WO2007010920A1 - 酸素吸収性樹脂組成物用ペレット及び酸素吸収性樹脂組成物 - Google Patents

酸素吸収性樹脂組成物用ペレット及び酸素吸収性樹脂組成物 Download PDF

Info

Publication number
WO2007010920A1
WO2007010920A1 PCT/JP2006/314231 JP2006314231W WO2007010920A1 WO 2007010920 A1 WO2007010920 A1 WO 2007010920A1 JP 2006314231 W JP2006314231 W JP 2006314231W WO 2007010920 A1 WO2007010920 A1 WO 2007010920A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
oxygen
trigger
thermoplastic resin
absorbing
Prior art date
Application number
PCT/JP2006/314231
Other languages
English (en)
French (fr)
Inventor
Takayuki Ishihara
Hiroaki Goto
Yoshihiro Ohta
Yuji Yamaguchi
Takeshi Saito
Original Assignee
Toyo Seikan Kaisha, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha, Ltd. filed Critical Toyo Seikan Kaisha, Ltd.
Priority to AU2006270859A priority Critical patent/AU2006270859A1/en
Priority to EP06781238A priority patent/EP1914265B1/en
Priority to CN200680034475.6A priority patent/CN101268122B/zh
Priority to KR1020087003858A priority patent/KR101295768B1/ko
Publication of WO2007010920A1 publication Critical patent/WO2007010920A1/ja
Priority to US12/016,228 priority patent/US20080152915A1/en
Priority to US12/700,829 priority patent/US8232347B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2453/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2453/02Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers of vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S525/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S525/902Core-shell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2998Coated including synthetic resin or polymer

