WO2007013465A1 - 軟弱土の固化処理方法 - Google Patents

軟弱土の固化処理方法 Download PDF

Info

Publication number
WO2007013465A1
WO2007013465A1 PCT/JP2006/314689 JP2006314689W WO2007013465A1 WO 2007013465 A1 WO2007013465 A1 WO 2007013465A1 JP 2006314689 W JP2006314689 W JP 2006314689W WO 2007013465 A1 WO2007013465 A1 WO 2007013465A1
Authority
WO
WIPO (PCT)
Prior art keywords
soft soil
amount
solidifying
solidification
additive
Prior art date
Application number
PCT/JP2006/314689
Other languages
English (en)
French (fr)
Inventor
Tadashi Saitoh
Original Assignee
The Chugoku Electric Power Co., Inc.
Energia Eco Materia Co., Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Chugoku Electric Power Co., Inc., Energia Eco Materia Co., Inc. filed Critical The Chugoku Electric Power Co., Inc.
Priority to JP2007528481A priority Critical patent/JP4869233B2/ja
Publication of WO2007013465A1 publication Critical patent/WO2007013465A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/14Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
    • C02F11/143Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents using inorganic substances
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/008Sludge treatment by fixation or solidification
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/02Soil-conditioning materials or soil-stabilising materials containing inorganic compounds only
    • C09K17/10Cements, e.g. Portland cement
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/12Consolidating by placing solidifying or pore-filling substances in the soil
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F5/00Dredgers or soil-shifting machines for special purposes
    • E02F5/22Dredgers or soil-shifting machines for special purposes for making embankments; for back-filling
    • E02F5/223Dredgers or soil-shifting machines for special purposes for making embankments; for back-filling for back-filling
    • E02F5/226Dredgers or soil-shifting machines for special purposes for making embankments; for back-filling for back-filling with means for processing the soil, e.g. screening belts, separators; Padding machines
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F7/00Equipment for conveying or separating excavated material
    • E02F7/02Conveying equipment mounted on a dredger
    • E02F7/023Conveying equipment mounted on a dredger mounted on a floating dredger
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Definitions

