JP4592504B2 - 排気浄化装置 - Google Patents

排気浄化装置 Download PDF

Info

Publication number
JP4592504B2
JP4592504B2 JP2005169603A JP2005169603A JP4592504B2 JP 4592504 B2 JP4592504 B2 JP 4592504B2 JP 2005169603 A JP2005169603 A JP 2005169603A JP 2005169603 A JP2005169603 A JP 2005169603A JP 4592504 B2 JP4592504 B2 JP 4592504B2
Authority
JP
Japan
Prior art keywords
ammonia
forced regeneration
exhaust
urea water
nox catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005169603A
Other languages
English (en)
Other versions
JP2006342734A (ja
Inventor
智 平沼
好央 武田
礼子 百目木
律子 篠▲崎▼
真一 斎藤
康子 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Fuso Truck and Bus Corp
Original Assignee
Mitsubishi Fuso Truck and Bus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Fuso Truck and Bus Corp filed Critical Mitsubishi Fuso Truck and Bus Corp
Priority to JP2005169603A priority Critical patent/JP4592504B2/ja
Publication of JP2006342734A publication Critical patent/JP2006342734A/ja
Application granted granted Critical
Publication of JP4592504B2 publication Critical patent/JP4592504B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、エンジンの排気を浄化するための排気浄化装置に関し、特にアンモニアを還元剤として排気中のNOxを還元浄化するNOx触媒とパティキュレートフィルタとを備えた排気浄化装置に関する。
エンジンから排出される排気中に含まれる汚染物質の1つであるNOx(窒素酸化物)を浄化するための排気浄化装置として、エンジンの排気通路に選択還元型のNOx触媒(SCR触媒)を配設し、還元剤としてアンモニアをNOx触媒に供給することにより、排気中のNOxを浄化するようにした排気浄化装置が用いられている。
このような排気浄化装置では、NOx触媒の上流側に尿素水を供給し、この尿素水が排気の熱により加水分解して生じたアンモニアがNOx触媒に供給される。NOx触媒に供給されたアンモニアは一旦NOx触媒に吸着され、このアンモニアと排気中のNOxとの間の脱硝反応がNOx触媒によって促進されることによりNOxの浄化が行われる。
一方、ディーゼルエンジンなどでは、排気中に含まれるパティキュレートを除去するため、パティキュレートフィルタを排気通路に配設し、排気中のパティキュレートを捕集するようにしている。
このパティキュレートフィルタでは、捕集したパティキュレートがパティキュレートフィルタ内に堆積することにより次第に排気抵抗が増大するので、パティキュレートの堆積量が所定量に達したときにパティキュレートフィルタを昇温し、パティキュレートを強制的に焼却してパティキュレートフィルタを強制再生している。
このようなパティキュレートフィルタと、上述したNOx触媒とを共に備え、排気中のパティキュレートとNOxとを浄化するようにした排気浄化装置が、例えば特許文献1などに開示されている。
特許文献1に示された排気浄化装置では、エンジンの排気通路にパティキュレートフィルタが配設され、パティキュレートフィルタの下流側にNOx触媒が配設されている。そして、NOx触媒の上流側に設けられた還元剤注入ノズルから尿素水を供給することによりNOx触媒に還元剤としてアンモニアを供給してNOxを浄化すると共に、パティキュレートフィルタで排気中のパティキュレートを捕集する。
特開2004−138022号公報
上記特許文献1に示された排気浄化装置においても、パティキュレートフィルタにパティキュレートが捕集されて堆積すると次第に排気抵抗が増大するので、パティキュレートフィルタを昇温して強制再生を行う必要がある。そして、強制再生が行われると、昇温されたパティキュレートフィルタを通過して高温となった排気がNOx触媒に供給される。
一方、NOx触媒には、尿素水を還元剤注入ノズルから供給することにより生成されたアンモニアが吸着しているが、NOx触媒に吸着可能なアンモニア量はNOx触媒の温度によって異なり、NOx触媒の温度が高温となるほど少なくなるという傾向がある。
このため、尿素水を還元剤注入ノズルから供給しているときに、パティキュレートフィルタの強制再生を行うと、高温の排気がNOx触媒に供給されることにより、NOx触媒の温度が急激に上昇し、NOx触媒に吸着されているアンモニアが過飽和状態となる。この結果、還元剤注入ノズルから供給される尿素水から生成されたアンモニア及びNOx触媒に吸着して過飽和状態となったアンモニアがNOxと反応することなくそのまま大気中に排出され、いわゆるアンモニアスリップが生じることになる。
本発明はこのような課題に鑑みてなされたものであり、その目的とするところは、パティキュレートフィルタの強制再生時におけるNOx触媒のアンモニアスリップを防止することができる排気浄化装置を提供することにある。
上記目的を達成するため、本発明の排気浄化装置は、エンジンの排気通路に配設され、前記エンジンの排気中のパティキュレートを捕集するパティキュレートフィルタと、前記パティキュレートフィルタを昇温して前記パティキュレートフィルタの強制再生を行う強制再生手段と、前記排気通路に配設され、アンモニアを還元剤として前記排気中のNOxを選択還元するNOx触媒と、前記NOx触媒にアンモニアを供給するアンモニア供給手段と、前記アンモニア供給手段により前記アンモニアの供給を行っているときに、前記強制再生手段により前記強制再生を開始する場合には、前記アンモニア供給手段による前記アンモニアの供給を中止する制御手段とを備え、前記制御手段は、前記アンモニアの供給中止後、前記NOx触媒に吸着しているアンモニアの量が所定値以下になったと判断すると、前記強制再生手段による前記強制再生を開始することを特徴とする(請求項1)。
このように構成された排気浄化装置によれば、アンモニア供給手段によりアンモニアの供給を行っているときに、強制再生手段によりパティキュレートフィルタの強制再生を開始する場合には、制御手段がアンモニア供給手段によるアンモニアの供給を中止する。そして、アンモニアの供給中止後、NOx触媒に吸着しているアンモニアの量が所定値以下になったと判断すると、制御手段が強制再生手段によるパティキュレートフィルタの強制再生を開始する
このとき好ましくは、前記アンモニアの供給中止後、エンジン運転状態に基づき前記NOx触媒に吸着しているアンモニアの量を推定するようにしてもよい。
また、好ましくは、前記アンモニアの供給中止後、所定時間が経過すると前記NOx触媒に吸着しているアンモニアの量が所定量以下になったと判断してもよい。
