WO2017169481A1 - 疲労特性に優れた鋼線、およびその製造方法 - Google Patents

疲労特性に優れた鋼線、およびその製造方法 Download PDF

Info

Publication number
WO2017169481A1
WO2017169481A1 PCT/JP2017/007980 JP2017007980W WO2017169481A1 WO 2017169481 A1 WO2017169481 A1 WO 2017169481A1 JP 2017007980 W JP2017007980 W JP 2017007980W WO 2017169481 A1 WO2017169481 A1 WO 2017169481A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel wire
less
grain boundary
boundary oxide
oxide
Prior art date
Application number
PCT/JP2017/007980
Other languages
English (en)
French (fr)
Inventor
将 高山
智一 増田
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Publication of WO2017169481A1 publication Critical patent/WO2017169481A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present disclosure relates to a steel wire excellent in fatigue characteristics and a method for manufacturing the same.
  • Oil tempered wires used for automobile engine valve springs, suspension suspension springs, clutch springs, and the like have been increasingly strengthened for the purpose of weight reduction.
  • the oil temper wire is a steel wire obtained by quenching a drawn wire obtained by drawing from a temperature not lower than the Ac 3 transformation point and further tempering at a temperature of about 300 to 500 ° C.
  • Increasing the strength of the oil tempered wire can improve the fatigue strength and reduce the wire diameter.
  • the toughness decreases, so the wrinkle sensitivity increases, and small wrinkles cause a decrease in fatigue characteristics.
  • Patent Document 1 discloses that an existing flaw detector is used to reduce the noise signal caused by the material of the oil tempered wire and / or reduce the noise signal depending on the peeling of the scale.
  • An oil temper wire that enables detection of minute wrinkles is described.
  • the metal structure of the steel wire includes tempered martensite and spheroidized cementite containing Co distributed in the tempered martensite, and the coercive force of the steel wire is 38.0 Oe or more.
  • the oil tempered wire contains Co in the range of 0.05 to 3.00%.
  • Patent Document 2 contains both Cr in a range of 1.0% or more and a grain boundary oxide layer depth of 10 ⁇ m or less, thereby improving both sag resistance and defect resistance sensitivity.
  • a spring steel wire is described.
  • an oxide layer is positively formed on the surface of the steel wire by controlling the furnace atmosphere at the time of quenching and / or tempering, and the steel wire is formed by this oxide layer. It is described that the internal (grain boundary) oxidation is suppressed. It is described that a gas containing water vapor having a predetermined concentration or more can be used as the furnace atmosphere.
  • the heating temperature in the oil temper treatment is 960 ° C.
  • Patent Document 1 The oil tempered wire described in Patent Document 1 needs to contain expensive Co, which increases the cost. Moreover, in the said patent document 2, in order to make a grain boundary oxide layer thin, the furnace atmosphere at the time of quenching and / or tempering is controlled to the gas atmosphere containing water vapor
  • Embodiments of the present invention have been made in view of the above circumstances, and an object thereof is to provide a steel wire excellent in fatigue characteristics and a method for manufacturing the same.
  • the steel wire excellent in fatigue characteristics according to the embodiment of the present invention that has solved the above problems is, in mass%, C: 0.4 to 0.8%, Si: 0.01 to 3%, Mn : 0.3-2%, P: more than 0%, 0.05% or less, S: more than 0%, 0.05% or less, Cr: 0.05-2%, the balance being iron and inevitable impurities
  • the said steel wire may contain at least 1 sort (s) of arbitrary elements chosen from the group which consists of the following (a) and (b) by mass% as another element.
  • the manufacturing method of the said steel wire which concerns on embodiment of this invention which was able to solve the said subject, oxygen: more than 0 volume%, 10 volume% or less, and hydrogen:
  • the main point is that it includes a step of holding at 850 to 950 ° C. for 60 to 180 seconds in an atmosphere containing 10 to 80% by volume and the balance: nitrogen, and a step of quenching and tempering in this order.
  • the shape (angle and length in the depth direction) and the distribution state (interval between adjacent grain boundary oxides) of the grain boundary oxide existing on the surface of the steel wire are appropriately controlled. Therefore, the fatigue characteristics of the steel wire can be improved.
  • FIG. 1 is a schematic diagram showing the form of grain boundary oxide present on the surface of a steel wire.
  • FIG. 2 is a drawing-substituting photograph obtained by photographing a cross section perpendicular to the major axis direction of the steel wire.
  • FIG. 3 is another drawing substitute photograph in which a cross section perpendicular to the major axis direction of the steel wire is photographed.
  • the present inventors have intensively studied to improve the fatigue characteristics of steel wires. As a result, if a large number of fine grain boundary oxides having a predetermined angle and length in the depth direction are distributed on the surface of the steel wire, the stress applied to the steel wire at the time of rotational bending fatigue can be dispersed, resulting in less breakage. Thus, the present inventors have found that fatigue characteristics can be improved and completed the present invention. That is, the steel wire according to the embodiment of the present invention has a grain satisfying the following requirements (1) and (2) on the surface of the steel wire when a cross section perpendicular to the major axis direction of the steel wire is observed. It is characterized in that 40 or more field oxides exist per 20 ⁇ m length perpendicular to the long axis direction. (1) The angle between the tangent of the grain boundary oxide at the intersection of the grain boundary oxide and the surface of the steel wire and the surface of the steel wire is 60 to 120 °. (2) The length in the depth direction from the intersection is 0.05 to 1 ⁇ m.
  • the above grain boundary oxide is an oxide of grain boundaries, and the oxidation proceeds in the depth direction from the surface of the steel wire. Since the grain boundary oxidation portion appears black by observation with a field emission scanning electron microscope or the like, it can be clearly distinguished from a grain boundary that is not oxidized.
  • the grain boundary oxide which characterizes the steel wire which concerns on embodiment of this invention is demonstrated using the schematic diagram of FIG. 1, the form of a grain boundary oxide is not limited to FIG.
  • Fig. 1 shows a surface obtained by cutting a steel wire in a direction (lateral direction) perpendicular to the major axis direction and performing processing such as resin embedding, surface polishing, and etching, using a field emission scanning electron microscope.
  • FIG. 1 As shown in FIG. 1, two grain boundary oxides a and b having different shapes are present at a distance L on the surface S of the steel wire.
  • the grain boundary oxide a is generated in an arc shape in the depth direction from the intersection a1 with the surface S of the steel wire to the end a2 of the grain boundary oxide a.
  • the terminal a2 of the grain boundary oxide a is a position where the oxidation of the grain boundary proceeding from the surface S has stopped.
  • the length in the depth direction of the grain boundary oxide a is a linear distance connecting a1 and a2.
  • the tangent line a3 of the grain boundary oxide a is drawn with the intersection point a1 as a base point, the grain boundary oxide a is generated in the depth direction at an angle ⁇ a formed by the surface S and the tangent line a3.
  • the angle ⁇ a is sometimes referred to as “granular oxide generation angle” or simply “generation angle”.
  • the grain boundary oxide b is generated in an S shape in the depth direction from the intersection b1 with the surface S of the steel wire to the terminal b2 of the grain boundary oxide.
  • the length in the depth direction of the grain boundary oxide b is a linear distance connecting b1 and b2.
  • the grain boundary oxide b is at an angle ⁇ b (granular oxide generation angle or generation angle) formed by the surface S and the tangent line b3. It is generated in the depth direction.
  • Formation angle of grain boundary oxide 60 to 120 °
  • the generation angle of the grain boundary oxide corresponds to ⁇ a and ⁇ b in FIG.
  • the acute angle side is expressed as grain boundary oxide generation angles ⁇ a and ⁇ b, but the obtuse angle side may be set as grain boundary oxide generation angles ⁇ a and ⁇ b.
  • the generation angle of the grain boundary oxide needs to satisfy 60 to 120 °.
  • the grain boundary oxide having the generation angle of less than 60 ° or exceeding 120 ° is generated substantially along the surface S of the steel wire. Therefore, when stress is applied to the steel wire containing such a grain boundary oxide. A sharp crack is generated starting from the grain boundary oxide, and peeling and crack propagation are promoted. As a result, fatigue characteristics cannot be improved. Therefore, in the embodiment of the present invention, a grain boundary oxide having a generation angle of 60 to 120 ° is measured.
  • the length in the depth direction of the grain boundary oxide means the distance connecting the intersection a1 and the end a2 of the grain boundary oxide in the grain boundary oxide a in FIG. It means the distance connecting the intersection b1 and the end b2 of the grain boundary oxide.
  • the depth direction length of the grain boundary oxide needs to satisfy 0.05 to 1 ⁇ m.
  • the grain boundary oxide having a length in the depth direction of less than 0.05 ⁇ m hardly contributes to the dispersion of the stress, so that the progress of cracks cannot be suppressed and the fatigue characteristics cannot be improved. Therefore, in the embodiment of the present invention, a grain boundary oxide having a depth direction length of 0.05 ⁇ m or more is a measurement object.
  • a grain boundary oxide having a length in the depth direction exceeding 1 ⁇ m is generated, cracks are likely to progress, and fatigue characteristics are deteriorated. Therefore, in the embodiment of the present invention, a grain boundary oxide having a depth direction length of 1 ⁇ m or less is set as a measurement object.
