WO2007007463A1 - 電子吸引性置換基を有する含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子 - Google Patents

電子吸引性置換基を有する含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2007007463A1
WO2007007463A1 PCT/JP2006/309343 JP2006309343W WO2007007463A1 WO 2007007463 A1 WO2007007463 A1 WO 2007007463A1 JP 2006309343 W JP2006309343 W JP 2006309343W WO 2007007463 A1 WO2007007463 A1 WO 2007007463A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
general formula
unsubstituted
organic
Prior art date
Application number
PCT/JP2006/309343
Other languages
English (en)
French (fr)
Inventor
Chishio Hosokawa
Hiroshi Yamamoto
Masahiro Kawamura
Takashi Arakane
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Priority to JP2007524529A priority Critical patent/JPWO2007007463A1/ja
Priority to US11/995,400 priority patent/US20090140637A1/en
Publication of WO2007007463A1 publication Critical patent/WO2007007463A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D235/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings
    • C07D235/02Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings condensed with carbocyclic rings or ring systems
    • C07D235/04Benzimidazoles; Hydrogenated benzimidazoles
    • C07D235/18Benzimidazoles; Hydrogenated benzimidazoles with aryl radicals directly attached in position 2
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms

Definitions

  • the present invention relates to a novel nitrogen-containing heterocyclic derivative having a specific substituent, an organic electroluminescence (EL) device material using the same, and an organic EL device, and in particular, a component of the organic EL device
  • the present invention relates to an organic EL device having a high luminous efficiency and a long lifetime by using a nitrogen-containing heterocyclic derivative useful as at least one of the organic compound layers.
  • Organic electroluminescence (EL) devices using organic substances are promising for use as solid light-emitting, inexpensive, large-area full-color display devices, and many developments have been made.
  • an EL element is composed of a light emitting layer and a pair of counter electrodes sandwiching the layer. In light emission, when an electric field is applied between both electrodes, electrons are injected from the cathode side, and positive holes are injected from the anode side. Furthermore, this is a phenomenon in which electrons recombine with holes in the light emitting layer to generate an excited state, and energy is emitted as light when the excited state returns to the ground state.
  • Patent Document 1 discloses an element using a compound having a benzimidazole structure as a light-emitting material, and describes that the element emits light at a luminance of 200 nit at a voltage of 9 V. ing.
  • Patent Document 2 describes a compound having a benzimidazole ring and an anthracene skeleton.
  • Patent Document 1 US Pat. No. 5,645,948
  • Patent Document 2 Japanese Patent Laid-Open No. 2002-38141
  • the present invention has been made to solve the above-mentioned problems, and provides a novel nitrogen-containing heterocyclic derivative useful as a constituent component of an organic EL device.
  • the nitrogen-containing heterocyclic derivative is an organic compound.
  • the object is to realize an organic EL device with high luminous efficiency and long life by using at least one layer.
  • the present inventors use a novel nitrogen-containing heterocyclic derivative having a specific structure in at least one organic compound layer of an organic EL device. As a result, it has been found that the lifetime and efficiency of the organic EL element can be increased, and the present invention has been completed.
  • the present invention provides a nitrogen-containing heterocyclic derivative represented by the following general formula (1).
  • 1 ⁇ to 16 are a hydrogen atom, a substituted or unsubstituted aryl group having 5 to 60 nuclear atoms, a pyridinole group optionally having a substituent, a substituent A quinolyl group, which may have a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 carbon atoms, a substituted or unsubstituted nuclear atom number of 6 to 50 aralkyl groups, substituted or unsubstituted alkoxy groups having 1 to 50 carbon atoms, substituted or unsubstituted aryloxy groups having 5 to 50 nucleus atoms, substituted or unsubstituted aryl groups having 5 to 50 nucleus atoms Ruthio group, substituted or unsubstituted alkoxycarbonyl group having 1 to 50 carbon atoms, substituted Or an amino
  • a pair of adjacent substituents of R 3 to R 6 may be bonded to each other to form an aromatic ring.
  • At least one of R 3 to R 6 is a cyano group or a perfluoroalkyl group.
  • R ⁇ R 6 is a substituent represented by the following general formula (2).
  • L is a single bond, an arylene group having 6 to 60 carbon atoms which may have a substituent, a pyridinylene group which may have a substituent, or a substituent. It is a quinolinylene group which may have a group, or a substituent having a substituent, or a fluorenylene group.
  • Ar 1 has an arylene group having 6 to 60 carbon atoms which may have a substituent, a substituent, or a pyridinylene group or a substituent. It is a quinolinylene group.
  • Ar 2 may have a hydrogen atom, a substituted or unsubstituted aryl group having 5 to 60 nucleus atoms, an optionally substituted pyridyl group, or a substituent.
  • the present invention relates to an organic EL device in which an organic thin film layer composed of one or more layers including at least a light emitting layer is sandwiched between a cathode and an anode, and at least one layer force of the organic thin film layer
  • An organic EL device containing a heterocyclic derivative alone or as a component of a mixture is provided.
  • the nitrogen-containing heterocyclic derivative of the present invention and the organic EL device using the same are excellent in electron transport properties with high luminous efficiency and low voltage.
  • the present invention provides a nitrogen-containing heterocyclic derivative represented by the following general formula (1).
  • a pair of adjacent substituents of R 3 to R 6 may be bonded to each other to form an aromatic ring.
  • at least one of R 3 to R 6 is a cyano group or a perfluoroalkyl group.
  • R ⁇ R 6 is a substituent represented by the following general formula (2).
  • L has a single bond, an arylene group having 6 to 60 carbon atoms which may have a substituent, a pyridinylene group which may have a substituent, or a substituent. And a quinolinylene group which may be substituted, or a substituent having a substituent, or a fluorenylene group.
  • Ar 1 is an arylene group having 6 to 60 carbon atoms which may have a substituent, a substituent, or a pyridinylene group or a substituent. Les, mayoele, and quinolinylene groups.
  • Ar 2 has a hydrogen atom, a substituted or unsubstituted aryl group having 5 to 60 nucleus atoms, an optionally substituted pyridyl group, and a substituent.
  • the present invention provides the nitrogen-containing heterocyclic derivative represented by the general formula (1) having the following general formula (11a) or (1_b).
  • R 7 to R 16 are the same as R 1 to R 6 in the general formula (1) of claim 1.
  • the nitrogen-containing heterocyclic derivative represented by the general formula (1) is represented by the following general formula (11a).
  • R 17 to R 2 °, R 21 to R 24 , 5 to R 28 or R 29 to R 32 is a substituent represented by the general formula (2).
  • L 2 to L 5 are the same as L in the general formula (2).
  • Ar 3 to Ar 6 are the same as Ar 2 in the general formula (2).
  • Examples of the ⁇ to 2 aryl group and heterocyclic group include, for example, phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthryl group, 2-anthryl group, 9-anthryl group, 1-phenanthrinol group , 2-Phenanthryl group, 3-Phenanthryl group, 4-Phenanthrinol group, 9-Phenanthryl group, 1-Naphthenyl group, 2-Naphthenyl group, 9-Naphthacenyl group, 1-Pyrenyl group, 2-Pyrenyl group, 4-Pyrenyl group , 2-biphenylyl group, 3-biphenylyl group, 4-biphenylyl group, p-terphenyl 4-yl group, p-terphenyl 3-inole group, ⁇ -terphenyl 2-yl group, m- Terphenyl 4-yl group, m-terphen
  • a phenyl group, a naphthyl group, a biphenyl group, an anthracenyl group, a phenanthryl group, a pyrenyl group, a chrysenyl group, a fluoranthuryl group, and a fluorenyl group are preferable.
  • substituted or unsubstituted alkyl groups having 1 to 50 carbon atoms include methylol group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group N_pentyl group, n_hexyl group, n_heptyl group, n-octyl group, hydroxymethinole group, 1-hydroxyethyl group, 2-hydroxyethyl group, 2-hydroxyisobutyl group, 1, 2 —Dihydroxyethyl group, 1,3-Dihydroxyisopropyl group, 2,3-Dihydroxy-tert-butyl group, 1,2,3_Trihydroxypropyl group, Chloromethyl group, 1_Chloroethyl group, 2_Chloro Diethyl, 2_Dichlorodiethyl, 1,2-Dichlorodiethyl, 1,2-Dichlorodie
  • the substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms of ⁇ to 2 is a group represented by —OY, and examples of ⁇ include the same examples as those described for the alkyl group.
  • Examples of ⁇ to 2 substituted or unsubstituted aralkyl groups having 6 to 50 nuclear atoms include benzinole group, 1_phenylethyl group, 2_phenylethyl group, 1_phenylisopropinole group, 2-phenyl group.
  • a substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms of ⁇ to 2 is represented as — ⁇ ′, and examples of Y ′ include the same examples as those described for the aryl group. .
  • a substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms of ⁇ to 2 is represented by —SY ′, and examples of Y ′ include the same examples as those described above for the aryl group.
  • a substituted or unsubstituted alkoxycarbonyl group having 1 to 50 carbon atoms of ⁇ to 2 is a group represented by —CO ⁇ Y, and examples of ⁇ are the same as those described for the alkyl group. Is mentioned.
  • Examples of the aryl group in the amino group substituted with a substituted or unsubstituted aryl group having 5 to 50 nuclear atoms of ⁇ to 2 are the same as those described for the aryl group.
  • halogen atoms ⁇ to 2 examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • a pair of adjacent substituents of R 3 to R 6 , or R 1Q and R U , R 15 and R 16 , R 19 and R 2 °, R 23 and R 24 , R 19 and R 2Q , R A pair of adjacent substituents of 23 and R 24 , R 27 and R 28 , R 31 and R 32 may be bonded to each other to form an aromatic ring.
  • a 6-membered ring is preferred, and a 6-membered ring is particularly preferred.
  • Examples of the perfluoroalkyl group of R 3 to R 6 include a trifluoromethyl group, a pentafluoroethyl group, a hexafluoropropyl group, a hexafluoroisopropyl group, a nonafanolo n_butyl group, Nonafluoroisobutyl group, nonafluoro-t_butyl group, undecafluoropentyl group, tridecafluorohexyl group, pentadecafluorohexyl group, heptadecafluorooctyl group, pentafluorocyclopropyl group, Hexafluorocyclobutyl group, nonafluorocyclopentyl group, unde force fluorocyclohexyl group, etc.
  • L is a single bond, an arylene group having 6 to 60 carbon atoms which may have a substituent, a pyridinylene group which may have a substituent, or a quinolinylene group which may have a substituent. Or a substituent and a fluorenylene group.
  • arylene group having 6 to 60 carbon atoms of L! ⁇ ⁇ As an arylene group having 6 to 60 carbon atoms of L! ⁇ ⁇ .
  • the divalent substituent can be obtained by further removing one hydrogen atom from the substituent described in the aryl group, preferably a phenylene group, a naphthylene group, a biphenylene group, an anthranylene group, a phenanthrylene group, a pyrene group.
  • the nitrogen-containing heterocyclic derivative of the present invention is preferably a light emitting material for an organic EL element, an electron injection material for an organic EL element, or an electron transport material for an organic EL element, which is preferably an organic EL element material. preferable.
  • the organic EL device of the present invention is an organic EL device in which an organic thin film layer composed of one or more layers including at least a light emitting layer is sandwiched between a cathode and an anode, and at least one layer of the organic thin film layer is Contains nitrogen-containing heterocyclic derivatives alone or as a component of a mixture.
  • the organic thin film layer preferably has a hole transport layer, and the hole transport layer preferably contains the nitrogen-containing heterocyclic derivative of the present invention alone or as a component of a mixture. That's right. Further, the hole transport layer preferably contains a nitrogen-containing heterocyclic derivative as a main component.
  • the light emitting layer preferably contains a nitrogen-containing heterocyclic derivative, an arylamine compound, and Z or a styrylamine compound.
  • arylamine compounds include compounds represented by the following general formula (A), and examples of styrylamine compounds include compounds represented by the following general formula (B).
  • Ar represents phenyl, biphenyl, terphenyl, stilbene, distyle.
  • Ar and Ar are each a hydrogen atom or a carbon number.
  • Ar and Z or Ar are substituted with a styryl group.
  • the aromatic group having 6 to 20 carbon atoms is preferably a phenyl group, a naphthyl group, an anthracenyl group, a phenanthryl group, a terphenyl group, or the like.
  • Ar to Ar are optionally substituted nuclear carbon atoms 5
  • aryl groups having 5 to 40 nuclear atoms include phenyl, naphthyl, anthracenyl, phenanthryl, pyrenyl, coronyl, biphenyl, terphenyl, pyrrolyl, furanyl.
  • thiophenyl, benzothiophenyl, oxaziazolyl, diphenylanthracenyl, indolyl, carbazolyl, pyridinole, benzoquinolyl, fluoranthur, acenaphthofluoranthur, stilbene, etc. are preferred.
  • the aryl group having 5 to 40 nucleus atoms may be further substituted with a substituent.
  • Preferred substituents include alkyl groups (ethyl group, methylol group, i-propyl group) having 6 to 6 carbon atoms. Group, n-propyl group, s_butyl group, t_butyl group, pentyl group, hexyl group, cyclopentyl group, cyclohexyl group, etc.), alkoxy group having 1 to 6 carbon atoms (ethoxy group, methoxy group, i— Propoxy group, n-propoxy group, s butoxy group, t butoxy group, pentoxy group, hexyloxy group, cyclopentoxy group, cyclohexyloxy group, etc.), aryl group having 5 to 40 nuclear atoms, nuclear atom number 5 to An amino group substituted by a 40 aryl group, an ester group having an aryl group of 5 to 40 nuclear atoms, an ester group having an alkyl group of 1 to 6 carbon atoms, a
  • the force for which the configuration of (8) is preferably used is not limited to these.
  • the nitrogen-containing heterocyclic derivative of the present invention may be used in any organic thin film layer of an organic EL device.
  • it can be used in a light emission band or an electron transport band, and particularly preferably an electron injection layer, an electron transport layer, and a light emission. Used for layers.
  • the organic EL device of the present invention is manufactured on a light-transmitting substrate.
  • the translucent substrate referred to here is a substrate that supports the organic EL element, and is preferably a smooth substrate having a light transmittance in the visible region of 400 to 700 nm of 50% or more.
  • a glass plate, a polymer plate, etc. are mentioned.
  • the glass plate include soda lime glass, barium strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • the anode of the organic EL device of the present invention has a function of injecting holes into the hole transport layer or the light emitting layer, and it is effective to have a work function of 4.5 eV or more.
  • Specific examples of the anode material used in the present invention include indium tin oxide alloy (ITO), tin oxide (NE SA), indium-zinc oxide (aluminum), gold, silver, platinum, copper and the like.
  • the anode can be manufactured by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the transmittance of the anode for light emission is greater than 10%.
  • the sheet resistance of the anode is preferably several hundred ⁇ / mouth or less.
  • the film thickness of the anode is a force depending on the material, and is usually selected in the range of 10 nm to l x m, preferably 10 to 200 nm.
  • the light emitting layer of the organic EL device has the following functions (1) to (3).
  • Injection function Function that can inject holes from the anode or hole injection layer when an electric field is applied, and can inject electrons from the cathode or electron injection layer
  • Transport function Function to move injected charges (electrons and holes) by the force of electric field
  • Light emission function A function to provide a field for recombination of electrons and holes and connect this to light emission.However, there is no difference between the ease of hole injection and the ease of electron injection.
  • the transport capacity expressed by the mobility of holes and electrons may be large or small, but it is preferable to move one of the charges.
  • the light emitting layer is particularly preferably a molecular deposited film.
  • the molecular deposition film is a thin film formed by deposition from a material compound in a gas phase state or a film formed by solidification from a material compound in a solution state or a liquid phase state.
  • a film can be classified from a thin film (accumulated film) formed by the LB method by the difference in aggregated structure and higher-order structure and functional differences resulting from it.
  • a binder such as a resin and a material compound are dissolved in a solvent to form a solution, which is then thinned by a spin coating method or the like.
  • the light emitting layer can also be formed by this.
  • a known light emitting material other than the light emitting material comprising the nitrogen-containing heterocyclic derivative of the present invention may be optionally contained in the light emitting layer as long as the object of the present invention is not impaired.
  • a light emitting layer containing another known light emitting material may be laminated on the light emitting layer containing the light emitting material comprising the nitrogen-containing heterocyclic derivative of the present invention.
  • Examples of the light emitting material or doping material that can be used in the light emitting layer together with the nitrogen-containing heterocyclic derivative of the present invention include, for example, anthracene, naphthalene, phenanthrene, pyrene, tetracene, coronene, taricene, phenololethein, perylene, lidar perylene, naphtalin perylene.
  • Perinone lidar perinone, naphtalin perinone, diphenyl butadiene, tetraphenyl butadiene, coumarin, oxazirazole, aldazine, bisbenzoxazoline, bisstyryl, pyrazine, cyclopentagen, quinoline metal complex, aminoquinoline metal complex , Benzoquinoline metal complex, imine, diphenylethylene, buranthracene, diaminocarbazole, pyran, thiopyran, polymethine, merocyanine, imidazole cheoxyxinoid compound Products, quinacridone, rubrene, and fluorescent dyes, but are not limited thereto.
  • Ar is a substituted or unsubstituted condensed aromatic group having 10 to 50 nuclear carbon atoms.
  • Ar ′ is a substituted or unsubstituted aromatic group having 6 to 50 nuclear carbon atoms.
  • X is a substituted or unsubstituted aromatic group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, or a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms.
  • a, b and c are each an integer of 0-4.