更に、前記制御手段は、前記強制再生を開始した後、少なくとも前記NOx触媒の温度が上昇して所定の安定状態に達したと判断するまでは前記アンモニアの供給を中止することを特徴とする(請求項)。
また更に、前記制御手段は、前記強制再生を開始した後、前記NOx触媒の温度が前記所定の安定状態に達したと判断すると前記アンモニアの供給を再開することを特徴とする(請求項)。
より具体的には、前記制御手段は、前記NOx触媒の温度が所定温度以上に上昇すると前記所定の安定状態に達したと判断することを特徴とする(請求項)。
または、前記制御手段は、前記強制再生を開始した後、前記NOx触媒の温度上昇率が所定変化率以下になると前記所定の安定状態に達したと判断することを特徴とする(請求項)。
更に以上のような排気浄化装置のいずれかにおいて、前記アンモニア供給手段は、尿素水を貯留する尿素水タンクと、加圧空気を貯留するエアタンクと、前記排気通路に設けられ、前記尿素水タンクから供給される尿素水と前記エアタンクから供給される加圧空気とを前記排気通路中に噴射することにより、排気の熱で前記尿素水が加水分解して生じるアンモニアを前記NOx触媒に供給する噴射ノズルとを備え、前記制御手段は、前記アンモニアの供給を中止する際、前記尿素水タンクからの尿素水の供給中止よりも、前記エアタンクからの加圧空気の供給中止を遅らせることを特徴とする(請求項)。
請求項1乃至の排気浄化装置によれば、アンモニア供給手段によりNOx触媒へのアンモニアの供給を行っているときに、強制再生手段によりパティキュレートフィルタの強制再生を開始する場合には、制御手段がアンモニア供給手段による上記アンモニアの供給を中止するので、パティキュレートフィルタの昇温に伴ってNOx触媒の温度が上昇し、NOx触媒に吸着可能なアンモニア量が減少しても、アンモニア供給手段から供給されたアンモニアがそのまま大気中に排出されることが防止される。
また、制御手段は、アンモニアの供給中止後、NOx触媒に吸着しているアンモニアの量が所定量以下になったと判断すると、パティキュレートフィルタの強制再生を開始する。このようにすることにより、強制再生の開始によりパティキュレートフィルタの昇温に伴ってNOx触媒の温度が上昇し、NOx触媒に吸着可能なアンモニア量が減少しても、NOx触媒に実際に吸着しているアンモニア量が十分減少しているため、NOx触媒に吸着しているアンモニアがそのまま大気中に排出されることがなく、より一層確実にアンモニアスリップを防止することができる。
また、請求項2乃至5の排気浄化装置によれば、制御手段は、強制再生を開始した後、少なくともNOx触媒の温度が上昇して所定の安定状態に達したと判断するまではアンモニアの供給を中止する。NOx触媒の温度が上昇中である場合には、その時点でNOx触媒に実際に吸着しているアンモニア量が、吸着可能なアンモニア量を下回っていても、その後の温度上昇により過飽和状態となってアンモニアスリップが発生する可能性がある。しかしながら、上記のようにNOx触媒の温度が上昇して所定の安定状態に達したと判断するまでアンモニアの供給を中止することにより、このようなアンモニアスリップの発生を防止することができる。
また更に請求項の排気浄化装置によれば、制御手段は、NOx触媒の温度が上記所定の安定状態に達したと判断するとアンモニアの供給を再開する。このようにすることで、パティキュレートフィルタの昇温によって温度が所定の安定状態にあるときに、NOx触媒へのアンモニアの供給が再開され、パティキュレートフィルタの強制再生中にも、アンモニアを還元剤としたNOx触媒によるNOxの浄化を行うことが可能となる。
更に請求項の排気浄化装置によれば、パティキュレートフィルタの強制再生を開始する前にアンモニアの供給を中止するにあたり、尿素水タンクからの尿素水の供給中止よりも、エアタンクからの加圧空気の供給中止を遅らせるようにしている。このようにすることにより、尿素水の供給中止後にノズルなどに残留する尿素水が加圧空気により排気通路中に排出されるので、残留尿素水が固形化して目詰まりを起こすというような問題の発生を防止することができる。
以下、図面に基づき本発明の実施形態について説明する。
図1は、本発明の1実施形態に係る排気浄化装置が適用される4気筒のディーゼルエンジン(以下、エンジンという)のシステム構成図を示しており、図1に基づき本発明に係る排気浄化装置の構成を説明する。
エンジン1は各気筒共通の高圧蓄圧室(以下コモンレールという)2を備えており、コモンレール2に蓄えられた高圧の燃料である軽油を、各気筒に設けられたインジェクタ4に供給し、各インジェクタ4からそれぞれの気筒内に軽油が噴射される。
吸気通路6にはターボチャージャ8が装備されており、図示しないエアクリーナから吸入された吸気は、吸気通路6からターボチャージャ8のコンプレッサ8aへと流入し、コンプレッサ8aで過給された吸気はインタークーラ10及び吸気制御弁12を介して吸気マニホールド14に導入される。また、吸気通路6のコンプレッサ8aより上流側には、エンジン1への吸入空気流量を検出するための吸気流量センサ16が設けられている。
一方、エンジン1の各気筒から排気が排出される排気ポート(図示せず)は、排気マニホールド18を介して排気管(排気通路)20に接続されている。なお、排気マニホールド18と吸気マニホールド14との間には、EGR弁22を介して排気マニホールド18と吸気マニホールド14とを連通するEGR通路24が設けられている。
排気管20はターボチャージャ8のタービン8bを経た後、排気絞り弁26を介して排気後処理装置28に接続されている。また、タービン8bの回転軸はコンプレッサ8aの回転軸と連結されており、タービン8bが排気管20内を流動する排気を受けてコンプレッサ8aを駆動する。
排気後処理装置28は、上流側ケーシング30と、上流側ケーシング30の下流側に連通路32で連通された下流側ケーシング34とで構成される。上流側ケーシング30内には、前段酸化触媒36が収容されると共に、この前段酸化触媒36の下流側には、排気中のパティキュレートを捕集するパティキュレートフィルタ(以下フィルタという)38が収容されている。
前段酸化触媒36は、排気中のNOを酸化させてNOを生成し、このNOを酸化剤としてフィルタ38に供給するものである。また、フィルタ38は、ハニカム型のセラミック担体からなり、上流側と下流側とを連通する通路が多数並設されると共に、通路の上流側開口と下流側開口とが交互に閉鎖されている。
このように前段酸化触媒36とフィルタ38とを配置することにより、フィルタ38に捕集され堆積しているパティキュレートは、前段酸化触媒36から供給されたNOと反応して酸化し、フィルタ38の連続再生が行われるようになっている。
前段酸化触媒36とフィルタ38との間には、フィルタ38の入口側の排気温度を検出するフィルタ入口温度センサ40と、フィルタ38上流側の排気圧力を検出する上流圧力センサ42とが設けられている。また、フィルタ38の下流側には、フィルタ38下流側の排気圧力を検出する下流圧力センサ44が設けられている。
下流側ケーシング32内には、アンモニアを吸着し、吸着したアンモニアを還元剤として排気中のNOxを浄化する選択還元触媒として機能するNOx触媒46が収容されると共に、このNOx触媒46の下流側にはNOx触媒46から流出したアンモニアを酸化してNとするための後段酸化触媒48が収容されている。
この後段酸化触媒48は、後述するフィルタ38の強制再生でパティキュレートが焼却される際に発生するCOを酸化し、COとして大気中に排出する機能も有している。
また、連通路32には、連通路32内の排気中に尿素水を噴射供給する噴射ノズル50が設けられており、噴射ノズル50は尿素水噴射管52を介して尿素水噴射装置54に接続されている。