Definitions

  • the present invention relates to an oxygen-absorbing resin composition with a small amount of acid-by-product used in packaging materials such as beverages, foods, and pharmaceuticals, which are susceptible to deterioration in the presence of oxygen.
  • Plastic containers are inferior to oxygen containers in comparison with metal containers and glass containers, so that the contents filled in the containers are deteriorated and the flavor is lowered.
  • the plastic container has a multilayered wall structure, and at least one layer is provided with a layer of a resin having an excellent oxygen nourishing property, for example, an ethylene-butyl alcohol copolymer.
  • a container provided with an oxygen absorbing layer in order to remove oxygen remaining inside the container and oxygen entering from the outside of the container.
  • the oxygen absorbent (deoxygenating agent) used in the oxygen absorbing layer is mainly composed of a reducing substance such as iron powder (see, for example, Patent Document 1).
  • the present inventors have prepared a resin composition in which a specific amount of a resin that triggers oxidation of the thermoplastic resin and a transition metal catalyst is blended with the thermoplastic resin.
  • a resin composition in which a specific amount of a resin that triggers oxidation of the thermoplastic resin and a transition metal catalyst is blended with the thermoplastic resin.
  • an oxygen-absorbing resinous yarn and a composition that absorbs oxygen as a result of the resin of the trigger being used as a trigger and the oxidation of the thermoplastic resin proceeds (patent document 5). And 6).
  • Patent Document 1 Japanese Patent Publication No. 62-1824
  • Patent Document 2 JP 2001-39475 A
  • Patent Document 3 Japanese Patent Laid-Open No. 5-115776
  • Patent Document 4 Japanese Patent Publication No. 8-502306
  • Patent Document 5 International Publication 2004Z18556 Pamphlet
  • Patent Document 6 Japanese Unexamined Patent Publication No. 2005Z42089
  • the present inventors made a thermoplastic batch and a transition metal catalyst into a masterbatch, and then added a thermoplastic resin and a trigger resin. It has been found that, by melt-kneading, a high-quality oxygen-absorbing rosin composition that does not cause seizure of the coconut can be provided, and the present invention has been completed. That is, the present invention is a pellet containing a thermoplastic resin (A) and an oxidation catalyst, and when mixed with the trigger resin and the thermoplastic resin (C), the trigger resin is used as a trigger for thermoplasticity.
  • A thermoplastic resin
  • C thermoplastic resin
  • the present invention provides a core containing a thermoplastic resin (A) and an oxidation catalyst, and a thermoplastic resin (B).
  • thermoplastic resin (A), (B) A multilayer pellet having a coating portion containing B), and when mixed with a trigger resin and a thermoplastic resin (C), the trigger resin acts as a trigger for the thermoplastic resin (A), (B) as well as(
  • a pellet for an oxygen-absorbing resin composition that absorbs oxygen by the progress of the acid salt of C).
  • the present invention also provides an oxygen-absorbing resin composition that can be obtained by mixing the pellet, the thermoplastic resin (C), and a trigger resin that serves as a trigger for the acid resin.
  • the present invention also provides a masterbatch containing a thermoplastic resin (A) and an oxidation catalyst, a thermoplastic resin (C), and an oxygen that can be obtained by mixing a trigger resin that triggers acid oxidation.
  • a trigger resin that triggers acid oxidation.
  • an absorbent absorptive fiber composition comprising an absorbent absorptive fiber composition that absorbs oxygen as a result of the trigger agglomerate being a trigger and the oxidation of the thermoplastic abundant (C) proceeds. .
  • the pellet of the present invention contains a thermoplastic resin (A) and an oxidation catalyst.
  • the pellet of the present invention has a core part containing the thermoplastic resin (A) and the oxidation catalyst, and a coating part containing the thermoplastic resin (B).
  • thermoplastic resin (A) a thermoplastic resin having an ethylene structure in its molecular structure is preferred.
  • heat-resisting resin having an ethylene structure in the molecular structure of acid-modified olefin-based resin that is graft-modified with unsaturated carboxylic acid or a derivative thereof using the above-mentioned resin as a base polymer. It can also be used as a plastic resin.
  • the thermoplastic resin is preferably a resin that is polymerized from C2 to C20 monomers and does not substantially contain an ethylenically unsaturated bond.
  • the thermoplastic resin is a linear low-density polyethylene composed of linear hydrocarbons having a side chain of 0.003 eqZg or less, or a ring structure having a total amount of aliphatic side chains of 0.005 eqZg or less. It is preferably a cyclic hydrocarbon sharing a part with the main chain, or a resin composed of the cyclic hydrocarbon and the straight chain hydrocarbon.
  • the side chain refers to a molecular chain whose main chain force is also branched.
  • eqZg in linear low-density polyethylene with linear hydrocarbon power of less than 0.003 eqZg on the side chain is the value obtained by calculating the number of side chains in the resin lg and dividing it by the number of Avogadro. The number can be calculated from nZN, where N is the number and n is the number of side chains in the resin lg (hereinafter the same).
  • the linear low-density polyethylene used in the aforementioned pellets of the present invention is selected from comonomer capable of forming a linear side chain and copolymerized with ethylene, whereby the side chain is reduced to 0.003 eq / g or less.
  • This is a straight chain hydrocarbon.
  • the progress of the acid chain can be controlled, and the disordered molecular cleavage associated with the acid chain such as the secondary carbon moiety can be controlled. Can be avoided.
  • a force using a conventional Ziegler-Natta catalyst or a single-site catalyst can be selected as long as it has a desired molecular structure.
  • a force using a conventional Ziegler-Natta catalyst or a single-site catalyst can be selected as long as it has a desired molecular structure.
  • the molecular structure becomes uniform, and the acid and soot proceed uniformly between the molecular chains, thereby suppressing excessive side reactions and suppressing the generation of acid and by-products due to meaningless molecular cleavage. It is preferable because it can be done.
  • a metalocene catalyst is exemplified.
  • catalysts for olefin polymerization that are positioned as post-metacene catalysts, especially phenoxyimine catalysts (FI Catalyst) is preferred.
  • a multi-site catalyst other than a single-site catalyst such as a Cidara 1-Natta catalyst
  • there is an acidity that makes it difficult for the copolymerization ratio of ethylene and comonomer to be uniform between the molecular chains. Unfavorable situations such as local concentration occur.
  • the acid chain is likely to be selectively generated, and the tertiary carbon corresponding to the bonding point of the side chain is increased in the main chain. This increases the frequency of the formation of low molecular weight components that adversely affect flavor and the like.
  • the preferred range for the J chain is 0.0003 to 0.003 eq / g, especially 0.005 to 0.003 eqZg. In this range, in addition to reducing oxidation byproducts, stable oxygen Absorbability and thermal stability are ensured, which is preferable.
  • linear low density polyethylene examples include, for example, a copolymer of ethylene and 1-butene, a copolymer of ethylene and 1-hexene, and a copolymer of ethylene and 1-octene using a meta-cene catalyst as a polymerization catalyst.
  • rosins may be used alone or in combination of two or more.
  • the above-described polymerization of the resin with a single-site catalyst may be carried out by any method that is industrially possible, but is preferably performed by a liquid phase method because it is most widely used. .
  • the aliphatic side chain used in the above-described pellet of the present invention has a cyclic hydrocarbon in which a part of the ring structure having a total amount of 0.005 eqZg or less is shared with the main chain, or the cyclic hydrocarbon and the linear hydrocarbon.
  • a resin composed of hydrogen is a copolymer of ethylene and an alicyclic hydrocarbon having an ethylenically unsaturated bond, or ethylene, an alicyclic hydrocarbon having an ethylenically unsaturated bond, and a linear side. It can be obtained by copolymerizing comonomers that can form chains.
  • a cyclic hydrocarbon in which the aliphatic side chain shares a part of the ring structure with a total amount of 0.005 eqZg or less with the main chain, or in the case of a resin composed of the cyclic hydrocarbon and the linear hydrocarbon,
  • the monomer having a cyclic side chain may be block-copolymerized, random-copolymerized, or alternately copolymerized, but the aliphatic cyclic side-chain moiety has molecular motion. Therefore, it is preferable to take a form such as random copolymerization or alternating copolymerization.
  • the preferred range of the “moon-aliphatic” ⁇ J chain is from 0.0005 to 0.005 eq / g, in particular from 0.001 to 0.005, and within this range, the oxidation by-product In addition to reduction, it is preferable because stable oxygen absorption and thermal stability are ensured.
  • Cyclic hydrocarbons sharing a part of the ring structure with the main chain, or a resin composed of the cyclic hydrocarbons and the straight chain hydrocarbons can be polymerized using a single site catalyst.
  • U is preferred because it can obtain a coalescence and can control the microstructure of the copolymer.
  • an olefin polymerization catalyst positioned in the meta-mouth catalyst or the post-meta-mouth catalyst can be suitably used.
  • Ti or Zr is used as a central metal
  • two indenyl groups are used as a ligand, but also a cyclopentagel group and a benzoindul group.
  • Etc is used as a central metal, and two indenyl groups are used as a ligand, but also a cyclopentagel group and a benzoindul group.
  • a phenoxytitanium catalyst in which a cyclopentagel type ligand is combined with a phenoxy ligand is also preferably used.
  • An example of a resin having a cyclic side chain using a single-site catalyst is a cyclic olefin copolymer (APEL: Mitsui Chemicals).
  • a part of hydrogen atoms constituting the cyclic hydrocarbon may be replaced by other atoms or atomic groups.
  • the atomic group include an alkyl group, an aldehyde group, a carboxyl group, and a hydroxyl group.
  • 3-cyclohexene— 1 Monotals such as carbotasaldehyde, 3 cyclohexene 1-carboxylic acid, 3 cyclohexene 1 1 methanol and the like are readily available as reagents.
  • the substitution of hydrogen atoms by atomic groups is preferably no more than one per side chain that also has cyclic hydrocarbon power.
  • the central metal or ligand may be appropriately selected according to the bulkiness of the molecule, the degree of polarity, and the like.
  • a copolymerization catalyst of ethylene and methyl methacrylate which is a polar monomer
  • a meta-octane catalyst having Sm as a central metal and having two cyclopentagel groups is known.
  • aromatic side chains other than aliphatic, such as a phenyl group, in the coconut resin, but in this case, the portion having an aromatic side chain is in the form of, for example, a styrene block. It should be present in the fat.
  • linear low-density polyethylene rosin composed of linear hydrocarbons with a side chain of 0.003 eqZg or less and a part of the ring structure with a total amount of aliphatic side chains of 0.005 eqZg or less as the main chain Or a mixture of the cyclic hydrocarbon and the above-mentioned cyclic hydrocarbon and linear hydrocarbon may be used.
  • thermoplastic resin From the viewpoint of reducing by-product formation, improving moldability, and improving oxygen absorption characteristics, it is preferable to use two or more kinds of polyethylene as the thermoplastic resin.
  • polyethylene polyethylene ethylene and 4 wt 0/0 or more carbon atoms 3-6 1-alkene copolymerization combined linear low density polyethylene.
  • polyethylene having different molecular weights.
  • the difference in molecular weight is a number average molecular weight, preferably 5.
  • OX 10 2 to 2 OX 10 4 is.
  • the 1-alkene having 3 to 6 carbon atoms to be copolymerized is preferably 4 to 30% by weight, more preferably 4 to 20% by weight.
  • High pressure low density polyethylene may be used as the thermoplastic resin. When two types of linear low density polyethylene having different molecular weights are used, the mixing ratio of high molecular weight polyethylene and low molecular weight polyethylene is preferably 5: 5 to 9: 1.
  • the mixing ratio of linear low density polyethylene and high pressure method low density polyethylene is preferably 5: 5 to 9: 1. More preferably, it is 6: 4 to 9: 1, and further preferably 6: 4 to 8: 2.
  • the amount of carbon-carbon double bonds in the linear low-density polyethylene or high-pressure low-density polyethylene is not a quality control item, but is preferably 0.4 X 10 _4 eq / g or less.
  • thermoplastic resin that is easy to extrude without staying in the extruder at the time of heat-melting and has good heat stability is preferable.
  • Good thermal stability means a resin with a low thermogravimetric reduction rate, which is 250 ° when thermogravimetric analysis is performed at a heating rate of 10 ° CZ for a measurement temperature range of 30 ° C to 300 ° C.
  • the thermal weight loss rate in C is preferably 0% to 10%, more preferably 0% to 5%.
  • thermoplastic resins include polyethylene such as low density polyethylene (LDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), linear low density polyethylene (LLDPE), and linear ultra low density polyethylene (LVLDPE).
  • PE polypropylene
  • PP polypropylene
  • ethylene propylene copolymer polybutene 1, ethylene-butene 1 copolymer, propylene-butene 1 copolymer, ethylene propylene-butene 1 copolymer, ethylene vinyl acetate copolymer, ion
  • examples thereof include a crosslinked olefin copolymer (ionomer) or a blend thereof.
  • thermoplastic resin (B) is the same as the thermoplastic resin (A).
  • thermoplastic resin (B) the same pellets as the thermoplastic resin (A) may be used to produce the pellets of the present invention, or a resin different from the thermoplastic resin (A). It may be used to make the pellets of the present invention.
  • a transition metal catalyst is preferred.
  • the transition metal catalyst for example, Group VIII metal components of the periodic table such as iron, cobalt and nickel are preferable, but other Group I metals such as copper and silver: Group IV metals such as tin, titanium and zirconium Vanadium group V, chromium, etc. Group VI, manganese and other group VII metal components.
  • the cobalt component is particularly suitable for the purpose of the present invention having a high oxygen absorption rate.
  • the transition metal catalyst is generally used in the form of a low-valent inorganic acid salt, organic acid salt or complex salt of the transition metal. Examples of inorganic acid salts include halides such as salts, sulfates and other oxides, nitrogen oxides such as nitrates, phosphates and other phosphates, and key salts.
  • examples of the organic acid salt include a carboxylate, a sulfonate, and a phosphonate
  • the carboxylate is suitable for the purpose of the present invention, and specific examples thereof include acetic acid and propylene salt.
  • Taic acid Isopropidium acid, Butanoic acid, Isobutanoic acid, Pentaic acid, Isopentanoic acid, Hexanoic acid, Heptanoic acid, Isoheptanoic acid, Octanoic acid, 2-Ethylhexanoic acid, Nonanoic acid, 3, 5, 5— Trimethylhexanoic acid, decanoic acid, neodecanoic acid, undecanoic acid, lauric acid, myristic acid, palmitic acid, margaric acid, stearic acid, arachidic acid, lindelic acid, petroceric acid, oleic acid, linoleic acid, linolenic acid And transition metal salts such as arachidonic acid, formic acid, oxalic acid, sulfamic acid, and naphthenic acid.
  • Preferred examples include transition metal salts such as neodecanoic acid and stearic acid
  • transition metal complex a complex with ⁇ -diketone or ⁇ -keto acid ester is used, and as ⁇ -diketone or j8-keto acid ester, for example, acetylyl acetate, acetoacetate, 1, 3 cyclohexane Hexadione, Methylenebis 1,3-cyclohexadione, 2 Benzyl mono 1,3 Cyclohexadione, Acetyltetralone, Palmitoyltetralone, Stearoyltetralone, Benzyltetralone, 2-Acetylcyclohexanone, 2 Nzoylcyclohexanone, 2-acetyl- 1,3-cyclohexanedione, benzoyl p-chlorobenzoylmethane, bis (4-methylbenzoyl) methane, bis (2-hydroxybenzoyl) methane, benzoylacetone, tribe
  • the oxidation catalyst is 1 to 20% by weight with respect to the thermoplastic resin (A). %, Particularly 2 to: LO is preferably contained in an amount of% by weight.
  • the oxidation catalyst is contained in an amount of 1000 to 20000 ppm, particularly 2000 to 10,000 ppm as the amount of transition metal relative to the thermoplastic resin (A)! It is good to be able to do that. If the amount of the transition metal catalyst is within the above range, the oxidation catalyst can be blended uniformly and can be molded without any problem in production.
  • the pellet of the present invention is mixed with the trigger resin and the thermoplastic resin (C), and the trigger resin serves as a trigger to absorb the oxygen as the thermoplastic resin proceeds. It is a pellet used for preparing an oxygen-absorbing rosin composition.
  • the shape of the pellet of the present invention is not particularly limited due to the nature of the present invention. Specific shapes include spherical, hemispherical, cylindrical, prismatic, cylindrical, meteorite, and rugby ball shapes. From the viewpoint of manufacturability, a spherical shape is preferable. Further, the size of the pellet of the present invention is not particularly limited due to the nature of the present invention. From the standpoint of manufacturability, 2 to: LOmm pellets are preferred to 3 to 8 mm pellets.
  • the weight ratio of the core (core) to the sheath (shell) constituting the pellet is preferably 10:90 to 90:10, more preferably 50:50 to 90:10.
  • the pellet of the present invention can be produced by dry blending an acid soot catalyst and a thermoplastic resin, and melt kneading with an extruder.
  • the extruder can be a single screw extruder or a twin screw extruder. But it ’s okay.
  • the pellets of the present invention having a core part and a covering part are obtained by using separate extruders for thermoplastic resin containing an oxidation catalyst serving as a core and thermoplastic resin serving as a sheath, respectively. It can be manufactured by feeding, extruding, and cutting into a multilayer strand die in a heated and melted state.
  • the thermoplastic resin containing the heat-melted acid-acid catalyst serving as the core is intermittently inserted into the main extrusion flow path in which the thermoplastic resin serving as the shell flows in the hot-melt state.
  • the oxygen-absorbing resin composition of the present invention comprises the above-described pellets, thermoplastic resin (C), and oxidation. It is an oxygen-absorbing resin composition that can be obtained by mixing trigger resin that is a trigger for the above.
  • the oxygen-absorbing resin composition of the present invention is a mixture of a thermoplastic resin (A) and a masterbatch containing an oxidation catalyst, a thermoplastic resin (C), and a trigger resin that triggers oxidation.
  • Oxygen-absorbing resin composition that can be obtained by the above-described oxygen-absorbing composition that absorbs oxygen by the advancement of the acidity of the thermoplastic resin (C) triggered by the trigger resin. It is a rosin composition.
  • thermoplastic resin (C) examples include the same thermoplastic resins as the thermoplastic resin (A) and (B).
  • the thermoplastic resin (C) may be the same as the thermoplastic resin (A) and Z or (B), or the oxygen-absorbing resin composition of the present invention may be prepared or thermally treated.
  • the oxygen-absorbing resin composition of the present invention is prepared using a resin other than the plastic resins (A) and (B).
  • the resin that serves as the trigger is a resin other than the thermoplastic resin, and is a resin that serves as a trigger for the acidity of the thermoplastic resin.
  • a resin having a carbon-hydrogen bond which is more likely to extract hydrogen than a methylene chain, is preferred.
  • a resin having a carbon-carbon double bond in the main chain or side chain, or a main chain examples thereof include a resin containing a tertiary carbon atom, a resin having an active methylene group in the main chain, and a resin having an aldehyde group. These may be contained alone in the thermoplastic rosin, or may be contained in a combination of two or more types!
  • Examples of the trigger resin having a carbon-carbon double bond in the main chain or side chain include a resin containing a unit derived from a chain-like or cyclic conjugated or non-conjugated polyoler.
  • Examples of such monomers include conjugated diene such as butadiene and isoprene; 1,4 monohexagen, 3-methyl-1,4 monohexagen, 4-methyl-1,4 monohexagen, 5-methyl-1,4 one Chain non-conjugated genes such as hexagen, 4, 5 dimethyl-1, 4 monohexagen, 7 methyl-1, 6-octagen; methyltetrahydroindene, 5-ethylidene den-2-norbornene, 5-methylene-2-norbornene, 5 —Isopropylidene-2-norbornene, 5-bi-lidene-2-norbornene, 6-chloromethyl-1-5-isopropyl-2, norbornene, dicyclopentagen and other
  • polystyrene resin examples include polybutadiene, polyisoprene, ethylene propylene copolymer, polyterpene, and dicyclopentagen resin.
  • a resin having a cyclic alkene structure having a tertiary carbon in the allylic position in the molecule is small in that there are few acid by-products even though a resin having a tertiary carbon in the allylic position is preferred. I like it.
  • the trigger resin containing a tertiary carbon atom in the main chain a polymer or copolymer containing a unit derived from a 1-year-old refinca having 3 to 20 carbon atoms, or a benzene ring in the side chain.
  • the polymer or copolymer having is preferably used.
  • ⁇ -year-old refin examples include propylene, 1-butene, 1-pentene, 4-methyl 1-pentene, 1-hexene, 1-heptene, 1-otaten, 1-nonene, 1-decene, 1-undecene, 1-dodecene, 1 tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-nonadecene, 1-eicosene, 9-methyl 1-decene, 1 Examples include 1-methyl-1-dodecene and 12-ethyl-1-tetradecene.
