WO2007009380A1 - Method for base band chip and mobile terminal based on the base band chip implement the multi-mode handover - Google Patents

Method for base band chip and mobile terminal based on the base band chip implement the multi-mode handover Download PDF

Info

Publication number
WO2007009380A1
WO2007009380A1 PCT/CN2006/001748 CN2006001748W WO2007009380A1 WO 2007009380 A1 WO2007009380 A1 WO 2007009380A1 CN 2006001748 W CN2006001748 W CN 2006001748W WO 2007009380 A1 WO2007009380 A1 WO 2007009380A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
data
interface
baseband chip
channel
Prior art date
Application number
PCT/CN2006/001748
Other languages
English (en)
French (fr)
Inventor
Dongyan Wang
Shihe Li
Hua E
Original Assignee
Datang Mobile Communications Equipment Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Datang Mobile Communications Equipment Co., Ltd filed Critical Datang Mobile Communications Equipment Co., Ltd
Priority to US11/996,180 priority Critical patent/US8160043B2/en
Priority to JP2008521776A priority patent/JP4818363B2/ja
Priority to EP06761483.4A priority patent/EP1906573A4/en
Publication of WO2007009380A1 publication Critical patent/WO2007009380A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines

Definitions

  • the invention relates to a mobile terminal chip technology, in particular to a third-generation partnership program
  • 3GPP a protocol such as Time Division Synchronous Code Division Multiple Access (TD-SCDMA), a baseband chip suitable for a TD-SCDMA mode or a multimode mobile terminal including a TD-SCDMA mode, and a baseband chip based on the present invention
  • TD-SCDMA Time Division Synchronous Code Division Multiple Access
  • baseband chip suitable for a TD-SCDMA mode or a multimode mobile terminal including a TD-SCDMA mode
  • a baseband chip based on the present invention A method in which a mobile terminal switches between different communication modes.
  • the second-generation mobile terminal chip design tends to use a dedicated hardware circuit for curing, and only a small part of the chip design is implemented by software. It takes 3 to 5 years from the initial design of the chip to the commercialization of the chip. Chip designs implemented using solidified dedicated hardware circuits are difficult to adapt to new changes in demand.
  • TD-SCDMA is one of the third-generation mobile communication system standards officially accepted by the ITU (ITU). It puts new demands on mobile terminals based on the third-generation mobile communication technology, mainly in the following aspects - more More rich applications; support multi-mode, save user expenses, and have the ability to provide more flexible services, which helps operators to more rationally utilize spectrum resources; lower cost; provide customizable services to facilitate system upgrades.
  • chip design In order to meet new demands and face new challenges, in the key technology aspects of mobile terminal design, that is, chip design must use a more optimized architecture, in order to adapt the chip design to more mobile terminals, to minimize non-repetition Design cost.
  • the dedicated baseband chip mainly selects the mode through the main control unit of the system, and receives the IQ data from the radio frequency to complete the baseband processing of the corresponding mode. At the same time, the data to be sent after the system baseband processing is sent out by the radio frequency channel.
  • the main object of the present invention is to provide a baseband chip suitable for a TD-SCDMA mode or a multimode mobile terminal including a TD-SCDMA mode, the baseband chip of the mobile terminal It can meet the new demands of mobile terminals for the third generation mobile communication technology and reduce the repetitive design cost.
  • the present invention provides a baseband chip, including an interface module 100A and a source codec subsystem 102, a wireless transceiver subsystem 101, and a public control processing subsystem 100 connected through the interface module 100A, where - source codec
  • the subsystem 102 is configured to receive source data from the source data interface, convert the data protocol of the source data and the specific rate data into a format supported by the current communication mode of the baseband chip, and send the converted data to the wireless through the interface module 100A.
  • Transceiver subsystem 101 simultaneously converts the data format of the data from the wireless transceiver subsystem 102 into a data format received by the source data terminal, and transmits the converted data to the source data interface;
  • the wireless transceiver subsystem 101 is controlled by the common control processing subsystem 100 through the interface module 100A for performing codec decoding, modulation and demodulation, burst formation of data and signaling, and is processed in the air by up-conversion processing of the radio frequency module. Transmitting and receiving wireless signaling and data on the interface, and simultaneously providing dedicated and common transport channels for data or voice services;
  • the public control processing subsystem 100 is configured to implement timing control of the wireless transceiver subsystem 101 and the air interface, and complete control processing between the subsystems of the baseband chip;
  • the interface driver module 1021 and the data encoding and decoding module 1020 are configured to implement communication with the data interface 107 in the source data interface, encode the data from the data interface 107, and send the data to the interface module 100A, and the interface module 100A. Data is decoded and sent to the data interface 107;
  • the vocoder module 1022 is configured to implement communication with the voice interface 108 in the source data interface, encode the voice data from the voice interface 108, and send the voice data to the interface module 100A, and the voice data from the interface module 100A.
  • the baseband chip is sent to the voice interface
  • the source codec subsystem 102 further includes: a video high speed analog-to-digital conversion ADC and a digital-to-analog conversion DAC module 1024, and a video codec module 1023, Communicating with the video sensor interface 109 in the source data interface, the data from the video sensor interface 109 is ADC and encoded and sent to the wireless via the interface module 100A.
  • the subsystem 101 simultaneously transmits data from the wireless transceiver subsystem 101 to the video sensor interface 109 via the DAC and decoding.
  • a local clock generating circuit for generating a clock required to complete PCM encoding
  • G.711 pulse modulation PCM codec for combining analog voice to digital voice conversion with clock
  • a digital to analog conversion circuit for performing data sampling of digital speech.
  • the data interface 107 is one or more of an RS-232 interface, a USB OTG interface, an IEEE802.11 compliant interface, an IEEE 802.3 compliant interface, and a PCMCIA interface.
  • the baseband chip wherein the wireless transceiver subsystem 101 includes a system timing control and radio frequency control unit 1010, configured to control a radio frequency module through an air interface, and a mode control register is provided in the system timing control and radio frequency control unit 1010.
  • the common control processing subsystem 100 controls the mode control register to complete the switching between the multi-mode systems; the transmit filter module 1011 and the receive filter module 1015 are configured to perform shaping filtering of the IQ signal, and the transmit filter module jLO1 l Connected to the TX_I/Q of the air interface, and the receive filter module 1015 is connected to the RX-I/Q of the air interface;
  • a burst shaping module 1012 configured to generate a burst conforming to the TD-SCDMA protocol to complete beamforming of the transmit burst;
  • the multi-user detection module 1016 is configured to perform data demodulation and detection of each user data.
  • the interleaving module 1013 and the de-interleaving module 1017 are respectively configured to perform an interleaving operation on the data to be sent and a solution to the received demodulated data. Interleaving operation
  • the channel encoder and multiplexing module 1014 and the channel decoding and demultiplexing module 1018 are configured to reduce data transmission channel errors, and the IQ data of the receiving channel completes channel decoding and demultiplexing operations via the channel decoding and demultiplexing module 1018, and the transmission channel
  • the IQ data completes the channel encoder and multiplexing information operations via the channel encoder and multiplexing module 1014.
  • the wireless transceiver subsystem 101 further includes: an encryption and decryption accelerator module 1019 for performing encryption and decryption operations; and controlling by the public control processing subsystem 100 Under the N2006/001748 system, the data transmitted/received by the interface module 100A is encrypted and decrypted.
  • 1015 is a transmit rms raised cosine RRC filter and a receive RRC filter, respectively.
  • the burst corresponding to the TD-SCDMA protocol is: a downlink pilot DWPTS, an uplink pilot UPPTS or a normal burst.
  • a multi-user detection accelerator is disposed in the multi-user detection module 1016.
  • the user detection accelerator is a universal accelerator.
  • the above-mentioned baseband chip wherein an interleaving accelerator and a deinterleaving accelerator are respectively disposed in the interleaving module 1013 and the deinterleaving module 1017, and an interleaving accelerator/deinterleave accelerator is used for decoding with the channel encoder and multiplexing module 1014/the channel
  • the demultiplexing module 1018 performs the encoding/decoding of the channel.
  • the channel decoding and demultiplexing module 1018 includes Viterbi and Turbo decoding accelerators for performing decoding; the channel encoder and multiplexing module 1014 is configured to add information to data according to protocol requirements of different communication modes. redundancy.
  • a plurality of channel encoders and multiplexing modules 1014 encode the data in a cascade manner.
  • the above-mentioned baseband chip wherein the dedicated and common transmission channels provided by the wireless transceiver subsystem 101 include: a dedicated transport channel DCH, a broadcast channel BCH, a control information paging channel PCH, and a forward access channel FACH.
  • the above-mentioned baseband chip, wherein the wireless transceiver subsystem 101 provides dedicated and common transmission channels further includes: an uplink shared channel USCH and a downlink shared channel DSCH.
  • the baseband chip wherein the wireless transceiver subsystem 101 provides dedicated and common transport channels further includes: a paging indicator channel PICH and a forward physical access channel FRACH.
  • the baseband chip, wherein the common control processing subsystem 100 comprises: one or more digital signal processor DSP modules 1001 and a DSP memory 1002 for storing DSP programs and data;
  • the data exchange with the MCU module 1003 is performed by using a standard bus or a shared memory.
  • the power and clock management module 1005 is configured to manage the power and clock of the mobile terminal through the battery charging circuit interface 102 and the real-time clock circuit interface 103. ;
  • the system monitoring module 1007 is configured to collect monitoring data from the interface 104.
  • Peripheral serial interface module 1008 used for downloading data, software upgrade or debugging
  • An external bus interface module 1009 for connecting and supporting external memory for connecting and supporting external memory.
  • the peripheral serial interface module 1008 is a dedicated serial port of the MCU.
  • the above-mentioned baseband chip wherein the external memory connected and supported by the external bus interface module 1009 comprises: a data memory RAM, a program memory ROM, an erasable read-only program memory EPROM, and an electrically erasable read-only program memory E2PROM.
  • the external bus interface module 1009 further comprises: a decompressor for decompressing data stored in the external memory.
  • the above baseband chip wherein the baseband chip is integrated in a single chip.
  • the present invention also provides a method for implementing multi-mode handover based on a baseband chip-based mobile terminal, where the baseband chip includes a source codec subsystem 102, a wireless transceiver subsystem 101, and a public control processing subsystem 100. And the interface module 100A, wherein the preset communication mode, after the mobile terminal is powered on, the method includes the following steps -
  • the baseband chip configures the wireless transceiver subsystem 101 according to the set communication mode, so that each module operates in a currently selected communication mode;
  • the mobile terminal works in the current communication mode, and determines whether there is a communication mode switching requirement, if yes, proceeds to step C; otherwise, returns to step B;
  • the baseband chip resets the communication mode according to the communication mode to be switched, and soft resets the mobile terminal and returns to step 8.
  • the method for determining whether there is a communication mode switching requirement in step B is: detecting and determining whether there is a communication mode switching request by the system state machine of the MCU module 1003 in the baseband chip, if the status display is in the system state machine If the communication mode changes, there is a communication mode switching request; otherwise, there is no communication mode switching request.
  • the baseband chip of the mobile terminal of the present invention is composed of three subsystems: a source codec subsystem 102, a wireless transceiver subsystem 101, a wireless transceiver and a source codec common control and processing subsystem 100, and between the three subsystems.