尿素水噴射装置54は、図示しないエアポンプによって圧縮された加圧空気を蓄えたエアタンク56から供給される加圧空気中に、尿素水タンク58から図示しない尿素水供給ポンプにより供給される尿素水を噴出し、尿素水噴射管52を介して噴射ノズル50に加圧空気と共に尿素水を供給するものであって、エア供給管60を介してエアタンク56に接続されると共に、尿素水供給管62を介して尿素水タンク58に接続されている。
エア供給管60にはエア制御弁64が設けられ、このエア制御弁64を開閉制御することにより、尿素水噴射装置54への加圧空気の供給量が調整される。また、尿素水供給通路62には尿素水制御弁66が設けられ、この尿素水制御弁66を開閉制御することにより、尿素水噴射装置54への尿素水の供給量が調整される。従って、これらエア制御弁64及び尿素水制御弁66をそれぞれ開閉制御することにより、噴射ノズル50から排気中への尿素水の噴射供給量が調整される。
噴射ノズル50から噴射された尿素水は、排気の熱により加水分解してアンモニアとなり、NOx触媒46に供給される。従って、本実施形態においては噴射ノズル50がアンモニア供給手段に相当する。
NOx触媒46は供給されたアンモニアを吸着し、吸着したアンモニアと排気中のNOxとの脱硝反応を促進することにより、NOxを浄化して無害なNとする。このときNOxと反応せずにNOx触媒46から流出したアンモニアは、後段酸化触媒48によって酸化され、NまたはNOxとなる。ここで生成されるNOxは後段酸化触媒48に流入するアンモニアと反応してNになるので、後段酸化触媒48に流入するアンモニアは無害なNとなって大気中に放出されるようになっている。
下流側ケーシング34内のNOx触媒46の入口側と出口側には、NOx触媒46の入口側及び出口側の排気温度をそれぞれ検出する触媒入口温度センサ68と触媒出口温度センサ70とが設けられている。
ECU(制御手段)72は、エンジン1の運転制御をはじめとして総合的な制御を行うための制御装置であり、CPU、メモリ、タイマカウンタなどから構成され、様々な制御量の演算を行うと共に、その制御量に基づき各種デバイスの制御を行っている。
ECU72の入力側には、各種制御に必要な情報を収集するため、上述した吸気流量センサ16、フィルタ入口温度センサ40、上流圧力センサ42、下流圧力センサ44、触媒入口温度センサ68及び触媒出口温度センサ70のほか、エンジン回転数を検出する回転数センサ74、及びアクセルペダルの踏み込み量を検出するアクセル開度センサ76などの各種センサ類が接続されており、出力側には演算した制御量に基づき制御が行われる各気筒のインジェクタ4、吸気制御弁12、EGR弁22、排気絞り弁26、エア制御弁64及び尿素水制御弁66などの各種デバイス類が接続されている。
エンジン1の各気筒への燃料供給量の演算、及び演算した燃料供給量に基づくインジェクタ4からの燃料供給制御もECU72によって行われる。エンジン1の運転に必要な燃料供給量(主噴射量)は、回転数センサ74によって検出されたエンジン回転数とアクセル開度センサ76によって検出されたアクセル開度とに基づき、予め記憶しているマップから読み出して決定する。各気筒に供給される燃料の量は、インジェクタ4の開弁時間によって調整され、決定された燃料量に対応した駆動時間で各インジェクタ4が開弁駆動され、各気筒に主噴射が行われることにより、エンジン1の運転に必要な燃料量が供給される。
またECU72は、回転数センサ74によって検出されたエンジン回転数や燃料の主噴射量等のエンジン運転状態に基づき、エンジン1から排出されるNOxをNOx触媒46で選択還元するために必要な尿素水供給量を、予め記憶しているマップデータから求め、エア制御弁64及び尿素水制御弁66を開閉制御する。
尿素水制御弁66によって供給量が調整された尿素水は、エア制御弁64によって供給量が調整された加圧空気と尿素水噴射装置54で混合され、加圧空気と共に噴射ノズル50から連通路32内の排気中に噴射供給される。こうして噴射供給された尿素水は、排気の熱により加水分解してアンモニアとなり、NOx触媒46に吸着する。NOx触媒46は吸着したアンモニアとNOx触媒46に流入する排気中のNOxとの間の脱硝反応を促進し、排気中のNOxは無害なNとなって大気中に放出される。
また、このときNOx触媒46に吸着されずにそのまま流出したアンモニアは、前述したように、後段酸化触媒48により無害なNとなって大気中に放出される。
このように構成された排気浄化装置では、エンジン1から排出された排気が排気管20を通って排気後処理装置28に導入され、排気中のパティキュレートがフィルタ38に捕集されると共に、前述したように前段酸化触媒36を用いた連続再生により、フィルタ38に堆積したパティキュレートの酸化除去が行われる。また、噴射ノズル50から供給された尿素水から生成されるアンモニアを還元剤として、NOx触媒46により排気中のNOxが選択還元され、無害なNとなって大気中に排出される。
こうして排気後処理装置28による排気の浄化が行われるが、エンジン1の排気温度が低い運転状態、例えば低速、低負荷運転などでは排気温度が前段酸化触媒36の活性化温度まで上昇せず、排気中のNOが酸化されずにフィルタ38の連続再生が十分行われない場合がある。このような状態が継続すると、フィルタ38内にパティキュレートが過剰に堆積し、フィルタ38が目詰まりを起こすおそれがあるため、フィルタ38におけるパティキュレートの堆積状況に応じて、適宜強制再生が行われる。
フィルタ38を強制再生するための強制再生制御は、図2のフローチャートに従い、所定の制御周期で行われる。
まず、図2のステップS102において、強制再生フラグF1の値が1であるか否かを判定する。強制再生フラグF1は強制再生が必要であるか否かを示すものであり、値が1であると強制再生が必要であり、値が0であると強制再生が不要であることを示す。強制再生フラグF1の初期設定値は0となっており、最初の制御周期ではステップS102からステップS104へと進む。
ステップS104ではフィルタ38の強制再生が必要であるか否かの判定を行う。具体的には、上流圧力センサ42と下流圧力センサ44の検出値から求めたフィルタ38前後の差圧と、吸気流量センサ16の検出値から算出したフィルタ38への排気流量とに基づき、フィルタ38へのパティキュレートの堆積量を推定し、この推定堆積量が強制再生開始判定値以上である場合に、強制再生が必要であると判断している。
パティキュレートの推定堆積量が強制再生開始判定値未満である場合は、現時点での強制再生が不要であると判定し、この制御周期を終了し、次の制御周期において再びステップS102から処理を行う。
一方、強制再生が必要と判断した場合にはステップS106に進み、強制再生フラグF1の値を1として、強制再生が必要であることを示すように変更し、次のステップS108に進む。
ステップS108では強制再生許可フラグF2の値が1であるか否かを判定する。
強制再生許可フラグF2は、フィルタ38の強制再生を開始してもよいか否かを示すものであり、値が1であると強制再生開始の許可を示し、値が0であると強制再生開始の禁止を示す。
即ち、後述する尿素水供給制御によってNOx触媒46に吸着したアンモニアの量が、フィルタ38の強制再生によってNOx触媒46の温度が上昇しても過飽和状態とならない程度に減少するまでは、強制再生を行ってしまうとアンモニアスリップが生じてしまうため、フィルタ38の強制再生を開始することができない。そこで尿素水供給制御において、この強制再生許可フラグF2の値を、NOx触媒46へのアンモニア吸着状態に応じて切り換えるようにしている。
強制再生許可フラグF2の値の切り換えについては、後述の尿素水供給制御の中で詳細に説明するが、フィルタ38の強制再生を行ってもアンモニアスリップが生じない程度までNOx触媒46へのアンモニア吸着量が減少していない場合には、強制再生許可フラグF2の値は0とされ、減少した場合は1に変更される。