  • Specific polymers include, in particular, polypropylene, poly-1-butene, poly-1-hexene, poly-1-octene, ethylene-propylene copolymer, ethylene-butene-1 copolymer, and ethylene-propylene-1-butene copolymer.
  • Examples of the monomer having a benzene ring in the side chain include alkenylbenzenes such as styrene, 3-phenylpropene, and 2-phenyl-2-butene.
  • polystyrene examples include polystyrene, a styrene copolymer, a styrene monobutadiene copolymer, and a styrene monoisoprene copolymer.
  • the aromatic ring of these styrene polymers may have a substituent.
  • a substituent that forms a resonance structure with an aromatic ring for example, a substituent having an unshared electron pair, a substituent having a polar multiple bond, or a superconjugable substituent is preferably used.
  • the resin having an electron-withdrawing group in the main chain in particular, a carbonyl group and an adjacent methylene group.
  • examples include copolymers of acid carbon and olefin, particularly carbon monoxide ethylene copolymers.
  • rosin having an aldehyde group acrolein or methacrolein is used as a monomer. It is a dical polymerized product, and a copolymer with styrene is also preferably used.
  • polystyrene or styrene copolymer (also referred to as “styrene-based resin” in the present specification) having a benzene ring in the side chain is an acid of the thermoplastic resin.
  • the point of function as a trigger of the key is also particularly preferable.
  • the styrene copolymer has a site derived from Gen.
  • the gen-derived portion contains an isoprene unit or a butadiene unit.
  • a styrene isoprene copolymer or a styrene butadiene copolymer which is a copolymer of styrene and isoprene or butadiene is preferable.
  • the copolymer may be a random copolymer or a block copolymer.
  • the block copolymer is more preferable in terms of trigger effect, and in particular, a styrene isoprene block having a styrene block at the molecular end portion.
  • a copolymer or a styrene butadiene block copolymer is preferred.
  • styrene isoprene styrene triblock copolymer and styrene butadiene styrene triblock copolymer are preferable.
  • the triblock copolymer may be linear or radial in terms of chemical structure.
  • a copolymer in which the gen-derived portion of the styrene copolymer having the gen-derived portion is appropriately hydrogenated is particularly preferable because deterioration and coloring during molding can be suppressed.
  • the site derived from gen is preferably an isoprene unit or a butadiene unit, particularly a hydrogenated styrene isoprene copolymer or a hydrogenated styrene butadiene copolymer, which is a hydrogenated product of a copolymer of styrene and isoprene or butadiene. Polymer is preferred.
  • the copolymer may be a random copolymer or a block copolymer, but the block copolymer is more preferable from the viewpoint of the trigger effect, and in particular, a styrene isoprene block having a styrene block at the molecular end portion.
  • a copolymer or a styrene-butadiene block copolymer is preferable, and a hydrogenated styrene isoprene styrene triblock copolymer and a hydrogenated styrene-butadiene-styrene triblock copolymer are more preferable.
  • the triblock copolymer may be linear or radial in chemical structure, and the carbon-carbon double bond at the gen site before hydrogenation exists in the main chain in the form of a beylene group. Alternatively, it may be present in the side chain in the form of a vinyl group.
  • the random copolymer hydrogenated styrene isoprene random copolymer Or hydrogenated styrene butadiene random copolymer.
  • a hydrogenated styrene-gen-olefin (crystalline) triblock copolymer is also useful.
  • a refin (crystalline) triblock copolymer is preferred in that the acid byproduct is suppressed.
  • hydrogenated styrene butadiene polyethylene triblock copolymer is preferable.
  • a resin having a carbon-carbon double bond in the main chain or side chain listed as the above-described trigger resin a resin containing a tertiary carbon atom in the main chain, and an active methylene group in the main chain
  • the resin used as the trigger has an excessive amount of carbon-carbon double bonds.
  • the carbon-carbon bond in the benzene ring is not called a carbon-carbon double bond.
  • the oxygen-absorbing resin composition of the present invention tends to inhibit the acidity of the thermoplastic resin when the carbon-carbon double bond is excessively present. In addition, it may cause coloring of the oxygen-absorbing resin composition during molding.
  • the molecular weight of the resin that serves as the trigger is not particularly limited, but the point power of dispersibility in the thermoplastic resin is preferably in the range of a number average molecular weight of 1,000 to 500,000. Is in the range of 10000-250000.
  • the styrene-based resin the resin (A) and the resin (B) having different styrene contents in combination.
  • the styrene content of the resin (A) is preferably 60 to 90% by weight, more preferably 60 to 70% by weight.
  • the styrene content of the resin (B) is preferably 50% by weight or less, more preferably 10 to 40% by weight, and still more preferably 10 to 30% by weight.
  • the difference in styrene content between rosin (A) and rosin (B) is preferably 20% by weight or more, more preferably 20 to 60% by weight, and still more preferably 30 to 60%. % By weight.
  • a hydrogenated styrene isoprene copolymer or a hydrogenated styrene butadiene copolymer which is a hydrogenated product of a copolymer of styrene and isoprene or butadiene, is particularly preferred.
  • Triblock copolymers are preferred.
  • styrene and isoprene Hydrogenated styrene isoprene copolymer, which is a hydrogenated product of styrene or butadiene copolymer, especially hydrogenated styrene butadiene styrene triblock copolymer, hydrogenated styrene butadiene random copolymer Copolymers and hydrogenated styrene-butadiene-polyethylene triblock copolymers are preferred.
  • the mixing ratio of the resin (A) and the resin (B) is preferably 1: 9 to 9: 1, more preferably 2: 8 to 8: 2, and even more preferably 3: 7 to 5: 5.
  • the thermoplastic resin is contained in a large proportion so that a matrix can be formed and a large amount of oxygen can be absorbed by the acid solution.
  • the total content of the thermoplastic resin is more preferably in the range of 90 to 99% by weight. The range of 92.5 to 97.5% by weight is more preferable. Further preferred.
  • the resin used as the trigger is contained in a small proportion so that it can sufficiently function as a trigger for the acidity of the thermoplastic resin.
  • the content of the resin used as the trigger is preferably in the range of 1 to 10% by weight. A range of 5% by weight is more preferred.
  • the transition metal catalyst is contained in an amount of 10 to 1000 ppm, particularly 50 to 500 ppm as the amount of transition metal with respect to the total weight of the oxygen-absorbing resin composition. It is preferable that If the amount of the transition metal catalyst is within the above range, good gas nozzle properties can be obtained, and the deterioration tendency during kneading and molding of the oxygen-absorbing resin composition can be suppressed.
  • a method using a twin-screw extruder equipped with a force side feed that can use various means is suitable.
  • a twin screw extruder it is preferable to carry out in a non-oxidizing atmosphere in order to minimize the deterioration of the oxygen-absorbing resin composition.
  • it is extremely important for maintaining the performance of the oxygen-absorbing resin composition that the molding temperature for shortening the residence time is as low as possible.
  • the oxygen-absorbing rosin composition used in the present invention may contain a known activator as desired.
  • activators include, but are not limited to, polyethylene glycol, polypropylene glycol, ethylene Hydroxyl copolymers and polymers containing hydroxyl and Z or carboxyl groups such as various ionomers.
  • the oxygen-absorbing resin composition used in the present invention includes a filler, a colorant, a heat stabilizer, a weather stabilizer, an antioxidant other than a phosphorus antioxidant, an antioxidant, a light stabilizer, and an ultraviolet absorber.
  • a known compounding agent such as a lubricant, an antistatic agent, a lubricant such as a metal soap wax, a modifying resin or rubber can be blended according to a formulation known per se.
  • Lubricants include metal soaps such as magnesium stearate and calcium stearate, hydrocarbons such as flow, natural or synthetic paraffin, micro wax, polyethylene wax, chlorinated polyethylene wax, stearic acid, lauric acid, etc.
  • Fatty acid type fatty acid monoamide type or bisamide type such as stearic acid amide, palmitic acid amide, oleic acid amide, esylic acid amide, methylene bisstearamide, ethylene bisstearamide, butyl stearate, cured castor Oil, ester type such as ethylene glycol monostearate, alcohol type such as cetyl alcohol and stearyl alcohol, and mixed system thereof are generally used.
  • additives inhibit the oxidation reaction and extend the induction period, and the amount of additive should be kept to the minimum necessary.
  • Examples of the substance that inhibits the oxidation reaction of the present invention include basic compounds.
  • the oxygen-absorbing composition of the present invention can be used for oxygen absorption in a sealed package in the form of powder, granules or sheets. Further, it can be blended in a liner, a gasket or a coating forming resin to be used for absorbing residual oxygen in the package. Furthermore, it can be used for the production of a package as a packaging material in the form of a film or sheet, or as a packaging container in the form of a cap such as a cup, tray, bottle, or tube container.
  • the oxygen-absorbing resin composition of the present invention is preferably used in the form of a multilayer structure comprising at least one layer containing the composition (hereinafter referred to as an oxygen-absorbing layer) and another resin layer.
  • the layer containing the oxygen-absorbing resin composition is a layer composed only of the above-described oxygen-absorbing resin composition, and the oxygen-absorbing resin composition based on another resin or the like. This includes the case of both parties.
  • the resin layer other than the oxygen-absorbing layer constituting the multilayer structure can be appropriately selected from thermoplastic resin or thermosetting resin depending on the use mode and required function. Examples thereof include olefin-based resin, thermoplastic polyester resin, oxygen-nominated resin.
  • Olefin resin includes polyethylene (such as low density polyethylene (LDPE), medium density polyethylene (MDP E), high density polyethylene (HDPE), linear low density polyethylene (LLDPE), and linear ultra low density polyethylene (LVLDPE)).
  • PE polypropylene
  • PP polypropylene
  • ethylene-propylene copolymer polybutene-1, ethylene-butene 1 copolymer, propylene-butene 1 copolymer, ethylene-propylene-butene 1 copolymer, ethylene acetate butyl copolymer, ion Examples thereof include crosslinked olefin copolymers (ionomers) and blends thereof.
  • the thermoplastic polyester resin includes polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polyester resin mainly composed of polyglycolic acid, or a copolymer polyester thereof. Furthermore, these blends can be mentioned.
  • oxygen-nominated rosin is an ethylene butyl alcohol copolymer (EVOH).
  • EVOH ethylene butyl alcohol copolymer
  • a copolymer saponified product obtained by saponification so as to be at least mol% is used.
  • This saponified ethylene butyl alcohol copolymer has a molecular weight capable of forming a film. Generally, it has a viscosity of not less than 0. OldlZg, preferably not less than 0.05 dlZg, measured at 30 ° C in a 85:15 weight ratio of phenol: water.
  • oxygen-nominated resin examples include polyamide resin such as polymetaxylidene adipamide (MXD6), polyester resin mainly composed of polyglycolic acid, or polyester resin and other polyester resins. Blended fat with fat can be used.
  • polyamide resin such as polymetaxylidene adipamide (MXD6)
  • polyester resin mainly composed of polyglycolic acid
  • polyester resin and other polyester resins Blended fat with fat can be used.
  • the structure of the multilayer structure can be appropriately selected depending on the use mode and the required function.
  • the oxygen absorbing layer is expressed as OAR and has the following structure.
  • PETZOAR Two-layer structure: PETZOAR, PE / OAR, PP / OAR
  • PE means low density polyethylene (LDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), linear low density polyethylene (LLDPE), and linear very low density polyethylene (LVLDPE).
  • PE or PP may be a layer containing the regrind resin composition of the multilayer structure of the present invention! /.
  • the above-mentioned ligged resin composition contains a scrap resin generated when the multilayer container of the present invention is molded, etc., and usually constitutes a scrap resin and a multilayer container in terms of formability and the like. Includes mixed fats with virgin fats such as fats.
  • a deodorant or an adsorbent may be blended in the regrind resin composition.
  • a structure having at least one oxygen barrier layer is preferable because the life of the oxygen absorbing layer can be improved.
  • an adhesive resin can be interposed between the resin layers in the laminate.
  • adhesive resin include carboxylic acid, carboxylic acid anhydride, carboxylic acid in the main chain or side chain, 1 to 700 milliquivalent (meq) ZlOOg resin, preferably 10 to 500 meqZ lOOg resin, The polymer which contains with the density
  • the adhesive resin examples include ethylene-acrylic acid copolymer, ion-crosslinked polyolefin copolymer, maleic anhydride-grafted polyethylene, maleic anhydride-grafted polypropylene, acrylic acid-grafted polyolefin, and ethylene-butyl acetate copolymer. Copolyesters, copolyamides, and the like, which may be a combination of two or more of these, these adhesive resins are useful for laminating by coextrusion or Sunder German lamination.
  • an isocyanate-based or epoxy-based thermosetting adhesive resin is also used for adhesive lamination of a gas-nozzle resin film and a moisture-resistant resin film formed in advance.
  • any of the above-mentioned layers, particularly, the inner layer side of the oxygen-absorbing material layer is used for capturing by-products generated during oxygen absorption. It is preferred to use a deodorant or an acid-by-product adsorbent (also referred to herein as an “oxidation by-product scavenger”) in the layer.
  • acid scavenger by-product scavengers those known per se, such as natural zeolite, synthetic zeolite, silica gel, activated carbon, activated carbon impregnated activated carbon, activated clay, activated acid clay aluminum, sauce, diatomaceous earth, kaolin, talc, bentonite. Sepiolite, attabalgite, magnesium oxide, iron oxide, aluminum hydroxide, magnesium hydroxide, iron hydroxide, magnesium silicate, aluminum silicate, synthetic hydrated talcite, amine-supported porous silica can be used .
  • amine-supported porous silica is preferred in terms of reactivity with aldehyde, which is an oxidation by-product, and exhibits excellent adsorptivity to various acid by-products and is transparent.
  • the silica Z alumina ratio is large, so-called high silica zeolite is preferred.
  • the silica Z alumina ratio (molar ratio) is preferably 80 or more, more preferably 90 or more, and further preferably 100 to 700.
  • Zeolite with such a silica-Z alumina ratio has a low silica / alumina ratio, and on the contrary, it improves the scavenging performance of acid-by-product in high humidity conditions where zeolite reduces the adsorptivity. It is particularly effective when used in a package that wraps contents containing moisture.
  • the exchange cation of the silica gel is required to be one or a mixture of two or more alkaline metals such as sodium, lithium and potassium, and alkaline earth metals such as calcium and magnesium. In this case, it is preferred to contain at least sodium ions as exchange cations, and it is particularly preferred that substantially all exchange cations are sodium.
  • ZSM-5 type zeolite is particularly preferable. It is also important that the high-silica zeolite has a soot-like structure in which fine particles are aggregated. The soot-like structure increases the adsorption surface area and makes the organic compound larger in size than expected. It also works effectively.
  • the zeolite used in the present invention preferably has an average particle size of 0.5 to LO / zm.
  • the outermost layer, the Z adhesive layer, the Z gas barrier uniform resin layer, the oxygen absorbing layer, and the oxidation by-product scavenger are used as the specific examples of the multilayer structure.
  • Contained layer Z adhesive layer Z gas barrier resin layer Z adhesive layer A multilayer structure consisting of 10 innermost Z layers.
  • a multilayer structure in which the oxidation byproduct scavenger-containing layer contains a regrind resin composition is preferred.
  • the multilayer structure can be produced by a method known per se.
  • ordinary extrusion molding may be performed using a multilayer multiple die V using a number of extruders corresponding to the type of resin.
  • a multilayer injection molded article can be produced by a co-injection method or a sequential injection method using the number of injection molding machines according to the type of resin.
  • a film or sheet using the multilayer structure of the present invention an extrusion coating method or a sand germany lamination can be used, and a multilayer film can be formed by a pre-formed film lamination.
  • a sheet can be manufactured.
  • a packaging material such as a film can be used as a packaging bag of various forms, and the bag can be produced by a bag making method known per se, and a normal pouch having a three- or four-side seal is used. , Gusseted pouches, standing pouches, pillow packaging bags, etc. Power is not limited to this example.
  • the packaging container using the multilayer structure of the present invention is useful as a container that can prevent a decrease in the flavor of the contents due to oxygen.
  • Contents that can be filled include beer, wine, fruit juice, carbonated soft drink, oolong tea, green tea for beverages, fruits, nuts, vegetables, meat products, infant foods for food, coffee, jam, mayonnaise, ketchup, cooking oil , Dressings, sauces, boiled dairy products, dairy products, etc., and other powers such as pharmaceuticals, cosmetics, gasoline, etc., which easily cause deterioration in the presence of oxygen.
  • the said packaging container is good also as a package further packaged by the exterior body.
  • Multilayer strand die force also multilayered pellets 4.17 wt 0/0 obtained, hydrogenated styrene triggered ⁇ - butadiene - styrene copolymer (TUFTEC P2000: Asahi Chemicals Corporation) (Trigger ⁇ 1) 2. 51 weight 0/0 and hydrogenated styrene - butadiene - styrene copolymer (da Inaron 8601P: JSR (Co.)) (trigger ⁇ 2) 2. 51 weight 0/0, Chi Daranatta catalyzed linear as a base ⁇ Low density polyethylene LLDPE (Neo Zettas 20201 J: Mitsui Chemicals ( Ltd.)) (LLDPE- A) 19.
  • TEZTEC P2000 Asahi Chemicals Corporation
  • Oxygen-impervious container with an internal volume of 85 cc [Hireflex: HR78-84 Toyo Seikan Co., Ltd. polypropylene Z steel foil / polypropylene cup-shaped laminated container] 3. Og, polypropylene (inner layer) Z aluminum foil Z Heat sealed with a polyester (outer layer) lid. This was stored at 50 ° C. for 24 hours, and the oxygen concentration in the container was measured by gas chromatography. A case where oxygen was absorbed at 0.4 cc or more per lg was evaluated as ⁇ , and a case where oxygen was less than 0.4 cc was evaluated as X.
  • the multilayer pellets described above were produced using LLDPE-A as the resin for the core and coating. Next, using the obtained multilayer pellets, the above-described oxygen-absorbing resin composition was prepared, and the oxygen absorption ability and the scorch mixing rate were evaluated.
  • This oxygen-absorbing resin composition absorbed oxygen and was a good pellet with a low burn rate in the pellet.
  • Evaluation was performed in the same manner as in Example 1 except that LLDPE-A was used as the core resin and LLDPE-B was used as the coating resin.
  • This oxygen-absorbing greaves composition is used to produce the LLDPE-B I was able to pelletize without any problem. In addition, it showed good oxygen absorption and low burn rate in pellets.
  • Tablet-like cobalt stearate produced by Dainippon Ink & 6. 26 wt 0/0 and L LDPE-A93. 74% by weight were dry-blended, and melt-kneaded at 180 ° C in a twin-screw extruder A single layer pellet was prepared. Then, a single-layer pellets 4.17 wt 0/0 obtained and trigger ⁇ 1 2. 51 weight 0/0, the trigger ⁇ 2 2.
  • This oxygen-absorbing rosin composition showed good oxygen absorption. Compared with the case where the multilayer pellets of Example 1 were used, the oxides and heat-degraded materials derived from cobalt stearate adhered to the screws and barrels of the extruder.
  • Example 2 The same evaluation as in Example 1 was performed, except that cobalt stearate was blended in the core part.
  • This oxygen-absorbing rosin composition did not express the oxygen-absorbing ability because it did not contain cobalt stearate, which is an acid catalyst. Moreover, the burn-in ratio in the pellet was low.
  • Tablet-like cobalt stearate was pulverized and powdered, and the trigger coagulant and the base coagulant were dry blended to prepare an oxygen-absorbing coagulant composition as in Example 1.
  • the compounding ratio is 66.5 wt. / c ⁇ LLDPE— 28.5% by weight of B, 2.5% by weight of trigger resin 1 and 2.5% by weight of trigger resin 2, cobalt powder stearate as a cobalt metal to the entire resin It is 150ppm in terms of conversion.
  • the oxygen absorbing ability and the scorching contamination rate of the obtained oxygen-absorbing rosin composition were evaluated. Although this oxygen-absorbing resin composition showed good oxygen-absorbing properties, oxides derived from cobalt stearate and heat-degraded materials adhered to the screw and barrel of the extruder, and as a result, the pellets It mixed as a burn.
  • Table 1 shows the results of Examples and Comparative Examples.
  • cobalt stearate is masterbatched as an oxidation catalyst, or cobalt stearate as an acid catalyst.
  • a multi-layer pellet consisting of a core part and a covering part strength as a master batch, it is possible to prevent scorch from cobalt stearate, and there is a clear difference in the evaluation of the scorch mixing rate of the oxygen-absorbing resin composition. was recognized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

