WO2007018048A1 - オイルテンパー線およびその製造方法 - Google Patents

オイルテンパー線およびその製造方法 Download PDF

Info

Publication number
WO2007018048A1
WO2007018048A1 PCT/JP2006/314907 JP2006314907W WO2007018048A1 WO 2007018048 A1 WO2007018048 A1 WO 2007018048A1 JP 2006314907 W JP2006314907 W JP 2006314907W WO 2007018048 A1 WO2007018048 A1 WO 2007018048A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
heating
tempering
temperature
oil tempered
Prior art date
Application number
PCT/JP2006/314907
Other languages
English (en)
French (fr)
Other versions
WO2007018048A8 (ja
Inventor
Yoshiro Fujino
Nozomu Kawabe
Takayuki Shiwaku
Norihito Yamao
Teruyuki Murai
Original Assignee
Sumitomo Electric Industries, Ltd.
Sumitomo (Sei) Steel Wire Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd., Sumitomo (Sei) Steel Wire Corp. filed Critical Sumitomo Electric Industries, Ltd.
Priority to US11/990,028 priority Critical patent/US20090293998A1/en
Priority to EP06781818.7A priority patent/EP1930458A4/en
Priority to CN2006800288972A priority patent/CN101287851B/zh
Publication of WO2007018048A1 publication Critical patent/WO2007018048A1/ja
Publication of WO2007018048A8 publication Critical patent/WO2007018048A8/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium

Definitions

  • the present invention relates to an oil tempered wire, a method for producing the same, and a spring using the oil tempered wire.
  • the present invention relates to an oil tempered wire that is provided with a good balance between fatigue strength and toughness when a steel wire is subjected to nitriding with spring-cage.
  • Patent Document 1 As technologies related to this oil temper wire, there are technologies described in Patent Document 1 and Patent Document 2.
  • Patent Document 1 relates to a steel wire for a spring.
  • an oil temper wire is used. Disclosure.
  • the crystal grain size of the prior austenite is refined, and the carbide shape in the crystal grains is made fibrous, so that the carbide has the role of reinforcing fibers and the fatigue limit is improved.
  • Patent Document 2 relates to a spring steel, and discloses an oil tempered wire that defines an appropriate chemical composition and a density of cementite-based spherical carbide of a predetermined size.
  • the strength of the spring steel is increased, and the carbide shape in the steel is controlled in the heat treatment after rolling, that is, the coarsening of the cementite carbide is prevented to ensure the coiling characteristics.
  • Patent Document 3 relates to a steel wire for a spring.
  • the ratio of 0.2% proof stress to tensile strength is 0.85% or less, so that the coiling property is reduced.
  • sag resistance can be improved by raising 0.2% resistance to 300 MPa or more after heating the oil tempered wire at 420 ° C for 20 minutes.
  • Patent Document 1 JP 2002-194496 A
  • Patent Document 2 JP 2002-180196 A
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-315968
  • the invention according to any of the above documents does not disclose an oil tempered wire that provides high fatigue strength and toughness when the steel wire is subjected to spring processing and nitriding. Absent. As demand for higher fatigue limit increases, the mainstream in recent spring manufacturing is to galvanize the steel wire after spring calorie. For this reason, it is important to improve the characteristics of the spring after nitriding!
  • the carbide shape is changed to a fibrous shape to improve the fatigue limit.
  • the carbide shape mentioned here shows the state after quenching and tempering the steel wire, not after the actual nitriding treatment by spring spring.
  • the state of carbide after nitriding is important.
  • a characteristic point is that short-time quenching and tempering are performed, and in such a manufacturing method, the toughness of the oil tempered wire after nitriding treatment can be ensured.
  • Patent Document 1 does not disclose means for dissolving the insoluble carbide.
  • the characteristic point in the manufacturing method is not only the composition of the steel material but also the increase in strength and toughness in the heat treatment after rolling.
  • Trick Surgery cannot improve the fatigue limit of the spring after nitriding.
  • Patent Document 3 the material characteristics after long-time heating and heat treatment equivalent to nitriding are disclosed.
  • the material properties after a longer heat treatment are important.
  • An important factor for increasing the fatigue limit is the absolute value of yield stress (0.2% proof stress). This point is also not specified, and it is difficult to further improve the fatigue characteristics by the technique of Patent Document 3.
  • the present invention has been made in view of the above circumstances, and one of its purposes is to provide an oil tempered wire having high fatigue strength and toughness after nitriding and a method for producing the same. It is in.
  • Another object of the present invention is to provide a spring having an oil tempered wire that has both high fatigue strength and toughness.
  • the first configuration of the oil tempered wire of the present invention is an oil tempered wire having a tempered martensite structure.
  • this oil tempered wire is subjected to nitriding treatment, the lattice constant force of the nitride layer formed on the surface of the wire is determined. 870A or more and 2.890A or less
  • the second configuration of the oil tempered wire of the present invention is an oil tempered wire having a tempered martensite structure, and the yield stress after heating at 420 ° C to 500 ° C for 2 hours.
  • the yield stress after heating for 4 hours at a temperature is equal to or greater than the yield stress after heating for 1 hour at the same temperature.
  • the spring of the present invention is a spring obtained by winding an oil tempered wire having a tempered martensite structure, and this spring has a nitrided layer formed by nitriding treatment on its surface, and the nitrided
  • the lattice constant force of the layer is 3 ⁇ 4.870 A or more and 2.890 A or less.
  • the oil tempered wire according to the first configuration of the present invention has a lattice constant after quenching and tempering. Although there is no particular difference from the conventional material in terms of austenite crystal grain size, there is a difference in the lattice constant of the nitrided layer and the size of carbide produced after the tempering process after nitriding.
  • the nitriding treatment here is gas soft nitriding treatment, and the condition is 420 ° C. or more and 500 ° C. or less. This nitriding condition corresponds to a typical nitriding condition performed after the spring cleaning. Of these nitriding conditions, temperature is the most important.
  • the holding time in the nitriding treatment is, for example, 2 to 4 hours.
  • the gas soft nitriding treatment is usually performed in a mixed atmosphere in which NH gas is added to a carburizing gas or nitrogen gas atmosphere.
  • the amount of NH gas added is, for example,
  • the nitrided layer is a hardened layer in which a carbonitride is formed on the oil tempered wire or the surface portion of the spring by the above nitriding treatment. Normally, this nitride layer has the highest hardness on the surface of the wire (spring), and the hardness decreases toward the inside.
  • the lattice constant described later is obtained by X-ray diffraction. At that time, the depth at which the X-ray reaches the sample is about 2 to 5 m. Therefore, the range of the nitrided layer where the lattice constant described below can be obtained is about 5 ⁇ m from the surface of the wire (spring) toward the inside.
  • the lattice constant of the nitride layer is 2.870A or more and 2.890A or less.
  • the maximum shear stress acts on the wire surface. Therefore, in recent years, in order to improve the surface hardness, it is common to perform nitriding after coiling.
  • elements such as Cr, V, and Mo form nitrides between a-Fe lattices. Fatigue fracture of a spring causes local and concentrated slip deformation due to externally applied repetitive stress, resulting in unevenness in the vicinity of the spring surface and failure. Nitride formed between the lattices has the effect of suppressing local slip deformation.
  • the nitride formed between the lattices increases the lattice constant of ex-Fe.
  • the present inventors have dramatically improved the fatigue limit when the lattice constant of the nitride layer is 2.870 A or more. I got the knowledge that. Therefore, the nitrided layer of the oil tempered wire (spring) after nitriding is determined to have a Fe lattice constant of 2.870 A or more. However, too much nitride formation reduces toughness and fatigue limit.
  • the upper limit of the constant was defined as 2.890 A.
  • this lattice constant is preferably 2.881 A or more and 2.890 A or less from the viewpoint of improving the fatigue limit, and a lattice constant of 2.881 A or more and 2.890 A or less is obtained.
  • the measurement of the lattice constant is performed by X-ray diffraction, it is difficult to accurately measure the lattice constant because the surfaces of the oil temper line and the spring are curved surfaces. Therefore, in the present invention, a sample in which an oil tempered wire (spring) having an appropriate length is vertically divided is manufactured, and the vertical section of the sample is nitrided to obtain the lattice constant of the nitride layer formed in the vertical section. taking measurement. Also, spring calorie! /, Na! /, The lattice constant of the nitride layer obtained by nitriding the oil temper wire, and nitriding!
  • the lattice constant of the nitrided layer obtained by force nitriding is treated as substantially unchanged.
  • the spring often undergoes shot peening after nitriding.
  • the lattice constant of the nitrided layer of the spring can be estimated by calculation using the compressive residual stress of the nitrided layer after the peak peening.
  • the strain relief annealing is performed on the spring after shot peening. Even in such a case, it is considered that the lattice constant does not substantially change before and after the strain relief annealing under the general strain relief annealing conditions.
  • the average particle size of the spherical carbide generated in the wire after the tempering process is 40 or less after nitriding.
  • Steel wire carbides include undissolved carbides during quenching heating and carbides produced and grown mainly by heat treatment after tempering.
  • the spherical carbides here are the latter.
  • Spherical carbides precipitated after the tempering process become coarse when nitriding treatment is performed after strain relief annealing after spring processing, resulting in reduced strength of the steel wire and lowering the fatigue limit. The smaller the carbide size and the greater the precipitation, the more effective the dislocations move when the external stress is strong, preventing the carbide from accumulating.
  • the average spherical carbide size after nitriding was defined as 40 or less. More preferable spherical carbide size is 30 nm or less, and further preferable spherical carbide size is 20 nm or less.
  • the average particle size of the spherical carbide is determined by the spring check, when the oil temper wire is subjected to nitriding treatment and when it is nitrided! /, Na! / It is assumed that there is virtually no change in the case of nitriding after processing. In addition, even when shear peening and strain relief annealing are sequentially performed on a spring after nitriding treatment, under the general strain relief annealing conditions, there is substantially no change in the average particle size of the spherical carbide before and after strain relief annealing. I think it is not.
  • the oil tempered wire according to the second configuration of the present invention has a yield stress after heating at 420 ° C. to 500 ° C. for 2 hours and a yield stress after heating at the same temperature for 4 hours. More than the yield stress after time heating.
  • the oil tempered wire of the present invention when the oil tempered wire of the present invention is subjected to heat treatment equivalent to nitriding treatment, that is, heat treatment at 420 ° C. to 500 ° C., the yield stress does not decrease even if the treatment time is long, and the treatment time Force Yield stress equivalent to or exceeding that of S1 hour. Therefore, when this oil temper wire is used as a spring, it can have high fatigue strength and toughness.
  • the present invention stipulates that the yield stress of 2 hours and 4 hours is compared with the yield stress of 1 hour as the standard.
  • the yield stress after heating for 2 hours is higher than the yield stress after heating at 420 ° C to 500 ° C for 1 hour, which is higher than the yield stress after heating for 2 hours at the same temperature. It is preferable that the yield stress after heating at temperature for 4 hours is higher.
  • an oil tempered wire that yields a higher yield stress as the treatment time is longer than the yield stress during the one-hour treatment the yield stress has been improved when nitriding treatment has been performed in recent years. Therefore, an oil tempered wire for a spring having further excellent fatigue strength can be obtained.
  • the oil tempered wire according to the second configuration of the present invention has the same temperature at which the tensile strength after heating at the same temperature for 2 hours is lower than the tensile strength after heating at 420 ° C. to 500 ° C. for 1 hour. It is desirable that the tensile strength after heating for 4 hours at the same temperature is lower than the tensile strength after heating for 2 hours. Having such a tendency of tensile strength makes it possible to obtain high toughness after nitriding treatment, and to prevent the growth of cracks from the fatigue fracture starting point and breakage due to inclusions.
  • the tensile strength after quenching and tempering is 2000 MPa or more and the yield stress after heating at 420 ° C to 500 ° C for 2 hours is 1700 MPa or more, or the tensile strength after quenching and tempering is 2000 MPa.
  • the yield stress after heating at 420 ° C. to 450 ° C. for 2 hours is preferably 1750 MPa or more.
  • Yield stress after heating at a temperature equivalent to nitriding, that is, 420 ° C to 500 ° C, is 1700 N / mm 2 or more! /
  • Yield stress after heating at 420 ° C to 450 ° C is 1750 N / mm If it was 2 or more, the fatigue limit was greatly improved.
  • the drawing power after heating for 2 hours at 420 ° C to 500 ° C is 35% or more. If the matrix toughness after nitriding is high, it is possible to prevent crack propagation from the fatigue fracture starting point and breakage due to inclusions, and improve the fatigue limit.
  • the oil tempered wire or spring of the present invention contains, in mass%, 0.50 to 0.75%, Si: 1.50 to 2.50%, Mn: 0.20 to 1.00%, Cr: 0.70 to 2.20%, V: 0.05 to 0.50%, The balance is preferably composed of Fe and inevitable impurities.
  • Co 0.02 to 1.00% by mass May be.
  • C is an important element that determines the strength of steel. If less than 0.50%, sufficient strength cannot be obtained, and if it exceeds 0.75%, the toughness is impaired.
  • Si is used as a deoxidizer during dissolution.
  • it has the effect of improving the heat resistance by solid solution in ferrite, and preventing the decrease in hardness inside the wire due to heat treatment such as nitriding after strain relief annealing after spring caging.
  • heat treatment such as nitriding after strain relief annealing after spring caging.
  • 1.5% or more is necessary, and if it exceeds 2.5%, the toughness decreases, so 1.50 to 2.50% was set.
  • the lower limit for the amount of addition required for the deoxidizer is 0.20%. If it exceeds 1.00%, martensite is likely to be generated during patenting, and this may cause wire breakage during wire drawing, so the upper limit was made 1.00%.
  • Cr improves the hardenability of the steel and increases the soft resistance of the steel wire after quenching and tempering. Therefore, Cr is effective in preventing softening during heat treatment such as tempering or nitriding after spring casting.
  • Cr present in ⁇ -Fe is combined with nitrogen to form nitrides, thereby improving the surface hardness and increasing the lattice constant.
  • refining austenite crystal grains by forming carbides during austenization. If it is less than 0.7%, a sufficient effect cannot be obtained, so it is 0.7% or more.If it exceeds 2.20%, martensite is likely to occur during patenting, causing wire breakage during wire drawing and after oil tempering. It becomes a factor which reduces toughness. Therefore, it was limited to 0.7-2.20%.
  • Co strengthens the matrix by dissolving in ⁇ -Fe. Co itself forms carbides In addition, it does not concentrate in cementite carbide. In order for the cementite carbides to grow, Co must be discharged into the ⁇ -Fe, and since its diffusion is slow, it has the effect of suppressing the growth of the cementite carbides. It also has the effect of finely precipitating Cr carbide and V carbide on the remaining dislocations by delaying the recovery of martensite and lowering the solid solubility limit in the V matrix. The effect was obtained at 0.02% or more, and the upper limit was set to 1.00% or less because of high costs.
  • Ni has the effect of improving corrosion resistance and toughness.If it is less than 0.1%, the effect cannot be obtained.If it exceeds 1.0%, the cost is increased and the effect of improving toughness cannot be obtained. It was.
  • V and Mo form nitrides between ⁇ -Fe lattices during nitriding, thereby suppressing slip caused by repeated stress and contributing to the improvement of fatigue limit. However, if it is less than 0.05%, the effect cannot be obtained. If Mo and V exceed 0.50% and W and Nb exceed 0.15%, the toughness will decrease.
  • Ti forms carbides during tempering and has the effect of increasing the soft resistance of the steel wire. If it is less than 0.01%, the effect cannot be obtained, and if it exceeds 0.20%, refractory non-metallic inclusions TiO are formed and the toughness is lowered. Therefore, it was made 0.01 to 0.20%.
  • the oil tempered wire manufacturing method of the present invention performs patenting, wire drawing, quenching, and tempering, and includes a type A that specifies the heating means, holding temperature, and tempering conditions for quenching, and during patenting. It is roughly divided into B type that regulates the cooling rate of the steel and the heating temperature rise rate during quenching.
  • the A type includes an A-1 type that further performs quenching heating by atmospheric heating, and an A-2 type that performs quenching heating by high-frequency heating.
  • the A-1 type is a method of manufacturing an oil tempered wire in which a steel wire after wire drawing is subjected to a quenching process and a tempering process, and the quenching process is performed at a temperature of 850 ° by atmospheric heating.
  • C ⁇ 95 The heat treatment is performed after heating at 0 ° C for more than 30 seconds to 150 seconds, and the tempering step is performed at 400 ° C to 600 ° C.
  • the tempering step is preferably a two-stage tempering step including a first tempering step and a second tempering step.
  • the temperature in the first tempering process is 400 ° C to 470 ° C.
  • the second tempering is performed at a temperature higher than the first tempering temperature and continuously with the first tempering step.
  • the temperature of a 2nd tempering process shall be 450 to 600 degreeC.
  • the A-2 type is a method for producing an oil tempered wire in which a steel wire after drawing and drawing is subjected to a quenching process and a tempering process. It is performed after heating at 900 ° C to 1050 ° C for a time of lsec to 10sec.
  • the tempering process is a two-stage tempering process having a first tempering process and a second tempering process.
  • the temperature of the first tempering process is 400 ° C to 470 ° C.
  • the second tempering is performed at a temperature higher than the first tempering temperature and continuously in the first tempering step.
  • the temperature of the second tempering step is 450 ° C to 600 ° C.
  • austenitic steel wire structure by heating during quenching, it is important to dissolve undissolved carbides to improve toughness and not to coarsen austenite grains. If the austenite crystal grain size is too small, undissolved carbides remain, and the toughness of the oil temper wire is lowered and the fatigue limit is lowered. Therefore, 3.0 m or more and 7.0 m or less are desirable.
  • the conditions for sufficiently dissolving the undissolved carbide and satisfying the above crystal grain size are atmospheric heating, heating temperature is 850 ° C ⁇ 950 ° C, time is more than 30sec ⁇ 150sec, high frequency heating If so, the heating temperature is 900 ° C to 1050 ° C, and the time may be set to lsec to 10sec. This heating temperature is the set temperature of the heating device for the atmosphere heating and high-frequency heating!
  • Tempering may be performed in one step at a continuous temperature without steps, or may be performed in two steps if the heating during quenching is atmospheric heating. In addition, when the heating during quenching is high-frequency heating, tempering is performed in two stages.
  • the tempering temperature If the force is less than S400 ° C, the martensite is not fully recovered and the fatigue limit is reduced due to insufficient toughness. Conversely, if the tempering temperature is higher than 600 ° C, the carbide becomes coarse and the strength decreases. The fatigue limit decreases.
  • the carbide precipitation process during tempering is as follows: ⁇ -carbide (Fe C) is precipitated at 400 ° C to 470 ° C, and ⁇ -at 450 ° C to 600 ° C.
  • First tempering is performed at a low temperature of 400 ° C to 470 ° C.
  • the first tempering temperature is less than 400 ° C or the second tempering temperature is less than 450 ° C, the martensite is not fully recovered and the fatigue limit is lowered due to insufficient toughness.