  • the maximum value in the depth direction of the grain boundary oxide satisfying the generation angle of 60 to 120 ° is preferably 1 ⁇ m or less. Fatigue properties are further improved by the fact that the length in the depth direction of all the grain boundary oxides existing on the surface of the steel wire and satisfying the generation angle of 60 to 120 ° is 1 ⁇ m or less.
  • the maximum value in the depth direction is more preferably 0.9 ⁇ m or less, and still more preferably 0.8 ⁇ m or less.
  • the number of grain boundary oxides satisfying the above requirements (1) and (2) among the grain boundary oxides existing on the surface of the steel wire (after the polishing treatment) in a predetermined observation region (Hereinafter, it may be referred to as the corresponding number.)
  • the corresponding number When measured and converted per 20 ⁇ m length of the steel wire surface, it is necessary to satisfy 40 or more. If the number is less than 40, the abundance of grain boundary oxides that satisfy the above requirements decreases, so that fatigue characteristics cannot be improved.
  • the number is preferably 41 or more, more preferably 43 or more.
  • the upper limit of the number is not particularly limited, and the larger the number, the denser the grain boundary oxide is generated, the stress is dispersed, and the fatigue characteristics are improved.
  • the number is preferably 62 or less, more preferably 58 or less.
  • the number of grain boundary oxides that does not satisfy at least one of the above requirements (1) or (2) is preferably 5 or less per 20 ⁇ m length of the steel wire surface. Even if the number of hits satisfies the above requirements, if the number of hits not corresponding increases, the fatigue characteristics may deteriorate.
  • the number is preferably 3 or less, more preferably 0.
  • FIG. 2 shows a drawing-substituting photograph of a test piece containing a grain boundary oxide that satisfies the requirements (1) and (2) above. 2 shows No. 1 shown in Table 2 of Examples described later. It is the photograph which image
  • An example of a drawing-substituting photograph obtained by photographing the test piece is shown in FIG. 3 shows No. 1 shown in Table 2 of Examples described later. It is the photograph which image
  • FIGS. 2 and 3 are photographs substituted for drawings taken with a field emission scanning electron microscope by cutting a steel wire perpendicularly to the long axis direction, embedding it in a resin, polishing and corroding the cut surface.
  • FIG. 2 is a photograph taken at a magnification of 15000
  • FIG. 3 is a photograph taken at a magnification of 5000.
  • A indicates the steel wire
  • S indicates the surface of the steel wire.
  • the grain boundary oxide is observed as a black linear object near the surface of the steel wire. Yes.
  • eleven fine grain boundary oxides are generated from the surface S of the steel wire in the depth direction, as indicated by arrows in the drawing.
  • the formation angle of 11 grain boundary oxides is 60 to 116 °
  • the length in the depth direction is 0.3 to 0.8 ⁇ m
  • the grain boundary oxides satisfying the above requirements (1) and (2) When the number was converted into a steel wire surface length of 20 ⁇ m, it was 41.
  • the number of grain boundary oxides not satisfying at least one of the above (1) or (2) was converted to a steel wire surface length of 20 ⁇ m, the number was 0.
  • grain boundary oxides are generated in the depth direction from the surface of the steel wire, and also along the surface of the steel wire. In addition, it is also generated in a substantially horizontal direction of the photograph. As indicated by arrows in the figure, there were 23 grain boundary oxides.
  • the formation angle of the grain boundary oxide is 18 to 177 °
  • the length in the depth direction is 1 to 5 ⁇ m
  • the number of grain boundary oxides satisfying the requirements (1) and (2) is determined as the surface of the steel wire. When converted to a length of 20 ⁇ m, there was one.
  • the number of grain boundary oxides not satisfying at least one of the above (1) or (2) was converted to a steel wire surface length of 20 ⁇ m, it was 42.
  • % means mass%.
  • the C is an element necessary for increasing the strength of the steel wire, and in the embodiment of the present invention, the C content is 0.4% or more.
  • the amount of C is preferably 0.55% or more, more preferably 0.60% or more.
  • the C content increases, the strength of the steel wire improves.
  • the amount of C is excessive, a large amount of coarse cementite is precipitated, which adversely affects the processability to the spring shape and the characteristics of the spring. Therefore, in the embodiment of the present invention, the C amount is 0.8% or less.
  • the amount of C is preferably 0.75% or less, more preferably 0.7% or less.
  • the Si is an element necessary to improve the strength of the steel wire while acting as a deoxidizer.
  • the Si amount is set to 0.01% or more.
  • the amount of Si is preferably 0.1% or more, more preferably 0.15% or more.
  • the Si amount is 3% or less.
  • the amount of Si is preferably 2.8% or less, more preferably 2.6% or less.
  • Mn is an element that acts as a deoxidizer and fixes S in steel as MnS.
  • Mn is an element that enhances hardenability and contributes to improving the strength of the steel wire.
  • the amount of Mn is 0.3% or more.
  • the amount of Mn is preferably 0.4% or more, more preferably 0.5% or more.
  • the Mn amount is 2% or less.
  • the amount of Mn is preferably 1.9% or less, more preferably 1.8% or less.
  • the P amount is 0.05% or less.
  • the amount of P is preferably 0.03% or less, more preferably 0.025% or less.
  • the amount of P is preferably as small as possible, but is usually about 0.001%.
  • the S amount is 0.05% or less.
  • the amount of S is preferably 0.03% or less, more preferably 0.025% or less.
  • the amount of S is preferably as small as possible, but is usually about 0.001%.
  • Cr is an element that improves hardenability and improves the strength of the steel wire. Cr is an element having an action of reducing the activity of C and preventing decarburization during rolling or heat treatment. In order to exhibit these effects, the Cr content is 0.05% or more.
  • the amount of Cr is preferably 0.10% or more, more preferably 0.2% or more. However, when the amount of Cr becomes excessive, Cr-based alloy carbide increases and the fatigue characteristics of the steel wire deteriorate. Therefore, in the embodiment of the present invention, the Cr amount is 2% or less. The amount of Cr is preferably 1.9% or less, more preferably 1.8% or less.
  • the basic components of the steel wire according to the embodiment of the present invention are as described above, and the balance is iron and inevitable impurities.
  • As an inevitable impurity mixing of elements brought in depending on the situation of raw materials, materials, manufacturing facilities, etc. is allowed within a range that does not impair the effects of the present invention.
  • the steel wire is still another element, (A) Mo: more than 0%, 1% or less, Cu: more than 0%, 1% or less, Ni: more than 0%, 1% or less selected from the group consisting of 1% or less, (B) Ti: more than 0%, 0.2% or less, Nb: more than 0%, 0.5% or less, V: more than 0%, 1% or less, B: more than 0%, 0.01% or less At least one selected from the group, Etc. may be contained.
  • (A) Mo, Cu, and Ni are all effective elements for increasing the strength of the steel wire, and can be used alone or in combination of two or more.
  • Mo is an element that has the effect of increasing the strength of the steel wire, in particular, the softening resistance, and contributes to the improvement of the strength of the spring by causing secondary precipitation hardening during strain relief annealing after forming into a spring shape.
  • the Mo amount is preferably 0.05% or more, and more preferably 0.08% or more.
  • the Mo amount is preferably 1% or less, more preferably 0.97% or less, and still more preferably 0.95% or less.
  • Cu is preferably 0.05% or more.
  • the amount of Cu is more preferably 0.1% or more.
  • the amount of Cu is preferably 1% or less.
  • the amount of Cu is more preferably 0.8% or less, still more preferably 0.6% or less.
  • Ni is an element that works effectively to increase the strength of the steel wire as well as the toughness of the steel wire.
  • the Ni content is preferably 0.05% or more.
  • the amount of Ni is more preferably 0.10% or more.
  • the amount of Ni is preferably 1% or less.
  • the amount of Ni is more preferably 0.8% or less, and still more preferably 0.6% or less.
  • Ti, Nb, V, and B are all elements that improve the ductility and toughness of the steel wire, and can be used alone or in combination of two or more.
  • Ti is an element having an effect of refining crystal grains during hot rolling and quenching and tempering treatment, and inclusion of Ti improves ductility and toughness.
  • the Ti content is preferably 0.03% or more.
  • the amount of Ti is more preferably 0.06% or more.
  • the Ti amount is preferably 0.2% or less.
  • the amount of Ti is more preferably 0.18% or less, and still more preferably 0.16% or less.
  • Nb is an element having an effect of refining crystal grains at the time of hot rolling and quenching and tempering treatment, like Ti, and ductility and toughness are improved by containing Nb.
  • the Nb content is preferably 0.01% or more.
  • the Nb amount is more preferably 0.05% or more.
  • the Nb amount is preferably 0.5% or less.
  • the amount of Nb is more preferably 0.45% or less, still more preferably 0.40% or less.
  • V like Ti
  • V is an element having an effect of refining crystal grains during hot rolling and quenching and tempering treatment.
  • ductility and toughness are improved.
  • V is an element that effectively contributes to increasing the strength of the spring by causing secondary precipitation hardening during strain relief annealing after forming into a spring shape.
  • the V amount is preferably 0.05% or more.
  • the amount of V is more preferably 0.1% or more, and still more preferably 0.2% or more.
  • the V amount is preferably 1% or less.
  • the amount of V is more preferably 0.95% or less, still more preferably 0.90% or less.
  • the B content is preferably 0.001% or more.