ステップS108で強制再生許可フラグF2の値が0であると判定した場合には、強制再生を開始するとアンモニアスリップが発生する可能性があるため、強制再生は行わずに今回の制御周期を終了し、次の制御周期で再びステップS102から処理を開始する。そして、ステップS102では強制再生フラグF1の値が1であると判定してステップS108に進むが、強制再生許可フラグF2の値が依然として0であれば、次の制御周期も強制再生を行わずに終了することになる。
従って、ステップS104で強制再生が必要であると判定していても、強制再生許可フラグF2の値が0である間は、ステップS108でその制御周期における処理が終了し、フィルタ38の強制再生は行われないことになる。
一方、NOx触媒46へのアンモニア吸着量が減少し、尿素水供給制御において強制再生許可フラグF2の値が1に変わると、強制再生を行ってもアンモニアスリップが生じないものとして、ステップS108からステップS110に進み、以下の手順によりフィルタ38の強制再生が行われるようになる。
まずステップS110では、フィルタ入口温度センサ40によって検出されたフィルタ38の入口側の排気温度Tfが250℃以上であるか否かを判定することにより、前段酸化触媒36が活性化したか否かを判定する。
フィルタ38入口側の排気温度Tfが250℃未満である場合には、前段酸化触媒36が活性化していないものとしてステップS112に進み、前段酸化触媒36の昇温制御が行われる。
この昇温制御は、前段酸化触媒36に高温の排気を供給することにより、前段酸化触媒36の温度を活性化温度(例えば250℃)まで昇温するものであり、吸気制御弁12や排気絞り弁26を閉方向に制御すると共に、各気筒の膨張行程においてインジェクタ4から第1の追加燃料噴射を行う。第1の追加燃料の噴射タイミングは、膨張行程終期よりも比較的早期であって、このようなタイミングで追加燃料を気筒内に噴射することにより、追加燃料と気筒内の高温の燃焼ガスとが混合して排気ポートや排気マニホールド18内で追加燃料が燃焼し、高温の排気が前段酸化触媒36に供給されることにより、前段酸化触媒36の温度が上昇する。
次にステップS120に進むと、ステップS104の時と同様に、フィルタ38前後の差圧とフィルタ38への排気流量とに基づき推定したパティキュレートの堆積量が、強制再生終了判定値以下であるか否かの判定を行う。
上述のように前段酸化触媒36はまだ十分活性化していない状況であるため、パティキュレートの焼却は行われておらず、パティキュレートの推定堆積量は強制再生終了判定値より大であると判定されて今回の制御周期を終え、次の制御周期で再びステップS102から強制再生制御を行う。
この場合、既に強制再生フラグF1の値は1となっているので、ステップS102からステップS108へ進み、強制再生許可フラグF2の値も、前述の通り既に1となっているので、処理はステップS108からステップS110に進むことになる。
ステップS110で、フィルタ38入口側の排気温度Tfが250℃未満で前段酸化触媒36が依然として活性化していないと判定した場合には、再びステップS112で吸気制御弁12及び排気絞り弁26の制御と第1追加燃料の噴射による触媒昇温制御が行われる。従って、フィルタ38入口側の排気温度Tfが250℃未満で、前段酸化触媒36が活性化していない間は、制御周期ごとにステップS112による触媒昇温制御が繰り返し行われる。
このようにして触媒昇温制御が繰り返され、フィルタ38入口側の排気温度Tfが250℃以上になって前段酸化触媒36が活性化したと判定すると、ステップS110からステップS114へ進む。
ステップS114では、フィルタ入口温度センサ40によって検出されたフィルタ38入口側の排気温度Tfに基づき、フィルタ38に流入する排気の温度が所定温度以上であるか否かが判定される。この所定温度は、フィルタ38でパティキュレートが最も効率よく燃焼する温度であり、本実施形態では600℃を所定温度としている。
ステップS114でフィルタ38入口側の排気温度Tfが600℃以上であると判定するとステップS116に進み、フィルタ38入口側の排気温度Tfが600℃未満であると判定するとステップS118に進む。
ステップS116及びS118は、フィルタ38に流入する排気の温度を600℃に維持するように、インジェクタ4から第2の追加燃料を各気筒に噴射するものであって、第2の追加燃料は排気行程で噴射されるようになっている。このような噴射タイミングで第2の追加燃料が各気筒に噴射されることにより、第2の追加燃料は気筒内や排気マニホールド18内で燃焼することなく前段酸化触媒36に達し、活性化温度にある前段酸化触媒36で燃焼する。この燃焼により排気温度が600℃まで上昇し、フィルタ38に堆積したパティキュレートが焼却される。従って、本実施形態ではインジェクタ4が強制再生手段に相当する。
第2の追加燃料の噴射量は、回転数センサ74によって検出されたエンジン回転数とECU72で決定される主噴射量(負荷)とをパラメータとするマップに記憶されており、このマップは第2の追加燃料噴射量が比較的多めに設定された増量マップと、比較的少なめに設定された減量マップの2種類が用意されている。そして、ステップS116ではフィルタ38入口側の排気温度Tfが600℃以上あるため、減量マップを用いて比較的少なめの第2の追加燃料を噴射し、ステップS118ではフィルタ38入口側の排気温度Tfが600℃未満であるため、増量マップを用いて比較的多めの第2の追加燃料を噴射する。これによって前段酸化触媒36から排出されてフィルタ38に流入する排気の温度が600℃前後に維持される。
ステップS116又はS118で第2の追加燃料を噴射すると、ステップS120に進み、前述したように、フィルタ38前後の差圧とフィルタ38への排気流量とに基づき推定したパティキュレートの堆積量が、強制再生終了判定値以下であるか否かを判定する。パティキュレートの推定堆積量が強制再生終了判定値より大である場合には、依然としてフィルタ38の強制再生が必要であると判断し、この制御周期を終えて、次の制御周期で再びステップS102から制御を行う。
一方、ステップS120で、パティキュレートの推定堆積量が強制再生終了判定値以下となり、フィルタ38の強制再生が完了したと判断されると、ステップS122に進み、強制再生フラグF1、強制再生許可フラグF2、及び尿素水供給再開許可フラグF3の値をそれぞれ0として、今回の制御周期を終了する。
なお、尿素水供給再開許可フラグF3は、後述する尿素水供給制御において、フィルタ38の強制再生開始に伴って中止した尿素水供給を再開してもよいか否かを示すものであり、値が1であると供給再開の許可を示し、値が0であると供給再開の禁止を示すものである。
ステップS122により強制再生フラグF1の値が0になると、次の制御周期ではステップS102からステップS104へと進むので、再びフィルタ38の強制再生が必要となるまでは、ステップS102からステップS104の処理が繰り返され、制御周期毎に強制再生の要否が判断される。
従って、強制再生制御による前段酸化触媒36及びフィルタ46の昇温は、次にフィルタ46の強制再生が行われるまで行わないので、強制再生のために昇温されていた前段酸化触媒36及びフィルタ46の温度は徐々に低下していく。
一方、尿素水供給制御は、エンジン1が始動されると図3のフローチャートに従って所定の制御周期で行われる。
まず、ステップS202で排気中への尿素水の供給が可能であるか否かを判定する。例えば、エンジン1の始動直後などでNOx触媒46が活性化温度に達していない場合や、排気温度が尿素水の加水分解を可能とする温度に達していない場合などでは、尿素水を排気中に供給することができない。従って、ステップS202では触媒入口温度センサ68によって検出されたNOx触媒46入口側の排気温度などのエンジン運転状態に基づき、尿素水の供給を行ってもよい状態であるか否かを判定する。
ステップS202で尿素水の供給が不可であると判定した場合は、今回の制御周期を終了し、次回の制御周期で再びステップS202から処理を行うが、以下においてはエンジン1が尿素水を供給可能な運転状態にあるものとして説明を行う。
ステップS202で尿素水の供給が可能であると判定した場合は、ステップS204に進み、強制再生フラグF1の値が1であるか否かを判定する。強制再生フラグF1の値が0である場合は、フィルタ38の強制再生が必要とされていないので、強制再生の実施に伴う排気温度の上昇がないため、尿素水の供給を行ってもアンモニアスリップが発生するおそれはないものとして、ステップS206に進む。
ステップS206では、NOx触媒46で排気中のNOxを浄化するために必要なアンモニアの量から、供給すべき尿素水の量を求める。具体的には、まず回転数センサ74によって検出されたエンジン回転数やECU72によって算出された燃料主噴射量などのエンジン運転状態に基づき、エンジン1からのNOx排出量を推定する。また、触媒入口温度センサ68によって検出されたNOx触媒46入口側の排気温度に基づき、予め記憶しているマップからNOx触媒46のNOx浄化率を求める。そして、これらNOx推定排出量とNOx浄化率とからNOx触媒46によるNOx浄化量を求め、そのNOx浄化量に対応するアンモニア量を求める。このようにして求められたアンモニア量から必要な尿素水供給量が求められる。
次にステップS206からステップS208に進むと、ステップS206で求められた量の尿素水が噴射ノズル50から排気中に噴射供給されるように、エア制御弁64と尿素水制御弁66とが開閉制御され、噴射ノズル50から尿素水が加圧空気と共に連通路32内の排気中に噴射される。
噴射ノズル50から噴射された尿素水は排気の熱によって加水分解し、アンモニアが生成される。このアンモニアはNOx触媒46に供給されてNOx触媒46に吸着し、排気中のNOxと吸着したアンモニアとの間の脱硝反応がNOx触媒46によって促進され、排気中のNOxが選択還元されて無害なNとなり大気中に排出される。
また、このときNOxと反応せずにNOx触媒46から流出したアンモニアは、後段酸化触媒48によって酸化され、NまたはNOxとなる。ここで生成されるNOxは後段酸化触媒48に流入するアンモニアと反応してNになるので、後段酸化触媒48に流入するアンモニアは無害なNとなって大気中に放出される。
このようにしてステップS208で尿素水の供給を行った後、今回の制御周期を終え、次の制御周期で再びステップS202から処理を行う。
一方、フィルタ38の強制再生が必要となり、強制再生フラグF1の値が前述の強制再生制御によって1に変わると、ステップS204からステップS210に処理が進む。
ステップS210では、尿素水供給再開許可フラグF3の値が1であるか否かを判定する。この尿素水供給再開許可フラグF3は、前述したように、フィルタ38の強制再生に伴って中断した尿素水供給を再開してもよいか否かを示すものであり、値が1であると供給再開の許可を示し、値が0であると供給再開の禁止を示すものである。
尿素水供給再開許可フラグF3の初期値はエンジン始動時に0とされており、その後この値が維持されているので、ステップS210からステップS212に処理が進む。
ステップS212では、強制再生許可フラグF2の値が1であるか否かを判定する。強制再生許可フラグF2の初期値もエンジン始動時に0とされており、その後この値が維持されているので、ステップS212からステップS214に処理が進む。
ステップS214ではエア制御弁64を開閉制御し、加圧空気のみを噴射ノズル50から噴射させる。このようにすることにより、尿素水噴射装置54、尿素水噴射管52及び噴射ノズル50内に残留している尿素水を連通路32内の排気中に排出し、強制再生中の排気温度の上昇に伴う残留尿素水の固形化によって発生する目詰まりを防止することができる。
次にステップS214からステップS216に進むと、NOx触媒46に吸着しているアンモニアの量が所定値α以下であるか否かを判定する。
NOx触媒46に吸着可能なアンモニアの限界量はNOx触媒46の温度によって変化し、図4に示すようにNOx触媒46の温度が上昇するにつれて減少する傾向にある。このため、フィルタ38の強制再生によって排気温度が上昇し、NOx触媒46の温度が上昇すると、それまでNOx触媒46に吸着していたアンモニアが過飽和状態となってアンモニアスリップが発生する可能性がある。
フィルタ38の強制再生を行う際には、前述のように排気温度が600℃前後となるため、このような排気温度においてNOx触媒46に吸着可能なアンモニアの量を下回るように上記所定値αが設定されている。
また、NOx触媒46への実際のアンモニア吸着量は、図4に示すNOx触媒46の温度とアンモニア吸着量との関係に基づき予め記憶しているマップから、触媒入口温度センサ68で検出されたNOx触媒46の入口側排気温度に対応する吸着量を読み出し、尿素水噴射を停止している間に消費されたアンモニア量を減算することによって求めている。
ステップS216で、このようにして求めたアンモニア吸着量が所定値αより大であると判定した場合は、この状態でフィルタ38の昇温を行うとアンモニアスリップが生じるおそれがあるものとして、今回の制御周期を終え、次の制御周期で再びステップS202から処理を行う。次の制御周期でも、各フラグF1乃至F3の値に変化はないため、同様にしてステップS202から、ステップS204、ステップS210、ステップS212及びステップS214を経てステップS216に進むことになる。
従って、ステップS208による尿素水の供給を行っている状態で、フィルタ38の強制再生が必要となって強制再生フラグF1の値が0から1に切り換わった場合には、尿素水の供給が中止されることによりNOx触媒46へのアンモニアの供給が中止され、加圧空気のみが排気中に噴射される。このため、NOx触媒46に吸着しているアンモニアは排気中のNOxとの間の脱硝反応により徐々に量が減少していくことになる。
また、強制再生許可フラグF2の値は0のままであるため、前述したように、強制再生制御において強制再生のための昇温はまだ行われない状態にあり、昇温に伴うアンモニアスリップが生じることはない。
このようにして噴射ノズル50からの尿素水の供給が中止され、NOx触媒46へのアンモニア吸着量が減少することにより、ステップS216でアンモニア吸着量が所定値α以下であると判定すると、ステップS218に処理が進む。
強制再生により排気温度が上昇してもアンモニアスリップが生じない程度までNOx触媒46へのアンモニア吸着量が減少したことから、ステップS218では強制再生許可フラグF2の値を1とし、フィルタ38の強制再生実行を許可する。
ステップS218による強制再生許可フラグF2の値の切り換えに伴い、前述の強制再生制御において前段酸化触媒36の昇温制御、及びフィルタ38の昇温制御が実行されるようになり、NOx触媒46に流入する排気の温度が上昇する。
次にステップS218からステップS220に進むと、触媒入口温度センサ68によって検出されたNOx触媒46の入口側排気温度の上昇率ΔTscが、所定変化率β以下であるか否かを判定する。
上昇率ΔTscが所定変化率βより大である間は、強制再生制御によりNOx触媒46の温度が依然として上昇中であり、この時点で尿素水の供給を再開した場合に、更なる温度上昇によってアンモニアスリップを生じる可能性があるため、ステップS220で今回の制御周期を終了し、次の制御周期で再びステップS202から処理を行う。