  • the connection is completed by the wireless transceiver subsystem and the interface module 100A of the source codec subsystem.
  • the baseband chip of the present invention can be implemented on a single silicon wafer based on a CMOS process.
  • the baseband chip is suitable for TD-SCDMA mode or multi-mode mobile terminal including TD-SCDMA mode, and meets the new requirements for mobile terminals of the third generation mobile communication technology, and reduces the repetitive design cost;
  • the invention is based on the method for switching the mobile terminal of the baseband chip to switch between different communication modes, and realizes the switching of the mobile terminal between different communication modes.
  • FIG. 1 is a schematic structural diagram of a baseband chip of a mobile terminal of the present invention
  • FIG. 2 is a flow chart showing the switching operation between different modes of the present invention.
  • the core idea of the present invention is: Integrating a source codec subsystem 102, a wireless transceiver subsystem 101, a wireless transceiver, and a source codec common control and processing subsystem 100 constituting a baseband chip on a single silicon chip, and the baseband chip is applicable.
  • the baseband chip of the TD-SCDMA mode or the multimode mobile terminal including the TD-SCDMA mode satisfies the new requirements for the mobile terminal of the third generation mobile communication technology, and reduces the repetitive design cost;
  • the invention discloses a method for switching a mobile terminal based on the above baseband chip between different communication modes, thereby realizing switching of the mobile terminal between different communication modes.
  • the present invention intends to design a more optimized chip based on software radio technology.
  • the present invention solves the design problem of a multimode terminal chip including a TD-SCDMA mode based on the design of the above terminal chip.
  • the baseband chip of the mobile terminal of the present invention is mainly composed of a source codec subsystem 102, a wireless transceiver subsystem 101, and a wireless transceiver and source codec.
  • the public control and processing subsystem 100 and the interface module 100A are formed.
  • the wireless transceiver and source codec common control and processing subsystem 100 is simply referred to as the common control processing subsystem 100.
  • the connection between the three subsystems is accomplished by the interface module 100A.
  • the baseband chip of the present invention can be implemented by a single chip based on a CMOS process, and the baseband unit is integrated in a single chip.
  • the source codec subsystem 102 is configured to receive source data from the source data interface, convert the data protocol of the source data and the specific rate data into a format supported by the current communication mode of the baseband chip, and convert the format through the interface module 100A.
  • the data is sent to the wireless transceiver subsystem 101, and the data format from the wireless transceiver subsystem 102 is converted to the data format received by the source data terminal and sent to the source data interface;
  • the wireless transceiver subsystem 101 is configured to complete codec, modulation, demodulation, and burst formation of data and signaling, and send and receive wireless signaling and data on the air interface by using up-and-down conversion processing of the radio frequency module, and the wireless transceiver
  • the subsystem 101 is controlled by the control bus 10 and the interface module 100A to the common control processing module 100; at the same time, the wireless transceiver subsystem 101 provides dedicated and common transport channels for a variety of data or voice services;
  • the common control processing subsystem 100 is configured to implement timing control of the wireless transceiver subsystem 101 and the air interface, and complete control processing between the subsystems of the baseband chip.
  • the source codec subsystem 102 is primarily responsible for translating data protocols and specific rate data of source data. Switch to a format supported by TD-SCDMA or other communication modes.
  • the source data here may be a personal computer (PC), a PDA, a FAX, a positioning/navigation system, an electronic map, a POTS, an ISDN wired modem, a wireless data terminal, etc., and the encapsulated data is transmitted to the wireless transceiver through the interface module 100A.
  • the system 101 converts the data format from the wireless transceiver subsystem 102 to the data format received by the source data terminal and sends the data format to the source data interface.
  • the source codec subsystem 102 includes:
  • the interface driving module 1021 and the data encoding and decoding module 1020 which are in communication with the data interface 107, are configured to implement communication with the data interface 107 in the source data interface; encode data from the data interface (107) and send the data to the interface module. 100A, and decoding the data from the interface module 100A and sending the data to the data interface 107; wherein the data interface may be an interface such as RS-232, USB OTG, IEEE802.1 U IEEE802.3 or PCMCIA;
  • a voice interface 108 including a vocoder module 1022 for earphone and speaker communication, for implementing communication with the voice interface 108 in the source data interface, encoding voice data from the voice interface 108, and transmitting the voice data to the interface module 100A And decoding the voice data from the interface module 100A and transmitting it to the voice interface 108.
  • the vocoder module 1022 may include a plurality of voice codecs, such as a sound/modem card (AMR) voice codec conforming to the 3GPP TS 26.XXX standard; the data source codec module 1020 may support compliance with 3GPP TR 26.901, etc. Other standard broadband AMR voice processing functions.
  • AMR sound/modem card
  • the vocoder module 1022 may also include a pulse modulation (PCM) codec conforming to the G711 specification, a local clock generation circuit, a variable gain and a digital to analog/analog conversion circuit for gain control of the voice signal.
  • PCM pulse modulation
  • the G.711 pulse-modulated PCM codec completes the conversion of analog speech to digital speech, and generates the clock required to complete the PCM encoding through the local clock generation circuit clock circuit; the variable gain realizes the adjustment of the voice volume, and the digital-to-analog conversion circuit Complete the sampling of data for digital speech.
  • the vocoder module 1022 may also include an echo cancellation circuit that facilitates improved call quality such as hands-free car phone.
  • the source codec subsystem 102 can also include a video high speed analog to digital conversion (ADC) and digital to analog conversion (DAC) module 1024 and video codec in communication with the video sensor interface 109.
  • ADC analog to digital conversion
  • DAC digital to analog conversion
  • a module 1023 configured to implement communication with the video sensor interface 109 in the source data interface; data from the video sensor interface 109 is ADC and encoded and transmitted to the wireless transceiver subsystem 101, while from the wireless transceiver subsystem 101 Data is sent to the video sensor interface 109 via the DAC and decoded.
  • the data interface 107, the voice interface 108, and the video sensor interface 109 are collectively referred to herein as a source data interface.
  • the wireless transceiver subsystem 101 is mainly responsible for completing codec, modulation and demodulation, and burst formation of data and signaling, and transmitting and receiving wireless signals and data on the air interface through the up-and-down frequency conversion processing of the radio frequency module.
  • the modules in the wireless transceiver subsystem 101 are connected to each other through the wireless transceiver subsystem 101 control bus 10, and are controlled by the control bus 10 and the interface module 100A to the common control processing subsystem 100, thereby enabling more flexible support. Modular systems and systems that are specially configured for different needs.
  • the wireless transceiver subsystem 101 includes:
  • the system timing control and radio frequency control unit 1010 is provided with a mode control register, and the configuration of the mode control register is completed by the common control processing subsystem 100 to complete the switching between the multi-mode systems, the system timing control and the radio frequency control unit.
  • the 1010 is connected to the RF-Ctrl signal of the air interface.
  • the transmit filter module 1011 and the receive filter module 1015 are configured to perform shaping filtering of the IQ signal, and the transmit filter module 1011 is connected to the TX-I/Q interface of the air interface, and the receive filter module 1015 is connected to the air interface.
  • RX—I/Q interface is connected;
  • the transmit filter module 1011 and the receive filter module 1015 can each select to use a transmit root mean square raised cosine (RRC) filter and a receive RRC filter for performing pulse shaping.
  • RRC transmit root mean square raised cosine
  • the receive/transmit RRC filter can be designed as a coefficient reconfigurable hardware accelerator module to accommodate performance requirements such as adjacent channel response for different communication modes.
  • a burst shaping module 1012 configured to generate a burst pulse conforming to the TD-SCDMA protocol, for example, a downlink pilot DWPTS, an uplink pilot UPPTS, and a normal burst to complete beamforming of the transmission burst.
  • Multi-user detection module 1016 used for data demodulation and inspection of individual user data Measurement
  • a user detection accelerator can be selected in the multi-user detection module 1016, which can be designed as a universal accelerator.
  • the interleaving module 1013 is configured to perform an interleaving operation on the data to be sent;
  • the deinterleaving module 1017 is configured to perform deinterleaving operation on the received demodulated data;
  • the interleaving module 1013 and the deinterleaving module 1017 may respectively select and set an interleaving hardware accelerator and a deinterleaving hardware accelerator, and the interleaving hardware accelerator and the deinterleaving hardware accelerator respectively complete the channel together with the channel coding and multiplexing module 1014 and the channel decoding and demultiplexing module 1018. Edit / decode function.
  • Channel coding and multiplexing module 1014 and channel decoding and demultiplexing module 1018 the channel coding refers to encoding each information symbol to reduce transmission errors of data in a complex wireless channel environment, and decoding is an inverse process of coding;
  • the channel coding and multiplexing module 1014 is configured to reduce the data transmission channel error, the IQ data of the receiving channel completes the channel decoding and demultiplexing operation via the channel decoding and demultiplexing module 1018, and the IQ data of the transmitting channel is transmitted through the channel coding and multiplexing module 1014.
  • the channel encoder and multiplexing information operations are completed.
  • the channel decoding and demultiplexing module 1018 may select to include Viterbi and Turbo decoding accelerators; and the channel coding and multiplexing module 1014 may add information redundancy to the data according to different mode protocol requirements to facilitate data transmission over the wireless channel. Wrong and correct. There may be multiple channel coding and multiplexing modules 1014. Each channel coding and multiplexing module 1014 may encode data in a cascading manner to achieve better coding performance. In 3GPP TD-SCDMA mode, convolutional coding is mainly used. , second-order Reed- uler coding, etc.;
  • the channel coding and multiplexing module 1014 and the channel decoding and demultiplexing module 1018 mainly include the following processes of decoding, decoding, multiplexing, and demultiplexing:
  • the coding and multiplexing process mainly includes: CRC check coding, transport block cascading and code block segmentation, channel convolutional coding, radio frame equalization, one-time interleaving, radio frame segmentation, rate matching, transmission channel multiplexing, bit addition Interference, secondary interleaving, subframe segmentation, physical channel mapping, TFCI coding, etc.
  • the decoding and demultiplexing process mainly includes: TFCI decoding, TFI calculation, physical channel demapping, subframe merging, secondary de-interleaving, bit descrambling, transmission channel demultiplexing, rate-matching, wireless frame cascading, one-time solution Interleaving, frame length recovery, Viterbi/Turbo decoding, coding block cascading and transport block segmentation, CRC check, etc.
  • the IQ data from the air interface receiving channel is shaped and filtered by the receiving filter module 1015, and the multi-user detecting module 1016 demodulates, detects, and deinterleaves the shaped filtered data.
  • 1017 performs deinterleaving on the demodulated data and performs channel decoding and demultiplexing operations by the channel decoding and demultiplexing module 1018; thereafter, under the control of the common control processing subsystem 100, the wireless transceiver is provided through the interface module 100A.
  • the IQ data processed by the system 101 is sent to the source codec subsystem 102;
  • the source data to be sent from the source codec subsystem 102 is sent to the channel coding and multiplexing module 1014 through the interface module 100A under the control of the common control processing subsystem 100.
