JP2009264278A - 内燃機関の排気浄化装置 - Google Patents

内燃機関の排気浄化装置 Download PDF

Info

Publication number
JP2009264278A
JP2009264278A JP2008115774A JP2008115774A JP2009264278A JP 2009264278 A JP2009264278 A JP 2009264278A JP 2008115774 A JP2008115774 A JP 2008115774A JP 2008115774 A JP2008115774 A JP 2008115774A JP 2009264278 A JP2009264278 A JP 2009264278A
Authority
JP
Japan
Prior art keywords
filter
particulate matter
temperature
amount
oxidation catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008115774A
Other languages
English (en)
Inventor
Kenichi Tsujimoto
健一 辻本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008115774A priority Critical patent/JP2009264278A/ja
Publication of JP2009264278A publication Critical patent/JP2009264278A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

【課題】フィルタ再生中にフィルタから流出する粒子状物質が大気中へ排出されることを抑制する。
【解決手段】排気通路に設けられたフィルタの下流に酸化触媒を設け、更に酸化触媒の温度を制御する温度制御手段を設ける。フィルタから流出する粒子状物質の量を推定し、その推定値に基づいて酸化触媒の温度を制御する。本発明により、フィルタ下流の酸化触媒の温度制御を行うことで、酸化触媒へ付与するエネルギを可及的に低減しながらフィルタから流出してくる粒子状物質を好適に酸化処理することができる。
【選択図】図1

Description

本発明は、内燃機関の排気浄化装置、特に排気ガス中の粒子状物質を酸化除去する排気浄化装置に関するものである。
内燃機関から排出される粒子状物質(パティキュレートマター)を排気通路に設けられたパティキュレートフィルタで捕集し、所定量の粒子状物質が捕集された後、フィルタを600℃程度に昇温させ酸化除去することによって大気中への粒子状物質の放出を防ぐ排気浄化装置が知られている。
下記特許文献1には、粒子径が小さく内燃機関から排出されてもフィルタをすり抜けてしまうナノ粒子(例えば50nm以下の粒子)を酸化して浄化するために、フィルタ下流に触媒を担持したナノ粒子処理フィルタを設けることで、ナノ粒子レベルまで良好に粒子状物質を酸化し得るようにした排気浄化装置が記載されている。
特開2005−120964号公報
ところで、フィルタに堆積した粒子状物質をフィルタの温度を昇温することにより酸化除去する、いわゆるフィルタ再生開始が行われる前には、フィルタの細孔内及び表面に粒子状物質が堆積し、フィルタ細孔内の通路が細孔径に比べ狭まった状態となっており、フィルタに流入する粒子状物質を好適に捕集することができる状態となっている(図1(a))。しかし、フィルタ再生が開始され、粒子状物質が酸化除去されていくと、堆積していた粒子状物質が酸化除去されていく過程でフィルタの細孔内の通路が拡がり、これによりフィルタの細孔内および通路から剥離した粒子状物質がフィルタ下流に流出してしまうという問題がある(図1(b))。
従って、特開2005−120964号に開示される排気浄化装置のようにフィルタ下流に酸化触媒を設けることが考えられるが、フィルタから流出した粒子状物質を下流側の酸化触媒で酸化処理をするためには触媒を加熱して活性状態にすることが必要であり、且つ、燃費向上の観点からは触媒を加熱するためのエネルギは可及的に低減することが望ましい。
上記問題を解決するための発明を以下に示す。
1番目の発明は、内燃機関の排気通路に配置され、排気ガス中の粒子状物質を捕集するフィルタと、フィルタで捕集された粒子状物質を酸化除去する酸化除去手段と、フィルタ下流の排気通路に配置された酸化触媒と、
酸化触媒の温度を検出する触媒温度検出手段と、酸化触媒の温度を制御する温度制御手段と、フィルタ下流に流出する粒子状物質の量を推定する流出量推定手段とを備え、酸化除去手段による粒子状物質の酸化除去を行う場合に、流出量推定手段により推定された流出量に基づいて定められた所定温度以上となるように酸化触媒の温度を制御することを特徴とする内燃機関の排気浄化装置である。フィルタ下流に流出する粒子状物質の量を予め推定し、酸化触媒の温度を推定された粒子状物質の流出量を酸化処理することができる温度にすることにより、酸化触媒へ付与するエネルギを可及的に低減しながらフィルタから流出してくる粒子状物質を好適に酸化処理することができる。
2番目の発明は、1番目の発明において、フィルタに堆積した粒子状物質の量を検出する堆積量検出手段を備え、検出された堆積量に基づいて、フィルタ下流に流出する粒子状物質の量を推定することを特徴とする内燃機関の排気浄化装置である。フィルタに堆積された粒子状物質の量によって、フィルタ下流に流出する粒子状物質の量が異なる。特にフィルタ再生時は、フィルタに堆積した粒子状物質の量が多ければその分下流への流出量も増加する。図1に示すような、フィルタから流出する粒子状物質の量とフィルタ再生開始時の粒子状物質の堆積量との関係を模したモデル式または実験等で求めた予め定められた関係を用いて、流出する粒子状物質の量を求め、これを酸化処理することができるように酸化触媒の温度を制御することで、酸化触媒へ付与するエネルギを可及的に低減しながらフィルタ下流へ流出する粒子状物質を好適に酸化処理することができる。なお、酸化触媒の温度制御は、図1のA点に示す、流出する粒子状物質の量がピークとなる時点の流出量を酸化処理することが可能な温度にした後に、フィルタに堆積した粒子状物質の酸化除去を開始する方法や、フィルタ再生中にリアルタイムに検出される流出量に応じて酸化触媒の温度を制御する方法などがある。
3番目の発明は、2番目の発明において、フィルタの温度を検出するフィルタ温度検出手段を備え、検出されたフィルタの温度に基づいて、フィルタ下流に流出する粒子状物質の量を推定することを特徴とする内燃機関の排気浄化装置である。図6に示すように、フィルタ再生中にフィルタから流出するの粒子状物質の量は、その時のフィルタ温度に依存する。フィルタ温度に依存するのは、温度の違いにより粒子状物質の酸化速度が変わり、酸化速度の高い高温状態では粒子状物質の流出量が高くなるためである。フィルタ温度に基づいてフィルタから流出する粒子状物質の量を推定することで、より適切に流出量を推定でき、延いては酸化触媒へ付与するエネルギを可及的に低減しながらフィルタ下流へ流出する粒子状物質を好適に酸化処理することができる。
4番目の発明は、2番目または3番目の発明において、内燃機関の運転状態を検出する運転状態検出手段を備え、機関の運転状態が低負荷運転状態であると判断された場合は、粒子状物質の酸化除去を制限することを特徴とする内燃機関の排気浄化装置である。減速時や低負荷運転時はフィルタへの流入空気量が少なくなることからフィルタからの持ち去り熱量が少なくなり、酸化除去される粒子状物質の量が増加しやすい状態となる。この酸化除去される粒子状物質の量が増加しやすい状態、つまり、フィルタからの流出が起きやすい状態で高負荷運転に移行し、フィルタに流入する排気ガス量が増加すると、フィルタから流出する粒子状物質の量が増大するおそれがある(図1(c))。そこで、低負荷運転状態のときには粒子状物質の酸化除去を制限することで、大気中に排出される粒子状物質の量が増加することを抑制することができる。