  • the amount of B is more preferably 0.002% or more, and still more preferably 0.003% or more.
  • the B content is preferably 0.01% or less.
  • the amount of B is more preferably 0.008% or less, and still more preferably 0.006% or less.
  • a wire drawing material satisfying the above component composition contains oxygen: more than 0% by volume, 10% by volume or less, and hydrogen: 10-80% by volume, and the balance: 850-950 in an atmosphere consisting of nitrogen. It can be produced by including a step of holding at 60 ° C. for 60 to 180 seconds and a step of quenching and tempering in this order. That is, when quenching and tempering a drawn wire obtained by drawing a wire, it is important to heat-treat under a predetermined condition and then quench and temper. In the following, description will be given in order.
  • the wire drawing material satisfying the above component composition is heated and held in a predetermined atmosphere.
  • the wire drawing material only needs to be manufactured according to a conventional method, for example, melting steel satisfying the above component composition, hot rolling the obtained steel slab, and softening annealing the obtained rolling material It can be manufactured by drawing after skinning.
  • Heating atmosphere When heated to the austenitizing temperature, an iron oxide scale is formed on the surface of the steel wire. In spring steel containing a large amount of Si, Si oxide is present between the iron oxide scale and the base material. And a dense iron oxide scale is not generated. As a result, it becomes difficult to produce a grain boundary oxide that satisfies the above-mentioned requirements (1) and (2) on the surface of the steel wire. Then, when it examined in order to produce
  • Oxygen reacts with iron to form an iron oxide scale and has a function of helping the growth accompanying higher order of the iron oxide scale. Moreover, a grain boundary oxide produces
  • oxygen is preferably 0.1% by volume or more, more preferably 0.3% by volume or more, and still more preferably 0.5% by volume or more. However, if the oxygen content exceeds 10% by volume, the formation of grain boundary oxides is promoted too much, so that the fatigue characteristics are deteriorated. Therefore, in the embodiment of the present invention, oxygen is preferably 10% by volume or less. More preferably, oxygen is 9 volume% or less, More preferably, it is 8 volume% or less.
  • hydrogen is preferably 10% by volume or more, more preferably 20% by volume or more, and still more preferably 30% by volume or more.
  • hydrogen is preferably 80% by volume or less, more preferably 70% by volume or less, and still more preferably 60% by volume or less.
  • the remaining part of the heating atmosphere may be nitrogen. If hydrogen and oxygen are in the proper ranges, the remaining atmosphere does not affect the generation of the iron oxide scale in the proper range.
  • the heating temperature is preferably 850 ° C. or higher in order to suppress decarburization of the steel wire.
  • the heating temperature is more preferably 865 ° C. or higher, and further preferably 880 ° C. or higher. The higher the heating temperature is, the more grain boundary oxide is generated.
  • the heating temperature is preferably 950 ° C. or lower.
  • the heating temperature is more preferably 940 ° C. or less, and further preferably 930 ° C. or less.
  • the holding time is preferably 60 seconds or more, more preferably 70 seconds or more, and further preferably 80 seconds or more. However, if the holding time exceeds 180 seconds, the grain boundary oxide may grow too much, and the fatigue characteristics may deteriorate instead. Therefore, in the embodiment of the present invention, the holding time is preferably 180 seconds or less. The holding time is more preferably 160 seconds or less, and still more preferably 140 seconds or less.
  • the heating method up to the heating temperature is not particularly limited.
  • a commonly used heating method such as gas heating or high-frequency heating can be employed.
  • quenching and tempering After holding at the heating temperature for a predetermined time, quenching and tempering may be performed under conditions generally used for heat treatment of spring steel wires.
  • quenching for example, water quenching or oil quenching may be performed.
  • the oil temperature at the time of oil quenching may be 40 to 80 ° C., for example.
  • the tempering may be performed by a conventional method in consideration of the mechanical characteristics of the spring steel wire after tempering by a method such as heating by gas, heating by high frequency or heating by a fluidized bed.
  • the tempering temperature may be, for example, 250 to 550 ° C.
  • the tempering time may be, for example, 5 to 30 minutes.
  • the obtained spring steel wire may be spring-formed (coiled) to give compressive residual stress.
  • the reason why the compressive residual stress is applied is to improve the fatigue characteristics of the spring.
  • Examples of compressive residual stress applying means include shot peening. Shot peening is desirably performed in two or more stages (particularly in two stages) rather than one stage. By performing shot peening in two stages, the surface compressive residual stress can be increased, and the applied depth of the compressive residual stress can be increased.
  • the spring may be nitrided as necessary. By performing the nitriding treatment, it is possible to improve the sag resistance of the spring.
  • the nitriding treatment may be performed, for example, by heating at a temperature of about 400 to 450 ° C. for about 2 to 4 hours in an atmosphere containing about 70 to 90% by volume of NH 3 and about 10 to 30% by volume of N 2. .
  • a spring used for a restoring mechanism of a machine such as a valve spring of an automobile engine, a suspension spring of a suspension, a clutch spring and a brake spring. Is particularly useful.
  • the component composition shown in the following Table 1 was satisfied, the balance was made of steel consisting of iron and inevitable impurities, and the resulting steel slab was hot rolled to produce a rolled material having a diameter of 8.0 mm.
  • the obtained rolled material was softened and annealed, and after skinning, it was drawn to produce a steel wire having a diameter of 4.0 mm.
  • the obtained steel wire was heat-treated under the conditions shown in Table 2 below, and then quenched and tempered.
  • the heat treatment was performed by heating to the austenitizing temperature (° C.) shown in the following Table 2 under the atmospheric conditions shown in the following Table 2 and holding at this temperature for the time shown in the following Table 2.
  • the oil temperature was 70 ° C.
  • the tempering temperature was 450 ° C. for 10 minutes.
  • the steel wire obtained by quenching and tempering was cut in a direction perpendicular to the major axis direction (transverse direction), embedded in resin, the surface was polished, etched with a nital etchant, and a field emission scanning electron microscope (Observation was performed with a Field Emission-Scanning Electron Microscope (FE-SEM) at a magnification of 15000 times.
  • FE-SEM Field Emission-Scanning Electron Microscope
  • the formation angle of the grain boundary oxide and the length in the depth direction were measured by the procedure described above.
  • the fatigue characteristics of the steel wire obtained by quenching and tempering were evaluated.
  • the fatigue characteristics were evaluated based on the number of times until the fracture occurred after performing a fatigue test under the conditions shown below with a Nakamura rotary bending fatigue tester using the steel wire.
  • the measurement results are shown in Table 2 below.
  • the fatigue test was performed up to 20 million times or the test piece was broken.
  • Test piece length 600 mm Number of test pieces: 20 Test load: 95.8 kgf / mm 2 (940 MPa) Rotation speed: 4500 rpm Number of test suspension: 20 million times
  • test pieces were evaluated as having excellent fatigue characteristics when the test was not broken up to 20 million times, which was the number of test suspensions. On the other hand, even if one of the test pieces broke up to 20 million times, which is the number of times the test was stopped, the test was rejected.
  • No. 2 to 6, 9 to 11, 14, and 17 to 20 are all examples satisfying the requirements defined in the embodiment of the present invention, and the composition of the components and the form of the grain boundary oxide existing on the surface of the steel wire. Because of proper control, it has excellent fatigue properties.
  • No. Nos. 1, 7, 8, 12, 13, 15, and 16 are examples that do not satisfy the requirements defined in the embodiment of the present invention, and the fatigue characteristics could not be improved.
  • No. No. 1 is an example in which no grain boundary oxide was generated on the surface of the steel wire because the austenitizing temperature during heat treatment was low. As a result, it broke at 2 million times and could not improve the fatigue characteristics.
  • No. No. 7 is an example in which the austenitizing temperature during the heat treatment was high, so that the grain boundary oxide grew excessively, and the grain boundary oxide satisfying the requirements (1) and (2) was hardly generated. As a result, it broke at 3 million times and could not improve the fatigue characteristics.
  • No. No. 8 is an example in which no grain boundary oxide was generated on the surface of the steel wire because the holding time during heat treatment was short. As a result, it broke at 5 million times, and the fatigue characteristics could not be improved.
  • No. No. 12 is an example in which since the holding time during the heat treatment was long, the grain boundary oxide grew excessively, and no grain boundary oxide satisfying the requirements (1) and (2) was generated. As a result, it broke at 2 million times and could not improve the fatigue characteristics.
  • No. No. 13 is an example in which the H 2 concentration at the time of heat treatment was too low, so that the iron on the surface of the steel wire was not reduced and the grain boundary oxide satisfying the requirements (1) and (2) was not generated. As a result, it broke at 3 million times and could not improve the fatigue characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