  • the first tempering temperature is higher than 470 ° C or the second tempering temperature is higher than 600 ° C, the carbide is coarsened and the strength is lowered, so that the fatigue limit is lowered. Therefore, the first tempering was defined as 400 ° C to 470 ° C, and the second tempering was defined as 450 ° C to 600 ° C.
  • two-stage tempering is appropriate because the temperature rise rate is high and the cementite-based carbide tends to coarsen.
  • the temperature difference between the first tempering and the second tempering is preferably about 20 ° C to 200 ° C. If this temperature difference is below the lower limit, the effect of tempering in two stages is small.
  • the tempering holding time is, for example, about 30 to 60 seconds in the case of one stage, and first in the case of two stages.
  • the total holding time of the second tempering should be about 30-60 seconds. These holding times are necessary to ensure the toughness of the appropriate oil tempered wire.
  • type B is a method of manufacturing an oil tempered wire in which a steel wire patenting process, a patented steel wire drawing process, and a steel wire after drawing is subjected to a quenching process and a tempering process.
  • a steel wire patenting process a patented steel wire drawing process
  • a steel wire after drawing is subjected to a quenching process and a tempering process.
  • cooling conditions for patenting (2) heating rate of heating up to 600 ° C during quenching heating, and (3) rate of heating up to 600 ° C force holding temperature. It is characterized by meeting at least two conditions. Specifically, it is further classified into the following three types.
  • Bl type In the patenting process, the steel wire is austenitic, cooled by air cooling at a rate of 10 ° C / se C to 20 ° C / sec, and then held at a predetermined temperature to pearlite. Transform. The heating of the steel wire performed during the quenching process is performed at a heating rate from 20 ° C / sec to less than 50 ° C / sec from room temperature to 600 ° C.
  • B-2 type In the patenting process, the steel wire is austenitized, cooled by air cooling at a rate of 10 ° C / se C to 20 ° C / sec, and then held at a predetermined temperature. Perlite transformation. The heating of the steel wire performed during the quenching process is performed at a rate of temperature increase from 600 ° C to the holding temperature of 5 to 20 ° C / sec.
  • B-3 type The heating of the steel wire during the quenching process is performed at a heating rate from 20 ° C / sec to less than 50 ° C / sec from room temperature to 600 ° C.
  • the rate of temperature rise to the holding temperature is 5 ° C / sec to 20 ° C / sec.
  • patenting is a heat treatment performed to improve the drawing strength by obtaining a uniform pearlite structure on a piano wire or a hard steel wire.
  • cooling after patenting austenite is air cooling. If air-cooled, the lead furnace can be manufactured at a lower cost than a fluidized bed.
  • the cooling rate is set to 10 ° C / sec to 20 ° C / sec, and the thickness of cementite in the pearlite is reduced to dissolve the insoluble carbon carbide after quenching. If the cooling rate after austenitization is less than 10 ° C / sec, the cementite layer in the pearlite becomes thick and undissolved carbides remain after quenching. Also, if the temperature is higher than 20 ° C / sec, martensite is generated, and the drawability is lowered.
  • the steel wire When quenching, the steel wire is heated in advance. During the heating, the cementite in the pearlite becomes spherical and coarse in the process of raising the temperature from room temperature to 600 ° C. When cementite is coarsened, it remains as an insoluble carbide after quenching and lowers toughness.
  • the lower limit of the heating rate was set to 20 ° C / sec in order not to coarsen cementite.
  • the upper limit is set to less than 50 ° C / sec because there is no difference in effect even if the upper limit is 50 ° C / sec or more.
  • oil tempered wire is made by melting steel with a predetermined chemical composition, and then rolling the steel material into a rolled wire material by hot forging and hot rolling, followed by patenting, stripping, annealing, and wire drawing. It can be obtained by quenching and tempering.
  • the chemical components described above can be suitably used as the chemical components of the steel to be melted.
  • the oil tempered wire is subjected to spring force, and thereafter, for example, low temperature annealing, nitriding treatment, shot peening, and strain relief annealing are sequentially performed.
  • Fig. 1 shows an example of a temperature profile file from an intermediate step in the manufacturing process of the oil temper wire to the spring manufacturing.
  • tempering is performed in two stages: first tempering and second tempering.
  • first tempering and second tempering.
  • To perform the second tempering continuously after the first tempering means to perform the second tempering after the first tempering without continuing cooling after the first tempering.
  • both the fatigue limit and the toughness can be achieved.
  • an oil tempered wire and a spring excellent in fatigue limit after nitriding can be obtained.
  • the obtained wire is quenched and tempered under the conditions described later to obtain an oil tempered wire. Quenching is performed by heating the wire to austenite the steel structure and then immersing it in oil, and tempering is performed by passing the quenched wire through molten lead.
  • the austenite average crystal grain size ( ⁇ grain size) was calculated by the cutting method defined in JIS G 0552.
  • the lattice constant was measured using an X-ray diffractometer (RINT 1500 X-ray diffractometer manufactured by Rigaku Corporation). Generally, a diffraction peak on the high angle side with a diffraction angle of 2 ⁇ is used for precise measurement of the lattice constant. In this example, however, a clear diffraction peak was not obtained after the nitriding treatment. All diffraction lines near 130 degrees detectable from the side were used. In addition, the angle of diffraction was corrected using Si powder as the standard sample.
  • the longitudinal section of the oil tempered wire was nitrided and the lattice constant of the nitrided layer of the longitudinal section was measured.
  • Table 1 shows the chemical components of the inventive material and the comparative material. All the numerical values in Table 1 are mass%, and “*” indicates that the component amount force defined in claim 12 or 13 of the present invention is also outside.
  • the oil tempered wire of the present invention shows no significant difference in comparison with the comparative material in terms of lattice constant and carbide size after quenching and tempering. won.
  • the austenite conditions during quenching are atmospheric heating, heating temperature 900 ° C, heating time 90 seconds, tempering conditions two-stage tempering, first tempering 430 ° CX 30 sec, second tempering 540 ° CX 30 sec.
  • Tables 2 to 4 show the test results when the gas soft nitriding conditions are 420 ° CX for 2 hours
  • Table 3 shows the gas soft nitriding conditions are 450 ° CX for 2 hours
  • Table 4 shows the results when the gas soft nitriding conditions are 500 ° CX for 2 hours. Show.
  • “*” indicates that the conditions deviated from the provisions of claim 1 or 5!
  • the inventive material exhibited a high fatigue limit at any nitriding temperature.
  • comparative material K has a smaller lattice constant of the nitrided layer in the nitriding treatment at 420 ° C and 450 ° C
  • comparative material L has a larger carbide particle size in the nitriding treatment at 500 ° C.
  • the comparative material M which is larger, has a lower fatigue limit due to its smaller lattice constant.
  • martensite was generated during patenting, resulting in wire breakage, and in comparative material 0, V was added and the toughness was low, so wire breakage occurred during wire drawing. I could't do it.
  • the austenitizing conditions here were heating temperatures of 800 ° C, 860 ° C, 900 ° C, 940 ° C, 1000 ° C, and heating times of 10 sec, 40 sec, 90 sec, 140 sec, and 180 sec.
  • the first tempering was 430 ° CX 30 sec and the second tempering was 540 ° CX 30 sec.
  • the nitriding condition is 450 ° CX for 2 hours.
  • Fig. 2 shows the relationship between the inventive material
  • Fig. 3 shows the relationship between the austenite condition of the comparative material K and the presence or absence of undissolved carbides
  • Fig. 4 shows the invention material
  • Fig. 5 shows the austenite condition of the comparative material K and the grains.
  • Table 5 shows the results of measurements of the lattice constant of the nitrided layer, the size of carbides formed after the tempering process, the y grain size, and fatigue tests for samples Nos. 1 to 10 in FIGS.
  • Fig. 6 (A) shows a TEM photograph of sample No. 1
  • Fig. 6 (B) shows a TEM photo of sample No. 2.
  • All are structural photographs of oil tempered wires after nitriding.
  • the black circles in the photo of Fig. 6 (A) are carbides that are not dissolved during quenching heating
  • the small black circles in the photo of Fig. 6 (B) are carbides that precipitate during the tempering process.
  • both carbides, which are much larger than those precipitated during tempering can be clearly distinguished.
  • the austenitizing conditions were changed by high-frequency heating using the inventive material and comparative material K, the relationship between the austenitic soot condition and the presence or absence of insoluble carbides, the relationship between the austenitizing condition and the ⁇ grain size, and fatigue The test results were examined.
  • the heating temperature was 850 ° C, 910 ° C, 970 ° C, 1040 ° C, 1100 ° C
  • the calorie heat time was 0.5 sec, 2 sec, 5 sec, 8 sec, and 20 sec.
  • the tempering was performed in two stages, the first tempering being 430 ° CX 30 sec and the second tempering being 540 ° CX 30 sec.
  • the nitriding condition is 450 ° CX for 2 hours.
  • Fig. 7 shows the relationship between the invented material
  • Fig. 8 shows the relationship between the austenite condition of the comparative material K and the presence or absence of insoluble carbides
  • Fig. 9 shows the invention material
  • Fig. 10 shows the austenite condition of the comparative material K and the grains. The relationship of diameter is shown.
  • Table 6 shows the results of measurements of the lattice constant of the nitrided layer, the size of the carbide formed after the tempering process, the y grain size, and the fatigue test for samples No. 11 to 20 in FIGS.
  • the first tempering temperature was 350, 410, 430, 460, 520 ° CX 30 sec
  • the second tempering temperature was 420, 480, 540, 590, 650 ° CX 30 sec.
  • the nitriding conditions were 450 ° CX for 2 hours.
  • FIG. 11 shows the relationship between the tempering conditions of the comparative material K and the drawing
  • FIG. 13 shows the relationship between the tempering conditions of the comparative material K and the drawing
  • FIG. 13 shows the relationship between the tempering conditions of the comparative material K and the carbide size.
  • Table 7 shows the results of measurements and fatigue tests of sample Nos. 21 to 30 in Figs. 11 and 12, with the lattice constant of the nitrided layer, the size of carbides formed after the tempering process, y grain size, and drawing. .
  • Sample Nos. 22, 23 and 24 of Inventive Material A showed high fatigue limits.
  • Sample No. 21 had low toughness after quenching and tempering, and sample No. 25, which had poor toughness, contained carbide. Due to coarsening, the fatigue limit was slightly lower.
  • Samples Nos. 26, 27, 28, 29, and 30 of comparative material K have a smaller lattice constant after nitriding, and sample No. 26 has a lower squeeze, and sample No. 30 has a larger carbide. It showed a low fatigue limit.
  • Tempering conditions are 350, 480, 540, 590, and 650 ° C X 60 sec.
  • the nitriding conditions were 450 ° C x 2 hours.
  • Sample No. 31 of Invention Material A had a low drawing after quenching and tempering.
  • Sample No. 35 had a low fatigue due to coarsening of the carbide, and became a fatigue limit.
  • Comparative material K also had a fatigue limit below the target of 1150 MPa, where the lattice constant after nitriding was small.
  • First-stage tempering temperature is 350, 410, 430, 460, 520 ° C X 30sec, second-stage tempering temperature is 420
  • the nitriding conditions were 450 ° C x 2 hours.
  • FIG. 15 shows the invention material.
  • FIG. 16 shows the relationship between the tempering conditions and the drawing of the comparative material K, and
  • FIG. 17 shows the invention material.
  • Fig. 18 shows the relationship between the tempering conditions of comparative material K and the carbide size. Sample No. 41 ⁇ in Figs.
  • Table 9 shows the results of measurements and fatigue tests of 50, the lattice constant of the nitride layer, the size of the carbide formed after the tempering process, the y grain size, and the drawing.
  • Sample Nos. 42, 43 and 44 of Inventive Material A showed high fatigue limits.
  • Sample No. 41 had low toughness after quenching and tempering.
  • Sample No. 45 which had poor toughness, contained carbide. Due to coarsening, the fatigue limit was slightly lower.
  • Samples Nos. 46, 47, 48, 49, and 50 of comparative material K have smaller lattice constants after nitriding, and sample No. 46 has a lower squeeze, and sample No. 50 has coarser carbides. It showed a low fatigue limit.
  • the spring was fabricated by spring-coating the oil tempered wire of Sample No. 2 in Fig. 2, followed by low-temperature annealing.
  • This spring has an average coil diameter of 20 mm, a free length of 50 mm, an effective number of hooks of 5, and a total number of hooks of 7.
  • Low temperature annealing was performed at 230 ° C. for 30 minutes.
  • a longitudinal section sample of a spring wire was prepared from the obtained spring, the longitudinal section of this sample was nitrided at 450 ° C. for 2 hours, and the lattice constant of the nitride layer formed in the longitudinal section was measured.
  • Yield stress and tensile strength were measured based on JIS Z 2241. Yield stress was calculated by the offset method with a permanent elongation of 0.2%. The target aperture value was set at 35%.
  • Fatigue tests were performed after quenching and tempering at 420, 450, 500 ° CX 1, 2, 4 hours, assuming nitriding heat treatment, and then performing shot peening (0.2 SB, 20 minutes). Then, strain relief annealing (230 ° CX for 30 minutes) was performed, and a Nakamura rotary bending fatigue test was performed. The fatigue limit was IX 10 7 times, and the target was 1150 MPa or more.
  • oil tempered wires were manufactured under the following conditions in accordance with the temperature profile shown in FIG. “Cooling rate A” in FIG. 19 is “Cooling rate after austenitizing by patenting”, and “Temperature increase rate A” in FIG. 19 is “Heating rate before heating (room temperature to 600 ° C) J”. Yes, the ⁇ Temperature increase rate B '' in the figure is ⁇ Addition before quenching '' Thermal heating rate (600 to holding temperature) ". Tables 10 to 18 show the results of testing the above evaluation items on the obtained oil tempered wires.
  • Cooling rate after austenite in patenting 15 ° C / sec
  • Constant temperature transformation condition 650 ° C X 60sec
  • Heating rate before heating (room temperature to 600 ° C): 20 ° C / sec
  • Heating heating rate before quenching (600 to holding temperature): 10 ° C / sec
  • Tempering conditions 430 ° C X 30sec ⁇ 540 ° C X 30sec (2 steps)
  • Nitriding conditions 420, 450, 500 ° C x 1, 2, 4 hours (gas soft nitriding)
  • All of the inventive materials A to I satisfy the lattice constant after nitriding, the carbide size formed after the tempering process, the austenite crystal grain size, the yield stress after the assumed nitriding heat treatment, and the target value of drawing.
  • the fatigue limit also exceeded the target of 1150 MPa.
  • Comparative Material 1 and M have a low lattice constant after nitriding, and yield stress is low after heat treatment for nitriding.
  • Comparative Material L has a fatigue limit due to residual undissolved carbide having a large lattice constant after nitriding. Lowered.
  • inventive material A and comparative material K in Table 1 the cooling conditions after austenite roasting in patenting, the heating rate of heating before quenching, and the quenching and tempering conditions were changed as shown in Table 19, and oil tempered wires Manufactured. After that, nitriding was performed at 450 ° CX for 2 hours, followed by shot peening (0.2SB, 20 minutes), followed by further strain relief annealing (230 ° CX for 30 minutes). The test was conducted. The results are shown in Table 20 and Table 21. In these tables, manufacturing conditions 4, 10, and 14 do not describe conditions other than the patenting cooling rate because martensite is generated during patenting and cannot be properly transformed, and wire breaks during wire drawing. is there. In addition, “*” is not within the specified range force of the present invention, and the holding time at the tempering temperature is 60 sec for the first stage and 30 sec for the second stage.
  • Atmosphere 900-90sec 450 ° C ⁇ 550 ° C (Two steps)
  • Atmosphere 900-90sec 450 ° C—550 ° C (two steps)
  • Atmosphere 870-45ssc 450 ° C (-stage)
  • Atmosphere 870 ° C-130sec 540 ° C (one step)
  • Atmosphere 900-40s ec 45tm ⁇ 550 ° C (two steps)
  • Atmosphere 900O-90sec 450 ° C ⁇ 550r (two steps)
  • Atmosphere 900-90s c 450 ° C ⁇ 550 ° C (two steps)
  • Atmosphere 900-90s ec 450 ° C 550 ° C (two steps)
  • the manufacturing conditions 1 to 20 are that the lattice constant after nitriding, the size of carbide formed after the tempering step, and the yield after nitriding heat treatment are assumed. Stress and drawing satisfied target values, and fatigue limit was also high.
  • Comparative Material K the lattice constant after nitriding was small under any conditions. Further, in Production Condition 21, the ⁇ crystal grain size was coarsened and the yield stress was reduced, so in Production Condition 22, undissolved carbide remained. In addition, since the average diameter exceeded the crystal diameter, the toughness of the matrix was lowered and the fatigue limit was low.
  • the oil tempered wire of the present invention can be used for production of a spring that requires fatigue strength and toughness.
  • the method for producing an oil tempered wire of the present invention can be used in the field of producing an oil tempered wire that requires fatigue strength and toughness.
  • the spring of the present invention can be suitably used for a valve spring of an automobile engine, a spring of a transmission, or the like.
  • FIG. 1 is an explanatory diagram showing a temperature profile of a process for manufacturing a spring from an oil temper wire.
  • FIG. 2 is a graph showing the relationship between the austenitic conditions of the inventive material and the presence or absence of insoluble carbides in Test Example 1-2.
  • FIG. 3 is a graph showing the relationship between the austenite condition of the comparative material and the presence or absence of insoluble carbides in Test Example 1-2.
  • FIG. 4 A graph showing the relationship between the austenite condition and the grain size of the inventive material in Test Example 1-2.
  • FIG. 5 A graph showing the relationship between the austenite condition and the grain size of the comparative material in Test Example 1-2.
  • FIG. 6 (A) is a micrograph of sample No. 1 and (B) is a micrograph of sample No. 2.
  • FIG. 7 is a graph showing the relationship between the austenitic conditions of the inventive material in Test Example 1-3 and the presence or absence of undissolved carbides.
  • FIG. 8 is a graph showing the relationship between the austenite condition of the comparative material and the presence or absence of undissolved carbide in Test Example 1-3.
  • FIG. 9 is a graph showing the relationship between the austenite condition of the inventive material and the grain size in Test Example 1-3.
  • FIG. 10 A graph showing the relationship between the austenite condition and the grain size of the comparative material in Test Example 1-3.
  • FIG. 12 is a graph showing the relationship between the tempering conditions and the drawing of the comparative material in Test Example 1-4-1. [13] Draft showing the relationship between the tempering conditions of the inventive material and carbide size in Test Example 1-4-1.
  • FIG. 19 is an explanatory diagram showing a temperature profile of a process for manufacturing an oil tempered wire.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Springs (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