 本発明は、樹脂の焼け付きが生じることなく、高品質の酸素吸収性樹脂組成物を得ることを目的とする。本発明は、熱可塑性樹脂(A)及び酸化触媒を含むペレットであって、トリガー樹脂及び熱可塑性樹脂(C)と混合したときに前記トリガー樹脂がトリガーとなって熱可塑性樹脂(A)及び(C)の酸化が進行することによって酸素を吸収する酸素吸収性樹脂組成物用ペレットを提供する。

Description

明 細 書
酸素吸収性樹脂組成物用ペレット及び酸素吸収性樹脂組成物
技術分野
[0001] 本発明は、酸素存在下で劣化を起こしやすい内容品、特に飲料、食品、及び医薬 品等の包装材に用いられる酸ィ匕副生成物の少ない酸素吸収性榭脂組成物に関する 背景技術
[0002] 近年、包装容器としては、軽量で透明且つ易成形性等の利点を有するため、各種 プラスチック容器が使用されて 、る。
プラスチック容器は、金属容器やガラス容器と比べると、酸素ノ リヤー性が劣るため 、容器内に充填された内容物の変質や、フレーバーの低下が問題になる。
これを防止するために、プラスチック容器では容器壁を多層構造とし、少なくとも一 層を酸素ノ リヤー性に優れている榭脂、例えば、エチレン—ビュルアルコール共重 合体の層を設けている。また、容器内部に残存する酸素及び容器外部から侵入して くる酸素を除去するために、酸素吸収層を設けた容器がある。酸素吸収層に用いら れる酸素吸収剤 (脱酸素剤)には、例えば、鉄粉等の還元性物質を主剤とするもの( 例えば、特許文献 1参照。
)や、エチレン性不飽和炭化水素と遷移金属触媒力 なる酸素掃去剤を用いるもの( 例えば、特許文献 2から 4参照。)がある。
[0003] しかし、鉄粉等の酸素吸収剤を榭脂に配合して、包装材料の器壁に用いる方法は 、酸素吸収性能が大きいという点では満足できるものである力 榭脂を固有の色相に 着色するために、透明性が要求される包装の分野には使用できないという用途上の 制約がある。また、エチレン性不飽和炭化水素と遷移金属触媒力もなる酸素掃去剤 を用いる方法は、エチレン性不飽和炭化水素自体が酸素を吸収して酸素バリヤ一性 を達成するためある程度配合量を多くする必要があるが、配合量を多くすると成形性 や透明性が低下するといつた問題が生じる。このため、酸素を有効に吸収できる期間 が限定されるため、長期保存の要請に十分対応するものとは言えない。さらに酸素吸 収により着色や臭気も生じる。
[0004] これらの課題を解決するため、本発明者等は、熱可塑性榭脂に、前記熱可塑性榭 脂の酸化のトリガーとなる樹脂と、遷移金属触媒を特定量配合した榭脂組成物にお V、て、前記トリガーとなる樹脂がトリガーとなって前記熱可塑性榭脂の酸ィ匕が進行す ることによって酸素を吸収する酸素吸収性榭脂糸且成物を見出した (特許文献 5及び 6 参照)。
[0005] 特許文献 1 :特公昭 62— 1824号公報等
特許文献 2:特開 2001 - 39475号公報
特許文献 3:特開平 5 - 115776号公報
特許文献 4:特表平 8 - 502306号公報
特許文献 5:国際公開 2004Z18556号パンフレット
特許文献 6:特開 2005Z42089号公報
発明の開示
発明が解決しょうとする課題
[0006] しかしながら、熱可塑性榭脂、前記熱可塑性榭脂の酸化のトリガーとなる榭脂及び 遷移金属触媒を配合した榭脂組成物を、溶融混練して作製しょうとすると、榭脂の焼 け付きを生じて、品質上好ましくな 、ことが分力つた。
本発明は、榭脂の焼け付きが生じることなぐ高品質の酸素吸収性榭脂組成物を得 ることを目的とする。
課題を解決するための手段
[0007] 本発明者らは、上記課題に対して鋭意検討を重ねた結果、熱可塑性榭脂と遷移金 属触媒とをマスターバッチ化した後に、さらに熱可塑性榭脂及びトリガー榭脂を加え て溶融混練することにより、榭脂の焼け付きが生じることなぐ高品質の酸素吸収性 榭脂組成物を提供できることを見出し、本発明を完成させるに至った。すなわち、本 発明は、熱可塑性榭脂 (A)及び酸化触媒を含むペレットであって、トリガー榭脂及び 熱可塑性榭脂 (C)と混合したときに前記トリガー榭脂がトリガーとなって熱可塑性榭 脂 (A)及び (C)の酸化が進行することによって酸素を吸収する酸素吸収性榭脂組成 物用ペレットを提供する。 また、本発明は、熱可塑性榭脂 (A)及び酸化触媒を含むコア部と、熱可塑性榭脂(
B)を含む被覆部を有する多層ペレットであって、トリガー榭脂及び熱可塑性榭脂(C )と混合したときに前記トリガー榭脂がトリガーとなって熱可塑性榭脂 (A)、(B)及び(
C)の酸ィ匕が進行することによって酸素を吸収する酸素吸収性榭脂組成物用ペレット を提供する。
また、本発明は、前記ペレット、熱可塑性榭脂 (C)及び酸ィ匕のトリガーとなるトリガー 榭脂を混合することによって得ることができる酸素吸収性榭脂組成物を提供する。 また、本発明は、熱可塑性榭脂 (A)及び酸化触媒を含むマスターバッチ、熱可塑 性榭脂 (C)及び酸ィ匕のトリガーとなるトリガー榭脂を混合することによって得ることが できる酸素吸収性榭脂糸且成物であって、前記トリガー榭脂がトリガーとなって熱可塑 性榭脂 (C)の酸化が進行することによって酸素を吸収する酸素吸収性榭脂組成物を 提供する。
発明を実施するための最良の形態
本発明のペレットは熱可塑性榭脂 (A)及び酸化触媒を含む。また、別の態様にお いて、本発明のペレットは、熱可塑性榭脂 (A)及び酸化触媒を含むコア部と、熱可 塑性榭脂 (B)を含む被覆部を有する。
熱可塑性榭脂 (A)としては、分子構造にエチレン構造を有する熱可塑性榭脂が好 ましぐ例えば、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状 低密度ポリエチレン、線状超低密度ポリエチレン等のポリエチレン、ァイソタクティック 又はシンジオタクテイクスポリプロピレン等のポリプロピレン、エチレン プロピレン共 重合体、ポリブテン— 1、エチレンーブテン 1共重合体、エチレン プロピレンーブ テン 1共重合体、エチレン 酢酸ビュル共重合体、エチレン ビュルアルコール 共重合体等のエチレン系共重合体、プロピレンーブテン 1共重合体等のプロピレ ン系共重合体、イオン架橋ォレフィン共重合体或いはこれらのブレンド物等が挙げら れる。好ましくは、ポリエチレン、ポリプロピレン、エチレン—プロピレン共重合体、ェ チレン系共重合体及びプロピレン系共重合体である。
また、上記榭脂をベースポリマーとし、不飽和カルボン酸又はこれらの誘導体でグ ラフト変性された酸変性ォレフィン系榭脂を分子構造にエチレン構造を有する熱可 塑性榭脂として用いることもできる。
[0009] また、前記熱可塑性榭脂としては、 C2〜C20の単量体から重合された実質的にェ チレン性不飽和結合を含有しない榭脂であるのが好ましい。さらに、前記熱可塑性 榭脂は、側鎖が 0. 003eqZg以下の直鎖状炭化水素から成る線状低密度ポリェチ レン、または脂肪族性の側鎖が合計量 0. 005eqZg以下の環構造の一部を主鎖と 共有する環状炭化水素、或いは前記環状炭化水素及び直鎖状炭化水素から成る榭 脂であるのが好ましい。ここで、側鎖とは主鎖力も分岐している分子鎖のことをいい、 直鎖状炭化水素では主鎖に対して分岐が 1つであれば、側鎖数は 1つである。し力し 、化学式 1のような環状炭化水素の場合、主鎖に対する分岐数は 2つ存在するが、環 状化合物全体を側鎖とし、側鎖数としては 1つとする。また、側鎖が 0. 003eqZg以 下の直鎖状炭化水素力 成る線状低密度ポリエチレンにおける eqZgは、榭脂 lg中 の側鎖数を求め、それをァボガドロ数で除した値であり、ァボガドロ数を N、榭脂 lg中 の側鎖数を nで表すと、 nZNより計算することができる(以下同じ)。
[0010] 前述した本発明のペレットで用いる線状低密度ポリエチレンは、直鎖状の側鎖を形 成できるコモノマーを選択し、エチレンと共重合することにより、側鎖を 0. 003eq/g 以下の直鎖状炭化水素とする。側鎖を、直鎖状炭化水素とすることにより、側鎖に枝 分かれがある場合のような、枝分かれ部位の分子切断を防ぐことができ、低分子揮発 成分の生成を抑制できる。また、酸化されやすい三級炭素部位を意図的に分子鎖に 導入することにより、酸ィ匕の進行を制御することができ、二級炭素部位等の酸ィ匕に伴 う無秩序な分子切断を避けることができる。
[0011] 前記重合においては、従来力ものチーグラーナッタ触媒を用いたものでもシングル サイト触媒を用いたものでも所望の分子構造を有するものであれば適宜選択すること ができる力 シングルサイト触媒を用いて重合することにより、確実に各分子量成分に 亘つて共重合組成比の変動が抑制することが防止できる。その結果、分子構造が均 一となり、酸ィ匕が各分子鎖間で均一に進行することによって、過剰な副反応を抑制し 、無意味な分子切断による酸ィ匕副生成物の発生を抑制することができるため、好まし い。好適な触媒としては、メタ口セン系触媒が挙げられる。他の触媒としてはポストメタ 口セン系触媒に位置づけられるォレフィン重合用触媒、特にフヱノキシィミン触媒 (FI 触媒)が好適である。一方、シングルサイト触媒以外の触媒である例えば、チーダラ 一ナッタ触媒等のマルチサイト触媒を用いて重合した場合は、エチレンとコモノマー との共重合比が各分子鎖間で揃い難ぐ酸ィ匕が局所的に集中するなどの好ましくな い状況が発生する。また、主鎖から分岐する側鎖が 0. 003eqZgを超えると、選択的 に酸ィ匕が起き易い、側鎖の結合点に当たる三級炭素が主鎖中に多くなり、主鎖切断 により低分子の生成頻度が増えて、やはりフレーバー等に悪影響を与える低分子成 分の発生の原因となる。佃 J鎖の好適範囲は、 0. 0003〜0. 003eq/g、特に 0. 000 5〜0. 003eqZgであり、この範囲にあることで、酸化副生成物の低減の他に、安定 な酸素吸収性、熱安定性が確保されるので好ましい。
前記した線状低密度ポリエチレンとしては、例えば、メタ口セン系触媒を重合触媒と して使用したエチレンと 1 ブテンの共重合体、エチレンと 1 へキセンの共重合体、 エチレンと 1 オタテンの共重合体等のエチレンと α—ォレフインとの共重合体が好 ましい。
これらの榭脂は、単独で用いてもよいし、二種以上を組み合わせて用いてもよい。 また、前述した榭脂のシングルサイト触媒による重合は、工業的に可能な方法であ ればどのような方法でも良いが、最も広く使用されている点から液相法で行うのが好 ましい。
一方、前述した本発明のペレットにおいて用いる脂肪族性の側鎖が合計量 0. 005 eqZg以下の環構造の一部を主鎖と共有する環状炭化水素、或いは前記環状炭化 水素及び直鎖状炭化水素から成る榭脂は、エチレンとエチレン性不飽和結合を有す る脂環族炭化水素との共重合、或いはエチレン、エチレン性不飽和結合を有する脂 環族炭化水素、及び直鎖状の側鎖を形成できるコモノマーを共重合することで得るこ とがでさる。
この榭脂は、主鎖に、環構造の一部を主鎖と共有する環状炭化水素が結合している ため、主鎖状の三級炭素が同時に二箇所切断しないと環状部分の分離が起きない ため、酸素吸収量に比べてやはり酸ィ匕副生成物の発生が起き難い。
また、化学式 1に記載した形の側鎖を形成すると、側鎖中に三級炭素部分が酸化さ れる場合には、スキーム 1を示したように低分子成分の発生が起きな 、。
Figure imgf000007_0001
[0014] スキーム 1
[化 2]
Figure imgf000007_0002
[0015] これらの脂肪族性環状側鎖を有する榭脂は、ガラス転移温度が高い傾向があるが 、ガラス転移温度が高いと常温において分子鎖の運動性が不十分となり、酸素吸収 速度が低下する傾向があり、この意味で適度なエチレンを共重合した榭脂、或いは エチレン以外の直鎖状のコモノマーを共重合し、直鎖状炭化水素の側鎖を設けるこ とにより、適度にガラス転移点を下げることができる。この場合、側鎖は前記直鎖状炭 化水素の側鎖は C4以上であることが好ま 、。好ま 、ガラス転移点は 50°C以下で ある。
[0016] 脂肪族性の側鎖が合計量 0. 005eqZg以下の環構造の一部を主鎖と共有する環 状炭化水素、或いは前記環状炭化水素及び直鎖状炭化水素から成る榭脂において は、環状側鎖を有する単量体がブロック共重合されていても、ランダム共重合されて いても、或いは交互共重合されていても構わないが、脂肪族性環状側鎖部位は、分 子運動性が低くなりやすいため、ランダム共重合や交互共重合のような形態を取るこ とが好ましい。
主鎖に結合する前記脂肪族性の側鎖が 0. 005eqZgを超えると、主鎖中の三級 炭素密度が高くなりすぎ、主鎖切断により低分子の生成頻度が増えて、やはりフレー バー等に悪影響を与える低分子成分の発生の原因となる。
月旨肪族'性の佃 J鎖の好適範囲は、 0. 0005〜0. 005eq/g、特に、 0. 001〜0. 00 5であり、この範囲にあることで、酸化副生成物の低減の他に、安定な酸素吸収性、 熱安定性が確保されるので好まし 、。
[0017] 環構造の一部を主鎖と共有する環状炭化水素、或いは前記環状炭化水素及び直 鎖状炭化水素から成る榭脂は、シングルサイト触媒を用いて重合することが、種々の 共重合体を得ることができ、更に共重合体のミクロ構造が制御できるので好ま U 、。 シングルサイト触媒としては、前記メタ口セン触媒やポストメタ口セン系触媒に位置づ けられるォレフィン重合用触媒が好適に使用できる。具体的には、これに限定されな いが、中心金属として、 Tiや Zrを用い、配位子として、 2つのインデニル基を有するも のゃシクロペンタジェ-ル基とベンゾインデュル基を有するもの等が挙げられる。また 、シクロペンタジェ -ル型配位子をフエノキシ配位子と組み合わせたフエノキシチタン 系触媒等も好適に使用される。シングルサイト触媒を用いた環状側鎖を有する榭脂 の例としては、環状ォレフィン共重合体 (APEL:三井化学 (株))等があげられる。 前記環構造の一部を主鎖と共有する環状炭化水素、或いは前記環状炭化水素及 び直鎖状炭化水素から成る榭脂は、例えばジルコニウムを中心金属とするメタ口セン 系のシングルサイト触媒を用いて、エチレンとシクロブテン、エチレンとシクロペンテン 、エチレンとシクロへキセン、エチレンとシクロオタテン等を共重合することで得ること ができる。また、上記の 2元系に更に、 1ーブテン、 1一へキセン、 1—オタテン等のコ モノマーを用いることで、直鎖状の脂肪族性の側鎖を導入できる。また、触媒の種類 を選ぶことにより、共重合体の構造も前述したようにブロック、ランダム等各種形態の ものを得ることができる。