質量%で、C:0.4~0.8%、Si:0.01~3%、Mn:0.3~2%、P:0%超、0.05%以下、S:0%超、0.05%以下、Cr:0.05~2%を含有し、残部が鉄および不可避不純物からなる鋼線であって、前記鋼線の長軸方向に垂直な断面を観察したときに、前記鋼線の表面には、下記(1)および(2)の要件を満足する粒界酸化物が、長軸方向に垂直な長さ20μmあたり40本以上存在することを特徴とする疲労特性に優れた鋼線である。 (1)前記粒界酸化物と前記鋼線の表面との交点における前記粒界酸化物の接線と、前記鋼線の表面とのなす角度が60~120°である。 (2)前記交点からの深さ方向長さが0.05~1μmである。

Description

疲労特性に優れた鋼線、およびその製造方法
 本開示は、疲労特性に優れた鋼線、およびその製造方法に関する。
 自動車エンジンの弁ばね、サスペンションの懸架ばねおよびクラッチばねなどに用いられるオイルテンパー線は、軽量化を目的として、高強度化が益々進んでいる。オイルテンパー線とは、伸線して得られた伸線材をAc変態点以上の温度から焼入れ、さらに300~500℃程度の温度で焼戻した鋼線である。オイルテンパー線を高強度化すると、疲労強度が向上して線径を細くできる反面、靱性が低下するため、疵感受性が高くなり、小さな疵が疲労特性を低下させる原因となる。
 そこで、特許文献1には、オイルテンパー線の材料に起因するノイズ信号を低減し、および/または、スケールの剥離に依存するノイズ信号を低減することで、既存の探傷器を用いて30μm程度の微小な疵の検出を可能にしたオイルテンパー線が記載されている。このオイルテンパー線は、鋼線の金属組織が、焼戻しマルテンサイトと、該焼戻しマルテンサイト中に分布したCoを含有する球状化セメンタイトを含み、該鋼線の保磁力は38.0Oe以上である。上記オイルテンパー線は、Coを0.05~3.00%の範囲で含有している。
 また、特許文献2には、Crを1.0%以上の範囲で含有し、かつ粒界酸化層深さを10μm以下とすることで、耐へたり性と、耐欠陥感受性との両方を向上したばね用鋼線が記載されている。この特許文献2には、粒界酸化層を薄くするために、焼入れ時及び/又は焼戻し時の炉雰囲気を制御して積極的に鋼線表面に酸化層を形成し、この酸化層によって鋼線内部(粒界)の酸化を抑制することが記載されている。炉の雰囲気としては、所定濃度以上の水蒸気を含むガスを使用できることが記載されている。また、実施例では、オイルテンパー処理における加熱温度を960℃としている。
特開2007-308785号公報 特開2004-300481号公報
 上記特許文献1に記載されているオイルテンパー線は、高価なCoを含有する必要があり、コスト高となる。また、上記特許文献2では、粒界酸化層を薄くするために、焼入れ時及び/又は焼戻し時の炉内雰囲気を所定濃度以上の水蒸気を含むガス雰囲気に制御してオイルテンパー処理を行っているが、疲労特性向上の観点から改善の余地があった。
 本発明の実施形態は上記事情に鑑みてなされたものであって、その目的は、疲労特性に優れた鋼線、およびその製造方法を提供することにある。
 上記課題を解決することのできた本発明の実施形態に係る疲労特性に優れた鋼線とは、質量%で、C:0.4~0.8%、Si:0.01~3%、Mn:0.3~2%、P:0%超、0.05%以下、S:0%超、0.05%以下、Cr:0.05~2%を含有し、残部が鉄および不可避不純物からなる鋼線であって、前記鋼線の長軸方向に垂直な断面を観察したときに、前記鋼線の表面には、下記(1)および(2)の要件を満足する粒界酸化物が、長軸方向に垂直な長さ20μmあたり40本以上存在する点に要旨を有する。
(1)前記粒界酸化物と前記鋼線の表面との交点における前記粒界酸化物の接線と、前記鋼線の表面とのなす角度が60~120°である。
(2)前記交点からの深さ方向長さが0.05~1μmである。
 上記鋼線は、更に他の元素として、質量%で、下記(a)および(b)よりなる群から選ばれる任意の元素を少なくとも1種含有してもよい。
(a)Mo:0%超、1%以下、Cu:0%超、1%以下、およびNi:0%超、1%以下よりなる群から選ばれる少なくとも1種。
(b)Ti:0%超、0.2%以下、Nb:0%超、0.5%以下、V:0%超、1%以下、およびB:0%超、0.01%以下よりなる群から選ばれる少なくとも1種。
 また、上記課題を解決することのできた本発明の実施形態に係る上記鋼線の製造方法は、上記成分組成を満足する伸線材を、酸素:0体積%超、10体積%以下、および水素:10~80体積%を含有し、残部:窒素からなる雰囲気で、850~950℃で、60~180秒間保持する工程と、焼入れ焼戻しする工程と、をこの順で含む点に要旨を有する。
 本発明の実施形態によれば、鋼線の表面に存在する粒界酸化物の形状(角度および深さ方向長さ)および分布状態(隣接する粒界酸化物の間隔)を適切に制御しているため、鋼線の疲労特性を改善できる。
図1は、鋼線の表面に存在する粒界酸化物の形態を示した模式図である。 図2は、鋼線の長軸方向に垂直な断面を撮影した図面代用写真である。 図3は、鋼線の長軸方向に垂直な断面を撮影した他の図面代用写真である。
 本発明者らは、鋼線の疲労特性を向上させるために鋭意検討を重ねてきた。その結果、鋼線の表面に、所定の角度および深さ方向長さを有する微細な粒界酸化物を多数分布させれば、回転曲げ疲労時に鋼線にかかる応力を分散できる結果、破断しにくくなり、疲労特性を向上できることを見出し、本発明を完成した。即ち、本発明の実施形態に係る鋼線は、該鋼線の長軸方向に垂直な断面を観察したとき、前記鋼線の表面に、下記(1)および(2)の要件を満足する粒界酸化物が、長軸方向に垂直な長さ20μmあたり40本以上存在する点に特徴がある。
(1)前記粒界酸化物と前記鋼線の表面との交点における前記粒界酸化物の接線と、前記鋼線の表面とのなす角度が60~120°である。
(2)前記交点からの深さ方向長さが0.05~1μmである。
 上記粒界酸化物とは粒界が酸化したものであり、酸化は、鋼線の表面から深さ方向に進行する。粒界酸化部分は電界放射型走査電子顕微鏡観察などで黒く見えるため、酸化されていない粒界と明確に区別できる。以下、本発明の実施形態に係る鋼線を特徴づける粒界酸化物について、図1の模式図を用いて説明するが、粒界酸化物の形態は図1に限定されない。
 図1は、鋼線の長軸方向に対して垂直な方向(横方向)に切断し、樹脂埋め込み、表面研磨、エッチングなどの処理を行なって得られた表面を電界放射型走査電子顕微鏡で観察した模式図である。図1に示すように鋼線の表面Sには、形状の異なる二つの粒界酸化物a、bが、間隔Lをあけて存在している。
 詳細には粒界酸化物aは、鋼線の表面Sとの交点a1から、粒界酸化物aの末端a2まで、深さ方向に向かって弧状に生成している。ここで粒界酸化物aの末端a2とは、表面Sから進行した粒界の酸化が停止した位置である。粒界酸化物aの深さ方向長さは、a1とa2を結ぶ直線距離である。また交点a1を基点として粒界酸化物aの接線a3を引いたとき、粒界酸化物aは、表面Sと接線a3とのなす角度θaで深さ方向に生成している。以下では、上記角度θaを「粒界酸化物の生成角度」、または単に「生成角度」ということがある。
 一方、粒界酸化物bは、鋼線の表面Sとの交点b1から、粒界酸化物の末端b2まで、深さ方向に向かってS字状に生成している。粒界酸化物bの深さ方向長さは、b1とb2を結ぶ直線距離である。また交点b1を基点として粒界酸化物bの接線b3を引いたとき、粒界酸化物bは、表面Sと接線b3とのなす角度θb(粒界酸化物の生成角度、または生成角度)で深さ方向に生成している。
 (1)粒界酸化物の生成角度:60~120°
 上述したとおり粒界酸化物の生成角度は、図1中、θa、θbに相当する。なお、図1では鋭角側を粒界酸化物の生成角度θa、θbと表記したが、鈍角側を粒界酸化物の生成角度θa、θbとしてもよい。
 本発明の実施形態では、粒界酸化物の生成角度が60~120°を満足する必要がある。上記生成角度が60°未満であるか、120°を超える粒界酸化物は、鋼線の表面Sに略沿って生成するため、このような粒界酸化物を含む鋼線に応力がかかると、当該粒界酸化物が起点となって鋭利な亀裂が生成し、剥離および亀裂進展が助長される。その結果、疲労特性を改善できない。従って本発明の実施形態では、生成角度が60~120°の粒界酸化物を測定対象とする。
 (2)深さ方向長さ:0.05~1μm