  • the present invention mainly relates to a method for solidifying soft soil such as dredged soil such as sea areas, rivers, and lakes.
  • the soft soil is one having a water content near the liquid limit and exceeding the liquid limit, for example, one having a water content of 80% to 400%.
  • the uniaxial compressive strength qu28 50-200kN / m 2 on the 20th day of the material age is relatively Often done at low intensity. This is because when the drain material is placed in the ground improvement work later, it becomes difficult to penetrate the mandrel if the strength is higher than this.
  • the slurry-like or slurry-like landfill sand is pneumatically fed to the landfill input position, and the additive is put in the middle of the process.
  • a method of injection has been developed.
  • This conventional method for mixing in an additive material pipe is a method in which slurry-like landfill sand is sandwiched between air parts in a transport pipe, divided into a large number of plugs, moved, and installed in the transport pipe. For each plug that moves using a pressure gauge, its volume and moving speed are measured, and the amount of additive injected is controlled according to the passage of each plug through the additive injector position ( (See Patent Document 1).
  • the additive mixture amount (additive mixture ratio) per unit volume with respect to the sediment slurry is determined in advance according to the properties of the sediment slurry to be used, and the additive mixture is mixed. It is controlled by a computer so that it is injected into each plug in a state close to the ratio.
  • the on-site Z indoor strength ratio at the time of poor blending of solidified material of about 30 to 40 kgZm 3 is 0.1 to 0.3, and the desired quality To secure it, an excessive safety factor is required.
  • Patent Document 1 Japanese Patent Laid-Open No. 11 229428
  • Patent Document 2 Japanese Patent Laid-Open No. 2000-3460
  • the present invention mainly reduces the amount of solidifying material to be added and mixed even when the moisture content varies, when soft soil such as clay is solidified. It is an object of the present invention to provide a method for solidifying soft soil that can easily obtain a desired strength within a desired range.
  • a first aspect of the present invention that solves the above-described problem is that, when soft soil is solidified with a solidifying material, a cleansing ash and a granulated slag are added in an amount that maintains a desired flow value.
  • a method for solidifying soft soil is characterized in that after at least one additive selected from the group is added and mixed, a solidifying material is added and mixed.
  • the clean ash and granulated slag when additives such as clean ash and granulated slag are added and mixed to such an extent that a desired flow value can be obtained, the clean ash and granulated slag can remove water in soft soil. Soil properties can be stabilized without reducing holding and pressure-feeding properties, and the amount of solidification material added can be reduced. It does not need to change as the ratio changes.
  • the addition amount of the additive is determined regardless of the moisture content of the soft soil after determining the ratio of maintaining the desired flow value. This is a method for solidifying soft soil, which is characterized by being constant.
  • a desired blending strength can be obtained even if the amount of additive added is fixed after the ratio of maintaining a desired flow value is determined in advance.
  • a third aspect of the present invention is the soft earth according to the first or second aspect, wherein the additive is added in an amount of 10% to 70% by weight ratio. It is in the solidification processing method.
  • the addition amount of the solidifying material can be reduced by adding the additive material at a predetermined weight ratio.
  • a fourth aspect of the present invention 30 in the first to third one embodiment, the amount of the solidifying material, the total amount 1000 m 3 of the soft soil and the additive material: in LOOkg It exists in the solidification processing method of the soft soil characterized by being.
  • such a fourth aspect 30 to the total amount 1000 m 3 of soft soil and additive material: By adding solidifying material in a ratio of LOOkg, it is possible to obtain the desired solidification strength.
  • a fifth aspect of the present invention in the first to fourth one embodiment, the amount of the solidifying agent, the mixing intensity is 250: wherein the configuration that such a L00kN / m 2 It is in the solidification method of soft soil.
  • a desired solidification strength can be obtained by adding and mixing an additive and a solidifying material.
  • a sixth aspect of the present invention is the soft soil solidification treatment method according to any one of the first to fifth aspects, wherein the solidification material is cement.
  • a desired solidification strength can be obtained with cement.
  • fly ash is used as a solidification aid, and the total amount of the soft soil and the additive is 1000 m 3.
  • it is a method for solidifying soft soil characterized by adding 30 to 90 kg.
  • a clean ash or granulated slag which is porous and can retain moisture in the soft soil such as clay
  • the soil properties can be stabilized while ensuring the feeding / conveying performance, and a predetermined strength can be stably obtained by reducing the amount of solidification material such as cement to be added.
  • the fluidity of the clay can be controlled freely by controlling the mixing amount of the granulated slag.
  • fly ash when fly ash is supplementarily added and used, by selecting the optimal addition ratio that suppresses strength enhancement over the long term, the surface layer of the landfill is solidified. It is possible to create a low-strength homogeneous soil that can be used for future ground improvement work.
  • FIG. 1 is a diagram showing an outline of an example of an apparatus for carrying out the solidification processing method of the present invention.
  • FIG. 2 is a diagram illustrating a part of FIG. 1 in an enlarged manner.
  • FIG. 3 is a diagram showing the relationship between the additive amount and the flow value in the solidification processing method of the present invention.
  • FIG. 4 is a diagram showing the relationship between the amount of solidification material added and the strength after solidification in the solidification processing method of the present invention.
  • FIG. 5 is a diagram showing the amount of solidifying material added to obtain the target strength in FIG.
  • FIG. 6 is a diagram showing an appropriate mixing ratio of the solidified material corresponding to a change in the water content ratio.
  • FIG. 7 is a diagram showing a temporal change in pressure detected by a pressure gauge.
  • FIG. 8 is a graph showing the relationship between the cement addition amount and uniaxial compressive strength in Test Example 1.
  • FIG. 9 is a graph showing the relationship between the number of days elapsed in Test Example 1 and uniaxial compressive strength.
  • FIG. 10 is a graph showing the relationship between the amount of fly ash added in Test Example 2 and the uniaxial compressive strength.
  • FIG. 11 is a graph showing the relationship between the amount of fly ash added in Test Example 2 and the strength of the 28th day of the material age and the strength of the 7th day of the Z material age.
  • FIG. 1 shows an outline of an example of an apparatus for carrying out the present invention
  • FIG. 2 shows an outline of the internal structure of the transport pipe.
  • the earth ship 10 that transports soft soil such as dredged soil with high concentration 1 is provided with a sand pump 11 for unloading, and the sand pump 11 has an unloading pipe 12.
  • an additive injector 13 for adding a clean ash and granulated slag is provided, and the excavation pipe 12 extends to the temporary storage tank 14.
  • the temporary storage tank 14 temporarily stores the earth and sand slurry that has been unloaded by the sand pump 11 and to which cleansing ash and granulated slag are added.
  • the temporary storage tank 14 is provided with a ⁇ - ray density meter 15 for measuring the density of the sediment slurry, and the beginning of the transfer pipe 16 is communicated with the lower part of the gamma ray density meter 15.
  • a pneumatic pipe 17 is communicated with the transport pipe 16, a pair of pressure gauges 18a and 18b are installed at a small distance in the flow direction on the downstream side, and a solidifying material injector 19 is provided on the downstream side.
  • Both pressure gauges 18a and 18b measure in real time the fluctuation and magnitude of the pressure in the pipe due to the movement of the air portion A and the plug S in the transport pipe 16.
  • the solidifying material injector 19 includes an injection nozzle 19a that mixes cement as a solidifying material and, in some cases, fly ash as a solidifying aid, and injects an additive material into a slurry form by adding water. It is inserted into the transfer pipe 16, and the injection timing and the injection amount from the injection nozzle 19a are controlled by the injection control means 20 using a computer 20a.
  • the amount of applied force of the cleansing ash and the granulated slag to be added from the additive injector 13 is determined in advance.
  • the addition amount of the granulated slag may be determined so that the flow value after ignition becomes a desired value.
  • the relationship between the flow rate and the amount of added power of clean ash or granulated slag is determined in advance.
  • the desired flow value is 1:40, it will be about 10-30% by weight of the total weight after mixing, and if the desired flow value is 1:15, the total weight About 50% by weight.
  • the addition of the solidifying material to be added as shown below is performed by adding the cleansing ash or the granulated slag in advance and adjusting the flow value to a predetermined range.
  • the amount can be greatly reduced.
  • the addition amount of clean ash and granulated slag does not need to be adjusted even if the moisture content of soft soil 1 fluctuates significantly, i.e., once the addition amount is determined, the moisture content is measured.
  • the flow value can be freely controlled by adding a clean ash or granulated slag to soft soil, so that the subsequent solidification treatment operation can be facilitated.
  • the solidifying material to be injected by the solidifying material injector 19 is mixed with cement using a powder mixer and, in some cases, fly ash, based on a predetermined formulation. Water is added to and kneaded to form a slurry.
  • the injection control means 20 controls the additive material injection timing and the injection amount for each plug S based on the measurement values obtained by the ⁇ -ray density meter 15 and the two pressure gauges 18a and 18b.
  • the injection control means 20 calculates the water content ratio of the sediment slurry from the measured value by the ⁇ -ray densitometer 15 by the following soil formula (1), (2).
  • G s soil particle density (specific gravity)
  • the saturation Sr is 100%, and the soil particle density Gs is obtained in advance by an indoor soil test.
  • the soil particle density is a characteristic soil constant for the soil in the area, and will not change significantly if dredged soil in the same area.
  • the water content ratio w is calculated for each density value (wet unit volume weight ⁇ t) obtained by the ⁇ -ray density meter 15.
  • the computer 20a inputs a solidifying material mixing ratio for obtaining a desired target strength corresponding to a change in the water content ratio w by using a mathematical formula, and adds the additive mixing ratio data to the computer 20a. Based on the water content ratio obtained by the above formula, select the required mixing ratio of the additive and control the amount of solidification material injected by the solidification material injector 19! /.
  • this solidification material mixing ratio data was created by mixing different amounts of additive material for each of the samples SI, S2, S3, and S4, where the moisture content of the soil slurry was divided into several stages. And For each mixing amount, measure the strength after solidification and create a graph. From this graph, as shown in Fig. 5, create a graph of the solidifying material mixing amount to obtain the target strength for changes in the water content ratio.
  • the apparatus may be increased due to an excessive injection amount of additive material per unit time.
  • a graph with a fixed minimum injection ratio and maximum injection ratio set as shown in Fig. 6 is created for the portion outside the expected water content ratio, and this is expressed as a formula and input to the computer.
  • the weight and length (or length) of the plug S when it passes through the additive injection pipe position is calculated by the computer 20a.
  • the amount of solidification material injected and the timing of solidification material injection for each plug S are controlled in accordance with the change in the amount of sediment slurry for each plug S.
  • the computer 20a calculates the weight (or length) of each plug S in the transport pipe 16 based on the peak value p of the pressure curve detected by the pressure gauges 18a and 18b as shown in FIG. Then, the flow velocity of each plug S (sediment slurry) is calculated based on the detection time difference t between the peak values p of the two pressure gauges 18a and 18b, and the solidifying material injector 19 corresponding to the weight and flow velocity of each plug S 19 The amount of solidified material injected (or injection time) and the injection timing are controlled.
  • the measured value force of the ⁇ -ray densitometer 15 described above is preliminarily adjusted so as to have a solidification material mixing ratio corresponding to the calculated water content ratio.
  • the solidification material injection amount is calculated by a calculation formula programmed in the controller 20a, and the solidification material injection amount for each plug S from the solidification material injector 19 is controlled.
  • the rear end of the plug S is installed at the injection nozzle 19a by controlling the injection time of the solidified material by the injection nozzle 19a to be constant and making the injection time proportional to the peak value p of the pressure gauge 18b.
  • the solidification material injection speed can be adjusted so that the additive injection time just ends when passing through the position, so that even if the plug S is long, the front end force of the plug S can be reduced.
  • the additive can be added evenly without bias.
  • Figure 9 shows the uniaxial compressive strength on the 28th.
  • fly ash As shown in FIG. 10 and FIG. 11, it is known that when fly ash is added together with cement, strength can be obtained from the age of young wood, but fly ash is 30-80 kg / m 3 . It was found that when added within the prescribed range, high strength can be obtained from young ages, and long-term strength increase can be suppressed.
  • the addition of a predetermined amount of fly ash together with the cement can ensure the strength more stably and provide a long-term effect. Therefore, it is possible to reduce the amount of cement while ensuring further safety and to prevent the increase in strength that makes it difficult to drive the drain material.
  • the present invention mainly relates to a method for solidifying soft soil such as dredged soil such as sea areas, rivers, lakes and marshes.
  • soft soil such as dredged soil such as sea areas, rivers, lakes and marshes.
  • the soft water whose water content ratio exceeds the liquid limit from the one near the liquid limit.

Abstract

 主として浚渫土などの軟弱土を固化するに際し、含水比の変動があっても、添加混合する固化材の添加量を少なくすることができ、所望範囲の目的強度を容易に得ることができる軟弱土の固化処理方法を提供する。  軟弱土を固化材で固化処理するに際し、所望のフロー値を維持する割合となる添加量でクリンカアッシュ及び水砕スラグから選択される少なくとも一種の添加剤を添加混合した後、固化材を添加混合する。

Description

明 細 書
軟弱土の固化処理方法
技術分野
[0001] 本発明は、主として、海域、河川、湖沼等の浚渫土などの軟弱土の固化処理方法 に関する。なお、本発明において軟弱土とは、含水比が液性限界付近のものから液 性限界を超えたものであり、例えば、含水比が 80%〜400%のものをいう。
背景技術
[0002] 従来、軟弱地盤の改良工法として、帯状をしたドレーン材を軟弱地盤表面力も地盤 内に挿入し、そのドレーン材を通して軟弱地盤内の土壌間隙水を排出させる地盤改 良工法が開発されている。この種の工法を浚渫土による超軟弱な地盤に対して施工 する場合には、一般に、フローター式の固化処理船を浮かべ、これによつてドレーン 材の打込み等の地盤改良処理を行っている力 近年においては、浚渫土等の軟弱 な埋立土砂に、セメントミルクなどの固化材を添加混合しておき、この固化材添加埋 立土砂を使用して埋立地盤表層を形成し、これによつて陸上走行式の地盤改良重 機が走行できる表面固化層を形成する工法が研究されている。
[0003] この表面固化層を造成する工法は、重機のトラフイカピリティ確保を目的に行われる ため、材令 20日の一軸圧縮強度 qu28 = 50〜200kN/m2といった固化処理として は比較的低強度で行われることが多い。これは、後の地盤改良作業におけるドレー ン材の打設に際し、これ以上の強度になるとマンドレルの貫入が困難になるためであ る。
[0004] また、埋立土砂に固化材などの添加材を混合する方法として、スラリー状の、又は スラリー状にした埋立土砂を、埋立投入位置まで搬送管内を空気圧送し、その途中 で添加材を注入する方法が開発されて 、る。
[0005] この従来の添加材管中混合方法は、スラリー状の埋立土砂を搬送管内で、空気部 分に挟み、多数の塊状をしたプラグに分断して移動させ、搬送管内に設置した 2つ 圧力計を用いて移動するプラグ毎に、その体積、移動速度を計測し、各プラグの添 加材注入器位置の通過に対応させて、添加材の注入量を制御するようにしている( 特許文献 1参照)。
[0006] この従来工法では、使用する土砂スラリーの性状に対応させて、事前に土砂スラリ 一に対する単位体積当りの添加材混合量 (添加材混合比)を決定しておき、その添 加材混合比に近づけた状態で各プラグに対して注入されるようにコンピュータで制御 している。
[0007] 上述した表面固化層の形成を、固化材を混合した埋立土砂層を軟弱地盤表層に 造成する工法において、マンドレルの貫入が容易に行え、且つトラフイカピリティが確 保できる qu28 = 50kNZm2程度の低強度の地盤改良層を造成しょうとする場合、室 内配合試験では、殆どの軟弱地盤にぉ 、て固化材の添カ卩量が 30〜40kg/m3と少 なぐ現場での施工工程においては、混合精度の低下を考慮し、室内配合試験の結 果に安全率を乗じてこれより 1. 5〜2倍の量の固化材を添加することとなる力 これを 前述した従来の添加材管中混合方法によって行うと、従来の実績によれば、 30〜40 kgZm3程度の固化材貧配合時の現場 Z室内強度比は 0. 1〜0. 3であり、所望の 品質確保には過大な安全率が必要になる。
[0008] しかし、過大な安全率を採用すると、最低強度として目標強度の qu28 = 50kNZ m2を確保できる力 部分的には非常に強度の大きい個所ができてしまい、そこではド レーン材の打込みが困難になってしまう事態が生じる。
[0009] 一方、室内配合試験結果をそのまま現場に適用した場合には、全体の平均強度が 目標強度を達成することができるが、部分的には目標強度に達しない個所ができるこ ととなり、地盤改良重機走行の安全性が保てなくなるという問題が生じる。
[0010] そこで、添加剤として、セメント等の固化剤に無機質粉状材からなる固化助剤を混 合することにより、全域においてばらつきの少ない一定強度内の表層固化地盤を容 易に造成できると ヽぅ技術が開発された (特許文献 2参照)。
[0011] し力しながら、所定の安全率を考慮すると、セメント量を大幅に低減することはでき な ヽ点では従来技術と同様であった。
[0012] 一方、上述した従来の添加材管中混合方法は、搬送管内に送り込まれる土砂スラ リーの性状を、例えば搬送されてくる土運船毎に調査して添加材混合比を決定して いるものであり、従って搬送管内を移動するプラグは常に一定の含水比であることが 前提となっている。
[0013] このため、搬送管に送り込む土砂スラリーの含水比が各プラグ毎に一定となるよう、 常に土運船内の土砂を荷降ろし用のノックホー等を用いて攪拌しており、その作業 に多くの労力と経費を要するという問題がある。
[0014] また、ノックホー等によって常に攪拌したとしても、荷降ろし開始時力も完了まで含 水比を一定に保つことができず、投入される埋立土砂の硬化後の強度にばらつきが 生じ、全域に渡って必要な強度の埋立地が得難 、と 、う問題があった。
[0015] 以上のように、軟弱埋立土砂に対する固化材配合量が少ない場合には、低強度で 均一な固化処理地盤を形成することは困難であり、特に従来の添加材管中混合方 法を採用した場合には、部分的な強度差が大きくなるという問題があった。
[0016] 特許文献 1 :特開平 11 229428号公報
特許文献 2:特開 2000— 3460号公報
発明の開示
発明が解決しょうとする課題
[0017] 本発明は、このような従来の問題に鑑み、主として浚渫土などの軟弱土を固化する に際し、含水比の変動があっても、添加混合する固化材の添加量を少なくすることが でき、所望範囲の目的強度を容易に得ることができる軟弱土の固化処理方法を提供 することを課題とする。
課題を解決するための手段
[0018] 前記課題を解決する本発明の第 1の態様は、軟弱土を固化材で固化処理するに 際し、所望のフロー値を維持する割合となる添加量でクリン力アッシュ及び水砕スラグ カゝら選択される少なくとも一種の添加剤を添加混合した後、固化材を添加混合するこ とを特徴とする軟弱土の固化処理方法にある。
[0019] かかる第 1の態様では、クリン力アッシュや水砕スラグなどの添加剤を所望のフロー 値が得られる程度に添加混合すると、クリン力アッシュや水砕スラグが軟弱土中の水 分を保持し且つ圧送'搬送性を低減することなぐ土質性状を安定させることができる と共に固化材の添加量を低減することができ、また、クリン力アッシュや水砕スラグの 添加量は軟弱土の含水比が変化しても変化する必要はない。 [0020] 本発明の第 2の態様は、第 1の態様において、前記添加材の添加量は、前記所望 のフロー値を維持する割合を決定した後は、前記軟弱土の含水比に関係なく一定と することを特徴とする軟弱土の固化処理方法にある。
[0021] かかる第 2の態様では、添加材の添加量は、予め、所望のフロー値を維持する割合 を決定した後は、一定としても、所望の配合強度を得ることができる。
[0022] 本発明の第 3の態様は、第 1又は 2の態様において、前記添加材の添加量は、重 量比で 10%〜70%となる量であることを特徴とする軟弱土の固化処理方法にある。
[0023] かかる第 3の態様では、添加材を所定の重量比で添加することにより、固化材の添 加量を低減することができる。
[0024] 本発明の第 4の態様は、第 1〜3の何れかの態様において、前記固化材の添加量 は、前記軟弱土及び前記添加材の総量 1000m3に対して 30〜: LOOkgであることを 特徴とする軟弱土の固化処理方法にある。
[0025] かかる第 4の態様では、軟弱土及び添加材の総量 1000m3に対して 30〜: LOOkg の割合で固化材を添加することにより、所望の固化強度を得ることができる。
[0026] 本発明の第 5の態様は、第 1〜4の何れかの態様において、前記固化材の添加量 は、配合強度が 250〜: L00kN/m2となるように設定することを特徴とする軟弱土の 固化処理方法にある。
[0027] かかる第 5の態様では、添加材及び固化材の添加混合により、所望の固化強度を 得ることができる。
[0028] 本発明の第 6の態様は、第 1〜5の何れかの態様において、前記固化材が、セメン トであることを特徴とする軟弱土の固化処理方法にある。
[0029] かかる第 6の態様では、セメントにより所望の固化強度を得ることができる。
[0030] 本発明の第 7の態様は、第 1〜6の何れかの態様において、前記固化材の他、固 化助剤として、フライアッシュを、前記軟弱土及び前記添加材の総量 1000m3に対し て 30〜90kg添加することを特徴とする軟弱土の固化処理方法にある。
[0031] かかる第 7の態様では、フライアッシュを所定の添加量でさらに添加することにより、 所望の固化強度をさらに容易に維持できると共に長期的な強度増進を防止すること ができる。 発明の効果
[0032] 本発明によると、浚渫土などの軟弱土に、多孔質で粒子内に浚渫土などの軟弱土 中の水分を保持できるクリン力アッシュや水砕スラグを添加することにより、軽量で圧 送'搬送性能を確保したまま、土質性状を安定させることができ、添加するセメント等 の固化処理材を低減して所定の強度を安定して得ることができる。また、クリン力アツ シュゃ水砕スラグの混合量をコントロールすることにより浚渫土の流動性を自在にコ ントロールすることができる。更に、セメントなどの固化材に加えて、フライアッシュを補 助的に添加して活用する際には、長期的に強度増進を抑える最適な添加割合を選 定することにより、埋立地の表層固化土として将来の地盤改良工事を行うことのでき る低強度の均質な改良土を造成することができる。
図面の簡単な説明
[0033] [図 1]本発明の固化処理方法を実施するための装置の一例の概略を示す図である。
[図 2]図 1の一部を拡大して説明する図である。
[図 3]本発明の固化処理方法における添加剤の添加量とフロー値との関係を示す図 である。
[図 4]本発明の固化処理方法における固化材添加量と固化後の強度との関係を示す 図である。
[図 5]図 4における目標強度を得るための固化材添加量を示す図である。
[図 6]含水比変化に対応した固化材の適正混合割合を示す図である。
[図 7]圧力計の検出圧力の時間的変化を示す図である。
[図 8]試験例 1のセメント添加量と一軸圧縮強度との関係を示す図である。
[図 9]試験例 1の経過日数と一軸圧縮強度との関係を示す図である。
[図 10]試験例 2のフライアッシュ添加量と一軸圧縮強度との関係を示す図である。
[図 11]試験例 2のフライアッシュ添加量と材令 28日強度 Z材令 7日強度との関係を 示す図である。
符号の説明
[0034] 1 軟弱土
10 土運船 11 サンドポンプ
12 揚土管
13 添カロ材注入器
14 一時貯留槽
15 γ線密度計
16 搬送管
17 空気圧送管
18a、 18b 圧力計
19 固化材注入器
20 注入制御手段
20a コンピュータ
発明を実施するための最良の形態
[0035] 以下、次に本発明の実施の形態を図面に基づいて説明する。
[0036] 図 1は、本発明を実施するための装置の一例の概略、図 2は搬送管の内部構造の 概略を示している。図面に示すように、高濃度の浚渫土等の軟弱土 1を輸送してくる 土運船 10には、揚土用のサンドポンプ 11が設けられており、サンドポンプ 11には揚 土管 12が連結されており、揚土管 12の途中には、クリン力アッシュや水砕スラグを添 加する添加剤注入器 13が設けられ、揚土管 12は一時貯留槽 14まで延設されている 。一時貯留槽 14は、サンドポンプ 11により揚土され、クリン力アッシュや水砕スラグが 添加された土砂スラリーを一時的に貯留するものである。一時貯留槽 14には土砂ス ラリーの密度を計測する γ線密度計 15が設置されているとともにその内部の低部に 搬送管 16の始端が連通されている。搬送管 16には空気圧送管 17が連通され、その 下流側に流れ方向に小間隔を隔てて一対の圧力計 18a, 18bが設置され、その下 流側に固化材注入器 19が備えられて 、る。
[0037] この装置を使用し、図 1に示すように、軟弱土 1に対し、揚土途中でクリン力アッシュ や水砕スラグを添加し、また、搬送管 16内の移動中に固化材を注入し、混合させて 所望の軟弱埋立地盤 21上に投入し、該軟弱埋立地盤 21の表面に層状に堆積させ て表層固化地盤 22を造成する。 [0038] 図 2に示すように、空気圧送管 17は、間欠的に高圧空気を搬送管 16内に送り込む ようにしており、これによつて一時貯留槽 14から搬送管 16内に送り込まれた土砂スラ リーを空気部分 Aを挟んだ多数の塊状のプラグ Sとして移動させるようにして 、る。
[0039] 両圧力計 18a, 18bは空気部分 A及びプラグ Sが搬送管 16内を移動することによる 管内圧力の変動及びその大きさをリアルタイムで計測するようにしている。
[0040] 固化材注入器 19は、固化材としてのセメントと、場合によっては、固化助材としての フライアッシュを混合し、水を加えてスラリー状とした添加材を注入する注入ノズル 19 aが搬送管 16内に挿入されており、この注入ノズル 19aからの注入タイミング及び注 入量を、コンピュータ 20aを使用した注入制御手段 20をもってコントロールしている。
[0041] このような装置を用いた軟弱土の固化処理方法では、まず、添加剤注入器 13から 添加するクリン力アッシュや水砕スラグの添力卩量を予め決定する。このクリン力アツシ ュゃ水砕スラグの添加量は、点火後のフロー値が所望の値になるように決定すれば よい。すなわち、図 3に示すように、クリン力アッシュや水砕スラグの添カ卩量とフロー値 との関係を予め調査して決定する。図 3の場合には、所望のフロー値が 1 :40の場合 には、混合後の総重量の 10〜30重量%となる程度、所望のフロー値が 1 : 15の場合 には、総重量の 50重量%程度とする。
[0042] 本発明では、このように予めクリン力アッシュや水砕スラグを添カ卩してフロー値を所 定の範囲に調整することにより、その後、以下に示すように添加する固化材の添加量 を大幅に低減することができる。また、クリン力アッシュや水砕スラグの添加量は、軟 弱土 1の含水比が大幅に変動しても調整する必要がない、すなわち、添加量を一度 決定した後には、含水比を測定しながら添加量を調整する必要がな 、と 、う利点が ある。そして、これ〖こより、固化材の添加量を低減し且つ所望強度の地盤を安定して 得ることができると!/、う効果を奏する。
[0043] 試算では、含水比が 80%〜400%の軟弱土 1に対して、配合強度が 250〜100k NZm2となるように固化材を添加する場合、クリン力アッシュや水砕スラグを添加しな いで固化材を添カ卩した場合の固化材の添カ卩量が立米あたり 80〜200kgであるのに 対し、クリン力アッシュや水砕スラグを添加した場合には、固化材の添加量は 30〜: LO Okg、好ましくは 30〜90kg、さらに好ましくは 30〜60kg程度まで低減することができ る。
[0044] また、本発明では、軟弱土にクリン力アッシュや水砕スラグを添加することにより、フ ロー値を自由にコントロールすることができるので、その後の固化処理操作を容易に することができる。
[0045] 一方、固化材注入器 19にて注入する固化材は、予め定めた配合に基づき、粉体 混合器を使用してセメントに、場合によってはフライアッシュを均一に混合しておき、 これに水を加えて混練し、スラリー状としたものを使用する。
[0046] 注入制御手段 20では、 γ線密度計 15、両圧力計 18a, 18bによる計測値を元にし て各プラグ S毎の添加材注入タイミング及び注入量をコントロールしている。
[0047] 注入制御手段 20では、 γ線密度計 15による計測値から、次の土質公式(1)、 (2) により土砂スラリーの含水比を算出する。
[0048] [数 1]
y t (G s + e S r / 1 0 0 ) / ( 1 + e ) = y w ( 1 ) e S r = G s ■ w ( 2 ) 式中の符号は以下の通りである。
Ύ t :湿潤単位体積重量 ( t f /m3)
G s :土粒子密度 (比重)
e :間隙比 S r :飽和度 (%)
Ύ w :水の単位体積重量 ( t f /m3)
w:含水比 (%)
[0049] 式(1)、 (2)において、飽和度 Srは 100%であり、土粒子密度 Gsは事前に室内土 質試験によって求めておく。土粒子密度はその地域の土砂について特徴ある土質定 数であり、同一地域の浚渫土であれば大きく変化することはない。そして γ線密度計 15によって得られる密度値 (湿潤単位体積重量 γ t)毎に含水比 wを算出する。
[0050] 一方、コンピュータ 20aには、含水比 wの変化に対応して所望の目標強度を得るた めの固化材混合割合を数式ィ匕して入力しておき、その添加材混合割合データに基 づき、前述の計算式で得られた含水比に対応して必要な添加材混合割合を選択し、 固化材注入器 19による固化材注入量をコントロールさせるようにして!/、る。
[0051] この固化材混合割合データの作成は、図 4に示すように土砂スラリーの含水比を数 段階に分けて違えたサンプル SI, S2, S3, S4毎に添加材混合量を違えて混合し、 各混合量毎に固化後の強度を計測してグラフを作成し、このグラフから図 5に示すよ うに、含水比の変化に対する目標強度を得るための固化材混合量のグラフを作成す る。
[0052] 更に、検出される含水比値が極端に少ない場合の添加材不足が生じないよう、及 び含水比値が極端に大きい場合に単位時間当りの添加材注入量の過大によって装 置の損傷を防止するため、予想される含水比外の部分について、図 6に示すように 一定の最低注入割合及び最高注入割合を設定したグラフを作成し、これを数式化し てコンピュータに入力する。
[0053] また、両圧力計 18a, 18bによって得られる搬送管 16内の圧力変化値から、コンビ ユータ 20aによって、プラグ Sの添加材注入管位置通過時及び重量 (又は長さ)を算 出し、プラグ S毎の土砂スラリー量の変化に対応させて固化材注入量及び各プラグ S に対する固化材注入時のタイミングをコントロールして 、る。
[0054] 即ち、コンピュータ 20aは、図 7に示すように圧力計 18a, 18bにより検出される圧力 曲線のピーク値 pに基づいて搬送管 16内の各プラグ Sの重量 (又は長さ)を算出し、 2つの圧力計 18a, 18bのピーク値 pの検出時間差 tに基づいて各プラグ S (土砂スラ リー)の流速を算出し、各プラグ Sの重量及び流速に対応して固化材注入器 19によ る固化材の注入量 (又は注入時間)及び注入時期を制御する。
[0055] 搬送管 16内では各プラグ Sが通過する際に圧力が上昇することが実験により確認 されており、図 7中に実線で示すように、プラグ Sの先端が圧力計 18aの設置箇所を 通過する時刻 tOに、圧力計 18aの計測値が上昇しはじめて、時刻 tOから稍遅れた時 刻 tlに、圧力計 18aでピーク値 pが検出される。そして、図 7中に破線で示すように、 同一のプラグ Sが下流側の圧力計 18bの設置箇所を通過する際に、上流側の検出 時刻 tlより遅い時刻 t2に、圧力計 18bでピーク値 pが検出される。
[0056] そして、圧力計 18a, 18bの設置間隔 dと圧力計 18a, 18bのピーク値 pの検出時間 差 t (t=t2— tl)とから、プラグ Sの流速 v (v=dZt)を算出することができ、プラグ S の流速 Vと圧力計 18bと注入ノズル 19aとの距離 1とから、このプラグ Sの先端が注入ノ ズル 19aの設置箇所を通過する時刻 t3 (t3=l/v+t0)を算出する。
[0057] 従って、多数のプラグ S、 S…の夫々の先端が注入ノズル 19aを通過する際に、注 入ノズル 19aによる搬送管 16内への固化材の注入を開始することができ、これによつ て、多数のプラグ S、 S…の間隔が一定でなくても、空気部分 A、 A…固化材を供給 することなぐプラグ S、 S…の夫々に固化材を確実に添加することができる。
[0058] なお、圧力計 18a, 18bの設置間隔 dが比較的狭ぐ圧力計 18a, 18bの間に 1つ のプラグ Sしか存在しない場合には、同一のプラグ Sに関して上流側の圧力計 18aに より検出された直後に下流側の圧力計 18bにより検出されるので、 2つの圧力計 18a , 18bの検出結果を容易に対応させることができる。また、圧力計 18a, 18bにより検 出されるピーク値 p又は波形はプラグ S、 S…毎に特徴を有するため、ピーク値 p又は 波形に基づいて、同一のプラグ Sに関する 2つの圧力計 18a, 18bの検出結果を対 応させてもよい。
[0059] そして、圧力計 18bにより検出されるピーク値 pは、各プラグ Sの重量 Wに略比例す る (W=ap + b (a、 bは定数)となる)ことが、実験により確認されている。なお、各ブラ グ Sの長さ(体積)は、その重量 Wに比例し、従って圧力計 18bのピーク値 pに比例す る。
[0060] このようにして算出される各プラグ S毎の重量 Wに対し、前述した γ線密度計 15の 計測値力 算出した含水比に対応させた固化材混合割合となるように予めコンビュ ータ 20aにプログラミングした計算式によって固化材注入量を算出し、固化材注入器 19からの各プラグ Sに対する固化材注入量を制御する。
[0061] なお、注入ノズル 19aによる固化材の注入速度を一定にし、注入時間を圧力計 18 bのピーク値 pに比例させるように制御することによって、プラグ Sの後端が注入ノズル 19aの設置位置を通過する際に添加材の注入時間が丁度終了するように固化材の 注入速度を調整しておくことができ、これによつて、プラグ Sが長い場合でも、プラグ S の前端力も後端まで添加材を偏らずに均等に添加することができる。
[0062] (試験例 1)
次に、高含水比の浚渫土力もなる軟弱土に対して、クリン力アッシュを添加すると共 にセメントからなる固化材と、必要に応じてフライアッシュ力 なる固化助剤を添加混 合させて固化処理した試験例を示す。
[0063] 図 8には、軟弱土に対して、クリン力アッシュを 50%となるように(軟弱土:クリンカァ ッシュ = 1 : 1)で添加し、その総量に対して、セメントを 30、 40、 50、 60kgZm3添カロ し、 20°Cの恒温恒湿室にて養生した場合の、材令 14、 28日の一軸圧縮強度を示す
。また、比較のため、クリン力アッシュを添カ卩しないでセメントを 50、 60kgZm3添カロし た場合の材令 28日の一軸圧縮強度を示す。
[0064] また、クリン力アッシュを 50%となるように(軟弱土:クリン力アッシュ = 1 : 1)で添カロし
、その総量に対して、セメントを 30kgZm3添加し、所定日数操業したときの、材令 14
、 28日の一軸圧縮強度を図 9に示す。
[0065] 図 8に示すように、クリン力アッシュを添カ卩(クリン力混入)することにより、所望の強度 を得るためのセメント添加量が大幅に低減できることが確認された。
[0066] また、図 9に示すように、クリン力アッシュを添加することにより、セメント量を低減して も、管理幅である 250〜100kNZm2という強度が安定して得られることが確認された
[0067] (試験例 2)
図 10及び図 11には、軟弱土に対して、クリン力アッシュを 50%となるように(軟弱土 :クリン力アッシュ = 1 : 1)で添カ卩し、その総量に対して、セメントを 50kg/m3と、フラ ィアッシュ 40〜230kg/m3とを添加した場合の材令 7日の一軸圧縮強度及び材令 7 日と材令 28日の一軸圧縮強度の強度比 (材令 28日強度 Z材令 7日強度)をそれぞ れ示す。
[0068] 図 10及び図 11に示すように、セメントと共にフライアッシュを添加すると、若材令か ら強度を得ることができることは知られて 、たが、フライアッシュを 30〜80kg/m3と!ヽ う所定の範囲内で添加した場合には、若材令カゝら高強度を得られると共に、長期的 な強度増進を抑えることができるという知見が得られた。
[0069] このようにクリン力アッシュを添加する本発明の固化処理方法において、セメントと共 にフライアッシュを所定量添加することにより、さらに安定して強度を確保することがで き、且つ長期的な強度増進も抑えることができるので、さらに安全性を確保しつセメン ト量を低減できると共にドレーン材の打込みが困難になってしまう高強度化を防止す ることがでさる。
産業上の利用可能性 本発明は、主として、海域、河川、湖沼等の浚渫土などの軟弱土の固化処理方法 に関する力 含水比が液性限界付近のものから液性限界を超えたものである軟弱土
、例えば、含水比が 80%〜400%のものに関しては広く適用可能である。

Claims

請求の範囲
[1] 軟弱土を固化材で固化処理するに際し、所望のフロー値を維持する割合となる添加 量でクリン力アッシュ及び水砕スラグカゝら選択される少なくとも一種の添加剤を添加混 合した後、固化材を添加混合することを特徴とする軟弱土の固化処理方法。
[2] 請求項 1にお!、て、前記添加剤の添加量は、前記所望のフロー値を維持する割合を 決定した後は、前記軟弱土の含水比に関係なく一定とすることを特徴とする軟弱土 の固化処理方法。
[3] 請求項 1又は 2において、前記添加材の添加量は、重量比で 10%〜70%となる量 であることを特徴とする軟弱土の固化処理方法。
[4] 請求項 1〜3の何れかにおいて、前記固化材の添加量は、前記軟弱土及び前記添 加剤の総量 1000m3に対して 30〜: LOOkgであることを特徴とする軟弱土の固化処理 方法。
[5] 請求項 1〜4の何れかにおいて、前記固化材の添加量は、配合強度が 250〜100k NZm2となるように設定することを特徴とする軟弱土の固化処理方法。
[6] 請求項 1〜5の何れかにおいて、前記固化材が、セメントであることを特徴とする軟弱 土の固化処理方法。
[7] 請求項 1〜6の何れかにおいて、前記固化材の他、固化助剤として、フライアッシュを 、前記軟弱土及び前記添加材の総量 1000m3に対して 30〜90kg添加することを特 徴とする軟弱土の固化処理方法。
PCT/JP2006/314689 2005-07-29 2006-07-25 軟弱土の固化処理方法 WO2007013465A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007528481A JP4869233B2 (ja) 2005-07-29 2006-07-25 軟弱土の固化処理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-221752 2005-07-29
JP2005221752 2005-07-29

Publications (1)

Publication Number Publication Date
WO2007013465A1 true WO2007013465A1 (ja) 2007-02-01

Family

ID=37683360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314689 WO2007013465A1 (ja) 2005-07-29 2006-07-25 軟弱土の固化処理方法

Country Status (3)

Country Link
JP (1) JP4869233B2 (ja)
KR (1) KR100986498B1 (ja)
WO (1) WO2007013465A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008248662A (ja) * 2007-03-30 2008-10-16 Chugoku Electric Power Co Inc:The 固化処理土及び固化処理方法
JP2011206625A (ja) * 2010-03-29 2011-10-20 Jfe Steel Corp 浚渫土の改質方法
US8480559B2 (en) 2006-09-13 2013-07-09 C. R. Bard, Inc. Urethral support system
US8845512B2 (en) 2005-11-14 2014-09-30 C. R. Bard, Inc. Sling anchor system
CN106480919A (zh) * 2016-10-20 2017-03-08 中国水电建设集团港航建设有限公司 一种长排距串联接力船系统
CN112159164A (zh) * 2020-10-16 2021-01-01 肇庆市武大环境技术研究院 一种软土固化剂及其制备方法
CN113912373A (zh) * 2021-11-22 2022-01-11 纳思同(无锡)科技发展有限公司 一种高含水率软土快速固化为路基填料的高性能固化剂

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101246858B1 (ko) * 2010-01-06 2013-03-25 주식회사 코스코 친환경 이동식 준설퇴적토의 고화처리장치 및 방법
KR102067541B1 (ko) * 2018-04-16 2020-01-16 한국건설기술연구원 압축판을 이용한 슬러지 탈수 및 고형화 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5641916A (en) * 1979-09-13 1981-04-18 Kawasaki Steel Corp Weak stratum solidifying treatment engineering using pulverized converter slag compound as hardening agent
JPH0440298A (ja) * 1990-06-05 1992-02-10 Fujita Corp ヘドロ固化材
JPH05220498A (ja) * 1992-02-13 1993-08-31 Mamoru Wakimura ヘドロ処理物及びヘドロの処理方法
JPH10225669A (ja) * 1997-02-13 1998-08-25 Chichibu Onoda Cement Corp 低アルカリ固化材
JP2001311134A (ja) * 2000-05-01 2001-11-09 Railway Technical Res Inst 硬化材添加含水流動性土、その硬化材添加量決定方法、とその製造方法及び装置
JP2003192409A (ja) * 2001-12-26 2003-07-09 Aiharagumi:Kk 粒状建設用資材の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5641916A (en) * 1979-09-13 1981-04-18 Kawasaki Steel Corp Weak stratum solidifying treatment engineering using pulverized converter slag compound as hardening agent
JPH0440298A (ja) * 1990-06-05 1992-02-10 Fujita Corp ヘドロ固化材
JPH05220498A (ja) * 1992-02-13 1993-08-31 Mamoru Wakimura ヘドロ処理物及びヘドロの処理方法
JPH10225669A (ja) * 1997-02-13 1998-08-25 Chichibu Onoda Cement Corp 低アルカリ固化材
JP2001311134A (ja) * 2000-05-01 2001-11-09 Railway Technical Res Inst 硬化材添加含水流動性土、その硬化材添加量決定方法、とその製造方法及び装置
JP2003192409A (ja) * 2001-12-26 2003-07-09 Aiharagumi:Kk 粒状建設用資材の製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8845512B2 (en) 2005-11-14 2014-09-30 C. R. Bard, Inc. Sling anchor system
US8480559B2 (en) 2006-09-13 2013-07-09 C. R. Bard, Inc. Urethral support system
JP2008248662A (ja) * 2007-03-30 2008-10-16 Chugoku Electric Power Co Inc:The 固化処理土及び固化処理方法
KR100976686B1 (ko) * 2007-03-30 2010-08-18 쥬코쿠 덴료쿠 가부시키 가이샤 고화 처리토 및 고화 처리 방법
JP2011206625A (ja) * 2010-03-29 2011-10-20 Jfe Steel Corp 浚渫土の改質方法
CN106480919A (zh) * 2016-10-20 2017-03-08 中国水电建设集团港航建设有限公司 一种长排距串联接力船系统
CN112159164A (zh) * 2020-10-16 2021-01-01 肇庆市武大环境技术研究院 一种软土固化剂及其制备方法
CN112159164B (zh) * 2020-10-16 2022-07-12 肇庆市武大环境技术研究院 一种软土固化剂及其制备方法
CN113912373A (zh) * 2021-11-22 2022-01-11 纳思同(无锡)科技发展有限公司 一种高含水率软土快速固化为路基填料的高性能固化剂

Also Published As

Publication number Publication date
KR100986498B1 (ko) 2010-10-08
KR20080035626A (ko) 2008-04-23
JP4869233B2 (ja) 2012-02-08
JPWO2007013465A1 (ja) 2009-02-05

Similar Documents

Publication Publication Date Title
WO2007013465A1 (ja) 軟弱土の固化処理方法
DE69821996T2 (de) Mobiles verfahren und system zum herstellen von mischungen aus zementzusätzen und beton
CN108529966B (zh) 防渗抗裂泵送混凝土组分设计方法及浇筑成型方法
JP4954074B2 (ja) 軟弱土の固化処理方法
CN104988925A (zh) 一种变态混凝土成孔注浆浆液扩散施工方法
JP4026169B2 (ja) 軟弱地盤の表層埋立固化方法
JP4950825B2 (ja) 流動化処理土の製造方法
CN104502232A (zh) 基于骨料等比表面积替代原则的混凝土凝结时间试验方法
JP2008031769A (ja) 配合設計方法、ソイルセメント
JP2003003514A (ja) 土砂スラリーに対する添加材管中混合方法
Warner Soil solidification with ultrafine cement grout
JP3697680B2 (ja) 添加材注入方法および添加材注入設備
US11774438B2 (en) Measurement set-up for a return cement suspension, construction site arrangement having a measurement set-up as well as method and use
JPH06305795A (ja) 原位置コンクリートおよびその製造方法
JPH06322738A (ja) 原位置コンクリート施工方法
Yeo et al. Evaluation of water ingress in cement treated material for durability assessments
JP2808367B2 (ja) 地盤改良の混合処理工法における安定材の自動注入制御方法及び自動注入制御装置
JP2001070991A (ja) 泥土固化処理装置およびその方法
McLaughlin Evaluation of Methods to Assess the Strength of Soil Cement Base
JP3181487B2 (ja) コンクリート練上げ温度制御方法
JP3029804B2 (ja) 石炭焚きボイラのフライアッシュの処理方法
Hela Durability of self-compacting concrete (SCC)
CN114380472A (zh) 一种基于高速水射流的原位底泥修复剂投加装置及方法
Hayano et al. Strength variance within cement treated soils induced by newly developed pneumatic flow mixing method
Pittman et al. A guide for design and construction of roller-compacted concrete pavements

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007528481

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087003530

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 06781601

Country of ref document: EP

Kind code of ref document: A1