  • n is an integer from:! If n is 2 or more, the numbers in [] may be the same or different. )
  • Ar 1 and Ar 2 are each independently a substituted or unsubstituted aromatic ring group having 6 to 50 nuclear carbon atoms, and m and n are each an integer of 1 to 4)
  • ⁇ ° each independently represents a hydrogen atom, a substituted or unsubstituted aromatic ring group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, a substituted or unsubstituted An unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted arylanoleno group having 6 to 50 carbon atoms, a substituted group Or an unsubstituted aryloxy group having 5 to 50 nuclear atoms, a substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkoxycarbonyl group having 1 to 50 carbon atoms, a substituted or unsubstitute
  • Ar and Ar ′ are each a substituted or unsubstituted aromatic group having 6 to 50 nuclear carbon atoms.
  • L and L ′ are a substituted or unsubstituted phenylene group, a substituted or unsubstituted naphthalenylene group, a substituted or unsubstituted fluorenylene group, or a substituted or unsubstituted dibenzosilolylene group, respectively.
  • n is an integer from 1 to 4
  • s is an integer from 0 to 2
  • t is an integer from 0 to 4.
  • L or Ar is bonded to any one of 1 to 5 positions of pyrene, and L or Ar ′ is bonded to any of 6 to 10 positions of pyrene.
  • a 1 and A 2 are each independently a substituted or unsubstituted condensed aromatic ring group having 10 to 20 nuclear carbon atoms.
  • Ar 1 and Ar 2 are each independently a hydrogen atom or a substituted or unsubstituted aromatic ring group having 6 to 50 nuclear carbon atoms.
  • ⁇ ° each independently represents a hydrogen atom, a substituted or unsubstituted aromatic ring group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, a substituted or unsubstituted An unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkino group having 6 to 50 carbon atoms, a substituted group Or an unsubstituted aryloxy group having 5 to 50 nuclear atoms, a substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkoxycarbonyl group having 1 to 50 carbon atoms, a substituted or unsubstituted si
  • ⁇ R 9 and R 1Q may be plural or adjacent to each other to form a saturated or unsaturated cyclic structure.
  • R 1 or R 2 may be the same or different from each other, or R 1 or R 2 may be bonded to each other to form a ring.
  • R 3 and R 4 , R 5 and R 6 , R 7 and R 8 , R 9 and R 1Q may be bonded to each other to form a ring.
  • L 1 represents a single bond, —0_, _S_, _N (R) _ (R is an alkyl group or an aryl group which may be substituted), an alkylene group or an arylene group. )
  • L 2 represents a single bond, -0-, -S-, _N (R) _ (where R is an alkyl group or an optionally substituted aryl group), an alkylene group or an arylene group. )
  • a 5 to A 8 are each independently a substituted or unsubstituted biphenyl group or a substituted or unsubstituted naphthyl group.
  • R 21 to R 23 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or 1 carbon atom.
  • R and R are a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or
  • R bonded to different fluorene groups R, R may be the same or different fluorene groups
  • R and R bonded to may be the same or different.
  • R and R are hydrogen
  • R represents an atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group or a substituted or unsubstituted heterocyclic group, and R bonded to a different fluorene group
  • R may be the same or different
  • R and R bonded to the same fluorene group may be the same or different.
  • 3 4 1 and Ar are substituted or unsubstituted condensed polycyclic aromatics with a total of 3 or more benzene rings
  • n an integer of 1 to 10.
  • anthracene derivatives are preferable, monoanthracene derivatives are more preferable, and asymmetric anthracene is particularly preferable.
  • a phosphorescent compound can also be used as the dopant light-emitting material.
  • a compound containing a rubazole ring as a host material is preferred.
  • the dopant is a compound that can emit light from triplet excitons, and is not particularly limited as long as it emits light from triplet excitons, and is selected from the group consisting of Ir, Ru, Pd, Pt, Os, and Re. It is preferable that the metal complex contains at least one metal.
  • a suitable host for phosphorescence emission comprising a compound containing a strong rubazole ring is a compound having a function of emitting a phosphorescent compound as a result of energy transfer to its excited state force phosphorescent compound.
  • any compound that can transfer exciton energy to the phosphorescent compound can be appropriately selected according to the purpose without any limitation. It may have an arbitrary heterocyclic ring in addition to the strong rubazole ring.
  • host compounds include force rubazole derivatives, triazole derivatives, oxazole derivatives, oxaziazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine amine derivatives , Amino-substituted chalcone derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine compounds, styrylamine compounds, aromatic dimethylidene compounds, porphyrin compounds, anthraquinodimethane derivatives, anthrone Derivatives, diphenylquinone derivatives, thiobilane dioxide derivatives, carpositimide derivatives, fluorenylidenemethane derivatives, distyrylvirazine derivatives, Metal complexes of hetero
  • a phosphorescent dopant is a compound that can emit light from triplet excitons. Although it is not particularly limited as long as it emits light from triplet excitons, it is preferably a metal complex containing at least one metal selected from the group consisting of Ir, Ru, Pd, Pt, Os and Re force, and a porphyrin metal complex or Ortho metal ⁇ metal complexes are preferred.
  • the porphyrin metal complex is preferably a porphyrin platinum complex.
  • the phosphorescent compound may be used alone or in combination of two or more.
  • ligands that form orthometalated metal complexes
  • preferred ligands include 2-phenylpyridine derivatives, 7,8-benzoquinoline derivatives, 2- (2-phenyl) pyridine. derivatives, 2 _ Fei - naphthyl) pyridine derivatives, 2 - phenylene Rukinorin derivative conductor, and the like. These derivatives may have a substituent as necessary. In particular, fluorinated compounds and trifluoromethyl groups have been introduced. Further, it may have a ligand other than the above-mentioned ligands such as acetylacetonate and picric acid as an auxiliary ligand.
  • the content of the phosphorescent dopant in the light emitting layer is not particularly limited, and can be appropriately selected according to the purpose S, for example, 0.:! To 70% by mass, and:! To 30 A mass% is preferred. If the content of the phosphorescent compound is less than 0.1% by mass, the light emission is weak, and the effect of the content is not fully exhibited. If the content exceeds 70% by mass, the concentration is quenched. The so-called phenomenon becomes remarkable and the device performance deteriorates.
  • the light emitting layer may contain a hole transport material, an electron transport material, and a polymer binder as necessary.
  • the thickness of the light emitting layer is preferably 5 to 50 nm, more preferably 7 to 50 nm, and most preferably 10 to 50 nm. If the thickness is less than 5 nm, it is difficult to form a light emitting layer, and it may be difficult to adjust the chromaticity. If it exceeds 50 nm, the driving voltage may increase.
  • the hole injection / transport layer helps to inject holes into the light-emitting layer and transports them to the light-emitting region.
  • the ionization energy with high hole mobility is usually as low as 5.5 eV or less.
  • a hole injecting / transporting layer a material that transports holes to the light emitting layer with a lower electric field strength is preferable.
  • the mobility force of holes for example, when an electric field of 10 4 to 10 6 V / cm is applied. , preferably if the least even 10- 4 cm 2 / V 'in seconds Les,.
  • the nitrogen-containing heterocyclic derivative of the present invention When the nitrogen-containing heterocyclic derivative of the present invention is used in the hole transport zone, the nitrogen-containing heterocyclic derivative of the present invention alone is used by mixing with other materials that may form a hole injection or transport layer. Also good.
  • the material for forming the hole injection / transport layer by mixing with the nitrogen-containing heterocyclic derivative of the present invention is not particularly limited as long as it has the above-mentioned preferred properties. It is possible to select and use materials that are commonly used as materials and known medium strength materials used for the hole injection-transport layer of organic EL devices.
  • inorganic compounds such as p-type Si and p-type SiC can be used as the material for the hole injecting / transporting layer in addition to the above-mentioned aromatic dimethylidin compounds shown as the material for the light emitting layer.
  • the hole injection 'transport layer is formed by thinning the nitrogen-containing heterocyclic derivative of the present invention by a known method such as a vacuum deposition method, a spin coating method, a casting method, or an LB method. Can do.
  • the thickness of the hole injection / transport layer is not particularly limited, but is usually 5 nm to 5 x m.
  • This hole injecting / transporting layer may be composed of one or more layers of the above-mentioned materials as long as it contains the nitrogen-containing heterocyclic derivative of the present invention in the hole transporting zone.
  • a hole injection / transport layer made of a compound different from the hole injection / transport layer may be laminated.
  • a hole injection or electron injection organic semiconductor layer provided as a layer to help Moyogu 10- 1Q S / cm or more of the conductivity of the light-emitting layer.
  • Examples of the material of such an organic semiconductor layer include thiophene oligomers, conductive oligomers such as allylamin oligomers disclosed in JP-A-8-193191, and conductive properties such as allylamin dendrimers. Dendrimers and the like can be used.
  • Electron injection ⁇ Transport layer (electron transport zone)
  • the electron injection layer 'transport layer is a layer that assists the injection of electrons into the light emitting layer and transports it to the light emitting region, and has a high electron mobility and an electron affinity of usually 2.5 eV or more.
  • a material that transports electrons to the light emitting layer with a lower electric field strength is preferable.
  • an electron mobility of, for example, 10 4 to 10 6 V / cm is applied, at least Preferably Les, if the 10- 6 cm 2 ZV. Seconds.
  • the nitrogen-containing heterocyclic derivative of the present invention when used in the electron transport zone, the nitrogen-containing heterocyclic derivative of the present invention alone may form an electron injection / transport layer or may be mixed with other materials.
  • the material for forming the electron injecting / transporting layer by mixing with the nitrogen-containing heterocyclic derivative of the present invention is not particularly limited as long as it has the above-mentioned preferred properties. It is possible to select and use any of the commonly used ones and known medium strength materials used for the electron injection-transport layer of organic EL devices.
  • the adhesion improving layer is a layer made of a material having a particularly good adhesion to the cathode in the electron injection layer.
  • the compound of the present invention is preferably used as an electron injection layer, a transport layer, and an adhesion improving layer.
  • a preferred form of the organic EL device of the present invention is a device containing a reducing dopant in an electron transporting region or an interface region between a cathode and an organic layer.
  • an organic EL device containing a reducing dopant in the compound of the present invention is preferable.
  • the reducing dopant is defined as a substance capable of reducing an electron transporting compound. Accordingly, various materials can be used as long as they have a certain reducibility, such as alkali metals, alkaline earth metals, rare earth metals, alkali metal oxides, alkali metal halides, alkali earths. Metal oxides, alkaline earth metal halides, rare earth metal oxides or rare earth metal halides, alkali metal organic complexes, alkaline earth metal organic complexes, rare earth metal organic complex forces At least one substance selected from can be preferably used.
  • preferable reducing dopants include Na (work function: 2.36 eV), K (work function: 2.28 eV), Rb (work function: 2.16 eV), and Cs (work function: 1). 95eV) At least one alkali metal selected from the group consisting of Ca (work function: 2.9 eV), Sr (work function: 2.0 to 2.5 eV), and Ba (work function: 2.52 eV) It is particularly preferred that the work function is 2.9 eV or less, including at least one alkaline earth metal selected from the group of force.
  • a more preferred reducing dopant is at least one alkali metal selected from the group consisting of K, Rb and Cs, and more preferably Rb or Cs, the most preferred is Cs.
  • alkali metals in particular, can improve the emission brightness and extend the life of organic EL devices by adding a relatively small amount to the electron injection region where the reducing ability is high.
  • a reducing dopant having a work function of 2.9 eV or less a combination of two or more alkali metals is also preferred.
  • a combination containing Cs for example, Cs and Na, Cs and K, Cs and Rb.
  • a combination of Cs, Na and ⁇ is preferable.
  • an electron injection layer composed of an insulator or a semiconductor may be further provided between the cathode and the organic layer. At this time, current leakage can be effectively prevented, and the electron injection property can be improved.
  • an insulator at least one metal compound selected from the group consisting of an alkali metal chalcogenide, an alkaline earth metal chalcogenide, an alkali metal halide and an alkaline earth metal halide is used. I like it. If the electron injection layer is composed of these alkali metal chalcogenides or the like, it is preferable in that the electron injection property can be further improved.
  • preferred alkali metal chalcogenides include, for example, Li 0, K 0, Na S, Na Se and Na 0, and preferred alkaline earth metal chalcogenides include, for example, Ca 0, Ba 0, SrO, BeO, BaS, and CaSe.
  • Preferred alkali metal halides include, for example, LiF, NaF, KF, LiCl, KC1, and NaCl.
  • preferred alkaline earth metal halides include fluorides such as CaF, BaF, SrF, MgF and BeF, and halides other than fluorides.
  • the inorganic compound constituting the electron transport layer is preferably a microcrystalline or amorphous insulating thin film. If the electron transport layer is composed of these insulating thin films, a more uniform thin film is formed, so that pixel defects such as dark spots can be reduced.
  • examples of such inorganic compounds include the alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides, and alkaline earth metal halides described above.
  • the cathode in order to inject electrons into the electron injecting / transporting layer or the light emitting layer, a material having a small work function (4 eV or less) metal, an alloy, an electrically conductive compound, and a mixture thereof is used.
  • electrode materials include sodium, sodium'potassium alloy, magnesium, lithium, magnesium'silver alloy, aluminum / aluminum oxide, aluminum'lithium alloy, indium, rare earth metal and the like.
  • This cathode can be produced by forming a thin film of these electrode materials by vapor deposition or sputtering.
  • the transmittance of the cathode for light emission is greater than 10%.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / mouth or less, and the film thickness is usually 10 nm 1 ⁇ m, preferably 50 200.
  • organic EL devices apply an electric field to ultra-thin films, pixel defects are likely to occur due to leaks and shorts. In order to prevent this, it is preferable to insert an insulating thin film layer between the pair of electrodes.
  • Examples of materials used for the insulating layer include aluminum oxide, lithium fluoride, lithium oxide, cesium fluoride, cesium oxide, magnesium oxide, magnesium fluoride, calcium oxide, calcium fluoride, aluminum nitride, titanium oxide, and oxide.
  • Examples thereof include silicon, germanium oxide, silicon nitride, boron nitride, molybdenum oxide, ruthenium oxide, and vanadium oxide. A mixture or laminate of these may be used.
  • anode By forming the anode, the light-emitting layer, the hole injection 'transport layer, and the electron injection' transport layer as necessary, and the cathode by forming the anode and the light-emitting layer, if necessary, by the materials and formation methods exemplified above, and further forming the cathode An element can be manufactured. Also, from the cathode to the anode, there is a reverse order. Machine EL elements can also be produced.
  • a thin film made of an anode material is formed on a suitable translucent substrate by a method such as vapor deposition or sputtering so as to have a film thickness of 1 ⁇ m or less, preferably in the range of 10 to 200 nm, to produce an anode.
  • a hole injection layer is provided on the anode.
  • the hole injection layer can be formed by a method such as a vacuum deposition method, a spin coating method, a casting method, or an LB method. A homogeneous film can be obtained immediately and pinholes are not easily generated. In view of the above, it is preferable to form the film by a vacuum evaporation method.
  • the deposition conditions vary depending on the compound used (the material of the hole injection layer), the crystal structure and recombination structure of the target hole injection layer, etc.
  • a light-emitting layer in which a light-emitting layer is provided on the hole injection layer is also performed using a desired organic light-emitting material to reduce the thickness of the organic light-emitting material by methods such as vacuum deposition, sputtering, spin coating, and casting.
  • a vacuum deposition method from the standpoint that a homogeneous film can be obtained and pinholes are hardly generated.
  • the deposition conditions vary depending on the compound used, but can generally be selected from the same condition range as the hole injection layer.
  • an electron injection layer is provided on the light emitting layer.
  • the hole injection layer and the light emitting layer it is preferable to form by a vacuum evaporation method because it is necessary to obtain a homogeneous film.
  • the vapor deposition conditions can be selected from the same condition ranges as those for the hole injection layer and the light emitting layer.
  • the nitrogen-containing heterocyclic derivative of the present invention varies depending on whether it is contained in the emission band or the hole transport band, or in the misaligned layer. Vapor deposition can be performed. Moreover, when using a spin coat method, it can be contained by mixing with other materials.
  • a cathode can be stacked to obtain an organic EL device.
  • the cathode is composed of metal force, and vapor deposition or sputtering can be used. Shi Force Vacuum deposition is preferred to protect the underlying organic layer from damage during film formation. It is preferable to fabricate this organic EL device from the anode to the cathode consistently by a single vacuum.
  • the method of forming each layer of the organic EL device of the present invention is not particularly limited. Conventionally known methods such as vacuum deposition and spin coating can be used.
  • the organic thin film layer containing the compound represented by the general formula (1) used in the organic EL device of the present invention is prepared by a vacuum deposition method, a molecular beam deposition method (MBE method), or a solution dating method using a solvent. Further, it can be formed by a known method using a coating method such as a spin coating method, a casting method, a bar coating method, or a roll coating method.
  • each organic layer of the organic EL device of the present invention is not particularly limited. In general, however, if the film thickness is too thin, defects such as pinholes are generated. Usually, the range of several nm to 1 ⁇ m is preferable because of worsening.
  • a direct current voltage When a direct current voltage is applied to the organic EL element, light emission can be observed by applying a voltage of 5 to 40 V with the anode set to + and the cathode set to one polarity. In addition, even when a voltage is applied with the opposite polarity, no current flows and no light emission occurs. Furthermore, when AC voltage is applied, uniform light emission is observed only when the anode is + and the cathode is of the same polarity.
  • the alternating current waveform to be applied may be arbitrary.
  • intermediate 3 21 g (0.049 mol), 10-naphthalene 1_inoleanthracene 9_boronic acid 19 g (0.054 mol), tetrakistriphenylphosphine palladium (0) 1 14 g (0.999 mmol), 1,2-dimethoxyethane (160 mL), and 2M aqueous sodium carbonate solution (82 mL, 0.16 mol) were added and heated to reflux for 8 hours. After completion of the reaction, the organic layer was washed with water, dried over magnesium sulfate, and the solvent was distilled off with a rotary evaporator.
  • Example 1 Preparation of an organic EL device using the compound of the present invention for an electron injection layer
  • a glass substrate with 25 mm X 75 mm XI. 1 mm thick ITO transparent electrode (anode) (Zomatic) was ultrasonically cleaned in isopropyl alcohol for 5 minutes, followed by UV ozone cleaning for 30 minutes.