次の制御周期以降では、強制再生許可フラグF2の値が1になっているので、ステップS202からステップS204及びS210を経てステップS212に進むと、ステップS214には進まずにステップS220に直接進む。即ち、NOx触媒46へのアンモニア吸着量が所定値α以下に減少するまでの間に、噴射ノズル50からの圧縮エアのみの噴射によって残留尿素水の排出は十分行われたことから、これ以上の圧縮エアの噴射は不要としてステップS214による圧縮エアの噴射も中止される。
フィルタ38の強制再生が引き続き実行され、NOx触媒46の入口側排気温度の上昇率ΔTscが所定変化率β以下となった場合は、フィルタ38の温度が強制再生に必要な温度まで上昇してNOx触媒46の温度が安定状態に達したものと判断し、ステップS220からステップS222に進む。
ステップS222では、NOx触媒46の温度が安定状態に達することにより、更なる温度上昇によるアンモニアスリップの発生はないものとして、尿素水供給再開許可フラグF3の値を1として今回の制御周期を終了する。
次の制御周期でステップS202からステップS204を経てステップS210に進むと、尿素水供給再開許可フラグF3の値が1となっていることから、ステップS212には進まずにステップS206に進むことになる。
ステップS206では、NOx触媒46で排気中のNOxを浄化するために必要なアンモニアの量から、供給すべき尿素水の量を求める。このとき、前述したように、触媒入口温度センサ68によって検出されたNOx触媒46入口側の排気温度を用いて必要なアンモニア量を決定しているので、フィルタ38の強制再生中であってもアンモニアスリップが生じないようなアンモニア量が求められる。
次にステップS206からステップS208に進むと、ステップS206で求められた量の尿素水が噴射ノズル50から排気中に噴射供給されるように、エア制御弁64と尿素水制御弁66とが開閉制御され、噴射ノズル50から尿素水が加圧空気と共に連通路32内の排気中に噴射される。
噴射ノズル50から噴射された尿素水は排気の熱によって加水分解し、生成されたアンモニアがNOx触媒46に供給されて吸着し、排気中のNOxと吸着したアンモニアとの間の脱硝反応がNOx触媒46によって促進され、排気中のNOxが選択還元されて無害なNとなり大気中に排出される。
このように、フィルタ38の強制再生中であっても、NOx触媒46の温度が安定状態に達した後に尿素水の供給を再開してNOx触媒46にアンモニアが供給されるようにしているので、アンモニアスリップを生じることなく排気中のNOxを良好に浄化することが可能となる。
また、強制再生制御においてフィルタ38の強制再生が完了すると、前述のように各フラグF1乃至F3の値はいずれも0とされるため、その後の尿素水供給制御ではステップS204で強制再生フラグF1の値が1ではないと判定することにより、引き続きステップS206乃至S208による尿素水の供給が行われ、NOx触媒46によるNOxの浄化が行われることになる。
以上のような尿素水供給制御を行うことにより、噴射ノズル50から排気中に尿素水を供給してNOx触媒46にアンモニアを供給しているときにフィルタ38の強制再生が必要になると上記尿素水の供給が中止される。また、尿素水の供給を中止した後、NOx触媒46に吸着しているアンモニアの量が所定値α以下になるまでは、フィルタ38の強制再生が開始されない。このため、その後にフィルタ38の昇温に伴ってNOx触媒の温度が上昇し、NOx触媒に吸着可能なアンモニア量が減少しても、アンモニアスリップが生じることはない。
以上で本発明の一実施形態に係る排気浄化装置についての説明を終えるが、本発明は上記実施形態に限定されるものではない。
例えば、上記実施形態ではフィルタ38の強制再生が必要となって尿素水の供給を中止した後、強制再生の実施によりNOx触媒46の温度が上昇して安定状態に達したと判断したときに尿素水の供給を再開するようにしたが、フィルタ38の強制再生が完了するまで尿素水の供給を中止するようにしてもよい。
また、触媒入口温度センサ68によって検出されたNOx触媒46の入口側排気温度の上昇率ΔTscが所定変化率β以下になったときに、NOx触媒46の温度が上記安定状態に達したと判断したが、上記入口側排気温度が所定温度(例えば600℃)以上になったら上記安定状態に達したと判定するようにしてもよい。
更に上記実施形態では、尿素水の供給中止後、NOx触媒46へのアンモニア吸着量を所定値αと比較し、アンモニア吸着量が所定値α以下であれば、フィルタ38を強制再生するための前段酸化触媒36並びにフィルタ38の昇温を開始するようにしているが、これに代えて、尿素水の供給中止後に経過した時間が所定時間に達したら、アンモニア吸着量が所定値α以下になったと判定するようにしてもよい。この場合には精度の低下を考慮して上記所定時間にある程度の余裕を持たせる必要はあるものの、実際のアンモニア吸着量を求めるためのマップを記憶したり、演算処理を行ったりする必要がないため、システムを簡略化することができる。
また、上記実施形態ではNOx触媒46によるNOxの浄化に必要は尿素水の供給量を求める際に、回転数センサ74で検出されたエンジン回転数やECU72で設定された燃料の主噴射量などのエンジン運転状態に基づき、エンジン1からのNOx排出量を推定するようにしたが、排気中に含まれるNOx量を検出するNOxセンサを排気通路20に設け、このNOxセンサの検出値に基づき尿素水の供給量を決定するようにしてもよい。
更に、上記実施形態では噴射ノズル50から排気中に尿素水を噴射することにより、排気の熱で尿素水が加水分解して生じたアンモニアをNOx触媒46に供給するようにしたが、これに代えて排気中にアンモニアを直接噴射するようにしてもよいし、その他NOx触媒46にアンモニアを供給することができればどのような形式のものでもよい。
また、上記実施形態ではフィルタ38の強制再生を行う際に、インジェクタ4からの第1及び第2の追加燃料噴射により前段酸化触媒36及びフィルタ38の昇温を行うようにしたが、これに代えて排気後処理装置28の上流側に燃料添加弁を設け、排気中に直接追加燃料を噴射供給するようにしてもよいし、追加燃料噴射に代えて、フィルタ38の近傍または内部に設けた電気ヒータによりフィルタ38を昇温して強制再生を行うようにしてもよい。
更にまた、上記実施形態では、フィルタ38の強制再生要否及び終了の判定を、フィルタ38前後の差圧とフィルタ38への排気流量とに基づき推定したパティキュレートの堆積量に基づき行ったが、これに限られるものではなく、前回の強制再生実施後のエンジン1への燃料供給量の積算値に基づいて行ってもよく、種々知られている方法を採用することが可能である。
また、上記実施形態では、フィルタ38の強制再生が必要となって尿素水の供給を中止した後、制御周期ごとにエア制御弁64を開閉制御して断続的に加圧空気を噴射ノズル50から噴射させるようにしたが、尿素水の供給を再開するまでの間、エア制御弁64を開いたままにしてもよいし、タイマを用いて所定時間の間、エア制御弁64を開弁するようにしてもよい。
最後に、上記実施形態はディーゼルエンジンの排気浄化装置に本発明を適用したものであったが、エンジン形式はこれに限定されるものではなく、フィルタ38と尿素水の供給により生成されるアンモニアを還元剤としてNOxの浄化を行うNOx触媒を備えたエンジンであればどのようなものでも適用可能である。
本発明の一実施形態に係る排気浄化装置の全体構成図である。 図1の排気浄化装置で行われる強制再生制御のフローチャートである。 図1の排気浄化装置で行われる尿素水供給制御のフローチャートである。 NOx触媒の温度とNOx触媒に吸着可能なアンモニアの限界量との関係を示す説明図である。
符号の説明
1 エンジン
4 インジェクタ(強制再生手段)
20 排気管(排気通路)
38 パティキュレートフィルタ
46 NOx触媒
50 噴射ノズル(アンモニア供給手段)
72 ECU(制御手段)

