より左右外側はプラズマが 直接当たらないリモートプラズマ領域である。ダイレクトプラズマ領域では、リモートプ ラズマ領域よりも半値幅が大きくなり、結晶性が低下していることが確認された。 この結晶性低下と引き換えに、サファイア基板中の A1が界面の AlGaN層生成に寄 与するものと考えられる。
実施例 3
[0073] 実施例 3では、基板温度を上記実施例 1及び実施例 2 (650°C)より低 、400°Cに 設定し、成膜処理を行なった。その他の処理条件は以下の通りである。
処理圧力: 40kPa± 2kPa
N供給路 22の N流量: 400sccm
2 2
キャリア供給路 24の N流量: 0. 5ccm
2
成長時間: 30min
基板: c面サファイア
[0074] 図 13は、上記の処理で得られた試料の極点図形を示したものである。 650°Cの場 合(図 3)と比べると鮮明度にやや偏りがあるものの、 6回対称が現れていた。同試料 の光透過性を測定したところ、図 14に示すように、 GaNェピタキシャルのバンド端( 波長 360nm)付近に、なだらかな勾配が見られた。
これにより、基板温度 400°Cにおいても、 GaNをェピタキシャル成長させ得ることが 確認された。結晶性の点では、基板温度を 650°C程度にしたほうがよいことが確認さ れた。
[0075] また、基板温度を 350°Cとし、その他は上記 400°Cの場合と同じ処理条件で成膜 処理を行った。処理後の基板を ω - 2 Θスキャンしたところ、図 15に示すように、基板 温度 650°Cの場合(図 2)より鈍いながらも、 GaNの 0002面からの回折ピークが現れ た。また、 2次元 X線回折像を撮影したところ、図 16に示すように、基板温度 650°Cの 場合(図 6)と比べ不鮮明ながらも、 GaN結晶の像が現れた。
これにより、基板温度 350°C程度でも、 GaNを成膜可能であることが確認された。
[0076] 〔参考実験 3— 1〕
参考として、基板温度と印加電圧と電流との関係を測定した。測定条件は、下記の 通りである。
処理圧力(窒素雰囲気圧) :40kPa± 2kPa
N供給路 22の N流量: 400sccm
2 2
基板: C面サファイア
キャリア供給路 24の N流量は 0. 5sccmと Osccmとの 2通りとした。 0. 5sccmのとき
2
、プラズマ空間 11aに導入されるプロセスガスは、窒素と TMGの混合ガス(N +TM
2
G)になる。 Osccmのとき、プロセスガスは、窒素のみになる。
そして、電極 13, 14間の放電が安定状態となる下限の印加電圧と、上記下限の電 圧印加時における電極 13への供給電流を、基板温度ごとに測定した。
[0077] プロセスガスが窒素のみである場合、図 17 (a)に示すように、基板温度が高温であ ればあるほど、より低い印加電圧で安定放電を得ることができた。一方、図 17 (b)に 示すように、供給電流は、基板温度に関わらずほぼ一定の値になった。
[0078] これに対し、プロセスガスが窒素と TMGの混合ガス(N +TMG)である場合、図 1
2
7 (a)に示すように、基板温度が常温から 300°C付近までの間は、温度上昇に伴ない 、より低い印加電圧で安定放電が得られたが、 300°C付近より高温になると、必要な 印加電圧がほぼ一定になった。また、図 17 (b)に示すように、供給電流は、基板温度 が 200〜300°C付近のとき最も小さくなり、そこから高温になるにしたがって増大した
[0079] さらに、上記放電時におけるプラズマ空間 11aからの発光分析を行なった。結果を 図 18に示す。
プロセスガスが窒素と TMGの混合ガス(N +TMG)であり、基板温度が 650°Cで
2
ある場合、波長 403nm及び 417nmにお!/、て Gaラジカルの発生が確認された。
[0080] 一方、プロセスガスが窒素と TMGの混合ガス(N +TMG)であり、基板温度が常
2
温(@R. T. )である場合、 Gaラジカルの発生を示す波長 403nm及び 417nmのピ ークはほとんど確認されなカゝつた。
その代わり、炭化窒素(CN)に対応する波長 415nm及び 419nmのピークが現れ た。プロセスガスが窒素のみの場合にはこれら波長 415nm及び 419nmのピークが 無いことに鑑みると、上記の炭化窒素が TMGの分解によるものであることは明らかで ある。
[0081] 以上より、 TMGは常温下でもプラズマによって分解され得る力 さらに Gaをラジカ ル化するには、ある程度の温度が必要であることが判明した。
温度が低 、とプラズマのエネルギーが TMGの分解でほぼ使!、尽くされ、 Gaをラジ カルイ匕するだけのエネルギー分が残らないと考えられる。これに対し、基板温度があ る程度高温になると、その熱によって TMGの分解が起き、プラズマエネルギーを Ga のラジカルィ匕に十分に振り当てることができると考えられる。
[0082] 図 17 (b)においてプロセスガスが N +TMGの場合、電流が 300°C付近で変曲点
2
を迎え、そこ力 右肩上がりになっていること力 すると、プラズマエネルギーの上記 振り当て作用は、 300°C付近より高温領域で起きているものと推察される。よって、 T MGを III族原料とする場合、基板温度の下限は約 300°Cとするのが好ましい。
TEG、 QUG、 1-MPG等は、 TMGより 100°C程度低温でも熱分解可能であるので 、これらを III族原料とするときは、基板温度の下限を 200°C付近に設定することがで きる。 [0083] [参考実験 3— 2]
電極 13, 14間への電圧印加を停止し、プロセスガス(窒素と TMGの混合ガス)を プラズマ化することなく基板に吹き付けた。そして、基板表面を観察したところ、図 19 (a)及び (b)に示すように、基板温度 500°C以上で Gaドロップレットが確認された。同 図(c)の 2次元 X線回折像に示すように、基板温度 650°Cでも GaNの生成は確認さ れなかった。
この結果、基板温度を高温にすれば TMGを熱分解可能である力 GaNを生成す るには、それだけでは足らず、窒素プラズマ等の Ga活性ィヒおよび窒化手段が必要 であることが明らかになった。
産業上の利用可能性
[0084] 本発明は、例えば、発光素子や高周波素子等の半導体素子の製造に適用可能で ある。

Claims

請求の範囲
[1] 基板に III族窒化物を成長させる方法であって、
大気圧近傍の窒素雰囲気下で一対の電極間に電界を印加することにより放電空間 を形成する工程と、
この放電空間に導入した窒素と III族金属を含む金属化合物とを、 V/III比が 10〜1 00000となるようにして前記基板に接触させる工程と、
を含むことを特徴とする m族窒化物の成膜方法。
[2] 基板に窒化ガリウムを成長させる方法であって、
大気圧近傍の窒素雰囲気下で一対の電極間に電界を印加することにより放電空間 を形成する工程と、
この放電空間に導入した窒素とガリウム含有ィ匕合物とを、 V/III比が 10〜: L00000と なるようにして前記基板に接触させる工程と、
を含むことを特徴とする窒化ガリウムの成膜方法。
[3] c面又は a面のサファイア基板に窒化ガリウムをェピタキシャル成長させる方法であ つて、
大気圧近傍の窒素雰囲気下で一対の電極間に電界を印加することにより放電空間 を形成する工程と、
前記放電空間に導入した窒素とガリウム含有ィ匕合物とを、 V/III比が 10000〜: L00 000となるようにして前記基板に接触させる工程と、
を含むことを特徴とする窒化ガリウムの成膜方法。
[4] 基板に窒化アルミニウムガリウムを成長させる方法であって、
前記基板として、アルミニウムを含むアルミニウム含有基板を用い、
大気圧近傍の窒素雰囲気下で一対の電極間に電界を印加することにより放電空間 を形成する工程と、
前記放電空間に導入した窒素とガリウム含有ィ匕合物とを、 V/III比が 10〜: L00000 となるようにして前記アルミニウム含有基板に接触させる工程と、
を含むことを特徴とする窒化アルミニウムガリウムの成膜方法。
[5] 前記アルミニウム含有基板が、サファイア基板であることを特徴とする請求項 4に記 載の成膜方法。
[6] 前記ガリウム含有化合物が、トリメチルガリウム、トリェチルガリウム、キヌクリジンガラ ン、 1-メチルピロリジンガランの群力も選択されることを特徴とする請求項 2〜5の何れ かに記載の成膜方法。
[7] 前記基板を 500〜700°Cにする工程を、さらに含むことを特徴とする請求項 1〜6 の何れかに記載の成膜方法。
[8] 前記ガリウム含有化合物が、トリメチルガリウムであり、
前記基板を 300〜700°Cにする工程を、さらに含むことを特徴とする請求項 2、 4、 又は 5に記載の成膜方法。
[9] 前記ガリウム含有化合物が、トリメチルガリウムであり、
前記基板を 400〜700°Cにする工程を、さらに含むことを特徴とする請求項 3〜5 の何れかに記載の成膜方法。
[10] 前記ガリウム含有化合物が、トリェチルガリウム、キヌタリジンガラン、又は 1-メチルビ 口リジンガランであり、
前記基板を 200〜700°Cにする工程を、さらに含むことを特徴とする請求項 2、 4、 又は 5に記載の成膜方法。
[11] 前記ガリウム含有化合物が、トリェチルガリウム、キヌタリジンガラン、又は 1-メチルビ 口リジンガランであり、
前記基板を 300〜700°Cにする工程を、さらに含むことを特徴とする請求項 3〜5 の何れかに記載の成膜方法。
[12] 前記雰囲気圧が、 40〜: LOOkPaであることを特徴とする請求項 1〜: L1の何れかに 記載の成膜方法。
PCT/JP2006/315404 2005-08-05 2006-08-03 窒化ガリウム等のiii族窒化物の成膜方法 WO2007018121A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/997,980 US20090170294A1 (en) 2005-08-05 2006-08-03 Method for film depositing group iii nitride such as gallium nitride
JP2007529531A JPWO2007018121A1 (ja) 2005-08-05 2006-08-03 窒化ガリウム等のiii族窒化物の成膜方法
EP06782264A EP1916704A4 (en) 2005-08-05 2006-08-03 METHOD FOR FORMING GROUP III NITRIDE FILMS SUCH AS GALLIUM NITRIDE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-228727 2005-08-05
JP2005228727 2005-08-05

Publications (1)

Publication Number Publication Date
WO2007018121A1 true WO2007018121A1 (ja) 2007-02-15

Family

ID=37727306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315404 WO2007018121A1 (ja) 2005-08-05 2006-08-03 窒化ガリウム等のiii族窒化物の成膜方法

Country Status (7)

Country Link
US (1) US20090170294A1 (ja)
EP (1) EP1916704A4 (ja)
JP (1) JPWO2007018121A1 (ja)
KR (1) KR20080034022A (ja)
CN (1) CN100589229C (ja)
TW (1) TW200709281A (ja)
WO (1) WO2007018121A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111401A1 (ja) * 2007-03-14 2008-09-18 Sekisui Chemical Co., Ltd. 窒化ガリウム等のiii族窒化物の成膜方法
US8815709B2 (en) 2008-10-03 2014-08-26 Veeco Instruments Inc. Chemical vapor deposition with energy input
JP2017108126A (ja) * 2015-11-27 2017-06-15 国立大学法人名古屋大学 Iii 族窒化物半導体装置の製造方法および半導体ウエハの製造方法
JP2020011461A (ja) * 2018-07-19 2020-01-23 サカタインクス株式会社 プラズマ処理立体造形装置
WO2022191245A1 (ja) * 2021-03-11 2022-09-15 株式会社Screenホールディングス Iii族窒化物半導体の製造方法および製造装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100006023A1 (en) * 2008-07-11 2010-01-14 Palo Alto Research Center Incorporated Method For Preparing Films And Devices Under High Nitrogen Chemical Potential
TW201250017A (en) * 2011-06-08 2012-12-16 Ind Tech Res Inst Method and apparatus for depositing selenium thin-film and plasma head thereof
CN104561940A (zh) * 2014-12-24 2015-04-29 苏州矩阵光电有限公司 等离子体辅助的金属有机物化学气相沉积设备及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09213998A (ja) * 1996-01-30 1997-08-15 Kyocera Corp 窒化物半導体単結晶薄膜の成長方法及び同装置
JPH11217673A (ja) * 1997-11-28 1999-08-10 Japan Pionics Co Ltd 窒化膜の製造方法
JP2000232256A (ja) * 1999-02-09 2000-08-22 Fuji Xerox Co Ltd 半導体素子及び半導体素子の製造方法
JP2002029896A (ja) * 2000-07-05 2002-01-29 National Institute Of Advanced Industrial & Technology 窒化物半導体の結晶成長方法
WO2003083950A1 (en) * 2002-03-25 2003-10-09 Cree, Inc. Doped group iii-v nitride materials, and microelectronic devices and device precursor structures comprising same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5433169A (en) * 1990-10-25 1995-07-18 Nichia Chemical Industries, Ltd. Method of depositing a gallium nitride-based III-V group compound semiconductor crystal layer
US5334277A (en) * 1990-10-25 1994-08-02 Nichia Kagaky Kogyo K.K. Method of vapor-growing semiconductor crystal and apparatus for vapor-growing the same
US6106898A (en) * 1997-11-28 2000-08-22 Japan Pionics, Co., Ltd. Process for preparing nitride film
JP2000109979A (ja) * 1998-10-05 2000-04-18 Tokujiro Okui 直流アーク放電プラズマによる表面処理方法
US6306739B1 (en) * 1999-04-27 2001-10-23 The United States Of America As Represented By The Secretary Of The Air Force Method and apparatus for depositing thin films of group III nitrides and other films and devices made therefrom
US6562124B1 (en) * 1999-06-02 2003-05-13 Technologies And Devices International, Inc. Method of manufacturing GaN ingots
JP2001217193A (ja) * 2000-02-01 2001-08-10 Namiki Precision Jewel Co Ltd AlNバッファ層の作成方法、AlNバッファ層、GaN単結晶膜の作成方法およびGaN単結晶膜
JP4624991B2 (ja) * 2004-03-26 2011-02-02 積水化学工業株式会社 酸窒化膜の形成方法、及び形成装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09213998A (ja) * 1996-01-30 1997-08-15 Kyocera Corp 窒化物半導体単結晶薄膜の成長方法及び同装置
JPH11217673A (ja) * 1997-11-28 1999-08-10 Japan Pionics Co Ltd 窒化膜の製造方法
JP2000232256A (ja) * 1999-02-09 2000-08-22 Fuji Xerox Co Ltd 半導体素子及び半導体素子の製造方法
JP2002029896A (ja) * 2000-07-05 2002-01-29 National Institute Of Advanced Industrial & Technology 窒化物半導体の結晶成長方法
WO2003083950A1 (en) * 2002-03-25 2003-10-09 Cree, Inc. Doped group iii-v nitride materials, and microelectronic devices and device precursor structures comprising same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1916704A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111401A1 (ja) * 2007-03-14 2008-09-18 Sekisui Chemical Co., Ltd. 窒化ガリウム等のiii族窒化物の成膜方法
JP2008255471A (ja) * 2007-03-14 2008-10-23 Sekisui Chem Co Ltd 窒化ガリウム等のiii族窒化物の成膜方法
US8815709B2 (en) 2008-10-03 2014-08-26 Veeco Instruments Inc. Chemical vapor deposition with energy input
JP2017108126A (ja) * 2015-11-27 2017-06-15 国立大学法人名古屋大学 Iii 族窒化物半導体装置の製造方法および半導体ウエハの製造方法
JP2020011461A (ja) * 2018-07-19 2020-01-23 サカタインクス株式会社 プラズマ処理立体造形装置
JP7097767B2 (ja) 2018-07-19 2022-07-08 サカタインクス株式会社 プラズマ処理立体造形装置
WO2022191245A1 (ja) * 2021-03-11 2022-09-15 株式会社Screenホールディングス Iii族窒化物半導体の製造方法および製造装置

Also Published As

Publication number Publication date
EP1916704A4 (en) 2011-06-08
CN101233602A (zh) 2008-07-30
CN100589229C (zh) 2010-02-10
KR20080034022A (ko) 2008-04-17
JPWO2007018121A1 (ja) 2009-02-19
TWI308365B (ja) 2009-04-01
US20090170294A1 (en) 2009-07-02
TW200709281A (en) 2007-03-01
EP1916704A1 (en) 2008-04-30

Similar Documents

Publication Publication Date Title
RU2462786C2 (ru) Способ и установка для эпитаксиального выращивания полупроводников типа iii-v, устройство генерации низкотемпературной плазмы высокой плотности, эпитаксиальный слой нитрида металла, эпитаксиальная гетероструктура нитрида металла и полупроводник
US8482104B2 (en) Method for growth of indium-containing nitride films
US11574809B2 (en) Nitride semiconductor template and nitride semiconductor device
WO2007018121A1 (ja) 窒化ガリウム等のiii族窒化物の成膜方法
US7727333B1 (en) HVPE apparatus and methods for growth of indium containing materials and materials and structures grown thereby
JP2021511440A (ja) グラフェン層構造体の製造方法
KR102211304B1 (ko) 질화갈륨 박막의 제조 방법
US20130005118A1 (en) Formation of iii-v materials using mocvd with chlorine cleans operations
US20060189019A1 (en) Growth process of a crystalline gallium nitride based compound and semiconductor device including gallium nitride based compound
JP2015099866A (ja) Iii族窒化物半導体装置の製造装置および製造方法ならびに半導体ウエハの製造方法
JP4428105B2 (ja) 化合物膜の製造方法および化合物半導体素子の製造方法
JP2003332234A (ja) 窒化層を有するサファイア基板およびその製造方法
JP5044860B2 (ja) 窒化ガリウム等のiii族窒化物の成膜方法
Sahar et al. The growth of AlN single layer on sapphire at low pressure using metalorganic chemical vapor deposition (MOCVD)
JP3174257B2 (ja) 窒化物系化合物半導体の製造方法
JP2006140397A (ja) 窒化物系化合物半導体製造装置
JP4768773B2 (ja) 薄膜形成装置および薄膜形成方法
EP4112788A1 (en) Nitride semiconductor substrate, semiconductor element and method for producing nitride semiconductor substrate
JP2022124009A (ja) 窒化物結晶、半導体積層物、窒化物結晶の製造方法および窒化物結晶製造装置
CN113488374A (zh) 一种氮化镓的制备方法及氮化镓基器件
KR100346015B1 (ko) 질소 공급원으로서 질소 원자-활성종을 사용하는 유기금속화학증착에 의한 iii족 금속 질화물 박막의 성장 방법
AU2012202511B2 (en) System and Process for High-Density, Low-Energy Plasma Enhanced Vapor Phase Epitaxy
Brüeckner et al. High quality GaN layers grown on slightly miscut sapphire wafers
CN116525409A (zh) 半导体层叠物和半导体层叠物的制造方法
JP2008053589A (ja) 窒化インジウム(InN)あるいは高インジウム組成を有する窒化インジウムガリウム(InGaN)エピタキシャル薄膜の形成方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680027937.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006782264

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007529531

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: KR

WWE Wipo information: entry into national phase

Ref document number: 11997980

Country of ref document: US