5番目の発明は、1番目の発明において、粒子状物質の量を検出する粒子状物質センサをフィルタ下流の排気通路に設け、粒子状物質センサにより前記フィルタ下流に流出する粒子状物質の量を推定することを特徴とする請求項1に記載の内燃機関の排気浄化装置である。
粒子状物質センサによりフィルタから流出する粒子状物質の量を検出し、その出力に基づいて下流の酸化触媒の温度を、流出量を酸化することができる温度に制御することで、酸化触媒へ付与するエネルギを可及的に低減しながらフィルタ下流へ流出する粒子状物質を好適に酸化処理することができる。
6番目の発明は、2から4番目の発明において、酸化除去手段による粒子状物質の酸化除去終了後、検出された堆積量が所定量以下である場合は、堆積量がその所定量以上となるまで酸化触媒の温度を所定温度以上、つまり、フィルタから流出した粒子状物質を酸化触媒にて酸化処理することができる酸化触媒の温度以上に維持することを特徴とする内燃機関の排気浄化装置である。図1(d)に示すように、フィルタ再生後のフィルタ細孔内は、粒子状物質が酸化除去されて堆積量が低下しているため、機関から排出される粒子状物質がすり抜けやすい状態となっている。そのため、粒子状物質がフィルタ細孔内に堆積することにより細孔通路が粒子状物質により狭められ、機関から排出された粒子状物質のすり抜け量が所定量以下となる堆積量に至るまで、下流の酸化触媒の温度を粒子状物質を酸化処理可能な温度にしておくことで、フィルタから流出した粒子状物質が大気中に排出されることを抑制することができる。
以上のように本発明によれば、フィルタ再生条件成立からフィルタ再生終了後所定期間経過後までの間、フィルタ下流の酸化触媒の温度制御を行うことにより、酸化触媒へ付与するエネルギを可及的に低減しながらフィルタから流出してくる粒子状物質を好適に酸化処理することができる。
また、フィルタからの粒子状物質の流出が推定される場合、もしくは流する際に酸化触媒の温度を適切に制御することによって、粒子状物質を好適に酸化除去し、大気中への放出を防止することができる。
図2に内燃機関の全体図を示す。
図2の内燃機関は、機関本体21、燃焼室22、燃焼室に燃料を噴射するための電子式燃料噴射弁23、吸気マニホールド24、排気マニホールド25により構成される。電子式燃料噴射弁23は燃料管を通じてコモンレール26につながっており、コモンレール26は燃料管を介して燃料タンク27につながっている。燃料タンク27に蓄えられた燃料を燃料ポンプ28によりコモンレール26に送り、そのコモンレール26に蓄えられた燃料を電子式燃料噴射弁23から噴射することで燃焼室22に燃料を供給する。また、吸気ダクトから流入した空気は吸気通路に設けられた過給機29のポンプにより圧縮され、冷却機39にて冷却されて燃焼室22に流入する。燃焼室22に流入した空気は、燃焼室で圧縮され高温となった時に電子式燃料噴射弁23により噴射される燃料と混合され、燃焼する。燃焼により生じた排気ガスは排気通路に設けられた過給機29のタービンを経由して排気通路に排出される。なお、排気マニホールド25と吸気マニホールド24は排気ガス循環(以下EGRとする)通路31を介して連結されており、EGR通路31にはEGR通路ガスの冷却装置32、通路の開閉弁33が設けられている。内燃機関から排出された排気ガスの一部がEGR通路31に流出し冷却装置32により冷却した後、吸気マニホールド24から燃焼室22に再び流入される。
図3は排気通路の詳細な図について記載したものである。排気通路には上流から、排気ガス中の粒子状物質を捕集するフィルタ41、酸化触媒42が配置されており、フィルタ41下流にフィルタ41の温度を検出する温度センサ43、酸化触媒下流に酸化触媒の温度を検出する温度センサ44、フィルタ41の上流及び下流に設けられ、フィルタ41の差圧を検出する差圧センサ45、フィルタ41と酸化触媒の間の通路に設けられ燃料タンクに蓄えられた燃料を排気通路中に供給する燃料供給弁46が設けられている。
フィルタ41はコージュライトなどの多孔質材料から形成されたウォールフロー型フィルタを用いており、機関から排出される粒子状物質は、フィルタ41の多孔質の隔壁を通過する過程で隔壁内部及び表面に捕捉されることによって捕集される。このフィルタ41により粒子状物質が大気へ排出されることを防いでいるが、フィルタ41に堆積する粒子状物質の量が増加するにつれてフィルタ41での排気の圧力損失が上昇し、機関の性能に悪影響を及ぼす。よって、フィルタ41に捕集された粒子状物質が所定量となった時点で、フィルタ41を600℃程度に加熱し、捕集された粒子状物質を酸化除去するいわゆるフィルタ再生制御が行われる。
以下にフィルタ再生制御ついて述べる。フィルタ再生制御は、フィルタ41に堆積した粒子状物質が所定量に達した時、又は車両走行距離や車両走行時間に基づいて定期的にフィルタ41の温度を昇温することにより行われる。フィルタ41の温度を昇温する手段として、燃焼室で膨張行程または排気行程で電子燃料噴射弁から燃料を追加して噴射することにより排気通路に未燃燃料を供給し、排気通路上で未燃燃料を燃焼させることによって昇温する方法や、電気ヒーターにより加熱する方法、フィルタ41の上流に燃料供給弁を設け、フィルタ41に燃料を供給する方法などが挙げられる。
フィルタ41を600℃程度に昇温し、その温度を必要な時間維持した後、昇温を中止することによりフィルタ41の再生は終了する。なお、このフィルタ再生制御は一例であり、必要な温度以上にフィルタ41の温度を維持しながら、フィルタ41の上流側と下流側の圧力差を検出し、その圧力差が所定値以下、即ちフィルタ41に堆積した粒子状物質が酸化除去されたと判断した後、再生制御を終了させることも可能である。
酸化触媒42は、例えば白金のような貴金属触媒を担持したモノリス触媒からなる。なお、前記酸化触媒は粒子状物質を酸化することができるものであればよく、例えば貴金属触媒を担持しているNOx吸蔵還元触媒などであっても良い。
電子制御ユニット(以下ECU:Electronic Control Unit)は、入力信号処理回路、演算回路、出力信号回路及び電源回路などから構成されており、上記各温度センサ43、44、差圧センサ45、アクセルペダルの踏み込み量に比例した出力電圧を発生する負荷センサ、クランクシャフトの所定回転角ごとにパルス信号を出力するクランク角センサ、吸入空気量を検出する空気量検出センサ34などの内燃機関に設けられたセンサの出力信号がECUに入力される。そして入力された信号に基づき、電子式燃料噴射弁23、EGR通路の開閉弁33、燃料ポンプ28、排気通路の燃料供給弁46などに出力信号が送られ内燃機関の運転制御がなされる。
以下、本発明で行う酸化触媒の温度制御について説明する。図4は、フィルタ再生条件成立後からフィルタ再生を実行するまでに行う酸化触媒の温度制御のフローチャートである。まず、S101において、フィルタ再生条件が成立したかどうかを判断する。フィルタ再生条件を満たしていない場合はそのままフローを終了する。フィルタ再生条件が成立していると判断された場合にはS102に進む。フィルタ再生条件が成立したか否かは、例えば上述したようにフィルタ41の上流と下流の差圧を検出し、予め行った実験で求めたフィルタ上流側と下流側の差圧と粒子状物質の堆積量との関係を用いてフィルタに堆積した粒子状物質が所定量以上か否かを判断する。
S102では、フィルタ41に堆積した粒子状物質の堆積量を検出し、この堆積量の値から粒子状物質の流出量がピークとなる時の流出量を推定する。なお、堆積量の検出方法としては、上述の差圧センサの出力から差圧と堆積量の関係に基づいて算出し、堆積量を求める方法が挙げられるが、この検出方法に限られるものではない。そしてS103に進み、推定した流出量に基づいてフィルタ下流に配置された酸化触媒をフィルタ再生開始前に何℃以上にするかを定めた酸化触媒の目標温度Taを決定する。この目標温度Taは、以下のように決定する。
図1に示す、フィルタ再生前後の堆積量の時間変化に基づいて説明すると、まずフィルタ再生開始前の粒子状物質の堆積量Pを求め、予め行った実験値から堆積量Pのときにフィルタ再生を行った時の図1の矢印A時に示される流出量がピークとなる時の流出量を推定する。そして、その流出量を酸化触媒で酸化することができる温度を図7の関係に基づいて求め、その温度を酸化触媒の目標温度として定める。図7は酸化触媒の温度とその温度時の酸化触媒で酸化処理可能な粒子状物質の量との関係について示したものであり、ある温度以上で粒子状物質の酸化処理が可能となり、温度が高くなるにつれて酸化処理可能な粒子状物質の量も増加する関係にある。フィルタ再生開始前の堆積量に応じた図1の矢印A時に示される流出量がピークとなる時の量を予め実験により求めておくことで、堆積量に応じた酸化触媒の目標温度を定めることが可能となる。なお、この目標温度はある程度の温度幅の温度域で設定しても良く、上記流出量を酸化することができる温度であれば良いものとする。
S104では、酸化触媒Tの温度がS103で定めた目標温度Ta以上であるか否かを判定する。酸化触媒の温度Tが目標温度Taよりも低い場合にはフィルタ再生開始したとしてもフィルタ再生が開始されて粒子状物質が酸化除去されることに伴いフィルタ41から流出してくる粒子状物質を好適に酸化することが出来ないため、S106に進み酸化触媒を加熱し昇温する。酸化触媒の温度Tが目標温度Ta以上であると判断された場合にはS105に進みフィルタ再生制御を実行する。
図5はフィルタ再生中の酸化触媒の温度制御のフローチャートである。S201でフィルタ再生中であるかを判別し、フィルタ再生中であればS202へ進み、フィルタ再生中でなければフローは終了する。
S202では、フィルタに堆積した粒子状物質の堆積量と、フィルタの温度を求める。そして、S203で、S202で求めた粒子状物質の堆積量とフィルタ41の温度を用い図6に示す関係を用いてフィルタ41から流出する粒子状物質の量を算出する。次いでS204では、図7に示すフィルタから流出する粒子状物質の量と酸化触媒での粒子状物質の酸化処理可能量との関係に基づいて酸化触媒の目標温度Tbを決定する。なお、フィルタからの流出量の急な増加に対応するため、目標温度Tbを少し高めの温度に設定しておくことが好ましい。S205において、酸化触媒の温度Tを検出し、酸化触媒の温度Tが目標温度Tbより高いか否かを判定する。酸化触媒の温度Tが目標温度Tbより低い場合はフィルタ41から流出する粒子状物質を好適に酸化処理することが出来ないため、S206へ進み酸化触媒の加熱により昇温させる。S205において、酸化触媒の温度Tが目標温度Tb以上と判定された場合には、S207へ進み、フィルタ再生が終了したか否かを判定する。フィルタ再生がまだ終了していない場合にはS202へ戻り、フローを繰り返す。S207でフィルタ再生が終了したと判断した場合にはフローを終了する。
上記制御によりフィルタ再生中、時々刻々と変化するフィルタ41からの粒子状物質の流出量に応じた酸化触媒の活性状態をつくりだすことができ、酸化触媒へ付与するエネルギを可及的に低減しながらフィルタ41下流へ流出する粒子状物質を好適に酸化処理することができる。
図8は、フィルタ再生中に内燃機関が低負荷運転から高負荷運転に移行するときの酸化触媒の温度制御を示したフローチャートであり図7のS201からS202に移行する間に行うものである。S211において、吸入空気量を検出する空気量検出センサ34の出力、燃料噴射量、クランク角センサの出力などから内燃機関の運転状態を検出し、S212において、内燃機関が予め定めた所定の低負荷運転状態であるか否かを検出する。この低負荷運転とは、フィルタ41に流入する空気量が減少し、フィルタ41からの持ち去り熱量が低下することで、フィルタの温度が上昇しやすくなる所定の運転状態である。低負荷運転状態でない場合はそのままS202へ進み、低負荷運転状態であると判断された場合にはS213にてフィルタ41に堆積した粒子状物質の酸化除去を制限する。このように粒子状物質の酸化除去を制限することで、高負荷運転移行時にフィルタ41から粒子状物質が流出することを抑制することができる。S214ではフィルタ41の温度Tが予め定められた所定の温度T´a以下であるかどうかを判断する。なお、所定温度T´aは、フィルタ41に堆積した粒子状物質の酸化除去が行われない、もしくは、通常の酸化除去時に比して酸化除去量が少なくなる温度である。S214でその所定温度T´aよりフィルタ温度が高いと判定された場合にはS213に戻り、更にフィルタ41の温度が低くなるようにする。S214でフィルタ41の温度が所定温度T´a以下であると判定されたらS202へ進む。
本実施形態では、フィルタ再生中に粒子状物質の堆積量とフィルタ41の温度との関係から粒子状物質の流出量を推定し、酸化触媒の温度を推定した流出量を酸化することができる温度になるようにして粒子状物質が大気中へ排出されることを抑制しているが、粒子状物質の量を検出する粒子状物質センサをフィルタ41下流の排気通路に設けて、粒子状物質センサによりフィルタ41から流出する量を直接検出し、その出力値に基づく流出量を酸化することができるように酸化触媒の温度を制御することでも、同様に大気中への粒子状物質の排出を抑制することが可能である。フィルタ41から流出する量に応じて酸化触媒の活性状態を制御することで、酸化触媒へ付与するエネルギを可及的に低減しながらフィルタから流出してくる粒子状物質を好適に酸化処理することができる。
一方、フィルタ再生終了後はフィルタ細孔内に存在していた粒子状物質が酸化除去により低下する(図1(d))。よって、機関から排出された粒子状物質がフィルタ41からすリ抜けやすい状態にあり、フィルタ41下流の酸化触媒で酸化する必要がある。図9のフローチャートはフィルタ再生終了後の酸化触媒の温度制御を示したものである。
まず、S301において、酸化触媒の温度Tが予め定められた所定の温度Tcより高いか否かを判定する。この予め定められた所定の温度Tcとは、フィルタ再生終了後にフィルタをすり抜けてくる機関から排出された粒子状物質を酸化することができる温度である。酸化触媒の温度が予め定められた所定の温度Tcよりも低い場合には、機関から排出されフィルタ41をすり抜けてくる粒子状物質を酸化触媒で酸化処理することが出来ないため、S302に進み酸化触媒を加熱し昇温する。酸化触媒の温度が予め定められた所定の温度Tcよりも高いと判断された場合にはS303に進みフィルタ41の上流側と下流側の差圧Pが予め定められた所定の差圧Pa以上であるか否かを判定する。この所定差圧Paはフィルタ再生により粒子状物質がすり抜けやすくなったフィルタ細孔通路が機関から排出される粒子状物質の堆積により再び狭まり、フィルタ41での粒子状物質のすり抜けが所定量以下となるときの差圧である。差圧Pが所定差圧Pa以下である場合にはS301に戻り、差圧Pが所定差圧Pa以上であると判定した場合には、フィルタ細孔内に粒子状物質が堆積して機関から排出される粒子状物質のフィルタでのすり抜け量が所定値以下になったものとし、フローチャートを終了する。
フィルタ再生時のフィルタの様子を説明するための図 圧縮着火式内燃機関の全体図 圧縮着火式内燃機関の排気通路の詳細な図 フィルタ再生開始前の酸化触媒の温度制御のフローチャート フィルタ再生中の酸化触媒の温度制御のフローチャート 粒子状物質の堆積量・フィルタ温度と流出量の関係性を示す図 酸化触媒の温度とその温度での酸化触媒での酸化可能な量を示す図 フィルタ再生中の低負荷運転時での酸化触媒の温度制御のフローチャート フィルタ再生終了後の酸化触媒の温度制御のフローチャート
符号の説明
11 フィルタ基体
12 フィルタに堆積した粒子状物質
13 フィルタから流出する粒子状物質
14 機関から排出された粒子状物質
41 フィルタ
42 酸化触媒

Claims (6)

  1. 内燃機関の排気通路に配置され、排気ガス中の粒子状物質を捕集するフィルタと、
    フィルタで捕集された粒子状物質を酸化除去する酸化除去手段と、
    フィルタ下流の排気通路に配置された酸化触媒と、
    酸化触媒の温度を検出する触媒温度検出手段と、
    酸化触媒の温度を制御する温度制御手段と、
    フィルタ下流に流出する粒子状物質の量を推定する流出量推定手段とを備え、
    前記酸化除去手段による粒子状物質の酸化除去を行う場合に、前記流出量推定手段により推定された流出量に基づいて定められた所定温度以上となるように酸化触媒の温度を制御することを特徴とする内燃機関の排気浄化装置。
  2. フィルタに堆積した粒子状物質の量を検出する堆積量検出手段を備え、
    前記堆積量検出手段により検出された堆積量に基づいて、前記フィルタ下流に流出する粒子状物質の量を推定することを特徴とする請求項1に記載の内燃機関の排気浄化装置。
  3. フィルタの温度を検出するフィルタ温度検出手段を備え、
    検出されたフィルタの温度に基づいて、前記フィルタ下流に流出する粒子状物質の量を推定することを特徴とする請求項2に記載の内燃機関の排気浄化装置。
  4. 内燃機関の運転状態を検出する運転状態検出手段を備え、
    機関の運転状態が低負荷運転状態であると判断された場合は、前記粒子状物質の酸化除去を制限することを特徴とする請求項2または3に記載の内燃機関の排気浄化装置。
  5. 粒子状物質の量を検出する粒子状物質センサをフィルタ下流の排気通路に設け、
    該粒子状物質センサにより前記フィルタ下流に流出する粒子状物質の量を推定することを特徴とする請求項1に記載の内燃機関の排気浄化装置。
  6. 前記酸化除去手段による粒子状物質の酸化除去終了後、検出された堆積量が所定量以下である場合は、堆積量が該所定量以上となるまで酸化触媒の温度を前記所定温度以上に維持することを特徴とする請求項2から4にいずれかに記載の内燃機関の排気浄化装置。
JP2008115774A 2008-04-25 2008-04-25 内燃機関の排気浄化装置 Pending JP2009264278A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008115774A JP2009264278A (ja) 2008-04-25 2008-04-25 内燃機関の排気浄化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008115774A JP2009264278A (ja) 2008-04-25 2008-04-25 内燃機関の排気浄化装置

Publications (1)

Publication Number Publication Date
JP2009264278A true JP2009264278A (ja) 2009-11-12

Family

ID=41390421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008115774A Pending JP2009264278A (ja) 2008-04-25 2008-04-25 内燃機関の排気浄化装置

Country Status (1)

Country Link
JP (1) JP2009264278A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011208542A (ja) * 2010-03-29 2011-10-20 Toyota Motor Corp 内燃機関の排気浄化装置
WO2014087466A1 (ja) * 2012-12-03 2014-06-12 トヨタ自動車株式会社 内燃機関の排気浄化システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011208542A (ja) * 2010-03-29 2011-10-20 Toyota Motor Corp 内燃機関の排気浄化装置
WO2014087466A1 (ja) * 2012-12-03 2014-06-12 トヨタ自動車株式会社 内燃機関の排気浄化システム
CN104838100A (zh) * 2012-12-03 2015-08-12 丰田自动车株式会社 内燃机的排气净化系统
JP5900653B2 (ja) * 2012-12-03 2016-04-06 トヨタ自動車株式会社 内燃機関の排気浄化システム

Similar Documents

Publication Publication Date Title
JP4103813B2 (ja) 内燃機関の排気浄化装置
JP4592504B2 (ja) 排気浄化装置
JP2004293340A (ja) 排ガス浄化装置
JP2007162569A (ja) 希釈オイル再生装置及び希釈オイル再生方法
JP2002322908A (ja) 排気ガス浄化装置
JP4446840B2 (ja) 堆積量推定装置
JP5251711B2 (ja) 内燃機関の排気浄化装置
EP1725751A1 (en) Regeneration controller for exhaust purification apparatus of internal combustion engine
JP2010180814A (ja) エンジンの排気浄化装置
JP2007211788A (ja) 内燃機関の排ガス浄化装置
JP2006274982A (ja) 排気浄化装置
WO2006041187A1 (ja) 内燃機関の排気浄化装置
JP2006274906A (ja) 排気浄化装置
JP2010249076A (ja) 内燃機関の排気浄化装置
JP2005120986A (ja) 内燃機関の排気浄化システム
JP2010169052A (ja) 内燃機関の排気浄化装置
JP4973355B2 (ja) 内燃機関の排気浄化システム
JP2008144726A (ja) 内燃機関の排気浄化装置
JP2009264278A (ja) 内燃機関の排気浄化装置
JP2006274907A (ja) 排気浄化装置
JP2006274979A (ja) 排気浄化装置
JP2010169032A (ja) エンジンの制御装置
JP2006274980A (ja) 排気浄化装置
JP2008138537A (ja) 内燃機関の排気浄化装置
JP2018044471A (ja) 排気浄化装置及び排気浄化方法