  • the interleaving module 1013 After channel coding and multiplexing information operation, the interleaving module 1013: Performing an interleaving operation on the data to be sent, and generating a burst conforming to the TD-SCDMA protocol by the burst shaping module 1012, to complete beamforming of the transmitted burst, and then transmitting and filtering to the air interface through the shaping filter of the transmission filter module 1011.
  • the sending channel Performing an interleaving operation on the data to be sent, and generating a burst conforming to the TD-SCDMA protocol by the burst shaping module 1012, to complete beamforming of the transmitted burst, and then transmitting and filtering to the air interface through the shaping filter of the transmission filter module 1011.
  • the wireless transceiver subsystem 101 can also optionally include an encryption and decryption accelerator module 1019 that is primarily used to perform encryption and decryption operations; different encryption operations are implemented in accordance with different modes in the mode control registers.
  • an encryption and decryption accelerator module 1019 that is primarily used to perform encryption and decryption operations; different encryption operations are implemented in accordance with different modes in the mode control registers.
  • 3GPP As a standardization organization for 3G systems, 3GPP has standardized the security access standards for pre-applications of 3G systems and ensure maximum compatibility with GSM security access mechanisms.
  • the confidentiality and integrity algorithms for protection information and the authentication and key agreement algorithms for user authentication are specified in the security access standard.
  • the f algorithm is used to encrypt and protect information, called confidentiality algorithm, to protect the transmitted information from leaking or eavesdropping.
  • the algorithm is used to protect the integrity of the information, called the integrity algorithm. Any damage. Any modification, addition, deletion, or other destructive operation of the transmitted information will be detected.
  • the identification bits of the identification algorithm in the standard are represented by the number of four-bit bits.
  • the encryption and decryption algorithm is mainly implemented in the Radio Resource Control (RRC), Radio Link Control (RLC) and Media Access (MAC) layers.
  • the encryption and decryption accelerator module 1019 can select and carry RRC, RLC,
  • the MCUs of the MAC layer part of the software are connected to make the system data flow smooth, easy to implement encryption and decryption operations, and meet the real-time requirements of the system.
  • an encryption/decryption algorithm accelerator conforming to the GSM standard can be configured to be connected to the DSP module 1001.
  • different settings are made in the mode setting register of the encryption/decryption accelerator module 1019 for different modes. .
  • the radio transceiver subsystem 101 provides both the use of dedicated and common transport channels.
  • suitable dedicated channels are: Dedicated Transport Channel (DCH) can be used for uplink/downlink as user information or control information between the bearer network and a particular UE. ;
  • DCH Dedicated Transport Channel
  • Applicable control channels are: a broadcast channel BCH for broadcasting system and cell-specific information; a control information paging channel PCH sent to the mobile station when the system does not know the cell in which the mobile station is located; for when the system knows the mobile When the cell in which the station is located, the forward access channel (FACH) of the control information sent to the mobile station, the FACH can also carry some short user information data packets.
  • BCH broadcast channel
  • PCH control information paging channel
  • PCH control information paging channel
  • the present invention may also select to support two types of transmission channels, an uplink shared channel (USCH) and a downlink shared channel (DSCH).
  • the USCH channel is an uplink transmission channel shared by several UEs, and is used to carry dedicated control data or service data; a downlink transmission channel shared by several UEs for carrying dedicated control data or service data;
  • the present invention also supports decoding processing of two special physical channels, a Paging Indicator Channel (PICH) and a Forward Physical Access Channel (FRACH).
  • PICH Paging Indicator Channel
  • FRACH Forward Physical Access Channel
  • the main functions of the public control processing subsystem 100 include: on the one hand, responsible for the timing control of the wireless transceiver subsystem 101 and the air interface; on the other hand, responsible for various software and hardware interrupts, messages and non-real-time operation processing between subsystem modules in the baseband chip; .
  • the public control processing subsystem 100 includes:
  • DSP digital signal processor
  • one or more DSP modules can be selected.
  • Microcontroller (MCU) module 1003 and used to store MCU programs and data PT/CN2006/001748
  • MCU memory 1004, MCU module 1003 is provided with a system state machine for real-time detection of whether the system has a communication mode switching requirement;
  • a communication method such as a standard bus or a shared memory can be used between the DSP module 1001 and the MCU module 1003 to implement mutual data interaction.
  • the DSP module 1001 and the MCU module 1003 can employ a real-time operating system.
  • the DSP module 1001 and the MCU module 1003 are connected to the system timing control and radio frequency control unit 1010 in the wireless transceiver subsystem 101 through the DSP and MCU and the source codec subsystem interface bus 12, and the DSP module 1001 or the MCU module 1003 can configure the system timing.
  • the system timing control and radio frequency control unit 1010 can also perform real-time timing control of the system under the control of the DSP module 1001 and the MCU module 1003.
  • the channel decoding and demultiplexing module 1018 includes a Viterbi and Turbo decoding accelerator
  • the DSP module 1001 Can be connected to the Viterbi and Turbo decoding accelerator for performing data encoding/decoding operations conforming to the 3GPP specifications;
  • the DSP module 1001 can be connected to the multi-user detection accelerator, and optionally an Rake accelerator or the like can be added to support the multi-mode design;
  • the DSP module 1001 can be respectively connected to the interleaving accelerator and the deinterleaving accelerator for channel decoding and multiplexing module 1014 and channel decoding and decoding.
  • the required channel coding/decoding functions are jointly performed by the module 1018;
  • the DSP module 1001 may be respectively connected to the transmit RRC filter and the receive RC filter for completing the pulse shaping function;
  • the encryption/decryption accelerator module 1019 may be optionally configured to be connected to the DSP module 1001 or the MCU module 1003, for example: in the case of supporting 3GPP, the encryption/decryption accelerator module 1019 Comply with 3GPP The Kasumi encryption algorithm of the protocol is activated and connected to the MCU module 1003; for the case of supporting the GSM mode, the Cipher encryption algorithm conforming to the GSM protocol in the encryption/decryption accelerator module 1019 is activated and connected to the DSP module 1001; Dedicated application, configurable to support user-specific unique encryption algorithms;
  • a code decompression circuit can be included in both the DSP module 1001 and the MCU module 1003 to support a large amount of storage for multiple applications, and to solve a bottleneck between code density and processor processing speed.
  • the power and clock management module 1005 manages the power and clock of the mobile terminal through the battery charging circuit interface 102 and the real-time clock circuit interface 103;
  • the power and clock management module 1005 is connected to the master clock of the radio frequency module, and is used to complete the system clock of the TD-SCDMA recovered by the radio frequency receiving unit of the mobile terminal, and completes the system through the radio frequency local oscillator circuit in the power and clock management module 1005.
  • the clock frequency is locked.
  • the module can include a phase-locked loop circuit, a clock synthesis circuit, and the like. When the system is in a sleep state, the system's main clock is turned off and clocked by the RTC circuit, which supports the maintenance of the system frame number.
  • the general power management circuit will power down the function module not used on the chip according to the current state of the mobile terminal under the management of the function module such as the MCU.
  • the external real-time clock is designed, and the real-time clock is powered by a separate battery. Used to provide functions such as calendars required by the system.
  • the power and clock management module 1005 also includes a battery charge and discharge control circuit.
  • the system monitoring module 1007 is configured to collect monitoring data of other sensors such as temperature connected through the interface 104.
  • Peripheral serial interface module 1008 used to download data, software upgrade or debug.
  • the protocol stack analyzer 105 of the TD-SCDMA can be connected to the mobile terminal through the peripheral serial interface module 1008, so as to implement simulation under various tests such as protocol stack compliance test;
  • the peripheral serial port can be a dedicated serial port of the MCU chip.
  • the external bus interface module 1009 is used to connect and support external memories of various MCUs, such as RAM, ROM, EPROM, E2PROM, and the like. In addition, the external bus interface module 1009 may select to add a function of decompressing data stored in the external memory, so that To omit the MCU decompression code, make the MCU code run faster.
  • the common control processing subsystem 100 includes a DSP bus 11, a DSP and MCU and source codec subsystem interface bus 12, and an MCU bus 13, which associate the various modules of the common control processing subsystem 100.
  • the DSP bus 11 is configured to complete communication between each submodule or each accelerator and the DSP in the wireless transceiver subsystem; the DSP and the MCU and the source codec subsystem interface bus 12 are used to complete the source coding subsystem 102, and the wireless transceiver Communication between system 101 and common control processing subsystem 100; MCU bus 13 is used to complete communication between various functional sub-modules interfaced with the MCU.
  • a flexible design platform can be provided for designs for multimode and multiple applications.
  • the main difference lies in the wireless transceiver subsystem 101, which can be reconfigured by the common control processing subsystem 100 based on software to support multi-mode design;
  • the source codec subsystem 102 can be reconfigured by the common control processing subsystem 100 based on software selection to support multiple applications.
  • FIG. 2 is a flow chart of switching between different modes of the present invention. It is assumed that the default communication mode of the system is communication mode 1, and the specific work is performed. The steps are as follows - Step 200: After the mobile terminal is powered on, the baseband chip of the mobile terminal loads the software corresponding to the current communication mode according to the communication mode set by the user.
  • the system default communication mode is preset in the system control register of the wireless transceiver subsystem 101 and the mode control register of the RF control unit 1010.
  • a bootup program is preliminarily provided in the program memory (ROM) of the baseband chip, and the bootup program is used to load different software corresponding to different communication modes into the ROM according to different communication modes set in the above mode control register.
  • Step 201 The baseband chip configures each module in the wireless transceiver subsystem to operate in the currently selected communication mode by running the loaded software.
  • the MCU module 1003 or the DSP module 1001 transmits the control information configured in the mode control register to the wireless transceiver through the DSP bus 11 and the wireless transceiver subsystem 101 control bus 10.
  • the other modules in system 101 are used to perform mode control of the multimode system.
  • the mode setting register may be set to the currently selected communication mode.
  • the mode setting register in the encryption and decryption accelerator module 1019 may be set to the currently selected communication mode.
  • Step 202 to step 203 The mobile terminal operates in the current communication mode, and determines whether there is a communication mode switching requirement. If yes, the process proceeds to step 204; otherwise, the process returns to step 202.
  • the system state machine of the MCU module in the baseband chip detects and determines whether there is a communication mode switching request. If the status display communication mode changes in the system state machine, there is a communication mode switching request; otherwise, there is no communication mode switching request.
  • Step 204 to step 205 The baseband chip resets the communication mode according to the communication mode to be switched, and soft resets the mobile terminal and returns to step 200.
  • the MCU module 1003 obtains the communication mode to be switched according to the detection of the system state machine, resets the system timing control and the mode control register in the radio frequency control unit 1010, and writes the communication mode to be switched to the mode control register.