  • the glass substrate with the transparent electrode line after cleaning is mounted on the substrate holder of the vacuum evaporation system.
  • TPD23 2 film 1 Bis (N, N'-diphenyl 1- 4-aminophenyl) 1 N, N-diphenyl 1-4, 1-diamino 1 1, 1, 1 biphenyl film (hereinafter abbreviated as "TPD23 2 film”) did.
  • This TPD232 film functions as a hole injection layer.
  • a 4, 4, 1-bis [N— (1-naphthyl) N phenylamino] biphenyl film (hereinafter abbreviated as “NPD film”) having a thickness of 20 nm is formed on the TPD232 film. Filmed.
  • NPD film 1-bis [N— (1-naphthyl) N phenylamino] biphenyl film having a thickness of 20 nm is formed on the TPD232 film. Filmed.
  • This NPD film functions as a hole transport layer.
  • anthracene derivative A1 and styrylamine derivative S1 were formed at a film thickness ratio of 40: 2 at a film thickness of 40 nm to form a blue light emitting layer.
  • a S Compound (1) was deposited on this film as an electron transport layer with a thickness of 20 nm by vapor deposition. Thereafter, LiF was deposited to a thickness of 1 nm. On this LiF film, 150 nm of metal A1 was deposited to form a metal cathode to form an organic EL light emitting device.
  • An organic EL device was produced in the same manner as in Example 1, except that compound (2) was used instead of compound (1).
  • Example 1 an organic EL device was produced in the same manner except that the following compound A described in International Publication WO 2004/080975 A1 was used instead of the compound (1).
  • Example 1 an organic EL device was produced in the same manner except that the following compound B described in International Publication WO 2004/080975 A1 was used instead of the compound (1).
  • An organic EL device was produced in the same manner as in Example 1 except that Alq (aluminum complex of 8-hydroxyquinoline) was used instead of the compound (1).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 電子吸引性置換基を有する新規な含窒素複素環誘導体、並びに陰極と陽極間に少なくとも発光層を含む一層又は複数層からなる有機薄膜層が挟持されている有機エレクトロルミネッセンス素子において、該有機薄膜層の少なくとも1層が、前記含窒素複素環誘導体を単独もしくは混合物の成分として含有することによって、発光効率が高く長寿命な有機EL素子を実現する。

Description

明 細 書
電子吸引性置換基を有する含窒素複素環誘導体及びそれを用いた有機 エレクトロノレミネッセンス素子
技術分野
[0001] 本発明は、特定の置換基を有する新規な含窒素複素環誘導体及びそれを用いた に有機エレクト口ルミネッセンス (EL)素子用材料、有機 EL素子に関し、特に、有機 E L素子の構成成分として有用な含窒素複素環誘導体を有機化合物層の少なくとも一 層に用いることにより、発光効率が高く長寿命な有機 EL素子に関するものである。 背景技術
[0002] 有機物質を使用した有機エレクト口ルミネッセンス (EL)素子は、固体発光型の安価 な大面積フルカラー表示素子としての用途が有望視され、多くの開発が行われてい る。一般に EL素子は、発光層及び該層をはさんだ一対の対向電極から構成されて いる。発光は、両電極間に電界が印加されると、陰極側から電子が注入され、陽極側 力 正孔が注入される。さらに、この電子が発光層において正孔と再結合し、励起状 態を生成し、励起状態が基底状態に戻る際にエネルギーを光として放出する現象で ある。
従来の有機 EL素子は、無機発光ダイオードに比べて駆動電圧が高ぐ発光輝度 や発光効率も低かった。また、特性劣化も著しく実用化には至っていなかった。最近 の有機 EL素子は徐々に改良されているものの、さらに低電圧での、高発光輝度及 び高発光効率が要求されてレ、る。
これらを解決するものとして、例えば、特許文献 1に、ベンゾイミダゾール構造を有 する化合物を発光材料として用いた素子が開示され、この素子が電圧 9Vにて 200ni tの輝度で発光することが記載されている。また、特許文献 2には、ベンゾイミダゾー ル環及びアントラセン骨格を有する化合物が記載されている。し力 ながら、これらの 化合物を用いた有機 EL素子よりもさらなる発光輝度及び発光効率のものが求められ ている。
[0003] 特許文献 1 :米国特許第 5, 645, 948号明細書 特許文献 2 :特開 2002— 38141号公報
発明の開示
発明が解決しょうとする課題
[0004] 本発明は、前記の課題を解決するためになされたもので、有機 EL素子の構成成分 として有用な新規な含窒素複素環誘導体を提供し、この含窒素複素環誘導体を有 機化合物層の少なくとも一層に用いることにより、発光効率が高く長寿命な有機 EL 素子を実現することを目的とする。
課題を解決するための手段
[0005] 本発明者らは、前記目的を達成するために、鋭意研究を重ねた結果、特定の構造 を有する新規な含窒素複素環誘導体を、有機 EL素子の有機化合物層の少なくとも 一層に用いることにより、有機 EL素子の長寿命化及び高効率化を達成できることを 見出し、本発明を完成するに至った。
[0006] すなわち、本発明は、下記一般式(1)で表される含窒素複素環誘導体を提供する ものである。
[化 1]
Figure imgf000003_0001
[0007] 一般式(1)において、 1^〜1 6は、水素原子、置換もしくは無置換の核原子数 5〜6 0のァリール基、置換基を有していてもよいピリジノレ基、置換基を有していてもよいキ ノリル基、置換もしくは無置換の炭素数 1〜50のアルキル基、置換もしくは無置換の 炭素数 3〜50のシクロアルキル基、置換もしくは無置換の核原子数 6〜50のァラル キル基、置換もしくは無置換の炭素数 1〜50のアルコキシ基、置換もしくは無置換の 核原子数 5〜50のァリールォキシ基、置換もしくは無置換の核原子数 5〜50のァリ 一ルチオ基、置換もしくは無置換の炭素数 1〜50のアルコキシカルボニル基、置換 もしくは無置換の核原子数 5〜50のァリール基で置換されたァミノ基、ハロゲン原子 、シァノ基、ニトロ基、ヒドロキシル基又はカルボキシル基である。
一般式(1)において、 R3〜R6の隣り合う置換基の一組が互いに結合して芳香環を 形成していてもよい。
一般式(1)において、 R3〜R6の少なくとも 1つはシァノ基またはパーフルォロアルキ ル基である。
一般式(1)において、 R^R6の少なくとも 1つは下記一般式(2)で示される置換基 である。
[0008] [化 2]
~~~ L— -Ar^Ar2 (2)
[0009] 一般式(2)において、 Lは、単結合、置換基を有していてもよい炭素数 6〜60のァリ 一レン基、置換基を有していてもよいピリジニレン基、置換基を有していてもよいキノリ 二レン基、または置換基を有してレ、てもよレ、フルォレニレン基である。
一般式(2)において、 Ar1は、置換基を有していてもよい炭素数 6〜60のァリーレン 基、置換基を有してレ、てもよレ、ピリジニレン基または置換基を有してレ、てもよレ、キノリ 二レン基である。
一般式(2)において、 Ar2は、水素原子、置換もしくは無置換の核原子数 5〜60の ァリール基、置換基を有していてもよいピリジル基、置換基を有していてもよいキノリ ル基、置換もしくは無置換の炭素数 1〜50のアルキル基、置換もしくは無置換の炭 素数 3〜50のシクロアルキル基、置換もしくは無置換の核原子数 6〜50のァラルキ ル基、置換もしくは無置換の炭素数 1〜50のアルコキシ基、置換もしくは無置換の核 原子数 5〜50のァリールォキシ基、置換もしくは無置換の核原子数 5〜50のァリー ルチオ基、置換もしくは無置換の炭素数 1〜50のアルコキシカルボニル基、置換もし くは無置換の核原子数 5〜50のァリール基で置換されたァミノ基、ハロゲン原子、シ ァノ基、ニトロ基、ヒドロキシル基又はカルボキシル基である。 [0010] また、本発明は、陰極と陽極間に少なくとも発光層を含む一層又は複数層からなる 有機薄膜層が挟持されている有機 EL素子において、該有機薄膜層の少なくとも 1層 力 前記含窒素複素環誘導体を単独もしくは混合物の成分として含有する有機 EL 素子を提供するものである。
発明の効果
[0011] 本発明の含窒素複素環誘導体及びそれを用いた有機 EL素子は、低電圧でありな がら発光効率が高ぐ電子輸送性が優れるものである。
発明を実施するための最良の形態
[0012] すなわち、本発明は、下記一般式(1)で表される含窒素複素環誘導体を提供する ものである。
[化 3]
Figure imgf000005_0001
[0013] 一般式(1)において、!^〜 は、水素原子、置換もしくは無置換の核原子数 5〜6 0のァリール基、置換基を有していてもよいピリジノレ基、置換基を有していてもよいキ ノリル基、置換もしくは無置換の炭素数 1〜50のアルキル基、置換もしくは無置換の 炭素数 3〜50のシクロアルキル基、置換もしくは無置換の核原子数 6〜50のァラル キル基、置換もしくは無置換の炭素数 1〜50のアルコキシ基、置換もしくは無置換の 核原子数 5〜50のァリールォキシ基、置換もしくは無置換の核原子数 5〜50のァリ 一ルチオ基、置換もしくは無置換の炭素数 1〜50のアルコキシカルボニル基、置換 もしくは無置換の核原子数 5〜50のァリール基で置換されたァミノ基、ハロゲン原子 、シァノ基、ニトロ基、ヒドロキシル基又はカルボキシル基である。
一般式(1)において、 R3〜R6の隣り合う置換基の一組が互いに結合して芳香環を 形成していてもよい。 一般式(1)において、 R3〜R6の少なくとも 1つはシァノ基またはパーフルォロアルキ ル基である。
一般式(1)において、 R^R6の少なくとも 1つは下記一般式(2)で示される置換基 である。
[化 4]
Figure imgf000006_0001
(2)
[0015] 式(2)において、 Lは、単結合、置換基を有していてもよい炭素数 6〜60のァリーレ ン基、置換基を有していてもよいピリジニレン基、置換基を有していてもよいキノリニレ ン基、または置換基を有してレ、てもよレ、フルォレニレン基である。
式(2)において、 Ar1は、置換基を有していてもよい炭素数 6〜60のァリーレン基、 置換基を有してレ、てもよレ、ピリジニレン基または置換基を有してレ、てもよレ、キノリニレ ン基である。
式(2)において、 Ar2は、水素原子、置換もしくは無置換の核原子数 5〜60のァリ ール基、置換基を有していてもよいピリジル基、置換基を有していてもよいキノリル基 、置換もしくは無置換の炭素数 1〜50のアルキル基、置換もしくは無置換の炭素数 3 〜50のシクロアルキル基、置換もしくは無置換の核原子数 6〜50のァラルキル基、 置換もしくは無置換の炭素数 1〜50のアルコキシ基、置換もしくは無置換の核原子 数 5〜50のァリールォキシ基、置換もしくは無置換の核原子数 5〜50のァリールチ ォ基、置換もしくは無置換の炭素数 1〜50のアルコキシカルボニル基、置換もしくは 無置換の核原子数 5〜50のァリール基で置換されたァミノ基、ハロゲン原子、シァノ 基、ニトロ基、ヒドロキシル基又はカルボキシル基である。
[0016] 本発明は、一般式(1)で表される含窒素複素環誘導体が、下記一般式(1一 a)又 は(1 _b)であるものを提供する。
Figure imgf000007_0001
[0017] 一般式(l_a)及び(l_b)において、 R7〜R16は請求項 1の一般式(1)における R1 〜R6と同じである。
一般式(1 _a)又は(1 _b)におレ、て、 R7〜RU又は R12〜R16の少なくとも 1つは一般 式(2)で示される置換基である。
一般式(1 _a)又は(1 _b)におレ、て、 R1Qと R11又は R15と R16の隣り合う置換基の一 組が互いに結合して芳香環を形成してレ、てもよレ、。
[0018] また本発明は、一般式(1)で表される含窒素複素環誘導体が、下記一般式(1一 a
1)、(l_a2)、(l_bl)又は(l_b2)であるものを提供する。
[0019] [化 6]
Figure imgf000007_0002
(1— b 1) (1-b 2) 一般式(l_al)、(l_a2)、(1 _bl)及び(1 _b2)において、 R"〜! ^は請求項 1 の一般式(1)における!^〜 と同じである。
一般式(1— al)、(1— a2)、(1— bl)及び(1— b2)において、 R17〜R2°、 R21〜R245〜 R28又は R29〜R32の少なくとも 1つは前記一般式(2)で示される置換基である。 一般式(1— al)、(1— a2)、(1— bl)及び(1— b2)において、 R19と R2。、 R23と R24、 R19と R2Q、 R23と R24、 R27と R28、 R31と R32の隣り合う置換基の一組が互いに結合して芳 香環を形成していてもよい。
一般式(l _al)、(l _a2)、(1 _bl)及び(1 _b2)において、 L2〜L5は前記一般 式(2)における Lと同じである。
一般式(l _al)、(l _a2)、(1 _bl)及び(1 _b2)において、 Ar3〜Ar6は前記一 般式(2)における Ar2と同じである。
前記!^〜 2のァリール基及びへテロ環基としては、例えば、フエニル基、 1一ナフ チル基、 2—ナフチル基、 1一アントリル基、 2—アントリル基、 9一アントリル基、 1ーフ ェナントリノレ基、 2—フエナントリル基、 3—フエナントリル基、 4一フエナントリノレ基、 9- フエナントリル基、 1一ナフタセニル基、 2—ナフタセニル基、 9一ナフタセニル基、 1 —ピレニル基、 2—ピレニル基、 4—ピレニル基、 2—ビフエ二ルイル基、 3—ビフエ二 ルイル基、 4—ビフエ二ルイル基、 p—テルフエニル 4—ィル基、 p—テルフエニル 3— イノレ基、 ρ—テルフエニル 2—ィル基、 m—テルフエニル 4—ィル基、 m—テルフエ二 ル 3—ィル基、 m—テルフエニル 2—ィル基、 o—トリノレ基、 m—トリル基、 ρ—トリル基、 p— t—ブチルフエニル基、 p— (2—フエニルプロピノレ)フエニル基、 3—メチルー 2— ナフチル基、 4_メチル _ 1 _ナフチル基、 4_メチル _ 1 _アントリル基、 4'—メチル ビフエ二ルイル基、 4" _t_ブチル _p—テルフエニル 4—ィル基、フルオランテュル 基、フルォレニル基、 1 _ピロリル基、 2 _ピロリル基、 3 _ピロリル基、ピラジュル基、 2 _ピリジニル基、 3 _ピリジニル基、 4 _ピリジニル基、 1 _インドリノレ基、 2 _インドリ ル基、 3 _インドリル基、 4 _インドリル基、 5 _インドリル基、 6 _インドリル基、 7_イン ドリノレ基、 1 _イソインドリル基、 2_イソインドリル基、 3 _イソインドリル基、 4_イソィ ンドリル基、 5 _イソインドリル基、 6 _イソインドリル基、 7 _イソインドリル基、 2—フリ ノレ基、 3 _フリノレ基、 2 _ベンゾフラニル基、 3 _ベンゾフラニル基、 4 _ベンゾフラ二 ノレ基、 5 _ベンゾフラニル基、 6 _ベンゾフラニル基、 7 _ベンゾフラニル基、 1 _イソ ベンゾフラニル基、 3 _イソべンゾフラニル基、 4_イソべンゾフラニル基、 5 _イソベン ゾフラニル基、 6—イソべンゾフラニル基、 7—イソべンゾフラニル基、キノリノレ基、 3— キノリノレ基、 4ーキノリノレ基、 5—キノリノレ基、 6—キノリノレ基、 7—キノリノレ基、 8—キノリ ル基、 1 _イソキノリノレ基、 3_イソキノリル基、 4_イソキノリノレ基、 5_イソキノリル基、 6 _イソキノリル基、 7_イソキノリノレ基、 8 _イソキノリル基、 2_キノキサリニル基、 5_ キノキサリニル基、 6 _キノキサリニル基、 1 _カルバゾリル基、 2_カルバゾリル基、 3 —カルバゾリル基、 4 _カルバゾリル基、 9 _力ルバゾリノレ基、 1—フエナントリジニル 基、 2—フエナントリジニル基、 3—フエナントリジニル基、 4—フエナントリジニル基、 6 —フエナントリジニル基、 7_フエナントリジニル基、 8—フエナントリジニル基、 9—フエ ナントリジニル基、 10—フエナントリジニル基、 1—アタリジニル基、 2—アタリジニル基 、 3— クリジ二ノレ基、 4 クリジ二ノレ基、 9 了クリジ二ノレ基、 1 , 7—フエナン卜口リン 2—ィノレ基、 1, 7—フエナント口リンー3—ィノレ基、 1, 7—フエナント口リンー4ーィノレ 基、 1, 7—フエナント口リン 5—ィノレ基、 1, 7—フエナント口リン 6—ィノレ基、 1 , 7 フエナント口リンー8—ィノレ基、 1 , 7—フエナント口リンー9ーィノレ基、 1, 7—フエナ ントロリン 10—ィノレ基、 1 , 8 フエナント口リン一 2—イノレ基、 1 , 8 フエナント口リン 3—ィノレ基、 1, 8—フエナント口リンー4ーィノレ基、 1, 8—フエナント口リンー5—ィノレ 基、 1, 8—フエナント口リン 6—ィノレ基、 1, 8—フエナント口リン 7—ィノレ基、 1 , 8 フエナント口リンー9ーィノレ基、 1 , 8—フエナント口リン 10—ィノレ基、 1 , 9 フエナ ントロリン一 2—ィル基、 1 , 9 フエナント口リン一 3—ィル基、 1 , 9 フエナント口リン _4—ィノレ基、 1, 9 _フエナント口リン _ 5—ィノレ基、 1, 9 _フエナント口リン _ 6—ィノレ 基、 1, 9_フエナント口リン一 7—ィノレ基、 1, 9 _フエナント口リン一 8—ィノレ基、 1 , 9 —フエナント口リン一 10—ィル基、 1 , 10—フエナント口リン一 2—ィル基、 1 , 10—フ ェナント口リン一 3—ィル基、 1 , 10—フエナント口リン一 4—ィル基、 1, 10—フエナン トロリン一 5—ィル基、 2, 9—フエナント口リン一 1—ィル基、 2, 9—フエナント口リン一
3—ィル基、 2, 9—フエナント口リン一 4—ィル基、 2, 9—フエナント口リン一 5—ィル基 、 2, 9_フエナント口リン一 6—ィノレ基、 2, 9 _フエナント口リン一 7—ィノレ基、 2, 9 _ フエナント口リン _ 8—ィル基、 2, 9_フエナント口リン一10—ィル基、 2, 8_フエナン トロリン一 1—ィル基、 2, 8—フエナント口リン一 3—ィル基、 2, 8—フエナント口リン一
4—ィル基、 2, 8—フエナント口リン一 5—ィル基、 2, 8—フエナント口リン一 6—ィル基 、 2, 8 フエナント口リン 7—ィノレ基、 2, 8 フエナント口リン 9ーィノレ基、 2, 8— フエナント口リン一10—ィル基、 2, 7 _フエナント口リン _ 1—ィル基、 2, 7 _フエナン トロリン一 3—ィル基、 2, 7—フエナント口リン一 4—ィル基、 2, 7—フエナント口リン一 5—ィル基、 2, 7—フエナント口リン一 6—ィル基、 2, 7—フエナント口リン一 8—ィル基 、 2, 7 _フエナント口リン _ 9—ィノレ基、 2, 7 _フエナント口リン一10—ィノレ基、 1—フ ェナジニル基、 2—フエナジニル基、 1 _フヱノチアジニル基、 2 _フヱノチアジニル基 、 3 _フヱノチアジニル基、 4—フエノチアジニル基、 10—フエノチアジニル基、 1—フ エノキサジニル基、 2 _フエノキサジニル基、 3 _フエノキサジニル基、 4 _フエノキサ ジニル基、 10—フエノキサジニル基、 2—ォキサゾリル基、 4ーォキサゾリル基、 5—ォ キサゾリル基、 2 ォキサジァゾリル基、 5 ォキサジァゾリル基、 3 フラザニル基、 2 チェニル基、 3 チェニル基、 2 メチルピロ一ルー 1ーィル基、 2 メチルピロ一 ルー 3—ィル基、 2 メチルピロ一ルー 4ーィル基、 2 メチルピロ一ルー 5—ィル基、 3 メチルピロ一ルー 1ーィル基、 3 メチルピロ一ルー 2—ィル基、 3 メチルピロ一 ルー 4ーィル基、 3 メチルピロ一ルー 5—ィル基、 2— t ブチルピロ一ルー 4ーィル 基、 3—(2—フエニルプロピル)ピロ一ルー 1ーィル基、 2—メチルー 1 インドリル基 、 4ーメチルー 1 インドリル基、 2—メチルー 3 インドリル基、 4ーメチルー 3 インド リル基、 2 tーブチルー 1 インドリル基、 4 tーブチルー 1 インドリル基、 2— t ブチルー 3—インドリル基、 4 t プチルー 3—インドリル基等が挙げられる。
これらの中で、好ましくはフエニル基、ナフチル基、ビフエニル基、アントラセニル基 、フエナントリル基、ピレニル基、クリセ二ル基、フルオランテュル基、フルォレニル基 である。
!^〜 2の置換もしくは無置換の炭素数 1〜50のアルキル基としては、メチノレ基、ェ チル基、プロピル基、イソプロピル基、 n—ブチル基、 s—ブチル基、イソブチル基、 t —ブチル基、 n_ペンチル基、 n_へキシル基、 n_ヘプチル基、 n—ォクチル基、ヒ ドロキシメチノレ基、 1—ヒドロキシェチル基、 2—ヒドロキシェチル基、 2—ヒドロキシイソ ブチル基、 1 , 2—ジヒドロキシェチル基、 1, 3—ジヒドロキシイソプロピル基、 2, 3 - ジヒドロキシ一 t_ブチル基、 1 , 2, 3 _トリヒドロキシプロピル基、クロロメチル基、 1 _ クロ口ェチル基、 2 _クロ口ェチル基、 2 _クロ口イソブチル基、 1 , 2—ジクロ口ェチル 基、 1 , 3 ジクロロイソプロピノレ基、 2, 3 ジクロロ一 t ブチノレ基、 1 , 2, 3 トリクロ 口プロピル基、ブロモメチル基、 1_ブロモェチル基、 2 _ブロモェチル基、 2_ブロモ イソブチル基、 1, 2_ジブロモェチル基、 1, 3 _ジブロモイソプロピル基、 2, 3—ジ ブロモ _t_ブチル基、 1, 2, 3_トリブロモプロピル基、ョードメチル基、 1—ョードエ チル基、 2—ョードエチノレ基、 2 _ョードイソブチル基、 1, 2 _ジョードエチル基、 1, 3—ジョードイソプロピル基、 2, 3—ジョード— 1_ブチル基、 1, 2, 3_トリョードプロ ピル基、アミノメチノレ基、 1_アミノエチノレ基、 2 _アミノエチノレ基、 2—ァミノイソブチノレ 基、 1, 2—ジアミノエチル基、 1, 3—ジァミノイソプロピル基、 2, 3—ジァミノ _t—ブ チノレ基、 1, 2, 3—トリ了ミノプロピノレ基、シ了ノメチノレ基、 1ーシ了ノエチノレ基、 2—シ ァノエチル基、 2—シァノイソブチル基、 1, 2—ジシァノエチル基、 1, 3—ジシァノィ ソプロピル基、 2, 3 ジシァノ一 t ブチル基、 1, 2, 3 トリシアノプロピル基、ニトロ メチル基、 1一二トロェチノレ基、 2—二トロェチル基、 2—二トロイソブチル基、 1, 2— ジニトロェチル基、 1, 3 ジニトロイソプロピル基、 2, 3 ジニトロ t ブチル基、 1, 2, 3 トリニトロプロピル基、シクロプロピル基、シクロブチル基、シクロペンチル基、 シクロへキシル基、 4ーメチルシクロへキシル基、 1ーァダマンチル基、 2—ァダマン チル基、 1 ノルボルニル基、 2—ノルボルニル基等が挙げられる。
!^〜 2の置換もしくは無置換の炭素数 1〜50のアルコキシ基は— OYで表される 基であり、 Υの例としては、前記アルキル基で説明したものと同様の例が挙げられる。
!^〜 2の置換もしくは無置換の核原子数 6〜50のァラルキル基の例としては、ベ ンジノレ基、 1_フエニルェチル基、 2_フエニルェチル基、 1_フエ二ルイソプロピノレ 基、 2—フエ二ルイソプロピル基、フエニル _t_ブチル基、 ひ—ナフチルメチル基、 1 - a—ナフチルェチル基、 2_ a—ナフチルェチル基、 1- α—ナフチルイソプロピ ル基、 2_ひ一ナフチルイソプロピル基、 β—ナフチルメチル基、 1_ β—ナフチノレ ェチル基、 2- β—ナフチルェチル基、 1- β—ナフチルイソプロピル基、 2_ β— ナフチルイソプロピル基、 1_ピロリノレメチノレ基、 2- (1—ピロリル)ェチル基、 ρ メチ ルベンジル基、 m_メチルベンジル基、 o_メチルベンジル基、 p_クロ口ベンジル基 、 m—クロ口べンジノレ基、 o_クロ口べンジノレ基、 p_ブロモベンジノレ基、 m_ブロモベ ンジノレ基、 o_ブロモベンジル基、 p_ョードベンジル基、 m_ョードベンジル基、 o_ ョードベンジル基、 p ヒドロキシベンジル基、 m—ヒドロキシベンジル基、 o ヒドロキ シベンジル基、 p—ァミノべンジル基、 m—ァミノべンジル基、 o—ァミノべンジル基、 p —ニトロべンジノレ基、 m—ニトロべンジノレ基、 o_ニトロべンジノレ基、 p_シァノベンジ ル基、 m_シァノベンジル基、 o_シァノベンジル基、 1—ヒドロキシ _ 2—フエ二ルイ ソプロピル基、 1 _クロ口 _ 2—フエ二ルイソプロピル基等が挙げられる。
[0023] ^〜 2の置換もしくは無置換の核原子数 5〜50のァリールォキシ基は—〇Υ'と表 され、 Y'の例としては前記ァリール基で説明したものと同様の例が挙げられる。
!^〜 2の置換もしくは無置換の核原子数 5〜50のァリールチオ基は— SY'と表さ れ、 Y'の例としては前記ァリール基で説明したものと同様の例が挙げられる。
!^〜 2の置換もしくは無置換の炭素数 1〜50のアルコキシカルボ二ル基は— CO 〇Yで表される基であり、 Υの例としては、前記アルキル基で説明したものと同様の例 が挙げられる。
!^〜 2の置換もしくは無置換の核原子数 5〜50のァリール基で置換されたァミノ 基におけるァリール基の例としては前記ァリール基で説明したものと同様の例が挙げ られる。
!^〜 2のハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等 が挙げられる。
[0024] R3〜R6の隣り合う置換基の一組、又は R1Qと RU、 R15と R16、 R19と R2°、 R23と R24、 R19と R2Q、 R23と R24、 R27と R28、 R31と R32の隣り合う置換基の一組が互いに結合して芳香環を 形成していてもよぐその際形成した環は、 5員環及び 6員環が好ましぐ特に 6員環 が好ましい。
R3〜R6のパーフルォロアルキル基の例としては、トリフルォロメチル基、ペンタフノレ ォロェチル基、へキサフルォロプロピル基、へキサフルォロイソプロピル基、ノナフノレ オロー n_ブチル基、ノナフルォロイソブチル基、ノナフルオロー t_ブチル基、ゥン デカフルォロペンチル基、トリデカフルォ口へキシル基、ペンタデカフルォ口へプチル 基、ヘプタデカフルォロォクチル基、ペンタフルォロシクロプロピル基、へキサフルォ ロシクロブチル基、ノナフルォロシクロペンチル基、ゥンデ力フルォロシクロへキシル 基等が挙げられる
[0025] R -R6, R7〜R"、 R12〜R16、 R17〜R2°、 R21〜R24、 R25〜R28又は R29〜R3の少なくと も 1つは下記一般式(2)で示される置換基である。
[化 7]
L— A^-Ar2 (2)
式中、 Lは、単結合、置換基を有していてもよい炭素数 6〜60のァリーレン基、置換 基を有していてもよいピリジニレン基、置換基を有していてもよいキノリニレン基、又は 置換基を有してレ、てもよレ、フルォレニレン基である。
[0026] Lの炭素数 6〜60のァリーレン基としては!^〜 。のァリール基で説明した置換基 から、さらに 1つの水素原子を除くことによりできる 2価の置換基であり、好ましくはフエ 二レン基、ナフチレン基、ビフエ二レン基、アントラニレン基、フエナントリレン基、ピレ 二レン基、クリセ二レン基、フルオランテニレン基、フルォレニレン基である。
[0027] 本発明の含窒素複素環誘導体は、有機 EL素子用材料であると好ましぐ有機 EL 素子用発光材料、有機 EL素子用電子注入材料又は有機 EL素子用電子輸送材料 であるとさらに好ましい。
本発明の一般式(1)で表される含窒素複素環誘導体の具体例を以下に示すが、こ れら例示化合物に限定されるものではない。
[0028] [化 8]
§ §92
Figure imgf000014_0001
Figure imgf000015_0001
[0030] [化 10]
Figure imgf000016_0001
[0031] [化 11]
Figure imgf000017_0001
次に、本発明の有機 EL素子について説明する。
本発明の有機 EL素子は、陰極と陽極間に少なくとも発光層を含む一層又は複数 層からなる有機薄膜層が挟持されている有機 EL素子において、該有機薄膜層の少 なくとも 1層が、前記含窒素複素環誘導体を単独もしくは混合物の成分として含有す る。
本発明の有機 EL素子は、前記有機薄膜層が正孔輸送層を有し、該正孔輸送層が 、本発明の含窒素複素環誘導体を単独もしくは混合物の成分として含有すると好ま しい。さらに、前記正孔輸送層が、主成分として含窒素複素環誘導体を含有すると好 ましい。
また、本発明の有機 EL素子は、発光層が、含窒素複素環誘導体、ァリールァミン 化合物及び Z又はスチリルアミンィ匕合物を含有すると好ましい。
ァリールアミンィ匕合物としては下記一般式 (A)で表される化合物などが挙げられ、 スチリルァミン化合物としては下記一般式 (B)で表される化合物などが挙げられる。
[0033] [化 12]
Figure imgf000018_0001
(A)
[0034] [一般式(A)中、 Arは、フエニル、ビフエニル、テルフエニル、スチルベン、ジスチリ
8
ルァリールから選ばれる基であり、 Ar及び Ar は、それぞれ水素原子又は炭素数が
9 10
6〜20の芳香族基であり、 Ar
9〜Ar は置換されていてもよい。 p'は、 1
10 〜4の整数で ある。さらに好ましくは Ar及び Z又は Ar はスチリル基が置換されている。 ]
9 10
ここで、炭素数が 6〜20の芳香族基としては、フエニル基、ナフチル基、アントラセ ニル基、フエナントリル基、テルフエニル基等が好ましい。
[0035] [化 13]
Figure imgf000018_0002
[一般式(B)中、 Ar〜Ar は、置換されていてもよい核炭素数 5
11 13 〜40のァリール基 である。 q'は、:!〜 4の整数である。 ]
ここで、核原子数が 5〜40のァリール基としては、フエニル、ナフチル、アントラセニ ル、フエナントリル、ピレニル、コロニル、ビフエニル、テルフエニル、ピロ一リル、フラニ ノレ、チオフヱニル、ベンゾチオフヱニル、ォキサジァゾリル、ジフエ二ルアントラセニル 、インドリル、カルバゾリル、ピリジノレ、ベンゾキノリル、フルオランテュル、ァセナフトフ ルオランテュル、スチルベン等が好ましレ、。なお、核原子数が 5〜40のァリール基は 、さらに置換基により置換されていてもよぐ好ましい置換基としては、炭素数:!〜 6の アルキル基(ェチル基、メチノレ基、 i—プロピル基、 n—プロピル基、 s_ブチル基、 t_ ブチル基、ペンチル基、へキシル基、シクロペンチル基、シクロへキシル基等)、炭素 数 1〜6のアルコキシ基(エトキシ基、メトキシ基、 i—プロポキシ基、 n—プロポキシ基、 s ブトキシ基、 t ブトキシ基、ペントキシ基、へキシルォキシ基、シクロペントキシ基 、シクロへキシルォキシ基等)、核原子数 5〜40のァリール基、核原子数 5〜40のァ リール基で置換されたァミノ基、核原子数 5〜40のァリール基を有するエステル基、 炭素数 1〜6のアルキル基を有するエステル基、シァノ基、ニトロ基、ハロゲン原子( 塩素、臭素、ヨウ素等)が挙げられる。
以下、本発明の有機 EL素子の素子構成について説明する。
(1)有機 EL素子の構成
本発明の有機 EL素子の代表的な素子構成としては、
(1)陽極/ /発光層/陰極
(2)陽極/ /正孔注入層/発光層/陰極
(3)陽極/ /発光層/電子注入層/陰極
(4)陽極/ /正孔注入層/発光層/電子注入層/陰極
(5)陽極/ /有機半導体層/発光層/陰極
(6)陽極/ /有機半導体層/電子障壁層/発光層 /陰極
(7)陽極/ /有機半導体層/発光層/付着改善層 /陰極
(8)陽極/ /正孔注入層/正孔輸送層/発光層/電子注入層/陰極
(9)陽極/絶縁層/発光層/絶縁層/陰極
(10)陽極/無機半導体層/絶縁層/発光層/絶縁層/陰極
(11)陽極/有機半導体層/絶縁層/発光層/絶縁層/陰極
(12)陽極/絶縁層/正孔注入層/正孔輸送層/発光層/絶縁層/陰極
(13)陽極/絶縁層/正孔注入層/正孔輸送層/発光層/電子注入層/陰極 などの構造を挙げることができる。
これらの中で通常 (8)の構成が好ましく用いられる力 これらに限定されるものでは ない。
本発明の含窒素複素環誘導体は、有機 EL素子のどの有機薄膜層に用いてもよい 力 好ましくは発光帯域又は電子輸送帯域に用いることができ、特に好ましくは電子 注入層、電子輸送層及び発光層に用いる。
[0038] (2)透光性基板
本発明の有機 EL素子は、透光性の基板上に作製する。ここでいう透光性基板は 有機 EL素子を支持する基板であり、 400〜700nmの可視領域の光の透過率が 50 %以上で平滑な基板が好ましレ、。
具体的には、ガラス板、ポリマー板等が挙げられる。ガラス板としては、特にソーダ 石灰ガラス、バリウム 'ストロンチウム含有ガラス、鉛ガラス、アルミノケィ酸ガラス、ホウ ケィ酸ガラス、バリウムホウケィ酸ガラス、石英等が挙げられる。またポリマー板として は、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルスルフイド、 ポリスルホン等を挙げることができる。
[0039] (3)陽極
本発明の有機 EL素子の陽極は、正孔を正孔輸送層又は発光層に注入する機能 を有するものであり、 4. 5eV以上の仕事関数を有することが効果的である。本発明に 用いられる陽極材料の具体例としては、酸化インジウム錫合金 (IT〇)、酸化錫 (NE SA)、インジウム—亜鉛酸化物(ΙΖΟ)、金、銀、白金、銅等が挙げられる。
陽極は、これらの電極物質を蒸着法やスパッタリング法等の方法で薄膜を形成させ ることにより作製すること力 Sできる。
このように発光層からの発光を陽極から取り出す場合、陽極の発光に対する透過率 が 10%より大きくすることが好ましい。また、陽極のシート抵抗は、数百 Ω /口以下が 好ましレ、。陽極の膜厚は材料にもよる力 通常 10nm〜l x m、好ましくは 10〜200n mの範囲で選択される。
[0040] (4)発光層
有機 EL素子の発光層は以下 (1)〜(3)の機能を併せ持つものである。 (1)注入機能;電界印加時に陽極又は正孔注入層より正孔を注入することができ、 陰極又は電子注入層より電子を注入することができる機能
(2)輸送機能;注入した電荷 (電子と正孔)を電界の力で移動させる機能
(3)発光機能;電子と正孔の再結合の場を提供し、これを発光につなげる機能 ただし、正孔の注入されやすさと電子の注入されやすさに違いがあってもよぐまた
、正孔と電子の移動度で表される輸送能に大小があってもよいが、どちらか一方の電 荷を移動することが好ましレ、。
この発光層を形成する方法としては、例えば蒸着法、スピンコート法、 LB法等の公 知の方法を適用することができる。発光層は、特に分子堆積膜であることが好ましレ、 。ここで分子堆積膜とは、気相状態の材料化合物から沈着され形成された薄膜や、 溶液状態又は液相状態の材料化合物から固体化され形成された膜のことであり、通 常この分子堆積膜は、 LB法により形成された薄膜 (分子累積膜)とは凝集構造、高 次構造の相違や、それに起因する機能的な相違により区分することができる。
また、特開昭 57— 51781号公報に開示されているように、樹脂等の結着剤と材料 化合物とを溶剤に溶力して溶液とした後、これをスピンコート法等により薄膜化するこ とによっても、発光層を形成することができる。
本発明においては、本発明の目的が損なわれない範囲で、所望により発光層に本 発明の含窒素複素環誘導体からなる発光材料以外の他の公知の発光材料を含有さ せてもよ また、本発明の含窒素複素環誘導体からなる発光材料を含む発光層に 、他の公知の発光材料を含む発光層を積層してもよい。
本発明の含窒素複素環誘導体と共に発光層に使用できる発光材料又はドーピン グ材料としては、例えば、アントラセン、ナフタレン、フエナントレン、ピレン、テトラセン 、コロネン、タリセン、フノレォレセイン、ペリレン、フタ口ペリレン、ナフタ口ペリレン、ペリ ノン、フタ口ペリノン、ナフタ口ペリノン、ジフエニルブタジエン、テトラフヱニルブタジェ ン、クマリン、ォキサジァゾール、アルダジン、ビスべンゾキサゾリン、ビススチリル、ピ ラジン、シクロペンタジェン、キノリン金属錯体、ァミノキノリン金属錯体、ベンゾキノリ ン金属錯体、ィミン、ジフエニルエチレン、ビュルアントラセン、ジァミノカルバゾール、 ピラン、チォピラン、ポリメチン、メロシアニン、イミダゾールキレートィ匕ォキシノイド化合 物、キナクリドン、ルブレン及び蛍光色素等が挙げられるが、これらに限定されるもの ではない。
[0042] 本発明の含窒素複素環誘導体と共に発光層に使用できるホスト材料としては、下 記 (i)〜(ix)で表される化合物が好ましレ、。
[0043] 下記一般式 (i)で表される非対称アントラセン。
[化 14]
Figure imgf000022_0001
[0044] (式中、 Arは置換もしくは無置換の核炭素数 10〜50の縮合芳香族基である。
Ar'は置換もしくは無置換の核炭素数 6〜50の芳香族基である。
Xは、置換もしくは無置換の核炭素数 6〜50の芳香族基、置換もしくは無置換の核 原子数 5〜50の芳香族複素環基、置換もしくは無置換の炭素数 1〜50のアルキル 基、置換もしくは無置換の炭素数 1〜50のアルコキシ基、置換もしくは無置換の炭素 数 6〜50のァラノレキノレ基、置換もしくは無置換の核原子数 5〜50のァリールォキシ 基、置換もしくは無置換の核原子数 5〜50のァリールチオ基、置換もしくは無置換の 炭素数 1〜50のアルコキシカルボニル基、カルボキシル基、ハロゲン原子、シァノ基 、ニトロ基、ヒドロキシル基である。
a、 b及び cは、それぞれ 0〜4の整数である。
nは:!〜 3の整数である。また、 nが 2以上の場合は、 [ ]内は、同じでも異なってい て よレヽ。 )
[0045] 下記一般式 (ii)で表される非対称モノアントラセン誘導体。
[化 15]
Figure imgf000023_0001
[0046] (式中、 Ar1及び Ar2は、それぞれ独立に、置換もしくは無置換の核炭素数 6〜50の 芳香族環基であり、 m及び nは、それぞれ 1〜4の整数である。ただし、 m=n= lでか つ Ar1と Ar2のベンゼン環への結合位置が左右対称型の場合には、 Ar1と Ar2は同一 ではなぐ m又は nが 2〜4の整数の場合には mと nは異なる整数である。
〜 °は、それぞれ独立に、水素原子、置換もしくは無置換の核炭素数 6〜50の 芳香族環基、置換もしくは無置換の核原子数 5〜50の芳香族複素環基、置換もしく は無置換の炭素数 1〜50のアルキル基、置換もしくは無置換のシクロアルキル基、 置換もしくは無置換の炭素数 1〜50のアルコキシ基、置換もしくは無置換の炭素数 6 〜50のァラノレキノレ基、置換もしくは無置換の核原子数 5〜50のァリールォキシ基、 置換もしくは無置換の核原子数 5〜50のァリールチオ基、置換もしくは無置換の炭 素数 1〜50のアルコキシカルボニル基、置換もしくは無置換のシリル基、カルボキシ ル基、ハロゲン原子、シァノ基、ニトロ基、ヒドロキシル基である。 )
[0047] 下記一般式 (iii)で表される非対称ピレン誘導体。
[化 16]
Figure imgf000024_0001
[0048] [式中、 Ar及び Ar'は、それぞれ置換もしくは無置換の核炭素数 6〜50の芳香族基 である。
L及び L'は、それぞれ置換もしくは無置換のフエ二レン基、置換もしくは無置換の ナフタレニレン基、置換もしくは無置換のフルォレニレン基又は置換もしくは無置換 のジベンゾシロリレン基である。
mは 0〜2の整数、 nは 1〜4の整数、 sは 0〜2の整数、 tは 0〜4の整数である。 また、 L又は Arは、ピレンの 1〜5位のいずれかに結合し、 L,又は Ar'は、ピレンの 6〜10位のいずれかに結合する。
ただし、 n + tが偶数の時、 Ar, Ar' , L, L'は下記 (1)又は (2)を満たす。
(1) Ar≠Ar'及び/又は L≠L' (ここで≠は、異なる構造の基であることを示す。 )
(2) Ar=Ar,かつ L = L 'の時
(2-1) m≠s及び Z又は n≠t、又は
(2-2) m=sかつ n=tの時、
(2-2-1) L及び L'、又はピレン力 それぞれ Ar及び Ar'上の異なる結合位置に 結合している力、(2-2-2) L及び L'、又はピレン力 Ar及び Ar'上の同じ結合位置で 結合している場合、 L及び L'又は Ar及び Ar'のピレンにおける置換位置力 1位と 6位 、又は 2位と 7位である場合はない。 ]