[0018] 上記共重合体の組成比を制御することで、本発明の側鎖数を有する榭脂を得るこ とがでさる。
前記環状炭化水素は、それを構成する一部の水素原子が他の原子や原子団によ り置換されていても良い。原子団としては、アルキル基、アルデヒド基、カルボキシル 基、水酸基等が挙げられる。例えば、シクロへキセンの場合、 3—シクロへキセン— 1 —カルボタスアルデヒド、 3 シクロへキセン一 1—カルボン酸、 3 シクロへキセン一 1 メタノール等の単量体が試薬として容易に入手し得る。原子団による水素原子の 置換は、環状炭化水素力もなる側鎖 1つ当たり 1つ以下であることが好ましい。
置換原子団が極性を有する場合には、分子の嵩高さ、極性の程度等に応じて、中 心金属や配位子を適宜選択すればょ ヽ。エチレンと極性単量体であるメチルメタタリ レートの共重合触媒として、 Smを中心金属とし、 2つのシクロペンタジェ -ル基を有 するメタ口セン系触媒が知られて 、る。
榭脂中に脂肪族性以外の例えばフ ニル基のような芳香族性の側鎖があっても良 V、が、この場合芳香族性側鎖を有する部分は例えばスチレンブロックのような形態で 榭脂中に存在するのが良い。
さらに、前述した側鎖が 0. 003eqZg以下の直鎖状炭化水素から成る線状低密度 ポリエチレン榭脂、と脂肪族性の側鎖が合計量 0. 005eqZg以下の環構造の一部 を主鎖と共有する環状炭化水素、或いは前記環状炭化水素及び直鎖状炭化水素か ら成る榭脂はブレンドして用いても良 、。
副生成物生成の低減、成形性の向上及び酸素吸収特性の向上の観点から、前記 熱可塑性榭脂として、 2種以上のポリエチレンを併用するのが好ましい。特に、少なく とも 1種のポリエチレンがエチレンと 4重量0 /0以上の炭素数 3〜6の 1-アルケンを共重 合した線状低密度ポリエチレンであるのが好ましい。エチレンと 4重量%以上の炭素 数 3〜6の 1-アルケンを共重合した線状低密度ポリエチレンを 2種以上用いる場合に は、分子量の異なる少なくとも 2種のポリエチレンを併用するのがよい。分子量の差は 、数平均分子量で、 5. O X 102以上であるのが好ましぐより好ましくは 5. O X 102〜3 . O X 104であり、さらに好ましくは 5. O X 102〜2. O X 104である。前記 1-アルケンと して、 1-プロピレン、 1-ブテン、 1-ペンテン、 1-へキセン及びこれらの混合物を用い ることができる。好ましくは、 1-ブテン、 1-ペンテン、 1-へキセンである。共重合する 炭素数 3〜6の 1-アルケンは、好ましくは 4〜30重量%であり、より好ましくは 4〜20 重量%である。前記熱可塑性榭脂として、高圧法低密度ポリエチレンを用いてもよい 。分子量の異なる 2種の線状低密度ポリエチレンを用いる場合、高分子量ポリエチレ ンと低分子量ポリエチレンとの混合比率は、 5 : 5〜9 : 1であるのが好ましぐより好まし くは6 :4〜8 : 2でぁり、さらに好ましくは 6 : 4〜7 : 3である。また、線状低密度ポリェチ レンと高圧法低密度ポリエチレンとを用いる場合、線状低密度ポリエチレンと高圧法 低密度ポリエチレンとの混合比率は、 5 : 5〜9 : 1であるのが好ましぐより好ましくは 6 :4〜9 : 1であり、さらに好ましくは 6 : 4〜8: 2である。また前記線状低密度ポリエチレ ン乃至高圧法低密度ポリエチレンの炭素一炭素二重結合量は、品質管理項目では ないが、 0. 4 X 10_4eq/g以下であることが好ましい。
特に、加熱溶融時に押出機中で滞留することなく押し出しが容易であり、また熱安 定性がよい熱可塑性榭脂が好ましい。熱安定性がよいとは、熱重量減少率が低い榭 脂のことであり、昇温速度 10°CZ分、測定温度範囲 30°C〜300°Cで熱重量分析を 行った場合の 250°Cにおける熱重量減少率が 0%〜10%であるのが好ましぐより好 ましくは 0%〜5%である。熱可塑性榭脂としては、低密度ポリエチレン (LDPE)、中 密度ポリエチレン (MDPE)、高密度ポリエチレン (HDPE)、線状低密度ポリエチレ ン(LLDPE)、線状超低密度ポリエチレン(LVLDPE)等のポリエチレン(PE)、ポリ プロピレン(PP)、エチレン プロピレン共重合体、ポリブテン 1、エチレンーブテン 1共重合体、プロピレンーブテン 1共重合体、エチレン プロピレンーブテン 1 共重合体、エチレン 酢酸ビニル共重合体、イオン架橋ォレフィン共重合体 (アイォ ノマー)或いはこれらのブレンド物等が挙げられる。
[0020] また、熱可塑性榭脂 (B)につ 、ても上記熱可塑性榭脂 (A)と同様である。熱可塑 性榭脂 (B)として、熱可塑性榭脂 (A)と同一のものを使用して本発明のペレットを作 製してもよぐ又は熱可塑性榭脂 (A)と異なる榭脂を用いて本発明のペレットを作製 してちよい。
[0021] 酸化触媒としては、遷移金属触媒が好ま ヽ。遷移金属触媒としては、例えば、鉄 、コバルト、ニッケル等の周期律表第 VIII族金属成分が好ましいが、他に銅、銀等の 第 I族金属:錫、チタン、ジルコニウム等の第 IV族金属、バナジウムの第 V族、クロム等 VI族、マンガン等の VII族の金属成分を挙げることができる。これらの金属成分の内で もコバルト成分は、酸素吸収速度が大きぐ本発明の目的に特に適したものである。 遷移金属触媒は、上記遷移金属の低価数の無機酸塩或いは有機酸塩或いは錯 塩の形で一般に使用される。 無機酸塩としては、塩ィ匕物などのハライド、硫酸塩等のィォゥのォキシ酸塩、硝酸 塩などの窒素のォキシ酸塩、リン酸塩などのリンォキシ酸塩、ケィ酸塩等が挙げられ る。
一方、有機酸塩としては、カルボン酸塩、スルホン酸塩、ホスホン酸塩などが挙げら れるが、カルボン酸塩が本発明の目的に好適であり、その具体例としては、酢酸、プ 口ピ才ン酸、イソプロピ才ン酸、ブタン酸、イソブタン酸、ペンタン酸、イソペンタン酸、 へキサン酸、ヘプタン酸、イソヘプタン酸、オクタン酸、 2—ェチルへキサン酸、ノナン 酸、 3, 5, 5—トリメチルへキサン酸、デカン酸、ネオデカン酸、ゥンデカン酸、ラウリン 酸、ミリスチン酸、パルミチン酸、マーガリン酸、ステアリン酸、ァラキン酸、リンデル酸 、ッズ酸、ペトロセリン酸、ォレイン酸、リノール酸、リノレン酸、ァラキドン酸、ギ酸、シ ユウ酸、スルファミン酸、ナフテン酸等の遷移金属塩が挙げられる。好ましくは、ネオ デカン酸、ステアリン酸などの遷移金属塩が挙げられ、特にステアリン酸コバルトが好 ましい。
[0022] 一方、遷移金属の錯体としては、 βージケトンまたは β ケト酸エステルとの錯体が 使用され、 βージケトンまたは j8—ケト酸エステルとしては、例えば、ァセチルァセト ン、ァセト酢酸ェチル、 1, 3 シクロへキサジオン、メチレンビス 1, 3—シクロへキ サジオン、 2 ベンジル一 1, 3 シクロへキサジオン、ァセチルテトラロン、パルミトイ ルテトラロン、ステアロイルテトラロン、ベンゾィルテトラロン、 2—ァセチルシクロへキ サノン、 2 べンゾィルシクロへキサノン、 2 ァセチルー 1, 3 シクロへキサンジオン 、ベンゾィル p クロルベンゾィルメタン、ビス(4—メチルベンゾィル)メタン、ビス(2 —ヒドロキシベンゾィル)メタン、ベンゾィルアセトン、トリベンゾィルメタン、ジァセチル ベンゾィルメタン、ステアロイルベンゾィルメタン、パルミトイルベンゾィルメタン、ラウ口 ィルベンゾィルメタン、ジベンゾィルメタン、ビス(4—クロルべンゾィル)メタン、ビス(メ チレン 3, 4—ジォキシベンゾィル)メタン、ベンゾィルァセチルフエ-ルメタン、ステ ァロイル(4—メトキシベンゾィル)メタン、ブタノィルアセトン、ジステアロイルメタン、ァ セチルアセトン、ステアロイルアセトン、ビス(シクロへキサノィル)一メタン及びジピバ ロイルメタン等を用いることができる。
[0023] 本発明のペレットにおいて、酸化触媒は、熱可塑性榭脂 (A)に対して 1〜20重量 %、特に 2〜: LO重量%の量で含有されていることが好ましい。酸化触媒として遷移金 属触媒を用いる場合には、酸化触媒は、熱可塑性榭脂 (A)に対して、遷移金属量と して 1000〜20000ppm、特に 2000〜10000ppmの量で含有されて!ヽること力好 ましい。遷移金属触媒の量が上記範囲内であれば、酸化触媒を均一に配合すること ができ、また製造上問題なく成形できる。
[0024] 本発明のペレットは、トリガー榭脂及び熱可塑性榭脂 (C)と混合して、前記トリガー 榭脂がトリガーとなって熱可塑性榭脂の酸ィ匕が進行することによって酸素を吸収する 酸素吸収性榭脂組成物を調製するために用いるペレットである。本発明のペレットは 、本発明の性質上、特にその形状は制限されない。具体的な形状としては、球形、半 球形、円柱形、角柱形、円筒形、碁石形、ラグビーボール形などの形状が挙げられる 。製造性の点から、球形が好ましい。また、本発明のペレットの大きさも、本発明の性 質上特に制限されない。製造性の点からは、 2〜: LOmmのペレットが好ましぐより好 ましくは 3〜8mmのペレットである。
[0025] コア部及び被覆部を有する本発明のペレットの場合、芯-鞘構造又はコア-シェル 構造であるのが好ましい。また、ペレットを構成する芯 (コア):鞘(シェル)の重量比が 10: 90〜90: 10であるの力 子ましく、より好ましくは 50: 50〜90: 10である。
[0026] 本発明のペレットは、酸ィ匕触媒と熱可塑性榭脂をドライブレンドし、押出機により溶 融混練することにより製造することができ、押出機は 1軸押出機でも 2軸押出機でもよ い。
また、コア部及び被覆部を有する本発明のペレットは、芯鞘構造の場合、芯となる酸 化触媒を含む熱可塑性榭脂と鞘となる熱可塑性榭脂をそれぞれ別個の押出機によ り加熱溶融した状態で多層ストランドダイへ供給し押し出し、カッティングすることによ り製造することができる。コア-シェル構造の場合は、シェルとなる熱可塑性榭脂がカロ 熱溶融状態で流動せしめられる主押出流路内にコアとなる加熱溶融状態の酸ィ匕触 媒を含む熱可塑性榭脂を間欠的に押し出して、シェル内にコアの榭脂が間隔をおい て実質的に囲繞された複合榭脂流を生成し、切断することにより製造することができ る。
[0027] 本発明の酸素吸収性榭脂組成物は、上述のペレット、熱可塑性榭脂 (C)及び酸化 のトリガーとなるトリガー榭脂を混合することによって得ることができる酸素吸収性榭脂 組成物である。また、本発明の酸素吸収性榭脂組成物は、熱可塑性榭脂 (A)及び 酸化触媒を含むマスターバッチ、熱可塑性榭脂 (C)及び酸化のトリガーとなるトリガ ー榭脂を混合することによって得ることができる酸素吸収性榭脂組成物であって、前 記トリガー榭脂がトリガーとなって熱可塑性榭脂 (C)の酸ィ匕が進行することによって酸 素を吸収する酸素吸収性榭脂組成物である。
熱可塑性榭脂 (C)としては、上記熱可塑性榭脂 (A)及び (B)と同じ熱可塑性榭脂 を例示することができる。熱可塑性榭脂 (C)は、熱可塑性榭脂 (A)及び Z又は (B)と 同一のものを使用して本発明の酸素吸収性榭脂組成物を作製してもよぐ又は熱可 塑性榭脂 (A)及び (B)と異なる榭脂を用いて本発明の酸素吸収性榭脂組成物を作 製してちょい。
[0028] 前記トリガーとなる榭脂は、前記熱可塑性榭脂以外の榭脂であり、前記熱可塑性榭 脂の酸ィ匕のトリガーとなる榭脂である。前記トリガーとなる榭脂としては、メチレン鎖よ り水素引き抜きが起こりやすい炭素一水素結合を有する榭脂が好ましぐ例えば主鎖 又は側鎖に炭素 炭素二重結合を有する榭脂、主鎖に三級炭素原子を含む榭脂、 主鎖に活性メチレン基を有する榭脂、アルデヒド基を有する榭脂を挙げることができ る。これらは、前記熱可塑性榭脂中に単独で含有されていてもよいし、二種以上の組 み合わせで含有されて!、てもよ!/、。
[0029] 主鎖又は側鎖に炭素 炭素二重結合を有する前記トリガーとなる榭脂としては、鎖 状又は環状の共役又は非共役ポリェンカゝら誘導された単位を含む樹脂が挙げられる 。このような単量体としては、例えばブタジエン、イソプレン等の共役ジェン;1, 4一へ キサジェン、 3—メチルー 1, 4一へキサジェン、 4ーメチルー 1, 4一へキサジェン、 5 ーメチルー 1, 4一へキサジェン、 4, 5 ジメチルー 1, 4一へキサジェン、 7 メチル - 1, 6—ォクタジェン等の鎖状非共役ジェン;メチルテトラヒドロインデン、 5—ェチリ デン一 2 ノルボルネン、 5—メチレン一 2 ノルボルネン、 5—イソプロピリデン一 2— ノルボルネン、 5 ビ-リデン一 2 ノルボルネン、 6 クロロメチル一 5—イソプロべ- ルー 2 ノルボルネン、ジシクロペンタジェン等の環状非共役ジェン;2, 3 ジイソプ 口ピリデン 5 ノルボルネン、 2 -ェチリデン 3 イソプロピリデン 5 ノルボル ネン、 2—プロべ-ル— 2, 2—ノルボルナジェン等のトリェン等が挙げられる。具体的 な重合体としては、ポリブタジエン、ポリイソプレン、エチレン プロピレン ジェン共 重合体、ポリテルペン、ジシクロペンタジェン榭脂等が挙げられる。トリガー効果の点 では、ァリル位に三級炭素を有する榭脂が好ましぐ中でも酸ィ匕副生成物が少ない 点でァリル位に三級炭素を有する環状アルケン構造を分子中に有する榭脂が好まし い。
主鎖に三級炭素原子を含む前記トリガーとなる榭脂としては、炭素原子数 3〜20の a一才レフインカ 誘導された単位を含む重合体または共重合体、或いは側鎖にベ ンゼン環を有する重合体または共重合体が好適に使用される。上記 α—才レフインと しては、具体的には、プロピレン、 1—ブテン、 1—ペンテン、 4—メチル 1—ペンテ ン、 1—へキセン、 1—ヘプテン、 1—オタテン、 1—ノネン、 1—デセン、 1—ゥンデセ ン、 1—ドデセン、 1 トリデセン、 1—テトラデセン、 1—ペンタデセン、 1—へキサデ セン、 1—ヘプタデセン、 1—ノナデセン、 1—エイコセン、 9—メチル 1—デセン、 1 1ーメチルー 1ードデセン、 12—ェチルー 1ーテトラデセンなどが挙げられる。具体的 な重合体としては、特にポリプロピレン、ポリ一 1—ブテン、ポリ一 1—へキセン、ポリ一 1 オタテン、エチレン プロピレン共重合体、エチレンーブテン 1共重合体、ェチ レン プロピレン 1ーブテン共重合体が挙げられる。また、上記側鎖にベンゼン環 を有する単量体としては、スチレン、 3 フエ-ルプロペン、 2 フエ-ルー 2 ブテン 等のアルケニルベンゼンが挙げられる。具体的な重合体としては、ポリスチレンまた はスチレン共重合体、スチレン一ブタジエン共重合体、スチレン一イソプレン共重合 体が挙げられる。これらスチレン重合体の芳香環は置換基を有していても良い。特に 芳香環と共鳴構造を形成する置換基、例えば非共有電子対を有する置換基又は極 性多重結合を有する置換基又は超共役可能な置換基は好ましく用いられる。
主鎖に活性メチレン基を有する前記トリガーとなる榭脂としては、主鎖に電子吸引 性の基、特にカルボニル基とこれに隣接するメチレン基とを有する榭脂であり、具体 的には、一酸ィヒ炭素とォレフインとの共重合体、特に一酸化炭素 エチレン共重合 体等が挙げられる。
アルデヒド基を有する榭脂としては、ァクロレインやメタクロレインを単量体として、ラ ジカル重合されたものであり、スチレンとの共重合体も好ましく用いられる。
前記トリガーとなる榭脂としては、側鎖にベンゼン環を有するポリスチレンまたはスチ レン共重合体 (本明細書においては、「スチレン系榭脂」とも呼ぶ。)が、前記熱可塑 性榭脂の酸ィ匕のトリガーとしての機能の点力も特に好ましい。
スチレン共重合体は、ジェン由来の部位を有することがトリガー効果の点で好まし い。
ジェン由来の部分としては、イソプレン単位、ブタジエン単位を含むことが好ましぐ 特にスチレンとイソプレン乃至ブタジエンの共重合体であるスチレン イソプレン共重 合体乃至スチレン ブタジエン共重合体が好ましい。共重合体の態様としては、ラン ダム共重合体でもブロック共重合体でも良 、が、ブロック共重合体がトリガー効果の 点でより好ましぐ特に分子末端部分にスチレンブロックを有するスチレン イソプレ ンブロック共重合体乃至スチレン ブタジエンブロック共重合体が好ましい。特に、ス チレン イソプレン スチレントリブロック共重合体、スチレン ブタジエン スチレン トリブロック共重合体が好ましい。上記トリブロック共重合体の化学構造的には、線状 でもラジアル状でも良い。
上記ジェン由来の部位を有するスチレン共重合体のジェン由来部位を適度に水添 した共重合体は、成形時の劣化や着色を抑制できるので特に好ましい。ジェン由来 の部位としては、イソプレン単位乃至ブタジエン単位であることが好ましぐ特にスチ レンとイソプレン乃至ブタジエンの共重合体の水添物である水添スチレン イソプレ ン共重合体乃至水添スチレン ブタジエン共重合体が好まし 、。共重合体の態様と しては、ランダム共重合体でもブロック共重合体でも良いが、ブロック共重合体がトリ ガー効果の点でより好ましぐ特に分子末端部分にスチレンブロックを有するスチレン イソプレンブロック共重合体乃至スチレン ブタジエンブロック共重合体が好ましく 、水添スチレン イソプレン スチレントリブロック共重合体、水添スチレンーブタジェ ン—スチレントリブロック共重合体がより好ましい。上記トリブロック共重合体の化学構 造的には、線状でもラジアル状でも良ぐまた、水添前のジェン部位の炭素 炭素二 重結合は、ビ-レン基の形で主鎖に存在しても、ビニル基の形で側鎖に存在しても 良い。また、ランダム共重合体としては、水添スチレン イソプレンランダム共重合体 乃至水添スチレン ブタジエンランダム共重合体が挙げられる。
また、ジェン由来の部位を適度に水添したスチレン共重合体の別の態様として、水 添スチレン—ジェン—ォレフィン (結晶)トリブロック共重合体も有用であり、特に、水 添スチレン ブタジエン一才レフイン (結晶)トリブロック共重合体が酸ィ匕副生成物が 抑制される点で好ましい。中でも、水添スチレン ブタジエン ポリエチレントリブロッ ク共重合体が好ましい。
[0032] また、上記した前記トリガーとなる榭脂として列記した主鎖又は側鎖に炭素 炭素 二重結合を有する榭脂、主鎖に三級炭素原子を含む榭脂、主鎖に活性メチレン基を 有する榭脂においては、成形中の熱安定性及び前記熱可塑性榭脂の酸ィ匕のトリガ 一としての機能の点から、前記トリガーとなる榭脂は、炭素 炭素二重結合の量が過 剰に存在すると、熱可塑性榭脂の酸化を抑制する傾向がある。なお、ベンゼン環の 炭素 炭素結合は、炭素 炭素二重結合とはいわない。
さらに、本発明の酸素吸収性榭脂組成物は、炭素 炭素二重結合が過剰に存在 すると、前記熱可塑性榭脂の酸ィ匕を逆に抑制する傾向がある。また、成形中の酸素 吸収榭脂組成物の着色の原因ともなる。
尚、前記トリガーとなる樹脂の分子量については特に制限はないが、前記熱可塑性 榭脂への分散性の点力も数平均分子量が 1000〜500000の範囲であるのが好まし <、より好まし <は 10000〜250000の範囲である。
[0033] 酸素吸収速度を向上させると!、う観点から、前記スチレン系榭脂として、スチレン含 有量の異なる榭脂 (A)と榭脂 (B)を併用するのが好ま ヽ。榭脂 (A)のスチレン含有 量は、好ましくは 60〜90重量%であり、より好ましくは 60〜70重量%である。榭脂( B)のスチレン含有量は、好ましくは 50重量%以下であり、より好ましくは 10〜40重 量%であり、さらに好ましくは 10〜30重量%である。また、榭脂 (A)と榭脂(B)とのス チレン含有量の差が 20重量%以上であるのが好ましぐより好ましくは 20〜60重量 %であり、さらに好ましくは 30〜60重量%である。榭脂 (A)としては、スチレンとイソ プレン乃至ブタジエンの共重合体の水添物である水添スチレン イソプレン共重合 体乃至水添スチレン ブタジエン共重合体が好ましく、特に水添スチレン ブタジェ ン一スチレントリブロック共重合体が好ましい。榭脂(B)としては、スチレンとイソプレ ン乃至ブタジエンの共重合体の水添物である水添スチレン イソプレン共重合体乃 至水添スチレン ブタジエン共重合体が好ましぐ特に水添スチレン ブタジエン スチレントリブロック共重合体、水添スチレン ブタジエンランダム共重合体及び水添 スチレン—ブタジエン—ポリエチレントリブロック共重合体が好ましい。榭脂 (A)と榭 脂(B)との混合比率は、 1 : 9〜9 : 1であるのが好ましぐより好ましくは 2 : 8〜8: 2であ り、さらに好ましくは 3 : 7〜5: 5である。
[0034] 前記熱可塑性榭脂は、マトリックスの形成が可能であり、かつ酸ィ匕により多量の酸 素を吸収することが可能であるように多割合で含有されるのが好ましぐ本発明の酸 素吸収性榭脂組成物にお!、て、前記熱可塑性榭脂の合計の含有量は 90〜99重量 %の範囲がより好ましぐ 92. 5-97. 5重量%の範囲がさらに好ましい。また、前記ト リガ一となる榭脂は、前記熱可塑性榭脂の酸ィ匕のトリガーとして機能を十分に発揮す ることが可能であるように少割合で含有されるのが好ましぐフィルム、シート或いは力 ップ、トレイ、ボトル、チューブ、キャップとする際に成形性を考慮すると、前記トリガー となる榭脂の含有量は 1〜10重量%の範囲が好ましぐ 2. 5〜7. 5重量%の範囲が さらに好ましい。
[0035] 本発明の酸素吸収性榭脂組成物において、遷移金属触媒は、酸素吸収性榭脂組 成物合計重量に対して、遷移金属量として 10〜1000ppm、特に 50〜500ppmの 量で含有されていることが好ましい。遷移金属触媒の量が上記範囲内であれば、良 好なガスノ リヤー性を得ることができ、酸素吸収性榭脂組成物の混練成形時におけ る劣化傾向を抑制することができる。
[0036] 酸素吸収性榭脂組成物の配合には、種々の手段を用いることができる力 サイドフ イードを備えた二軸押出機を用いる方法が好適である。二軸押出機による混練に際 しては、酸素吸収性榭脂組成物の劣化を最小限とするため、非酸化的雰囲気で実 施するのが良い。また、滞留時間を短ぐ成形温度もできるだけ低温とすることが、酸 素吸収性榭脂組成物の性能維持において極めて重要である。
[0037] 本発明で用いる酸素吸収性榭脂組成物には、一般に必要ではないが、所望により それ自体公知の活性化剤を配合することができる。活性化剤の適当な例は、これに 限定されないが、ポリエチレングリコール、ポリプロピレングリコール、エチレン 'メタタリ ル酸共重合体、各種アイオノマー等の水酸基及び Z又はカルボキシル基含有重合 体である。
本発明に用いる酸素吸収性榭脂組成物には、充填剤、着色剤、耐熱安定剤、耐候 安定剤、リン系酸化防止剤以外の酸化防止剤、老化防止剤、光安定剤、紫外線吸 収剤、帯電防止剤、金属セッケンゃワックス等の滑剤、改質用榭脂乃至ゴム、等の公 知の榭脂配合剤を、それ自体公知の処方に従って配合できる。
例えば、滑剤を配合することにより、スクリューへの榭脂の食い込みが改善される。 滑剤としては、ステアリン酸マグネシウム、ステアリン酸カルシウム等の金属石ケン、流 動、天然または合成パラフィン、マイクロワックス、ポリエチレンワックス、塩素化ポリエ チレンワックス等の炭化水素系のもの、ステアリン酸、ラウリン酸等の脂肪酸系のもの 、ステアリン酸アミド、パルミチン酸アミド、ォレイン酸アミド、ェシル酸アミド、メチレン ビスステアロアミド、エチレンビスステアロアミド等の脂肪酸モノアミド系またはビスアミ ド系のもの、ブチルステアレート、硬化ヒマシ油、エチレングリコールモノステアレート 等のエステル系のもの、セチルアルコール、ステアリルアルコール等のアルコール系 のもの、およびそれらの混合系が一般に用いられる。
ただ、これら添加剤の中には、酸化反応を阻害し、誘導期間を延ばすものもあり、 添カ卩は必要最低限にするべきである。本発明の酸化反応を阻害する物質として、塩 基性化合物が挙げられる。
本発明の酸素吸収性組成物は、粉末、粒状又はシート等の形状で、密封包装体内 の酸素吸収に使用することができる。また、ライナー、ガスケット用又は被覆形成用の 榭脂ゃゴム中に配合して、包装体内の残留酸素吸収に用いることができる。さらに、 フィルム、シートの形で包装材料として、また、カップ、トレイ、ボトル、チューブ容器等 のキャップ形で包装容器として包装体の製造に用いることができる。
本発明の酸素吸収性榭脂組成物は、これを含む少なくとも一層(以下、酸素吸収 性層という。)と、他の樹脂の層からなる多層構造体の形で使用することが好ましい。 なお、酸素吸収性榭脂組成物を含む層とは、上記の酸素吸収性榭脂組成物のみか らなる層、及び他の榭脂等を基材とし酸素吸収性榭脂組成物を配合してなる層の両 者の場合を含む。 多層構造体を構成する、酸素吸収性層以外の榭脂層は、熱可塑性榭脂又は熱硬 化性榭脂から、その使用態様や要求される機能により適宜選択できる。例えば、ォレ フィン系榭脂、熱可塑性ポリエステル榭脂、酸素ノ リヤー性榭脂等が挙げられる。 ォレフィン榭脂としては、低密度ポリエチレン (LDPE)、中密度ポリエチレン(MDP E)、高密度ポリエチレン (HDPE)、線状低密度ポリエチレン (LLDPE)、線状超低 密度ポリエチレン(LVLDPE)等のポリエチレン(PE)、ポリプロピレン(PP)、ェチレ ン—プロピレン共重合体、ポリブテン— 1、エチレンーブテン 1共重合体、プロピレ ンーブテン 1共重合体、エチレン プロピレンーブテン 1共重合体、エチレン 酢酸ビュル共重合体、イオン架橋ォレフィン共重合体 (アイオノマー)或いはこれらの ブレンド物等が挙げられる。
[0039] また、熱可塑性ポリエステル榭脂としては、ポリエチレンテレフタレート(PET)、ポリ ブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、ポリグリコール酸を 主体とするポリエステル榭脂、或いはこれらの共重合ポリエステル、更にはこれらのブ レンド物等が挙げられる。
酸素ノ リヤー性榭脂としては、エチレン ビュルアルコール共重合体 (EVOH)を 挙げることができる。例えば、エチレン含有量が 20〜60モル%、好ましくは、 25-50 モル0 /0であるエチレン—酢酸ビュル共重合体を、ケンィ匕度が 96モル0 /0以上、好まし くは、 99モル%以上となるようにケンィ匕して得られる共重合体ケンィ匕物が使用される このエチレン ビュルアルコール共重合体ケン化物は、フィルムを形成することが できる分子量を有する。一般に、フエノール:水の重量比で 85 : 15の混合溶媒中 30 °Cで測定して 0. OldlZg以上、好ましくは、 0. 05dlZg以上の粘度を有する。
酸素ノ リヤー性榭脂の他の例としては、ポリメタキシリデンアジパミド (MXD6)等の ポリアミド榭脂、ポリグリコール酸を主体とするポリエステル榭脂、或いはこのポリエス テル樹脂と他のポリエステル榭脂とのブレンド榭脂を用いることができる。
[0040] 上記多層構造体の構造は、使用態様、要求される機能により適宜選択できる。
例えば、酸素吸収性層を OARとして表して、次の構造がある。
二層構造: PETZOAR、 PE/OAR, PP/OAR, 三層構造: PEZOARZPET、 PET/OAR/PET, PE/OAR/OPP, EVOH
/OAR/PET, PE/OAR/COC、 PP/OAR/PET, PP/OAR/PP, PP/ OAR/COC
四層構造: PEZPETZOARZPET、 PE/OAR/EVOH/PET, PET/OAR
/EVOH/PET、 PE/OAR/EVOH/COC, PE/OAR/EVOH/PE, PP /PET/OAR/PET, PP/OAR/EVOH/PET, PP/OAR/EVOH/CO C、 PP/OAR/EVOH/PE, PP/OAR/EVOH/PE
五層構造: PET/OAR/PET/OAR/PET、 PE/PET/OAR/EVOH/PE T、 PET/OAR/EVOH/COC/PET, PET/OAR/PET/COC/PET、 P E/OAR/EVOH/COC/PET, PE/EVOH/OAR/EVOH/PE, PP/P ET/OAR/EVOH/PET, PP/OAR/EVOH/COC/PET, PP/EVOH /OAR/EVOH/PP
六層構造: PET/OAR/PET/OAR/EVOH/PET、 ΡΕ/ΡΕΤ/OAR/CO C/EVOH/PET、 PET/OAR/EVOH/PET/COC/PET, PE/EVOH /OAR/PE/EVOH/PE, PP/PET/OAR/COC/EVOH/PET, PP/ EVOH/OAR/PP/EVOH/PP
七層構造: PET/OAR/COC/PET/EVOH/OAR/PET、
尚、 PEとは、低密度ポリエチレン(LDPE)、中密度ポリエチレン(MDPE)、高密度 ポリエチレン (HDPE)、線状低密度ポリエチレン (LLDPE)、線状超低密度ポリェチ レン (LVLDPE)を意味する。 PEや PPを中間層として使用する場合には、 PEや PP は本発明の多層構造体のリグラインド榭脂組成物を含む層であってもよ!/、。前記リグ ラインド榭脂組成物は、本発明の多層容器の成形等を行うときに発生するスクラップ 榭脂を含むものであり、通常成形性等の点からスクラップ榭脂と多層容器を構成する ォレフィン榭脂等のバージン榭脂との混合榭脂を含む。また、リグラインド榭脂組成 物には、脱臭剤又は吸着剤を配合してもよい。
これらの構造で、酸素バリヤ一層を少なくとも一層有している構造が、酸素吸収層 の寿命を向上することができるため好ましい。
この積層体に、各榭脂層間に必要により接着剤榭脂を介在させることもできる。この ような接着剤榭脂としては、カルボン酸、カルボン酸無水物、カルボン酸を主鎖又は 側鎖に、 1〜700ミリイクィバレント(meq) ZlOOg榭脂、好ましくは、 10〜500meqZ lOOg榭脂、の濃度で含有する重合体が挙げられる。
接着剤榭脂としては、例えば、エチレン—アクリル酸共重合体、イオン架橋ォレフィ ン共重合体、無水マレイン酸グラフトポリエチレン、無水マレイン酸グラフトポリプロピ レン、アクリル酸グラフトポリオレフイン、エチレン—酢酸ビュル共重合体、共重合ポリ エステル、共重合ポリアミド等があり、これらを二種以上の組み合わせたものでもよい これらの接着剤榭脂は、同時押出又はサンドイツチラミネーション等による積層に有 用である。また、予め形成されたガスノ リヤー性榭脂フィルムと耐湿性榭脂フィルムと の接着積層には、イソシァネート系又はエポキシ系等の熱硬化型接着剤榭脂も使用 される。
本発明の酸素吸収性榭脂組成物を用いる積層体においては、酸素吸収時に発生 する副生成物の捕捉のために、上記の層のいずれか、特に、酸素吸収材層より内層 側に位置する層に脱臭剤或いは酸ィ匕副生成物の吸着剤 (本明細書にぉ 、ては、「 酸化副生成物捕捉剤」とも呼ぶ。)を使用するのが好ま ヽ。
酸ィ匕副生成物捕捉剤としては、それ自体公知のもの、例えば天然ゼォライト、合成 ゼォライト、シリカゲル、活性炭、添着活性炭、活性白土、活性酸ィ匕アルミニウム、タレ 一、珪藻土、カオリン、タルク、ベントナイト、セピオライト、ァタバルジャイト、酸化マグ ネシゥム、酸化鉄、水酸ィ匕アルミニウム、水酸化マグネシウム、水酸化鉄、ケィ酸マグ ネシゥム、ケィ酸アルミニウム、合成ハイド口タルサイト、アミン担持多孔質シリカが使 用できる。中でも、アミン担持多孔質シリカは、酸化副生成物であるアルデヒドとの反 応性の点で好ましぐまた、種々の酸ィ匕副生物に対して優れた吸着性を示し、し力も 透明である点でシリカ Zアルミナ比が大き 、所謂ハイシリカゼオライトが好ま 、。ハ イシリカゼオライトとしては、シリカ Zアルミナ比(モル比)が 80以上であることが好まし ぐより好ましくは 90以上であり、さらに好ましくは 100〜700である。このようなシリカ Zアルミナ比のゼォライトは、シリカ/アルミナ比が低 、ゼオライトが吸着性を低下させ てしまうような高湿度条件において逆に酸ィ匕副生成物の捕捉性能が向上するという 性質を有しており、水分を含む内容品を包装する包装体に使用した場合、特に有効 である。ノ、イシリカゼオライトの交換カチオンは、ナトリウム、リチウム、カリウムなどのァ ルカリ金属、カルシウム、マグネシウムなどのアルカリ土類金属の一種又は 2種以上 の混合物であることが必要である。この場合、交換カチオンとして少なくともナトリウム イオンを含有するのが好ましぐ特に、実質的に全ての交換カチオンがナトリウムであ るのが好ましい。このようなハイシリカゼオライトとしては、 ZSM— 5型ゼオライトが特 に好ましいものとしてあげられる。また、ハイシリカゼオライトが、微粒子が凝集した柘 榴状構造を有することも重要であり、柘榴状構造により、吸着表面積が増大し、単純 なゼオライト孔力 予想される以上の大きさの有機化合物に対しても有効に作用する のである。本発明で用いるゼォライトとしては、平均粒径が 0.5〜: LO /z mであるのが 好ましい。
[0042] 本発明にお 、て、好ま 、多層構造体の具体的な例としては、外層側より最外層 Z接着層 Zガスバリヤ一性榭脂層 Z酸素吸収性層 Z酸化副生成物捕捉剤含有層 Z接着層 Zガスバリヤ一性樹脂層 Z接着層 Z最内層の 10層よりなる多層構造体が 挙げられる。さらに、酸化副生成物捕捉剤含有層がリグラインド榭脂組成物を含有す る多層構造体が好ましい。
[0043] 上記多層構造体は、それ自体公知の方法で製造が可能である。例えば、榭脂の種 類に応じた数の押出機を用いて、多層多重ダイを用 V、て通常の押出成形を行えばよ い。
また、本発明の多層構造体の製造には、榭脂の種類に応じた数の射出成形機を用 いて、共射出法や逐次射出法により多層射出成形体を製造することができる。
更に、本発明の多層構造体を用いたフィルムやシートの製造には、押出コート法や 、サンドイツチラミネーシヨンを用いることができ、また、予め形成されたフィルムのドラ イラミネーシヨンによって多層フィルムあるいはシートを製造することもできる。
[0044] フィルム等の包装材料は、種々の形態の包装袋として用いることができ、その製袋 は、それ自体公知の製袋法で行うことができ、三方或いは四方シールの通常のパゥ チ類、ガセット付バウチ類、スタンディングバウチ類、ピロ一包装袋などが挙げられる 力 この例に限定されない。 本発明の多層構造体を用いた包装容器は、酸素による内容物の香味低下を防止 できる容器として有用である。
充填できる内容物としては、飲料ではビール、ワイン、フルーツジュース、炭酸ソフト ドリンク、ウーロン茶、緑茶等、食品では果物、ナッツ、野菜、肉製品、幼児食品、コー ヒー、ジャム、マヨネーズ、ケチャップ、食用油、ドレッシング、ソース類、佃煮類、乳製 品等、その他では医薬品、化粧品、ガソリン等、酸素存在下で劣化を起こしやすい内 容品などが挙げられる力 これらの例に限定されない。
上記包装容器は、さらに外装体によって包装した包装体としてもよい。
次に、実施例及び比較例を示して本発明を説明するが、本発明はこれらの実施例 に制限されるものではな 、。
実施例
[0045] (榭脂の配合)
[多層ペレットの作製]
コア部として酸ィ匕触媒であるタブレット状のステアリン酸コノ レト(大日本インキ化学 工業 (株))と表 1に示した榭脂をドライブレンドし、二軸押出機にて 180°Cで溶融混 練し、多層ストランドダイ装置に供給した。同時に被覆部として単軸押出機力も表 1に 示した榭脂を 180°Cで溶融押出し多層ストランドダイ装置に供給した。ダイより押し出 されたストランドを水冷、カッティングし、 目的とする多層ペレットを作製した。コア'被 覆部の比率はコア部:被覆部 = 70重量%: 30重量%であり、ステアリン酸コバルト濃 度が多層ペレット全体の 6. 26重量%になるように配合した。混練時の酸化'熱劣化 を防ぐため両押出機のホッパー下より連続的に窒素をパージし、コア部の二軸押出 機については真空ベントを引いて行った。
[0046] [酸素吸収性榭脂組成物の作製]
多層ストランドダイ力も得られた多層ペレット 4. 17重量0 /0と、トリガー榭脂として水 添スチレン—ブタジエン—スチレン共重合体 (タフテック P2000 :旭ケミカルズ (株)) ( トリガー榭脂 1) 2. 51重量0 /0及び水添スチレン—ブタジエン—スチレン共重合体 (ダ イナロン 8601P :JSR (株))(トリガー榭脂 2) 2. 51重量0 /0と、ベース榭脂としてチー ダラーナッタ触媒線状低密度ポリエチレン LLDPE (ネオゼッタス 20201 J:三井化学 ( 株))(LLDPE— A) 19. 80重量%及びシングルサイト触媒線状低密度ポリエチレン LLDPE (エボリユー SP0511 :三井化学 (株))(LLDPE— B) 71. 01重量0 /0をドライ ブレンドし、二軸押出機にて 200°Cで溶融混練し、 目的とする酸素吸収性榭脂組成 物を作製した。吐出量 70kgZhで 4時間サンプリングを行ない、混練時の酸化'熱劣 化を防ぐため押出機のホッパー下より窒素をパージし、押出機内を真空ポンプでベ ントを引きながら行なった。またスクリーンとして 200メッシュを使用した。
[0047] (評価項目)
[酸素吸収能の評価]
内容積 85ccの酸素不透過性容器 [ハイレトフレックス: HR78 - 84東洋製罐 (株) 製ポリプロピレン Zスチール箔/ポリプロピレン製カップ状積層容器]に 3. Og入れ、 ポリプロピレン(内層) Zアルミ箔 Zポリエステル (外層)の蓋材でヒートシールした。こ れを 50°C 24時間保管し、容器内の酸素濃度をガスクロマトグラフィーにより測定し た。榭脂 lg当たり 0. 4cc以上酸素を吸収しているものを〇、 0. 4cc未満のものを Xと して評価した。
[0048] [焦げ混入率の評価]
得られた酸素吸収性榭脂組成物 50gを目視で焦げを確認し、混入率が 0. 5%未 満のものを〇、0. 5%以上〜 1. 5%未満のものを△、 1. 5%以上のものを Xとして評 価し 7こ。
[0049] [実施例 1]
コア部、被覆部の榭脂として LLDPE— Aを用いて前記記載多層ペレットを作製し た。次いで、得られた多層ペレットを用いて、前記記載酸素吸収性榭脂組成物を作 製し、酸素吸収能と焦げ混入率の評価を行った。
この酸素吸収性榭脂組成物は、酸素吸収しており、ペレット中の焦げ混入率も低く 良好なペレットであった。
[0050] [実施例 2]
コア部の榭脂として LLDPE— A、被覆部の榭脂として LLDPE— Bを用いた以外 は実施例 1と同様の評価を行った。
この酸素吸収性榭脂組成物は、多層ペレット作製時に LLDPE— Bの榭脂圧'トル クが高かったが、特に問題なくペレタイズできた。また良好な酸素吸収性をしめし、ぺ レット中の焦げ混入率も低力つた。
[0051] [実施例 3]
タブレット状のステアリン酸コバルト(大日本インキ化学工業 (株)) 6. 26重量0 /0と L LDPE-A93. 74重量%をドライブレンドし、二軸押出機にて 180°Cで溶融混練し、 単層ペレットを作製した。次いで、得られた単層ペレット 4. 17重量0 /0とトリガー榭脂 1 を 2. 51重量0 /0、トリガー榭脂 2を 2. 51重量0 /0とベース榭脂である LLDPE— Bを 71 . 01重量0 /0、 LLDPE— Aを 19. 80重量0 /0とをドライブレンドし、二軸押出機にて 20 0°Cで溶融混練し、 目的とする酸素吸収性榭脂組成物を作製した。吐出量 70kgZh で 4時間サンプリングを行ない、混練時の酸化'熱劣化を防ぐため押出機のホッパー 下より窒素をパージし、押出機内を真空ポンプでベントを引きながら行なった。またス クリーンとして 200メッシュを使用した。得られた酸素吸収性榭脂組成物の酸素吸収 能と焦げ混入率の評価を行った。
この酸素吸収性榭脂組成物は、良好な酸素吸収性を示した。また実施例 1の多層 ペレットを用いた場合と比較し、ややステアリン酸コバルト由来の酸化物や熱劣化物 が押出機のスクリューやバレルに付着した力 問題となるレベルではな力つた。
[0052] [比較例 1]
コア部にステアリン酸コバルトを配合しな力つた以外は実施例 1と同様の評価を行な つた o
この酸素吸収性榭脂組成物は、酸ィ匕触媒であるステアリン酸コバルトを配合しなか つたため酸素吸収能を発現しな力つた。またペレット中の焦げ混入率は低力つた。
[比較例 2]
タブレット状のステアリン酸コバルトを粉砕し、粉末状にしたものとトリガー榭脂とべ 一ス榭脂をドライブレンドし、実施例 1と同様に酸素吸収性榭脂組成物を作製した。 配合比は、ベース榭脂として LLDPE—Aを 66. 5重量。/c^LLDPE— Bを 28. 5重量 %、トリガー榭脂 1を 2. 5重量%とトリガー榭脂 2を 2. 5重量%、粉末状のステアリン 酸コバルトを榭脂全体に対してコバルト金属換算で 150ppmである。次いで、得られ た酸素吸収性榭脂組成物の酸素吸収能と焦げ混入率の評価を行なった。 この酸素吸収性榭脂組成物は、良好な酸素吸収性を示したが、ステアリン酸コバル ト由来の酸化物や熱劣化物が押出機のスクリューやバレルに付着し、その結果ペレ ット中に焦げとして混入した。
[0053] 表 1に実施例、比較例の結果を示すが、表 1より明らかなように、酸化触媒としてス テアリン酸コバルトをマスターバッチ化する、又は、酸ィ匕触媒としてのステアリン酸コバ ルトを有するコア部と被覆部力 成る多層ペレットをマスターバッチとして使用すること により、ステアリン酸コバルト由来の焦げを防止することができ、酸素吸収性榭脂組成 物の焦げ混入率の評価に明確な差異が認められた。
[0054] [表 1]
Figure imgf000026_0001
L L D P E— A : チーグラーナッタ触媒線状低密度ポリエチレ ン
L L D P E— B : シングルサイ ト触媒線状低密度ポリエチレン