 上述したとおり粒界酸化物の深さ方向長さは、図1中、粒界酸化物aでは交点a1と粒界酸化物の末端a2とを結んだ距離を意味し、粒界酸化物bでは交点b1と粒界酸化物の末端b2とを結んだ距離を意味する。
 本発明の実施形態では、粒界酸化物の深さ方向長さが0.05~1μmを満足する必要がある。上記深さ方向長さが0.05μm未満の粒界酸化物は、応力の分散にほとんど寄与しないため、亀裂の進展を抑制できず、疲労特性を改善できない。従って本発明の実施形態では、深さ方向長さが0.05μm以上の粒界酸化物を測定対象とする。しかし、深さ方向長さが1μmを超える粒界酸化物が生成すると、亀裂が進展しやすくなり、却って疲労特性が劣化する。従って本発明の実施形態では、深さ方向長さが1μm以下の粒界酸化物を測定対象とする。
 上記鋼線の長軸方向に垂直な断面を観察したとき、上記生成角度が60~120°を満足する粒界酸化物の深さ方向長さの最大値は、1μm以下が好ましい。鋼線の表面に存在し、上記生成角度が60~120°を満足する全ての粒界酸化物の深さ方向長さが1μm以下であることにより、疲労特性が一層改善される。上記深さ方向長さの最大値は、より好ましくは0.9μm以下、更に好ましくは0.8μm以下である。
 (3)上記(1)および(2)の要件を満足する粒界酸化物が、鋼線の長軸方向に垂直な長さ20μmあたり40本以上
 鋼線の長軸方向に垂直な長さとは、鋼線の長軸方向に垂直な断面を観察したときの鋼線表面の長さを意味する。図1では、鋼線の表面Sの長さである。
 本発明の実施形態では、所定の観察領域の鋼線表面(研磨処理後のもの)に存在する粒界酸化物のうち上記(1)および(2)の要件を満足する粒界酸化物の本数(以下、該当本数ということがある。)を測定し、鋼線表面の長さ20μmあたりに換算したとき、40本以上を満足する必要がある。上記本数が40本を下回ると、上記要件を満足する粒界酸化物の存在量が少なくなるため、疲労特性を改善できない。上記本数は、好ましくは41本以上、より好ましくは43本以上である。上記本数の上限は特に限定されず、本数が多くなるほど、粒界酸化物が密に生成し、応力が分散され、疲労特性が向上する。しかし、粒界酸化物の本数を増やすには、雰囲気および温度など製造条件を一層厳密に制御する必要があり、コスト高となる。従って本発明の実施形態では、上記本数は62本以下が好ましく、より好ましくは58本以下である。
 上記(1)または(2)の少なくとも一方の要件を満足しない粒界酸化物の本数(以下、非該当本数ということがある。)は、鋼線表面の長さ20μmあたり、5本以下が好ましい。該当本数が上記要件を満足しても、非該当本数が多くなると、疲労特性が劣化することがある。上記本数は、好ましくは3本以下、より好ましくは0本である。
 参考のため、図2に、上記(1)および(2)の要件を満足する粒界酸化物を含む試験片を撮影した図面代用写真を示す。図2は、後記する実施例の表2に示したNo.4のサンプルを撮影した写真である。更に比較のため、上記(1)および(2)の要件を満足する粒界酸化物の生成量が少なく、上記(1)および(2)の要件を満足しない粒界酸化物の生成量が多い試験片を撮影した図面代用写真の一例を図3に示す。図3は、後記する実施例の表2に示したNo.7のサンプルを撮影した写真である。
 図2、図3は、鋼線を長軸方向に垂直に切断し、樹脂に埋め込み、切断面を研磨、腐食し、電界放射型走査電子顕微鏡で撮影した図面代用写真である。図2は、倍率15000倍、図3は、倍率5000倍で撮影した写真である。図2、図3において、Aは鋼線、Sは鋼線の表面を示しており、図2、図3では、粒界酸化物は、鋼線の表面近傍に黒い線状物として観察されている。
 図2に示した試験片には、図中に矢印で示すように、微細な粒界酸化物が11本、鋼線の表面Sから深さ方向に向かって生成している。11本の粒界酸化物の生成角度は60~116°、深さ方向長さは0.3~0.8μmであり、上記(1)および(2)の要件を満足する粒界酸化物の本数を、鋼線の表面長さ20μmに換算すると、41本であった。なお、上記(1)または(2)の少なくとも一方を満足しない粒界酸化物の本数を、鋼線の表面長さ20μmに換算すると、0本であった。
 一方、図3に示した試験片には、図中に矢印で示すように、鋼線の表面から深さ方向に向かって粒界酸化物が生成しているほか、鋼線の表面に沿うように、写真の略横方向にも生成している。図中に矢印で示すように、粒界酸化物は23本であった。粒界酸化物の生成角度は18~177°、深さ方向長さは1~5μmであり、上記(1)および(2)の要件を満足する粒界酸化物の本数を、鋼線の表面長さ20μmに換算すると、1本であった。なお、上記(1)または(2)の少なくとも一方を満足しない粒界酸化物の本数を、鋼線の表面長さ20μmに換算すると、42本であった。
 上記図2に示すように、鋼線の表面に、微細な粒界酸化物を密に分布させると、疲労特性を改善できるのに対し、上記図3に示すように、粒界酸化物の生成領域が、鋼線の表面から深い範囲までになると、疲労特性を改善できなくなる。
 以上、本発明の実施形態を特徴づける粒界酸化物の形態について説明した。
 次に、上記鋼線の成分組成について説明する。以下、%は、質量%を意味する。
 Cは、鋼線の強度を高めるために必要な元素であり、本発明の実施形態では、C量は、0.4%以上とする。C量は、好ましくは0.55%以上、より好ましくは0.60%以上である。C量の増加に伴って鋼線の強度は向上する。しかし、C量が過剰になると粗大セメンタイトを多量に析出し、ばね形状への加工性、およびばねの特性に悪影響を及ぼす。従って本発明の実施形態では、C量は0.8%以下とする。C量は、好ましくは0.75%以下、より好ましくは0.7%以下である。
 Siは、脱酸剤として作用すると共に、鋼線の強度向上に必要な元素である。こうした効果を発揮させるために、Si量は0.01%以上とする。Si量は、好ましくは0.1%以上、より好ましくは0.15%以上である。しかしSi量が過剰になると、鋼線を硬化させるだけでなく、延性および靱性が低下する。また、圧延時に線材表面の脱炭が進行し、疲労特性を低下させることがある。従って本発明の実施形態では、Si量は3%以下とする。Si量は、好ましくは2.8%以下、より好ましくは2.6%以下である。
 Mnは、脱酸剤として作用すると共に、鋼中のSをMnSとして固定する元素である。また、Mnは、焼入れ性を高めて鋼線の強度向上に寄与する元素である。こうした効果を発揮させるために、Mn量は0.3%以上とする。Mn量は、好ましくは0.4%以上、より好ましくは0.5%以上である。しかし、Mn量が過剰になると、焼入れ性が過度に向上するため、圧延時にマルテンサイトおよびベイナイト等の過冷組織が生成しやすくなり、冷却後の圧延材に割れが発生し、あるいは伸線中に割れが発生する。従って本発明の実施形態では、Mn量は2%以下とする。Mn量は、好ましくは1.9%以下、より好ましくは1.8%以下である。
 Pは、旧オーステナイト粒界に偏析し、金属組織を脆化させ、疲労特性を低下する元素である。従って本発明の実施形態では、P量は0.05%以下とする。P量は、好ましくは0.03%以下、より好ましくは0.025%以下である。P量は、できるだけ少ない方が好ましいが、通常、0.001%程度含有する。
 Sは、Pと同様、旧オーステナイト粒界に偏析し、金属組織を脆化させ、疲労特性を低下する元素である。従って本発明の実施形態では、S量は0.05%以下とする。S量は、好ましくは0.03%以下、より好ましくは0.025%以下である。S量は、できるだけ少ない方が好ましいが、通常、0.001%程度含有する。
 Crは、焼入れ性を向上させて鋼線の強度を向上させる元素である。またCrは、Cの活量を低下させて圧延時または熱処理時の脱炭を防止する作用を有する元素である。こうした効果を発揮させるために、Cr量は0.05%以上とする。Cr量は、好ましくは0.10%以上、より好ましくは0.2%以上である。しかしCr量が過剰になると、Cr系合金炭化物が増加し、鋼線の疲労特性が低下する。従って本発明の実施形態では、Cr量は2%以下とする。Cr量は、好ましくは1.9%以下、より好ましくは1.8%以下である。
 本発明の実施形態に係る鋼線の基本成分は上記の通りであり、残部は、鉄および不可避不純物である。不可避不純物としては、本発明の効果を損なわない範囲で、原料、資材、製造設備等の状況によって持ち込まれる元素の混入が許容される。
 上記鋼線は、更に他の元素として、
(a)Mo:0%超、1%以下、Cu:0%超、1%以下、Ni:0%超、1%以下よりなる群から選ばれる少なくとも1種、
(b)Ti:0%超、0.2%以下、Nb:0%超、0.5%以下、V:0%超、1%以下、B:0%超、0.01%以下よりなる群から選ばれる少なくとも1種、
などを含有してもよい。
 (a)Mo、Cu、およびNiは、いずれも鋼線の強度を高めるために有効に作用する元素であり、単独で、あるいは2種以上を用いることができる。
 Moは、鋼線の強度を高めるほか、特に、軟化抵抗を高める作用を有する元素であり、ばね形状に成形した後の歪取焼鈍時に、2次析出硬化を起こしてばねの強度の向上に寄与する。こうした効果を有効に発揮させるには、Mo量は0.05%以上とすることが好ましく、より好ましくは0.08%以上である。しかし、過剰に含有すると焼入れ性が過度に向上するため、圧延時にマルテンサイトおよびベイナイト等の過冷組織が生成し、冷却後の圧延材に割れが発生し、あるいは伸線中に割れが発生する。従って本発明の実施形態では、Mo量は1%以下とすることが好ましく、より好ましくは0.97%以下、更に好ましくは0.95%以下である。
 Cuは、0.05%以上とすることが好ましい。Cu量は、より好ましくは0.1%以上である。しかし、Cu量が過剰になると、高温で液相となったCuが、熱間圧延時にオーステナイト結晶粒界に偏析し、表面割れを発生させる原因となる。従って本発明の実施形態では、Cu量は1%以下とすることが好ましい。Cu量は、より好ましくは0.8%以下、更に好ましくは0.6%以下である。
 Niは、鋼線の強度を高めるほか、鋼線の靱性を高めるのにも有効に作用する元素である。こうした効果を有効に発揮させるには、Ni量は0.05%以上とすることが好ましい。Ni量は、より好ましくは0.10%以上である。しかしNi量が過剰になると、焼入性が過度に向上し、マルテンサイトおよびベイナイト等の過冷組織が生成し、冷却後の圧延材に割れが発生し、あるいは伸線中に割れが発生する。また、Ni量が過剰になると、オイルテンパー線の製造工程である焼入れ焼戻し時に残留オーステナイトが過度に生成するため、ばねの耐へたり性を著しく低下させる。また、Niを過剰に含有するとコスト高となる。従って本発明の実施形態では、Ni量は、1%以下とすることが好ましい。Ni量は、より好ましくは0.8%以下、更に好ましくは0.6%以下である。
 (b)Ti、Nb、V、およびBは、いずれも鋼線の延性および靭性を向上させる元素であり、単独で、あるいは2種以上を用いることができる。
 Tiは、熱間圧延時および焼入れ焼戻し処理時に、結晶粒を微細化する作用を有する元素であり、Tiを含有することにより延性および靱性が向上する。こうした効果を有効に発揮させるには、Ti量は0.03%以上とすることが好ましい。Ti量は、より好ましくは0.06%以上である。しかし、過剰に含有すると靱性が却って低下することがある。従って本発明の実施形態では、Ti量は0.2%以下とすることが好ましい。Ti量は、より好ましくは0.18%以下、更に好ましくは0.16%以下である。
 Nbは、Tiと同様、熱間圧延時および焼入れ焼戻し処理時に、結晶粒を微細化する作用を有する元素であり、Nbを含有することにより延性および靱性が向上する。こうした効果を有効に発揮させるには、Nb量は0.01%以上とすることが好ましい。Nb量は、より好ましくは0.05%以上である。しかしNbを過剰に含有すると降伏点を上昇させ、加工性を低下させることがある。また、Nbを過剰に含有するとコスト高となる。従って本発明の実施形態では、Nb量は0.5%以下とすることが好ましい。Nb量は、より好ましくは0.45%以下、更に好ましくは0.40%以下である。
 Vは、Tiと同様、熱間圧延時および焼入れ焼戻し処理時に、結晶粒を微細化する作用を有する元素であり、Vを含有することにより延性および靱性が向上する。またVは、ばね形状に成形した後の歪取焼鈍時に2次析出硬化を起こしてばねの強度を高めるのに有効に寄与する元素である。こうした効果を有効に発揮させるには、V量は0.05%以上とすることが好ましい。V量は、より好ましくは0.1%以上、更に好ましくは0.2%以上である。しかしV量を過剰に含有すると、CrとVの複合合金炭化物が増加するため、ばねの疲労特性が低下することがある。従って本発明の実施形態では、V量は1%以下とすることが好ましい。V量は、より好ましくは0.95%以下、更に好ましくは0.90%以下である。
 Bは、焼入れ性を高めると共に、オーステナイト結晶粒界を清浄化させる元素であり、延性および靱性の向上に有効に作用する元素である。こうした効果を有効に発揮させるには、B量は0.001%以上とすることが好ましい。B量は、より好ましくは0.002%以上、更に好ましくは0.003%以上である。しかしBを過剰に含有させるとFeとBの複合化合物が析出し、熱間圧延時に割れを引き起こすことがある。また、Bを過剰に含有すると焼入れ性が過度に向上するため、マルテンサイトおよびベイナイト等の過冷組織が生成し、冷却後の圧延材に割れが発生し、あるいは伸線中に割れが発生する。従って本発明の実施形態では、B量は0.01%以下とすることが好ましい。B量は、より好ましくは0.008%以下、更に好ましくは0.006%以下である。
 次に、本発明の実施形態に係る鋼線の製造方法について説明する。
 上記鋼線は、上記成分組成を満足する伸線材を、酸素:0体積%超、10体積%以下、および水素:10~80体積%を含有し、残部:窒素からなる雰囲気で、850~950℃で、60~180秒間保持する工程と、焼入れ焼戻しする工程とをこの順で含むことにより製造できる。即ち、線材を伸線して得られた伸線材を焼入れ焼戻しする際に、所定の条件で熱処理してから焼入れ焼戻しすることが重要である。以下、順を追って説明する。
 [保持工程]
 保持工程では、上記成分組成を満足する伸線材を、所定の雰囲気で、加熱保持する。
 上記伸線材は、常法に従って製造されたものであればよく、例えば、上記成分組成を満足する鋼を溶製し、得られた鋼片を熱間圧延し、得られた圧延材を軟化焼鈍し、皮削りした後、伸線することによって製造できる。
 (1)加熱雰囲気
 オーステナイト化温度に加熱すると、鋼線表面に鉄酸化物スケールが形成されるが、Siを多く含むばね鋼では、鉄酸化物スケールと母材との間に、Si酸化物が生成し、緻密な鉄酸化物スケールが生成されない。その結果、鋼線表面に、上述した(1)および(2)の要件を満足する粒界酸化物が生成しにくくなる。そこで、緻密な鉄酸化物スケールを生成させるために検討したところ、加熱雰囲気は、酸素を0体積%超、10体積%以下、水素を10~80体積%含有し、残部を窒素とすることが好ましいことが分かった。
 酸素は、鉄と反応して鉄酸化物スケールを形成すると共に、鉄酸化物スケールの高次化に伴う成長を助ける働きを有する。また、酸素が作用することによって鋼線表面に粒界酸化物が生成する。こうした効果を有効に発揮させるには、酸素は0.1体積%以上が好ましく、より好ましくは0.3体積%以上、更に好ましくは0.5体積%以上である。しかし酸素が10体積%を超えると粒界酸化物の生成が促進され過ぎるため、疲労特性が却って低下する。従って本発明の実施形態では、酸素は10体積%以下とすることが好ましい。酸素は、より好ましくは9体積%以下、更に好ましくは8体積%以下である。
 水素が10体積%未満ではスケールが厚く生成しやすく、Si酸化物によって鉄がスケールに還元されないため、スケールが多孔質化し、粒界酸化物が成長しにくくなる。従って本発明の実施形態では、水素は10体積%以上が好ましく、より好ましくは20体積%以上、更に好ましくは30体積%以上である。しかし水素が80体積%を超えると、鉄が還元され、粒界酸化物が過剰に成長し、長くなるため、疲労特性が低下することがある。従って本発明の実施形態では、水素は80体積%以下が好ましく、より好ましくは70体積%以下、更に好ましくは60体積%以下である。
 加熱雰囲気の残部は、窒素とすればよい。水素と酸素を適正範囲とすれば、残部の雰囲気は、鉄酸化物スケールを適切な範囲で生成させることに影響を及ぼさない。
 (2)加熱温度
 伸線した後、オーステナイト化するために、850~950℃に加熱することが好ましく、加熱温度は、鋼線の表面に生成する粒界酸化物の形態に影響を及ぼす。加熱温度が850℃未満では、粒界酸化物が生成せず、鋼線表面に脱炭が生じるようになる。脱炭が生じると、ばね製品の疲労寿命が著しく低下する。従って本発明の実施形態では、鋼線の脱炭を抑制するために、加熱温度は850℃以上とすることが好ましい。加熱温度は、より好ましくは865℃以上、更に好ましくは880℃以上である。加熱温度が高いほど粒界酸化物は多く生成するが、加熱温度が950℃を超えると粒界酸化物が長くなりやすく、鋼線の疲労特性が低下することがある。従って本発明の実施形態では、加熱温度は950℃以下が好ましい。加熱温度は、より好ましくは940℃以下、更に好ましくは930℃以下である。