Description

基带芯片及基于基带芯片的移动终端实现多模切换的方法 技术领域
本发明涉及移动终端芯片技术, 尤指一种符合第三代伙伴关系计划
( 3GPP ) 时分同步码分多址接入技术 (TD-SCDMA ) 等协议, 适用于 TD-SCDMA模或包括 TD-SCDMA模在内的多模移动终端的基带芯片, 及基 于本发明基带芯片的移动终端在不同通信模式间切换的方法。
背景技术
众所周知, TD-SCDMA产业化的关键是终端, 而终端的技术瓶颈在于对 终端芯片方案的研究。 第二代移动终端芯片设计多倾向于使用固化的专用硬 件电路实现, 而仅将少部分芯片设计用软件来实现, 从芯片初期设计至芯片 进入商用走过了 3至 5年的时间, 同时这种使用固化的专用硬件电路实现的 芯片设计难以适应新的需求变化。
TD-SCDMA是国际电联 (ITU) 正式接纳的第三代移动通信系统标准之 一, 对基于第三代移动通信技术的移动终端提出了新的需求, 主要表现在如 下几个方面- 更多更丰富的应用; 支持多模, 节省用户开支, 同时具备提供更灵活 的服务的能力, 有利于运营商更为合理地利用频谱资源; 更低的成本; 提 供可定制的服务, 便于系统升级。
为了满足新的需求, 面对新的挑战, 在移动终端设计的关键技术环节, 即芯片设计中必须釆用更为优化的体系结构, 以便使芯片设计适应更多的移 动终端, 尽量减少非重复设计成本。
目前, 尚没有适用于包括 TD-SCDMA模在内的多模终端的商用化专用 基带芯片。 专用基带芯片主要通过系统的主控单元进行模式选择, 并接收来 自射频的 IQ数据, 完成相应模式的基带处理; 同时将系统基带处理后的待发 送数据由射频通道发送出去。
发明内容
有鉴于此, 本发明的主要目的在于提供一种适用于 TD-SCDMA模或包 括 TD-SCDMA模在内的多模移动终端的基带芯片, 该移动终端的基带芯片 能够满足对第三代移动通信技术的移动终端提出的新的需求, 减少重复性设 计成本。
为了实现上述目的, 本发明提供了一种基带芯片, 包括接口模块 100A 及通过接口模块 100A连接的源编解码子系统 102、 无线收发子系统 101、 公 共控制处理子系统 100, 其中- 源编解码子系统 102,用于接收来自源数据接口的源数据,将源数据的 数据协议和特定速率数据转换成基带芯片当前通信模式所支持的格式, 并 通过接口模块 100A将转换后的数据发送给无线收发子系统 101 ; 同时将来 自无线收发子系统 102的数据的数据格式转换为源数据端接收的数据格式, 并将转换后的数据发送给源数据接口;
无线收发子系统 101, 通过接口模块 100A受控于公共控制处理子系统 100, 用于完成数据与信令的编解码、 调制解调、 突发形成, 并通过射频 模块的上下变频处理后在空中接口上发送和接收无线信令和数据, 同时用 于为数据或语音业务提供专用和公共传输信道;
公共控制处理子系统 100,用于实现无线收发子系统 101与空中接口的 时序控制, 并完成基带芯片各子系统间的控制处理;
上述的基带芯片, 其中, 所述源编解码子系统 102包括:
接口驱动模块 1021及数据编解码模块 1020, 用于实现与所述源数据 接口中数据接口 107的通信, 将来自所述数据接口 107的数据编码后发送 给接口模块 100A,和将来自接口模块 100A的数据解码后发送给所述数据 接口 107;
声码器模块 1022, 用于实现与所述源数据接口中语音接口 108 的通 信, 对来自所述语音接口 108 的语音数据进行编码后发送给接口模块 100A, 和将来自接口模块 100A 的语音数据解码后发送给所述语音接口 上述的基带芯片, 其中, 所述源编解码子系统 102还包括: 视频高速模 数转换 ADC和数模转换 DAC模块 1024, 以及视频编解码模块 1023, 用 于实现与所述源数据接口中视频传感器接口 109的通信, 将来自所述视频 传感器接口 109的数据经 ADC和编码后经由接口模块 100A发送至无线收 发子系统 101,同时将来自无线收发子系统 101的数据经 DAC和解码后发 送至所述视频传感器接口 109。
上述的基带芯片, 其中, 所述声码器模块 1022包括:
局部时钟产生电路, 用于产生完成 PCM编码所需要的时钟;
G.711脉冲调制 PCM编解码器, 用于结合时钟完成模拟语音到数字语音 的转换;
可变增益, 用于调节语音音量; 及
数模转换电路, 用于完成对数字语音的数据采样。
上述的基带芯片, 其中, 所述数据接口 107为 RS-232接口、 USB OTG 接口、符合 IEEE802.11协议的接口、符合 IEEE802.3协议的接口和 PCMCIA 接口中的一个或多个。
述的基带芯片, 其中, 所述无线收发子系统 101包括- 系统时序控制及射频控制单元 1010, 用于通过空中接口控制射频模块, 系统时序控制及射频控制单元 1010中设有模式控制寄存器, 通过公共控制 处理子系统 100对该模式控制寄存器的控制, 完成多模系统之间的切换; 发送滤波器模块 1011与接收滤波器模块 1015,用于完成 IQ信号的成 形滤波、 发送滤波器模块 jLOl l与空中接口的 TX_I/Q相连, 及接收滤波器 模块 1015与空中接口的 RX—I/Q相连;
突发成形模块 1012, 用于产生符合 TD-SCDMA协议的突发, 以完成 发送 burst的波束成形;
多用户检测模块 1016, 用于完成数据解调, 各个用户数据的检测; 交织模块 1013与解交织模块 1017, 分别用于对待发送的数据进行取 交织操作和对所接收的解调后数据进行解交织操作;
信道编码器和复用模块 1014与信道解码和解复用模块 1018, 用于降 低数据传输通道误码, 接收通道的 IQ 数据经由信道解码和解复用模块 1018完成信道解码和解复用操作, 发送通道的 IQ数据经由信道编码器和 复用模块 1014完成信道编码器和复用信息操作。
上述的基带芯片, 其中, 所述无线收发子系统 101还包括: 加解密加速 器模块 1019, 用于完成加密和解密操作; 在公共控制处理子系统 100的控 N2006/001748 制下, 对经接口模块 100A发送 /接收的数据进行加解密操作。
上述的基带芯片, 其中,所述加解密加速器模块 1019中设置模式设置 寄存器, 用于设置不同的通信模式, 根据所述模式控制寄存器中的不同的 模式实现不同的加密操作。
上述的基带芯片, 其中, 所述发送滤波器模块 1011和接收滤波器模块
1015分别为发送均方根升余弦 RRC滤波器和接收 RRC滤波器。
上述的基带芯片,其中,所述接收 /发送 RRC滤波器为系数可重配置的 加速器。
上述的基带芯片, 其中,所述符合 TD-SCDMA协议的突发脉冲为: 下 行导频 DWPTS、 上行导频 UPPTS或普通突发脉冲。
上述的基带芯片, 其中, 所述多用户检测模块 1016中设置多用户检测 加速器。
上述的基带芯片, 其中, 所述用户检测加速器为通用加速器。
上述的基带芯片, 其中, 所述交织模块 1013与解交织模块 1017中分 别设置交织加速器和解交织加速器,交织加速器 /解交织加速器用于与所述 信道编码器和复用模块 1014/所述信道解码和解复用模块 1018完成信道的 编 /解码。
上述的基带芯片,其中,所述信道解码和解复用模块 1018包括 Viterbi 和 Turbo解码加速器, 用于完成解码; 信道编码器和复用模块 1014用于 根据不同通信模式的协议要求在数据中加入信息冗余。
上述的基带芯片, 其中, 多个信道编码器和复用模块 1014采用级联方 式对数据进行编码。
上述的基带芯片, 其中, 所述无线收发子系统 101提供的专用和公共传 输信道包括: 专用传输信道 DCH、 广播信道 BCH、 控制信息寻呼信道 PCH、 前向接入信道 FACH。
上述的基带芯片, 其中, 所述无线收发子系统 101提供专用和公共传输 信道还包括: 上行共享信道 USCH和下行共享信道 DSCH。
上述的基带芯片, 其中, 所述无线收发子系统 101提供专用和公共传输 信道还包括: 寻呼指示信道 PICH和前向物理接入信道 FRACH。 上述的基带芯片, 其中, 所述公共控制处理子系统 100包括: 一个或一个以上数字信号处理器 DSP模块 1001与用于存储 DSP程序 和数据的 DSP存储器 1002;
一个或一个以上微控制器 MCU模块 1003与用于存储 MCU程序和数 据的 MCU存储器 1004, MCU模块 1003中设置有系统状态机, 用于实时 检测系统是否有通信模式切换需求; 所述 DSP模块 1001与所述 MCU模 块 1003 间采用标准总线或共享存储器实现相互间的数据交互; 功率与时 钟管理模块 1005, 用于通过电池充电电路接口 102和实时时钟电路接口 103对移动终端的功率和时钟进行管理;
键盘和显示驱动模块 1006,以及与 SIM或 USIM电路 10A相连的 SIM 或 USIM控制模块 100B, 用于支持单色显示模块和彩色显示模块, 支持 标准键盘和可扩展键盘模块;
系统监控模块 1007, 用于釆集来自接口 104的监控数据;
外围串口接口模块 1008, 用于下载数据、 软件升级或调试;
外部总线接口模块 1009, 用于连接和支持外部存储器。
上述的基带芯片, 其中, 所述外围串口接口模块 1008为 MCU的专用 串口。
' 上述的基带芯片, 其中, 所述外部总线接口模块 1009连接和支持的外 部存储器包括: 数据存储器 RAM、 程序存储器 ROM、 可擦除只读程序存 储器 EPROM、 可电擦除只读程序存储器 E2PROM。
上述的基带芯片, 其中, 所述外部总线接口模块 1009还包括: 用于对 存储于所述外部存储器内的数据进行解压的解压器。
上述的基带芯片, 其中, 所述基带芯片集成在单芯片中。
为了更好的实现上述目的, 本发明还提供了一种基于基带芯片的移动终 端实现多模切换的方法, 基带芯片包括源编解码子系统 102、 无线收发子系 统 101、 公共控制处理子系统 100及接口模块 100A, 其中, 预设通信模式, 移动终端上电后, 该方法包括以下步骤-
A.基带芯片根据所述设置的通信模式,配置所述无线收发子系统 101, 使其各模块工作于当前所选的通信模式; B. 所述移动终端工作于当前通信模式,并判断是否有通信模式切换需 求, 若有, 则进入步骤 C; 否则, 返回步骤 B;
C.基带芯片根据待切换的通信模式重新设置通信模式,并软复位移动 终端后返回步骤八。
上述的方法, 其中, 将所述通信模式设置在所述无线收发子系统 101 中系统时序控制及射频控制单元 1010的模式控制寄存器中。
上述的方法, 其中, 步骤 B中所述判断是否有通信模式切换需求的方 法为:通过基带芯片中 MCU模块 1003的系统状态机检测并判断是否有通 信模式切换请求, 若系统状态机中状态显示通信模式发生变化, 则有通信 模式切换请求; 否则, 没有通信模式切换请求。
由上述技术方案可见, 本发明移动终端的基带芯片由源编解码子系统 102、 无线收发子系统 101、 无线收发与源编解码公共控制与处理子系统 100 三个子系统组成, 三个子系统之间通过无线收发子系统和源编解码子系统的 接口模块 100A来完成连接, 本发明基带芯片可以在采用基于 CMOS工艺的 单颗硅片上实现。该基带芯片适用于 TD-SCDMA模或包括 TD-SCDMA模在 内的多模移动终端, 满足了对第三代移动通信技术的移动终端提出的新的需 求, 减少了重复性设计成本; 另外, 本发明基于上述基带芯片的移动终端在 不同通信模式间切换的方法, 实现了移动终端在不同通信模式之间的切换。 附图说明
图 1是本发明移动终端的基带芯片结构示意图;
图 2是本发明不同模式间切换工作流程图。
具体实施方式
本发明的核心思想是: 将组成基带芯片的源编解码子系统 102、 无线收 发子系统 101、 无线收发与源编解码公共控制与处理子系统 100集成在单颗 硅片上,该基带芯片适用于 TD-SCDMA模或包括 TD-SCDMA模在内的多模 移动终端的基带芯片, 满足了对第三代移动通信技术的移动终端提出的新的 需求, 减少了重复性设计成本; 另外, 本发明基于上述基带芯片的移动终端 在不同通信模式间切换的方法,实现了移动终端在不同通信模式之间的切换。
为使本发明的目的、 技术方案及优点更加清楚明白, 以下参照附图并举 较佳实施例, 对本发明进一步详细说明。
随着具备高处理能力的低功耗数字信号处理器 (DSP) 技术的日益成 熟, 基于软件无线电的移动终端的芯片设计技术日益显露出优势, 本发明 拟基于软件无线电技术设计更为优化的芯片体系结构, 并构成移动终端设 计平台, 以适应不断变化的客户需求, 并支持多模终端的设计。 本发明基 于上述终端芯片的设计, 解决包括 TD-SCDMA模在内的多模终端芯片的 设计问题。
图 1是本发明移动终端的基带芯片结构示意图,从图 1所示可以看出, 本发明移动终端的基带芯片主要由源编解码子系统 102、 无线收发子系统 101、无线收发与源编解码公共控制与处理子系统 100及接口模块 100A组 成, 以下将无线收发与源编解码公共控制与处理子系统 100简称为公共控 制处理子系统 100。 三个子系统之间通过接口模块 100A来完成连接, 本 发明基带芯片可以采用基于 CMOS工艺的单颗芯片实现,在单颗芯片中集 成基带单元。
其中, 源编解码子系统 102, 用于接收来自源数据接口的源数据, 将源 数据的数据协议和特定速率数据转换成基带芯片当前通信模式所支持的 格式, 并通过接口模块 100A将转换后的数据发送给无线收发子系统 101, 同时将来自无线收发子系统 102的数据格式转换为源数据端接收的数据格式 后发送给源数据接口;
无线收发子系统 101, 用于完成数据与信令的编解码、 调制解调、 突发 形成, 并通过射频模块的上下变频处理后在空中接口上发送和接收无线信 令和数据,该无线收发子系统 101中通过控制总线 10及接口模块 100A受控 于公共控制处理模块 100; 同时该无线收发子系统 101 为多种数据或语音业 务提供专用和公共传输信道的使用;
公共控制处理子系统 100,用于实现无线收发子系统 101与空中接口的 时序控制, 并完成基带芯片各子系统间的控制处理。
下面分别对各子系统的功能及组成进行详细描述:
1 ) 源编解码子系统 102
源编解码子系统 102主要负责将源数据的数据协议和特定速率数据转 换成 TD-SCDMA或其它通信模式所支持的格式。 这里的源数据可以是个 人电脑 (PC)、 PDA, FAX, 定位 /导航系统、 电子地图、 POTS、 ISDN有 线 Modem、 无线数据终端等, 并通过接口模块 100A将封装后的数据发送 给无线收发子系统 101 ; 同时将来自无线收发子系统 102的数据格式转换为 源数据端接收的数据格式后发送给源数据接口。
源编解码子系统 102包括:
与数据接口 107通信的接口驱动模块 1021及数据编解码模块 1020, 用于实现与所述源数据接口中数据接口 107的通信; 将来自所述数据接口 ( 107) 的数据编码后发送给接口模块 100A, 和将来自接口模块 100A的 数据解码后发送给所述数据接口 107; 其中数据接口可以是 RS-232、 USB OTG、 IEEE802.1 U IEEE802.3或 PCMCIA等接口; 与
语音接口 108, 包括耳机和扬声器通信的声码器模块 1022, 用于实现 与所述源数据接口中语音接口 108的通信, 对来自所述语音接口 108的语 音数据进行编码后发送给接口模块 100A,和将来自接口模块 100A的语音 数据解码后发送给所述语音接口 108。
声码器模块 1022可以包括多种语音编解码器,如符合 3GPP TS26.XXX 标准的声音 /调制解调器插卡 (AMR) 语音编解码器等; 数据源编解码器 模块 1020可以支持符合 3GPP TR 26.901等其它标准的宽带 AMR语音处 理功能。
声码器模块 1022还可以包括符合 G711规范的脉冲调制 (PCM) 编 解码器, 局部时钟产生电路, 可变增益和数模 /模数转换电路, 用于语音信 号的增益控制。 G.711脉冲调制 PCM编解码器完成模拟语音到数字语音的转 换,并通过局部时钟产生电路时钟电路产生完成 PCM编码所需要的时钟;可 变增益实现对语音音量的调节, 数模转换电路用于完成对数字语音的数据采 样。
声码器模块 1022还可以包括回声消除电路, 这有利于提高如免提车 载电话的通话质量。
其中, 该源编解码子系统 102还可包括与视频传感器接口 109通信的 视频高速模数转换 (ADC) 和数模转换 (DAC) 模块 1024及视频编解码 模块 1023,用于实现与所述源数据接口中视频传感器接口 109的通信; 来 自所述视频传感器接口 109的数据经 ADC和编码后发送至无线收发子系 统 101,同时来自无线收发子系统 101的数据经 DAC和解码后发送至所述 视频传感器接口 109。
这里将数据接口 107、 语音接口 108和视频传感器接口 109统一称为 源数据接口。
2) 无线收发子系统 101
无线收发子系统 101主要负责完成数据与信令的编解码、 调制解调、 突发形成, 并通过射频模块的上下变频处理后在空口上发送和 te收无线信 令和数据。无线收发子系统 101中的各模块间通过无线收发子系统 101控 制总线 10相连, 并通过该控制总线 10和接口模块 100A受控于公共控制 处理子系统 100, 因此, 可更为灵活地支持多模系统和为不同需求而特殊 配置的系统。
无线收发子系统 101包括:
( 1 ) 系统时序控制及射频控制单元 1010, 在其中设有模式控制寄存 器, 通过公共控制处理子系统 100对该模式控制寄存器的配置完成多模系 统之间的切换, 系统时序控制及射频控制单元 1010与空中接口的 RF— Ctrl 信号相连。
(2) 发送滤波器模块 1011与接收滤波器模块 1015, 用于完成 IQ信 号的成形滤波, 发送滤波器模块 1011与空中接口的 TX—I/Q接口相连, 接 收滤波器模块 1015与空中接口的 RX— I/Q接口相连;
发送滤波器模块 1011和接收滤波器模块 1015可分别选择使用发送均 方根升余弦 (RRC) 滤波器和接收 RRC滤波器, 用于完成脉冲成形。 这 里, 接收 /发送 RRC滤波器可以设计成系数可重配置的硬件加速器模块, 以适应不同通信模式的邻道响应等性能要求。
( 3 ) 突发成形模块 1012, 用于产生符合 TD-SCDMA协议的突发脉 冲, 例如: 下行导频 DWPTS、 上行导频 UPPTS和普通突发脉冲等, 以完 成发送 burst的波束成形。
(4) 多用户检测模块 1016, 用于完成数据解调和各个用户数据的检 测;
可以在多用户检测模块 1016 中选择设置用户检测加速器, 该用户检 测加速器可以设计成通用加速器。
( 5 ) 交织模块 1013与解交织模块 1017, 交织模块 1013用于对待发 送的数据进行取交织操作; 解交织模块 1017用于将所接收的解调后数据 进行解交织操作;
交织模块 1013与解交织模块 1017中可以分别选择设置交织硬件加速 器和解交织硬件加速器, 交织硬件加速器和解交织硬件加速器分别与信道 编码和复用模块 1014、 信道解码和解复用模块 1018 —起完成信道的编 / 解码功能。
( 6)信道编码和复用模块 1014与信道解码和解复用模块 1018, 信道 编码是指为降低数据在复杂无线信道环境下的传输错误而对各信息符号 进行编码, 解码是编码的逆过程;
信道编码和复用模块 1014用于降低数据传输通道误码, 接收通道的 IQ数据经由信道解码和解复用模块 1018完成信道解码和解复用操作, 发 送通道的 IQ数据经由信道编码和复用模块 1014完成信道编码器和复用信 息操作。
信道解码和解复用模块 1018可以选择包括 Viterbi和 Turbo解码加速 器; 而信道编码和复用模块 1014可以根据不同模式的协议要求在数据中 加入信息冗余, 以便于对经无线信道传输的数据进行检错和纠错。 信道编 码和复用模块 1014可以有多个, 各个信道编码和复用模块 1014可以采用 级联方式对数据进行编码, 以达到较好的编码性能, 3GPP TD-SCDMA模 式下, 主要采用卷积编码、 二阶 Reed- uler编码等;
以 TD-SCDMA系统为例, 根据 3GPP 25.222协议, 信道编码和复用 模块 1014与信道解码和解复用模块 1018分别主要包括以下编解、 解码、 复用及解复用过程:
编码与复用过程主要包括: CRC校验编码, 传输块级联与码块分段, 信道卷积编码, 无线帧均衡, 一次交织, 无线帧分段, 速率匹配, 传输信 道复用, 比特加扰, 二次交织, 子帧分段, 物理信道映射, TFCI编码等。 解码与解复用过程主要包括: TFCI解码, TFI计算,物理信道解映射, 子帧合并, 二次解交织, 比特解扰, 传输信道解复用, 解速率匹配, 无线 帧级联, 一次解交织, 帧长度恢复, Viterbi/Turbo译码, 编码块级联与传 输块分段, CRC校验等。
根据以上所述无线收发子系统 101的组成, 来自空中接口接收通道的 IQ数据经接收滤波器模块 1015的成形滤波,多用户检测模块 1016对成形 滤波后的数据进行解调及检测、 解交织模块 1017对所解调后数据进行解 交织操作并由信道解码和解复用模块 1018完成信道解码和解复用操作; 之后, 在公共控制处理子系统 100的控制下, 通过接口模块 100A将经无线 收发子系统 101处理后的 IQ数据发送给源编解码子系统 102;
来自源编解码子系统 102待发送的源数据, 在公共控制处理子系统 100 的控制下,通过接口模块 100A发送至信道编码和复用模块 1014, 经信道编 码和复用信息操作后, 交织模块 1013对待发送的数据进行取交织操作、 并经突发成形模块 1012产生符合 TD-SCDMA协议的突发, 以完成发送 burst的波束成形, 再经发送滤波器模块 1011的成形滤波后发送至空中接 口的发送通道。