[0049] 下記一般式 (iv)で表される非対称アントラセン誘導体。
[化 17]
Figure imgf000025_0001
[0050] (式中、 A1及び A2は、それぞれ独立に、置換もしくは無置換の核炭素数 10〜20の 縮合芳香族環基である。
Ar1及び Ar2は、それぞれ独立に、水素原子、又は置換もしくは無置換の核炭素数 6〜50の芳香族環基である。
〜 °は、それぞれ独立に、水素原子、置換もしくは無置換の核炭素数 6〜50の 芳香族環基、置換もしくは無置換の核原子数 5〜50の芳香族複素環基、置換もしく は無置換の炭素数 1〜50のアルキル基、置換もしくは無置換のシクロアルキル基、 置換もしくは無置換の炭素数 1〜50のアルコキシ基、置換もしくは無置換の炭素数 6 〜50のァラルキノレ基、置換もしくは無置換の核原子数 5〜50のァリールォキシ基、 置換もしくは無置換の核原子数 5〜50のァリールチオ基、置換もしくは無置換の炭 素数 1〜50のアルコキシカルボニル基、置換もしくは無置換のシリル基、カルボキシ ル基、ハロゲン原子、シァノ基、ニトロ基又はヒドロキシル基である。
ΑΛ
Figure imgf000025_0002
R9及び R1Qは、それぞれ複数であってもよぐ隣接するもの同士で飽和も しくは不飽和の環状構造を形成してレ、てもよレ、。
ただし、一般式(1)において、中心のアントラセンの 9位及び 10位に、該アントラセ ン上に示す X— Y軸に対して対称型となる基が結合する場合はない。 )
[0051] 下記一般式 (V)で表されるアントラセン誘導体。
[化 18]
Figure imgf000026_0001
しても良いァリール基,アルコキシル基,ァリーロキシ基,ァノレキノレアミノ基,アルケニ ル基,ァリールアミノ基又は置換しても良い複素環式基を示し、 a及び bは、それぞれ 1〜5の整数を示し、それらが 2以上の場合、 R1同士又は R2同士は、それぞれにおい て、同一でも異なっていてもよぐまた R1 同士または R2 同士が結合して環を形成 していてもよいし、 R3と R4, R5と R6, R7と R8, R9と R1Qがたがいに結合して環を形成して いてもよい。 L1は単結合、— 0_, _ S_ , _N (R) _ (Rはアルキル基又は置換して も良いァリール基である)、アルキレン基又はァリーレン基を示す。)
下記一般式 (vi)で表されるアントラセン誘導体。
[化 19]
Figure imgf000026_0002
換しても良い複数環式基を示し、 c, d, e及び fは、それぞれ 1〜 5の整数を示し、それ らが 2以上の場合、 R11同士, R12同士, R16同士又は R17同士は、それぞれにおいて、 同一でも異なっていてもよぐまた R11同士, R12同士, R16同士又は R17同士が結合して 環を形成していてもよいし、 R13と R14, R18と R19がたがいに結合して環を形成していて もよレ、。 L2は単結合、 -0- , - S - , _N (R) _ (Rはアルキル基又は置換しても良 ぃァリール基である)、アルキレン基又はァリーレン基を示す。)
[0055] 下記一般式 (vii)で表されるスピロフルオレン誘導体。
[化 20]
Figure imgf000027_0001
[0056] (式中、 A5〜A8は、それぞれ独立に、置換もしくは無置換のビフヱニル基又は置換も しくは無置換のナフチル基である。 )
[0057] 下記一般式 (viii)で表される縮合環含有化合物。
[化 21]
Figure imgf000027_0002
(式中、 A9〜A14は前記と同じ、 R21〜R23は、それぞれ独立に、水素原子、炭素数 1〜 6のアルキル基、炭素数 3〜6のシクロアルキル基、炭素数 1〜6のアルコキシル基、 炭素数 5〜: 18のァリールォキシ基、炭素数 7〜: 18のァラルキルォキシ基、炭素数 5 〜: 16のァリールアミノ基、ニトロ基、シァノ基、炭素数 1〜6のエステル基又はハロゲ ン原子を示し、 A9〜A14のうち少なくとも 1つは 3環以上の縮合芳香族環を有する基で ある。 )
[0059] 下記一般式 (ix)で表されるフルオレン化合物。
[化 22]
Figure imgf000028_0001
[0060] (式中、 Rおよび Rは、水素原子、置換あるいは無置換のアルキル基、置換あるいは
1 2
無置換のァラルキル基、置換あるいは無置換のァリール基,置換あるいは無置換の 複素環基、置換アミノ基、シァノ基またはハロゲン原子を表わす。異なるフルオレン基 に結合する R同士、 R同士は、同じであっても異なっていてもよぐ同じフルオレン基
1 2
に結合する Rおよび Rは、同じであっても異なっていてもよい。 Rおよび Rは、水素
1 2 3 4 原子、置換あるいは無置換のアルキル基、置換あるいは無置換のァラルキル基、置 換あるいは無置換のァリール基または置換あるいは無置換の複素環基を表わし、異 なるフルオレン基に結合する R同士、 R同士は、同じであっても異なっていてもよく、
3 4
同じフルオレン基に結合する Rおよび Rは、同じであっても異なっていてもよい。 Ar
3 4 1 および Arは、ベンゼン環の合計が 3個以上の置換あるいは無置換の縮合多環芳香
2
族基またはベンゼン環と複素環の合計が 3個以上の置換あるいは無置換の炭素でフ ルオレン基に結合する縮合多環複素環基を表わし、 Arおよび Arは、同じであって
1 2
も異なっていてもよレ、。 nは、 1乃至 10の整数を表す。)
[0061] 以上のホスト材料の中でも、好ましくはアントラセン誘導体、さらに好ましくはモノア ントラセン誘導体、特に好ましくは非対称アントラセンである。
また、ドーパントの発光材料としては、りん光発光性の化合物を用いることもできる。 りん光発光性の化合物としては、ホスト材料に力ルバゾール環を含む化合物が好まし レ、。ドーパントとしては三重項励起子から発光することのできる化合物であり、三重項 励起子から発光する限り特に限定されなレ、が、 Ir、 Ru、 Pd、 Pt、 Os及び Reからなる 群から選択される少なくとも一つの金属を含む金属錯体であることが好ましい。 力ルバゾール環を含む化合物からなるりん光発光に好適なホストは、その励起状態 力 りん光発光性化合物へエネルギー移動が起こる結果、りん光発光性化合物を発 光させる機能を有する化合物である。ホストィヒ合物としては励起子エネルギーをりん 光発光性化合物にエネルギー移動できる化合物ならば特に制限はな 目的に応じ て適宜選択することができる。力ルバゾール環以外に任意の複素環などを有してい ても良い。
[0062] このようなホストイ匕合物の具体例としては、力ルバゾール誘導体、トリァゾール誘導 体、ォキサゾール誘導体、ォキサジァゾール誘導体、イミダゾール誘導体、ポリアリー ルアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フエ二レンジァミン誘導体、 ァリールァミン誘導体、ァミノ置換カルコン誘導体、スチリルアントラセン誘導体、フル ォレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三 ァミン化合物、スチリルァミン化合物、芳香族ジメチリデン系化合物、ポルフィリン系 化合物、アントラキノジメタン誘導体、アントロン誘導体、ジフエ二ルキノン誘導体、チ オビランジオキシド誘導体、カルポジイミド誘導体、フルォレニリデンメタン誘導体、ジ スチリルビラジン誘導体、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フ タロシアニン誘導体、 8-キノリノール誘導体の金属錯体ゃメタルフタロシアニン、ベン ゾォキサゾールやべンゾチアゾールを配位子とする金属錯体に代表される各種金属 錯体ポリシラン系化合物、ポリ(N-ビュルカルバゾール)誘導体、ァニリン系共重合体 、チォフェンオリゴマー、ポリチォフェン等の導電性高分子オリゴマー、ポリチォフェン 誘導体、ポリフヱニレン誘導体、ポリフヱニレンビニレン誘導体、ポリフルオレン誘導 体等の高分子化合物等が挙げられる。ホストイ匕合物は単独で使用しても良いし、 2種 以上を併用しても良い。
具体例としては、以下のような化合物が挙げられる。
[0063] [化 23]
Figure imgf000030_0001
りん光発光性のドーパントは三重項励起子から発光することのできる化合物である 。三重項励起子から発光する限り特に限定されないが、 Ir、 Ru、 Pd、 Pt、〇s及び Re 力もなる群から選択される少なくとも一つの金属を含む金属錯体であることが好ましく 、ポルフィリン金属錯体又はオルトメタルイ匕金属錯体が好ましい。ポルフィリン金属錯 体としては、ポルフィリン白金錯体が好ましい。りん光発光性化合物は単独で使用し ても良いし、 2種以上を併用しても良い。
オルトメタル化金属錯体を形成する配位子としては種々のものがあるが、好ましい 配位子としては、 2—フエニルピリジン誘導体、 7, 8—ベンゾキノリン誘導体、 2-(2- チェニル)ピリジン誘導体、 2_ひ—ナフチル)ピリジン誘導体、 2—フエ二ルキノリン誘 導体等が挙げられる。これらの誘導体は必要に応じて置換基を有しても良い。特に、 フッ素化物、トリフルォロメチル基を導入したもの力 青色系ドーパントとしては好まし レ、。さらに補助配位子としてァセチルァセトナート、ピクリン酸等の上記配位子以外の 配位子を有していても良い。
りん光発光性のドーパントの発光層における含有量としては、特に制限はなぐ 目 的に応じて適宜選択することができる力 S、例えば、 0.:!〜 70質量%であり、:!〜 30質 量%が好ましい。りん光発光性化合物の含有量が 0. 1質量%未満では発光が微弱 であり、その含有効果が十分に発揮されず、 70質量%を超える場合は、濃度消光と 言われる現象が顕著になり素子性能が低下する。
また、発光層は、必要に応じて正孔輸送材、電子輸送材、ポリマーバインダーを含 有しても良い。
さらに、発光層の膜厚は、好ましくは 5〜50nm、より好ましくは 7〜50nm、最も好ま しくは 10〜50nmである。 5nm未満では発光層形成が困難となり、色度の調整が困 難となる恐れがあり、 50nmを超えると駆動電圧が上昇する恐れがある。
[0065] (5)正孔注入'輸送層(正孔輸送帯域)
正孔注入 ·輸送層は発光層への正孔注入を助け、発光領域まで輸送する層であつ て、正孔移動度が大きぐイオン化エネルギーが通常 5. 5eV以下と小さい。このよう な正孔注入'輸送層としては、より低い電界強度で正孔を発光層に輸送する材料が 好ましぐさらに正孔の移動度力 例えば 104〜106V/cmの電界印加時に、少なくと も 10— 4cm2/V'秒であれば好ましレ、。
本発明の含窒素複素環誘導体を正孔輸送帯域に用いる場合、本発明の含窒素複 素環誘導体単独で正孔注入、輸送層を形成してもよぐ他の材料と混合して用いても よい。
本発明の含窒素複素環誘導体と混合して正孔注入 ·輸送層を形成する材料として は、前記の好ましい性質を有するものであれば特に制限はなぐ従来、光導伝材料 において正孔の電荷輸送材料として慣用されているものや、有機 EL素子の正孔注 入-輸送層に使用される公知のものの中力 任意のものを選択して用いることができ る。
[0066] 具体例としては、トリァゾール誘導体 (米国特許 3, 112, 197号明細書等参照)、ォ キサジァゾール誘導体 (米国特許 3, 189, 447号明細書等参照)、イミダゾール誘導 体(特公昭 37— 16096号公報等参照)、ポリアリールアルカン誘導体 (米国特許 3, 615, 402 明糸田 、 3, 820, 989 明糸田 、 3, 542, 544 明糸田 ·、 公昭 45— 555号公報、同 51— 10983号公報、特開昭 51— 93224号公報、同 55 — 17105号公報、同 56— 4148号公報、同 55— 108667号公報、同 55— 156953 号公報、同 56— 36656号公報等参照)、ピラゾリン誘導体及びピラゾロン誘導体( 米国特許第 3, 180, 729号明細書、同第 4, 278, 746号明細書、特開昭 55— 880 64号公報、同 55— 88065号公報、同 49— 105537号公報、同 55— 51086号公報 、同 56— 80051号公報、同 56— 88141号公報、同 57— 45545号公報、同 54— 1 12637号公報、同 55— 74546号公報等参照)、フエ二レンジァミン誘導体(米国特 許第 3, 615, 404号明糸田書、特公昭 51— 10105号公報、同 46— 3712号公報、同 47— 25336号公報、特開昭 54— 53435号公報、同 54— 110536号公報、同 54— 119925号公報等参照)、ァリールァミン誘導体(米国特許第 3, 567, 450号明細書 、同 3, 180, 703 明糸田 、同 3, 240, 597 明糸田 、同 3, 658, 520 明糸田 »、同 ^4, 232, 103 明糸田 、同 ^4, 175, 961 明糸田 、同 ^4, 012, 3 76号明細書、特公昭 49— 35702号公報、同 39— 27577号公報、特開昭 55— 14 4250号公報、同 56— 119132号公報、同 56— 22437号公報、西独特許第 1 , 110 , 518号明細書等参照)、ァミノ置換カルコン誘導体 (米国特許第 3, 526, 501号明 細書等参照)、ォキサゾール誘導体 (米国特許第 3, 257, 203号明細書等に開示の もの)、スチリルアントラセン誘導体(特開昭 56— 46234号公報等参照)、フルォレノ ン誘導体 (特開昭 54— 110837号公報等参照)、ヒドラゾン誘導体 (米国特許第 3, 7 17, 462号明糸田書、特開昭 54— 59143号公報、同 55— 52063号公報、同 55— 52 064号公報、同 55— 46760号公報、同 55— 85495号公報、同 57— 11350号公報 、同 57— 148749号公報、特開平 2— 311591号公報等参照)、スチルベン誘導体( 特開昭 61— 210363号公報、同第 61— 228451号公報、同 61— 14642号公報、 同 61— 72255号公報、同 62— 47646号公報、同 62— 36674号公報、同 62— 10 652号公報、同 62— 30255号公報、同 60— 93455号公報、同 60— 94462号公報 、同 60— 174749号公報、同 60— 175052号公報等参照)、シラザン誘導体(米国 特許第 4, 950, 950号明細書)、ポリシラン系(特開平 2— 204996号公報)、ァニリ ン系共重合体 (特開平 2— 282263号公報)、特開平 1— 211399号公報に開示され てレ、る導電性高分子オリゴマー(特にチォフェンオリゴマー)等を挙げること力 Sできる。 正孔注入'輸送層の材料としては上記のものを使用することができる力 ボルフイリ ンィ匕合物(特開昭 63— 2956965号公報等に開示のもの)、芳香族第三級アミンィ匕 合物及びスチリルァミン化合物(米国特許第 4, 127, 412号明細書、特開昭 53— 2 7033号公報、同 54— 58445号公報、同 54— 149634号公報、同 54— 64299号 公報、同 55— 79450号公報、同 55— 144250号公報、同 56— 119132号公報、同 61— 295558号公報、同 61— 98353号公報、同 63— 295695号公報等参照)、特 に芳香族第三級ァミン化合物を用いることが好ましい。
また、米国特許第 5, 061, 569号に記載されている 2個の縮合芳香族環を分子内 に有する、例えば、 4, 4,一ビス(N— (1—ナフチル)一N—フエニルァミノ)ビフエ二 ル(以下 NPDと略記する)、また特開平 4— 308688号公報に記載されているトリフエ ニルァミンユニットが 3つスターバースト型に連結された 4, 4', 4"—トリス(N— (3—メ チルフエニル)—N—フエニルァミノ)トリフエニルァミン(以下 MTDATAと略記する) 等を挙げることができる。
さらに、発光層の材料として示した前述の芳香族ジメチリディン系化合物の他、 p型 Si、 p型 SiC等の無機化合物も正孔注入 ·輸送層の材料として使用することができる。
[0068] 正孔注入'輸送層は本発明の含窒素複素環誘導体を、例えば、真空蒸着法、スピ ンコート法、キャスト法、 LB法等の公知の方法により薄膜化することにより形成するこ とができる。正孔注入 ·輸送層としての膜厚は特に制限はないが、通常は 5nm〜5 x mである。この正孔注入 ·輸送層は、正孔輸送帯域に本発明の含窒素複素環誘導体 を含有していれば、上述した材料の一種又は二種以上からなる一層で構成されても よく、前記正孔注入 ·輸送層とは別種の化合物からなる正孔注入 ·輸送層を積層した ものであってもよレ、。
また、発光層への正孔注入又は電子注入を助ける層として有機半導体層を設けて もよぐ 10— 1QS/cm以上の導電率を有するものが好適である。このような有機半導体 層の材料としては、含チォフェンオリゴマーゃ特開平 8— 193191号公報に開示して ある含ァリールァミンオリゴマー等の導電性オリゴマー、含ァリールァミンデンドリマー 等の導電性デンドリマー等を用いることができる。
[0069] (6)電子注入 ·輸送層(電子輸送帯域)
電子注入層'輸送層は、発光層への電子の注入を助け、発光領域まで輸送する層 であって、電子移動度が大き 電子親和力が通常 2. 5eV以上と大きい。このような 電子注入'輸送層としては、より低い電界強度で電子を発光層に輸送する材料が好 ましぐさらに電子の移動度が、例えば 104〜106V/cmの電界印加時に、少なくとも 10— 6cm2ZV.秒であれば好ましレ、。
本発明の含窒素複素環誘導体を電子輸送帯域に用いる場合、本発明の含窒素複 素環誘導体単独で電子注入 ·輸送層を形成してもよぐ他の材料と混合してもよい。 本発明の含窒素複素環誘導体と混合して電子注入 ·輸送層を形成する材料として は、前記の好ましい性質を有するものであれば特に制限はなぐ従来、光導伝材料 において電子の電荷輸送材料として慣用されているものや、有機 EL素子の電子注 入-輸送層に使用される公知のものの中力 任意のものを選択して用いることができ る。
また付着改善層は、この電子注入層の中で特に陰極との付着が良い材料からなる 層である。本発明の有機 EL素子においては、上記本発明化合物を電子注入層'輸 送層、付着改善層として用いることが好ましい。
本発明の有機 EL素子の好ましい形態に、電子を輸送する領域または陰極と有機 層の界面領域に、還元性ドーパントを含有する素子がある。本発明では、本発明化 合物に還元性ドーパントを含有する有機 EL素子が好ましい。ここで、還元性ドーパン トとは、電子輸送性化合物を還元ができる物質と定義される。したがって、一定の還 元性を有するものであれば、様々なものが用いられ、例えば、アルカリ金属、アルカリ 土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アル カリ土類金属の酸化物、アルカリ土類金属のハロゲンィヒ物、希土類金属の酸化物ま たは希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有 機錯体、希土類金属の有機錯体力 なる群から選択される少なくとも一つの物質を 好適に使用することができる。
また、より具体的に、好ましい還元性ドーパントとしては、 Na (仕事関数: 2. 36eV) 、K (仕事関数: 2. 28eV)、Rb (仕事関数: 2. 16eV)および Cs (仕事関数: 1. 95eV )力 なる群から選択される少なくとも一つのアルカリ金属や、 Ca (仕事関数: 2. 9eV )、 Sr (仕事関数: 2. 0〜2. 5eV)、および Ba (仕事関数: 2. 52eV)力もなる群から 選択される少なくとも一つのアルカリ土類金属が挙げられる仕事関数が 2. 9eV以下 のものが特に好ましい。これらのうち、より好ましい還元性ドーパントは、 K、 Rbおよび Csからなる群から選択される少なくとも一つのアルカリ金属であり、さらに好ましくは、 Rbまたは Csであり、最も好ましのは、 Csである。これらのアルカリ金属は、特に還元 能力が高ぐ電子注入域への比較的少量の添加により、有機 EL素子における発光 輝度の向上や長寿命化が図られる。また、仕事関数が 2. 9eV以下の還元性ドーパ ントとして、これら 2種以上のアルカリ金属の組合わせも好まし 特に、 Csを含んだ 組み合わせ、例えば、 Csと Na、 Csと K、 Csと Rbあるいは Csと Naと Κとの組み合わせ であることが好ましい。 Csを組み合わせて含むことにより、還元能力を効率的に発揮 することができ、電子注入域への添カ卩により、有機 EL素子における発光輝度の向上 や長寿命化が図られる。
本発明においては陰極と有機層の間に絶縁体や半導体で構成される電子注入層 をさらに設けても良い。この時、電流のリークを有効に防止して、電子注入性を向上さ せることができる。このような絶縁体としては、アルカリ金属カルコゲニド、アルカリ土 類金属カルコゲニド、アルカリ金属のハロゲン化物およびアルカリ土類金属のハロゲ ンィ匕物からなる群から選択される少なくとも一つの金属化合物を使用するのが好まし レ、。電子注入層がこれらのアルカリ金属カルコゲニド等で構成されていれば、電子注 入性をさらに向上させることができる点で好ましい。具体的に、好ましいアルカリ金属 カルコゲニドとしては、例えば、 Li 0、 K〇、 Na S、 Na Seおよび Na〇が挙げられ、 好ましいアルカリ土類金属カルコゲニドとしては、例えば、 Ca〇、 Ba〇、 SrO、 BeO、 BaS、および CaSeが挙げられる。また、好ましいアルカリ金属のハロゲン化物として は、例えば、 LiF、 NaF、 KF、 LiCl、 KC1および NaCl等が挙げられる。また、好まし いアルカリ土類金属のハロゲン化物としては、例えば、 CaF、 BaF、 SrF、 MgFお よび BeFといったフッ化物や、フッ化物以外のハロゲン化物が挙げられる。
また、電子輸送層を構成する半導体としては、 Ba、 Ca、 Sr、 Yb、 Al、 Ga、 In、 Li、 Na、 Cd、 Mg、 Si、 Ta、 Sbおよび Znの少なくとも一つの元素を含む酸化物、窒化物 または酸化窒化物等の一種単独または二種以上の組み合わせが挙げられる。また、 電子輸送層を構成する無機化合物が、微結晶または非晶質の絶縁性薄膜であるこ とが好ましい。電子輸送層がこれらの絶縁性薄膜で構成されていれば、より均質な薄 膜が形成されるために、ダークスポット等の画素欠陥を減少させることができる。なお このような無機化合物としては、上述したアルカリ金属カルコゲニド、アルカリ土類金 属カルコゲニド、アルカリ金属のハロゲン化物およびアルカリ土類金属のハロゲン化 物等が挙げられる。
[0072] (7)陰極
陰極としては、電子注入'輸送層又は発光層に電子を注入するため、仕事関数の 小さい (4eV以下)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質 とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム 'カリウム合金、マグネシウム、リチウム、マグネシウム '銀合金、アルミニウム/酸化ァ ルミユウム、アルミニウム 'リチウム合金、インジウム、希土類金属などが挙げられる。 この陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成さ せることにより、作製すること力 Sできる。
ここで発光層からの発光を陰極から取り出す場合、陰極の発光に対する透過率は 1 0%より大きくすることが好ましい。
また、陰極としてのシート抵抗は数百 Ω /口以下が好ましぐ膜厚は通常 10nm 1 μ m、好ましくは 50 200 である。
[0073] (8)絶縁層
有機 EL素子は超薄膜に電界を印可するために、リークやショートによる画素欠陥 が生じやすい。これを防止するために、一対の電極間に絶縁性の薄膜層を揷入する ことが好ましい。
絶縁層に用いられる材料としては例えば酸化アルミニウム、弗化リチウム、酸化リチ ゥム、弗化セシウム、酸化セシウム、酸化マグネシウム、弗化マグネシウム、酸化カル シゥム、弗化カルシウム、窒化アルミニウム、酸化チタン、酸化珪素、酸化ゲルマニウ ム、窒化珪素、窒化ホウ素、酸化モリブデン、酸化ルテニウム、酸化バナジウム等が 挙げられ、これらの混合物や積層物を用レ、てもよい。
[0074] (9)有機 EL素子の製造方法
以上例示した材料及び形成方法により陽極、発光層、必要に応じて正孔注入 '輸 送層、及び必要に応じて電子注入'輸送層を形成し、さらに陰極を形成することによ り有機 EL素子を作製することができる。また陰極から陽極へ、前記と逆の順序で有 機 EL素子を作製することもできる。
以下、透光性基板上に陽極/正孔注入層/発光層/電子注入層/陰極が順次 設けられた構成の有機 EL素子の作製例を記載する。
まず、適当な透光性基板上に陽極材料からなる薄膜を 1 μ m以下、好ましくは 10〜 200nmの範囲の膜厚になるように蒸着やスパッタリング等の方法により形成して陽極 を作製する。次に、この陽極上に正孔注入層を設ける。正孔注入層の形成は、前述 したように真空蒸着法、スピンコート法、キャスト法、 LB法等の方法により行うことがで きる力 均質な膜が得られやすぐかつピンホールが発生しにくい等の点から真空蒸 着法により形成することが好ましい。真空蒸着法により正孔注入層を形成する場合、 その蒸着条件は使用する化合物 (正孔注入層の材料)、 目的とする正孔注入層の結 晶構造や再結合構造等により異なるが、一般に蒸着源温度 50〜450°C、真空度 10— 7〜: 10— 3Torr、蒸着速度 0. 01〜50nm/秒、基板温度— 50〜300°C、膜厚 5nm〜 5 μ mの範囲で適宜選択することが好ましい。
次に、正孔注入層上に発光層を設ける発光層の形成も、所望の有機発光材料を 用いて真空蒸着法、スパッタリング、スピンコート法、キャスト法等の方法により有機発 光材料を薄膜化することにより形成できるが、均質な膜が得られやすぐかつピンホ ールが発生しにくい等の点から真空蒸着法により形成することが好ましい。真空蒸着 法により発光層を形成する場合、その蒸着条件は使用する化合物により異なるが、 一般的に正孔注入層と同じような条件範囲の中から選択することができる。
次に、この発光層上に電子注入層を設ける。正孔注入層、発光層と同様、均質な 膜を得る必要から真空蒸着法により形成することが好ましい。蒸着条件は正孔注入 層、発光層と同様の条件範囲から選択することができる。
本発明の含窒素複素環誘導体は、発光帯域ゃ正孔輸送帯域のレ、ずれの層に含 有させるかによつて異なるが、真空蒸着法を用レ、る場合は他の材料との共蒸着をす ることができる。また、スピンコート法を用いる場合は、他の材料と混合することによつ て含有させることができる。
最後に陰極を積層して有機 EL素子を得ることができる。
陰極は金属力 構成されるもので、蒸着法、スパッタリングを用いることができる。し 力 下地の有機物層を製膜時の損傷から守るためには真空蒸着法が好ましい。 この有機 EL素子の作製は一回の真空引きで一貫して陽極から陰極まで作製する ことが好ましい。
[0076] 本発明の有機 EL素子の各層の形成方法は特に限定されない。従来公知の真空 蒸着法、スピンコーティング法等による形成方法を用いることができる。本発明の有 機 EL素子に用いる、前記一般式(1)で示される化合物を含有する有機薄膜層は、 真空蒸着法、分子線蒸着法 (MBE法)あるいは溶媒に解力 た溶液のデイツビング 法、スピンコーティング法、キャスティング法、バーコート法、ロールコート法等の塗布 法による公知の方法で形成することができる。
本発明の有機 EL素子の各有機層の膜厚は特に制限されないが、一般に膜厚が薄 すぎるとピンホール等の欠陥が生じやすぐ逆に厚すぎると高い印加電圧が必要とな り効率が悪くなるため、通常は数 nmから 1 μ mの範囲が好ましい。
なお、有機 EL素子に直流電圧を印加する場合、陽極を +、陰極を一の極性にして 、 5〜40Vの電圧を印加すると発光が観測できる。また、逆の極性で電圧を印加して も電流は流れず、発光は全く生じない。さらに交流電圧を印加した場合には陽極が +、陰極が一の極性になった時のみ均一な発光が観測される。印加する交流の波形 は任意でよい。
実施例
[0077] 合成例 1 化合物(1)の合成
[化 24]
Figure imgf000038_0001
化合物 (1 )
[0078] (1 1)中間体 1の合成
4 クロ口一 3 ニトロべンゾニトリノレ 25g (0. 14mol)、酢酸ナトリウム 56g (0. 68 mol)、ァニリン 13g (0. 14mol)をカロえ、 8時間 120°Cで加熱攪拌した後、ジクロロメ タン 300mLに溶かし、水、飽和食塩水で順次洗浄した。無水硫酸マグネシウムで乾 燥し、溶媒を減圧留去した。シリカゲルカラムクロマトグラフィー(展開溶媒:ジクロロメ タン)にて精製し、得られた結晶をメタノールで洗浄し、中間体 1 30gを得た。収率 9 2%。
(1一 2)中間体 2の合成
中間体 1 30g (0. 13mol)をテトラヒドロフラン 300mLに溶解させ、アルゴン雰囲 気下、室温で攪拌しているところに、ハイドロサルファイトナトリウム 110g (0. 63mol) /水 20mLの溶液を滴下した。更にメタノール 10mLをカ卩えて、 3時間攪拌した。次 に、酢酸ェチル 200mLを加えて、炭酸水素ナトリウム 21g (0. 25mol) /水 lOOmL の溶液を加えた。更に 3 ョードベンゾイルクロリド 35g (0. 13mol) /酢酸ェチル 10 OmLの溶液を滴下し、室温で 3時間攪拌した。酢酸ェチルで抽出し、水、飽和食塩 水で順次洗浄した後、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去した。得られ た結晶をクロ口ホルム/へキサンで再結晶することにより中間体 2 50gを得た。収率 90%。
(1 3)中間体 3の合成
中間体 2 50g (0. l lmol)をキシレン 500mLに溶解させ、 p トルエンスルホン酸 一水和物 2. 2g (0. Ol lmol)を加え、窒素雰囲気下、 8時間加熱還流しながら共沸 脱水を行った。反応液を室温まで冷却した後、シリカゲルカラムクロマトグラフィー(展 開溶媒:ジクロロメタン)にて精製し、得られた結晶を、中間体 3 21gを得た。収率 43 %。
[化 25]
Figure imgf000039_0001
中間体 1 中間体 2 中間体 3 (1 -4) 化合物(1)の合成
アルゴン気流下 300mL三口フラスコに、中間体 3 21g (0. 049mol)、 10-ナフタ レン一 2_イノレーアントラセン一 9_ボロン酸 19g (0. 054mol)、テトラキストリフエ ニルホスフィンパラジウム(0) 1. 14g (0. 99mmol)、 1 , 2—ジメトキシェタン 160 mL、 2M炭酸ナトリウム水溶液 82mL (0. 16mol)をカ卩え、 8時間加熱還流した。反 応終了後、有機層を水洗し、硫酸マグネシウムで乾燥後、ロータリーエバポレーター で溶媒を留去した。得られた粗結晶を、トルエン 50mL、メタノーノレ lOOmLにて洗浄 し、淡黄色粉末 18gを得た。このものは、 FD— MS (フィールドデイソブーシヨンマス スペクトル)の測定により、化合物(1)と同定した (収率 61 %)
合成例 2 化合物(2)の合成
[化 26]
Figure imgf000040_0001
化合物(2)
(2— 1)中間体 4の合成
4—フノレ才ロ_ 3—ニトロベンヽノ'トリフノレ才リド 8g (0. 038モノレ)、酢酸ナトリウム 13g (0. 16モノレ)、ァニリン 3. 6g (0. 039mol)をカロえ、 8時間 120。Cでカロ熱携禅した後、 ジクロロメタン lOOmLに溶かし、水、飽和食塩水で順次洗浄した。無水硫酸マグネシ ゥムで乾燥し、溶媒を減圧留去した。シリカゲルカラムクロマトグラフィー (展開溶媒: ジクロロメタン)にて精製し、得られた結晶をメタノールで洗浄し、中間体 4 10gを得 た。収率 93%。
(2— 2)中間体 5の合成
中間体 4 5g (0. 017mol)をテトラヒドロフラン 60mLに溶解させ、アルゴン雰囲気 下、室温で攪拌しているところに、ハイドロサルファイトナトリウム 16g (0. 092mol) / 水 80mLの溶液を滴下した。更にメタノール 2mLを加えて、 3時間攪拌した。次に、 酢酸ェチル 60mLを加えて、炭酸水素ナトリウム 3g (0. 036mol) /水 60mLの溶液 をカ卩えた。更に 4_ョードベンゾイルクロリド 5g (0. 019mol) /酢酸ェチル 40mLの 溶液を滴下し、室温で 3時間攪拌した。酢酸ェチルで抽出し、水、飽和食塩水で順 次洗浄した後、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去した。得られた結晶 をクロ口ホルム/へキサンで再結晶することにより中間体 5 8. 4gを得た。収率 98%
(2— 3)中間体 6の合成
中間体 5 8. 4g (0. 017mol)をキシレン 90mLに溶解させ、 p—トルエンスルホン 酸一水和物 0. 38g (2. Ommol)をカ卩え、窒素雰囲気下、 8時間加熱還流しながら共 沸脱水を行った。反応液を室温まで冷却した後、シリカゲルカラムクロマトグラフィー( 展開溶媒:ジクロロメタン)にて精製し、得られた結晶をメタノールで洗浄し、中間体 6
4gを得た。収率 49%。
[化 27]
Figure imgf000041_0001
中間体 4 中間体 5 中間体 6
(2-4) 化合物(2)の合成
アルゴン気流下 300mL三口フラスコに、中間体 6 3g (6. 5mmol)、 10-ナフタレ ン _ 2_イノレーアントラセン一 9 _ボロン酸 2. 5g (7. 2mol)、テトラキストリフエ二 ルホスフィンパラジウム(0) 0. 15g (0. lmmol)、 1, 2—ジメトキシェタン 30mL、 2M炭酸ナトリウム水溶液 l lmL (0. 022mol)をカ卩え、 8時間加熱還流した。反応 終了後、有機層を水洗し、硫酸マグネシウムで乾燥後、ロータリーエバポレーターで 溶媒を留去した。得られた粗結晶を、トルエン 20mL、メタノーノレ 50mLにて洗浄し、 淡黄色粉末 4gを得た。このものは、 FD— MS (フィールドデイソブーシヨンマススぺク トル)の測定により、化合物(2)と同定した(収率 96%)
実施例 1 (本発明化合物を電子注入層に用いた有機 EL素子の作製) 25mm X 75mm X I . 1mm厚の ITO透明電極(陽極)付きガラス基板(ジォマティ ック社製)をイソプロピルアルコール中で超音波洗浄を 5分間行なった後、 UVオゾン 洗浄を 30分間行なった。洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の 基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に前記透明 電極を覆うようにして膜厚 60nmの N, N,一ビス(N, N'—ジフエニル一 4—ァミノフエ ニル)一 N, N—ジフエニル一 4, 4,一ジァミノ一 1 , 1,一ビフエニル膜(以下「TPD23 2膜」と略記する)を成膜した。この TPD232膜は、正孔注入層として機能する。 TPD 232膜の成膜に続けて、この TPD232膜上に膜厚 20nmの 4, 4,一ビス [N— (1— ナフチル) N フエニルァミノ]ビフエニル膜 (以下「NPD膜」と略記する)を成膜し た。この NPD膜は正孔輸送層として機能する。
[0084] さらに、この NPD膜上に膜厚 40nmで下記のアントラセン誘導体 A1とスチリルアミ ン誘導体 S1を 40 : 2の膜厚比で成膜し青色系発光層とした。
[化 28]
Figure imgf000042_0001
A S この膜上に電子輸送層として膜厚 20nmで化合物(1)を蒸着により成膜した。この 後、 LiFを膜厚 lnmで成膜した。この LiF膜上に金属 A1を 150nm蒸着させ金属陰極 を形成し有機 EL発光素子を形成した。
[0085] 実施例 2
実施例 1において、化合物(1)の代わりに、化合物(2)を用いた以外は同様にして 有機 EL素子を作製した。
[0086] 比較例 1
実施例 1において、化合物(1)の代わりに、国際公開公報 WO 2004/080975 A 1記載の下記化合物 Aを用いた以外は同様にして有機 EL素子を作製した。
[化 29]
Figure imgf000043_0001
化合物 A 比較例 2
実施例 1において、化合物(1)の代わりに、国際公開公報 WO 2004/080975 A 1記載の下記化合物 Bを用いた以外は同様にして有機 EL素子を作製した。
[化 30]
Figure imgf000043_0002
化合物 B
[0088] 比較例 3
実施例 1において、化合物(1)の代わりに、 Alq (8—ヒドロキシキノリンのアルミユウ ム錯体)を用いた以外は同様にして有機 EL素子を作製した。
[有機 EL素子の評価]
上記実施例:!〜 2及び比較例:!〜 3で得られた有機 EL素子について、下記表 1に 記載された直流電圧を印加した条件で、発光輝度、発光効率及び色度を測定し、発 光色を観察した。それらの結果を表 1に示す。
[0089] [表 1] 表 1
Figure imgf000044_0001
上記表 1の結果から、上記の化合物を電子輸送層に用いることで、極めて高い発光 輝度及び発光効率の素子を製造できることがわかる。

Claims

請求の範囲
下記一般式(1)で表される含窒素複素環誘導体。
Figure imgf000045_0001
{前記一般式(1)において、 〜 は、水素原子、置換もしくは無置換の核原子数 5 〜60のァリーノレ基、置換基を有していてもよいピリジル基、置換基を有していてもよ いキノリル基、置換もしくは無置換の炭素数 1〜50のアルキル基、置換もしくは無置 換の炭素数 3〜50のシクロアルキル基、置換もしくは無置換の核原子数 6〜50のァ ラルキル基、置換もしくは無置換の炭素数 1〜50のアルコキシ基、置換もしくは無置 換の核原子数 5〜50のァリールォキシ基、置換もしくは無置換の核原子数 5〜50の ァリールチオ基、置換もしくは無置換の炭素数 1〜50のアルコキシカルボニル基、置 換もしくは無置換の核原子数 5〜50のァリール基で置換されたァミノ基、ハロゲン原 子、シァノ基、ニトロ基、ヒドロキシル基又はカルボキシル基であり、
R3〜R6の隣り合う置換基の一組が互レ、に結合して芳香環を形成してレ、てもよく、 R3〜R6の少なくとも 1つはシァノ基またはパーフルォロアルキル基であり、
〜 の少なくとも 1つは下記一般式(2)で示される置換基である。
[化 2]
-—Ar^Ar2
(2)
(Lは、単結合、置換基を有していてもよい炭素数 6〜60のァリーレン基、置換基を有 していてもよいピリジニレン基、置換基を有していてもよいキノリニレン基、または置換 基を有してレ、てもよレ、フルォレニレン基であり、
Ar1は、置換基を有していてもよい炭素数 6〜60のァリーレン基、置換基を有してい てもよいピリジニレン基または置換基を有していてもよいキノリニレン基であり、
Ar2は、水素原子、置換もしくは無置換の核原子数 5〜60のァリール基、置換基を 有していてもよいピリジル基、置換基を有していてもよいキノリル基、置換もしくは無置 換の炭素数 1〜50のアルキル基、置換もしくは無置換の炭素数 3〜50のシクロアル キル基、置換もしくは無置換の核原子数 6〜50のァラルキル基、置換もしくは無置換 の炭素数 1〜50のアルコキシ基、置換もしくは無置換の核原子数 5〜50のァリール ォキシ基、置換もしくは無置換の核原子数 5〜50のァリールチオ基、置換もしくは無 置換の炭素数 1〜50のアルコキシカルボニル基、置換もしくは無置換の核原子数 5 〜50のァリール基で置換されたァミノ基、ハロゲン原子、シァノ基、ニトロ基、ヒドロキ シル基又はカルボキシル基である。 )}
一般式(1)で表される化合物が、下記一般式(1 a)又は(1 b)である請求項 1記 載の含窒素複素環誘導体。
[化 3]
Figure imgf000046_0001
{前記一般式(l a)及び(l—b)において、 R7〜R16は請求項 1の一般式(1)におけ る!^〜 と同じである。
前記一般式(l a)において、 R7〜R"の少なくとも 1つは一般式(2)で示される置 換基であり、前記一般式(l—b)において、 R12〜R16の少なくとも 1つは一般式(2)で 示される置換基である。
前記一般式(l a)において、 R1Qと R11の隣り合う置換基の一組が互いに結合して 芳香環を形成していてもよぐ前記一般式(1 b)において、 R15と R16の隣り合う置換 基の一組が互いに結合して芳香環を形成してレ、てもよレ、。 }
一般式(1)で表される化合物が、下記一般式(l _al)、 (l _a2)、 (l _bl)又は ( 1 -b2)である請求項 1記載の含窒素複素環誘導体。
[化 4]
Figure imgf000047_0001
( 1 一 b 1 ) ( 1 — b 2 )
{前記一般式(l _al)〜(: l _b2)において、 R"〜R "は請求項 1の一般式(1)にお ける Ri〜R6と同じである。
前記一般式(1— al)において、 R17〜R2Qの少なくとも 1つは一般式(2)で示される 置換基であり、前記一般式(1— a2)において、 R21〜R24の少なくとも 1つは一般式(2 )で示される置換基であり、前記一般式(1— bl)において、 R25〜R28の少なくとも 1つ は一般式(2)で示される置換基であり、前記一般式(1 b2)において、 R29〜R32の 少なくとも 1つは一般式(2)で示される置換基である。
前記一般式(l— al)におけ R19と R2Q、前記一般式(1 a2)における R23と R24、前記 一般式(l—bl)における R27と R28、又は前記一般式(l—b2)における R31と R32の隣り 合う置換基の一組が互いに結合して芳香環を形成してレ、てもよレ、。
L2〜L5は前記一般式(2)における Lと同じである。
Ar3〜Ar6は前記一般式(2)における Ar2と同じである。 }
[4] 有機エレクト口ルミネッセンス素子用材料である請求項 1〜3のいずれかに記載の 含窒素複素環誘導体。
[5] 有機エレクト口ルミネッセンス素子用電子注入材料又は電子輸送材料である請求 項:!〜 3のいずれかに記載の含窒素複素環誘導体。
[6] 有機エレクト口ルミネッセンス素子用発光材料である請求項 1〜3いずれかに記載 の含窒素複素環誘導体。
[7] 陰極と陽極間に少なくとも発光層を含む一層又は複数層からなる有機薄膜層が挟 持されている有機エレクト口ルミネッセンス素子において、該有機薄膜層の少なくとも
1層が、請求項 1〜3のいずれかに記載の含窒素複素環誘導体を単独もしくは混合 物の成分として含有する有機エレクト口ルミネッセンス素子。
[8] 前記有機薄膜層が電子注入層又は電子輸送層を有し、該電子注入層又は該電子 輸送層が、請求項 1〜3のいずれかに記載の含窒素複素環誘導体を単独もしくは混 合物の成分として含有する請求項 7に記載の有機エレクト口ルミネッセンス素子。
[9] 陰極と陽極間に少なくとも発光層を含む一層又は二層以上からなる有機薄膜層が 挟持されている有機エレクト口ルミネッセンス素子において、発光層に請求項 1〜3の いずれに記載の含窒素複素環誘導体を単独又は混合物の成分として含有する請求 項 7に記載の有機エレクト口ルミネッセンス素子。
[10] 電子注入材料又は電子輸送材料である請求項:!〜 3のいずれかに記載の含窒素 複素環誘導体に還元性ドーパントを含有することを特徴とする請求項 7に記載の有 機エレクト口ルミネッセンス素子。
[11] 還元性ドーパントが、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属 の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類 金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ 金属の有機錯体、アルカリ土類金属の有機錯体及び希土類金属の有機錯体からな る群から選択される 1種又は 2種以上の物質であることを特徴とする請求項 10に記載 の有機エレクト口ルミネッセンス素子。
PCT/JP2006/309343 2005-07-11 2006-05-09 電子吸引性置換基を有する含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子 WO2007007463A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007524529A JPWO2007007463A1 (ja) 2005-07-11 2006-05-09 電子吸引性置換基を有する含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
US11/995,400 US20090140637A1 (en) 2005-07-11 2006-05-09 Nitrogen-containing heterocyclic derivative having electron-attracting substituent and organic electroluminescence element using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005201903 2005-07-11
JP2005-201903 2005-07-11

Publications (1)

Publication Number Publication Date
WO2007007463A1 true WO2007007463A1 (ja) 2007-01-18

Family

ID=37636863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309343 WO2007007463A1 (ja) 2005-07-11 2006-05-09 電子吸引性置換基を有する含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子

Country Status (6)

Country Link
US (1) US20090140637A1 (ja)
JP (1) JPWO2007007463A1 (ja)
KR (1) KR20080028425A (ja)
CN (1) CN101223145A (ja)
TW (1) TW200704748A (ja)
WO (1) WO2007007463A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008096739A1 (ja) * 2007-02-06 2008-08-14 Sumitomo Chemical Company, Limited ベンゾイミダゾール化合物含有組成物及び該組成物を用いてなる発光素子
WO2009084543A1 (ja) * 2007-12-27 2009-07-09 Idemitsu Kosan Co., Ltd. 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
US8329914B2 (en) 2008-10-31 2012-12-11 Merck Sharp & Dohme Corp Cyclic benzimidazole derivatives useful as anti-diabetic agents
JP2013504884A (ja) * 2009-09-16 2013-02-07 メルク パテント ゲーエムベーハー 電子素子製造のための調合物
US8394969B2 (en) 2008-09-26 2013-03-12 Merck Sharp & Dohme Corp. Cyclic benzimidazole derivatives useful as anti-diabetic agents
US8410284B2 (en) 2008-10-22 2013-04-02 Merck Sharp & Dohme Corp Cyclic benzimidazole derivatives useful as anti-diabetic agents
WO2013009013A3 (ko) * 2011-07-08 2013-04-11 주식회사 엘지화학 새로운 화합물 및 이를 이용한 유기 전자 소자
US8563746B2 (en) 2008-10-29 2013-10-22 Merck Sharp & Dohme Corp Cyclic benzimidazole derivatives useful as anti-diabetic agents
US8895596B2 (en) 2010-02-25 2014-11-25 Merck Sharp & Dohme Corp Cyclic benzimidazole derivatives useful as anti-diabetic agents
KR101528241B1 (ko) * 2007-12-07 2015-06-15 삼성디스플레이 주식회사 방향족 복소환 화합물, 이를 포함한 유기막을 구비한 유기발광 소자 및 상기 유기발광 소자의 제조 방법
US9882135B2 (en) 2010-05-03 2018-01-30 Merck Patent Gmbh Formulations and electronic devices
US10490747B2 (en) 2010-05-03 2019-11-26 Merck Patent Gmbh Formulations and electronic devices

Families Citing this family (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8368062B2 (en) 2008-11-03 2013-02-05 Lg Chem, Ltd. Nitrogen-containing heterocyclic compound and organic electronic device using the same
US8415031B2 (en) 2011-01-24 2013-04-09 Universal Display Corporation Electron transporting compounds
US9929361B2 (en) 2015-02-16 2018-03-27 Universal Display Corporation Organic electroluminescent materials and devices
US11056657B2 (en) 2015-02-27 2021-07-06 University Display Corporation Organic electroluminescent materials and devices
US9859510B2 (en) 2015-05-15 2018-01-02 Universal Display Corporation Organic electroluminescent materials and devices
US10418568B2 (en) 2015-06-01 2019-09-17 Universal Display Corporation Organic electroluminescent materials and devices
US11127905B2 (en) 2015-07-29 2021-09-21 Universal Display Corporation Organic electroluminescent materials and devices
KR102112786B1 (ko) * 2015-08-19 2020-05-20 롬엔드하스전자재료코리아유한회사 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
US10672996B2 (en) 2015-09-03 2020-06-02 Universal Display Corporation Organic electroluminescent materials and devices
US20170229663A1 (en) 2016-02-09 2017-08-10 Universal Display Corporation Organic electroluminescent materials and devices
US9954187B2 (en) 2016-04-08 2018-04-24 Idemitsu Kosan Co., Ltd. Compound, organic electroluminescence device and electronic device
US10236456B2 (en) 2016-04-11 2019-03-19 Universal Display Corporation Organic electroluminescent materials and devices
US11482683B2 (en) 2016-06-20 2022-10-25 Universal Display Corporation Organic electroluminescent materials and devices
US10672997B2 (en) 2016-06-20 2020-06-02 Universal Display Corporation Organic electroluminescent materials and devices
US10862054B2 (en) 2016-06-20 2020-12-08 Universal Display Corporation Organic electroluminescent materials and devices
US10608186B2 (en) 2016-09-14 2020-03-31 Universal Display Corporation Organic electroluminescent materials and devices
US10680187B2 (en) 2016-09-23 2020-06-09 Universal Display Corporation Organic electroluminescent materials and devices
US11196010B2 (en) 2016-10-03 2021-12-07 Universal Display Corporation Organic electroluminescent materials and devices
US11011709B2 (en) 2016-10-07 2021-05-18 Universal Display Corporation Organic electroluminescent materials and devices
US20180130956A1 (en) 2016-11-09 2018-05-10 Universal Display Corporation Organic electroluminescent materials and devices
US10680188B2 (en) 2016-11-11 2020-06-09 Universal Display Corporation Organic electroluminescent materials and devices
US11780865B2 (en) 2017-01-09 2023-10-10 Universal Display Corporation Organic electroluminescent materials and devices
US10844085B2 (en) 2017-03-29 2020-11-24 Universal Display Corporation Organic electroluminescent materials and devices
US10944060B2 (en) 2017-05-11 2021-03-09 Universal Display Corporation Organic electroluminescent materials and devices
US12098157B2 (en) 2017-06-23 2024-09-24 Universal Display Corporation Organic electroluminescent materials and devices
US11228010B2 (en) 2017-07-26 2022-01-18 Universal Display Corporation Organic electroluminescent materials and devices
US11744142B2 (en) 2017-08-10 2023-08-29 Universal Display Corporation Organic electroluminescent materials and devices
US20190161504A1 (en) 2017-11-28 2019-05-30 University Of Southern California Carbene compounds and organic electroluminescent devices
EP3492480B1 (en) 2017-11-29 2021-10-20 Universal Display Corporation Organic electroluminescent materials and devices
US11937503B2 (en) 2017-11-30 2024-03-19 Universal Display Corporation Organic electroluminescent materials and devices
US11542289B2 (en) 2018-01-26 2023-01-03 Universal Display Corporation Organic electroluminescent materials and devices
US20200075870A1 (en) 2018-08-22 2020-03-05 Universal Display Corporation Organic electroluminescent materials and devices
US11737349B2 (en) 2018-12-12 2023-08-22 Universal Display Corporation Organic electroluminescent materials and devices
US11780829B2 (en) 2019-01-30 2023-10-10 The University Of Southern California Organic electroluminescent materials and devices
US20200251664A1 (en) 2019-02-01 2020-08-06 Universal Display Corporation Organic electroluminescent materials and devices
JP2020158491A (ja) 2019-03-26 2020-10-01 ユニバーサル ディスプレイ コーポレイション 有機エレクトロルミネセンス材料及びデバイス
US20210032278A1 (en) 2019-07-30 2021-02-04 Universal Display Corporation Organic electroluminescent materials and devices
US20210047354A1 (en) 2019-08-16 2021-02-18 Universal Display Corporation Organic electroluminescent materials and devices
US20210135130A1 (en) 2019-11-04 2021-05-06 Universal Display Corporation Organic electroluminescent materials and devices
US20210217969A1 (en) 2020-01-06 2021-07-15 Universal Display Corporation Organic electroluminescent materials and devices
US20220336759A1 (en) 2020-01-28 2022-10-20 Universal Display Corporation Organic electroluminescent materials and devices
EP4146639A1 (en) 2020-05-06 2023-03-15 Ajax Therapeutics, Inc. 6-heteroaryloxy benzimidazoles and azabenzimidazoles as jak2 inhibitors
EP3937268A1 (en) 2020-07-10 2022-01-12 Universal Display Corporation Plasmonic oleds and vertical dipole emitters
US20220158096A1 (en) 2020-11-16 2022-05-19 Universal Display Corporation Organic electroluminescent materials and devices
US20220162243A1 (en) 2020-11-24 2022-05-26 Universal Display Corporation Organic electroluminescent materials and devices
US20220165967A1 (en) 2020-11-24 2022-05-26 Universal Display Corporation Organic electroluminescent materials and devices
EP4267574A1 (en) 2020-12-23 2023-11-01 Ajax Therapeutics, Inc. 6-heteroaryloxy benzimidazoles and azabenzimidazoles as jak2 inhibitors
US20220271241A1 (en) 2021-02-03 2022-08-25 Universal Display Corporation Organic electroluminescent materials and devices
EP4060758A3 (en) 2021-02-26 2023-03-29 Universal Display Corporation Organic electroluminescent materials and devices
EP4059915A3 (en) 2021-02-26 2022-12-28 Universal Display Corporation Organic electroluminescent materials and devices
US20220298192A1 (en) 2021-03-05 2022-09-22 Universal Display Corporation Organic electroluminescent materials and devices
US20220298190A1 (en) 2021-03-12 2022-09-22 Universal Display Corporation Organic electroluminescent materials and devices
US20220298193A1 (en) 2021-03-15 2022-09-22 Universal Display Corporation Organic electroluminescent materials and devices
US20220340607A1 (en) 2021-04-05 2022-10-27 Universal Display Corporation Organic electroluminescent materials and devices
EP4075531A1 (en) 2021-04-13 2022-10-19 Universal Display Corporation Plasmonic oleds and vertical dipole emitters
US20220352478A1 (en) 2021-04-14 2022-11-03 Universal Display Corporation Organic eletroluminescent materials and devices
US20230006149A1 (en) 2021-04-23 2023-01-05 Universal Display Corporation Organic electroluminescent materials and devices
US20220407020A1 (en) 2021-04-23 2022-12-22 Universal Display Corporation Organic electroluminescent materials and devices
US20230133787A1 (en) 2021-06-08 2023-05-04 University Of Southern California Molecular Alignment of Homoleptic Iridium Phosphors
EP4151699A1 (en) 2021-09-17 2023-03-22 Universal Display Corporation Organic electroluminescent materials and devices
CN113831292A (zh) * 2021-10-13 2021-12-24 上海传勤新材料有限公司 一种含有苯并咪唑和蒽的有机电子传输材料及其应用
TW202334139A (zh) 2021-11-09 2023-09-01 美商雅捷可斯治療公司 作為jak2抑制劑之6-雜芳氧基苯并咪唑及氮雜苯并咪唑
US20240343970A1 (en) 2021-12-16 2024-10-17 Universal Display Corporation Organic electroluminescent materials and devices
EP4231804A3 (en) 2022-02-16 2023-09-20 Universal Display Corporation Organic electroluminescent materials and devices
US20230292592A1 (en) 2022-03-09 2023-09-14 Universal Display Corporation Organic electroluminescent materials and devices
US20230337516A1 (en) 2022-04-18 2023-10-19 Universal Display Corporation Organic electroluminescent materials and devices
US20230389421A1 (en) 2022-05-24 2023-11-30 Universal Display Corporation Organic electroluminescent materials and devices
EP4293001A1 (en) 2022-06-08 2023-12-20 Universal Display Corporation Organic electroluminescent materials and devices
US20240016051A1 (en) 2022-06-28 2024-01-11 Universal Display Corporation Organic electroluminescent materials and devices
US20240107880A1 (en) 2022-08-17 2024-03-28 Universal Display Corporation Organic electroluminescent materials and devices
US20240180025A1 (en) 2022-10-27 2024-05-30 Universal Display Corporation Organic electroluminescent materials and devices
US20240188316A1 (en) 2022-10-27 2024-06-06 Universal Display Corporation Organic electroluminescent materials and devices
US20240196730A1 (en) 2022-10-27 2024-06-13 Universal Display Corporation Organic electroluminescent materials and devices
US20240188419A1 (en) 2022-10-27 2024-06-06 Universal Display Corporation Organic electroluminescent materials and devices
US20240188319A1 (en) 2022-10-27 2024-06-06 Universal Display Corporation Organic electroluminescent materials and devices
US20240247017A1 (en) 2022-12-14 2024-07-25 Universal Display Corporation Organic electroluminescent materials and devices

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1121925B (de) * 1960-02-24 1962-01-11 Wolfen Filmfab Veb Verfahren zur Sensibilisierung von gegebenenfalls farbkupplerhaltigen Halofgensilberemulsionen mit Benzimidocarbocyaninen
JPH0649037A (ja) * 1992-03-26 1994-02-22 Neurosearch As イミダゾール化合物、その製造方法及びその使用方法
JPH072838A (ja) * 1993-03-24 1995-01-06 Neurosearch As ベンゾイミダゾール化合物及び中枢神経系疾患治療薬
JP2002038141A (ja) * 2000-07-28 2002-02-06 Fuji Photo Film Co Ltd 新規縮合へテロ環化合物、発光素子材料およびそれを使用した発光素子
WO2004080975A1 (ja) * 2003-03-13 2004-09-23 Idemitsu Kosan Co., Ltd. 新規含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP2005044790A (ja) * 2003-07-08 2005-02-17 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、照明装置および表示装置
JP2005289921A (ja) * 2004-04-01 2005-10-20 Mitsui Chemicals Inc アントラセン化合物、および該アントラセン化合物を含有する有機電界発光素子

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5645948A (en) * 1996-08-20 1997-07-08 Eastman Kodak Company Blue organic electroluminescent devices

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1121925B (de) * 1960-02-24 1962-01-11 Wolfen Filmfab Veb Verfahren zur Sensibilisierung von gegebenenfalls farbkupplerhaltigen Halofgensilberemulsionen mit Benzimidocarbocyaninen
JPH0649037A (ja) * 1992-03-26 1994-02-22 Neurosearch As イミダゾール化合物、その製造方法及びその使用方法
JPH072838A (ja) * 1993-03-24 1995-01-06 Neurosearch As ベンゾイミダゾール化合物及び中枢神経系疾患治療薬
JP2002038141A (ja) * 2000-07-28 2002-02-06 Fuji Photo Film Co Ltd 新規縮合へテロ環化合物、発光素子材料およびそれを使用した発光素子
WO2004080975A1 (ja) * 2003-03-13 2004-09-23 Idemitsu Kosan Co., Ltd. 新規含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP2005044790A (ja) * 2003-07-08 2005-02-17 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、照明装置および表示装置
JP2005289921A (ja) * 2004-04-01 2005-10-20 Mitsui Chemicals Inc アントラセン化合物、および該アントラセン化合物を含有する有機電界発光素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VERNER E. ET AL.: "Development of serine protease inhibitors displaying a multicentered short (<2.3A) hydrogen bond binding mode: Inhibitors of urokinase-type plasminogen activator and factor Xa", JOURNAL OF MEDICINAL CHEMISTRY, vol. 44, no. 17, 2001, pages 2753 - 2771, XP002320667 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214616A (ja) * 2007-02-06 2008-09-18 Sumitomo Chemical Co Ltd 組成物及び該組成物を用いてなる発光素子
WO2008096739A1 (ja) * 2007-02-06 2008-08-14 Sumitomo Chemical Company, Limited ベンゾイミダゾール化合物含有組成物及び該組成物を用いてなる発光素子
KR101528241B1 (ko) * 2007-12-07 2015-06-15 삼성디스플레이 주식회사 방향족 복소환 화합물, 이를 포함한 유기막을 구비한 유기발광 소자 및 상기 유기발광 소자의 제조 방법
US8945724B2 (en) 2007-12-27 2015-02-03 Idemitsu Kosan Co., Ltd. Nitrogen-containing heterocyclic derivative and organic electroluminescent device using the same
WO2009084543A1 (ja) * 2007-12-27 2009-07-09 Idemitsu Kosan Co., Ltd. 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP2017114864A (ja) * 2007-12-27 2017-06-29 出光興産株式会社 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP5783676B2 (ja) * 2007-12-27 2015-09-24 出光興産株式会社 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
US8394969B2 (en) 2008-09-26 2013-03-12 Merck Sharp & Dohme Corp. Cyclic benzimidazole derivatives useful as anti-diabetic agents
US8410284B2 (en) 2008-10-22 2013-04-02 Merck Sharp & Dohme Corp Cyclic benzimidazole derivatives useful as anti-diabetic agents
US8563746B2 (en) 2008-10-29 2013-10-22 Merck Sharp & Dohme Corp Cyclic benzimidazole derivatives useful as anti-diabetic agents
US8329914B2 (en) 2008-10-31 2012-12-11 Merck Sharp & Dohme Corp Cyclic benzimidazole derivatives useful as anti-diabetic agents
JP2013504884A (ja) * 2009-09-16 2013-02-07 メルク パテント ゲーエムベーハー 電子素子製造のための調合物
US9666806B2 (en) 2009-09-16 2017-05-30 Merck Patent Gmbh Formulations for the production of electronic devices
US10714691B2 (en) 2009-09-16 2020-07-14 Merck Patent Gmbh Formulations for the production of electronic devices
US8895596B2 (en) 2010-02-25 2014-11-25 Merck Sharp & Dohme Corp Cyclic benzimidazole derivatives useful as anti-diabetic agents
US9882135B2 (en) 2010-05-03 2018-01-30 Merck Patent Gmbh Formulations and electronic devices
US10490747B2 (en) 2010-05-03 2019-11-26 Merck Patent Gmbh Formulations and electronic devices
WO2013009013A3 (ko) * 2011-07-08 2013-04-11 주식회사 엘지화학 새로운 화합물 및 이를 이용한 유기 전자 소자

Also Published As

Publication number Publication date
US20090140637A1 (en) 2009-06-04
TW200704748A (en) 2007-02-01
CN101223145A (zh) 2008-07-16
KR20080028425A (ko) 2008-03-31
JPWO2007007463A1 (ja) 2009-01-29

Similar Documents

Publication Publication Date Title
WO2007007463A1 (ja) 電子吸引性置換基を有する含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP5317386B2 (ja) 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
KR101551591B1 (ko) 방향족 아민 유도체 및 그들을 이용한 유기 전기 발광 소자
WO2007102361A1 (ja) 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
WO2008072400A1 (ja) 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
WO2007018007A1 (ja) 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2007063993A1 (ja) 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2007007464A1 (ja) 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2008032631A1 (fr) Dérivé d&#39;amine aromatique et dispositif électroluminescent organique l&#39;employant
WO2007111263A1 (ja) 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2007100010A1 (ja) 有機エレクトロルミネッセンス素子
WO2006073054A1 (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2007017995A1 (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2007111262A1 (ja) 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2008023549A1 (fr) Dérivés d&#39;amines aromatiques et dispositifs électroluminescents organiques fabriqués à l&#39;aide de ces dérivés
WO2006001333A1 (ja) 多環芳香族系化合物、発光性塗膜形成用材料及びそれを用いた有機エレクトロルミネッセンス素子
WO2007080704A1 (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2007142216A1 (ja) 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス素子用材料
WO2006006505A1 (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2006114921A1 (ja) 芳香族トリアミン化合物及びそれを用いた有機エレクトロルミネッセンス素子
WO2006046441A1 (ja) 芳香族アミン化合物及びそれを用いた有機エレクトロルミネッセンス素子
WO2008059713A1 (en) Fluoranthene compound, organic electroluminescent device using the fluoranthene compound, and organic electroluminescent material-containing solution
WO2008062636A1 (en) Aromatic amine derivative and organic electroluminescent element using the same
WO2008001551A1 (fr) Dérivé d&#39;amine aromatique et dispositif a électroluminescence organique utilisant celui-ci
WO2007105448A1 (ja) ナフタセン誘導体及びそれを用いた有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680025397.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007524529

Country of ref document: JP

Ref document number: 1020087000891

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11995400

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 06746174

Country of ref document: EP

Kind code of ref document: A1