 なお、上記加熱温度は、鋼線の表面温度で管理すればよい。
 (3)保持時間
 上記加熱温度で保持することにより鋼線の表面に粒界酸化物が生成する。そして保持時間を60~180秒間とすることによって粒界酸化物の長さを0.05~1μmに制御できる。保持時間が60秒未満では、粒界酸化物が充分に成長せず、疲労特性を改善できない。従って本発明の実施形態では、保持時間は60秒以上とすることが好ましく、より好ましくは70秒以上、更に好ましくは80秒以上である。しかし保持時間が180秒を超えると、粒界酸化物が成長しすぎることがあり、疲労特性が却って低下することがある。従って本発明の実施形態では、保持時間は180秒以下とすることが好ましい。保持時間は、より好ましくは160秒以下、更に好ましくは140秒以下である。
 伸線後、上記加熱温度までの加熱方法は特に限定されず、例えば、ガスによる加熱および高周波による加熱等、一般的に用いられる加熱方法を採用できる。
 [焼入れ焼戻し工程]
 上記加熱温度で所定時間保持した後は、ばね用鋼線の熱処理に一般的に用いられる条件で、焼入れ焼戻しを行えばよい。焼入れは、例えば、水焼入または油焼入れを行えばよい。油焼入れするときの油温は、例えば、40~80℃とすればよい。焼戻しは、ガスによる加熱、高周波による加熱または流動層による加熱等の方法で、焼戻し後におけるばね用鋼線の機械的特性を考慮して常法に従って行えばよい。焼戻し温度は、例えば、250~550℃、焼戻し時間は、例えば、5~30分とすればよい。
 得られたばね用鋼線は、ばね成形(コイリング)し、圧縮残留応力を付与してもよい。圧縮残留応力を付与するのは、ばねの疲労特性を向上させるためである。
 圧縮残留応力付与手段としては、例えば、ショットピーニングが挙げられる。ショットピーニングは、一段よりも二段以上(特に、二段)とするのが望ましい。二段階に分けてショットピーニングすることにより、表面圧縮残留応力を高くできるとともに、圧縮残留応力の付与深さを深くできる。
 上記ばねは、必要に応じて、窒化処理されていてもよい。窒化処理することにより、ばねの耐へたり性を高めることができる。窒化処理は、例えば、NHを70~90体積%程度、Nを10~30体積%程度含有する雰囲気中で、温度400~450℃程度で2~4時間程度加熱することによって行えばよい。
 上記ばねは、疲労特性に優れているため、この特性が求められる用途、例えば、自動車エンジンの弁ばね、サスペンションの懸架ばね、クラッチばねおよびブレーキばねなどのような機械の復元機構に使用するばねなどに特に有用である。
 以下、実施例を挙げて本発明の実施形態をより具体的に説明するが、本発明は下記実施例によって制限を受けるものではなく、前記および後記の趣旨に適合し得る範囲で変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
 下記表1に示す成分組成を満足し、残部が鉄および不可避不純物からなる鋼を溶製し、得られた鋼片を熱間圧延して直径φ8.0mmの圧延材を製造した。得られた圧延材を軟化焼鈍し、皮削りした後、伸線し、直径φ4.0mmの鋼線を製造した。得られた鋼線に、下記表2に示す条件で熱処理を施した後、焼入れ焼戻しした。熱処理は、下記表2に示す雰囲気条件で、下記表2に示したオーステナイト化温度(℃)に加熱し、この温度で、下記表2に示す時間保持して行った。焼入れは油温度を70℃とし、焼戻し温度は450℃で10分とした。
 焼入れ焼戻しして得られた鋼線の長軸方向に対して垂直な方向(横方向)に切断し、樹脂に埋め込み、表面を研磨し、ナイタール腐食液でエッチングし、電界放射型走査電子顕微鏡(Field Emission-Scanning Electron Microscope;FE-SEM)で、倍率15000倍で観察した。下記表2に示したNo.4のサンプルを撮影した図面代用写真を図2、No.7のサンプルを撮影した図面代用写真を図3に示す。
 上述した手順で粒界酸化物の生成角度、および深さ方向長さを測定した。
 (1)粒界酸化物の生成角度が60~120°で、且つ(2)交点からの深さ方向長さが0.05~1μmである粒界酸化物の本数を測定し、鋼線表面の長さ20μmあたりに換算した該当本数を下記表2に示す。また、上記(1)または(2)の少なくとも一方の要件を満足しない粒界酸化物の本数を測定し、鋼線表面の長さ20μmあたりに換算した非該当本数を下記表2に示す。
 また、下記表2には、参考データとして、深さ方向長さの最大値(最長長さ)を併せて示す。
 本発明の実施形態では、上記該当本数が40本以上の場合を合格(発明例)と評価し、上記該当本数が40本未満の場合を不合格(比較例)と評価した。
 次に、焼入れ焼戻しして得られた鋼線の疲労特性を評価した。疲労特性は、上記鋼線を用いて中村式回転曲げ疲労試験機で、下記に示す条件で疲労試験を行い、測定した破断するまでの回数に基づいて評価した。測定結果を下記表2に示す。疲労試験は、試験片が破断するか、2千万回まで行った。
 (疲労試験条件)
 試験片長さ :600mm
 試験片本数 :20本
 試験荷重  :95.8kgf/mm(940MPa)
 回転速度  :4500rpm
 試験中止回数:2千万回
 20本全ての試験片について、試験中止回数である2千万回まで破断しなかった場合を合格とし、疲労特性に優れると評価した。一方、試験片のうち1本でも試験中止回数である2千万回までに破断した場合を不合格とした。
 下記表2から次のように考察できる。
 No.2~6、9~11、14、17~20は、いずれも本発明の実施形態で規定する要件を満足する例であり、成分組成および鋼線の表面に存在する粒界酸化物の形態を適切に制御しているため、疲労特性に優れている。
 一方、No.1、7、8、12、13、15、16は、いずれも本発明の実施形態で規定する要件を満足しない例であり、疲労特性を改善できなかった。
 これらのうち、No.1は、熱処理時のオーステナイト化温度が低かったため、鋼線の表面に粒界酸化物が生成しなかった例である。その結果、200万回で破断し、疲労特性を改善できなかった。
 No.7は、熱処理時のオーステナイト化温度が高かったため、粒界酸化物が過剰に成長し、上記(1)および(2)の要件を満足する粒界酸化物が殆ど生成しなかった例である。その結果、300万回で破断し、疲労特性を改善できなかった。
 No.8は、熱処理時の保持時間が短かったため、鋼線の表面に粒界酸化物が生成しなかった例である。その結果、500万回で破断し、疲労特性を改善できなかった。
 No.12は、熱処理時の保持時間が長かったため、粒界酸化物が過剰に成長し、上記(1)および(2)の要件を満足する粒界酸化物は生成しなかった例である。その結果、200万回で破断し、疲労特性を改善できなかった。
 No.13は、熱処理時のH濃度が低すぎたため、鋼線表面の鉄が還元されず、上記(1)および(2)の要件を満足する粒界酸化物は生成しなかった例である。その結果、300万回で破断し、疲労特性を改善できなかった。
 No.15は、熱処理時のH濃度が高すぎたため、鋼線表面の鉄が還元され過ぎ、粒界酸化物の成長が促進されたため、上記(1)および(2)の要件を満足する粒界酸化物は殆ど生成しなかった例である。その結果、200万回で破断し、疲労特性を改善できなかった。
 No.16は、熱処理時のO濃度が高すぎたため、鋼線表面に粒界酸化物が過剰に生成し、上記(1)および(2)の要件を満足する粒界酸化物は生成しなかった例である。
その結果、200万回で破断し、疲労特性を改善できなかった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本出願は、出願日が2016年3月29日である日本国特許出願、特願第2016-065787号を基礎出願とする優先権主張を伴う。特願第2016-065787号は参照することにより本明細書に取り込まれる。
a、b   粒界酸化物
a1、b1 鋼線の表面と粒界酸化物との交点
a2、b2 粒界酸化物の末端
a3、b3 交点における粒界酸化物の接線
θa、θb 交点における粒界酸化物の接線と鋼線表面とのなす角度
L     交点間距離
S     鋼線の表面
A     鋼線

Claims (5)

  1.  質量%で、
     C :0.4~0.8%、
     Si:0.01~3%、
     Mn:0.3~2%、
     P :0%超、0.05%以下、
     S :0%超、0.05%以下、
     Cr:0.05~2%を含有し、
     残部が鉄および不可避不純物からなる鋼線であって、
     前記鋼線の長軸方向に垂直な断面を観察したときに、
     前記鋼線の表面には、下記(1)および(2)の要件を満足する粒界酸化物が、長軸方向に垂直な長さ20μmあたり40本以上存在することを特徴とする疲労特性に優れた鋼線。
    (1)前記粒界酸化物と前記鋼線の表面との交点における前記粒界酸化物の接線と、前記鋼線の表面とのなす角度が60~120°である。
    (2)前記交点からの深さ方向長さが0.05~1μmである。
  2.  更に他の元素として、質量%で、
     Mo:0%超、1%以下、
     Cu:0%超、1%以下、および
     Ni:0%超、1%以下よりなる群から選ばれる少なくとも1種を含有する請求項1に記載の鋼線。
  3.  更に他の元素として、質量%で、
     Ti:0%超、0.2%以下、
     Nb:0%超、0.5%以下、
     V :0%超、1%以下、および
     B :0%超、0.01%以下よりなる群から選ばれる少なくとも1種を含有する請求項1に記載の鋼線。
  4.  更に他の元素として、質量%で、
     Ti:0%超、0.2%以下、
     Nb:0%超、0.5%以下、
     V :0%超、1%以下、および
     B :0%超、0.01%以下よりなる群から選ばれる少なくとも1種を含有する請求項2に記載の鋼線。
  5.  請求項1~4のいずれかに記載の成分組成を満足する伸線材を、酸素:0体積%超、10体積%以下、および水素:10~80体積%を含有し、残部:窒素からなる雰囲気で、850~950℃で、60~180秒間保持する工程と、
     焼入れ焼戻しする工程と
    をこの順で含むことを特徴とする疲労特性に優れた鋼線の製造方法。
PCT/JP2017/007980 2016-03-29 2017-02-28 疲労特性に優れた鋼線、およびその製造方法 WO2017169481A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016065787A JP2017179423A (ja) 2016-03-29 2016-03-29 疲労特性に優れた鋼線、およびその製造方法
JP2016-065787 2016-03-29

Publications (1)

Publication Number Publication Date
WO2017169481A1 true WO2017169481A1 (ja) 2017-10-05

Family

ID=59962987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/007980 WO2017169481A1 (ja) 2016-03-29 2017-02-28 疲労特性に優れた鋼線、およびその製造方法

Country Status (2)

Country Link
JP (1) JP2017179423A (ja)
WO (1) WO2017169481A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111363976A (zh) * 2020-04-27 2020-07-03 江苏利淮钢铁有限公司 一种微合金化长寿命、高强韧性高铁板簧用钢及其生产工艺
CN114292996A (zh) * 2021-11-26 2022-04-08 铃木加普腾钢丝(苏州)有限公司 热处理钢丝氧化层工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10251760A (ja) * 1997-03-12 1998-09-22 Suzuki Kinzoku Kogyo Kk ばね成形加工性に優れた高強度オイルテンパー線および その製造方法
JP2004300481A (ja) * 2003-03-28 2004-10-28 Kobe Steel Ltd 耐へたり性及び耐割れ性に優れたばね用鋼線
JP2004315968A (ja) * 2003-03-28 2004-11-11 Kobe Steel Ltd 加工性に優れた高強度ばね用鋼線および高強度ばね
JP2007138260A (ja) * 2005-11-18 2007-06-07 Kobe Steel Ltd 酸洗い性に優れたばね用鋼線材

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10251760A (ja) * 1997-03-12 1998-09-22 Suzuki Kinzoku Kogyo Kk ばね成形加工性に優れた高強度オイルテンパー線および その製造方法
JP2004300481A (ja) * 2003-03-28 2004-10-28 Kobe Steel Ltd 耐へたり性及び耐割れ性に優れたばね用鋼線
JP2004315968A (ja) * 2003-03-28 2004-11-11 Kobe Steel Ltd 加工性に優れた高強度ばね用鋼線および高強度ばね
JP2007138260A (ja) * 2005-11-18 2007-06-07 Kobe Steel Ltd 酸洗い性に優れたばね用鋼線材

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111363976A (zh) * 2020-04-27 2020-07-03 江苏利淮钢铁有限公司 一种微合金化长寿命、高强韧性高铁板簧用钢及其生产工艺
CN114292996A (zh) * 2021-11-26 2022-04-08 铃木加普腾钢丝(苏州)有限公司 热处理钢丝氧化层工艺
CN114292996B (zh) * 2021-11-26 2023-12-08 铃木加普腾钢丝(苏州)有限公司 热处理钢丝氧化层工艺

Also Published As

Publication number Publication date
JP2017179423A (ja) 2017-10-05

Similar Documents

Publication Publication Date Title
JP4476863B2 (ja) 耐食性に優れた冷間成形ばね用鋼線
JP4423254B2 (ja) コイリング性と耐水素脆化特性に優れた高強度ばね鋼線
JP2010163689A (ja) オイルテンパー線とその製造方法、及びばね
JP6479527B2 (ja) 酸洗性、および焼入れ焼戻し後の耐遅れ破壊性に優れたボルト用線材、並びにボルト
JP2007063584A (ja) オイルテンパー線およびその製造方法
JP4478072B2 (ja) 高強度ばね用鋼
JP4872846B2 (ja) 窒化歯車用粗形品および窒化歯車
JPWO2007114491A1 (ja) 高強度ばね用熱処理鋼
JP3851095B2 (ja) 高強度ばね用熱処理鋼線
WO1999005333A1 (fr) Acier cemente particulierement capable d'empecher la recristallisation secondaire des particules pendant la cementation, procede de fabrication, et matiere brute formee pour pieces cementees
JP7152832B2 (ja) 機械部品
JP5329272B2 (ja) ばね鋼
JP4994932B2 (ja) オイルテンパー線及びオイルテンパー線の製造方法
JP2009235523A (ja) オイルテンパー線とその製造方法、及びばね
WO2017169481A1 (ja) 疲労特性に優れた鋼線、およびその製造方法
JPH06240408A (ja) ばね用鋼線及びその製造方法
JP5941439B2 (ja) コイルばね、およびその製造方法
JP6453693B2 (ja) 疲労特性に優れた熱処理鋼線
JP2021167444A (ja) 圧縮コイルばね
JP6208611B2 (ja) 疲労特性に優れた高強度鋼材
JP4133515B2 (ja) 耐へたり性及び耐割れ性に優れたばね用鋼線
JP3975110B2 (ja) 鋼線およびその製造方法ならびにばね
JP5400536B2 (ja) 硬引き線
JP2005120479A (ja) 高強度ばねおよびその製造方法
WO2015133273A1 (ja) 肌焼鋼鋼線

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17774026

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17774026

Country of ref document: EP

Kind code of ref document: A1