Claims

請求の範囲
[I] 熱可塑性榭脂 (A)及び酸化触媒を含むペレットであって、トリガー榭脂及び熱可塑 性榭脂 (C)と混合したときに前記トリガー榭脂がトリガーとなって熱可塑性榭脂 (A)及 び (C)の酸ィ匕が進行することによって酸素を吸収する酸素吸収性榭脂組成物用ペレ ッ卜。
[2] 熱可塑性榭脂 (A)及び酸化触媒を含むコア部と、熱可塑性榭脂 (B)を含む被覆部 とを有する多層ペレットであって、トリガー榭脂及び熱可塑性榭脂 (C)と混合したとき に前記トリガー榭脂がトリガーとなって熱可塑性榭脂 (A)、 (B)及び (C)の酸化が進 行することによって酸素を吸収する酸素吸収性榭脂組成物用ペレット。
[3] 芯-鞘構造である請求項 2記載のペレット。
[4] コア-シェル構造である請求項 2記載のペレット。
[5] 酸化触媒が遷移金属触媒である、請求項 1〜4のいずれ力 1項記載のペレット。
[6] 遷移金属触媒がステアリン酸コバルトである、請求項 5記載のペレット。
[7] 熱可塑性榭脂 (A)がポリエチレンを含む、請求項 1〜6のいずれか 1項記載のペレ ッ卜。
[8] 熱可塑性榭脂 (A)がエチレンと 4重量0 /0以上の炭素数 3〜6の 1-アルケンを共重 合した線状低密度ポリエチレンを含む、請求項 1〜6のいずれ力 1項記載のペレット。
[9] 請求項 1〜8のいずれか 1項記載のペレット、熱可塑性榭脂(C)及び酸化のトリガー となるトリガー榭脂を混合することによって得ることができる酸素吸収性榭脂組成物。
[10] 熱可塑性榭脂 (A)及び酸化触媒を含むマスターバッチ、熱可塑性榭脂 (C)及び酸 化のトリガーとなるトリガー榭脂を混合することによって得ることができる酸素吸収性榭 脂組成物であって、前記トリガー榭脂がトリガーとなって熱可塑性榭脂 (C)の酸化が 進行することによって酸素を吸収する酸素吸収性榭脂組成物。
[II] 前記混合が溶融混練である、請求項 9又は 10記載の酸素吸収性榭脂組成物。
[12] 熱可塑性榭脂 (C)が 2種以上のポリエチレンを含み、少なくとも 1種のポリエチレン がエチレンと 4重量%以上の炭素数 3〜6の 1-アルケンを共重合した線状低密度ポリ エチレンである、請求項 9〜: L 1の ヽずれか 1項記載の酸素吸収性榭脂組成物。
[13] トリガー榭脂がスチレン系榭脂である、請求項 9〜 12のいずれか 1項記載の酸素吸 収性榭脂組成物。
[14] スチレン系榭脂が水添スチレン ジェン共重合体である、請求項 9〜13のいずれ カゝ 1項に記載の酸素吸収性榭脂組成物。
[15] 水添スチレン ジェン共重合体が水添スチレン ブタジエン スチレンブロック共 重合体である、請求項 14記載の酸素吸収性榭脂組成物。
[16] スチレン系榭脂がスチレン含有量が異なる 2種のスチレン榭脂を含む、請求項 9〜
15のいずれか 1項記載の酸素吸収性榭脂組成物。
PCT/JP2006/314231 2005-07-19 2006-07-19 酸素吸収性樹脂組成物用ペレット及び酸素吸収性樹脂組成物 WO2007010920A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2006270859A AU2006270859A1 (en) 2005-07-19 2006-07-19 Pellet for oxygen-absorbing resin composition and oxygen-absorbing resin composition
EP06781238A EP1914265B1 (en) 2005-07-19 2006-07-19 Pellet for oxygen-absorbing resin composition and oxygen-absorbing resin composition
CN200680034475.6A CN101268122B (zh) 2005-07-19 2006-07-19 吸氧性树脂组合物用颗粒及吸氧性树脂组合物
KR1020087003858A KR101295768B1 (ko) 2005-07-19 2006-07-19 산소 흡수성 수지 조성물용 펠릿 및 산소 흡수성 수지조성물
US12/016,228 US20080152915A1 (en) 2005-07-19 2008-01-18 Pellet for oxygen-absorbing resin composition and oxygen-absorbing resin composition
US12/700,829 US8232347B2 (en) 2005-07-19 2010-02-05 Method of making oxygen-absorbing resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005209112A JP5268014B2 (ja) 2005-07-19 2005-07-19 酸素吸収性樹脂組成物用ペレット及び酸素吸収性樹脂組成物
JP2005-209112 2005-07-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/016,228 Continuation US20080152915A1 (en) 2005-07-19 2008-01-18 Pellet for oxygen-absorbing resin composition and oxygen-absorbing resin composition

Publications (1)

Publication Number Publication Date
WO2007010920A1 true WO2007010920A1 (ja) 2007-01-25

Family

ID=37668797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314231 WO2007010920A1 (ja) 2005-07-19 2006-07-19 酸素吸収性樹脂組成物用ペレット及び酸素吸収性樹脂組成物

Country Status (7)

Country Link
US (2) US20080152915A1 (ja)
EP (1) EP1914265B1 (ja)
JP (1) JP5268014B2 (ja)
KR (1) KR101295768B1 (ja)
CN (2) CN103756104B (ja)
AU (1) AU2006270859A1 (ja)
WO (1) WO2007010920A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100048825A1 (en) * 2007-02-19 2010-02-25 Toyo Seikan Kaisha, Ltd. Thermoplastic resin pellets and method for preparing same
CN111410798A (zh) * 2020-04-10 2020-07-14 日丰企业集团有限公司 一种用于pb管的阻氧材料和制备方法以及阻氧pb管

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5268014B2 (ja) * 2005-07-19 2013-08-21 東洋製罐グループホールディングス株式会社 酸素吸収性樹脂組成物用ペレット及び酸素吸収性樹脂組成物
JP5311343B2 (ja) * 2009-02-09 2013-10-09 株式会社クラレ 酸素吸収性樹脂組成物の製造方法
WO2011019408A1 (en) * 2009-08-14 2011-02-17 Milliken & Company Multilayer composite useful as a polymer additive
EP2611850B1 (de) * 2010-09-03 2014-07-23 Basf Se Barrierebeschichtung aus cycloolefincopolymeren
CN103562305A (zh) * 2011-05-25 2014-02-05 普立万公司 在低剪切条件下可模塑的热塑性弹性体
JP6499447B2 (ja) 2012-09-07 2019-04-10 三菱瓦斯化学株式会社 酸素吸収性樹脂組成物及びそれを用いた酸素吸収性多層体

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05115776A (ja) * 1991-04-02 1993-05-14 W R Grace & Co 酸素掃去のための配合物、製品及び方法
JPH05156095A (ja) * 1991-12-11 1993-06-22 Toppan Printing Co Ltd 酸素バリヤー性樹脂組成物及びその製造方法並びに包装材料
JPH05194949A (ja) * 1991-06-27 1993-08-03 W R Grace & Co 酸素捕捉用の方法および組成物
JPH08502202A (ja) * 1992-10-01 1996-03-12 ダブリユ・アール・グレイス・アンド・カンパニー・コネテイカツト 低温において使用するための改良された酸素掃去組成物
JPH08502306A (ja) * 1992-10-01 1996-03-12 ダブリユ・アール・グレイス・アンド・カンパニー・コネテイカツト 改良された物理的性質を有する酸素を掃去する組成物、物品および方法
JP2000080172A (ja) * 1998-09-02 2000-03-21 Sumika Color Kk マスターバッチ樹脂ペレットおよびその製造方法
JP2000515466A (ja) * 1996-08-02 2000-11-21 クライオバツク・インコーポレイテツド 容器内の壁成分としての酸素捕獲材料の作動化方法
JP2001039475A (ja) * 1999-07-27 2001-02-13 Toyo Seikan Kaisha Ltd 樹脂組成物、積層体、容器及び容器蓋
JP2001106866A (ja) * 1999-03-03 2001-04-17 Kuraray Co Ltd 酸素吸収性樹脂組成物
WO2004018556A1 (ja) * 2002-08-23 2004-03-04 Toyo Seikan Kaisha,Ltd. 酸素吸収性樹脂組成物及び積層体
JP2004262552A (ja) * 1996-08-02 2004-09-24 Cryovac Inc 酸素捕獲フィルムを作動化するための方法
JP2005042089A (ja) * 2003-07-10 2005-02-17 Toyo Seikan Kaisha Ltd 酸素吸収性樹脂組成物

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4536454A (en) * 1983-08-26 1985-08-20 Pdi, Inc. Flexible coating composition and method of applying same
EP0546546A1 (en) 1991-12-11 1993-06-16 Toppan Printing Co., Ltd. Resin composition having oxygen barrier quality and process for producing the same
US5776361A (en) * 1995-02-15 1998-07-07 Chevron Chemical Company Multi-component oxygen scavenging composition
US6233907B1 (en) * 1997-07-30 2001-05-22 Cryovac, Inc. Method and apparatus for triggering oxygen scavenging material as a wall component in a container
US6287481B1 (en) * 1997-08-01 2001-09-11 Cryovac, Inc. Method, apparatus, and system for triggering oxygen scavenging films
CA2299934C (en) * 1999-03-03 2006-09-19 Kuraray Co., Ltd. Oxygen absorptive resin composition
US6610772B1 (en) * 1999-08-10 2003-08-26 Eastman Chemical Company Platelet particle polymer composite with oxygen scavenging organic cations
KR100567176B1 (ko) * 1999-10-22 2006-04-03 제이에프이 스틸 가부시키가이샤 금속표면처리조성물 및 표면처리금속재료
JP4399860B2 (ja) * 2003-06-06 2010-01-20 東洋製罐株式会社 多層容器
DE602004026206D1 (ja) * 2003-07-10 2010-05-06 Toyo Seikan Kaisha Ltd
JP4941873B2 (ja) * 2004-02-23 2012-05-30 東洋製罐株式会社 酸素吸収性樹脂組成物
JP5019248B2 (ja) * 2004-11-24 2012-09-05 東洋製罐株式会社 酸素吸収性樹脂組成物
JP5268014B2 (ja) * 2005-07-19 2013-08-21 東洋製罐グループホールディングス株式会社 酸素吸収性樹脂組成物用ペレット及び酸素吸収性樹脂組成物

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05115776A (ja) * 1991-04-02 1993-05-14 W R Grace & Co 酸素掃去のための配合物、製品及び方法
JPH05194949A (ja) * 1991-06-27 1993-08-03 W R Grace & Co 酸素捕捉用の方法および組成物
JPH05156095A (ja) * 1991-12-11 1993-06-22 Toppan Printing Co Ltd 酸素バリヤー性樹脂組成物及びその製造方法並びに包装材料
JPH08502202A (ja) * 1992-10-01 1996-03-12 ダブリユ・アール・グレイス・アンド・カンパニー・コネテイカツト 低温において使用するための改良された酸素掃去組成物
JPH08502306A (ja) * 1992-10-01 1996-03-12 ダブリユ・アール・グレイス・アンド・カンパニー・コネテイカツト 改良された物理的性質を有する酸素を掃去する組成物、物品および方法
JP2000515466A (ja) * 1996-08-02 2000-11-21 クライオバツク・インコーポレイテツド 容器内の壁成分としての酸素捕獲材料の作動化方法
JP2004262552A (ja) * 1996-08-02 2004-09-24 Cryovac Inc 酸素捕獲フィルムを作動化するための方法
JP2000080172A (ja) * 1998-09-02 2000-03-21 Sumika Color Kk マスターバッチ樹脂ペレットおよびその製造方法
JP2001106866A (ja) * 1999-03-03 2001-04-17 Kuraray Co Ltd 酸素吸収性樹脂組成物
JP2001039475A (ja) * 1999-07-27 2001-02-13 Toyo Seikan Kaisha Ltd 樹脂組成物、積層体、容器及び容器蓋
WO2004018556A1 (ja) * 2002-08-23 2004-03-04 Toyo Seikan Kaisha,Ltd. 酸素吸収性樹脂組成物及び積層体
JP2005042089A (ja) * 2003-07-10 2005-02-17 Toyo Seikan Kaisha Ltd 酸素吸収性樹脂組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1914265A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100048825A1 (en) * 2007-02-19 2010-02-25 Toyo Seikan Kaisha, Ltd. Thermoplastic resin pellets and method for preparing same
US8809465B2 (en) * 2007-02-19 2014-08-19 Toyo Seikan Kaisha, Ltd Thermoplastic resin pellets and method for preparing same
CN111410798A (zh) * 2020-04-10 2020-07-14 日丰企业集团有限公司 一种用于pb管的阻氧材料和制备方法以及阻氧pb管

Also Published As

Publication number Publication date
EP1914265A4 (en) 2010-04-14
US8232347B2 (en) 2012-07-31
US20080152915A1 (en) 2008-06-26
CN101268122A (zh) 2008-09-17
EP1914265B1 (en) 2012-05-16
EP1914265A1 (en) 2008-04-23
KR20080048460A (ko) 2008-06-02
AU2006270859A1 (en) 2007-01-25
JP5268014B2 (ja) 2013-08-21
CN103756104A (zh) 2014-04-30
JP2007023193A (ja) 2007-02-01
US20100133468A1 (en) 2010-06-03
CN101268122B (zh) 2015-01-07
CN103756104B (zh) 2016-05-18
KR101295768B1 (ko) 2013-08-12

Similar Documents

Publication Publication Date Title
JP4314637B2 (ja) 酸素吸収性樹脂組成物及び積層体
JP5019248B2 (ja) 酸素吸収性樹脂組成物
WO2007010920A1 (ja) 酸素吸収性樹脂組成物用ペレット及び酸素吸収性樹脂組成物
JP4993405B2 (ja) 酸素吸収性樹脂物品形成用ペレット及びその製造方法
JP5822184B2 (ja) 熱可塑性樹脂ペレット
WO2005005533A1 (ja) 酸素吸収性樹脂組成物
JP4941873B2 (ja) 酸素吸収性樹脂組成物
JP2007099366A (ja) 酸素吸収性容器及びその製造方法
JP4671161B2 (ja) 酸素吸収性樹脂組成物
JP5585795B2 (ja) 酸素吸収性樹脂組成物
KR102294466B1 (ko) 산소 흡수성 수지 조성물 및 그 제조 방법, 그리고 용기

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680034475.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006781238

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006270859

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1020087003858

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2006270859

Country of ref document: AU

Date of ref document: 20060719

Kind code of ref document: A