另外, 无线收发子系统 101还可以选择包括加解密加速器模块 1019, 这一模块主要用于完成加密和解密操作; 根据所述模式控制寄存器中的不 同的模式实现不同的加密操作。
3GPP作为 3G系统的标准化制订组织, 已经规范了 3G系统前期应用 的安全接入标准, 并保证了与 GSM安全接入机制的最大兼容性。 在安全 接入标准中规定了保护信息的机密性和完整性算法, 及对用户鉴别的鉴权 和密钥协商算法。
标准中定义了两个标准化算法 f8和 f 。 f 算法用于对信息进行加密保 护, 称为机密性算法, 保护传输的信息不会泄漏或被窃听; f 算法用于对 信息进行完整性保护,称为完整性算法,保护传输信息不会受到任何破坏。 当对传输信息进行任何修改、增加、删除或其它破坏性操作时都会被检出。 标准中标识算法的标识位用四位比特数表示。 除规定的标准化算法 f8 和 f9 之外, 考虑一些特殊的因素还允许使用其它的算法, 比如, 对于 TD-SCDMA模, 加解密算法主要是在无线资源控制 (RRC), 无线链路控 制 (RLC) 和媒体接入 (MAC) 层实现, 因而, 加解密加速器模块 1019 可选择与承载 RRC、 RLC、 MAC层部分软件的 MCU相连接, 以使系统 数据流顺畅, 便于实现加解密操作, 同时满足系统实时性要求。
对于多模系统,如支持 GSM模, 则可以配置符合 GSM标准的加解密 算法加速器, 与 DSP模块 1001相连, 另外, 对于不同的模, 在加解密加 速器模块 1019的模式设置寄存器中进行不同的设置。
无线收发子系统 101同时提供专用和公共传输信道的使用, 例如, 适用的专用信道有: 专用传输信道(DCH)可用于上 /下行链路作为承载 网络和特定 UE之间的用户信息或控制信息;
适用的控制信道有: 用于广播系统和小区的特有信息的广播信道 BCH; 用于系统不知道移动台所在的小区时, 发送给移动台的控制信息寻呼信道 PCH; 用于当系统知道移动台所在的小区时, 发给移动台的控制信息的前向 接入信道 (FACH), FACH也可以承载一些短的用户信息数据包。
本发明还可选择支持上行共享信道 (USCH) 和下行共享信道 (DSCH) 这两种传输信道, USCH信道是几个 UE共享的上行传输信道, 用于承载专 用控制数据或业务数据; DSCH信道是几个 UE共享的下行传输信道, 用于 承载专用控制数据或业务数据;
本发明还同时支持寻呼指示信道(PICH)和前向物理接入信道(FRACH) 这两个特殊物理信道的解码处理。
3 ) 公共控制处理子系统 100
公共控制处理子系统 100主要功能包括: 一方面负责无线收发子系统 101与空中接口的时序控制; 另一方面负责基带芯片中各子系统模块间各 种软硬件中断、 消息和非实时性操作处理。
公共控制处理子系统 100包括:
( 1 )数字信号处理器(DSP)模块 1001与用于存储 DSP程序和数据 的 DSP存储器 1002;
按照实际情况, 可选择采用一个或多个 DSP模块。
(2) 微控制器 (MCU) 模块 1003 与用于存储 MCU程序和数据的 P T/CN2006/001748
MCU存储器 1004, MCU模块 1003中设置有系统状态机,用于实时检测 系统是否有通信模式切换需求;
按照实际情况, 可选择采用一个或多个 MCU模块;
DSP模块 1001与 MCU模块 1003之间可以采用标准总线或共享存储 器等通信方式来实现相互间的数据交互。 DSP模块 1001和 MCU模块 1003 可以采用实时操作系统。 DSP模块 1001和 MCU模块 1003通过 DSP和 MCU与源编解码子系统接口总线 12, 与无线收发子系统 101中的系统时 序控制及射频控制单元 1010相连, DSP模块 1001或 MCU模块 1003可以 配置系统时序控制及射频控制单元 1010 中的模式控制寄存器, 并进一步 将模式控制寄存器中配置的控制信息通过 DSP总线 11和无线收发子系统 101控制总线 10传送到无线收发子系统 101中的其它各个模块,用于完成 多模系统的模式控制。 其中, 系统时序控制及射频控制单元 1010还可以 在 DSP模块 1001与 MCU模块 1003的控制下完成系统的实时时序控制; 当信道解码和解复用模块 1018中包括 Viterbi和 Turbo解码加速器时, DSP模块 1001可以与该 Viterbi与 Turbo解码加速器相连, 用于完成符合 3GPP规范的数据编 /解码操作;
当多用户检测模块 1016中设计有多用户检测加速器时, DSP模块 1001 可以与该用多户检测加速器相连, 并可选择增加 Rake加速器等以支持多 模设计;
当交织模块 1013与解交织模块 1017中分别设计有交织加速器和解交 织加速器时, DSP模块 1001可以分别与该交织加速器、 解交织加速器相 连, 用于与信道编码和复用模块 1014与信道解码和解复用模块 1018共同 完成所需要的信道编 /解码功能;
当发送滤波器模块 1011和接收滤波器模块 1015分别使用发送 RRC 滤波器和接收 RRC滤波器时, DSP模块 1001可以分别与该发送 RRC滤 波器、 接收 R C滤波器相连, 用于完成脉冲成形功能;
当无线收发子系统 101 中包括加解密加速器模块 1019时, 可选择配 置该加解密加速器模块 1019与 DSP模块 1001或 MCU模块 1003相连, 例如: 对于支持 3GPP的情况下, 加解密加速器模块 1019中的符合 3GPP 协议的 Kasumi加密算法被激活,并与 MCU模块 1003相连;对于支持 GSM 模的情况下, 加解密加速器模块 1019中的符合 GSM协议的 Cipher加密 算法被激活, 并与 DSP模块 1001相连; 对于其它的专门应用, 可配置支 持用户定制的特有的加密算法;
另外,在 DSP模块 1001和 MCU模块 1003中均可包括代码解压缩电 路,以支持多应用大存储量,解决代码密度与处理器处理速度之间的瓶颈。
( 3 ) 功率与时钟管理模块 1005, 通过电池充电电路接口 102和实时 时钟电路接口 103对移动终端的功率和时钟进行管理;
功率与时钟管理模块 1005与射频模块的 Master Clock相连, 用于完 成由移动终端的射频接收单元恢复的 TD-SCDMA的系统时钟, 并通过功 率与时钟管理模块 1005 中的射频本振电路完成对系统时钟频率的锁定, 该模块可包括锁相环电路, 时钟综合电路等。 在系统处于睡眠状态时, 系 统主时钟被关断, 由 RTC 电路提供时钟, 该电路支持系统帧号的维护。 一般功率管理电路会在 MCU等功能模块的管理下, 根据目前移动终端的 状态使芯片上不使用的功能模块断电, 在本发明中, 设计采用外部实时时 钟, 实时时钟由单独的电池供电, 用以提供系统所需的日历等功能。 功率 与时钟管理模块 1005还包括电池充放电控制电路。
( 4)键盘和显示驱动模块 1006, 以及与 SIM或 USIM电路 10A相连 的 SIM或 USIM控制模块 100B,用于支持单色显示模块和彩色显示模块, 支持标准键盘和可扩展键盘模块。
( 5 ) 系统监控模块 1007, 用于采集通过接口 104相连接的温度等其 它传感器的监控数据。
( 6) 外围串口接口模块 1008, 用于下载数据, 软件升级或调试。 比 如, TD-SCDMA的协议栈分析仪 105可以通过外围串口接口模块 1008与 移动终端相连接, 以便实现协议栈符合度测试等各种测试下的仿真; 该外 围串口可以是 MCU芯片的专用串口。
( 7) 外部总线接口模块 1009, 用于连接和支持各种 MCU的外部存 储器, 如 RAM、 ROM、 EPROM、 E2PROM等。 另外, 外部总线接口模块 1009可以选择增加对存储于外部存储器内的数据进行解压的功能,这样可 以省略 MCU解压代码, 使 MCU代码运行更快。
公共控制处理子系统 100中包括 DSP总线 11、 DSP和 MCU与源编 解码子系统接口总线 12、 以及 MCU总线 13, 这些总线将公共控制处理子 系统 100的各个模块联系起来。
其中, DSP总线 11用于完成无线收发子系统中各子模块或各加速器 与 DSP之间的通信; DSP和 MCU与源编解码子系统接口总线 12用于完 成源编码子系统 102, 无线收发子系统 101与公共控制处理子系统 100之 间的通信; MCU总线 13用于完成与 MCU接口的各功能子模块之间的通 信。
采用这种总线结构, 可以为面向多模和多种应用的设计提供较为灵活 的设计平台。 比如: 对于多模设计而言, 除射频差异外, 主要差异在于无 线收发子系统 101, 可由公共控制处理子系统 100基于软件选择重配置无 线收发子系统 101, 以支持多模设计; 对于需要支持多种应用的情形, 可 由公共控制处理子系统 100基于软件选择重配置源编解码子系统 102以支 持多种应用。
下面结合图 2具体描述基于本发明基带芯片的移动终端在不同通信模 式间的切换过程, 图 2是本发明不同模式间切换工作流程图, 假设系统的 缺省通信模式为通信模式 1, 具体工作步骤如下- 步骤 200: 移动终端上电后, 移动终端的基带芯片根据用户设置的通 信模式, 装载当前通信模式对应的软件。
系统缺省通信模式预设在无线收发子系统 101系统时序控制及射频控 制单元 1010的模式控制寄存器中。另外,在基带芯片的程序存储器 (ROM) 中预设有 bootup程序, 该 bootup程序用于根据上述模式控制寄存器中设 置的不同通信模式, 将不同通信模式对应的不同软件装载到 ROM中。
本步骤中, bootup程序将当前通信模式 1对应的软件装载在 ROM中。 步骤 201 : 基带芯片通过运行装载的软件, 配置无线收发子系统中各 模块工作于当前所选的通信模式。
MCU模块 1003或 DSP模块 1001将模式控制寄存器中配置的控制信 息通过 DSP总线 11和无线收发子系统 101控制总线 10传送到无线收发子 系统 101中的其它各个模块, 用于完成多模系统的模式控制。
本步骤中,对于无线收发子系统 101各模块中具有模式设置寄存器的, 将模式设置寄存器设置为当前所选的通信模式即可。 比如, 加解密加速器 模块 1019中的模式设置寄存器。
步骤 202〜步骤 203 : 移动终端工作于当前通信模式, 并判断是否有 通信模式切换需求, 若有, 则进入步骤 204; 否则, 返回步骤 202。
本步骤中, 基带芯片中 MCU模块的系统状态机检测并判断是否有通 信模式切换请求。 若系统状态机中状态显示通信模式发生变化, 则有通信 模式切换请求; 否则, 没有通信模式切换请求。
步骤 204〜步骤 205: 基带芯片根据待切换的通信模式重新设置通信 模式, 并软复位移动终端后返回步骤 200。
本步骤中 MCU模块 1003根据系统状态机的检测,获得待切换的通信 模式, 重新设置系统时序控制及射频控制单元 1010中的模式控制寄存器, 即将待切换的通信模式写入模式控制寄存器。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保护 范围。

Claims

权利 要 求 书
1.一种基带芯片, 其特征在于, 包括接口模块(100A)及通过接口模块 ( 100A) 连接的源编解码子系统(102)、 无线收发子系统 (101 )、 公共控制 处理子系统 (100), 其中:
源编解码子系统 (102), 用于接收来自源数据接口的源数据, 将源数 据的数据协议和特定速率数据转换成基带芯片当前通信模式所支持的格 式,并通过接口模块 ( 100A)将转换后的数据发送给无线收发子系统( 101 ); 同时将来自无线收发子系统(102)的数据的数据格式转换为源数据端接收的 数据格式, 并将转换后的数据发送给源数据接口;
无线收发子系统 (101 ), 通过接口模块 (100A) 受控于公共控制处理子 系统 (100), 用于完成数据与信令的编解码、 调制解调、 突发形成, 并通 过射频模块的上下变频处理后在空中接口上发送和接收无线信令和数据, 同时用于为数据或语音业务提供专用和公共传输信道;
公共控制处理子系统 (100), 用于实现无线收发子系统 (101 ) 与空中 接口的时序控制, 并完成基带芯片各子系统间的控制处理。
2. 根据权利要求 1所述的基带芯片, 其特征在于, 所述源编解码子系统 ( 102) 包括:
接口驱动模块 (1021 ) 及数据编解码模块 (1020), 用于实现与所述 源数据接口中数据接口 (107) 的通信, 将来自所述数据接口 (107) 的数 据编码后发送给接口模块 (100A), 和将来自接口模块 (100A) 的数据解 码后发送给所述数据接口 (107);
声码器模块 (1022), 用于实现与所述源数据接口中语音接口 (108 ) 的通信, 对来自所述语音接口 (108) 的语音数据进行编码后发送给接口 模块 (100A), 和将来自接口模块 (100A) 的语音数据解码后发送给所述 语音接口 (108 )。
3. 根据权利要求 2所述的基带芯片, 其特征在于, 所述源编解码子系统 ( 102) 还包括: 视频高速模数转换 ADC和数模转换 DAC模块 (1024), 以及视频编解码模块 (1023 ), 用于实现与所述源数据接口中视频传感器 接口 (109) 的通信, 将来自所述视频传感器接口 (109) 的数据经 ADC 和编码后经由接口模块(100A)发送至无线收发子系统(101 ), 同时将来 自无线收发子系统(101 ) 的数据经 DAC和解码后发送至所述视频传感器 接口 (109)。
4. 根据权利要求 2所述的基带芯片,其特征在于,所述声码器模块( 1022) 包括:
局部时钟产生电路, 用于产生完成 PCM编码所需要的时钟;
G.711脉冲调制 PCM编解码器, 用于结合时钟完成模拟语音到数字语音 的转换;
可变增益, 用于调节语音音量; 及
数模转换电路, 用于完成对数字语音的数据采样。
5. 根据权利要求 2所述的基带芯片, 其特征在于: 所述数据接口 (107) 为 RS-232 接口、 USB OTG接口、 符合 IEEE802.i l 协议的接口、 符合 IEEE802.3协议的接口和 PCMCIA接口中的一个或多个。
6. 根据权利要求 1所述的基带芯片, 其特征在于, 所述无线收发子系统 ( 101 ) 包括:
系统时序控制及射频控制单元(1010),用于通过空中接口控制射频模块, 系统时序控制及射频控制单元(1010)中设有模式控制寄存器, 通过公共控 制处理子系统 (100) 对该模式控制寄存器的控制, 完成多模系统之间的 切换;
发送滤波器模块 (1011 ) 与接收滤波器模块 (1015 ), 用于完成 IQ信 号的成形滤波、 发送滤波器模块 (1011 ) 与空中接口的 TX一 I/Q相连, 及 接收滤波器模块 (1015 ) 与空中接口的 RX— I/Q相连;
突发成形模块(1012), 用于产生符合 TD-SCDMA协议的突发, 以完 成发送 burst的波束成形;
多用户检测模块 (1016), 用于完成数据解调, 各个用户数据的检测; 交织模块 (1013 ) 与解交织模块 (1017 ), 分别用于对待发送的数据 进行取交织操作和对所接收的解调后数据进行解交织操作;
信道编码器和复用模块 (1014) 与信道解码和解复用模块 (1018 ), 用于降低数据传输通道误码, 接收通道的 IQ数据经由信道解码和解复用 模块 (1018) 完成信道解码和解复用操作, 发送通道的 IQ数据经由信道 编码器和复用模块 (1014) 完成信道编码器和复用信息操作。
7. 根据权利要求 6所述的基带芯片, 其特征在于, 所述无线收发子系统 ( 101 ) 还包括: 加解密加速器模块 (1019), 用于完成加密和解密操作; 在公共控制处理子系统 (100) 的控制下, 对经接口模块 (100A) 发送 /接收 的数据进行加解密操作。
8. 根据权利要求 7所述的基带芯片, 其特征在于, 所述加解密加速器 模块 (1019) 中设置模式设置寄存器, 用于设置不同的通信模式, 根据所 述模式控制寄存器中的不同的模式实现不同的加密操作。
9. 根据权利要求 6所述的基带芯片, 其特征在于, 所述发送滤波器模块 ( 1011 ) 和接收滤波器模块 (1015 ) 分别为发送均方根升余弦 RRC 滤波 器和接收 RRC滤波器。
10. 根据权利要求 9所述的基带芯片, 其特征在于, 所述接收 /发送 RRC 滤波器为系数可重配置的加速器。
11. 根据权利要求 6 所述的基带芯片, 其特征在于: 所述符合 TD-SCDMA协议的突发脉冲为: 下行导频 DWPTS、 上行导频 UPPTS或 普通突发脉冲。
12. 根据权利要求 6所述的基带芯片, 其特征在于: 所述多用户检测模 块 (1016) 中设置多用户检测加速器。
13. 根据权利要求 12所述的基带芯片, 其特征在于, 所述用户检测加 速器为通用加速器。
14. 根据权利要求 6所述的基带芯片,其特征在于,所述交织模块( 1013 ) 与解交织模块 (1017) 中分别设置交织加速器和解交织加速器, 交织加速 器 /解交织加速器用于与所述信道编码器和复用模块 (1014) /所述信道解 码和解复用模块 (1018) 完成信道的编 /解码。
15. 根据权利要求 6所述的基带芯片, 其特征在于, 所述信道解码和 解复用模块(1018)包括 Viterbi和 Turbo解码加速器, 用于完成解码; 信 道编码器和复用模块(1014)用于根据不同通信模式的协议要求在数据中 加入信息冗余。
16. 根据权利要求 6所述的基带芯片, 其特征在于, 多个信道编码器 和复用模块 (1014) 采用级联方式对数据进行编码。
17. 根据权利要求 1 所述的基带芯片, 其特征在于, 所述无线收发子 系统 (101 ) 提供的专用和公共传输信道包括: 专用传输信道 DCH、 广播信 道 BCH、 控制信息寻呼信道 PCH、 前向接入信道 FACH。
18. 根据权利要求 17所述的基带芯片, 其特征在于, 所述无线收发子系 统(101 )提供专用和公共传输信道还包括: 上行共享信道 USCH和下行共享 信道 DSCH。
19. 根据权利要求 18所述的基带芯片, 其特征在于, 所述无线收发子系 统 (101 )提供专用和公共传输信道还包括: 寻呼指示信道 PICH和前向物理 接入信道 FRACH。
20. 根据权利要求 1 所述的基带芯片, 其特征在于, 所述公共控制处理 子系统 (100) 包括:
一个或一个以上数字信号处理器 DSP模块 (1001 ) 与用于存储 DSP 程序和数据的 DSP存储器 (1002);
一个或一个以上微控制器 MCU模块 (1003 ) 与用于存储 MCU程序 和数据的 MCU存储器(1004), MCU模块 1003中设置有系统状态机, 用 于实时检测系统是否有通信模式切换需求; 所述 DSP模块(1001 )与所述 MCU模块(1003 ) 间采用标准总线或共享存储器实现相互间的数据交互; 功率与时钟管理模块 (1005 ), 用于通过电池充电电路接口 (102) 和实时 时钟电路接口 (103 ) 对移动终端的功率和时钟进行管理;
键盘和显示驱动模块 (1006), 以及与 SIM或 USIM电路 (10A) 相 连的 SIM或 USIM控制模块 (100B), 用于支持单色显示模块和彩色显示 模块, 支持标准键盘和可扩展键盘模块;
系统监控模块 (1007), 用于采集来自接口 (104) 的监控数据; 外围串口接口模块 (1008 ), 用于下载数据、 软件升级或调试; 外部总线接口模块 (1009 ), 用于连接和支持外部存储器。
21. 根据权利要求 20所述的基带芯片, 其特征在于: 所述外围串口接口 模块 (1008) 为 MCU的专用串口。
22. 根据权利要求 20所述的基带芯片,其特征在于,所述外部总线接 口模块 (1009) 连接和支持的外部存储器包括: 数据存储器 RAM、 程序 存储器 ROM、可擦除只读程序存储器 EPROM、可电擦除只读程序存储器 E2PROM。
23. 根据权利要求 22所述的基带芯片, 其特征在于,所述外部总线接 口模块 (1009) 还包括: 用于对存储于所述外部存储器内的数据进行解压 的解压器。
24. 根据权利要求 1所述的基带芯片, 其特征在于: 所述基带芯片集 成在单芯片中。
25. 一种基于基带芯片的移动终端实现多模切换的方法, 基带芯片包括 源编解码子系统(102)、无线收发子系统(101 )、公共控制处理子系统(100) 及接口模块 (100A), 其特征在于, 预设通信模式, 移动终端上电后, 该方 法包括以下步骤:
A.基带芯片根据所述设置的通信模式, 配置所述无线收发子系统 ( 101 ), 使其各模块工作于当前所选的通信模式;
B. 所述移动终端工作于当前通信模式,并判断是否有通信模式切换需 求, 若有, 则进入步骤 C; 否则, 返回步骤 B;
. C. 基带芯片根据待切换的通信模式重新设置通信模式,并软复位移动 终端后返回步骤八。
26. 根据权利要求 25所述的方法,其特征在于,将所述通信模式设置在 所述无线收发子系统 (101 ) 中系统时序控制及射频控制单元 (1010) 的 模式控制寄存器中。
27. 根据权利要求 25所述的方法, 其特征在于, 步骤 B中所述判断 是否有通信模式切换需求的方法为: 通过基带芯片中 MCU模块 (1003 ) 的系统状态机检测并判断是否有通信模式切换请求, 若系统状态机中状态 显示通信模式发生变化, 则有通信模式切换请求; 否则, 没有通信模式切 换请求。
PCT/CN2006/001748 2005-07-20 2006-07-19 Method for base band chip and mobile terminal based on the base band chip implement the multi-mode handover WO2007009380A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/996,180 US8160043B2 (en) 2005-07-20 2006-07-19 Baseband chip and method to implement multi-mode switching for mobile terminal based on baseband chip
JP2008521776A JP4818363B2 (ja) 2005-07-20 2006-07-19 ベースバンドチップ及びベースバンドチップに基いた移動端末のマルチモードのハンドオーバー方法
EP06761483.4A EP1906573A4 (en) 2005-07-20 2006-07-19 METHOD FOR A BASEBAND CHIP AND MOBILE DEVICE BASED ON THE MULTIMODUS HANDOVER BASEBAND CHIP IMPLEMENT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200510085099.0 2005-07-20
CNB2005100850990A CN100559905C (zh) 2005-07-20 2005-07-20 基带芯片

Publications (1)

Publication Number Publication Date
WO2007009380A1 true WO2007009380A1 (en) 2007-01-25

Family

ID=37657403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/001748 WO2007009380A1 (en) 2005-07-20 2006-07-19 Method for base band chip and mobile terminal based on the base band chip implement the multi-mode handover

Country Status (6)

Country Link
US (1) US8160043B2 (zh)
EP (1) EP1906573A4 (zh)
JP (1) JP4818363B2 (zh)
KR (1) KR100962103B1 (zh)
CN (1) CN100559905C (zh)
WO (1) WO2007009380A1 (zh)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7869590B2 (en) * 2005-04-12 2011-01-11 Broadcom Corporation Method and system for hardware accelerator for implementing f9 integrity algorithm in WCDMA compliant handsets
CN101400157B (zh) 2007-09-29 2010-12-01 中国移动通信集团公司 一种通信方法和装置
US8145894B1 (en) * 2008-02-25 2012-03-27 Drc Computer Corporation Reconfiguration of an accelerator module having a programmable logic device
CN101232471B (zh) * 2008-02-26 2010-09-15 上海士康射频技术有限公司 基带信号处理芯片
CN102257735B (zh) * 2008-12-17 2015-07-22 翔跃通信公司 具有协调的多个空中接口操作的基站
CN101557597B (zh) 2009-05-21 2011-08-03 华为技术有限公司 一种多模汇聚、合路的方法及装置
CN101964995B (zh) * 2009-07-21 2013-03-27 中兴通讯股份有限公司 WCDMA系统NodeB侧上行基带芯片参数更新方法及装置
CN102045081B (zh) * 2009-10-14 2014-03-05 上海摩波彼克半导体有限公司 Gsm移动通信终端中基带接收部分采样数据存储优化的方法
CN102340470A (zh) * 2010-07-20 2012-02-01 中兴通讯股份有限公司 基带处理系统及方法
CN101944072A (zh) * 2010-09-01 2011-01-12 中兴通讯股份有限公司 一种终端设备的启动方式配置方法及设备
CN102055556A (zh) * 2010-12-29 2011-05-11 重庆邮电大学 基于共性技术的移动通信终端基带处理系统
CN102752000A (zh) * 2012-06-26 2012-10-24 中兴通讯股份有限公司 发射信号的处理芯片及方法
CN103781052A (zh) * 2012-10-17 2014-05-07 中兴通讯股份有限公司 通信方法、系统及多模终端
CN103067907B (zh) * 2012-12-20 2018-05-18 中兴通讯股份有限公司 一种多模终端及多模终端的切换方法
CN104753830B (zh) * 2013-12-25 2017-10-24 展讯通信(上海)有限公司 基带芯片及其数据处理方法
CN103841668A (zh) * 2014-03-19 2014-06-04 常州隽通电子技术有限公司 一种多模信源接入单元
CN105741517B (zh) * 2014-12-10 2019-03-29 联芯科技有限公司 一种射频控制器及对射频控制器的配置方法
CN106817257B (zh) * 2016-01-27 2020-06-12 南京白下高新技术产业园区投资发展有限责任公司 移动终端和升级方法
CN106230403B (zh) * 2016-07-26 2018-08-10 中国电子科技集团公司第十研究所 基带信号成型滤波方法
CN107071869B (zh) * 2016-11-15 2023-04-18 国动物联网有限公司 兼容LoRaWAN Class A、Class B和手抄模式的多模终端及多模兼容方法
RU2733275C1 (ru) * 2017-02-21 2020-10-01 Телефонактиеболагет Лм Эрикссон (Пабл) Способ и устройства для двойной соединяемости между оборудованием пользователя с двойным стеком протоколов и двумя блоками основной полосы частот телекоммуникационной сети радиодоступа
CN109286597A (zh) * 2017-07-20 2019-01-29 北京中科晶上科技股份有限公司 一种基带芯片
CN109543354A (zh) * 2018-12-29 2019-03-29 中科院计算技术研究所南京移动通信与计算创新研究院 一种基于模型设计的基带信号降采样设计方法及存储介质
CN111404855B (zh) * 2020-06-03 2020-09-18 深圳市千分一智能技术有限公司 无线通讯方法、设备及计算机可读存储介质
CN112559430B (zh) * 2020-12-24 2022-07-05 上海微波技术研究所(中国电子科技集团公司第五十研究所) 适用于窄带信道单元的cpu与fpga数据交互方法和系统
CN115022421B (zh) * 2022-05-30 2023-06-27 西安微电子技术研究所 一种有线信号传输电路
WO2023249637A1 (en) * 2022-06-24 2023-12-28 Zeku, Inc. Apparatus and method to implement a token-based processing scheme for virtual dataplane threads

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040166825A1 (en) * 2003-02-25 2004-08-26 Jen-Sheng Huang Wireless receiver
CN1622670A (zh) * 2003-11-28 2005-06-01 因芬尼昂技术股份公司 处理gsm及td-scdma无线信号的移动站及方法
JP2005167417A (ja) * 2003-11-28 2005-06-23 Toshiba Corp 複数の無線システムに対応可能な無線通信装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5535432A (en) * 1994-09-14 1996-07-09 Ericsson Ge Mobile Communications Inc. Dual-mode satellite/cellular phone with a frequency synthesizer
JP2804258B2 (ja) * 1995-12-12 1998-09-24 松下電器産業株式会社 ディジタル通信装置
US6765931B1 (en) * 1999-04-13 2004-07-20 Broadcom Corporation Gateway with voice
EP2267597A3 (en) * 1999-05-12 2012-01-04 Analog Devices, Inc. Digital signal processor having a pipeline structure
DE60128152D1 (de) * 2001-06-19 2007-06-06 Stratos Wireless Inc Diplexerschaltung/schaltkreis mit modemfunktion
US20030079152A1 (en) * 2001-08-14 2003-04-24 Triece Joseph W. Microprocessor with multiple low power modes and emulation apparatus for said microprocessor
KR100524735B1 (ko) * 2002-11-19 2005-10-31 엘지전자 주식회사 시-코드 동시분할다중접속 이동단말기의 자동 제어 장치및 방법
US7580388B2 (en) * 2004-06-01 2009-08-25 Lg Electronics Inc. Method and apparatus for providing enhanced messages on common control channel in wireless communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040166825A1 (en) * 2003-02-25 2004-08-26 Jen-Sheng Huang Wireless receiver
CN1622670A (zh) * 2003-11-28 2005-06-01 因芬尼昂技术股份公司 处理gsm及td-scdma无线信号的移动站及方法
JP2005167417A (ja) * 2003-11-28 2005-06-23 Toshiba Corp 複数の無線システムに対応可能な無線通信装置

Also Published As

Publication number Publication date
EP1906573A4 (en) 2015-05-20
US20080205366A1 (en) 2008-08-28
US8160043B2 (en) 2012-04-17
CN100559905C (zh) 2009-11-11
KR100962103B1 (ko) 2010-06-10
EP1906573A1 (en) 2008-04-02
JP2009502060A (ja) 2009-01-22
KR20080048459A (ko) 2008-06-02
JP4818363B2 (ja) 2011-11-16
CN1901705A (zh) 2007-01-24

Similar Documents

Publication Publication Date Title
WO2007009380A1 (en) Method for base band chip and mobile terminal based on the base band chip implement the multi-mode handover
TWI416911B (zh) 用於處理通信信號的方法及系統
US5621800A (en) Integrated circuit that performs multiple communication tasks
US5659698A (en) Method and apparatus for generating a circular buffer address in integrated circuit that performs multiple communications tasks
US8996078B2 (en) UMTS FDD modem optimized for high data rate applications
JPH08316789A (ja) 多重通信タスクを実行する集積回路上で用いられるdspコプロセッサ
CN101330691A (zh) 多模移动终端以及VoIP业务实现方法
KR100347659B1 (ko) 정보를전달하는방법및장치
JP4540635B2 (ja) 適応通信方法とモジュール
WO2011038584A1 (zh) 多模多待移动终端中的信号处理方法及相关装置
US7702319B1 (en) Communication apparatus including a mechanism for reducing loss of text telephone information during normal traffic channel preempting
JP5133696B2 (ja) メッセージフォーマットを示す第1のプロトコル修正フィールドと標準修正において必須の特徴を示す第2のプロトコル修正フィールドを有するメッセージ
KR100595264B1 (ko) 듀얼모드용 이동통신 단말기의 IrDA인터페이스 및UART인터페이스 제어장치
KR100496951B1 (ko) 이더넷 인터페이스를 갖는 단말기의 디지탈 베이스밴드아키택처 시스템
CN117335829A (zh) 基于软件切换PDT和Tetra模式的终端设备及方法
CN203618132U (zh) 一种移动终端
KR20010044222A (ko) 마이크로컴퓨터가 내장된 멀티미디어용 아이엠티2000휴대단말기 시스템
Fettweis Software Defined Radio: What Do We Do with It?
JP2002077325A (ja) 無線通信装置
JPH07162949A (ja) 携帯電話機
WO2003021792A1 (fr) Procede de decodage de donnees
JP2001211226A (ja) 無線通信システム及び無線通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2008521776

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2006761483

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 258/MUMNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020087003654

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2006761483

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11996180

Country of ref document: US