 窒化処理後に高い疲労強度と靭性とを兼備したオイルテンパー線とその製造方法並びにそのオイルテンパー線を用いたばねを提供する。本発明オイルテンパー線は、焼戻しマルテンサイト組織を有するオイルテンパー線である。このオイルテンパー線に窒化処理を行った場合、線表面部に形成される窒化層の格子定数が2.870Å以上、2.890Å以下となる。このオイルテンパー線は、伸線加工後の鋼線に焼入れ工程と焼戻し工程とを行うことにより得られる。その際、焼入れ工程は、雰囲気加熱で温度を850~950°C、時間を30sec超~150secとして加熱した後に行い、焼戻し工程は、400~600°Cで行う。

Description

明 細 書
オイルテンパー線およびその製造方法
技術分野
[0001] 本発明は、オイルテンパー線とその製造方法ならびにオイルテンパー線を用いた ばねに関するものである。特に、鋼線をばねカ卩ェして窒化処理した際に、疲労強度と 靭性をバランスよく備えられるオイルテンパー線に関するものである。
背景技術
[0002] 近年、自動車の低燃費化に対応して、自動車のエンジンやトランスミッションの小型 軽量化が進められている。それに伴って、エンジンの弁ばねやトランスミッション用の ばねに負荷される応力は年々厳しくなつており、用いられるばね材料にも一層の疲 労強度の向上、特に、疲労強度と靭性とをバランスよく具えることが求められている。 これらのエンジンの弁ばねやトランスミッションのばねには、代表的にはシリコンクロム 系のオイルテンパー線が用いられて 、る。
[0003] このオイルテンパー線に関する技術としては、特許文献 1と特許文献 2に記載の技 了 ある。
[0004] 特許文献 1は、ばね用鋼線に関するもので、焼入れ時および焼戻し時の加熱を、 保持時間: 0.5〜30sec、昇温速度: 50〜2000°C/sとしたとオイルテンパー線を開示し ている。それにより、旧オーステナイト結晶粒径を微細化し、結晶粒内の炭化物形状 を繊維状とすることで炭化物に強化繊維の役割を持たせ、疲労限の向上を図ってい る。
[0005] 一方、特許文献 2は、ばね鋼に関するもので、適正な化学成分を規定すると共に、 所定サイズのセメンタイト系球状炭化物の存在密度を規定したオイルテンパー線を 開示している。これにより、ばね鋼の高強度化を図り、圧延後の熱処理において鋼中 の炭化物形状を制御、すなわちセメンタイト系炭化物の粗大化を防いでコィリング特 性を確保している。
[0006] さらに、特許文献 3は、ばね用鋼線に関するもので、焼入れ焼戻し後のオイルテン パー線において、 0.2%耐力と引張強度の比を 0.85%以下とすることで、コィリング性 を向上させることを開示している。また、オイルテンパー線を 420°C X 20分加熱後に、 0.2%耐カを 300MPa以上上昇させることで耐へたり性を向上できることを開示してい る。
[0007] 特許文献 1:特開 2002-194496号公報
特許文献 2:特開 2002-180196号公報
特許文献 3:特開 2004-315968号公報
発明の開示
発明が解決しょうとする課題
[0008] しかし、上記のいずれの文献に係る発明であっても、鋼線をばね加工して窒化処理 した際に高い疲労強度と靭性とが得られるオイルテンパー線を開示しているわけで はない。疲労限高強度化の要望が高まる中で、近年のばね製造では鋼線をばねカロ ェしてから窒化処理することが主流となっている。そのため、この窒化処理後のばね の特性を 、かに向上させるかと!/、うことが重要である。
[0009] まず、特許文献 1に記載のばね用鋼線では、焼入れおよび焼戻し工程での加熱保 持時間と昇温速度を特定することで炭化物形状を繊維状として疲労限の向上を図つ ている。ここでいう炭化物形状は、鋼線を焼入れ焼戻しした後の状態を示しており、 実際にばねカ卩ェして窒化処理を行った後のものではな 、。ばね特性を考慮した場合 、窒化処理後の炭化物の状態が重要である。また、この鋼線の製造方法を見ても、 特徴的な点は短時間の焼入れ焼戻しを行うことにあり、そのような製造方法では、窒 化処理後のオイルテンパー線の靭性を確保したり、窒化処理後の炭化物サイズを小 さくすることが難しぐ高い疲労強度と靭性を確保することが困難である。特に、オイ ルテンパー線を用いたばねの疲労限を向上させるためには、鋼線の靭性を向上させ る必要があり、上記の焼戻し過程で析出する炭化物形状を制御するだけでは不十分 で、オーステナイト化時に未固溶炭化物を十分に溶解させることが必要である。ところ 力 特許文献 1は、この未固溶炭化物を溶解させるための手段については開示して いない。
[0010] 一方、特許文献 2に記載のばね鋼では、その製造方法における特徴的な点は、鋼 材の組成限定の他は圧延後の熱処理での高強度化と靭性向上のみであり、この技 術では窒化処理後のばねの疲労限向上は望めない。
[0011] そして、特許文献 3に記載の技術では、長時間の加熱、窒化相当の熱処理を行つ た後の材料特性にっ 、て何ら開示して 、な 、。近年のばねに対する窒化処理が長 時間化 (420〜500°Cで 1〜4時間)していることに鑑みれば、より長時間の熱処理を行 つた後の材料特性が重要である。また、疲労限を高める重要な因子は降伏応力(0.2 %耐力)の絶対値である。この点についても明記されておらず、特許文献 3の技術に より、さらなる疲労特性の向上は困難である。
[0012] 本発明は、上記の事情に鑑みてなされたもので、その目的の一つは、窒化処理後 に高い疲労強度と靭性とを兼備したオイルテンパー線とその製造方法を提供するこ とにある。
[0013] また、本発明の他の目的は、オイルテンパー線をばねカ卩ェしたばねであって、高い 疲労強度と靭性とを兼備したばねを提供することにある。
課題を解決するための手段
[0014] [オイルテンパー線およびばね]
本発明オイルテンパー線の第一の構成は、焼戻しマルテンサイト組織を有するオイ ルテンパー線であって、このオイルテンパー線に窒化処理を行った場合、線表面部 に形成される窒化層の格子定数力 870A以上、 2.890A以下となることを特徴とする
[0015] また、本発明オイルテンパー線の第二の構成は、焼戻しマルテンサイト組織を有す るオイルテンパー線であって、 420°C〜500°Cで 2時間加熱した後の降伏応力および 同温度で 4時間加熱した後の降伏応力を、同温度で 1時間加熱した後の降伏応力以 上としたことにある。
[0016] さらに、本発明ばねは、焼戻しマルテンサイト組織を有するオイルテンパー線をば ね加工したばねであって、このばねは、窒化処理で形成された窒化層を表面部に有 し、その窒化層の格子定数力 ¾.870A以上、 2.890A以下であることを特徴とする。
[0017] 以下、本発明オイルテンパー線およびばねについてより詳しく説明する。
[0018] <窒化処理 >
本発明の第一の構成によるオイルテンパー線は、焼入れ焼戻し後では、格子定数 、オーステナイト結晶粒径の点で従来材と比較して格別な差異は認められないが、 窒化処理後において窒化層の格子定数や焼戻し工程以降で生成する炭化物サイズ に差異が認められる。ここでの窒化処理は、ガス軟窒化処理であり、その条件は 420 °C以上 500°C以下とする。この窒化処理条件は、ばねカ卩ェ後に行なわれる代表的な 窒化処理条件に相当する。この窒化処理条件のうち、温度が最も重要である。窒化 処理における温度が高ければ、後述する窒化層の格子定数が大きくなり、その温度 が低ければ格子定数力 、さくなる傾向がある。窒化処理における保持時間は、例え ば 2〜4時間時間とする。ガス軟窒化処理は、通常、浸炭性ガスまたは窒素ガス雰囲 気中に NHガスを添カ卩した混合雰囲気中で行うが、この NHガスの添カ卩量は、例えば
3 3
一般に用いられる 30〜50%を選択すればょ 、。
[0019] <窒化層>
窒化層は、上記の窒化処理によってオイルテンパー線またはばねの表面部に炭窒 化物が形成された硬化層である。通常、この窒化層は、線(ばね)の表面が最も高硬 度で、内部に向かうに従って硬度が低下する。後述する格子定数は X線回折により 求めるが、その際に X線が試料中に到達する深さは 2〜5 m程度である。従って、次 述する格子定数が得られる窒化層の範囲は、線(ばね)の表面から内部に向かって 5 μ m程度とする。
[0020] <格子定数 >
上記窒化層の格子定数は 2.870A以上、 2.890A以下とする。鋼線をばねとして使 用する場合、線表面に最大のせん断応力が作用する。そのため、近年、表面硬度を 向上させるためにコィリングカ卩ェ後、窒化処理を行うことが一般的となっている。鋼線 中に添加される合金元素の中でも Cr、 V、 Moなどの元素は、 a—Feの格子間で窒化 物を作る。ばねの疲労破壊は外的に加えられる繰り返し応力によって局所的、集中 的なすべり変形を生じることにより、ばね表面の近傍に凹凸を生じて破壊に至る。格 子間に形成される窒化物は局所的なすべり変形を抑制する効果がある。
[0021] また、格子間に形成される窒化物は ex—Feの格子定数を大きくする。格子間の窒 化物が多いほど、その効果は大きぐ格子定数も大きくなる。本発明者らは鋭意研究 を重ねた結果、窒化層の格子定数が 2.870A以上になると疲労限が飛躍的に向上す るとの知見を得た。よって窒化処理後のオイルテンパー線(ばね)の窒化層の ( Fe の格子定数を 2.870A以上と定める。ただし、窒化物の形成が多すぎると靭性が低下 するため疲労限が低下する。よって格子定数の上限を 2.890Aと規定した。特に、こ の格子定数は疲労限向上の観点から 2.881 A以上、 2.890 A以下とすることが好まし い。 2.881 A以上、 2.890 A以下の格子定数を得るには、窒化処理における温度を 45 0°C以上 500°C以下とすることが望ま ヽ。
[0022] この格子定数の測定は、 X線回折により行うが、オイルテンパー線やばねの表面は 曲面であるため、正確に格子定数を測定することは難しい。そこで、本発明では、適 宜な長さのオイルテンパー線(ばね)を縦割りした試料を作製し、その試料の縦断面 を窒化処理して、縦断面に形成された窒化層の格子定数を測定する。また、ばねカロ ェして!/、な!/、オイルテンパー線を窒化処理して得られる窒化層の格子定数と、窒化 処理して!/、な 、オイルテンパー線をばねカ卩ェして力 窒化処理して得られた窒化層 の格子定数は、実質的に変化はないものとして扱う。さらに、ばねは窒化処理した後 にショットピーユングを行う場合が多い。その場合のばねの窒化層の格子定数は、シ ヨットピー-ング後の窒化層の圧縮残留応力を用いて演算にて推定することができる 。その他、ショットピーユング後のばねに歪取り焼きなましを行う場合もある。その場合 でも、一般に行われる歪取り焼きなまし条件では、歪取り焼きなまし前後で実質的に 格子定数の変化はな 、ものと考える。
[0023] <球状炭化物の粒径 >
本発明オイルテンパー線またはばねは、窒化処理後において、線内部に焼戻しェ 程以降で生じる球状炭化物の平均粒径を 40應以下とすることが好ま 、。鋼線の炭 化物には、焼入れ加熱時の未固溶炭化物と、主として焼戻し以降の熱処理で生成 · 成長する炭化物とがあり、ここでの球状炭化物は後者である。焼戻し工程以降で析 出する球状炭化物は、ばね加工後の歪取り焼鈍ゃ窒化処理を行うと粗大化し、鋼線 の強度低下を生じ、疲労限を低下させる。炭化物サイズが小さぐまた多く析出する 方が外的応力が力かった際に転位が動き、炭化物が集積することを防ぐ効果がある 。よって窒化後の平均の球状炭化物サイズを 40應以下と規定した。より好ましい球状 炭化物サイズは 30nm以下であり、さらに好ましい球状炭化物サイズは 20nm以下であ る。
[0024] なお、この球状炭化物の平均粒径は、ばねカ卩ェして 、な 、オイルテンパー線を窒 化処理した場合と、窒化処理して!/、な!/、オイルテンパー線をばね加工してから窒化 処理した場合とで実質的に変化はないものとして扱う。また、窒化処理後のばねにシ ヨットピー-ング、歪取り焼きなましを順次行う場合でも、一般に行われる歪取り焼きな まし条件では、歪取り焼きなまし前後で実質的に球状炭化物の平均粒径に変化はな いものと考える。
[0025] <熱処理に伴う降伏応力の変化 >
また、本発明の第二の構成によるオイルテンパー線は、 420°C〜500°Cで 2時間加 熱した後の降伏応力および同温度で 4時間加熱した後の降伏応力が、同温度で 1時 間加熱した後の降伏応力以上である。
[0026] 近年、オイルテンパー線をばねカ卩ェ後、窒化処理を行うことが主流となって 、る。窒 化処理を行うことで、ばねとして使用する際に最大の応力が力かる表面の硬度を向 上させることで高強度化を図っている。従来のオイルテンパー線は、窒化処理相当の 熱処理を施すと、処理時間が長くなるに伴って降伏応力'引張応力が共に低下する 。つまり、窒化処理相当の熱処理である 420°C〜500°Cで鋼線を長時間加熱した場合 、鋼線内部の硬度が低下しへたってしまい、内部を起点とした破壊が生じて疲労限 が低下する原因となる。疲労破壊は外的に加えられる繰返し応力によって、局所的、 集中的にすべり変形 (塑性変形)力生じることによって起こる。それを防ぐためには、 降伏応力を向上させることが必要である。それも窒化相当の熱処理を行った後の降 伏応力が重要である。
[0027] そこで、本発明オイルテンパー線は、窒化処理相当の熱処理、すなわち 420°C〜50 0°Cの熱処理を行った際、処理時間が長くなつても降伏応力が低下せず、処理時間 力 S1時間の場合と同等またはそれを超える降伏応力を有する。そのため、このオイル テンパー線をばねとして用いる場合、高 、疲労強度と靭性を兼ね備えることができる
[0028] 上記温度範囲の窒化処理を行った場合、 1時間未満の処理時間では本発明オイル テンパー線でも降伏応力の低下が認められる場合がある。一方、通常の窒化処理の 処理時間は 2〜4時間である。そのため、本発明では、処理時間 1時間の降伏応力を 基準として、同 2時間および 4時間の降伏応力とを比較することを規定している。
[0029] 特に、 420°C〜500°Cで 1時間加熱した後の降伏応力よりも 2時間加熱した後の降伏 応力の方が高ぐ同温度で 2時間加熱した後の降伏応力よりも同温度で 4時間加熱し た後の降伏応力の方が高いことが好ましい。つまり、 1時間処理時の降伏応力に比べ 、処理時間が長いほど降伏応力が高くなるオイルテンパー線とすることで、近年長時 間化の傾向がある窒化処理を行った場合に降伏応力を向上することができ、一層疲 労強度に優れたばね用のオイルテンパー線とすることができる。
[0030] <その他の機械的特性 >
本発明の第二の構成によるオイルテンパー線は、 420°C〜500°Cで 1時間加熱した 後の引張強さよりも同温度で 2時間加熱した後の引張強さの方が低ぐ同温度で 2時 間加熱した後の引張強さよりも同温度で 4時間加熱した後の引張強さの方が低いこと が望ましい。このような引張強さの傾向を有することは、窒化処理後に高い靭性を得 ることができ、疲労破壊起点からの亀裂の進展や介在物による折損を防止することが できる。
[0031] また、焼入れ焼戻し後の引張強さが 2000MPa以上で、 420°C〜500°Cで 2時間加熱 した後の降伏応力が 1700MPa以上であること、もしくは焼入れ焼戻し後の引張強さが 2000MPa以上で、 420°C〜450°Cで 2時間加熱した後の降伏応力が 1750MPa以上で あることが好ましい。窒化相当の温度、つまり 420°C〜500°Cで加熱した後の降伏応力 が 1700N/mm2以上、ある!/、は 420°C〜450°Cで加熱した後の降伏応力が 1750N/mm2 以上であれば、疲労限が飛躍的に向上することがわ力つた。
[0032] さらに、 420°C〜500°Cで 2時間加熱した後の絞り値力 35%以上であることが望まし い。窒化した後のマトリックスの靭性が高ければ、疲労破壊起点からのき裂の進展や 介在物による折損を防止することができ、疲労限を向上できる。
[0033] <鋼線の化学成分 >
本発明オイルテンパー線またはばねは、質量%でじ:0.50〜0.75%、 Si: 1.50〜2.50 %、 Mn: 0.20〜1.00%、 Cr: 0.70〜2.20%、 V: 0.05〜0.50%を含有し、残部が Feおよ び不可避不純物からなることが好ましい。さらに、質量%で Co : 0.02〜1.00%を含有 してもよい。その他、質量%で^ : 0.1〜1.0%、 Mo : 0.05〜0.50%、 W: 0.05〜0.15%、 Nb : 0.05〜0.15、および Ti: 0.01〜0.20%よりなる群から選択される 1種以上を含有し てもよい。
各成分量の限定理由は次の通りである。
[0034] ( 0.50〜0.75質量%)
Cは鋼の強度を決定する重要な元素であり、 0.50%未満では十分な強度が得られ ず、 0.75%を超えると靭性を損なうため、 0.50〜0.75%とした。
[0035] ( : 1.50〜2.50質量%)
Siは溶解精鍊時に脱酸剤として使用される。また、フェライト中に固溶して耐熱性を 向上させ、ばねカ卩ェ後の歪取り焼鈍ゃ窒化処理などの熱処理による線内部の硬度 低下を防ぐ効果がある。耐熱性を保持するためには 1.5%以上が必要であり、 2.5%を 超えると靭性が低下するため、 1.50〜2.50%とした。
[0036] (\^: 0.20〜1.00質量%)
Mnは Siと同様に溶解精鍊時の脱酸剤として使用される。そのため、脱酸剤に必要 な添加量として下限を 0.20%とする。また 1.00%超であると、パテンチング時にマルテ ンサイトが生成しやすくなり、伸線時の断線の原因となることから上限を 1.00%とした。
[0037] (0": 0.7〜2.20質量%)
Crは鋼の焼き入れ性を向上させ、焼入れ焼戻し後の鋼線の軟ィ匕抵抗を増加させる ため、ばねカ卩ェ後のテンパー処理ゃ窒化処理などの熱処理時の軟化防止に有効で ある。また、窒化処理では、 α -Fe中に存在する Crは窒素と結びついて窒化物を形 成することにより表面硬度を向上させると共に格子定数を大きくする。さらに、オース テナイト化の際、炭化物を形成することによってオーステナイト結晶粒を微細化させる 効果もある。 0.7%未満であると十分な効果が得られないため 0.7%以上とし、 2.20% を超えるとパテンチング時にマルテンサイトが発生しやすくなり、伸線時の断線の原 因となると共に、オイルテンパー後の靭性を低下させる要因となる。よって 0.7〜2.20 %に限定した。
[0038] (0) : 0.02〜1.0質量%)
Coは α -Fe中に固溶することによって母相を強化する。 Co自体は炭化物を形成せ ず、またセメンタイト系炭化物中にも濃化しない。セメンタイト系炭化物が成長するた めには Coが α -Fe中に排出されなければならず、その拡散が遅いためにセメンタイト 系炭化物の成長を抑制する効果がある。また、マルテンサイトの回復を遅らせ、 や Vの母相中の固溶限を低下させることによって残存した転位上に Cr炭化物や V炭化 物を微細に析出させる働きがある。その効果は 0.02%以上で得られ、コスト高となるた め上限を 1.00%以下とした。
[0039] (^: 0.1〜1.0質量%)
Niは耐食性および靭性を向上させる効果があり、 0.1%未満では効果が得られず、 1 .0%を超えてもコスト高となるだけで、靭性向上の効果が得られないため 0.1〜1.0%と した。
[0040] (Mo、 ¥: 0.05〜0.50質量%、 W、 Nb : 0.05〜0.15質量%)
これらの元素は焼戻し時に炭化物を形成し、軟ィ匕抵抗を増カロさせる傾向がある。 V 、 Moは窒化処理時に α -Feの格子間で窒化物を形成することで、繰り返し応力によ つて生じるすべりを抑制して疲労限向上に寄与する。ただし、 0.05%未満ではその効 果が得られない。 Mo、 Vは 0.50%、 W、 Nbは 0.15%を超えると靭性を低下させる。
[0041] (1 : 0.01〜0.20質量%)
Tiは焼戻し時に炭化物を形成し、鋼線の軟ィ匕抵抗を増加させる効果がある。 0.01 %未満ではその効果が得られず、 0.20%超では高融点非金属介在物 TiOが形成さ れて、靭性を低下させる。よって 0.01〜0.20%とした。
[0042] [製造方法]
一方、本発明オイルテンパー線の製造方法は、パテンチング、伸線、焼入れ、焼戻 しを行うものであって、焼入れの加熱手段と保持温度ならびに焼戻しの条件を規定し た Aタイプと、パテンチング時の冷却速度や焼入れの際の加熱昇温速度を規定した B タイプに大別される。
[0043] まず、 Aタイプである力 この Aタイプは、さらに雰囲気加熱により焼入れ加熱を行う A-1タイプと、高周波加熱により焼入れ加熱を行う A-2タイプとがある。
[0044] まず、 A-1タイプは伸線カ卩ェ後の鋼線に焼入れ工程と焼戻し工程とを行うオイルテ ンパ一線の製造方法であって、前記焼入れ工程は、雰囲気加熱で温度を 850°C〜95 0°C、時間を 30sec超〜 150secとして加熱した後に行い、前記焼戻し工程は、 400°C〜 600°Cで行うことを特徴とする。
[0045] この場合、焼戻し工程は、第一焼戻し工程と第二焼戻し工程とを有する 2段焼戻し とすることが好ましい。第一焼戻し工程の温度は 400°C〜470°Cとする。第二焼戻しは 、第一焼戻し温度よりも高温で、かつ第一焼戻し工程に連続して行われる。そして、 第二焼戻し工程の温度は 450°C〜600°Cとする。
[0046] 次に、 A-2タイプは、伸線カ卩ェ後の鋼線に焼入れ工程と焼戻し工程とを行うオイル テンパー線の製造方法であって、前記焼入れ工程は、高周波加熱で温度を 900°C〜 1050°C、時間を lsec〜10secとして加熱した後に行う。また、焼戻し工程は、第一焼戻 し工程と第二焼戻し工程とを有する 2段焼戻しとする。第一焼戻し工程の温度は 400 °C〜470°Cとする。第二焼戻しは、第一焼戻し温度よりも高温で、かつ第一焼戻しェ 程に連続して行われる。そして、第二焼戻し工程の温度は 450°C〜600°Cとすることを 特徴とする。
[0047] <オーステナイト化条件 >
焼入れ時の加熱による鋼線組織のオーステナイトィ匕では、未固溶炭化物を溶解さ せ靭性を向上させると同時に、オーステナイト結晶粒を粗大化させないことが重要で ある。オーステナイト結晶粒径は小さすぎると未固溶炭化物が残存することとなりオイ ルテンパー線の靭性が低下し、疲労限が低下するため、 3.0 m以上、 7.0 m以下が 望ましい。未固溶炭化物を十分に溶解し、かつ上記の結晶粒径を満たす条件は、雰 囲気加熱であれば、加熱温度は 850°C〜950°Cで、時間は 30sec超〜 150sec、高周波 加熱であれば、加熱温度は 900°C〜1050°Cで、時間は lsec〜10secとすれば良い。こ の加熱温度は、雰囲気加熱および高周波加熱の!/、ずれも加熱装置の設定温度のこ とである。
[0048] <焼戻し条件 >
焼戻しは、焼入れ時の加熱が雰囲気加熱の場合、段階のない連続的な温度にて 1 段階で行っても良いし、 2段階で行っても良い。また、焼入れ時の加熱が高周波加熱 の場合、 2段階にて焼戻しを行う。
[0049] 雰囲気加熱にて焼入れ時の加熱を行って 1段階で焼戻しを行う場合、焼戻し温度 力 S400°C未満であればマルテンサイトが十分に戻されず靭性が不足することにより疲 労限が低下し、逆に焼戻し温度が 600°Cより高いと、炭化物が粗大化し強度が低下 することにより疲労限が低下する。
[0050] 一方、 2段階にて焼戻しを行う理由は次の通りである。焼戻し時における炭化物析 出過程は、 400°C〜470°Cで ε -炭化物(Fe C)が析出し、さらに 450°C〜600°Cで ε -
2
炭化物が粗大化すると脆くて強度低下につながるセメンタイト系炭化物 (Fe C)へと
3 変化する。第一焼戻しを 400°C〜470°Cの低温で行い、まず ε -炭化物を析出させる と、 Siや Coなどの働きにより第二焼戻しでのセメンタイト系炭化物への変化を遅らせ、 第二焼戻し工程ゃ窒化処理工程での炭化物の粗大化が抑制できる。よって、第一焼 戻しを 400°C〜470°Cで行!、、第二焼戻しを 450°C〜600°Cで第一焼戻しよりも高!、温 度で行うこととした。
[0051] 第一焼戻し温度が 400°C未満、あるいは第二焼戻し温度が 450°C未満であると、マ ルテンサイトが十分に戻されず靭性が不足することにより疲労限が低下する。また、 第一焼戻し温度が 470°Cより高いか、または第二焼戻し温度が 600°Cより高いと、炭化 物が粗大化し強度が低下することにより疲労限が低下する。よって、第一焼戻しを 40 0°C〜470°C、第二焼戻しを 450°C〜600°Cと規定した。特に、焼入れ時の加熱を高周 波加熱により行う場合、昇温速度が速くセメンタイト系炭化物が粗大化しやすいため 、 2段階の焼戻しが適切である。
[0052] この第一焼戻しと第二焼戻しの温度差は 20°C〜200°C程度が好ましい。この温度差 が下限値を下回ると、 2段階に焼戻しを行う効果が小さい。
[0053] 焼戻しの保持時間は、例えば 1段階の場合は 30〜60秒程度、 2段階の場合は第一
'第二焼戻しの合計保持時間で 30〜60秒程度となるようにする。これらの保持時間は 適切なオイルテンパー線に靭性を確保するために必要である。
[0054] 次に、 Bタイプは、鋼線のパテンチング工程と、パテンチングした鋼線の伸線工程と 、伸線加工後の鋼線に焼入れ工程と焼戻し工程とを行うオイルテンパー線の製造方 法であって、(1)パテンチングの冷却条件、(2)焼入れ加熱時の 600°Cまでの加熱昇温 速度、(3)600°C力 保持温度までの昇温速度の 3つの条件のうち、少なくとも 2つの条 件を満たすことを特徴とする。具体的には、さらに次の 3つのタイプに分類される。 [0055] B-lタイプ:パテンチング工程は、鋼線をオーステナイトイ匕した後、空冷にて 10°C/se C〜20°C/secの速度で冷却し、その後、所定の温度で保持してパーライト変態させる 。焼入れ工程の際に行う鋼線の加熱は、室温から 600°Cまでの加熱昇温速度を 20°C /sec以上、 50°C/sec未満とする。
[0056] B-2タイプ:パテンチング工程は、鋼線をオーステナイトィ匕した後、空冷にて 10°C/se C〜20°C/secの速度で冷却し、その後、所定の温度で保持してパーライト変態させる 。焼入れ工程の際に行う鋼線の加熱は、 600°Cから保持温度までの昇温速度を 5〜2 0°C/secとする。
[0057] B-3タイプ:焼入れ工程の際に行う鋼線の加熱は、室温から 600°Cまでの加熱昇温 速度を 20°C/sec〜50°C/sec未満とし、 600°Cから保持温度までの昇温速度を 5°C/sec 〜20°C/secとする。
[0058] <パテンチングでのオーステナイト化後の冷却条件 >
一般的にパテンチングは、ピアノ線や硬鋼線にぉ 、て均一なパーライト組織を得る ことによって伸線力卩ェ性を向上させるために実施する熱処理のことである。本発明で は、パテンチングのオーステナイトィ匕後の冷却を空冷とする。空冷とすれば、鉛炉ゃ 流動床よりも低コストで製造を行なうことができる。また、その冷却速度を 10°C/sec〜2 0°C/secとし、パーライト中のセメンタイトの厚みを薄くすることによって焼入れ後の未 固溶炭化物を固溶させる。オーステナイト化後の冷却速度が、 10°C/secよりも小さい とパーライト中のセメンタイト層が厚くなり、焼入れ後に未固溶炭化物が残存してしまう 。また、 20°C/secよりも大きいとマルテンサイトを生成し、伸線性が低下するため上記 の規定範囲とした。
[0059] <焼入れ前の室温〜 600°Cにおける加熱昇温速度 >
焼入れに際しては、予め鋼線を加熱しておく。その加熱を行う際、室温から 600°Cま での昇温過程で、パーライト中のセメンタイトが球状ィ匕し粗大化する。セメンタイトが粗 大化すると、焼入れ後に未固溶炭化物として残存し、靭性を低下させる。ここでは、 セメンタイトを粗大化させないために昇温速度の下限を 20°C/secとした。また、上限は 50°C/sec以上としても効果に差は無いため、 50°C/sec未満とした。
[0060] <焼入れ前の 600°C〜保持温度における加熱昇温速度 > 前記焼入れに伴う昇温過程において、 600°C以上では、球状ィ匕したセメンタイトが 母相に固溶していく。十分にセメンタイトを固溶させれば、焼入れ後の未固溶炭化物 を低減でき、マトリックスが強化されることで窒化処理後の降伏応力が向上する。それ には、できるだけ昇温速度を遅くして未固溶炭化物 (セメンタイト)を溶解させることが 必要である。よって、昇温速度の上限を 20°C/secとした。また、昇温速度が 5°C/secよ り遅い場合、オーステナイト結晶粒径が粗大化してしまうため下限を 5°C/secとした。
[0061] <その他 >
通常、オイルテンパー線は、所定の化学成分の鋼を溶製し、その鋼材を熱間鍛造 、熱間圧延により圧延線材として、その後、パテンチング、皮剥ぎ、焼鈍、伸線加工を 行って、さらに焼入れ、焼戻しを行うことにより得られる。この過程において、溶製され る鋼の化学成分は、前述したィ匕学成分が好適に利用できる。
[0062] さらにオイルテンパー線からばねを製造する場合、オイルテンパー線をばね力卩ェし 、その後、例えば順次低温焼きなまし、窒化処理、ショットピーユング、歪取り焼きなま しを行う。
[0063] オイルテンパー線の製造過程における途中工程からばね製造に至るまでの温度プ 口ファイルの一例を図 1に示す。ここでは、焼戻しを第一焼戻しと第二焼戻しの 2段階 として行っている。第一焼戻しに連続して第二焼戻しを行うとは、このプロファイルに 示すように、第一焼戻しの後に一旦冷却することなく弓 Iき続 、て第二焼戻しを行うこと をいう。
発明の効果
[0064] 本発明オイルテンパー線およびばねによれば、疲労限と靭性を兼備することができ る。特に、窒化処理後の疲労限に優れたオイルテンパー線およびばねとすることがで きる。
[0065] 本発明オイルテンパー線の製造方法によれば、パテンチング時の冷却条件や焼入 れ加熱時の昇温条件を規定したり、焼入れ時のオーステナイト化条件と焼戻し条件 を規定することで、疲労限と靭性を兼備したオイルテンパー線を得ることができる。 発明を実施するための最良の形態
[0066] 以下、本発明の実施の形態を説明する。 [0067] <実施例 1 >
(1)表 1に示す化学成分の発明材と比較材の鋼を真空溶解炉で溶製し、熱間鍛造、 熱間圧延により φ 6.5mmの線材とした。その後、この線材にパテンチング、皮剥ぎ、焼 鈍、伸線力卩ェを行うことによって φ 3.5mmのワイヤーとした。パテンチング時のオース テナイトィ匕温度より保持温度までの冷却速度は 7°C/secとし、焼入れ加熱時の昇温速 度は室温力 保持温度まで 15°C/secで一様な昇温速度とした。
[0068] (2)得られたワイヤーに後述する条件で焼入れ焼戻しを行ってオイルテンパー線と する。焼入れはワイヤーを加熱して鋼組織をオーステナイトイ匕した後、オイル中に浸 漬することで行 ヽ、焼戻しは焼入れ後の線材を溶融鉛中に通過させて行う。
[0069] (3)得られたオイルテンパー線に窒化処理を行う。窒化処理はガス軟窒化で 420、 45 0、 500°C X 2時間で実施した。
[0070] (4)窒化処理前のオイルテンパー線に対してオーステナイト平均結晶粒径の測定、 焼入れ加熱時における未固溶炭化物の有無の確認、ならびに絞りの測定を行い、窒 化処理後のオイルテンパー線に対して、ワイヤー表面の窒化層の格子定数の測定、 焼戻し工程以降に形成される炭化物サイズの測定、疲労試験を行う。これらの測定- 試験項目は、後述する各試験例において、必要に応じて選択して行うものとする。
[0071] (5)オーステナイト平均結晶粒径(γ粒径)は、 JIS G 0552に定められている切断法 により算出した。
[0072] (6)未固溶炭化物の有無の確認は、焼入れ焼戻し後のオイルテンパー線を TEM (Tr ansmission Electron Microscopy)でランダムに撮影し、 5視野(面積 40 μ m Ζ視野) の写真中に未固溶炭化物が一つでも認められた場合は未固溶炭化物有りとし、全く 認められなかった場合は未固溶炭化物無しとする。
[0073] (7)絞りは、 JIS Z 2201の 9号試験片により JIS Z 2241に準拠した引張試験を行い 、その際に破断した試験片の最小断面積 Aと試験片の原断面積 Aoとの差を試験片 の原断面積 Aoで割った百分率%で求める。絞りの目標値は 40%以上である。
[0074] (8)格子定数の測定は X線回折装置(リガク社製 RINT1500X線回折装置)を用いて 測定した。一般に格子定数の精密測定には、回折角 2 Θの高角度側の回折ピークを 用いるが、本例では窒化処理後に明確な回折ピークが得られな力つたので、低角度 側から検出可能な 130度付近の全ての回折線を用いた。また、標準試料として Si粉末 を用いて回折角の角度補正を行った。その他、オイルテンパー線の表面は曲面で正 確な格子定数の測定が難しいため、オイルテンパー線の縦断面を窒化処理して、そ の縦断面の窒化層の格子定数を測定した。
[0075] (9)焼戻し工程以降に形成される炭化物のサイズは、 TEMでランダムに撮影したオイ ルテンパー線の 5視野 (面積 2 μ m2/視野)の写真をもとに画像解析を行い、個々の 炭化物面積を算出し、それら炭化物を球とみなして平均直径を算出することで求め た。
[0076] (10)疲労試験は、窒化処理したオイルテンパー線にショットピーユング (0.2SB、 20分 )を実施した後、歪取り焼鈍 (230°C X 30分)を行い、中村式回転曲げ疲労試験を実 施することで行った。疲労限は I X 107回とし、目標の振幅応力を 1150MPa以上とした
[0077] 発明材と比較材の化学成分を表 1に示す。表 1中の数値は全て質量%であり、「*」 は本発明請求項 12または 13に規定する成分量力も外れるものを示している。
[0078] なお、後述する各試験例にお!、て、本発明オイルテンパー線は、焼入れ焼戻し後 では、格子定数、炭化物サイズの点で比較材と比較して有意的な差異は認められな かった。
[0079] [表 1]
鋼種 C Si Mn Cr V Co その他
A 0. 65 2. 21 0. 55 1. 20 0. 15 0. 23 ―
B 0. 74 2. 48 0. 86 0. 72 0. 07 ― ―
C 0. 52 1. 60 0. 22 2. 12 0. 48 0. 94 一 発 D 0. 70 2. 31 0. 32 1. 35 0. 21 0. 51
明 E 0. 65 2. 23 0. 54 1. 22 0. 16 0. 50 \ 1 : 0. 51 材 F 0. 64 2. 21 0. 58 1. 18 0. 14 0. 22 Mo: 0. 32
G 0. 63 2. 19 0. 62 1. 19 0. 13 0. 21 W: 0. 08
H 0. 67 2. 25 0. 58 1. 26 0. 17 0. 28 Nb: 0. 09
I 0. 64 2. 15 0. 70 1. 08 0. 15 0. 40 Ti: 0. 11
J 0. 65 1. 47* 1. 13* 1. 35 0. 11 0. 30 ―
K 0. 68 2. 41 0. 75 0. 42* 0. 20 0. 05 ― 比
し 0. 78* 1. 92 0. 18* 2. 61* 0. 45 0. 01 * ― 較
Μ 0. 48* 2. 67* 0. 52 0. 31* 0. 06 1. 13* ― 材
Ν 0. 58 2. 23 0. 35 0. 57* 0. 03* 0. 53 Mo: 0. 63
0 0. 64 2. 43 0. 45 1. 14 0. 65* 0. 30 Ni: 1. 05
[0080] <試験例 1-1:雰囲気加熱 + 2段階焼戻し >
表 1の鋼種を用い、ガス軟窒化条件を変化させた場合の窒化層の格子定数、焼戻 し工程以降に形成される炭化物のサイズ、 γ粒径の測定を行うと共に、疲労試験の 結果を調べた。焼入れ時のオーステナイトィ匕条件は、雰囲気加熱で、加熱温度 900 °C、加熱時間を 90secとし、焼戻し条件は 2段階の焼戻しとして、第一焼戻しを 430°C X 30sec、第二焼戻しを 540°C X 30secとした。
[0081] 試験結果を表 2〜4に示す。表 2はガス軟窒化条件を 420°C X 2時間とし、表 3はガス 軟窒化条件を 450°C X 2時間とし、表 4はガス軟窒化条件を 500°C X 2時間とした場合 の試験結果を示す。また、表 2〜表 4において、「*」は請求項 1または 5の規定条件か ら外れて!/、ることを示して 、る。
[0082] [表 2] 鋼種 格子定数 炭化物サイズ 粒径 振幅応力
(A) ( m) ( i m) (MPa)
A 2.873 21 4.8 1200
B 2.871 25 4.9 1195
C 2.874 20 4.5 1215
D 2.872 21 4.5 1210
E 2.872 22 4.5 1215
F 2.873 22 4.5 1215
G 2.872 21 4.5 1220
H 2.872 22 4.2 1215
I 2.872 23 4.1 1200
J ― ― ― ―
K 2.866* 27 4.5 1125
L 2.891* 42* 4.6 1145
2.867* 18 4.5 1130
N ― ― ― ―
0 ― ― ― ―
[0083] [表 3]
Figure imgf000019_0001
[0084] [表 4]
Figure imgf000020_0001
[0085] これらの表から明らかなように、発明材はいずれの窒化温度でも高い疲労限を示し た。一方、比較材 Kは 420°C、 450°Cの窒化処理では窒化層の格子定数が小さぐ 500 °Cの窒化処理ではさらに炭化物粒径が大きぐ比較材 Lは格子定数、炭化物サイズと もに大きぐ比較材 Mは格子定数が小さいため疲労限が低くなつた。また、比較材 Nはパテンチング時にマルテンサイトが発生したため伸線断線を生じ、比較材 0は V の添加量が多くて靭性が低いため伸線加工中に断線を生じたので疲労試験を実施 することができな力つた。
[0086] <試験例 1-2:雰囲気加熱 + 2段階焼戻し >
次に、発明材 、比較材 Kを用いて雰囲気加熱で焼入れ時のオーステナイ M匕条件 を変化させた場合について、オーステナイト化条件と未固溶炭化物の有無、オース テナイト化条件と γ粒径の関係、ならびに疲労試験結果を調べた。
[0087] ここでのオーステナイト化条件は、加熱温度を 800°C、 860°C、 900°C、 940°C、 1000 °C、加熱時間を 10sec、 40sec、 90sec、 140sec、 180secとした。焼戻しは、 2段階の焼戻 しとして、第一焼戻しを 430°C X 30sec、第二焼戻しを 540°C X 30secとした。窒化処理 条件は 450°C X 2時間である。 [0088] 図 2に発明材 、図 3に比較材 Kのオーステナイトィ匕条件と未固溶炭化物の有無の 関係を、図 4に発明材 図 5に比較材 Kのオーステナイトィ匕条件と Ύ粒径の関係を示 す。さらに、図 2、 3中の試料 No.l〜10について窒化層の格子定数、焼戻し工程以降 に形成される炭化物のサイズ、 y粒径の測定および疲労試験を行った結果を表 5に 示す。
[0089] [表 5]
Figure imgf000021_0001
[0090] その結果、発明材 Aの試料 No.2、 3、 4は高い疲労限を示したが、未固溶炭化物が 存在した試料 Νο.1、 γ粒径が 7.0 mを超える試料 No.5はやや低い疲労限を示した。 比較材 Kはいずれも格子定数が 2.870 A未満であり目標の 1150MPaを下回る疲労限 となった。
[0091] さらに図 6(A)に試料 No.1の TEMによる写真を、図 6(B)に試料 No.2の TEMによる写 真を示す。いずれも窒化処理後のオイルテンパー線の組織写真である。図 6(A)の写 真における黒い丸が焼入れ加熱時に未固溶の炭化物で、図 6(B)の写真における小 さな黒い丸が焼戻し過程で析出する炭化物である。両写真の比較から明らかなよう に、未固溶炭化物は焼戻し過程で析出する炭化物に比べてはるかに大きぐ両炭化 物は明確に区別することができる。
[0092] <試験例 1-3 :高周波加熱 + 2段階焼戻し >
次に、発明材 、比較材 Kを用いて高周波加熱でオーステナイト化条件を変化させ た場合について、オーステナイトィ匕条件と未固溶炭化物の有無、オーステナイト化条 件と γ粒径の関係、ならびに疲労試験結果を調べた。 [0093] オーステナイト化条件は、加熱温度を 850°C、 910°C、 970°C、 1040°C、 1100°C、カロ 熱時間を 0.5sec、 2sec、 5sec、 8sec、 20secとした。焼戻しは、 2段階の焼戻しとして、第 一焼戻しを 430°C X 30sec、第二焼戻しを 540°C X 30secとした。窒化処理条件は 450 °C X 2時間である。
[0094] 図 7に発明材 、図 8に比較材 Kのオーステナイトィ匕条件と未固溶炭化物の有無の 関係を、図 9に発明材 図 10に比較材 Kのオーステナイトィ匕条件と Ύ粒径の関係を 示す。さらに図 7、 8中の試料 No.l l〜20について窒化層の格子定数、焼戻し工程以 降に形成される炭化物のサイズ、 y粒径の測定および疲労試験を行った結果を表 6 に示す。
[0095] [表 6]
Figure imgf000022_0001
[0096] その結果、発明材 Aの試料 Νο.12、 13、 14は高い疲労限を示した力 未固溶炭化物 が存在した No. l l、 γ粒径が 7.0 /z mを超える No.15はやや低い疲労限を示した。比較 材 Kはいずれも格子定数が 2.870 A未満であり目標の 1150MPaを下回る疲労限となつ た。
[0097] <試験例 1-4-1:雰囲気加熱 + 2段階焼戻し >
次に、発明材 、比較材 Kを用いて雰囲気加熱 900°C X 90secで加熱して焼入れた 後、焼戻し条件を変化させた場合について、第一 ·第二焼戻し温度と絞りの関係、第 一焼戻し条件と焼戻し工程以降に形成される炭化物サイズの関係を調べた。
[0098] 第一焼戻し温度は 350、 410、 430、 460、 520°C X 30sec、第二焼戻し温度を 420、 480 、 540、 590、 650°C X 30secとして実施した。窒化処理条件は 450°C X 2時間とした。 [0099] 図 11に発明材 図 12に比較材 Kの焼戻し条件と絞りの関係、図 13に発明材 図 14に比較材 Kの焼戻し条件と炭化物サイズの関係を示す。図 11 , 12中の試料 No.21〜 30について、窒化層の格子定数、焼戻し工程以降に形成される炭化物のサイズ、 y 粒径、絞りの測定と疲労試験を行った結果を表 7に示す。
[0100] [表 7]
Figure imgf000023_0001
[0101] その結果、発明材 Aの試料 No.22、 23、 24は高い疲労限を示した力 試料 No.21は 焼入れ焼戻し後の絞りが低いため靭性に乏しぐ試料 No.25は炭化物が粗大化した ためやや低い疲労限となった。比較材 Kの試料 No.26、 27、 28、 29、 30は窒化後の格 子定数が小さぐさらに試料 No.26は絞りが低ぐ試料 No.30は炭化物が粗大化したた め、さらに低い疲労限を示した。
[0102] <試験例 1-4-2 :雰囲気加熱 + 1段階焼戻し >
次に、発明材 、比較材 Kを用いて雰囲気加熱 900°C X 90secで加熱して焼入れた 後、一段のみの焼戻しで焼戻し条件を変化させた場合について、窒化層の格子定 数、焼戻し工程以降に形成される炭化物のサイズ、 γ粒径、絞りの測定と疲労試験 を行った結果を表 8に示す。
[0103] 焼戻し条件は 350、 480、 540、 590、 650°C X 60secである。窒化処理条件は 450°C X 2時間とした。
[0104] [表 8] 試料 焼戻し温度 格子定数 炭化物サイズ γ粒径 絞り 疲労限 鋼種
No (V) (A) (tim) m) (%) (MPa)
A 31 350 2. 885 13 4. 6 21 1165
A 32 480 2. 885 35 4. 6 37 1215
A 33 540 2. 885 38 4. 6 45 1220
A 34 590 2. 885 40 4. 6 48 1220
Λ 35 650 2. 885 53 4. 6 55 1175
K 36 350 2. 868 15 5. 3 18 1090
K 37 480 2. 868 36 5. 3 35 1125
K 38 540 2. 868 40 5. 3 40 1130
K 39 590 2. 868 43 5. 3 43 1130
K 40 650 2. 868 53 5. 3 45 1 100
[0105] その結果、発明材 Aの試料 No.31は焼入れ焼戻し後の絞りが低ぐ試料 No.35は炭 化物が粗大化したためにやゃ低 、疲労限となった。比較材 Kは 、ずれも窒化後の格 子定数が小さぐ目標の 1150MPaを下回る疲労限となった。
[0106] <試験例 1-5 :高周波加熱 + 2段焼戻し >
次に、発明材 、比較材 Kを用いて高周波加熱 970°C X lsecで加熱し焼入れた後、 焼戻し
条件を変化させた場合の実施例を示す。
[0107] 第一段焼戻し温度を 350、 410、 430、 460、 520°C X 30sec、第二段焼戻し温度を 420
、 480、 540、 590、 650°C X 30secで実施した。窒化条件は 450°C X 2時間とした。
[0108] 図 15に発明材 図 16に比較材 Kの焼戻し条件と絞りの関係、図 17に発明材 図
18に比較材 Kの焼戻し条件と炭化物サイズの関係を示す。図 15,16中の試料 No.41〜
50について、窒化層の格子定数、焼戻し工程以降に形成される炭化物のサイズ、 y 粒径、絞りの測定と疲労試験を行った結果を表 9に示す。
[0109] [表 9] 試料 格子定数 炭化物サイズ γ粒径 絞り 振幅応力
No (A) (nm) ( m) (%) ( Pa)
41 2. 885 20 3. 1 28 1185
42 2. 885 24 3. 1 41 1240
43 2. 885 28 3. 1 43 1240
44 2. 885 34 3. 1 48 1235
45 2. 885 51 3. 1 52 1195
46 2. 868 22 3. 3 26 1110
47 2. 868 25 3. 3 35 1135
48 2. 868 29 3. 3 41 1145
49 2. 868 36 3. 3 44 1140
50 2. 868 53 3. 3 48 1120
[0110] その結果、発明材 Aの試料 No.42、 43、 44は高い疲労限を示した力 試料 No.41は 焼入れ焼戻し後の絞りが低いため靭性に乏しぐ試料 No.45は炭化物が粗大化した ためやや低い疲労限となった。比較材 Kの試料 No.46、 47、 48、 49、 50は窒化後の格 子定数が小さぐさらに試料 No.46は絞りが低ぐ試料 No.50は炭化物が粗大化したた め、さらに低い疲労限を示した。
[0111] <試験例 1-6 :ばね >
図 2の試料 No.2のオイルテンパー線をばねカ卩ェし、その後に低温焼きなまし、を行 つてばねを作製した。このばねは、コイル平均径: 20mm、自由長: 50mm、有効卷数: 5、総卷数: 7である。低温焼きなましは 230°C X 30分で行った。得られたばねからばね の線材の縦断面試料を作製し、この試料の縦断面を 450°C X 2時間で窒化処理して 、その縦断面に形成された窒化層の格子定数を測定した。併せて、ばね加工してい な!ヽオイルテンパー線からも縦断面試料を作製して同様に窒化処理し、得られた窒 化層の格子定数を測定した。その結果、いずれの格子定数も 2.870 A以上、 2.890 A 以下の範囲にあり、かつ両格子定数には有意的な差異は認められな力つた。
[0112] く実施例 2 >
(1)前記表 1に示す発明材と比較材の鋼を真空溶解炉で溶製し、熱間鍛造、熱間圧 延により φ 6.5mmの線材とした。その後、後述する条件でパテンチングを行い、さらに 皮剥ぎ、焼鈍、伸線力卩ェを行うことによって φ 3.5mmのワイヤーとした。
[0113] (2)得られたワイヤーに後述する条件でパテンチング、焼入れ焼戻しを行ってオイル テンパー線とする。焼入れはワイヤーを加熱して鋼組織をオーステナイトィ匕した後、 オイル (室温)中に浸漬することで行 ヽ、焼戻しは焼入れ後の線材を溶融鉛中に通過 させて行う。
[0114] (3)その後、オイルテンパー線に窒化処理相当条件の 420、 450、 500°C X 1、 2、 4時 間で熱処理を行う。
[0115] (4)窒化想定熱処理前のオイルテンパー線に対してオーステナイト平均結晶粒径の 測定、焼入れ加熱時における未固溶炭化物の有無の確認を行い、同熱処理後のォ ィルテンパー線に対して、降伏応力、引張強さおよび絞りの測定、焼戻し工程以降 に形成される炭化物サイズの測定ならびに疲労試験を行う。その他、オイルテンパー 線に窒化処理を行い、線表面の窒化層の格子定数の測定も行った。
[0116] (5)降伏応力、引張強さは JIS Z 2241に基づき測定した。降伏応力はオフセット法 で、永久伸びを 0.2%として計算した。絞りの目標値は 35%とした。
[0117] (6)未固溶炭化物の有無の確認は、焼入れ焼戻し後のオイルテンパー線を TEMで ランダムに撮影し、 5視野 (面積 40 m2/視野)の写真中に未固溶炭化物が一つでも 認められた場合は未固溶炭化物有りとし、その平均径が、 200nm以上の場合を X、 1 OOnm以上 200nm未満の場合を△、全く認められなかった場合は未固溶炭化物無しと し、〇と評価した。
[0118] (7)疲労試験は、焼入れ焼戻し後に 420、 450、 500°C X 1、 2、 4時間で窒化想定熱処 理を行い、その後ショットピーユング (0.2SB、 20分)を実施してから歪取り焼鈍(230°C X 30分)を行って、さらに中村式回転曲げ疲労試験を実施することで行った。疲労限 は、 I X 107回とし、目標を 1150MPa以上とした。
[0119] (8)オーステナイト平均結晶粒径、絞り、焼戻し工程以降に形成される炭化物サイズ 、格子定数は実施例 1と同様の方法で求めた。
[0120] <試験例 2-1:パテンチング条件と焼入れ前の昇温速度 1 >
表 1に示した全成分について、図 19に示す温度プロファイルに則して、以下の条件 にてオイルテンパー線を製造した。図 19における「冷却速度 A」が「パテンチングでの オーステナイト化後の冷却速度」であり、同図における「昇温速度 A」が「焼入れ前の 加熱昇温速度(室温〜 600°C) Jであり、同図における「昇温速度 B」が「焼入れ前の加 熱昇温速度(600〜保持温度)」である。得られたオイルテンパー線に上記の各評価 項目を試験した結果を表 10〜表 18に示す。これらの表において、比較材』、 Nはパテ ンチング時にマルテンサイトが発生したため伸線断線を生じ、比較材 0は Vの添加量 が多くて靭性が低いため伸線カ卩ェ中に断線を生じたのでオイルテンパー線を得るに は至らなかった。
[0121] (製造条件)
パテンチングでのオーステナイト化条件: 900°C X 60sec
パテンチングでのオーステナイト化後の冷却速度: 15°C/sec
恒温変態条件 :650°C X 60sec
焼入れ前の加熱昇温速度(室温〜 600°C) : 20°C/sec
焼入れ前の加熱昇温速度 (600〜保持温度) : 10°C/sec
焼入れ条件 :雰囲気加熱 900°C、 90sec
焼戻し条件 : 430°C X 30sec→540°C X 30sec (2段階)
窒化条件 :420、 450、 500°C X 1、 2、 4時間(ガス軟窒化)
[0122] [表 10]
420TC X 1時間
鋼種 格子定数 炭化物サイス" γ粒径 未固溶炭化物 引張強さ 降伏応力 絞り 疲労限 ( A ) (ran) ( μ η) (MPa) (MPa) (%) (MPa)
A 2. 872 20 4. 8 ο 2125 1732 46 1210
B 2. 87 25 4. 9 〇 2125 1725 44 1205
C 2. 873 19 4. 5 ο 2140 1740 48 1220
D 2. 872 20 4. 5 ο 2084 1824 45 1215
E 2, 871 21 4. 5 ο 2132 1737 46 1210
F 2. 872 21 4. 5 〇 2138 1740 44 1205
G 2. 872 21 4. 5 〇 2135 1735 43 1210
H 2. 872 22 \ . 2 〇 2133 1734 44 1210
I 2. 871 22 4. 1 〇 2134 1741 43 1210
J ― ― 一 ― ― ― ―
K 2. 865* 26 4. 5 〇 1943 1694 46 1110 し 2. 891* 42* 4. 6 X 1987 1657 31 1110
Μ 2. 866* 18 4. 5 〇 1906 1678 47 1105
Ν ― ― ― ― ― ― ―
0 ― ― ― ― ― ― ― [0123] [表 11]
420^ X 2時閉
Figure imgf000028_0001
[0124] [表 12]
420°C X 4時間
鋼種 格子定数 炭化物サイス" γ粒径 未固溶炭化物 引張強さ 降伏応力 絞り 疲労限 (A) (nm) ( μ πι) (MPa) (MPa) (%) (MPa)
A 2. 873 22 4. 8 C 2021 1821 43 1220
B 2. 871 26 4. 9 〇 2014 1814 43 1215
C 2. 874 22 4. 5 〇 2042 1839 45 1240
D 2. 872 22 4. 5 〇 2023 1824 42 1225
E 2. 872 23 4. 5 〇 2031 1823 44 1220
F 2. 873 23 4. 5 〇 2039 1830 41 1220
G 2. 872 23 4. 5 〇 2034 1827 40 1220
H 2. 872 24 4. 2 〇 2031 1824 41 1225
T 2. 872 23 4. 1 〇 2033 1829 40 1225
J ― ― - ― - ― ― ―
K 2. 866* 28 4. 5 〇 1902 1654 42 1110
L 2. 891* 44* 4. 6 X 1912 1612 27 1115
M 2. 867* 21 4. 5 〇 1827 1606 44 1105
N ― ― ― ― ― 一 ― ―
0 - - [0125] [表 13]
450°C 1時間
Figure imgf000029_0001
[0126] [表 14]
450。C X2時間
鋼種 格子定数 炭化物サイ γ粒径 未固溶炭化物 引張強さ 降伏応力 絞り 疲労限
(A) (nm) ( πι) (MPa) (MPa) (%) (MPa)
A 2. 385 23 4. 8 〇 1981 1773 Ί2 1235
B 2. 883 28 4. 9 〇 1974 1770 41 1230
C 2. 886 22 4. 5 ο 2001 1795 43 1245
D 2. 884 23 4. 5 〇 1984 1794 42 1240
E 2. 885 24 4. 5 〇 1986 1784 44 1235
F 2. 884 24 4. 5 〇 丄 984 1788 41 1235
G 2. 885 25 4. 5 〇 1979 1783 40 1230
H 2. 884 24 4. 2 〇 1977 1785 41 1235
I 2. 885 26 4. 1 〇 1974 1780 40 1230
J - ― ― ― ― κ 2. 868* 32 4. 5 〇 1897 1652 41 1125
L 2. 893* 48* 4. 6 X 1943 1628 28 1130
22 4. 5 〇 1839 1621 43 1125
N - ― ― ― ― —
0 - ― ― ― - - [0127] [表 15]
4501C X 4時間
Figure imgf000030_0001
[0128] [表 16」
500°C X 1時間
鋼種 格了-定数 炭化物サイ γ粒径 未固溶炭化物 引張強さ 降伏応力 絞り
(A) (nm) 1. μ mj (MPa) (MPa) (%)
A 2. 888 27 4. 8 〇 1938 1710 42 1230
B 2. 887 31 4. 9 〇 1931 1703 42 1230
C 2. 888 24 4. 5 〇 1954 1725 43 1235
D 2. 888 28 4. 5 〇 1941 1765 43 1225
E 2. 889 27 4. 5 〇 1928 1715 44 1230
F 2. 886 25 4. 5 〇 1936 1712 40 1230
G 2. 887 27 4. 5 〇 1945 1719 40 1230
H 2. 887 25 4. 2 〇 1943 1721 41 1225
I 2. 888 26 4. 1 〇 1928 1719 41 1225
J ― ― ― ― ― κ 2. 868* 42* 4. 5 〇 1879 1638 41 1110
L 2. 892* 51* 4. 6 X 1954 1628 27 1110
M 2. 868* 30 4. 5 〇 1821 1575 43 1105
N 一 ― ― ― ― ― ―
0 ― ― 一 - 一 [0129] [表 17]
5001C X 2時間
Figure imgf000031_0001
[0130] [表 18]
500ΐ: Χ 時間
銅種 格子定数 炭化物サイス' γ粒怪 未固溶炭化物 引張強さ 降伏応力 絞り 疲労限
(A) (nm) (MPa) (MPa) (%) (MPa)
A 2. 890 29 4. 8 ο 1885 1742 38 1240
B 2. 888 34 4. 9 ο 1875 1738 37 1235
C 2. 890 26 4. 5 ο 1906 1763 38 1250
D 2. 889 30 4. 5 ο 1882 1767 38 1235
E 2. 890 29 4. 5 〇 1892 1748 40 1230
F 2. 888 27 4. 5 ο 1895 1742 37 1235
G 2. 887 29 4. 5 〇 1896 1747 37 1235
H 2. 889 27 4. 2 〇 1889 1751 37 1230
I 2. 890 29 4. 1 〇 1891 1749 38 1230
J ― ― ― ― ― ― ― κ 2. 869* 45* 4. 5 〇 1804 1587 38 1 120
L 2. 894* 54* 4. 6 X 1864 1563 24 1120
M 2. 869* 33 4. 5 〇 1710 1505 39 1115
N ― ― ―
0 一 ― - ― - - [0131] (結果)
A〜Iの発明材はいずれも、窒化後の格子定数、焼戻し工程以降に形成される炭化 物サイズ、オーステナイト結晶粒径、窒化想定熱処理後の降伏応力および絞りの目 標値を満たしており、疲労限も目標の 1150MPa以上を示した。
[0132] 一方、比較材1、 Mは窒化後の格子定数、窒化想定熱処理後の降伏応力が低ぐ 比較材 Lは、窒化後の格子定数が大きぐ未固溶炭化物が残存したため疲労限が低 下した。
[0133] <試験例 2-2:パテンチング条件と焼入れ前の昇温速度 2 >
表 1の発明材 Aおよび比較材 Kを用いて、パテンチングでのオーステナイトイ匕後の 冷却条件、焼入れ前の加熱昇温速度、焼入れ'焼戻し条件を表 19に示すように変化 させ、オイルテンパー線を製造した。その後、 450°C X 2時間で窒化処理を行ない、続 いてショットピーユング(0.2SB、 20分)を実施した後、さらに歪取り焼鈍(230°C X 30分 )を行って力 中村式回転曲げ疲労試験を実施した。その結果を表 20、表 21に示す 。これらの表において、製造条件 4, 10, 14にパテンチング冷却速度以外の条件が記 載されていないのは、パテンチング時にマルテンサイトが生成されて適切にパーライ ト変態できず、伸線時に断線したためである。また、「*」は本発明の規定範囲力も外 れるもの、焼戻し温度での保持時間は、一段: 60sec、二段:各 30secである。
[0134] [表 19]
パテンチング 昇温速度 昇温速度
製造 冷却速度 (室温 600°C) (600°C_保持温度)
条件 (。し/ sec) (°C/sec (。し/ sec; 焼入れ条件 焼戻し条件
1 18 40 10 雰囲気: 900 - 90sec 450°C→550°C (二段)
2 12 25 20 雰囲気: 900 - 90sec 450°C— 550°C (二段)
3 5* 25 20 雰囲気: 940°C-120sec 420で→580で (二段)
4 50* - - -
5 12 10* 20 雰囲気: 870 - 45ssc 450°C (—段)
6 12 80* 20 雰囲気: 870°C-130sec 540°C (一段)
7 12 25 2* 雰囲気:
Figure imgf000033_0001
450°C→470°C (一-段)
8 12 25 40* 雰囲気: 900で- 40s ec 45tm→550°C (二段)
9 5* 10* 20 雰囲気: 900O-90sec 450°C→550r (二段)
10 50* - - - -
11 12 10* 2* 雰囲気 : 900 -90sec 450°C→550°C (二段)
12 12 300* 300* 高周波 : 1000°C-2sec 450°C→550°C (二段)
13 5* 25 2* 雰囲気 : 900で- 90s c 450°C→550°C (二段)
14 50* - - - -
15 12 25 2* 雰囲気: 970°C-20sec* 450°C→550 (二段)
16 12 10* 20 雰囲気: 970°C-20suc* 450°C→550°C (二段)
17 5* 25 20 雰囲気: 970*C-20sec* 450°C→550°C (二段)
18 5* 10* 2* 雰囲気: 900で- 90s ec 450°C 550°C (二段)
19 18 40 10 雰囲気: 830で- 170sec* 450°C—550°C (二段)
20 12 25 20 雰囲気: 970 :-20sec* 450°C→550°C (二段)
21 5* 1 0* 2* 雰囲気: 980°C-140sec* 0 →550 (二段)
22 5* 300* 300* 高周波: 860で- 0. 5sec* 450°C— 550°C (二段) 20]
発明材 A
Figure imgf000034_0001
1]
比較材 K
Figure imgf000035_0001
[0137] 表 20、 21から明らかなように、発明材 Aにおいては、製造条件 1〜20までは、窒化後 の格子定数、焼戻し工程以降で形成される炭化物サイズ、窒化想定熱処理後の降 伏応力、絞りは目標値を満たしており、疲労限も高い値を示した。
[0138] 製造条件 21は γ結晶粒径が粗大化し降伏応力が低下したため、製造条件 22は未 固溶炭化物が残存し、かつその平均径カ ^OOnmを超えたため、マトリックスの靭性が 低下し、疲労限が低くなつた。
[0139] 比較材 Kはいずれの条件においても窒化後の格子定数が小さぐさらに製造条件 2 1では γ結晶粒径が粗大化し降伏応力が低下したため、製造条件 22は未固溶炭化 物が残存しかつその平均径カ ¾00應を超えたため、マトリックスの靭性が低下し疲労 限が低い結果となった。
[0140] 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲 を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明ら かである。
なお、本出願は、 2005年 8月 5日出願の日本特許出願(特願 2005— 228859)及 び 2005年 8月 29日出願の日本特許出願(特願 2005— 248468)に基づくものであ り、それらの内容はここに参照として取り込まれる。
産業上の利用可能性
[0141] 本発明オイルテンパー線は、疲労強度と靭性が要求されるばねの製造などに利用 することができる。
[0142] また、本発明オイルテンパー線の製造方法は、疲労強度と靭性が要求されるオイル テンパー線の製造分野で利用することができる。
[0143] さらに、本発明ばねは、自動車のエンジンの弁ばねやトランスミッションのばねなど に好適に利用することができる。
図面の簡単な説明
[0144] [図 1]オイルテンパー線からばねを製造する工程の温度プロファイルを示す説明図で ある。
[図 2]試験例 1-2における発明材のオーステナイトィヒ条件と未固溶炭化物の有無の関 係を示すグラフである。
[図 3]試験例 1-2における比較材のオーステナイトィ匕条件と未固溶炭化物の有無の関 係を示すグラフである。
[図 4]試験例 1-2における発明材のオーステナイトィ匕条件と Ί粒径の関係を示すダラ フである。
[図 5]試験例 1-2における比較材のオーステナイトィ匕条件と Ί粒径の関係を示すダラ フである。
[図 6](A)は試料 No.lの顕微鏡組織写真、(B)は試料 No.2の顕微鏡組織写真である。
[図 7]試験例 1-3における発明材のオーステナイトィヒ条件と未固溶炭化物の有無の関 係を示すグラフである。
[図 8]試験例 1-3における比較材のオーステナイトィ匕条件と未固溶炭化物の有無の関 係を示すグラフである。 [図 9]試験例 1-3における発明材のオーステナイトィ匕条件と Ύ粒径の関係を示すダラ フである。
[図 10]試験例 1-3における比較材のオーステナイトィ匕条件と Ί粒径の関係を示すダラ フである。
圆 11]試験例 1-4-1における発明材の焼戻し条件と絞りの関係を示すグラフである。
[図 12]試験例 1-4-1における比較材の焼戻し条件と絞りの関係を示すグラフである。 圆 13]試験例 1-4- 1における発明材の焼戻し条件と炭化物サイズの関係を示すダラ フである。
圆 14]試験例 1-4-1における比較材の焼戻し条件と炭化物サイズの関係を示すダラ フである。
圆 15]試験例ト 5における発明材の焼戻し条件と絞りの関係を示すグラフである。 圆 16]試験例ト 5における比較材の焼戻し条件と絞りの関係を示すグラフである。 圆 17]試験例 1-5における発明材の焼戻し条件と炭化物サイズの関係を示すグラフ である。
圆 18]試験例 1-5における比較材の焼戻し条件と炭化物サイズの関係を示すグラフ である。
[図 19]オイルテンパー線を製造する工程の温度プロファイルを示す説明図である。

Claims

請求の範囲
[1] 焼戻しマルテンサイト組織を有するオイルテンパー線であって、
このオイルテンパー線に窒化処理を行った場合、線表面部に形成される窒化層の 格子定数が 2.870A以上、 2.890A以下となることを特徴とするオイルテンパー線。
[2] 前記窒化処理は、 420°C以上 500°C以下で行うことを特徴とする請求項 1に記載の オイルテンパー線。
[3] 前記格子定数力 881 A以上、 2.890 A以下であることを特徴とする請求項 1に記載 のオイルテンパー線。
[4] 前記窒化処理は、 450°C以上 500°C以下で行うことを特徴とする請求項 3に記載の オイルテンパー線。
[5] 窒化処理後において、線内部に焼戻し工程以降で生じる球状炭化物の平均粒径 力 S40nm以下であることを特徴とする請求項 1〜4のいずれかに記載のオイルテンパー 線。
[6] 焼戻しマルテンサイト組織を有するオイルテンパー線であって、
420°C〜500°Cで 2時間加熱した後の降伏応力および同温度で 4時間加熱した後の 降伏応力が、同温度で 1時間加熱した後の降伏応力以上であることを特徴とするオイ ルテンパー線。
[7] 420°C〜500°Cで 1時間加熱した後の降伏応力よりも 2時間加熱した後の降伏応力 の方が高ぐ同温度で 2時間加熱した後の降伏応力よりも同温度で 4時間加熱した後 の降伏応力の方が高いことを特徴とする請求項 6に記載のオイルテンパー線。
[8] 420°C〜500°Cで 1時間加熱した後の引張強さよりも同温度で 2時間加熱した後の引 張強さの方が低ぐ同温度で 2時間加熱した後の引張強さよりも同温度で 4時間加熱 した後の引張強さの方が低いことを特徴とする請求項 6または 7に記載のオイルテン ノ《一線。
[9] 焼入れ焼戻し後の引張強さが 2000MPa以上で、
420°C〜500°Cで 2時間加熱した後の降伏応力が 1700MPa以上であることを特徴と する請求項 6〜8のいずれか〖こ記載のオイルテンパー線。
[10] 420°C〜450°Cで 2時間加熱した後の降伏応力が 1750MPa以上であることを特徴と する請求項 9に記載のオイルテンパー線。
[11] 420°C〜500°Cで 2時間加熱した後の絞り値が、 35%以上であることを特徴とする請 求項 6〜10のいずれかに記載のオイルテンパー線。
[12] 質量%でじ:0.50〜0.75%、 Si: 1.50〜2.50%、 Mn: 0.20〜1.00%、 Cr: 0.70〜2.20%
、 V: 0.05〜0.50%を含有し、残部が Feおよび不可避不純物からなることを特徴とする 請求項 1〜11のいずれか〖こ記載のオイルテンパー線。
[13] さらに、質量%で Co : 0.02〜1.00%を含有することを特徴とする請求項 12に記載の オイルテンパー線。
[14] さらに、質量0 /0で Ni: 0.1〜1.0%、 Mo : 0.05〜0.50%、 W: 0.05〜0.15%、 Nb : 0.05〜 0.15、および Ti: 0.01〜0.20%よりなる群力 選択される 1種以上を含有することを特 徴とする請求項 12又は 13に記載のオイルテンパー線。
[15] 焼戻しマルテンサイト組織を有するオイルテンパー線をばねカ卩ェしたばねであって このばねは、窒化処理で形成された窒化層を表面部に有し、
その窒化層の格子定数力 ¾.870A以上、 2.890 A以下であることを特徴とするばね。
[16] 前記窒化処理は、 420°C以上 500°C以下で行われたことを特徴とする請求項 15に記 載のばね。
[17] 前記格子定数力 ¾.88lA以上、 2.890A以下であることを特徴とする請求項 15に記 載のばね。
[18] 前記窒化処理は、 450°C以上 500°C以下で行われたことを特徴とする請求項 17に記 載のばね。
[19] 窒化処理後において、鋼線内部に焼戻し工程以降で生じる球状炭化物の平均粒 径が 40nm以下であることを特徴とする請求項 15〜18のいずれかに記載のばね。
[20] 質量%でじ:0.50〜0.75%、 Si: 1.50〜2.50%、 Mn: 0.20〜1.00%、 Cr: 0.70〜2.20%
、 V: 0.05〜0.50%を含有し、残部が Feおよび不可避不純物からなることを特徴とする 請求項 15〜19のいずれかに記載のばね。
[21] さらに、質量%で Co : 0.02〜1.00%を含有することを特徴とする請求項 20に記載の ばね。
[22] さらに、質量0 /0で Ni: 0.1〜1.0%、 Mo : 0.05〜0.50%、 W: 0.05〜0.15%、 Nb : 0.05〜 0.15、および Ti: 0.01〜0.20%よりなる群力 選択される 1種以上を含有することを特 徴とする請求項 20または 21に記載のばね。
[23] 請求項 1〜14のいずれかに記載のオイルテンパー線を用いて作製したことを特徴と するばね。
[24] 伸線加工後の鋼線に焼入れ工程と焼戻し工程とを行うオイルテンパー線の製造方 法であって、
前記焼入れ工程は、雰囲気加熱で温度を 850°C〜950°C、時間を 30sec超〜 150sec として加熱した後に行い、
前記焼戻し工程は、 400°C〜600°Cで行うことを特徴とするオイルテンパー線の製造 方法。
[25] 前記焼戻し工程は、第一焼戻し工程と、この第一焼戻し温度よりも高温で、かつ第 一焼戻し工程に連続して行われる第二焼戻し工程とを有し、
前記第一焼戻し工程の温度が 400°C〜470°Cで、前記第二焼戻し工程の温度が 45 0°C〜600°Cであることを特徴とする請求項 24に記載のオイルテンパー線の製造方法
[26] 伸線加工後の鋼線に焼入れ工程と焼戻し工程とを行うオイルテンパー線の製造方 法であって、
前記焼入れ工程は、高周波加熱で温度を 900°C〜1050°C、時間を lsec〜10secとし て加熱した後に行い、
前記焼戻し工程は、第一焼戻し工程と、この第一焼戻し温度よりも高温で、かつ第 一焼戻し工程に連続して行われる第二焼戻し工程とを有し、
前記第一焼戻し工程の温度が 400°C〜470°Cで、前記第二焼戻し工程の温度が 45 0°C〜600°Cであることを特徴とするオイルテンパー線の製造方法。
[27] 鋼線のパテンチング工程と、パテンチングした鋼線の伸線工程と、伸線カ卩ェ後の鋼 線に焼入れ工程と焼戻し工程とを行うオイルテンパー線の製造方法であって、 前記パテンチング工程は、鋼線をオーステナイト化した後、空冷にて 10°C/sec〜20 °C/secの速度で冷却し、その後、所定の温度で保持してパーライト変態させ、 前記焼入れ工程の際に行う鋼線の加熱は、室温から 600°Cまでの加熱昇温速度を 20〜50°C/sec未満とすることを特徴とするオイルテンパー線の製造方法。
[28] 鋼線のパテンチング工程と、パテンチングした鋼線の伸線工程と、伸線カ卩ェ後の鋼 線に焼入れ工程と焼戻し工程とを行うオイルテンパー線の製造方法であって、 前記パテンチング工程は、鋼線をオーステナイト化した後、空冷にて 10°C/sec〜20 °C/secの速度で冷却し、その後、所定の温度で保持してパーライト変態させ、 前記焼入れ工程の際に行う鋼線の加熱は、 600°C力 保持温度までの昇温速度を 5°C/sec〜20°C/secとすることを特徴とするオイルテンパー線の製造方法。
[29] 鋼線のパテンチング工程と、パテンチングした鋼線の伸線工程と、伸線カ卩ェ後の鋼 線に焼入れ工程と焼戻し工程とを行うオイルテンパー線の製造方法であって、 前記焼入れ工程の際に行う鋼線の加熱は、室温から 600°Cまでの加熱昇温速度を 20°C/sec〜50°C/sec未満とし、 600°Cから保持温度までの昇温速度を 5°C/sec〜20 °C/secとすることを特徴とするオイルテンパー線の製造方法。
PCT/JP2006/314907 2005-08-05 2006-07-27 オイルテンパー線およびその製造方法 WO2007018048A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/990,028 US20090293998A1 (en) 2005-08-05 2006-07-27 Oil-Tempered Wire and Method of Producing the Same
EP06781818.7A EP1930458A4 (en) 2005-08-05 2006-07-27 OIL INCOME YARN AND PROCESS FOR PRODUCING THE SAME
CN2006800288972A CN101287851B (zh) 2005-08-05 2006-07-27 油回火线及其制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-228859 2005-08-05
JP2005228859 2005-08-05
JP2005-248468 2005-08-29
JP2005248468A JP2007063584A (ja) 2005-08-05 2005-08-29 オイルテンパー線およびその製造方法

Publications (2)

Publication Number Publication Date
WO2007018048A1 true WO2007018048A1 (ja) 2007-02-15
WO2007018048A8 WO2007018048A8 (ja) 2008-06-12

Family

ID=37727237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314907 WO2007018048A1 (ja) 2005-08-05 2006-07-27 オイルテンパー線およびその製造方法

Country Status (5)

Country Link
US (1) US20090293998A1 (ja)
EP (1) EP1930458A4 (ja)
JP (1) JP2007063584A (ja)
KR (1) KR20080040697A (ja)
WO (1) WO2007018048A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007302950A (ja) * 2006-05-11 2007-11-22 Kobe Steel Ltd 耐へたり性に優れた高強度ばね用鋼線
CN112449654A (zh) * 2019-07-01 2021-03-05 住友电气工业株式会社 钢线和弹簧

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4994932B2 (ja) * 2007-04-20 2012-08-08 住友電気工業株式会社 オイルテンパー線及びオイルテンパー線の製造方法
US8328169B2 (en) 2009-09-29 2012-12-11 Chuo Hatsujo Kabushiki Kaisha Spring steel and spring having superior corrosion fatigue strength
JP5653022B2 (ja) * 2009-09-29 2015-01-14 中央発條株式会社 腐食疲労強度に優れるばね用鋼、及びばね
JP5711539B2 (ja) 2011-01-06 2015-05-07 中央発條株式会社 腐食疲労強度に優れるばね
JP5762843B2 (ja) 2011-06-22 2015-08-12 株式会社リケン 圧力リング及びその製造方法
JP7044109B2 (ja) * 2017-05-19 2022-03-30 住友電気工業株式会社 オイルテンパー線
CN114555849B (zh) 2019-10-16 2022-11-01 日本制铁株式会社 钢线
DE112020005011B4 (de) * 2019-10-16 2024-07-25 Nhk Spring Co., Ltd. Ventilfeder
US20230081462A1 (en) * 2020-02-21 2023-03-16 Nippon Steel Corporation Damper spring
KR20220143735A (ko) * 2020-02-21 2022-10-25 닛폰세이테츠 가부시키가이샤 강선
JP7321354B2 (ja) * 2020-02-21 2023-08-04 日本製鉄株式会社 弁ばね
CN113106204A (zh) * 2021-04-01 2021-07-13 王思琪 弹性杆及其生产方法,及具有该弹性杆的床垫

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1180895A (ja) * 1997-09-04 1999-03-26 Sumitomo Electric Ind Ltd ばね用オイルテンパー線およびその製造方法
JP2003213372A (ja) * 2002-01-25 2003-07-30 Sumitomo Denko Steel Wire Kk ばね用鋼線およびばね
JP2003306747A (ja) * 2002-04-16 2003-10-31 Sumitomo Denko Steel Wire Kk 鋼線およびその製造方法ならびにばね
JP2004190116A (ja) * 2002-12-13 2004-07-08 Sumitomo Denko Steel Wire Kk ばね用鋼線
JP2004315968A (ja) * 2003-03-28 2004-11-11 Kobe Steel Ltd 加工性に優れた高強度ばね用鋼線および高強度ばね
JP2004315967A (ja) * 2003-03-28 2004-11-11 Kobe Steel Ltd 耐へたり性及び疲労特性に優れたばね用鋼
JP2005120479A (ja) * 2004-10-25 2005-05-12 Togo Seisakusho Corp 高強度ばねおよびその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04311529A (ja) * 1991-04-10 1992-11-04 Sugita Seisen Kojo:Kk 高強度高靱性ばね用オイルテンパー鋼線の連続熱処理方法
JPH06240408A (ja) * 1993-02-17 1994-08-30 Sumitomo Electric Ind Ltd ばね用鋼線及びその製造方法
JPH11246941A (ja) * 1998-02-27 1999-09-14 Chuo Spring Co Ltd 高強度弁ばね及びその製造方法
JP4221518B2 (ja) * 1998-08-31 2009-02-12 独立行政法人物質・材料研究機構 フェライト系耐熱鋼
JP3595901B2 (ja) * 1998-10-01 2004-12-02 鈴木金属工業株式会社 高強度ばね用鋼線およびその製造方法
JP2001247934A (ja) * 2000-03-03 2001-09-14 Sumitomo Electric Ind Ltd ばね用鋼線およびその製造方法ならびにばね

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1180895A (ja) * 1997-09-04 1999-03-26 Sumitomo Electric Ind Ltd ばね用オイルテンパー線およびその製造方法
JP2003213372A (ja) * 2002-01-25 2003-07-30 Sumitomo Denko Steel Wire Kk ばね用鋼線およびばね
JP2003306747A (ja) * 2002-04-16 2003-10-31 Sumitomo Denko Steel Wire Kk 鋼線およびその製造方法ならびにばね
JP2004190116A (ja) * 2002-12-13 2004-07-08 Sumitomo Denko Steel Wire Kk ばね用鋼線
JP2004315968A (ja) * 2003-03-28 2004-11-11 Kobe Steel Ltd 加工性に優れた高強度ばね用鋼線および高強度ばね
JP2004315967A (ja) * 2003-03-28 2004-11-11 Kobe Steel Ltd 耐へたり性及び疲労特性に優れたばね用鋼
JP2005120479A (ja) * 2004-10-25 2005-05-12 Togo Seisakusho Corp 高強度ばねおよびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1930458A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007302950A (ja) * 2006-05-11 2007-11-22 Kobe Steel Ltd 耐へたり性に優れた高強度ばね用鋼線
CN112449654A (zh) * 2019-07-01 2021-03-05 住友电气工业株式会社 钢线和弹簧
CN112449654B (zh) * 2019-07-01 2022-07-08 住友电气工业株式会社 钢线和弹簧

Also Published As

Publication number Publication date
KR20080040697A (ko) 2008-05-08
US20090293998A1 (en) 2009-12-03
EP1930458A4 (en) 2015-04-29
EP1930458A1 (en) 2008-06-11
WO2007018048A8 (ja) 2008-06-12
JP2007063584A (ja) 2007-03-15

Similar Documents

Publication Publication Date Title
WO2007018048A1 (ja) オイルテンパー線およびその製造方法
JP2010163689A (ja) オイルテンパー線とその製造方法、及びばね
JP6461360B2 (ja) ばね用鋼線およびばね
CN100455691C (zh) 具有优异卷绕性和耐氢脆性的高强度弹簧钢丝
KR100968938B1 (ko) 고강도 스프링용 강 및 고강도 스프링용 열처리 강선
JP3595901B2 (ja) 高強度ばね用鋼線およびその製造方法
JP5200540B2 (ja) 高強度ばね用熱処理鋼
JP4868935B2 (ja) 耐へたり性に優れた高強度ばね用鋼線
WO2013146876A1 (ja) 耐熱へたり性に優れた高強度ステンレス鋼線、高強度ばね及びその製造方法
JP5812048B2 (ja) 焼入れ性および加工性に優れる高炭素熱延鋼板およびその製造方法
JP4478072B2 (ja) 高強度ばね用鋼
JP4486040B2 (ja) 冷間切断性と疲労特性に優れた冷間成形ばね用鋼線とその製造方法
JP3851095B2 (ja) 高強度ばね用熱処理鋼線
WO2007114491A1 (ja) 高強度ばね用熱処理鋼
JP2013082963A (ja) ボルト用鋼線及びボルト、並びにその製造方法
JP4357977B2 (ja) ばね用鋼線
JP6927427B2 (ja) 高炭素熱延鋼板およびその製造方法
JP4994932B2 (ja) オイルテンパー線及びオイルテンパー線の製造方法
JP2003213372A (ja) ばね用鋼線およびばね
JP2004315968A (ja) 加工性に優れた高強度ばね用鋼線および高強度ばね
JPWO2020158356A1 (ja) 高炭素熱延鋼板およびその製造方法
WO2017169481A1 (ja) 疲労特性に優れた鋼線、およびその製造方法
KR20100077250A (ko) 고강도 스프링강 및 스프링강선
JP6265048B2 (ja) 肌焼鋼
JP2004002994A (ja) 疲労強度および耐へたり性に優れた硬引きばね用鋼線並びに硬引きばね

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680028897.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020087002960

Country of ref document: KR

Ref document number: 2006781818

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11990028

Country of ref document: US