Claims (6)

  1. エンジンの排気通路に配設され、前記エンジンの排気中のパティキュレートを捕集するパティキュレートフィルタと、
    前記パティキュレートフィルタを昇温して前記パティキュレートフィルタの強制再生を行う強制再生手段と、
    前記排気通路に配設され、アンモニアを還元剤として前記排気中のNOxを選択還元するNOx触媒と、
    前記NOx触媒にアンモニアを供給するアンモニア供給手段と、
    前記アンモニア供給手段により前記アンモニアの供給を行っているときに、前記強制再生手段により前記強制再生を開始する場合には、前記アンモニア供給手段による前記アンモニアの供給を中止する制御手段とを備え、
    前記制御手段は、前記アンモニアの供給中止後、前記NOx触媒に吸着しているアンモニアの量が所定値以下になったと判断すると、前記強制再生手段による前記強制再生を開始することを特徴とする排気浄化装置。
  2. 前記制御手段は、前記強制再生を開始した後、少なくとも前記NOx触媒の温度が上昇して所定の安定状態に達したと判断するまでは前記アンモニアの供給を中止することを特徴とする請求項に記載の排気浄化装置。
  3. 前記制御手段は、前記強制再生を開始した後、前記NOx触媒の温度が前記所定の安定状態に達したと判断すると前記アンモニアの供給を再開することを特徴とする請求項に記載の排気浄化装置。
  4. 前記制御手段は、前記NOx触媒の温度が所定温度以上に上昇すると前記所定安定状態に達したと判断することを特徴とする請求項2又は3に記載の排気浄化装置。
  5. 前記制御手段は、前記強制再生を開始した後、前記NOx触媒の温度上昇率が所定変化率以下になると前記所定安定状態に達したと判断することを特徴とする請求項2又は3に記載の排気浄化装置。
  6. 前記アンモニア供給手段は、
    尿素水を貯留する尿素水タンクと、
    加圧空気を貯留するエアタンクと、
    前記排気通路に設けられ、前記尿素水タンクから供給される尿素水と前記エアタンクから供給される加圧空気とを前記排気通路中に噴射することにより、排気の熱で前記尿素水が加水分解して生じるアンモニアを前記NOx触媒に供給する噴射ノズルとを備え、
    前記制御手段は、前記アンモニアの供給を中止する際、前記尿素水タンクからの尿素水の供給中止よりも、前記エアタンクからの加圧空気の供給中止を遅らせることを特徴とする請求項1乃至のいずれかに記載の排気浄化装置。
JP2005169603A 2005-06-09 2005-06-09 排気浄化装置 Expired - Fee Related JP4592504B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005169603A JP4592504B2 (ja) 2005-06-09 2005-06-09 排気浄化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005169603A JP4592504B2 (ja) 2005-06-09 2005-06-09 排気浄化装置

Publications (2)

Publication Number Publication Date
JP2006342734A JP2006342734A (ja) 2006-12-21
JP4592504B2 true JP4592504B2 (ja) 2010-12-01

Family

ID=37639883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005169603A Expired - Fee Related JP4592504B2 (ja) 2005-06-09 2005-06-09 排気浄化装置

Country Status (1)

Country Link
JP (1) JP4592504B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150062674A (ko) * 2013-11-29 2015-06-08 현대중공업 주식회사 Scr 시스템의 우레아 공급 조절 장치 및 방법
KR20150062676A (ko) * 2013-11-29 2015-06-08 현대중공업 주식회사 Scr 시스템의 우레아 공급 조절 장치 및 방법

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4900002B2 (ja) * 2007-04-05 2012-03-21 トヨタ自動車株式会社 内燃機関の排気浄化システム
JP5020028B2 (ja) * 2007-11-09 2012-09-05 三菱ふそうトラック・バス株式会社 排気浄化装置
JP2009115050A (ja) * 2007-11-09 2009-05-28 Mitsubishi Fuso Truck & Bus Corp ハイブリッド電気自動車の排気浄化装置
JP2009150279A (ja) * 2007-12-19 2009-07-09 Hino Motors Ltd 排気処理装置
JP2009264181A (ja) * 2008-04-23 2009-11-12 Toyota Motor Corp 内燃機関の排気浄化装置
JP5054607B2 (ja) * 2008-05-01 2012-10-24 三菱ふそうトラック・バス株式会社 排気浄化装置
JP2010038034A (ja) * 2008-08-05 2010-02-18 Hino Motors Ltd 排気浄化装置の制御方法
FR2938005A3 (fr) * 2008-11-03 2010-05-07 Renault Sas Systeme et procede de traitement des emissions polluantes d'un moteur a allumage par compression
WO2010079592A1 (ja) 2009-01-07 2010-07-15 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP5158214B2 (ja) * 2009-01-09 2013-03-06 トヨタ自動車株式会社 内燃機関の排気浄化装置
US8950173B2 (en) * 2010-12-22 2015-02-10 Mahindra & Mahindra Limited Integrated exhaust gas after-treatment system for diesel fuel engines
JP5762832B2 (ja) * 2011-06-09 2015-08-12 ボッシュ株式会社 選択還元触媒の劣化診断装置及び排気浄化装置
JP5692397B2 (ja) * 2011-09-20 2015-04-01 トヨタ自動車株式会社 内燃機関の排気浄化装置
CN104160123B (zh) * 2012-03-07 2016-08-17 丰田自动车株式会社 内燃机的排气净化装置
JP6067494B2 (ja) * 2013-06-27 2017-01-25 株式会社日本自動車部品総合研究所 内燃機関の排気浄化装置
JP5915623B2 (ja) 2013-11-14 2016-05-11 トヨタ自動車株式会社 内燃機関の排気浄化システム
JP6052146B2 (ja) * 2013-12-05 2016-12-27 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP6330444B2 (ja) 2014-04-16 2018-05-30 いすゞ自動車株式会社 排気浄化システム
FR3029571A3 (fr) * 2014-12-09 2016-06-10 Renault Sa Procede de controle d'un dispositif de motorisation et dispositif de motorisation associe

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001303934A (ja) * 1998-06-23 2001-10-31 Toyota Motor Corp 内燃機関の排気浄化装置
JP2004218475A (ja) * 2003-01-10 2004-08-05 Isuzu Motors Ltd 内燃機関の排気ガス浄化システム及び内燃機関の排気ガス浄化方法
JP2005048677A (ja) * 2003-07-30 2005-02-24 Nissan Diesel Motor Co Ltd エンジンの排気浄化装置
WO2005083242A1 (ja) * 2004-03-02 2005-09-09 Nissan Diesel Motor Co., Ltd. 内燃機関の排気浄化装置及び排気浄化方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001303934A (ja) * 1998-06-23 2001-10-31 Toyota Motor Corp 内燃機関の排気浄化装置
JP2004218475A (ja) * 2003-01-10 2004-08-05 Isuzu Motors Ltd 内燃機関の排気ガス浄化システム及び内燃機関の排気ガス浄化方法
JP2005048677A (ja) * 2003-07-30 2005-02-24 Nissan Diesel Motor Co Ltd エンジンの排気浄化装置
WO2005083242A1 (ja) * 2004-03-02 2005-09-09 Nissan Diesel Motor Co., Ltd. 内燃機関の排気浄化装置及び排気浄化方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150062674A (ko) * 2013-11-29 2015-06-08 현대중공업 주식회사 Scr 시스템의 우레아 공급 조절 장치 및 방법
KR20150062676A (ko) * 2013-11-29 2015-06-08 현대중공업 주식회사 Scr 시스템의 우레아 공급 조절 장치 및 방법
KR101974226B1 (ko) 2013-11-29 2019-04-30 현대중공업 주식회사 Scr 시스템의 우레아 공급 조절 장치 및 방법
KR102017348B1 (ko) * 2013-11-29 2019-09-02 한국조선해양 주식회사 Scr 시스템의 우레아 공급 조절 장치 및 방법

Also Published As

Publication number Publication date
JP2006342734A (ja) 2006-12-21

Similar Documents

Publication Publication Date Title
JP4592504B2 (ja) 排気浄化装置
JP4592505B2 (ja) 排気浄化装置
JP4789242B2 (ja) 排気浄化装置
JP5118331B2 (ja) 排気浄化装置
JP4521824B2 (ja) 排気浄化装置
JP3979437B1 (ja) 排気ガス浄化システムの制御方法及び排気ガス浄化システム
EP2559876B1 (en) Exhaust gas purification device, and control method for exhaust gas purification device
JP2006233936A (ja) 内燃機関の排気浄化装置
JP2007040221A (ja) 排気浄化装置
JP2007198283A (ja) 排気ガス浄化方法及び排気ガス浄化システム
JP5054607B2 (ja) 排気浄化装置
JP2008157188A (ja) 排気浄化装置
JP5251711B2 (ja) 内燃機関の排気浄化装置
JP2006274906A (ja) 排気浄化装置
JP4613787B2 (ja) 内燃機関の排気浄化装置
JP4702557B2 (ja) 排気浄化装置
WO2007015478A1 (ja) 排気浄化装置
JP2006274979A (ja) 排気浄化装置
JP2006274907A (ja) 排気浄化装置
JP2004285947A (ja) 内燃機関の排気浄化装置
JP2006274980A (ja) 排気浄化装置
JP2007154769A (ja) 排気浄化装置
JP2008128066A (ja) 排気浄化装置
JP2010196569A (ja) 排気ガス浄化システム及び排気ガス浄化方法
JP2006274912A (ja) エンジンの制御装置

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060928

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees