WO2007004747A1 - 内燃機関の排気浄化システム - Google Patents

内燃機関の排気浄化システム Download PDF

Info

Publication number
WO2007004747A1
WO2007004747A1 PCT/JP2006/313809 JP2006313809W WO2007004747A1 WO 2007004747 A1 WO2007004747 A1 WO 2007004747A1 JP 2006313809 W JP2006313809 W JP 2006313809W WO 2007004747 A1 WO2007004747 A1 WO 2007004747A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
catalyst
amount
exhaust
internal combustion
Prior art date
Application number
PCT/JP2006/313809
Other languages
English (en)
French (fr)
Inventor
Takahiro Oba
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005197911A external-priority patent/JP4135734B2/ja
Priority claimed from JP2005199130A external-priority patent/JP2007016692A/ja
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to CN200680023053.9A priority Critical patent/CN101208505B/zh
Priority to US11/921,579 priority patent/US20090044517A1/en
Priority to EP06780979A priority patent/EP1900928A4/en
Publication of WO2007004747A1 publication Critical patent/WO2007004747A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9495Controlling the catalytic process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • B01D46/44Auxiliary equipment or operation thereof controlling filtration
    • B01D46/46Auxiliary equipment or operation thereof controlling filtration automatic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/66Regeneration of the filtering material or filter elements inside the filter
    • B01D46/80Chemical processes for the removal of the retained particles, e.g. by burning
    • B01D46/84Chemical processes for the removal of the retained particles, e.g. by burning by heating only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/002Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/0235Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using exhaust gas throttling means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • F01N3/106Auxiliary oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2033Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using a fuel burner or introducing fuel into exhaust duct
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D41/0245Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus by increasing temperature of the exhaust gas leaving the engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2279/00Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses
    • B01D2279/30Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses for treatment of exhaust gases from IC Engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/02Catalytic activity of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/04Filtering activity of particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D41/0255Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus to accelerate the warming-up of the exhaust gas treating apparatus at engine start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an exhaust gas purification system for an internal combustion engine including an exhaust gas purification device configured to include a catalyst having an oxidation function.
  • Some exhaust gas purification systems for internal combustion engines include an exhaust gas purification device that includes a catalyst having an oxidation function.
  • the exhaust purification device that regenerates the exhaust purification capability of the exhaust purification device may be “warmed”.
  • the temperature of the exhaust gas exhausted from the internal combustion engine (hereinafter referred to as engine exhaust gas) is raised to raise the temperature of the catalyst to the activation temperature and to the activation temperature.
  • engine exhaust gas There is known a method of raising the temperature of an exhaust purification device by supplying a ⁇ 3 ⁇ 4 agent to a catalyst that has been heated to a low temperature.
  • Japanese Patent Laid-Open No. 2 0 1-2 2 7 3 8 in the internal combustion engine, the exhaust timing of the pilot injection and the main fuel injection is retarded after the top dead center of the compression stroke, thereby increasing the exhaust gas from the engine.
  • a simulation is disclosed in which fuel (g
  • No. 7-9 7 9 1 8 discloses a technique for closing an exhaust throttle valve provided downstream of the air purification device when the exhaust purification device is cooled.
  • Japanese Patent No. 2 0 0 3-8 3 0 2 9 discloses that particles collected by the particulate filter when the exhaust purification device is constituted by an oxidation catalyst and a particulate filter.
  • a technology for controlling the amount of reducing agent supplied to an oxidation catalyst based on the temperature of the oxidation catalyst during the execution of regeneration control for removing particulate substances has been disclosed.
  • the present invention has been made in view of the problem described above, and in an exhaust gas purification system for an internal combustion engine including an exhaust gas purification device configured to include a catalyst having an oxidation function, the temperature of the medium is increased more quickly.
  • the challenge is to provide edible technology.
  • the present invention relates to an exhaust gas purification system for an internal combustion engine that includes an exhaust gas purification device that includes a catalyst having an oxidation function.
  • an exhaust gas purification device that includes a catalyst having an oxidation function.
  • the exhaust gas flow control valve is controlled in the valve closing direction and suction is performed.
  • the air amount control valve is controlled in the valve opening direction. Further, the fuel injection timing in the internal combustion engine is retarded. These raise the temperature of the engine exhaust.
  • the exhaust gas purification system for an internal combustion engine according to the present invention is:
  • An exhaust purification device that is provided in the internal air passage of the ⁇ -function and includes an oxidation function catalyst
  • An intake air amount control valve for controlling the intake air amount of the internal combustion engine
  • An exhaust flow control valve for controlling an exhaust flow rate in the exhaust passage
  • An injection timing control hand for controlling the fuel injection timing in the internal combustion engine
  • a temperature raising means for raising the temperature of the catalyst and
  • the temperature raising means controls the self-exhaust exhaust flow control valve in the valve closing direction. Both control the intake air amount control valve in the valve opening direction, and further delay the fuel injection timing in the internal combustion engine by the self-injection control means, thereby warming the exhaust discharged from the internal combustion engine ra.
  • the opening of the exhaust flow control valve may be made as small as possible.
  • the opening of the p and intake air amount control valve may be made as large as possible, and the intake air amount is as large as possible. It is good also as the opening which becomes quantity.
  • the engine exhaust gas temperature can be further increased as the fuel injection timing is retarded within a range where the injected fuel burns.
  • the intake air amount is increased by controlling the P and intake air amount control valve in the valve opening direction, the exhaust flow rate also increases. Therefore, it is possible to increase the energy supplied to the catalyst more than when the intake air amount control valve is controlled in the valve closing direction.
  • the fuel injection amount can be increased.
  • the temperature of the machine exhaust can be further increased.
  • the catalyst due to the increase in the 5S angular amount of the fuel injection timing and the increase in the exhaust flow as described above.
  • the temperature rise is larger.
  • the temperature of the catalyst can be raised more rapidly.
  • the fuel injection in the internal combustion engine is performed at a time after the main fuel injection and after the main fuel injection, and when the injected fuel is supplied to the bunker. It may be performed for the auxiliary fuel injection to be executed.
  • the main fuel injection timing force is angled and delayed, and the secondary fuel injection is executed after the main fuel injection.
  • the main fuel injection timing can be retarded for the above reason, and the interval between the main fuel injection execution timing and the sub fuel injection execution timing can be made longer.
  • the temperature of the engine exhaust gas can be further increased as the auxiliary fuel injection timing is reached in the range r3 ⁇ 4 where the injected fuel burns. Therefore, in the above case, the interval between the execution timing of the main fuel spray and the execution timing of the auxiliary fuel injection! ⁇ May be made as long as possible. In other words, the auxiliary fuel spray timing may be delayed as much as possible. As a result, the temperature of the engine exhaust can be further increased.
  • the temperature raising means or the catalyst may be heated to the activation temperature.
  • the s3 ⁇ 4 agent supply means for supplying the reducing agent to the catalyst, the temperature estimation means for estimating the temperature of the catalyst, and the regeneration control for regenerating the exhaust conflicting ability of the air purifier when a prescribed condition is satisfied.
  • the re-heating means raises the temperature of the catalyst to the activation temperature by the temperature raising means and further raises the temperature of the exhaust gas purification device by supplying the reducing agent to the catalyst by the reducing agent supply means.
  • the solvent is supplied to the medium whose temperature has been raised to the degree of activity by the temperature raising means.
  • the exhaust purification device is further warmed by the oxidation heat generated by oxidizing the supplied soot.
  • the temperature of the exhaust purification device can be raised more quickly by increasing the amount of the agent supplied to the catalyst as much as T.
  • the amount of the agent supplied to the catalyst becomes a small amount, the reducing agent may be released into the atmosphere without being oxidized by the catalyst.
  • the oxidation ability of the catalyst varies depending on the degree of deterioration of the catalyst. In other words, the greater the degree of touch deterioration, the less likely the oxidation of the S 3 ⁇ 4 agent in the catalyst. Therefore, the catalyst is inferior during regeneration control. It is necessary to control the amount of the reagent supplied to the catalyst according to the degree of conversion.
  • the deterioration degree estimating means for estimating the degree of deterioration of the catalyst
  • the supply amount control means for controlling the amount of reducing agent supplied to the catalyst at the time of regeneration control based on the degree of deterioration of the catalyst
  • the deterioration degree estimator raises the catalyst to the activation temperature by the temperature raising means before the prescribed condition is satisfied when the operating state of the internal combustion engine is idling.
  • M reducing agent is supplied to the catalyst by the reducing agent supply means, and the degree of deterioration of the catalyst is estimated based on the temperature rise rate of the catalyst when the reducing agent is supplied.
  • the rate of temperature increase of the 13 ⁇ 4 catalyst decreases as the degree of catalyst deterioration increases. Therefore, it is possible to estimate the degree of deterioration of the sole solvent based on the temperature rising rate of the catalyst.
  • the degree of deterioration of the catalyst is estimated when the operating ⁇ state of the internal combustion engine is idling, the degree of inferiority can be estimated with higher accuracy.
  • the time for raising the temperature of the ft medium to the activation temperature becomes longer, the time required for maintaining the degree of deterioration of the catalyst becomes longer. In this case, it may be difficult to estimate the degree of deterioration of the catalyst while the internal combustion engine is idling.
  • the inferiority / degree-of-adjustment estimation means raises the temperature of the catalyst to the activation temperature by the above-described temperature raising means.
  • the time required for estimating the degree of deterioration of the catalyst can be shortened.
  • the deterioration degree of the catalyst can be estimated with higher accuracy. Then, before the predetermined condition is satisfied, that is, before the regeneration control is executed, the degree of deterioration of the catalyst is estimated, and the iS3 ⁇ 4 agent supply amount to the catalyst when the regeneration control is executed is controlled based on the degree of deterioration.
  • the reducing agent supply & ft can be controlled more accurately. As a result, it is possible to perform regeneration control in a shorter time while suppressing the release of medium to medium.
  • the catalyst when the reducing agent supply means, the temperature estimation means, and the regeneration means similar to the above are provided, the catalyst when the agent is supplied to the catalyst at the time of the regeneration control by the regeneration means If the temperature change range of the engine is greater than or equal to a predetermined value, the temperature of the engine exhaust gas may be increased.
  • the reducing agent may be locally oxidized. As a result, the temperature of the catalyst becomes unstable, and there is a possibility that the range of change in the inching of the temperature becomes larger. At this time, if the variation range of the temperature of the catalyst becomes too large, the variation range of the temperature of the exhaust gas flowing into the exhaust purification device also increases, which may cause an excessive temperature rise of the exhaust purification device.
  • the change in catalyst temperature ⁇ ⁇ is the difference between the upper limit temperature and the lower limit temperature during the temperature V of the catalyst.
  • the predetermined value means that when the change in the temperature of the catalyst exceeds the predetermined value, the change in the temperature of the exhaust gas flowing into the exhaust gas purification device becomes large, thereby causing the exhaust purification device to overheat. There is a value smaller than the threshold value that can be judged to be S.
  • the amount of the agent that can be stably oxidized with respect to the catalyst varies depending on the temperature of the catalyst when the reagent is supplied. That is, the higher the temperature of the catalyst, the more stable the ability to oxidize more of the 5 agent.
  • the temperature of the catalyst is further increased by further raising the temperature of the engine exhaust gas. This makes it possible to stably oxidize more of the reagent in the catalyst. As a result, it is possible to reduce or reduce the variation range of the temperature of the catalyst when the reagent is supplied.
  • the temperature of the catalyst at the time of performing regeneration can be further stabilized. Thereby, the excessive temperature rise of the exhaust emission control device can be suppressed.
  • the deterioration degree estimating means detects the temperature of the engine exhaust exhaust gas until the change width of the catalyst becomes smaller than a predetermined value.
  • the degree of deterioration of the catalyst may be estimated based on the temperature rise amount of the exhaust gas when the engine is made higher.
  • the temperature of the catalyst can be raised by raising the temperature of the engine exhaust.
  • the amount of the agent that can be stably oxidized in the catalyst varies depending on the degree of deterioration of the catalyst. That is, even if the temperature of the catalyst is the same, the greater the degree of deterioration of the catalyst, the smaller the amount of reducing agent capable of stable oxidation.
  • the degree can be estimated.
  • the exhaust emission control device includes a particulate filter (hereinafter simply referred to as a filter) that collects particulate matter (hereinafter referred to as PM) in the exhaust gas.
  • a particulate filter hereinafter simply referred to as a filter
  • PM particulate matter
  • the catalyst is arranged on the upstream side, the pressure difference between the upstream side of the filter in the exhaust passage and the downstream side of the filter in the exhaust passage (hereinafter referred to as the front)
  • a differential pressure detection means for detecting the collected pressure in the filter based on the # ⁇ 3 ⁇ 43 ⁇ 4 pressure detected by the differential pressure detection means, and a collected amount in the filter
  • fill recovery means for executing fill recovery control for oxidizing and removing the generated soot.
  • the filter evening regeneration means executes the filter regeneration soot I ⁇ when the soot collection amount estimated by the collection amount estimating means becomes equal to or greater than the specified collection amount.
  • the filter regeneration f3 ⁇ 4J is performed by raising the temperature of the catalyst to the activation temperature by the temperature raising means and supplying the reagent to the catalyst by the reducing agent supply means to bring the filter to the PM oxidation temperature. This is done by raising the temperature.
  • the specified collection amount is an amount that is less than the lower limit of the collection amount, which has an effect on the operation state of the inner coast, and when the PM: 3 ⁇ 4s' oxidation occurs, The amount is less than the lower limit of the trapped amount that may be missed.
  • PM oxidation ⁇ Jt is the oxidation of PM collected in Phil evening. This is a possible temperature.
  • filter regeneration control is started when the PM collection estimated by the ura collection estimation means exceeds the specified collection.
  • the pre-pressure is less likely to rise compared to when the PM is collected on the cell wall of the filter (hereinafter referred to as the inside of the filter).
  • the amount of collected PM estimated by the collected amount estimating means may be smaller than the actual amount of collected PM.
  • the specified trapping amount is an amount in the vicinity of the lower limit of the trapping amount that has an excessive influence on the operating state of the internal combustion engine, or when the PM is oxidized, If the amount of trapping is set to the lower limit of the trapping amount that may raise the temperature, the actual trapping amount of PM may be excessive. In addition, if the specified collection amount is set to a smaller amount, the actual degree of fill recovery control may be higher.
  • an HC amount estimating means for estimating the amount of HC adhering to the upstream end face of the filter and an HC removing means for removing HC adhering to the upstream end face of the filter may be further provided.
  • the HC removing means is touched by the temperature raising step when the operating state of the internal combustion engine is idling and becomes equal to or more than the HC attached amount force prescribed attached amount estimated by the HC amount estimating means.
  • the temperature of the medium is raised to the active temperature, and the filter is raised to the HC oxidation temperature lower than the PM oxidation temperature by supplying the reagent to the catalyst by the is reagent supply means. This removes HC adhering to the upstream end face of the fill.
  • the specified adhesion amount is a predetermined amount, and may be an amount smaller than the lower limit value of the HC adhesion amount that facilitates collection of soot.
  • the HC oxidation temperature is a temperature at which the HCC oxidation that adheres to the upstream end face of the filler can be performed. Since HC is more easily oxidized than PM, the HC oxidation temperature is lower than the PM oxidation temperature. When the inner thigh function is idling, the HC force S tends to adhere to the upstream end face of the recumbent fill that has a relatively low exhaust temperature.
  • the HC removal means is the temperature raising means raised when the operating state of the internal combustion engine is idling and the HC sticking amount estimated by the HC amount estimation means exceeds the specified adhesion amount.
  • the filter is heated up to the HC oxidation temperature by supplying the M3 ⁇ 4 agent to the catalyst through the S agent supply means.
  • the temperature raising means By raising the temperature of the catalyst to the activation temperature by the temperature raising means, the time required to raise the temperature of the filter to the HC oxidation temperature can be further shortened. As a result, it is possible to remove HC while the operating state of the internal combustion engine is idling.
  • the HC is removed when the HC adhesion amount on the upstream side end face of the fill evening exceeds the prescribed adhesion amount.
  • the HC adhesion amount on the upstream side end face of the fill evening exceeds the prescribed adhesion amount.
  • a catalyst when the exhaust emission control device has a filter, a catalyst may be placed on the upper side of the filter and the catalyst may be held in the filter.
  • a filter regenerating unit for performing a filter regeneration control for oxidizing and removing PM collected in the fillet, and supplying a catalyst to the catalyst from the upstream side of the exhaust purification device.
  • This filter regeneration means raises the filter to the PM oxidation temperature by raising the temperature of the catalyst to the activation temperature by the above-described temperature raising means, and supplying the agent to the catalyst by the reagent supply means. Raise the temperature.
  • the exhaust flow control valve is controlled in the valve closing direction.
  • the flow rate of the exhaust gas passing through the exhaust gas purification device is smaller than when the air flow control valve is controlled in the valve opening direction.
  • the agent When the agent is supplied from the agent means in a state where the flow rate of the exhaust gas passing through the exhaust purification device is relatively small, compared to the case where the flow rate of the exhaust gas is relatively high, the catalyst disposed upstream of the filter The reducing agent is easily oxidized. In other words, it is difficult for the reagent to pass through the catalyst arranged upstream of the fill. Therefore, it is difficult to supply the reducing agent to the catalyst placed on the filter. As a result, the temperature rise rate of the filter may decrease.
  • the intake air amount control valve is opened after the catalyst temperature reaches the activation temperature.
  • the exhaust flow control valve is also controlled in the valve opening direction.
  • the specified air amount is the flow rate of the exhaust gas that passes through the exhaust emission control device in which the reducing agent is difficult to be supplied to the catalyst carried on the filter when the exhaust gas flow rate control is controlled in the valve closing direction.
  • the value is equal to or greater than the upper limit of the intake air volume that can be judged to be low.
  • This prescribed air amount is a value determined in advance by experiments or the like.
  • the flow rate of the exhaust gas passing through the exhaust purification device can be increased.
  • the temperature of the filter can be raised more quickly.
  • the flow rate of the exhaust gas passing through the exhaust purification device is increased by controlling the intake air amount control valve and the exhaust flow rate control valve in the valve opening direction, the amount of heat taken away increases.
  • the temperature of the catalyst disposed upstream from the filter may be lower than the activation temperature. In such a case, the exhaust flow control valve may be controlled again in the valve closing direction.
  • FIG. 1 is a diagram showing a schematic configuration of an intake and exhaust system of an internal combustion engine according to an embodiment.
  • FIG. 2 is a flowchart showing a control routine of the exhaust gas temperature raising control according to the embodiment L.
  • FIG. 3 is a flowchart illustrating a control routine for deterioration degree estimation control according to the second embodiment.
  • FIG. 4 is a flowchart illustrating a control routine of HC removal control according to the third embodiment.
  • FIG. 5 is a flowchart showing a control routine of fill recovery IJ according to the fourth embodiment.
  • FIG. 6 is a graph showing the relationship between the temperature of the oxidation catalyst and the amount of fuel added from the fuel addition valve.
  • FIG. 7 is a flowchart showing a control routine for filter regeneration fj according to the fifth embodiment.
  • FIG. 1 is a diagram showing a schematic configuration of an intake / exhaust system of an internal combustion engine according to the present embodiment.
  • Inner Guanguan 1 is a diesel engine for vehicles.
  • An intake passage 3 and an exhaust passage 2 are connected to the internal combustion engine 1.
  • a air flow meter and a throttle valve 8S are provided in the intake passage 3.
  • the exhaust passage 2 is provided with a particulate filter 4 (hereinafter simply referred to as “fill evening 4”) that collects soot in the exhaust.
  • a particulate filter 4 hereinafter simply referred to as “fill evening 4”
  • an acid catalyst 5 is provided in the exhaust passage 2 on the flow side from the filter 4.
  • the oxidation catalyst 5 may be any catalyst having an oxidation function, for example, m
  • It may be a St type N O X catalyst.
  • a fuel addition valve 6 for adding fuel to the exhaust gas is provided in the exhaust gas upstream side 2 upstream of the oxidation catalyst 5.
  • An exhaust throttle valve 9 is provided in the air passage 2 downstream of the fill evening 4.
  • the exhaust passage 2 is provided with a differential pressure sensor 11 that outputs an electric signal corresponding to the pressure difference in the exhaust passage 2 before and after the filter 4.
  • a pressure sensor 13 for outputting an air signal corresponding to the pressure in the exhaust passage is provided upstream of the oxidation catalyst 5 in the exhaust passage 2.
  • An upper temperature sensor 12 and a flow side temperature sensor 16 for outputting electrical signals are provided.
  • the internal combustion engine 1 configured as described above is provided with an insulator control unit (ECXJ) 10 for controlling the internal combustion engine M 1.
  • This ECU 10 is a unit that controls the operating condition I of the internal combustion engine 1 according to the operating conditions of the internal combustion engine 1 and the demands of the driver.
  • ECU10 t This is an air flow sensor and differential pressure sensor 11, pressure sensor 13, upper temperature sensor 12, downstream temperature sensor 16, A crank position sensor 14 that outputs a signal t and an accelerator position sensor 15 force S that electrically applies an electric signal corresponding to the accelerator position of a vehicle equipped with the internal combustion engine 1 are electrically connected. These output signals are input to the ECU 10.
  • the ECU 10 calculates the internal combustion engine 1 €> the rotational speed (hereinafter simply referred to as the engine rotational speed) based on the detection value of the crank position sensor 14, and the internal combustion engine 1 of the internal combustion engine 1 based on the detection value of the accelerator opening sensor 15. Calculate the load. Further, the ECU 10 estimates the temperature of the oxidation catalyst 5 based on the detected value of the upstream temperature sensor 12 and estimates the value of the filter 4 based on the detected value of the downstream temperature sensor 17. Further, the ECU 10 estimates the PM collection amount in the filter 4 based on the detection value of the differential pressure sensor 11 D
  • the ECU 10 is connected to the slot relay valve 8, the fuel addition valve 6, the exhaust throttle valve 9, and the fuel injection valve of the internal combustion engine Ml to the electrical ⁇ 3 ⁇ 4. These are controlled by the ECU 10.
  • the filter regeneration control is started to oxidize and remove the soot.
  • the first specified amount is The amount is less than the amount of trapping that has a significant impact on the operating state, and is less than the amount of trapping that can cause excessive temperature rise when the filter reaches 4M. .
  • This first specified amount is determined in advance by experiments or the like.
  • the exhaust gas temperature raising control is executed to raise the temperature of the engine exhaust air, thereby raising the temperature of the oxidation catalyst 5 to the activation temperature. Then, by adding fuel from the fuel addition valve 6, the fuel is supplied as a 51 agent to the oxidation catalyst 5 in the active state. At this time, the temperature is raised to the 4 PM oxidation temperature by the oxidation heat generated by oxidizing the fuel force S in the oxidation catalyst 5. As a result, PM force S is oxidized and removed.
  • the PM oxidation temperature is a temperature at which the oxidizing power S of PM is positive and the overheating power S of the filter 4 is suppressed.
  • the second specified amount is an amount that is smaller than the first specified amount, and is a threshold value that can be determined that it will take some time before the pM trapping amount becomes the first specified amount again. .
  • This second specified amount is also a predetermined amount by experiment or the like.
  • the exhaust gas temperature raising control according to this embodiment will be described.
  • the exhaust throttle valve 9 is controlled in the valve closing direction and the throttle valve 8 is controlled in the soot valve direction.
  • the degree of the exhaust throttle valve 9 is made as small as possible, and the opening degree of the throttle valve 8 is made as large as possible.
  • the main fuel injection timing in the inner cylinder 1 is retarded and the auxiliary fuel injection is executed.
  • the auxiliary fuel injection is performed at a time earlier than the main fuel injection time in the combustion cycle, and when the injected fuel is used for combustion.
  • the in-cylinder pressure of the internal combustion engine 1 can be made as high as possible.
  • the fuel cup easily burns in the cylinder, so the main fuel injection timing and the J fuel injection timing can be delayed to a later timing. Therefore, it is possible to make the engine exhaust and exhaust # more. Further, since the exhaust flow rate is increased by controlling the throttle 8 in the valve opening direction, the energy supplied to the oxidation catalyst 5 can be further increased.
  • FIG. 2 is a flowchart showing a control routine for exhaust gas temperature raising control according to this embodiment.
  • This routine is stored in advance in the ECU 10 and is executed at regular intervals during the operation of the internal combustion engine 1.
  • the ECU 10 first determines in S 101 whether or not an execution condition force for the exhaust gas temperature raising control is satisfied.
  • the exhaust gas temperature raising control execution condition is equal to or less than the first specified amount of PM trapping force in the filter 4. If an affirmative determination is made in S101, the ECU 10 proceeds to S102, and if a negative determination is made, the ECU 10 once terminates the execution of this routine.
  • the ECU 10 controls the exhaust kill valve 9 in the valve closing direction and controls the throttle and throttle valve 8 in the valve opening direction.
  • the ECU 10 proceeds to S103fc, and determines whether or not the engine speed is lower than the requested engine speed Ne (hereinafter referred to as the “globe engine speed Net”). If an affirmative determination is made in S103, the ECU 10 determines that the engine speed Ne has become lower than the required engine speed Net by the control in S102, and the ECLJ10 proceeds to S114. On the other hand, if the negative determination is made in S103 [ECU 10], the ECU 10 proceeds to S104.
  • the ECU 10 that has advanced to S 114 increases the main fuel injection quantity Qm in the ⁇ -function 1 that increases the engine HI rotation. Thereafter, the ECU 10 returns to S103.
  • the ECU 10 that has proceeded to S 104 determines that the retard amount ⁇ tm of the main fuel injection timing and the increase amount of the sub fuel injection amount a in S 107 ⁇ 3 ⁇ 4!
  • the retard amount ⁇ ta of the injection timing is calculated based on the detection value of the pressure sensor 13.
  • the ECU 10 proceeds to S105, sets the fuel injection timing to the 3 @ angle amount ⁇ tm calculated in S104, and executes sub fuel injection. At this time, the auxiliary fuel injection amount and the fuel injection time are determined based on the temperature of the oxidation catalyst 5 at the present time.
  • the ECU 10 proceeds to SI 06 and determines whether or not the engine speed N e is lower than the required engine speed N et. If an affirmative determination is made in S106, the ECU 10 determines that the engine speed Ne has become lower than the required engine speed Net by the control in S105, and proceeds to S115. On the other hand, if a negative determination is made in S106, the ECUIO advances to S107.
  • the ECU 10 increases the main fuel injection amount Qm in the inner coast 1 where the engine speed is increased. Thereafter, ECUL 0 returns to S106.
  • the ECU 10 increases the auxiliary fuel injection amount by the increase amount ⁇ Qa calculated in S104.
  • the ECU 10 proceeds to S108, and determines whether or not the engine speed Ne force is higher than the S-required engine speed Net. If a positive determination is made in S108, the ECU 10 determines that the engine speed Ne has become higher than the required engine speed Net by the control in S107, and proceeds to S1L6. On the other hand, if a negative determination is made in S108, the ECU 10 proceeds to S109.
  • the ECU 10 reduces the main fuel injection amount Qm in the internal combustion engine 1 that reduces the engine ⁇ rotation speed. Thereafter, the ECU 10 returns to S108.
  • the ECU 1 O proceeds to S 110 and determines whether or not the engine speed N e is lower than the required engine speed N et. If an affirmative determination is made in S110, the ECU 10 determines that the engine speed Ne has become lower than the required engine speed Net by the control in S109, and proceeds to S1] _7. On the other hand, if a negative determination is made in S 11 O, the ECU 10 proceeds to S 111.
  • the ECU 10 that has proceeded to S117 increases the main fuel injection quantity Qm at the inner coast 1 where the engine 13 speed is increased. Thereafter, E CU IL 0 returns to S110.
  • the ECU 10 having proceeded to S 111 determines whether or not the temperature T c of the oxidation sole 5 is equal to or higher than the lower limit value T c 0 of the activation temperature. If an affirmative determination is made in S111, the ECU 10 proceeds to S112, and if a negative determination is made, the ECU10 returns to S104. In the case of filter regeneration control, Thus, if an affirmative determination is made in SI 11, that is, if the oxidation catalyst 5 3 ⁇ 4 is activated, the ECU 10 performs fuel addition from the fuel addition valve 6.
  • ECU 1 0 determines whether or not the stop condition of the exhaust gas temperature raising control has been established.
  • the exhaust temperature control execution condition is that the trapped amount in the filter 4 is equal to or less than the second specified amount.
  • ECU 1 0 proceeds to S 1 1 3. If a negative determination is made, ECU 1 0 repeats S 1 1 2.
  • E C U 10 stops the exhaust gas temperature raising control. That is, the sub fuel injection is stopped and the main fuel injection timing and the main fuel injection amount are returned to the normal timing and amount. Thereafter, E C U 10 once terminates execution of this routine.
  • the main fuel injection timing and the soot fuel injection timing are retarded as much as possible. Also, the auxiliary fuel injection amount is increased as much as possible. As a result, the temperature of the engine exhaust can be further increased. Further, since the exhaust flow rate is increased by controlling the throttle valve 8 in the valve opening direction, the energy supplied to the oxidation catalyst 5 increases.
  • an occlusion reduction type NOx catalyst (hereinafter referred to as N0x catalyst) may be provided in place of the filter 4.
  • N0x catalyst an occlusion reduction type NOx catalyst
  • 30 poisoning recovery control is performed to obtain 3 0 stored in the 1 ⁇ 0 catalyst.
  • Degradation degree estimation control In the present embodiment, the same filter regeneration control as in the first embodiment is performed. As described above, in the fill regeneration control, fuel is added to the oxidation catalyst 5 by adding fuel from the fuel addition valve 6. At this time, the greater the deterioration degree power of the oxidation catalyst 5, the more difficult it is to produce fuel in the oxidation catalyst 5. Therefore, in this embodiment, the deterioration degree estimation ⁇ ⁇ is executed to estimate the deterioration degree of the oxidation catalyst 5. Based on the estimated degree of deterioration, the amount of fuel added from the fuel addition valve 6 when the filter regeneration control is executed is controlled.
  • This routine is stored in advance in the ECU 10 and is executed at regular intervals while the internal combustion engine 1 is in operation.
  • the ECU 10 first determines in S 201 whether or not the operating state of the internal combustion engine 1 is idling. If an affirmative determination is made in S201, the ECU 10 proceeds to 3202, and if a negative determination is made, the ECU 10 once ends this relayin execution.
  • the ECU 10 determines whether or not the PM collection amount Qpm force in the file 4 has reached the S third specified collection amount Qpm 3 or more.
  • the third specified collection amount Q pm 3 is an amount that is slightly smaller than the above-mentioned first specified collection amount Q pm 1 and is a predetermined amount.
  • the P Mii collection amount Q pm reaches the third specified collection amount Qpm3 or more, it can be determined that it is just right to execute the fill recovery “ij”.
  • the ECU 10 proceeds to S203, and if a negative determination is made, the ECU 10 once terminates execution of this routine.
  • the ECU 10 executes the exhaust gas temperature raising control similar to that in Example 1.
  • the exhaust gas temperature raising control is executed under the condition that the operation state of the inner bridge 1 is idling, and the P Mi collection amount Q pm force S third regulation collection amount Q pm 3 or more Is Rukoto.
  • the ECU 10 proceeds to S204 and determines whether or not the temperature T c activation temperature of the oxidation catalyst 5 is equal to or higher than the lower limit value c 0. If an affirmative determination is made in S204, the ECU 10 proceeds to S205, and if a negative determination is made, the ECU10 returns to S203.
  • the ECU 10 adds the fuel from the fuel addition valve 6 for a specified time.
  • the addition of the fine material means that a predetermined amount of fuel is added so that the amount released is within the allowable range even when the fuel is released into the atmosphere.
  • the specified time is a predetermined time which is a power time for calculating the temperature rising rate R tup of the oxidation catalyst 5.
  • the fuel addition from fuel addition 6 is stopped when the specified time has elapsed after the start of the addition of fine ⁇ material. Also, the exhaust gas temperature raising control is stopped simultaneously with the stop of the fuel addition. In this case, is the stop condition for the exhaust gas temperature raising control the specified time after the start of the addition of the micro-material? It is to elapse.
  • the ECU 10 proceeds to S 2 0 6 and calculates the temperature increase rate R t up of the oxidation catalyst 5 during the time when the micro fuel-added calorie was executed in S 2 0 5.
  • ECU I O proceeds to S 2 07 and calculates the degree of inferiority based on the temperature increase rate R t up of the oxidation catalyst 5. Since the degree of deterioration of the acid catalyst 5 is as follows: ⁇ : As the temperature rise rate R tup is slower, the degree of deterioration can be calculated based on the temperature rise rate Rtup.
  • the degree of oxidation of the oxidation catalyst 5 is calculated as a correction coefficient for correcting the amount of fuel added from the fuel addition valve 6 when the filter regeneration control is executed.
  • the relationship between the correction coefficient and the temperature rise rate R tup of the oxidation catalyst 5 is stored in advance in the ECU 10 as a map. After calculating the degree of deterioration of the oxidized catalyst 5, ECU 20 temporarily ends the cooling of this routine.
  • the temperature of the oxidation catalyst 5 is raised to the activation temperature by the exhaust gas temperature raising control similar to that in the first embodiment.
  • the time required for the deterioration degree estimation control can be further shortened.
  • the degree of deterioration of the oxidation catalyst 5 can be estimated with higher accuracy.
  • the amount of fuel added from the fuel addition valve 6 in the filter re-control is controlled based on the estimated degree of deterioration of the oxidation medium 5.
  • an Nx catalyst may be provided in place of the filter 4.
  • fuel is added from the fuel addition 6 that supplies the fuel to the oxidation control catalyst 5 and the filter regeneration control.
  • the deterioration degree estimation control according to this embodiment is applied, and the amount of fuel added from the fuel addition valve 6 in the SOX poisoning recovery control is controlled based on the estimated deterioration degree.
  • the SOx stored in the NOx catalyst can be reduced more quickly while suppressing the release of fuel into the atmosphere and the impact of fuel consumption.
  • filter regeneration control similar to that in the first embodiment is performed.
  • the filter recovery control is executed when the PM trapping amount in the filter 4 is equal to or greater than the first specified amount.
  • PM the amount collected is estimated based on the detected value of the differential pressure sensor 11.
  • HC removal control is executed to remove HC adhering to the upstream end face of the filter 4 in order to accurately estimate the amount of PM trapped in the filter 4 km.
  • This plutin is stored in the ECU 10 in advance and is executed at specified intervals while the internal engine 1 is in operation.
  • EC “U 10 first determines in S 301 whether the operating state of the internal combustion engine 1 is idling. If an affirmative determination is made in S 301, ECU 10 If the determination is negative, the ECU 10 once terminates the execution of this routine.
  • the ECU 10 determines whether or not the HC adhesion amount Q he force on the upstream end face of the filter 4 is equal to or greater than the specified adhesion amount Qhc 1.
  • HC * »Qh c is calculated with the inner diameter 1 (Z> The value of fuel injection amount is based on the temperature history of Phil evening 4. Also, the first—specified adhesion amount Q he 1 In addition, the amount of HC adhering to which PM is easily collected is less than the F limit value. This first specified adhering amount Qh c 1 is determined in advance by experiments, etc.
  • ECU 10 proceeds to S 303, and if a negative determination is made, ECU 10 once terminates the execution of this release.
  • the ECU 10 performs exhaust gas temperature raising control similar to that in the first embodiment.
  • the condition of the air temperature increase control is that the internal combustion engine 1 is idling and the HC adhesion iQ hc on the upstream end face of the filter is equal to or greater than the prescribed adhesion amount Q hc 1 It is to become.
  • the ECU 10 proceeds to S304, and determines whether or not the temperature Tc of the oxidation catalyst 5 is the lower limit value TcO ⁇ h of the activity threshold. If an affirmative determination is made in S 304, the ECU 10 proceeds to S 3 0 5. If a negative determination is made, the ECU 10 returns to S 303.
  • the ECU 10 performs fuel addition from the fuel addition 6 and supplies fuel to the oxidation catalyst 5. At this time, the amount of fuel added is controlled so that the temperature of the filter 4 becomes the IIC oxidation temperature lower than the PM oxidation temperature. As a result, HC stuck to the upstream end face of the filter 4 is removed.
  • the ECU 10 proceeds to S306 and determines whether or not the HC adhesion amount Q hc on the upstream end face of the filter 4 is equal to or less than the second specified adhesion amount Qh c 2.
  • the second specified amount of attachment Qhc2 is less than the first specified amount of attachment Q he 1, and it takes some time for HC MQh c to reach the first specified amount Q c 1 again. This is the threshold value that allows IJ to be cut off. If a positive determination is made at S 306, the ECU 10 proceeds to S307 and a negative determination is made; Returns to S 3 0 5. '
  • E CU 1 O stops HC removal control. That is, the exhaust temperature control and the fuel addition of the fuel addition valve 6 are stopped.
  • the condition for stopping the exhaust temperature increase control is that the HC adhesion amount Q h c on the upstream end face of the filter 4 is equal to or less than the second specified adhesion amount Q h c 2.
  • the temperature of the oxidation catalyst 5 is raised to the activation temperature by the exhaust gas temperature raising control as in the first embodiment.
  • the time required for HC removal control can be further shortened.
  • HC can be removed while the operating state of the internal combustion engine 1 is idling where the exhaust temperature is relatively low and HC tends to adhere to the upstream end face of the filter 4.
  • PM can be prevented from being collected on the upstream surface # ”of the filter 4. Therefore, it is possible to accurately estimate the amount of PM trapped in the filter based on the differential pressure across the front and back. As a result, filter regeneration control can be executed at a more suitable timing.
  • the filter 4 in addition to the oxidation catalyst 5, the filter 4 also carries an oxidation catalyst.
  • the oxidation catalyst supported on the filter 4 (hereinafter referred to as a supported catalyst) may be a catalyst having an oxidation function, like the oxidation catalyst 5.
  • the same filter regeneration control as in the embodiment is executed.
  • a part of the fuel added from the fuel addition valve 6 is oxidized by the hatching catalyst 5 and then passes through the oxidation catalyst 5 and is supplied to the carrier medium.
  • the filter 4 is raised not only by the oxidation catalyst 5 but also by the heat of oxidation generated when the fuel is oxidized in the ffiWM medium.
  • the exhaust throttle valve 9 is fell in the valve closing direction in the above-described exhaust gas temperature increase! L.
  • the flow rate of yesterday passing through the oxidation catalyst 5 and the fill 4 is reduced. Therefore, the fuel added from the fuel addition valve 6 advances through the oxidation catalyst 5. That is, it becomes difficult to supply fuel to the medium. As a result, the heating rate of Filer 4 is May decrease.
  • the slot relay valve 8 is turned on after the temperature of the oxidation catalyst 5 reaches the activation temperature.
  • the exhaust throttle valve 9 is also controlled in the valve opening direction.
  • the specified air amount is an intake that can be determined that in the state where the exhaust throttle valve 9 is controlled in the valve closing direction, the flow rate of the exhaust gas passing through the oxidation catalyst 5 and the filter 4 decreases as the fuel is hardly supplied to the supported catalyst.
  • the value is above the upper limit of air volume. This prescribed air amount is a value determined in advance by experiments or the like.
  • the flow rate of the exhaust gas passing through the oxidation catalyst 5 and the filter 4 can be increased.
  • the fuel is easily supplied to the supported catalyst.
  • FIG. 5 is a flowchart showing the control routine of the 7-wheel control according to the present embodiment.
  • This routine is stored in advance in the ECU 10 and is executed at regular intervals while the internal combustion engine 1 is operating. 'In this routine, the ECU 10 first determines whether or not the PM collection amount Q pm force s in the filter 4 is equal to or greater than the first specified collection amount Qp 1 in S401i. If an affirmative determination is made in S 4, 01, the ECU 10 proceeds to S402, and if a negative determination is made, the K CU10 once terminates execution of this routine.
  • the ECU 10 executes the exhaust gas temperature raising control similar to that in the first embodiment.
  • the execution condition of the exhaust gas ascending control is that P M «Q pm in the filter 4 is equal to or more than the first specified collection amount Q pm 1 as in the first embodiment.
  • step S403 determines whether or not the temperature T c of the oxidation catalyst 5 is above the lower limit value T c O of the activation temperature.
  • step S403 if the affirmative determination is made, ECU 10 sees 51 in S40, and if negative determination, ECU10 returns to S402. Note that if the temperature T c of the oxidation catalyst 5 is equal to or higher than the lower limit value T c 0 of the activity, it can be determined that the temperature of the fiitM medium is the same.
  • ECU 1 H, internal air intake air quantity Q air force regulation air quantity Q air 0 or less ⁇ It is determined whether or not. If this S 404 is positive, E CU 10 proceeds to S 408, and if a negative determination is made, ECU 10 proceeds to S405.
  • the E C U 10 that has proceeded to S 405 executes fuel addition from the fuel addition valve 6 and supplies fuel to the oxidation catalyst 5 and the supported catalyst. At this time, the amount of fuel added is controlled so that the temperature of the filter 4 becomes the PM oxidation temperature. As a result, PM collected in Phil evening 4 is sampled and removed.
  • the ECU 10 proceeds to S406 and determines whether or not the PM collection amount Q pm that can be obtained by the filter 4 is equal to or less than the second specified collection amount Qpm 2. In S406, if affirmative [] is determined, the ECU 10 proceeds to S407, and if a negative determination is made, the ECU 10 returns to S404.
  • ECU1 U filter regeneration control is stopped. That is, the exhaust temperature increase control and the fuel addition from the fuel addition valve 6 are stopped !!: In this case, the exhaust temperature increase control execution stop condition is In the same way as in Example 1, the PM collection amount at Phil evening 4 will be below the second collection rate Qpm2 S. After stopping the regeneration regeneration control, ECU 10 will once execute the routine. On the other hand, the ECU 10 that has proceeded to S 408 controls the exhaust throttle valve 9 in the valve closing direction.
  • E C U 10 is divided into S 409 and the temperature T c force of oxidation catalyst 5 S activation temperature lower limit value T c 0 or more. If an affirmative determination is made in S409, the ECU 10 proceeds to S405. On the other hand, if a negative determination is made in S409, it is determined that the temperature Tc of the oxidation catalyst 5 is lowered by controlling the air throttle valve 9 in the valve opening direction and is lower than the lower limit value c0 of the activation temperature. Proceed to S 4 10.
  • the throttle valve 8 In addition, as described above, during the execution of the fill recovery control, not only the throttle valve 8 but also the exhaust throttle valve 9 is controlled in the valve opening direction so that the flow rate of the exhaust gas passing through the oxidation catalyst 5 and the fill control 4 is reduced. If it is increased, the amount of heat taken away increases. As a result, the temperature of the oxidation catalyst 5: Tc may be lower than the activation temperature.
  • the temperature Tc of the oxidation catalyst 5 can be returned to the activation temperature more quickly.
  • the same filter regeneration control as that in the first embodiment is performed.
  • the temperature of the engine exhaust and the amount of fuel added from the fuel addition valve 6 are controlled so that the temperature of the filter 4 becomes the PM oxidation temperature.
  • the relationship between the temperature of the acid f ⁇ catalyst 5 and the amount of fuel added from the fuel paste addition valve 6 will be described with reference to FIG. 6.
  • the vertical axis represents the degree of clearance and the vertical axis represents time.
  • the solid line shows the temperature of the acid catalyst 5 when the amount of fuel added from the fuel addition valve 6 is relatively small
  • the broken line shows the amount of fuel added from the fuel addition valve 6 relatively large.
  • the temperature of the oxidation catalyst 5 is shown.
  • the alternate long and short dash line indicates the PM oxidation temperature Tt.
  • the change width ⁇ c is calculated.
  • the temperature change width ⁇ T c becomes equal to or greater than the predetermined value ⁇ 0
  • the temperature of the customs exhaust gas is increased to make the temperature change width ⁇ c smaller than the predetermined value ⁇ 0.
  • the Bf constant value ⁇ 0 is a temperature change width ⁇ force S large; it is a value smaller than a threshold value that can be cut by half 1J if there is a risk of overheating of the filter 4.
  • This predetermined value ⁇ 0 is a value predetermined by the experiment.
  • the temperature of the oxidation catalyst 5 can be further increased by raising the exhaust temperature. This makes it possible to stably oxidize more fuel in the oxidation catalyst 5. As a result, the temperature change width ⁇ . 3 ⁇ 4 Come to reduce.
  • This routine is preliminarily stored in the ECU 10 and is executed at regular intervals during the operation of the inner car 1.
  • the ECU 10 first determines in S501 whether or not the amount of soot trapped Qpm in the filer 4 is equal to or greater than the first predetermined amount Qpm1. If an affirmative determination is made in S501, the ECU 10 proceeds to S502. If a negative determination is made, the ECU 10 once terminates the execution of this J-learn.
  • the ECU 10 executes the same temperature rise control as in the first embodiment.
  • the execution condition of the exhaust gas temperature raising control is that the PM collection amount Qpm in the filter 4 is equal to or more than the first specified collection amount Qpml, as in the first embodiment. .
  • the ECU 10 advances S503 t, and the temperature Tc force of the oxidation catalyst 5 Lower tongue value Tc 0 or less It is determined whether or not it is above. In S503, if an affirmative determination is made, ECU10 proceeds to S504, and if a negative determination is made, ECU10 returns to S502.
  • the amount of fuel added may be determined based on the amount of intake air in the internal combustion engine 1 and the difference between the temperature of the exhaust gas discharged from the engine and the temperature of the oxalic acid soot T t.
  • the ECU 10 proceeds to S 505, and calculates the temperature change width ATc of the oxidation catalyst 5.
  • the ECU 10 first calculates the temperature Tc 1 of the oxidation catalyst 5 when the slight value d T c Zd t of the temperature T c of the acid catalyst 5 becomes 0. To storm.
  • ECUIO ⁇ The temperature of the oxidation catalyst 5 when the differential value d T c Z dt of the oxidation catalyst 5 temperature ⁇ ⁇ c becomes greater than 0 or less than 0 and then becomes 0 again. Mark Tc 2 1ft.
  • the temperatures T c 1 and TTc 2 detected in this way are the upper limit temperature and the lower temperature when the temperature of the oxidation catalyst 5 is changed. Then, the absolute value of the value obtained by subtracting the temperature T c 2 from the temperature T c 1 is calculated as c with the temperature variation width ⁇ . The above calculation may be repeated several times, and the average value may be used as the temperature change width ATc.
  • step S506 determines whether or not the temperature change width ⁇ c is greater than or equal to a predetermined value ⁇ T0. If an affirmative determination is made in S506, the ECU 10 proceeds to S509. If a negative determination is made, the ECU10 proceeds to S507.
  • the ECU 10 that has proceeded to S507 determines whether or not the amount of I> M collected in the filter 4 has decreased to the second specified amount of collection Q pm2 or less. If an affirmative determination is made in S507, the ECU 10 proceeds to S508, and if a negative determination is made, the ECU1 CH S504 is returned to.
  • the ECU 10 proceeds to S510, and determines whether or not the engine speed N e is higher than the required engine speed N et. If an affirmative determination is made in S 510, the ECU 0 determines that the customs rotation speed Ne is higher than the required customs rotation speed Net by the control in S 5 O 9, and the ECU 10 proceeds to S 511. On the other hand, if a negative determination is made in S 510, the ECU 10 returns to S 500.
  • the ECU 10 that has proceeded to S511 decreases the main fuel injection amount Q in the internal combustion engine 1 so as to reduce the engine speed N e. Thereafter, the ECU 10 returns to S510.
  • the temperature change width Tc of the oxidation catalyst 5 is equal to or greater than the predetermined amount ⁇ T 0 when the fuel recovery valve P is being executed and fuel is being added from the fuel addition valve 9.
  • the temperature of the engine exhaust is increased until the temperature change width ⁇ Tc is smaller than a predetermined amount ⁇ T0. Therefore, according to the embodiment, it is possible to further stabilize the temperature of the oxidation catalyst 5 in the filter regeneration control [ ⁇ . As a result, the time required for filter regeneration ⁇ can be shortened, and at the same time, the overheating of the filter can be suppressed.
  • the engine exhaust gas when the temperature of the engine exhaust gas is increased so that the temperature change width Tc of the acid catalyst 5 should be smaller than a predetermined amount ⁇ T0, the engine exhaust exhaust at that time is increased.
  • the degree of deterioration of the oxidation catalyst 5 may be estimated based on the temperature rise amount.
  • a NOx catalyst may be provided in place of the filter 4 as in the case of the first or second embodiment.
  • the temperature of the oxidation catalyst 5 is raised to the active temperature by the gas temperature raising control for raising the temperature of the NOx medium, and from the additive addition valve 6 Add fuel. And when adding fuel from the fuel addition valve 6, the above and ⁇ ! Engine exhaust Control the temperature of the extract. This makes it possible to further stabilize the temperature of the oxidation catalyst 5 when performing the S Ox poisoning recovery control: ⁇ '.
  • the fuel was supplied to the oxidation catalyst 5 by adding fuel from the fuel addition valve 6.
  • the injection was performed separately from the auxiliary fuel injection in the exhaust temperature control.
  • the fuel may be supplied to the oxidation catalyst 5 by performing sub fuel injection at a timing at which 7t fuel is not used for combustion.
  • the temperature of the catalyst can be raised more quickly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Materials Engineering (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

本発明は、酸化機能を有する触媒を含んで構成される排気浄化装置を備えた内燃機関の排気浄化システムにおいて、触媒をより速やかに昇温させることが可能な技術を提供することを課題とする。本発明では、触媒を活性温度にまで昇温させるときに、排気流量制御弁を閉弁方向に制御すると共に吸入空気量制御弁を開弁方向に制御する(S102)。そして、さらに、内燃機関における燃料噴射時期を遅角することで機関排出排気を昇温させる(S105、S109)。

Description

明 細 書
内!^関の排気浄化システム 技術分野
本発明は、酸化機能を有する触媒を含んで構成される排気浄化装置を備えた内燃機関の排気 浄化システムに関する。 背景籠
内燃機関の排気浄化システムにおいては、酸化機能を有する触媒を含んで構成される排気浄 化装置を備えたものがある。 このような排気浄化システムでは、排気浄化装置の排気浄化能力 を再生させるベく排気浄化装置を "温させる場合がある。
排気挣化装置を昇温させる方法としては、 内燃機関から排 ttiされる排気(以下、機関排出排 気と称する) を昇温させることで触媒を活性温度にまで昇温させると共に、活性温度にまで昇 温された触媒に δ¾剤を供給することで排気浄化装置を昇温させる方法が知られて る。 特開 2 0 0 1— 2 2 7 3 8 1号 報には、内燃機関においてパイロット噴射及び主燃料噴射 の実 ί亍時期を圧縮行程上死点より後に遅角することで機関排出排気を昇温させ、その後、吸入 空気 ftを減少させることにより排気中の未燃燃料を増加させることで触媒に燃料(g|3ち、還元 剤) を供給する擬が開示されてレ る。
ま广こ、特開平 7— 9 7 9 1 8号 報には、排気浄化装置を屏温させる場合に、該 気浄化装 置より下流側に設けられた排気絞り弁を閉弁する技術が開^されている。また、特鬨 2 0 0 3 - 8 3 0 2 9号公報には、排気浄化装置が酸化触媒とパティヰュレートフィルタとによって構 成されている場合において、パティキュレートフィルタに捕集された粒子状物質を除去する再 生制卸の実行中、酸化触媒の温度〖こ基づいて該酸化触媒への還元剤供給量を制御する技術が開 示されている。
酸 {匕機能を有する触媒を含んで構成される排気浄化装置を備えた内垂関の排^:浄化シス テムにおいて、 排気浄化装置を昇温させるベく触媒を活性温度にまで昇温させる場合、 P及入空 気量を減少させる場合がある。 入空気量を減少させるとボンビングロスが増加するために燃 料噴射量が増 口する。 これにより、 饞関排出排気の温度が上昇する。 また、 吸入空気量が減少 すると排気流量も減少するため、排気によって触媒から持ち去られる熱量(以下、 単に、持ち 去り熱量と称する) が減少する。 これらによって、 触媒が昇温されることになる。
しかしながら、 吸入空気量が減少することにより排気流量が減少、すると、触媒に供給される エネルギー量^^減少することになる。 これは、触媒の昇温速度を抑 する要因となる。そして、 触媒の昇温速度力 ¾1レ、ほど、 排気浄ィ匕装置の昇温により時間がかかることになる。 発明の開
本発明は、 _t記問題に鑑みてなされたものであって、酸化機能を有する触媒を含んで構成さ れる排気浄化装置を備えた内燃機関の排気浄化システムにおいて、 媒をより速やかに昇温さ せることが可食 な技術を提供することを課題とする。
本発明は、酸化機能を有する触媒を含んで構成される排気浄化装置を備えた内燃機関の排気 浄化システムにおいて、触媒を昇温ざせる場合、排気流量制御弁を閉弁方向に制御すると共に 吸入空気量制御弁を開弁方向に制御する。さらに、内燃機関における燃料噴射時期を遅角する。 これらにより機関排出排気を昇温させる。
より詳しくま、 本発明に係る内燃機関の排気浄化システムは、
内 β関の^ 気通路に設けられ、 酸化機能を有する触媒を含んで構成される排気浄化装置 と、
前記内燃機関の吸入空気量を制御する吸入空気量制御弁と、
前記排気通路における排気流量を制御する排気流量制御弁と、
前記内燃機関における燃料噴射時期を制御する噴射時期制御手 と、
前記触媒を昇温させる昇温手段と、 を備え、
前記昇温手段は、廳己触媒を昇温させる場合、觸己排気流量制御弁を閉弁方向に制御すると 共に前記吸入空気量制御弁を開弁方向に制御し、 さらに、前言己噴射制御手段によって前記内燃 機関における燃料噴射時期を遅角することで、 前記内燃機 raから排出される排気を 温させ る。
ここで、排気统量制御弁を閉弁方向に制御する場合、排気流量制御弁の開度を可及的に小さ くしても良い。 また、 吸入空気量制御弁を開弁方向に制御する場合、 p及入空気量制 ί 弁の開度 を、可及的に大きくしても良く、また、吸入空気量が可及的に多い量となる開度としても良い。 排気流量制御 を閉弁方向に制御すると、該排気流量制御 より上流側の排気通路内の圧力 が上昇する。 これに伴って、 内燃機鬨の筒内圧も上昇する。 さらに、 本発明においては、 吸入 空気量制御弁を,弁方向に制御するため吸入空気量制御弁を閉弁方向に制御した場 よりも 吸入空気量が多くなる。 そのため、 内燃機関の筒内圧がより高くなる。
内燃機関の筒内圧が高いほど筒内において燃料が燃焼し ¾くなるため、燃料噴射時期をより 遅角することが 来る。そして、噴于された燃料が燃焼する範囲内で燃料噴射時期を遅角する ほど機関排出排気の温度をより昇温することが出来る。
さらに、 P及入空気量制御弁を開弁方向に制御することで吸ス空気量を増加させた場合、排気 流量も増加する。 そのため、 吸入空気量制御弁を閉弁方向に制御した場合よりも触媒に供給さ れるエネルギーを増加させることが ίϋ来る。
また、 吸入空気量が増加すること〖こよつて燃料噴射量を増カロさせることが出来る。 燃料噴射 量を増加させることにより、 機閧排 排気をさらに昇温することが出来る。
一方、 吸入空気量制御弁を開弁方向に制御した場合、吸入空気量制御弁を閉弁方向に制御し た場合よりも、ポンピンダロスが減少、したり、また、持ち去り熱量が増加したりする虡がある。 これらは触媒の溫度低下の要因となり得る。
しかしながら、ボンピングロスの減少や持ち去り熱量の増カロに起因する触媒の温度低下分よ りも、上記のような、燃料噴射時期の 5S角量の増加及び排気统量の増加に起因する触媒の温度 上昇分の方が大きい。 ,
従って、 本発明によれば、 触媒をより速やかに昇温させることが出来る。 尚、本発明において、触媒を昇温させる場合、内燃機関における燃料噴射を、主燃料噴射と、 該主燃料噴射より後の時期であって且つ噴射された燃料が燃親に供される時期に実行される 副燃料噴射とに つて行っても良い。
この場合、主燃料噴射時期力 ¾1角されると共に、遅角され 主燃料噴射の後で副然料噴射が 実行される。このとき、上記理由により、主燃料噴射時期をより遅角することが出来ると共に、 主燃料噴射の実 ί亍時期と副燃料噴射の実行時期との間隔をより長くすることができる。 そし て、主燃料噴射日宇期と同様、噴射された燃料が燃焼する範囲 r¾で副燃料噴射時期を達角するほ ど機関排出排気の温度をより昇温することが出来る。そこで、 上記の場合、 主燃料賓射の実行 時期と副燃料噴!^の実行時期との間隔を可及的に長くしても良い。つまり、副燃料賓射時期を 可及的に遅角しても良い。 これにより、 機関排出排気をより昇温することが出来る。
また、 本発明〖こおいては、昇温手段 、 触媒を活性温度に で昇温させるものであっても良 い。
本発明においては、触媒に還元剤を ί 給する s¾剤供給手段と、触媒の温度を推定する温度 推定手段と、規定条件が成立したときに 気浄化装置の排気争化能力を再生させる再生制御を 実行する再生手 とをさらに備えても良い。
この場合、再 手段は、昇温手段によって触媒を活性温度 ίこまで昇温させると共に、 還元剤 供給手段によつて触媒に還元剤を供給することで排気浄化装置をさらに昇温させる。
つまり、 この場合の再生制御では、昇温手段によつて活性 度にまで昇温された 媒に ¾ 剤が供給される。 そして、供給された »ΰ剤が酸化することで発生する酸化熱によつて排気浄 化装置がさらに早温される。
このような再 制御においては、触媒への ¾剤供給量を T及的に多くすることで排気浄化 装置をより速やかに昇温させることが 来る。 しかしながら、 触媒への ¾剤供給量が ϋ¾な 量となると、還 剤が触媒で酸化されることなく大気中に放 tBされるがある。一方、 触媒の酸 化能力は該触媒の劣化度合いによって変化する。つまり、触 の劣化度合いが大きぐなるほど 該触媒において S ¾剤が酸化され難くなる。そのため、再生鲔御実行時においては、 触媒の劣 化度合いに応じて触媒への ¾剤供給量を制御する必要がある。
そこで、 上記構成の場合、触媒の劣化度合いを推定する劣化度合い推定手段と、 触媒の劣化 度合いに基づいて再生制御実行時 (こおける触媒への還元剤供給量を制御する供給量制御手段 と、 をさらに備えても良い。 この場合、 劣化度合い推定手 は、 内燃機関の運転 態がアイド リングであつて規定条件が成立する以前に、昇温手段によって触媒を活性温度におで昇温させ ると共に還元剤供給手段によって該触媒に M¾剤を供給する。そして、 ¾剤を 給したとき の触媒の昇温速度に基づいて該触媒の劣化度合いを推定する。
活性状態にある触媒に還元剤を ί共給した場合、触媒の劣匕度合レゝが大きいほど 1¾触媒の昇温 速度は遅くなる。そのため、触媒の昇温速度に基づいて該独媒の劣化度合いを推定することが 出来る。
また、内燃機関の運転状態がアイ ドリングのときは、該 燃機関の運転状態が 媒の温度変 化に与える影響が比較的小さい。そのため、内燃機関の運 β状態がアイドリング ときに触媒 の劣化度合いを推定した場合、該劣ィ匕度合いをより精度良く推定することが出来る。 しかしな がら、 ft媒を活性温度にまで昇温させる時間が長くなると、 触媒の劣化度合いの維定にかかる 時間が長くなる。 この場合、 内燃機関の運転状態がアイド ングである間に触媒 Ο劣化度合い を推定することが困難となる虞がある。
そこで、劣、化度合い推定手段は、 上述した昇温手段によって触媒を活性温度に で昇温させ る。 これにより、触媒の劣化度合いの推定にかかる時間を り短縮することが出 る。その結 果、内醒関の運転状態がアイドリングである間に触媒の 化度合いを推定することが可能と なる。
従って、 上記構成によれば、触媒の劣化度合いをより精度良く推定することが 来る。そし て、 所定条件が成立する以前、 即ち、 再生制御が実行される前に触媒の劣化度合いを推定し、 再生制御実行時における触媒への iS¾剤供給量を該劣化度合いに基づいて制御することで、還 元剤供&ftをより精度よく制御することが出来る。 これに り、 剤の 中〜の放出を抑 制しつつ再生制御をより短時間で ί亍うことが可能となる。 本発明において、 上記と同様の還元剤供給手段と、温度推定手段と、 再生手段 、 を備えて いる場合、再生手段による再生制御の実行時であって触媒に 剤を供給しているときの触媒 の温度の変化幅が所定値以上のときは、 機関排出排気の温度をより高くしても良い。
再生制御の実行時に還元剤の供給量が触媒において安定して酸化可能な量より多くなると、 還元剤が局所的に酸化される場合がある。 これにより触媒の温度が不安定となり、 該温度の八 ンチングの変化幅がより大きくなる虡がある。 このとき、触媒の温度の変化幅が に大きく なると、排気浄化装置に流入する排気の温度の変化幅も大きくなるため排気浄化裝置の過昇温 を招く虞がある。
上記において、触媒の温度の変ィ匕 Φ畐とは、該触媒の温度 V、ンチングしているときの上限温 度と下限温度との差のことである。 また、所定値とは、触媒の温度の変化幅が該所定値以上と なると、排気狰化装置に流入する排気の温度の変化幅が大きくなることで排気浄 f匕装置の過昇 温を招く虞^ Sあると判断出来る閾値となる値より小さい値 ある。
触媒にぉレ、て安定して酸化可能な 剤の量は、 ¾剤が、供給されるときの触媒の温度によ つて変化する。即ち、触媒の温度が高いほどより多くの 5ΐ剤を安定して酸化すること力可能 となる。
そのため、 上記のように、触媒の溫度の変化幅が所定値以上となった場合は機関排出排気の 温度をさら〖こ上昇させることによって触媒の温度をより高くする。 これによつて、 触媒におい てより多くの ¾剤を安定して酸化することが可能となる。 その結果、 ¾剤が供給されてい るときの触媒の温度の変化幅を減少、させることが出来る。
つまり、上記構成によれば、再生 il御の実行時における触媒の温度をより安定させることが 可能となる。 これにより、 排気浄化装置の過昇温を抑制することが出来る。
また、上言己構成において、触媒の 化度合いを推定する劣化度合い推定手段をさらに備えた 場合、該劣化度合い推定手段は、触媒の の変化幅が所定値より小さくなるまで機関排出排 気の温度をより高くしたときの該機鬨排出排気の温度上昇量に基づいて触媒の劣ィ匕度合いを 推定しても良い。 上記のように、機関排出排気の温度を上昇させることによって触媒の温度を上昇させること が出来る。 し; 0、しながら、触媒の温度が同様であっても、 言亥触媒の劣化度合いによって該触媒 において安定して酸化することが可能な ¾剤の量は変化する。つまり、触媒の温度が同様で あっても、該触媒の劣化度合いが大きいほど安定して酸化すること力河能な還元剤の量は少な くなる。
そのため、触媒に還元剤を供給しているときの該触媒の温度の変化幅を所定儘よりも小さく すべく機関排出排気の温度を上昇させる場合、触媒の劣化度合いが大きいほど機関排出排気の 温度をより高くする必要がある。
従って、上記のように、触媒の温度の変ィ匕幅が所定値より小さくなるまで機閬徘出排気の温 度をより高くしたときの該機関排出 気の温度上昇量に基づいて触媒の劣化度合いを推定す ることが出来る。
本発明にぉレ て、 排気浄化装置が、、 排気中の粒子状物質 (以下、 PMと称する) を捕集する パティキユレ——トフィルタ (以下、 単に、 フィルタと称する) を有し、 該フィルタより上流側 に触媒が配置されて構成されている場合、触媒に Μ ΰ剤を供給する 剤供給 段と、排気通 路におけるフィルタの上流側とフイ レタの下流側との差圧 (以下、 前 圧と する) を検出 する差圧検出手段と、該差圧検出手段によって検出される #ΐΓ¾¾圧に基づいてフィルタにおけ る ΡΜ捕集量を推定する捕集量推定手段と、フィルタに捕集された ΡΜを酸化させ除去するフ ィル夕再生制御を実行するフィル夕再生手段と、 をさらに備えても良い。
この場合、フィル夕再生手段は、捕集量推定手段によって推定された ΡΜ捕集量が規定捕集 量以上となったときにフィルタ再生讳 I卿を実行する。 このときのフィルタ再生 f¾J御は、昇温手 段によつて前記触媒を活性温度にまで昇温させると共に還元剤供給手段によつて触媒に ¾ 剤を供給することでフィルタを PM酸化温度にまで昇温させることで行われる。
ここで、規定捕集量とは、 内赚関の運転状態への影響が翻に大きくなる捕集量の下限値 よりも少ない量であり、 また、 PM:¾s'酸化したときにフィ レタが過 する虞がある捕集量の 下限値よりも少ない量である。また、 PM酸化^ Jtとは、 フィル夕に捕集された PMの酸化が 可能となる温度である。
上記構成では、浦集量推定手段によって推定された PM铺集量が規定捕集量以上となったと きにフィルタ再生制御が開始される。 しかしながら、 フィゾ 夕の上流側端面に; P Mが捕集され た場合、 フィルタにおけるセルの壁面 (以下、 フィルタの内部と称する) に が捕集された 場合に比べて前 圧が上昇し難い。
そのため、 フイクレ夕の上流側端面に捕集された PMが増 ¾口すると、捕集量推定手段によって 推定された PM捕集量が実際の PM捕集量よりも少なくなる場合がある。 このような場合、規 定捕集量が、内燃機関の運転状態への影響が過剰に大きくなる捕集量の下限値近傍の量、 もし くは、 PMが酸化したときにフィル夕が'過昇温する虞がある捕集量の下限値近磨の量に設定さ れていると、実際の P M捕集量が過剰な量となる虞がある。 また、規定捕集量をより少ない量 に設定すると、 フィル夕再生制御の実 ¾g度がより高くなる虞がある。
そこで、上記構成の場合、 フィルタの上流側端面における HC付着量を推定する HC量推定 手段と、 フィルタの上流側端面に付着した HCを除去する HC除去手段と、をさらに備えても 良い。 この場合、 H C除去手段は、内燃機関の運転状態がアイドリングであって且つ HC量推 定手段によつて推定された H C付着量力規定付着量以上となったときに、昇温 段によつて触 媒を活性温度にま ~e昇温させると共に is¾剤供給手段によって触媒に ¾剤を供給すること でフィルタを P M酸化温度より低い H C酸化温度にまで昇溫させる。 これにより、 フィル夕の 上流側端面に付着した H Cを除去する。
フィル夕の上流 ilij端面においては、先ず H Cが付着し、該 HCに PMが付着することで HC の捕集が βされる。そのため、 フィゾレ夕の上流側端面に付着した HCを除去することによつ て該端面に Ρ Μが ί甫集されるのを抑制することが出来る。
ここで、規定付着量とは、 予め定められた量であって、 Ρ Μの捕集が纏され易くなる HC 付着量の下限値より少ない量であっても良い。 また、 H C酸化温度とは、 フイリレ夕の上流側端 面に付着した HC C¾酸化が可能となる温度である。 HCは PMに比べて酸化され易いため、 H C酸化温度は PM酸化温度よりも低い温度となっている。 内腿関の運転状態がアイドリングである場合は、排気の温度が比較的低い广こめフィル夕の 上流側端面 ίこ H C力 S付着しやすい。 こで、 H C除去手段は、 内燃機関の運転 態がアイドリ ングであつて且つ H C量推定手段に つて推定された H Cィ寸着量が規定付着量以上となった ときに、上 した昇温手段によって fife媒を活性温度にまで昇温させる。 そして、 さらに、 S¾ 剤供給手段 ίこよって触媒に M¾剤を ί 給することでフィルタを HC酸化温度にまで昇温させ る。
昇温手段によって触媒を活性温度〖こまで昇温させることで、フィルタを HC酸化温度にまで 昇温させるのにかかる時間をより短縮することが出来る。その結果、 内燃機関の運転状態がァ ィドリングである間に HCを除去することが可能となる。
このように、上記構成によれば、 フィル夕の上流側端面における HC付着量 規定付着量以 上となったとき該 HCが除去される。 これにより、 フィルタの上流側端面に Ρ Μが捕集される のを抑制することが出来る。そのため、 フィル夕における Ρ Μ捕集量を前後差 BEに基づいてよ り精度よく推定することが出来る。 ' の結果、 フィルタ再生制御をより好適なダイミングで実 行すること力 S可能となる。
本発明においては、排気浄化装置がフィルタを有する場合、該フィルタの上蔬側に触媒が 置されると共に、該フィルタに触媒が 旦持されていても良レ また、このような場合おいては、 排気浄化装置より上流側から触媒に 剤を供給する ¾刻供給手段と、フィ レ夕に捕集され た P Mを酸ィ匕させ除去するフィルタ薄生制御を実行するフィルタ再生手段をさらに備えても 良い。 このフィルタ再生手段は、前言己と同様、 上述した昇温手段によって触媒を活性温度にま で昇温させると共に ¾剤供給手段〖こよって触媒に 剤を供給することでフィルタを PM 酸化温度に で昇温させる。そして、 このような構成の場合、 フィル夕再生手 によるフィル 夕再生制御案行時において、内燃機園の吸入空気量が規定空気量以下の場合、独媒の温度が活 性温度に達した後は吸入空気量制御 および排気流量制御 を開弁方向に制御しても良レ 上記構成の場合、排気浄化装置より上流側から触媒に 5¾剤が供給される。そのため、 フィ ルタに赚ざれた触媒には、フィル夕より上流側に配置された触媒で酸化され 'に該触媒を通 過した還元剤が供給される。 '
ここで、昇温手段によって触媒を活'性温度にまで昇温させているときは排気流量制御弁が閉 弁方向に制御されている。 この場合、 気流量制御弁が開弁方向に糾御されている場合に比べ て、 排気浄 ί匕装置を通る排気の流量が少なくなる。
排気浄化 置を通る排気の流量が比齩的少ない状態で 剤手段から 剤が供給された 場合、該排気の流量が比較的多い状態の場合に比べて、 フィルタより上流側に配置された触媒 において還元剤が酸化され易くなる。つまり、 フィル夕より上流側 ίこ配置された触媒を ¾剤 が通過し難くなる。そのため、 フィルタに «された触媒に還元剤が供給され難くなる。その 結果、 フィルタの昇温速度が低下する虞がある。
そこで、 記のように、 フィルタ再生制御実行時において、 内燃饞関の吸入空気量が規定空 気量以下の場合、触媒の温度が活性温度に達した後は吸入空気量制御弁を開弁方向に制御した 状態を維持すると共に排気流量制御弁をも開弁方向に制御する。 ここで、規定空気量とは、排 気流量制御 が閉弁方向に制御された状態では、フィルタに担持された触媒に還元剤が供給さ れ難くなるぽど排気浄化装置を通る排気の流量が少なくなると判断出来る吸入空気量の上限 値以上の値である。 この規定空気量は実験等によつて予め定められた値である。
このように、 吸入空気量制御弁と排気流量制御弁とを共に開弁方向に制御することで、排気 浄化装置を通る排気の流量を増加させることが出来る。その結果、 フィル夕に担持された触媒 に ¾剤が供給され易くなるため、 フィルタをより速やかに昇温することが可能となる。 尚、上記構成において、吸入空気量制御弁および排気流量制御弁を開弁方向に制御すること で排気浄化装置を通る排気の流量を増加させると、持ち去り熱量が磐加することになる。その 結果、 フィルタより上流側に配置された触媒の温度が活性温度より低くなる場合がある。 この ような場合、 排気流量制御弁を再度閉弁方向に制御しても良い。
これにより、フィル夕より上流側に配置された触媒の温度をより遊やかに活性温度に戻すこ と力 s出来る。 図面の簡単な説明 '
図 1は、 実施例〖こ係る内燃機関の吸排気系の概略構成を示す図。
図 2は、 実施例 Lに係る排気昇温制御の制御ル一チンを示すフ ϋ一チヤ一トである。
図 3は、 実施例 2に係る劣化度合い推定制御の制御ルーチンを すフローチャートである。 図 4は、 実施例 3に係る HC除去制御の制御ルーチンを示すフ ϋ一チャートである。
図 5は、 実施例 4に係るフィル夕再生 IJ御の制御ルーチンを示すフロ一チヤ一トである。 図 6は、 酸化触媒の温度と燃料添加弁からの燃料添加量との関係を示す図である。
図 7は、 実施例 5に係るフィルタ再生 fj¾御の制御ルーチンを示すフローチヤ一トである。 発明を実施するための最良の形態
以下、本発明に係る内 β関の排気浄化システムの具体的な実跑形態について図面に基づい て説明する。
(実施例 1 )
<内«関の吸お 気系の概略構成〉
ここでは、本発 Β月を車両駆動用のディーゼル機関に適用した場台を例に挙げて説明する。 図 1は、 本実施例に係る内燃機関の吸排気系の概略構成を示す図である。
内謹関 1は車両勵用のディ一ゼル機関である。 この内燃機関 1には、吸気通路 3お び 排気通路 2が接続されている。吸気通路 3には、ェアフロメータァおよびスロットル弁 8 S設 けられている。
一方、 排気通路 2には、排気中の ΡΜを捕集するパティキユレ——トフィルタ 4 (以下、 単に フィル夕 4と称する) が設けられている。 また、 フィルタ 4より 流側の排気通路 2に酸 {匕触 媒 5が設けられてレ る。 尚、 酸化触媒 5は酸化機能を有した触媒であれば良く、 例えば、 m
S t型 N O X触媒であっても良い。
さらに、酸化触媒 5より上流側の排気 ¾^ 2には排気中に燃料を添加する燃料添加弁 6 設 けられている。 フィル夕 4より下流側の 気通路 2には排気絞り弁 9が設けられている。 また、排気通路 2には、 フィルタ 4の前後における排気通路 2内の圧力差に対応した電気信 号を出力する差圧センサ 11が設けられている。排気通路 2における酸化触媒 5よ り上流側に は該排気通路 内の圧力に対応した霞気信号を出力する圧力センサ 13が設けられている。排 気通路 2における酸化触媒 5より下流側且つフィルタ 4より上流側、および、排気 1路 2にお けるフィルタ 4より下流側且つ排気絞り弁 9より上流側には、お気の温度に対応し こ電気信号 を出力する上 側温度センサ 12および 流側温度センサ 16がそれぞれ設けられている。 以上述べたように構成された内燃機関 1には、この内燃擴 M 1を制御するための灣子制御ュ ニット (ECXJ) 10が併設されている。 この ECU 10ま、 内燃機関 1の運転条ィ牛や運転者 の要求に応じて内燃機関 1の運転状 I を制御するュニットである。
ECU10 tこは、 エアフロメ一夕ァおよび差圧センサ 11、 圧力センサ 13、上 側温度セ ンサ 12、下流側温度センサ 16、 ざらに、 内謹関 1のケランクシャフトの回転 に対応し た電気信号を t 力するクランクポジションセンサ 14、および、 内燃機関 1を搭載した車両の アクセル開度に対応した電気信号を tB力するアクセル開度センサ 15力 S電気的に接続されて いる。 そして、 これらの出力信号が ECU 10に入力される。
ECU10は、 クランクポジションセンサ 14の検出値 基づいて内燃機関 1€>回転数(以 下、 単に機関回転数と称する) を算 taし、 アクセル開度センサ 15の検出値に基づいて内燃機 関 1の負荷を算出する。 また、 ECU10は、 上流側温度 ンサ 12の検出値に基づいて酸化 触媒 5の温度を推定し、下流側温度七ンサ 16の検出値に基づいてフィルタ 4の を推定す る。 さらに、 ; ECU10は、 差圧センサ 11の検出値に基づいてフィルタ 4における PM捕集 量を推定する D
また、 ECU 10には、 スロットリレ弁 8や燃料添加弁 6、 排気絞り弁 9、 内燃機 Mlの燃料 噴射弁が電気 θ¾に接続されている。 ECU10によってこれらが制御される。
ぐフィルタ 生制御 >
本実施例においては、 フィルタ 4〖こおける ΡΜ捕集量が窮一規定量以上となつだ場合、 ΡΜ を酸化'除去すべくフィル夕再生制御が開始される。 ここで、 第一規定量とは、 内 «関 1の 運転状態への影響が翻に大きくなる捕集量よりも少ない量であり、 また、 p Mが 化したと きにフィルタ 4力 S過昇温する虞がある捕集量よりも少ない量である。この第一規定量は実験等 によって予め定 ¾5られている。
本実施例に係るフィルタ再生制御では、排気昇温制御を実行することで機関排出非気を昇温 させ、 それによつて酸化触媒 5の温度を活性温度にまで上昇させる。そして、燃料添加弁 6か ら燃料を添加することで、活性状態にある酸化触媒 5に燃料を 51¾剤として供給する。 このと き、酸化触媒 5において燃料力 S酸化することで発生する酸化熱によってフィル夕 4 P M酸化 温度にまで昇温される。 これによつて、 PM力 S酸化され除去される。ここで、 PM酸ィ匕温度は、 PMの酸化力 S可肯な温度であり且つフィルタ 4の過昇温力 S抑 fimされる温度である。
そして、 フィヌレタ再生制御の実行開始後、 フィルタ 4における P M捕集量が第二親定量以下 にまで減少すると、 該フィルタ再生制御の実行が停止される。 ここで、 第二規定量とは、 第一 規定量より少ない量であって、 p M捕氣量が再度第一規定量と よるまでにはある程度時間がか かると判断出来る閾値となる量である。 この第二規定量も実験等によって予め定められた量で ある。
く排気昇温制御〉
次に、 本実施例に係る排気昇温制御について説明する。本案施例に係る排気昇温 卿では、 排気絞り弁 9を閉弁方向に制御すると共にスロットル弁 8を鬧弁方向に制御する。 この'とき、 排気絞り弁 9の圑度は可及的に小さくされ、 スロットル弁 8 開度は可及的に大きくされる。 そして、内赚鬨 1における主燃料噴 時期を遅角すると共に副燃料噴射を実行する。ここで、 副燃料噴射は、燃焼サイクルにおける主燃料噴射時期よりも變の時期であって、噴衬された燃 料が燃焼に供さ牙 !■る時期に実行される。
排気絞り弁 9及びス口ットル弁 8を上記のように制御することで、内纖関 1の筒内圧を可 及的に高くすることが出来る。 これに り、 筒内において燃杯が燃焼し易くなるため、 主燃料 噴射時期および J燃料噴射時期をより遅い時期まで遅角することが出来る。そのため、機関排 出排気をより # ^させることが出来る。 また、スロットル 8を開弁方向に制御することで排気流量が増加するため、酸化触媒 5に 供給されるエネルギーをより増加させることが出来る。
<排気昇温制御の制御ルーチン >
次に、 本実施例に係る排気昇温制御について図 2に示すフローチャートに基づいて説明す る。 図 2は、 本実施例に係る排気昇温制卿の制御ルーチンを表すフローチャートである。 本ル —チンは、 ECU1 0に予め記憶されており、 内燃機関 1の運 ¾中、 規定間隔で実行される。 本ルーチンでは、 ECU10は、先ず S 101において、排気昇温制御の実行条件力成立し たか否かを判別する。本実施例では、排気昇温制御の実行条件ほフィルタ 4における P M捕集 量力第一規定量以 となることである。 S 101において、肯定判定された場合、 ECU10 は S 102に進み、 否定判定された場合、 ECU10は本ルーチンの実行を一旦終了する。
S 102において、 ECU10は、排気殺り弁 9を閉弁方向に制御すると共にスロ、ットル弁 8を開弁方向に制御する。
次に、 ECU10は、 S 103fc進み、 要求されている機関回転数 Ne (以下、要球機関回 転数 Ne tと称する) より機関回転数 が低いか否かを判別する。 S 103において、 肯定 判定された場合、 E CU10は、 S 102 における制御により機関回転数 Neが要求機関回転 数 Ne tより低くなつたと判断し、 ECLJ10は S 114に進 。 一方、 S 103【こおいて、 否定判定された場合、 ECU10は S104に進む。
S 114に進んだ E CU 10は、機関 HI転数を上昇させるベく内 β関 1における主燃料噴 射量 Qmを増加させる。 その後、 ECU10は S 103に戻る。
一方、 S 104に進んだ ECU 10は、 主燃料噴射時期の遅角量 Δ tm、 および、 ^¾!ΤΤる S 107における副燃料噴射量の増加量 a、鍵する S 1 O 9における副燃料噴射時期の 遅角量△ t aを圧力センサ 13の検出値に基づいて算出する。
次に、 ECU10は、 S 105に進み、 料噴射時期を S 104にて算出された 3@角量 Δ tm 角させると共に副燃料噴射を実行する。 このとき、副燃料噴射量および 燃料噴射時 期は、 現時点における酸化触媒 5の温度等に基づいて決定される。 次に、 ECU10は、 S I 06に進み、 機関回転数 N eが要 機関回転数 N e tより低いか 否かを判別する。 S 106において、肯 判定された場合、 ECU10は、 S 105における 制御により機関回 数 N eが要求機関回伝数 N e tより低くなつたと判断し、 S 1 1 5に進 む。 一方、 S 106において、 否定判定された場合、 ECUI Oは S 107に進む。
S 115に進んだ、 E CU 10は、機関回転数を上昇させるベく内賺関 1における主燃料噴 射量 Qmを増加させる。 その後、 ECUL 0は S 106に戻る。
S 107に進んだ、 E CU 10は、副燃 噴射量を S 104にて算出された増加量△ Q a分増 加させる。
次に、 ECU10は、 S 108に進み、 機関回転数 Ne力 S要求機関回転数 Ne tよ り高いか 否かを判別する。 S 108において、肯 判定された場合、 ECU10は、 S 107における 制御により機関回 数 N eが要求機関回 数 N e tより高くなつたと判断し、 S 1 L 6に進 む。 一方、 S 108において、 否定判定された場合、 ECU 1 0は S 109に進む。
S 116に進んだ、 E CU10は、機関 Θ転数を低下させるベく内燃機関 1における主燃料噴 射量 Qmを減少させる。 その後、 ECU10は S 108に戻る。
S 109に進んだ Έ CU 10は。副燃^ f噴射時期を S 104にて算出された遅角 t a分 遅角させる。
次に、 ECU1 Oは、 S 110に進み、 機関回転数 N eが要求機関回転数 N e tよ り低いか 否かを判別する。 S 110において、肯定判定された場合、 ECU10は、 S 109 における 制御により機関回 数 N eが要求機関回 数 N e tより低くなつたと判断し、 S 1 ]_ 7に進 む。 一方、 S 11 Oにおいて、 否定判定された場合、 ECU 1 0は S 111に進む。
S 117に進んだ E CU 10は、機関 13転数を上昇させるベく内纖関 1における主燃料噴 射量 Qmを増加させる。 その後、 E CU IL 0は S 110に戻る。
S 111に進んだ E C U 10は、酸化独媒 5の温度 T cが活'性温度の下限値 T c 0以上であ るか否かを判別する。 この S 111におレ て、肯定判定された場合、 ECU10は S 112に 進、 否定判定された場合、 ECU10は S 104に戻る。 尚、 フィルタ再生制御の 合におい ては、 S I 1 1において肯定判定された場合、 即ち、酸化触媒 5 ¾活性化した場合、 E CU 1 0は燃料添加弁 6からの燃料添加を実行する。
S 1 1 2において、 E CU 1 0は、 排気昇温制御の停止条件が咸立したか否力、を判另1』する。 本実施例では、排気 温制御の実行条件はフィルタ 4における 捕集量が第二規定量以下と なることである。 S 1 1 2において、肯定半 II定された場合、 E CU 1 0は S 1 1 3に進み、 否 定判定された場合、 E CU 1 0は S 1 1 2を繰り返す。
S 1 1 3において、 E C U 1 0は排気昇温制御を停止する。即ち、副燃料噴射を停止すると 共に、 主燃料噴射時期および主燃料噴射量を通常の時期および量に戻す。その後、 E C U 1 0 は本ルーチンの実行を一旦終了する。
以上説明した制御レーチンによれば、主燃料噴射時期および劄燃料噴射時期が可及的に遅角 される。 また、副燃料噴射量が可及的に増; toされる。 これらにより、 機関排出排気をより昇温 することが出来る。また、スロットル弁 8を開弁方向に制御とすることで排気流量が増加する ため、 酸化触媒 5に供給されるエネルギー;^増加する。
従って、本実施例〖こよれば、酸化触媒 5を活性温度にまでより速やかに昇温させることが出 来る。 そのため、 フィル夕再生制御にかかる時間をより短縮することが出来る。
尚、 本実施例においては、 フィルタ 4の代わりに吸蔵還元型 N O X触媒(以下、 N〇x触媒 と称する) を設けて 良い。 この場合、 1^0 触媒に吸蔵された3 0 を^¾する3〇 被毒 回復制御が実行される。
この S O X被毒回復制御においても、フィル夕再生制御と同様、 NO X触媒を昇温させるベ く、酸化触媒 5を活性温度にまで昇温させる必要がある。そこで、 賴施例に係る排 昇温制 御を適用することによって、 S O X被毒回復制御にかかる時間をより短縮することが出来る。
(実施例 2 )
本実施例に係る内^ «関の吸排気系の概略構成は実施例 1と可様であるためその説明を省 略する。 .
く劣化度合い推定制御 > 本実施例においては実施例 1と同様のフ ルタ再生制御;^行われる。上記のように、 フィル 夕再生制御では、 燃料添加弁 6から燃料を添加することで該燃料を酸化触媒 5に供給する。 こ のとき、酸化触媒 5の劣化度合い力大きくなるほど該酸化触媒 5において燃料が ¾化され難く なる。そこで、本実施例では、酸化触媒 5の劣化度合いを推定すべく劣化度合い推定 βΐ卿を実 行する。 そして、 推定された劣化度合いに基づいて、 フィルタ再生制御実行時における燃料添 加弁 6からの燃料添加量を制御する。
以下、本実施例に係る劣化度合い推定制御の制御ルーチンにつレて図 3に示すフロ——チヤ一 トに基づいて説明する。本ルーチンは、 ECU10に予め記憶さ ており、 内燃機関 1の運転 中、 規定間隔で実行される。
本ルーチンでは、 ECU10は、 先ず S 201において、 内燃機関 1の運転状態がアイドリ ングであるか否力を判別する。 この S20 1において、 肯定判定された場合、 ECU 10は3 202に進み、 否定判定された場合、 EC U10は本リレーチン 実行を一旦終了する。
S 202におレて、 ECU10は、 フイスレ夕 4における PM捕集量 Qpm力 S第三規定捕集量 Qpm3以上となつたか否かを判別する。 ここで、第三規定捕集量 Q pm 3とは上述した第一 規定捕集量 Q p m 1よりも僅かに少ない量であって、予め定められた量である。 P Mii集量 Q pmが第三規定捕集量 Qpm3以上となつた場合、フィル夕再生讳 ij御が実行される直" ήΐίである と判断出来る。 S 202において、 肯定判定された場合、 ECU 10は S 203に進み、 否定 判定された場合、 E C U 10は本ルーチンの実行を一旦終了する。
S 203におレ て、 E CU 10は、 実 例 1と同様の排気昇温制御を実行する。 この場合、 排気昇温制御の実行条件は、 内讓関 1の運転状態がアイドリングであって、且つ、 フィル夕 4における P Mi 集量 Q p m力 S第三規定搶集量 Q p m 3以上と ることである。
次に、 ECU 10は、 S204に進み、 酸化触媒 5の温度 T c 活性温度の下限値 c 0以 上であるか否か ¾判別する。 この S 204において、肯定判定された場合、 ECU 1 0は S 2 05に進み、 否定判定された場合、 ECU10は S203に戻る。
S 205におレ、て、 ECU10は、 燃 添加弁 6からの微 料添加を規定時間 行する。 ここで、微 料添加とは、燃料が大気中に放出された場合であってもその放出量が許容範囲 内となる程度の量であって予め定められた量の燃料を添加することである。また、規定時間は、 ί ΤΤる酸化触媒 5の昇温速度 R t u pを算出すること力河能な時間であって、予め定められ た時間である。
尚、 S 2 0 5においては、 微 β料添加閬始後、規定時間が経過した時点で燃料添加 6か らの燃料添加を停 J±する。 また、 この燃料添加の停止と同時に排気昇温制御も停止する。 この 場合、 排気昇温制御の停止条件は、 微應料添加開始後、 規定時間?^経過することである。 次に、 E CU 1〇は、 S 2 0 6に進み、 S 2 0 5において微量燃科添カロを実行していた間の 酸化触媒 5の昇温速度 R t u pを算出する。
次に、 E CU I Oは、 S 2 0 7に進み、酸化触媒 5の昇温速度 R t u pに基づいて劣ィ匕度合 いを算出する。酸 ί匕触媒 5の劣化度合いが:^:きいほど昇温速度 R t u pは遅くなるため、 該昇 温速度 R t u pに基づいて該劣化度合いを算出することが出来る。
尚、 S 2 0 7においては、 酸化触媒 5の 化度合いは、 フィルタ再生制御実行時にお^る燃 料添加弁 6からの燃料添加量を補正するための補正係数として算出される。該補正係数と酸化 触媒 5の昇温速度 R t u pとの関係は予めマップとして E CU 1 0に記憶されている。酸化触 媒 5の劣化度合いを算出した後、 E CU 2 0は本ル一チンの寒行を一旦終了する。
以上説明した制御ルーチンでは、実施例 1と同様の排気昇温制御によって酸化触媒 5を活性 温度にまで昇温する。 これにより、劣化度合い推定制御にかかる時間をより短縮することが出 来る。その結果、 内讓関 1の運転状態が、 酸化触媒 5の温度変化に与える影響が比較 ½J小さ いアイドリングである間に、 酸化触媒 5の劣化度合いを推定することが可能となる。
従って、本実施例によれば、酸化触媒 5の劣化度合いをより精度良く推定することが出 る。 そして、 本実施倒では、 推定された酸化激媒 5の劣化度合いに基づいて、 フィルタ再 制御 における燃料添加弁 6からの燃料添加量を制御する。 これにより、燃料の大気中への放 や燃 費の謝匕を抑制しつつより速やかにフィルタ 4に捕集された PMを酸化'除去すること力 S出来 る。 尚、 本実施例においても、実施例 1と同様、 フィルタ 4の代わりに N〇x触媒を設けても良 レ。 この場合、 S O X被毒回復制御において、 フィルタ再生制御と^ Γ様、 酸化触媒 5に燃科を 供給すベく燃料添加 6から燃料が添加される。
そこで、本実施例に係る劣化度合い推定制御を適用し、推定され 劣化度合いに基づいて S O X被毒回復制御における燃料添加弁 6からの燃料添加量を制御する。 これにより、燃料の大 気中への放出や燃費の衝匕を抑制しつつより速やかに NO X触媒に吸蔵された S O xを還元 することが出来る。
(実施例 3 )
本実施例に係る内燃機関の吸排気系の概略構成は実施例 1と同様であるためその説明を省 略する。
く HC除去制御〉
本実施例においては実施例 1と同様のフィルタ再生制御が行われる。上記のように、 フィル 夕再生制御は、 フィ レタ 4における PM捕臭量が第一規定量以上となったときに実行される。 また、 このときの PM:捕集量は差圧センサ 1 1め検出値に基づいて推定される。
しかしながら、フィル夕 4の上流側端面に P M力 S捕集された場合、 フィルタ 4の内部に I> M 力 S捕集された場合に比べて謝緩圧が上昇し難い。そのため、 フィ )レタ 4の上流側端面に搪集 された PMが増加すると、差圧センサ 1 1の検出値に基づいて推定ざれた PM捕集量が実)^の P M捕集量よりも少なくなる場合がある。
フィルタ 4の上流俱 U端面においては、先ず HC力付着し、該 HC〖こ PMが付着することで P Mの捕集が鍵される。 そこで、本実施例においては、 フィルタ 4〖こおける PM捕集量を り 精度よく推定するために、フィルタ 4の上流^ W端面に付着した HCを除去すべく HC除去制御 を実行する。
以下、本実施例に係る HC除去制御の制御リレーチンについて図 4に示すフローチャート ίこ基 づいて説明する。本フレーチンは、 E CU 1 0 に予め記憶されており、 内麵関 1の運転中、 規 定間隔で実行される。 本ル一チンでは、 E C "U 10は、 先ず S 301において、 内燃機関 1の運転状態がアイドリ ングであるか否かを判 する。 この S 301において、肯定判定された場合、 E CU 10は S 3 02に進み、 否定判定された場合、 ECU 10は本ルーチンの実行を一旦終了する。
S 302において、 E CU10は、 フィルタ 4の上流側端面における HC付着量 Q he力 一規定付着量 Qhc 1以上となったか否かを判 gijする。 HC *»Qh cは、内纖閧 1で (Z> 燃料噴射量の 値ゃフィル夕 4の温度の履歴寧に基づいて算出される。 また、 ここでの第—— 規定付着量 Q he 1と【ま、 PMの捕集が®iされ易くなる HC付着量の" F限値より少ない量で ある。この第一規定付着量 Qh c 1は実験等によって予め定められている。 S 302において、 貧定判定された場合、 E CU10は S 303に進み、 否定判定された場合、 ECU10は本リレ 一チンの実行を一旦終了する。
S 303において、 E CU 10は、 実施例 1と同様の排気昇温制御を実行する。 この場合、 炸気昇温制御の実行条 ί牛は、 内燃機関 1の運転 態がアイドリングであって、且つ、 フィルダ の上流側端面における H C付着 iQ h cが第——規定付着量 Q h c 1以上となることである。 次に、 ECU10は、 S304に進み、 酸化触媒 5の温度 T cが活性溫度の下限値 T cO^ hであるか否かを判別する。 この S 304におレ て、 肯定判定された場合、 ECU10は S 3 0 5に進み、 否定判定された場合、 ECU10ほ S 303に戻る。
S 305において、 E CU10は、燃料添加 6からの燃料添加を実行し、酸化触媒 5に燃 を供給する。 このとき、 フィルタ 4の温度が PM酸化温度よりも低い IIC酸化温度となる うに燃^^加量が制御される。 これにより、 フィルタ 4の上流側端面にィ寸着した HCが除去さ る。
次に、 ECU10は、 S306に進み、 フィルタ 4の上流側端面における H C付着量 Q h c 第二規定付着量 Qh c 2以下となったか否かを判別する。 ここで、第二規定付着量 Qhc2 ヒは、第一規定付着量 Q he 1より少ない量であって、 HC MQh cが再度第一規定量 Q ュ c 1となるまでにはある程度時間がかかると IJ断出来る閾値となる量である。 S 306に ' て、 肯定判定された場合、 ECU10は S30 7に進み、否定判定さ; た場合、 ECU1 O は S 3 0 5に戻る。 '
S 3 0 7において、 E CU 1 Oは HC除去制御を f亭止する。即ち、排気 温制御および燃料 添加弁 6 の燃料添加を停止する。 この場合、排 昇温制御の実行停止条件はフィルタ 4の 上流側端面における HC付着量 Q h cが第二規定付着量 Q h c 2以下となることとなる。 HC 除去制御を ί亭止した後、 E CU 1 0は本ルーチンの実行を一旦終了する。
以上説明した制御ルーチンで 、実施例 1と同様 排気昇温制御によって酸化触媒 5を活性 温度にまで昇温する。 これにより、 HC除去制御に; 0ゝかる時間をより短縮することが出来る。 その結果、 内燃機関 1の運転状態が、排気温度が比 的に低くフィルタ 4の上流側端面に H C が付着しやすいアイドリングである間に、 HCを除去することが可能となる。
従って、 本実施例によれば、 フィルタ 4の上流 #』 面に P Mが捕集されるのを抑制すること が出来る。 そのため、 フィルタ における PM捕集量を前後差圧に基づいてより精度よく推定 すること力出来る。その結果、 フィルタ再生制御を り好適なタイミングで実行することが可 能となる。 ' -
(雄例 4)
本実施例では、 酸化触媒 5に ϋ口えて、 フィルタ 4 も酸化触媒が担持されている。それ以外 の構成は実施例 1と同様である。 尚、 フィルタ 4に担持された酸化触媒(以下、 担持触媒と称 する) も、 酸化触媒 5と同様、 酸化機能を有する触媒であれば良い。
本実施例においても、実施例ュと同様のフィルタ再生制御が実行される。 ただし、 本実施例 では、燃料添加弁 6から添加された燃料の一部が、饞化触媒 5で酸化されす、に該酸化触媒 5を 通過して担觀媒に供給される。 そして、酸化触媒 5のみならず ffiWM媒〖こおいて燃料が酸化 纩ることで発生する酸化熱によってフィルタ 4が昇溫される。
ところ力 上記した排気昇温 !l御においては排気絞り弁 9が閉弁方向に fell御される。 この場 、排気該り弁 9が開弁方向に !!御された場合に比べて、酸化触媒 5およぴフィル夕 4を通る 昨気の流量が少なくなる。そのため、燃料添加弁 6から添加された燃料が酸化触媒 5を通過し 進くなる。 つまり、 媒に燃料が供給され難くなる。 その結果、 フィ レタ 4の昇温速度が 低下する虞がある。
そこで、 本実施例では、 フィルタ再生制御実行 B において、 内燃機関 1の P及入空気量が規定 空気量以下の場合、酸化触媒 5の温度が活性温度に達した後は、スロットリレ弁 8を開弁方向に 制御した状態を維持すると共に排気絞り弁 9も開弁方向に制御する。ここ 、規定空気量とは、 排気絞り弁 9が閉弁方向に糾御された状態では、担持触媒に燃料が供給され難くなるほど酸化 触媒 5およびフィルタ 4を通る排気の流量が少なくなると判断出来る吸入空気量の上限値以 上の値である。 この規定空気量は実験等によつて予め定められた値である。
上記 tこより、酸化触媒 5およびフィル夕 4を通る排気の流量を増加さ ることが出来る。そ の結果、 担持触媒に燃料が ί 給され易くなる。
くフィル夕再生制御の制御ルーチン >
ここ 、本実施例に係るフィルタ再生制御の制御ル一チンについて図 5 に示すフローチヤ一 トに基づいて説明する。図 5は、本実施例に係る; 7ィル夕制御の制御ルーチンを表すフローチ ヤート ある。本ルーチンは、 ECU 10に予め記憶されており、 内膽関 1の運転中、 規定 間隔で実行される。 ' 本ルーチンでは、 ECU1 0は、先ず S401iこおいて、 フィルタ 4における PM捕集量 Q pm力 s、第一規定捕集量 Qp 1以上となったか否力を判別する。 この S 4, 01において、肯定 判定さ た場合、 ECU10は S402に進み、 否定判定された場合、 K CU10は本ル一チ ンの実行を一旦終了する。
S4 02において、 ECU 10は、 実施例 1と同様の排気昇温制御を実行する。 この場合、 排気昇 制御の実行条件は、 実施例 1と同様、フィルタ 4における P M搪 «Q p mが第一規 定捕集量 Q pm 1以上となることである。
次に、 E C U 10は、 S 4 03に進み、酸化触媒 5の温度 T cが活性温度の下限値 T c O 上であるか否かを判別する。 この S 403において、 肯定判定された場台、 E CU 10は S 4 0 に51み、 否定判定され 場合、 ECU10は S402に戻る。 尚、 .酸化触媒 5の温度 T c が活 fe 度の下限値 T c 0以上であれば、 fiitM媒の温度も同様であると判断することが出 3fe る。 '
S 404 こおいて、 E CU 1 (Hま、 内顯関の吸入空気量 Q a i r力規定空気量 Q a i r 0 以下である ^否かを判別する。 この S 404において、肯定判定された場合、 E CU 10は S 408に進み、 否定判定された場合、 ECU10は S4 05に進む。.
S 405に進んだ E C U 10は、 燃料添加弁 6からの燃料添加を実行して酸化触媒 5および 担持触媒に燃料を供給する。 このとき、 フィルタ 4の温度が、 PM酸化温度となるように燃料 添加量が制 される。 これにより、 フィル夕 4に捕集ざれた PMが ¾化され除去される。 次に、 ECU10は、 S406〖こ進み、 フィルタ 4に: ¾ける P M捕集量 Q p mが第二規定捕 集量 Qpm 2以下となった力、否かを判別する。 この S4 06において、 肯定 []定された場合、 ECU10は S407に進み、 否定判定された場合、 E CU10は S404に戻る。
S 407において、 ECU1 (U フィルタ再生制御を停止する。即ち、排 昇温制御および 燃料添加弁 6からの燃料添加を停!!:する。 この場合、排気昇温制御の実行停 It条件は、 実施例 1と同様、フィル夕 4における PM«集量 Qpm力 S第二菊定捕集量 Qpm2 下となることと なる。 フイリレタ再生制御を停止した後、 ECU 10は ル一チンの実行を一旦終了する。 一方、 S 408に進んだ ECU 10は、 排気絞り弁 9 を閉弁方向に制御する。
次に、 E C U 10は、 S 409【こ進み、酸化触媒 5の温度 T c力 S活性温度 下限値 T c 0以 上か否かを半 J別する。 この S 409において、 肯定判定された場合、 E CU 1 0は S 405に 進む。一方、 S409において、否定判定された場合、 *気絞り弁 9を開弁 向に制御するこ とで酸化触媒 5の温度 T cが低下し活性温度の下限値 c 0よりも低くなつ と判断し、 S 4 10に進む。
S 410において、 ECU1 Οί· 、 排気絞り弁 9を 度閉弁方向に制御する。その後、 EC U10は S 409に戻る。
以上説日 した制御ルーチンによれば、内賺関 1の吸 空気量 Q a i rが規定空気量 Qa i r 0以下の場合、酸化触媒 5の温度が活性温度に達しこ後は、排気絞り弁 6力 S開弁方向に制御 される。 これにより、酸化触媒 5およびフィル夕 4を道る排気の流量が増加し、 媒に燃 料が供給ざれ易くなる。従って、本実施例によれば、 フィ タ 4をより速やかに雾温すること 力 S可能となる。
また、 上記のように、 フィル夕再生制御の実行中において、 スロットル弁 8のみならず排気 絞り弁 9をも開弁方向に制御することで酸化触媒 5およびフィル夕.4を通る排気の流量を増 加させると、 持ち去り熱量が増加することになる。その結果、酸化触媒 5の温度: T cが活性温 度より低くなる場合がある。
そこで、 上記制御ル一チンによれぱ、排気絞り弁 9を開弁方向に制御した後、 酸化触媒 5の 温度 τ cが活性温度の下限値丁 c 0より低くなった場合、 m り弁 9を再度閉 方向に制御 する。
これにより、 酸化触媒 5の温度 T cをより速やかに活性温度に戻すことが出来る。
(実施俩 5 )
本実施柯に係る内燃機関の吸排気系の概略構成は実施例 1と同様であるためそ O)説明を省 略する。
ぐ酸化触媒の温度のハンチング >
本実施何においては実施例 1と同様のフィルタ再生制御 行われる。上記のように、 フィル 夕再生制御においては、フィルタ 4の温度を PM酸化温度とすべく機関排出排気の温度および 燃料添加弁 6からの燃料添加量が糾御される。 ここで、酸 f匕触媒 5の温度と燃糊忝加弁 6から の燃料添カロ量との関係について図 6 に基づいて説明する。 図 6において、 縦軸は ί¾度を表し、 潢軸は時間を表している。
図 6において、実線は燃料添加弁 6からの燃料添加量が 匕較的少ない場合の酸 ί匕触媒 5の温 荬を示しており、破線は燃料添加弁 6からの燃料添加量が 較的多い場合の酸化触媒 5の温度 を示してレ る。 また、 一点鎖線は P M酸化温度 T tを示している。
フィル夕再生制御において、燃 忝加弁 6から燃料が動口される場合、燃料添 iJB量が酸化触 某 5におレ て安定して酸化可能な ftより多くなると、 燃; ^が局所的に酸化される場合がある。 二のような場合、 図 6における破線で示すように、酸化触媒 5の温度のハンチングの変化幅 Δ T c (以下、 温度変化幅 Δ T cと称する) が、 燃料添加量 より少ない場合に比 てより大き くなる虞がある。 この温度変化幅厶 T cが画に大きくなると、流出排気の温度 (^変化幅も大 きくなるためフィルタ 4の過昇温を招く虞がある。
そこで、 本実施例においては、 フィルタ再生制御の実行待であって燃料添加弁 6 から燃料を 添加しているときに 変化幅△丁 cを算出する。そして、 この温度変化幅 Δ T c が所定値 Δ Τ 0以上となったときは、該温度変化幅 ΔΤ cを所定値 ΔΤΓ 0より小さくすべく饞関排出排気 の温度をより高くする。
ここで、 Bf定値 ΔΤ0とは、温度変化幅 ΔΤο力 S大きい; ^めにフィルタ 4の過 ~温を招く虞 があると半 1J断出来る閾値となる値より小さい値である。この所定値 ΔΤ 0は実験寧によって予 め定められた値である。
機閧排 tti排気の温度をより高くすることで酸化触媒 5の溫度をさらに上昇させることが出 来る。これにより、酸化触媒 5においてより多くの燃料を安定して酸化させること力可能とな る。 その桔果、 温度変化幅 ΔΤ。 ¾減少させることカ拙来る。
くフィ レ夕再生制御の制御ルーチン〉
次に、本实施例に係るフィルタ再生制御の制御ル一チンについて図 7に示すフローチヤ一ト に基づいて説明する。本ルーチンは、 ECU10に予め記魔されており、内膽関 1の運転中、 規定間隔毎に実行されるルーチンである。
本ルーチンでは、 E CU 10は、 先ず S 501において、 フイリレタ 4における ΡΜ捕集量 Q pmが第一所定量 Q pm 1以上であるか否かを判別する。 この S 501において、 肯定判定さ れた場合、 ECU10は S502 こ進み、 否定判定された場合、 E CU 10は本 Jレーチンの実 行を一旦終了する。
•S 502において、 E CU10は、 実施例 1と同様の徘 昇温制御を実行する。 この場合、 排気昇温制御の実行条件は、実施例 1と同様、 フィルタ 4における PM捕集量 Qpmが第一規 定捕集量 Qpml以上となることである。 .
次に、 ECU10は、 S503 tこ進み、酸化触媒 5の温度 T c力 舌性温度の下辰値 T c 0以 上であるか否かを判別する。 この S 503において、肯定碎 IJ定された場合、 ECU1 0は S 5 04に進み、 否定判定された場合、 ECU10は S502 に戻る。
S 504 ίこおいて、 E C U 1 ま、燃料添加弁 6から燃料を添加し酸化触媒 5に然料を供給 する。 このとき、 内賺関 1の吸人空気量、 および、機闋¾出排気の温度と ΡΜ酸匕温度 T t との差に基づ-いて、 燃料添加量を決定しても良い。
次に、 ECU10は、 S 505 ίこ進み、酸化触媒 5の温度変化幅 ATcを算出する。 この温 度変化幅 Δ T cを算出する場合、 E C U 10は、 先ず、酸ィ匕触媒 5の温度 T cの微 値 d T c Zd tが 0となったときの酸化触媒 5の温度 Tc 1を記嵐する。次に、 ECUIO^:、 酸化触 媒 5の温度 ΤΓ cの微分値 d T c Z d tが、 0より大きく つた後または 0より小さくなつた 後、再度 0となったときの酸化触媒 5の温度 T c 2を記 1ftする。 このように検出された温度 T c 1および TTc 2力 ^酸化触媒 5の温度力八ンチングしているときの上限温度と下艮温度とな る。そして、 この温度 T c 1から温度 T c 2を減算した値の絶対値を温度変ィ匕幅 Δで cとして 算出する。 尚、 以上のような計算^複数回繰り返し、その平均値を温度変化幅 ATcとしても 良い。
次に、 ECU10は、 S 506 ίこ進み、温度変化幅 Δ Γ cが所定値 Δ T 0以上で ¾るか否か を判別する。 この S 506において、 肯定判定された場合、 E CU 10は S 509【こ進み、 否 定判定された場合、 ECU10は S 507に進む。
S 507に進んだ E CU 10は、 フィルタ 4における I> M捕集量が第二規定捕集量 Q pm2 以下にまで減少したか否かを判別する。 この S 507において肯定判定された場合、 ECU1 0は S 508に進み、 否定判定された場合、 ECU1 CH S 504に戻る。
S 508 こおいて、 ECU1 (Hま、 フィルタ再生制御 Ό実行を停止する。即ち、 気昇温制 御および燃料添加弁 6からの燃 添加を停止する。この 合、排気昇温制御の実行 止条件は、 実施例 1と同様、フイリレ夕 4における P M捕集量 Q p m力 s第二規定捕集量 Q m2以下となる こととなる。フィルタ再生制御を ί亭止した後、 ECU 10 ま本ル一チンの実行を一 終了する。 一方、 S 509に進んだ ECU 10は、機関排出排気をさらに昇温させる。 この 法として は、副燃料暖射時期をさらに遅角させる方法や、副燃料 射量を増量する方法、 気絞り弁 9 の開度をより小さくする方 を M示することが出来る。
次に、 ECU10は、 S 510に進み、要求機関回転 N e tより機関回転数 N eが高いか 否かを判別する。 S 510において、 肯定判定された場 、 ECU 0は、 S 5 O 9における 制御により磯関回転数 Neが要求磯関回転数 Ne tより高くなつたと判断し、 ECU10は S 511に進む。一方、 S 510にお て、否定判定された場合、 ECU 10は S 5 06に戻る。
S 511に進んだ E CU 10は、機関回転数 N eを低 " させるべく内燃機関 1における主燃 料噴射量 Q を減少させる。 その後、 ECU10は S510に戻る。
以上説明した制御ルーチンによれば、フィル夕再生制 Pの実行中であって燃料添加弁 9から 燃料が添加されているときに、酸化触媒 5の温度変化幅 T cが所定量△ T 0以上となった場 合、 該温度変化幅△ T cが所定量^ T 0より小さくなるまで機関排出排気が昇温される。 従って、 実施例によれば、フィルタ再生制御の実行 [^における酸化触媒 5の温度をより安 定させること力可能となる。 これ (こより、 フィルタ再生^]御にかかる時間をより短縮すること が出来ると共に、 フィル夕 4の過昇温を抑制することが tB来る。
また、本実施例においては、酸ィ匕触媒 5の温度変化幅 T cを所定量△ T 0より小さくすべ く機関排出^気の温度を昇温させた場合、そのときの機鬨排出排気の温度上昇量に基づいて酸 化触媒 5の劣化度合いを推定しても良い。
この場合、 機関排出排気の温度 昇量が大きいほど酸ィ匕触媒 5の劣化度合いが^:きいと判断 出来る。推定された劣化度合いに基づいて、次回のフィ レタ再生制御実行時の副燃料噴射 » 副燃料噴射時期、燃料添加量等を制御することで、より 率的に PMを酸化させ除去すること が可能となる。
尚、本実施例においても、実施何 1または 2と同様、 フィルタ 4の代わりに NOx触媒を設 けても良い。 S〇x被毒回復制御においても、 フィルタ再生制御と同様、 NOx翔媒を昇温さ せるベぐお 気昇温制御によって酸化触媒 5を活性温度にまで昇温させると共に然料添加弁 6 から燃料を添加する。そして、燃料添加弁 6から燃料を添加するときに、 上記と^!様に機関排 出お 気の温度を制御する。 これにより、 S Ox被毒回復制御の実行時における酸化触媒 5の媪 度をより安定させること:^'可能となる。
尚、上記実施例 1から 5においては、燃料添加弁 6から燃料を添加することで酸化触媒 5に 燃科を供給したが、 内燃機関 1において、排気 温制御における副燃 噴射とは別に、 噴射さ れ 7t燃料が燃焼に供されないようなタイミングで副燃料噴射を実行することで酸化触媒 5に 燃科を供給しても良い。 産業上の利用可能性
本発明によれば、酸化璣能を有する触媒を含んで構成される排気浄ィ匕装置を備えた内燃機関 のお 気浄化システムにおいて、 触媒をより速ゃ に昇温させることが出来る。

Claims

請 求 の 範 囲
1. 内燃機関の排気通路に設けられ、酸化機能を有する触媒を含んで構成される排気浄化 置と、
前言己内燃機関の吸入空気量を制御する P及入空気量制御弁と、
前言己排気通路におけるお 気流量を制御する排気流量制御弁と、
前言己内燃機関における燃料噴射時期を制御する噴射時期制御手段と、
前 f己触媒を昇温させる昇温手段と、 を備え、
前記昇温手段は、前記 fife媒を昇温させる場合、 前記排気流量制御弁を閉弁方向に制御すると 共に前記吸入空気量制御弁を開弁方向に制御し、 さらに、前記噴射時期制御手段によって前言己 内燃機関における燃料噴衬時期を遅角することで、前記内燃機関から排 tBされる排気を昇温ざ せることを特徴とする内燃機関の排気浄化システム。
2. 前記昇温手段は、 fir記触媒を昇温させる場合、 前記噴射時期制御手段によって前記内 機 Mにおける主燃料噴射時期を遅角すると共に、 遅角された主燃料噴射より後の時期であって 且つ噴射された燃料が燃提に供される時期に実行される副燃料噴射を実行することを特徴と する請求項 1記載の内 関の排気浄化システム。
3. 前記昇温手段が、前記触媒を活性温度に で昇温させるものであることを特徴とする唐 求項 1記載の内讓閧のお 気浄化システム。
4. 前記触媒に還元剤を供給する転剤供給 段と、 .
己触媒の温度を推定する温度推定手段と、
規定条件が成立したときに、前記昇温手段に つて前記触媒を活性温度にまで ^させると 共に前記 s¾剤供給手段〖こよって前記触媒に 剤を供給することで菌排気浄化装置をさ らに昇温させ、それによつて、前記排気浄化装置の排気浄化能力を再生させる再生制御を実 ί亍 する再生手段と、
前記 媒の劣化度合いを推定する劣化度合い推定手段と、
前記 fife媒の劣化度合いに基づいて前記再生制御实行時における前記触媒への還元剤供給量 を制御する供給量制御手段と、 をさらに備え、
前記 化度合い推定手段は、 前記内纖関の運転状態がアイドリングであって前記規定条件 が成立する以前に、前記昇温 段によって前記触媒を活性温度にまで昇温させると共に前記還 元剤供洽手段によって前記触媒に還元剤を供給し、該 M¾剤を供給したときの前記触媒の昇温 速度に基づいて前記触媒の劣 ί匕度合いを推定することを特徴とする請求項 1記載の内燃機関 の排気争ィ匕システム。
5. t r記触媒に還元剤を供給する^ ΰ剤供給手 と、
前記独媒の温度を推定する温度推定手段と、
規定条件が成立したときに、 前言さ昇温手段によって前記触媒を活性温度にまで昇温させると 共に前言己 Μ¾剤供給手段によって前記触媒に ¾¾ を供給することで前言己排気浄化装置をさ らに昇温させ、それによつて、 前記排気浄化装置のお気浄化能力を再生させる再生制御を実行 する再 手段と、 を備え、
前記再生手段による前記再生制御の実行時であつて前記触媒に s¾剤を供給しているとき の前記独媒の温度の変化幅が 定値以上のときは、前記内燃機関から排 される排気の温度を より高くすることを 1数とする請求項 1記載の内燃機関の排気浄化システム。
6. ttr記触媒の劣化度合いを推定する劣化度合 推定手段をさらに備え、
該劣 ίヒ度合い推定手段が、 tir記触媒の温度の変ィ匕ゅ畐が前記所定値より/ Jゝさくなるまで前記内 燃機関から排出される排気の溫度をより高くしたときの該排気の温度上昇量に基づいて前記 触媒の 化度合いを推定することを とする請 項 5記載の内画関の排気浄化システム。
7 . 前記排気浄化装置が、排気中の' 子状物質を捕集するパティキユレ一トフィル夕を有し、 該パティキュレートフィルタより上流側に前記触媒が 置ざれて構成されており、
前記触媒に ¾剤を供給する 供給手段と、
前記排気通路における前記パティキュレートフィル夕の 流側と前記パティキュレートフ ィル夕の下流側との差圧を検出する差圧検出手段と、
該差圧検 手段によって検出される差圧に基づいて前記/ ティキュレートフイリレタにおけ る P M捕集量を推定する捕集量推定 段と、
該捕集量推定手段によって推定された PM捕集量が規定進集量以上となったときに、前記昇 温手段によつて前記触媒を活性温度にまで昇温させると共 ίこ前記還元剤供給手段によって前 記触媒に還元剤を供給することで前言己パティキユレ一トフ ルタを Ρ Μ酸化温度にまで昇温 させ、それによつて、該パティキユレ——トフィルタに捕集さ た粒子状物質を酸 f匕させ除去す るフィル夕再生制御を実行するフィルタ再生手段と、
前記パティキュレートフィルタの _t流側端面における H C付着-量を推定する H C量推定手 段と、
前記パティキュレートフィルタの 流側端面に付着した Cを除去する H C除去手段と、を さらに備え、 '
前記 HC除去手段は、前記内燃機関の運転状態がアイドリ ングであって且つ HC量推定手段 によつて推定された H C付着量が規 付着量以上となったときに、前記昇温手段によつて前記 触媒を活性温度にまで昇温させると共に前記 ¾剤供給手 によつて前記触媒に »ϋ剤を供 給することで前記パティキュレートアイル夕を前記 ΡΜ酸ィ匕温度より低い HC麼ィ匕温度にま で昇温させることで HCを除去することを特徴とする請求頃 1記載の内燃機関の 気浄化シ ステム。
8. 前記排気浄化装置が、排気中の;^立子状物質を捕集する/、ティキュレートフ ルタを有し、 該パティキエレートフィル夕に嫌 媒が担持され且つ該パティキュレートフィリレ夕の上流 側にも前言己触媒が配置されて構成されており、
前記排気浄化装置より上流側から前記触媒に還元剤を供給する ¾剤供給手段と、 前記 ^手段によって前記触媒を活性温度にまで昇温させると共に前記 ¾剤供給手段に よって前言 S触媒に還元剤を供給することで前記パティキユレ一トフィルタを PM酸化温度に まで昇温させ、それによつて、該パティキュレートフィルダに捕集された粒子状 fel質を酸化さ せ除去するフィル夕再生制御を実行するフィル夕再生手段をさらに備え、
前記フィル夕再生制御実行時において、 前記内纖関の扱入空気量が規定空気釁以下の場 合、前記触媒の温度が活性温度に達した後は前記吸入空気量制御弁および前記排気流量制御弁 を開弁方向に制御することを特徴とする請求項 1記載の内燃機関の排気浄化システム。
9. 前言己フィルタ再生制御実行時において、前記 ¾λ空気量制御弁および前記 気流量制御 弁を開弁状態とした後、前記パティキュレートフィルタより上流側に配置された tff記触媒の温 度が活性温度より低くなつたときほ、前記排気流量制御弁を閉弁方向に制御することを髓と する請求項 8記載の内燃機関の排気浄化システム。
PCT/JP2006/313809 2005-07-06 2006-07-05 内燃機関の排気浄化システム WO2007004747A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200680023053.9A CN101208505B (zh) 2005-07-06 2006-07-05 用于内燃机的排气净化系统
US11/921,579 US20090044517A1 (en) 2005-07-06 2006-07-05 Exhaust gas purification system for an internal combustion engine
EP06780979A EP1900928A4 (en) 2005-07-06 2006-07-05 EXHAUST GAS PURIFICATION SYSTEM OF AN INTERNAL COMBUSTION ENGINE

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-197911 2005-07-06
JP2005197911A JP4135734B2 (ja) 2005-07-06 2005-07-06 内燃機関の排気浄化システム
JP2005-199130 2005-07-07
JP2005199130A JP2007016692A (ja) 2005-07-07 2005-07-07 内燃機関の排気浄化システム

Publications (1)

Publication Number Publication Date
WO2007004747A1 true WO2007004747A1 (ja) 2007-01-11

Family

ID=37604594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313809 WO2007004747A1 (ja) 2005-07-06 2006-07-05 内燃機関の排気浄化システム

Country Status (3)

Country Link
US (1) US20090044517A1 (ja)
EP (1) EP1900928A4 (ja)
WO (1) WO2007004747A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4428361B2 (ja) * 2006-05-24 2010-03-10 トヨタ自動車株式会社 内燃機関の排気浄化システム
JP4665924B2 (ja) * 2007-03-16 2011-04-06 トヨタ自動車株式会社 内燃機関の排気浄化システム
EP2235335B1 (en) * 2007-12-21 2011-09-21 Renault Trucks Thermal energy containing arrangement for an exhaust gas purification device
US20110093182A1 (en) * 2008-05-08 2011-04-21 Borgwarner Beru Systems Gmbh Estimating engine parameters based on dynamic pressure readings
JP4530081B2 (ja) * 2008-07-25 2010-08-25 トヨタ自動車株式会社 内燃機関の触媒劣化診断装置及び触媒劣化診断方法
US8505277B2 (en) * 2009-08-06 2013-08-13 GM Global Technology Operations LLC System and methods for controlling selective catalytic reduction systems
KR101048144B1 (ko) * 2009-11-02 2011-07-08 기아자동차주식회사 배기 시스템
FR2952673B1 (fr) * 2009-11-17 2013-08-30 Peugeot Citroen Automobiles Sa Procede de controle des emissions polluantes d'un moteur a combustion
JP2011220158A (ja) * 2010-04-07 2011-11-04 Ud Trucks Corp エンジンの排気浄化装置
US20120102946A1 (en) * 2010-11-03 2012-05-03 Gm Global Technology Operations, Inc. After-treatment cooling with combustion feedback
GB2491411B (en) * 2011-06-03 2015-05-27 Perkins Engines Co Ltd Exhaust after treatment device mode regulation
JP6007489B2 (ja) 2011-12-12 2016-10-12 いすゞ自動車株式会社 排気ガス浄化システムと排気ガス浄化方法
JP2015068267A (ja) * 2013-09-30 2015-04-13 いすゞ自動車株式会社 排気ガス浄化システム及び排気ガス浄化方法
JP6891629B2 (ja) * 2017-05-19 2021-06-18 いすゞ自動車株式会社 エンジン及びその制御方法
JP6992561B2 (ja) * 2018-02-06 2022-01-13 株式会社デンソー 燃料噴射制御装置
JP7178219B2 (ja) * 2018-09-10 2022-11-25 三菱重工エンジン&ターボチャージャ株式会社 制御装置、排ガス浄化システムおよびエンジンの制御方法
DE102022201686A1 (de) * 2022-02-18 2023-08-24 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren, Recheneinheit und Computerprogramm zum Ermitteln einer Menge an Kohlenwasserstoffen in einem Abgas einer Magerbetriebs-Brennkraftmaschine

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797918A (ja) 1993-09-28 1995-04-11 Honda Motor Co Ltd 内燃エンジンの排気ガス浄化装置
JPH1054274A (ja) * 1996-08-12 1998-02-24 Toyota Motor Corp 内燃機関の排気浄化装置
JPH11257125A (ja) 1998-03-12 1999-09-21 Nippon Soken Inc 触媒温度制御方法
JP2001221037A (ja) 2000-02-08 2001-08-17 Toyota Motor Corp 内燃機関の排気浄化装置
EP1291513A2 (en) 2001-09-07 2003-03-12 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Exhaust emission control device of engine
JP2003083029A (ja) 2001-09-07 2003-03-19 Mitsubishi Motors Corp エンジンの排気浄化装置
JP2003322014A (ja) * 2002-04-30 2003-11-14 Mitsubishi Fuso Truck & Bus Corp エンジンの排ガス浄化装置
JP2005030272A (ja) * 2003-07-10 2005-02-03 Toyota Motor Corp 内燃機関の排気浄化装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19957715C2 (de) * 1998-12-01 2002-01-17 Toyota Motor Co Ltd Abgasausstoß-Steuerungsvorrichtung für eine Brennkraftmaschine
JP3633401B2 (ja) * 1999-10-26 2005-03-30 トヨタ自動車株式会社 内燃機関の排気昇温装置
US6304815B1 (en) * 2000-03-29 2001-10-16 Ford Global Technologies, Inc. Method for controlling an exhaust gas temperature of an engine for improved performance of exhaust aftertreatment systems
JP3951899B2 (ja) * 2002-11-15 2007-08-01 いすゞ自動車株式会社 ディーゼルエンジンの排気浄化装置
JP4178960B2 (ja) * 2003-01-14 2008-11-12 株式会社デンソー 内燃機関の排気浄化装置
JP3894125B2 (ja) * 2003-01-28 2007-03-14 日産自動車株式会社 内燃機関の排気浄化装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797918A (ja) 1993-09-28 1995-04-11 Honda Motor Co Ltd 内燃エンジンの排気ガス浄化装置
JPH1054274A (ja) * 1996-08-12 1998-02-24 Toyota Motor Corp 内燃機関の排気浄化装置
JPH11257125A (ja) 1998-03-12 1999-09-21 Nippon Soken Inc 触媒温度制御方法
JP2001221037A (ja) 2000-02-08 2001-08-17 Toyota Motor Corp 内燃機関の排気浄化装置
EP1291513A2 (en) 2001-09-07 2003-03-12 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Exhaust emission control device of engine
JP2003083029A (ja) 2001-09-07 2003-03-19 Mitsubishi Motors Corp エンジンの排気浄化装置
JP2003322014A (ja) * 2002-04-30 2003-11-14 Mitsubishi Fuso Truck & Bus Corp エンジンの排ガス浄化装置
JP2005030272A (ja) * 2003-07-10 2005-02-03 Toyota Motor Corp 内燃機関の排気浄化装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1900928A4

Also Published As

Publication number Publication date
EP1900928A1 (en) 2008-03-19
EP1900928A4 (en) 2009-04-29
US20090044517A1 (en) 2009-02-19

Similar Documents

Publication Publication Date Title
WO2007004747A1 (ja) 内燃機関の排気浄化システム
JP4270173B2 (ja) ディーゼルエンジンの排気後処理装置
US9188034B2 (en) Emission control with a particulate matter sensor
US20050241301A1 (en) Exhaust cleaning device of internal combustion engine
WO2008126924A1 (ja) 内燃機関の排気浄化システム
JP4135734B2 (ja) 内燃機関の排気浄化システム
EP1725751B1 (en) Regeneration controller for exhaust purification apparatus of internal combustion engine
JP2005180322A (ja) ディーゼルエンジンの排気後処理装置
JP4986667B2 (ja) 排気浄化装置
JP4232822B2 (ja) フィルタ上下流の差圧算出装置及び同フィルタにおける粒子状物質の堆積量推定装置
JP2012002213A (ja) 差圧センサの故障検出装置
JP2010019231A (ja) 堆積量推定装置及び堆積量推定方法
JP2006348905A (ja) 内燃機関の排気浄化システム
US9382830B2 (en) Exhaust gas purification apparatus for an internal combustion engine
JP2010169032A (ja) エンジンの制御装置
JP4365724B2 (ja) 排気浄化装置
JP2008025467A (ja) 内燃機関の排気浄化システム
JP2017150411A (ja) 内燃機関の排気浄化システム
JP3930724B2 (ja) 排気浄化装置
JP2008064004A (ja) 内燃機関の排気浄化システム
JP2008121571A (ja) 内燃機関の排気浄化システム
JP5605302B2 (ja) パティキュレートフィルタの劣化抑制装置
JP2006152870A (ja) 内燃機関の排気浄化システム
JP2009264278A (ja) 内燃機関の排気浄化装置
WO2014115621A1 (ja) 内燃機関の排気浄化装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680023053.9

Country of ref document: CN

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006780979

Country of ref document: EP

Ref document number: 11921579

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE