JP5915623B2 - 内燃機関の排気浄化システム - Google Patents

内燃機関の排気浄化システム Download PDF

Info

Publication number
JP5915623B2
JP5915623B2 JP2013235782A JP2013235782A JP5915623B2 JP 5915623 B2 JP5915623 B2 JP 5915623B2 JP 2013235782 A JP2013235782 A JP 2013235782A JP 2013235782 A JP2013235782 A JP 2013235782A JP 5915623 B2 JP5915623 B2 JP 5915623B2
Authority
JP
Japan
Prior art keywords
ammonia
scr catalyst
temperature
amount
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013235782A
Other languages
English (en)
Other versions
JP2015094337A (ja
Inventor
健 白澤
健 白澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013235782A priority Critical patent/JP5915623B2/ja
Priority to EP14193252.5A priority patent/EP2873823B1/en
Publication of JP2015094337A publication Critical patent/JP2015094337A/ja
Application granted granted Critical
Publication of JP5915623B2 publication Critical patent/JP5915623B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0093Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are of the same type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • F01N3/0253Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust adding fuel to exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2033Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using a fuel burner or introducing fuel into exhaust duct
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1602Temperature of exhaust gas apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1622Catalyst reducing agent absorption capacity or consumption amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/18Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
    • F01N2900/1806Properties of reducing agent or dosing system
    • F01N2900/1812Flow rate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

本発明は、内燃機関の排気浄化システムに関する。
内燃機関の排気中に含まれるNOxを、アンモニアを還元剤として浄化する選択還元型NOx触媒(以下、単に「SCR触媒」ともいう。)が知られている。このSCR触媒よりも上流側には、排気中にアンモニア又はアンモニアの前駆体(例えば、尿素)を供給する還元剤供給弁が設置される。
このSCR触媒を、内燃機関の排気通路に直列に2つ設けることがある。この場合、還元剤供給弁を、上流側のSCR触媒(以下、第一SCR触媒ともいう。)よりもさらに上流側に1つだけ設けている。下流側のSCR触媒(以下、第二SCR触媒ともいう。)には、第一SCR触媒から流出したアンモニアが吸着されるため、第二SCR触媒においてもNOxを還元することができる。このように、SCR触媒を直列に2つ備えている場合には、第一SCR触媒において浄化されなかったNOxを、第二SCR触媒において浄化することができる。また、第一SCR触媒と第二SCR触媒とでは、温度などが異なるため、一方のSCR触媒においてNOxを浄化することができない状態であっても、他方のSCR触媒においてNOxを浄化することができる状態の場合もある。したがって、SCR触媒を直列に2つ備えることにより、システム全体としてのNOx浄化率を向上させることができる。
ここで、SCR触媒の温度が高くなりすぎると、該SCR触媒においてアンモニアが酸化されてNOxが発生する虞がある。例えば、SCR触媒が排気中の粒子状物質(以下、PMと称する)を捕集するフィルタに担持されている場合には、フィルタ再生処理時にSCR触媒が高温になる。以下、SCR触媒を担持したフィルタをSCRFともいう。フィルタ再生処理は、SCRFに堆積したPMを酸化させて除去する処理である。フィルタ再生処理は、SCRFよりも上流側の排気通路に設けられた酸化機能を有する触媒である前段触媒に燃料(HC)を供給することで実現される。前段触媒において燃料が酸化されると、SCRFに流入する排気が酸化熱によって加熱される。そのため、SCRFの温度を、PMの酸化が促進されるフィルタ再生温度まで上昇させることができる。
このような高温状態では、アンモニアによって浄化されるNOxの量よりも、アンモニアが酸化されることで発生するNOxの量のほうが多くなり得る。このため、アンモニアの供給量を増加しても、NOx浄化率は低下する。一方、SCR触媒を直列に2つ設けている場合には、第一SCR触媒の温度が高い状態であっても、第二SCR触媒の温度が低い状態の場合もある。しかし、フィルタ再生処理中に第二SCR触媒にアンモニアを供給しようとしても、供給したアンモニアが第一SCR触媒で酸化されてしまう。このため、第二SCR触媒にアンモニアを供給することが困難となり、第二SCR触媒においてアンモニアが不足してしまう。
ここで、内燃機関の排気通路に第一SCR触媒及び第二SCR触媒を直列に備え、第一SCR触媒の温度が高い場合に、尿素水の供給量を低減させる技術が知られている(例えば、特許文献1参照。)。この技術では、アンモニアが第一SCR触媒及び第二SCR触媒を通り抜けることを抑制している。
しかし、尿素水の供給量を低減しても、第一SCR触媒の温度が高すぎる場合にはアンモニアが酸化されてNOxが発生するため、尿素水の供給によりNOx浄化率がさらに低
下する虞がある。一方、尿素水の供給を停止してしまうと、還元剤の不足により、NOx浄化率を向上させることは困難となる。
特開2012−215154号公報 特開2009−270449号公報 特開2009−264181号公報 特開2006−342734号公報 特開2012−154238号公報
本発明は、上記したような問題点に鑑みてなされたものであり、その目的は、直列に複数のSCR触媒を備える場合において、上流側のSCR触媒の高温時に、システム全体としてのNOx浄化率が低下することを抑制することにある。
上記課題を達成するために本発明は、
内燃機関の排気通路に設けられ、アンモニアを還元剤として排気中のNOxを選択還元する選択還元型NOx触媒である第一SCR触媒と、
前記第一SCR触媒よりも下流の排気通路に設けられ、アンモニアを還元剤として排気中のNOxを選択還元する選択還元型NOx触媒である第二SCR触媒と、
前記第一SCR触媒へアンモニア又はアンモニアの前駆体を供給する供給装置と、
前記第一SCR触媒の温度が所定温度以上となる制御である昇温制御を実施する制御装置と、
を備える内燃機関の排気浄化システムにおいて、
前記制御装置は、前記第二SCR触媒が吸着しているアンモニア量が、前記昇温制御を開始する閾値である昇温開始閾値以上のときに前記昇温制御を開始する。
昇温制御を実施することにより第一SCR触媒の温度が上昇する。ただし、昇温制御は、第一SCR触媒のために該第一SCR触媒の温度を上昇させる制御に限らない。例えば、排気通路にフィルタを備えている場合において、該フィルタに捕集されているPMを除去するときに排気の温度を上昇させることがある。また、第一SCR触媒または第二SCR触媒の温度、さらには排気通路に備わるその他の触媒の温度を上昇させるときに、排気の温度を上昇させることがある。触媒の温度の上昇は、活性温度に速やかに到達させるために行ったり、触媒の硫黄被毒またはHC被毒を回復させるために行ったりする。このように、昇温制御は、目的によらず、第一SCR触媒の温度が上昇する制御であればよい。
所定温度は、アンモニアが酸化される温度とすることができる。なお、所定温度は、PMが酸化される温度としてもよい。PMが酸化される温度になると、第一SCR触媒においてアンモニアが酸化されてしまう。ここで、第一SCR触媒から流出する排気は、第二SCR触媒へ到達するまでに排気通路外へ放熱するため温度が低下する。このため、第一SCR触媒の温度よりも第二SCR触媒の温度のほうが低くなる。したがって、第一SCR触媒の温度が所定温度以上となる場合であっても、第二SCR触媒の温度は所定温度未満となり得る。しかし、第一SCR触媒の温度が所定温度以上のときにアンモニアまたはアンモニアの前駆体を供給しても、第一SCR触媒においてアンモニアが酸化されるため、第二SCR触媒にアンモニアを吸着させることは困難である。一方、第一SCR触媒の温度が所定温度以上となる前に、第二SCR触媒に予めアンモニアを吸着させておけば、その後に第一SCR触媒の温度が高くなったとしても、第二SCR触媒に吸着されている
アンモニアによりNOxを浄化することができる。
ここで制御装置は、第二SCR触媒が吸着しているアンモニア量が昇温開始閾値以上のときに昇温制御を開始する。これにより、昇温制御中であっても第二SCR触媒においてNOxを浄化することができる。なお、第二SCR触媒が吸着しているアンモニア量が昇温開始閾値未満のときには、昇温制御を禁止するとしてもよい。昇温開始閾値は、昇温制御を実施しているときに第二SCR触媒においてNOxを浄化するのに十分なアンモニア量である。なお、昇温開始閾値は、第二SCR触媒においてアンモニアが飽和するときのアンモニアの吸着量(以下、飽和アンモニア吸着量ともいう。)よりも少ないアンモニア量であって、飽和アンモニア量に対して余裕を持ったアンモニア量としてもよい。飽和アンモニア吸着量は第二SCR触媒の温度に応じて変化するため、昇温制御を実施しているときに第二SCR触媒からアンモニアが脱離しないように、昇温開始閾値を設定してもよい。
前記制御装置は、前記昇温制御を実施する要求があるときであって該昇温制御を実施する前には、前記昇温制御を実施する要求がないときよりも、前記供給装置から前記第一SCR触媒へ供給するアンモニア又はアンモニアの前駆体の量を多くすることができる。
制御装置が、昇温制御を実施する要求があるか否か判定してもよい。なお、昇温制御を実施する要求があるときとは、昇温制御を実施する必要がある場合であって、例えば昇温制御を行う所定の条件が成立した場合をいう。例えば、昇温制御を実施しないと、フィルタに捕集されているPM量が許容値を超える場合や、排気の浄化能力が許容範囲よりも低くなる場合には、昇温制御を実施する要求があるといえる。そして、昇温制御を実施する要求があるときには、速やかに昇温制御を開始することが望ましい。しかし、昇温制御を実施する要求があったとしても、制御装置は、第二SCR触媒が吸着しているアンモニア量が昇温開始閾値以上のときでないと昇温制御を開始しない。これに対して、昇温制御を実施する要求があるときに、第一SCR触媒へ供給するアンモニア又はアンモニアの前駆体の量を比較的多くすれば、第一SCR触媒から流出するアンモニア又はアンモニアの前駆体の量が増加する。そうすると、第二SCR触媒におけるアンモニア吸着量を速やかに増加させることができる。このため、第二SCR触媒に吸着されているアンモニア量が、速やかに昇温開始閾値に達することになる。したがって、昇温制御を実施する要求があった後、昇温制御を速やかに開始することが可能となる。
前記制御装置は、前記昇温制御を実施する要求があるときであって該昇温制御を実施する前に、前記第二SCR触媒が吸着しているアンモニア量が前記昇温開始閾値未満の場合には、前記昇温開始閾値以上の場合よりも、前記供給装置から前記第一SCR触媒へ供給するアンモニア又はアンモニアの前駆体の量を多くすることができる。
なお、第二SCR触媒が吸着しているアンモニア量が昇温開始閾値以上の場合には、アンモニア又はアンモニアの前駆体を供給しなくてもよい。第二SCR触媒が吸着しているアンモニア量が昇温開始閾値未満の場合に、第一SCR触媒に供給するアンモニア又はアンモニアの前駆体の供給量を比較的多くすることにより、第二SCR触媒に吸着さているアンモニア量を速やかに昇温開始閾値に到達させることができる。これにより、昇温制御を速やかに開始することができる。
前記制御装置は、前記昇温制御を実施する要求があるときであって該昇温制御を実施する前に、前記第一SCR触媒からアンモニア又はアンモニアの前駆体が流れ出るように、前記供給装置から前記第一SCR触媒へ供給するアンモニア又はアンモニアの前駆体の量を調整することができる。
第一SCR触媒からアンモニアが流出しないと、第二SCR触媒へアンモニアを供給することができない。例えば、第一SCR触媒が吸着可能なアンモニア量よりも多くのアンモニアを供給することで、第一SCR触媒からアンモニアを流出させることができる。また、第一SCR触媒においてアンモニアが飽和した後も、該第一SCR触媒へアンモニア又はアンモニアの前駆体を供給することにより、第一SCR触媒からアンモニア又はアンモニアの前駆体を流出させることができる。これにより、第二SCR触媒へアンモニアを吸着させることができる。なお、第一SCR触媒においてアンモニアが飽和していなくても、条件によっては、第一SCR触媒からアンモニアが流出する。
前記制御装置は、前記昇温制御を実施しているときには、前記供給装置から前記第一SCR触媒へのアンモニア又はアンモニアの前駆体の供給を停止することができる。
昇温制御を実施しているときには、第一SCR触媒の温度が高くなることにより、アンモニアが酸化されてNOxが発生する。昇温制御を実施しているときに、第一SCR触媒へのアンモニア又はアンモニアの前駆体の供給を停止することにより、第一SCR触媒でNOxが発生することを抑制できる。これにより、システム全体としてのNOx浄化率を向上させることができる。
前記制御装置は、前記昇温制御を実施しているときであっても、前記第一SCR触媒の温度が前記所定温度よりも低い場合、且つ、前記第二SCR触媒が吸着しているアンモニア量が前記昇温開始閾値未満の場合には、前記供給装置から前記第一SCR触媒へのアンモニア又はアンモニアの前駆体の供給を再開することができる。
昇温制御を実施しているときであっても、例えば減速時には、排気通路を温度の低い排気が流通するため、第一SCR触媒の温度が所定温度未満となり得る。一方、昇温制御を実施しているときには、第二SCR触媒へアンモニアが供給されないため、NOxの浄化に消費される分、アンモニアの吸着量が減少する。このため、昇温制御を実施しているときに第二SCR触媒においてアンモニアが不足する虞がある。これに対し、第一SCR触媒の温度が低い場合には、第一SCR触媒においてアンモニアの酸化が抑制されるため、該第一SCR触媒及び第二SCR触媒へアンモニアを吸着させることができる。これにより、NOx浄化率の低下を抑制できる。なお、このときには、第一SCR触媒からアンモニアが流出しないように、該第一SCR触媒へアンモニア又はアンモニアの前駆体を供給してもよい。第一SCR触媒の温度が再度上昇すれば、該第一SCR触媒からアンモニアが脱離するので、第二SCR触媒へアンモニアが供給される。
前記制御装置は、前記昇温制御を実施しているときであっても、前記第一SCR触媒の温度が前記所定温度以上の場合、且つ、前記第二SCR触媒が吸着しているアンモニア量がアンモニアの吸着を再開させる閾値であるアンモニア供給閾値以下の場合には、前記第一SCR触媒の温度を前記所定温度よりも下降させる制御である温度下降制御を実施し、該温度下降制御により前記第一SCR触媒の温度が所定温度よりも低くなった後に、前記供給装置から前記第一SCR触媒へのアンモニア又はアンモニアの前駆体の供給を再開することができる。
すなわち、制御装置は、第二SCR触媒におけるアンモニア吸着量が過度に少なくなることがないように、昇温制御を実施しているときであっても、第二SCR触媒へアンモニアを吸着させるために、第一SCR触媒の温度を低下させることができる。なお、温度下降制御は、昇温制御を単に停止または禁止するだけであってもよく、積極的に排気の温度を低下させてもよい。このようにすることで、第二SCR触媒においてアンモニアが不足することを抑制できるため、NOx浄化率が著しく低下することを抑制できる。
本発明によれば、直列に複数のSCR触媒を備える場合において、上流側のSCR触媒の高温時に、システム全体としてのNOx浄化率が低下することを抑制することができる。
実施例に係る内燃機関の吸排気系の概略構成を示す図である。 SCR触媒の温度と、NOx浄化率との関係を示した図である。 SCR触媒のアンモニア吸着量とNOx浄化率との関係を示した図である。 SCR触媒の温度と、飽和アンモニア吸着量と、アンモニア酸化率と、の関係を示した図である。 実施例1に係るフィルタ再生処理のフローを示したフローチャートである。 実施例2に係るフィルタ再生処理のフローを示したフローチャートである。 実施例3に係るフィルタ再生処理のフローを示したフローチャートである。 図7に示されるステップS302において実施される第二SCR触媒のアンモニア吸着量を増加させる制御のフローを示したフローチャートである。 実施例に係るフィルタ再生処理を実施したときの各種値の推移を示したタイムチャートである。
以下に図面を参照して、この発明を実施するための形態を、実施例に基づいて例示的に詳しく説明する。ただし、この実施例に記載されている構成部品の寸法、材質、形状、その相対配置などは、特に記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。
(実施例1)
ここでは、本発明に係る内燃機関の排気浄化システムを、車両駆動用のディーゼルエンジンに適用した場合について説明する。ただし、本発明に係る内燃機関は、ディーゼルエンジンに限られるものではなく、ガソリンエンジン等であってもよい。
図1は、本実施例に係る内燃機関の吸排気系の概略構成を示す図である。内燃機関1は車両駆動用のディーゼルエンジンである。内燃機関1には吸気通路2及び排気通路3が接続されている。吸気通路2には、エアフローメータ11及びスロットル9が設けられている。エアフローメータ11は内燃機関1の吸入空気量を検知する。スロットル9は内燃機関1の吸入空気量を調整する。
排気通路3には、第一排気温度センサ12、燃料添加弁4、前段触媒5、第一NOxセンサ13、第二排気温度センサ14、還元剤供給弁6、SCRF7、第二SCR触媒8、第二NOxセンサ15、第三排気温度センサ16が排気の流れに沿って上流側から順に設けられている。
前段触媒5は酸化触媒である。ただし、前段触媒5は、酸化機能を有する触媒であれば酸化触媒以外の触媒であってもよい。前段触媒5は、例えば三元触媒であってもよい。燃料添加弁4は、前段触媒5に燃料を供給すべく、排気中に燃料(HC)を添加する。
SCRF7は、排気中のPMを捕集するウォールフロー型のフィルタに第一SCR触媒7aが担持されて構成されている。第一SCR触媒7a及び第二SCR触媒8は、アンモニアを吸着し、該アンモニアを還元剤として排気中のNOxを還元する。
還元剤供給弁6は、第一SCR触媒7a及び第二SCR触媒8に還元剤としてのアンモ
ニアを供給すべく、排気中にアンモニアを供給する。なお、アンモニアに代えて、アンモニアの前駆体を供給してもよい。アンモニアの前駆体としては、例えば尿素を挙げることができる。排気の熱により尿素が加水分解されると、アンモニアが生成される。アンモニア又はアンモニアの前駆体は、気体、液体、固体の何れの状態で供給してもよい。アンモニアの一部は、第一SCR触媒7aに吸着される。第一SCR触媒7aに吸着されなかったアンモニア、または、第一SCR触媒7aから脱離したアンモニアが、第二SCR触媒8に吸着される。そして、第一SCR触媒7aまたは第二SCR触媒8が吸着したアンモニアが還元剤となって、排気中のNOxが還元される。なお、本実施例においては還元剤供給弁6が、本発明における供給装置に相当する。
第一排気温度センサ12、第二排気温度センサ14、第三排気温度センサ16は、排気の温度を検知するセンサである。第一排気温度センサ12は、内燃機関1から流出する排気の温度または前段触媒5に流入する排気の温度を検知する。第二排気温度センサ14は、前段触媒5から流出する排気の温度またはSCRF7に流入する排気の温度を検知する。第三排気温度センサ16は、第二SCR触媒8から流出する排気の温度を検知する。第一NOxセンサ13及び第二NOxセンサ15は排気中のNOx濃度を検知するセンサである。第一NOxセンサ13は、SCRF7に流入する排気中のNOx濃度を検知する。第二NOxセンサ15は、第二SCR触媒8から流出する排気中のNOx濃度を検知する。これらセンサは、必ずしも全てが必要であるということではなく、適宜選択して設けることができる。
内燃機関1の各気筒には、気筒内に燃料を噴射する燃料噴射弁17が設けられている。
内燃機関1には、電子制御ユニット(ECU)10が併設されている。ECU10には、エアフローメータ11、第一排気温度センサ12、第一NOxセンサ13、第二排気温度センサ14、第二NOxセンサ15、第三排気温度センサ16等の各種センサが電気的に接続されている。そして、各種センサの出力信号がECU10に入力される。ECU10は、エアフローメータ11の出力値に基づいて排気通路3における排気の流量を推定する。さらに、ECU10は、第一排気温度センサ12の出力値に基づいて前段触媒5の温度を推定し、第二排気温度センサ14の出力値に基づいてSCRF7の温度(即ち第一SCR触媒7aの温度)を推定し、第三排気温度センサ16の出力値に基づいて第二SCR触媒8の温度を推定する。
さらに、ECU10には、スロットル9、燃料添加弁4、還元剤供給弁6、燃料噴射弁17が電気的に接続されている。そして、これらの装置がECU10によって制御される。なお、本実施例においてはECU10が、本発明における制御装置に相当する。
また、本実施例では、内燃機関1から未燃燃料を排出させることもできる。ECU10は、内燃機関1において、燃料噴射弁17から噴射された燃料が燃焼せずに排気通路3に未燃の状態で排出されるタイミングで燃料を噴射するポスト噴射を実行することで、前段触媒5に燃料を供給することもできる。
ここで、SCRF7には、捕集されたPMが徐々に堆積する。このため、本実施例においては、ECU10によって、SCRF7に堆積したPMを除去するためのフィルタ再生処理が実行される。フィルタ再生処理では、前段触媒5へ燃料を供給することで、該前段触媒5において排気の温度を上昇させる昇温制御が実施される。前段触媒5への燃料の供給は、燃料添加弁4からの燃料添加、または、ポスト噴射の少なくとも一方により実施される。
前段触媒5において燃料が酸化されると酸化熱が生じる。この酸化熱によってSCRF
7に流入する排気が加熱される。これにより、SCRF7の温度が上昇する。フィルタ再生処理の実行時においては、前段触媒5へ供給する燃料量を制御することで、SCRF7の温度をPMの酸化が促進される所定のフィルタ再生温度(例えば、600〜650℃)まで上昇させる。その結果、SCRF7に堆積したPMが酸化され除去される。なお、内燃機関1から温度の高いガスを排出させることで、SCRF7の温度を上昇させることもできる。
本実施例では、前回のフィルタ再生処理の実行が終了してから所定時間が経過する毎にフィルタ再生処理の実行が要求される。なお、内燃機関1を搭載した車両が所定の走行距離を走行する毎にフィルタ再生処理の実行を要求してもよい。また、SCRF7におけるPM堆積量が所定の堆積量に達する毎にフィルタ再生処理の実行を要求してもよい。SCRF7におけるPM堆積量は、内燃機関1での燃料噴射量、SCRF7に流入する排気の流量、及びSCRF7の温度等の履歴に基づいて推定することができる。
ところで、フィルタ再生処理が実行されると、第一SCR触媒7aの温度が高くなる。ここで、図2は、SCR触媒の温度と、NOx浄化率との関係を示した図である。SCR触媒のNOx浄化率は、温度によって変化する。そして、NOx浄化率が最も高くなる温度が存在し、この温度よりも高くなっても、また、低くなっても、NOx浄化率は低下する。図2における「第一SCR」で示される範囲は、フィルタ再生処理が実行されているときの第一SCR触媒7aの温度の範囲である。図2における「第二SCR」で示される範囲は、フィルタ再生処理が実行されているときの第二SCR触媒8の温度の範囲である。第一SCR触媒7aは、第二SCR触媒8よりも前段触媒5に近いために温度が高い。また、フィルタ再生処理が実行されることで、PMが酸化されて熱が発生するため、第一SCR触媒7aの温度は第二SCR触媒8の温度よりも高くなる。
図2に示されるように、フィルタ再生処理が実行されているときには、第一SCR触媒7aの温度が高いために、NOx浄化率は低くなる。ここで、フィルタ再生処理が実行されているときの第一SCR触媒7aの温度は、アンモニアが酸化されてNOxに変化する温度まで上昇する。このような温度では、SCRF7に流入するNOxよりも、SCRF7から流出するNOxのほうが多くなり得る。この場合、NOx浄化率が負の値となる。また、第一SCR触媒7aでは、吸着していたアンモニアが、高温のために脱離するので、NOxを還元させるための還元剤が不足する。これらの理由から、フィルタ再生処理が実行されているときの第一SCR触媒7aのNOx浄化率は低くなる。
一方、フィルタ再生処理が実行されているときの第二SCR触媒8の温度は、第一SCR触媒7aと比較すると、低くなる。このため、フィルタ再生処理が実行されているときの第二SCR触媒8のNOx浄化率は比較的高くなる。
しかし、第二SCR触媒8にアンモニアが吸着されていなければ、NOxを還元することができない。このため、第二SCR触媒8にアンモニアが吸着されていない状態でフィルタ再生処理が実行されると、第一SCR触媒7a及び第二SCR触媒8においてNOxを浄化することが困難となる。フィルタ再生処理時に第二SCR触媒8にアンモニアを供給しようとして還元剤供給弁6からアンモニアを供給しても、第一SCR触媒7aにおいて酸化されたり、NOxの還元のために消費されたりするので、第二SCR触媒8にはアンモニアがほとんど届かない。
そこで本実施例では、フィルタ再生処理が実行される前に、第二SCR触媒8に閾値A以上のアンモニアを予め吸着させておく。なお、第二SCR触媒8に閾値A以上のアンモニアが吸着されるのを待ってから、フィルタ再生処理を実行するとしてもよい。第二SCR触媒8に閾値A以上のアンモニアが吸着されるまで、フィルタ再生処理を禁止するとし
てもよい。ここでいう閾値Aは、フィルタ再生処理の実行中に第二SCR触媒8においてNOxを還元するために必要となるアンモニア吸着量である。なお、本実施例においては閾値Aが、本発明における昇温開始閾値に相当する。
図3は、SCR触媒のアンモニア吸着量とNOx浄化率との関係を示した図である。アンモニア吸着量がある程度多くなるまでは、アンモニア吸着量が多くなるほど、NOx浄化率は高くなる。一方、アンモニア吸着量がある程度多くなると、アンモニア吸着量が多くなっても、NOx浄化率はほとんど変化がない。このNOx浄化率がほとんど変化しない範囲よりも、閾値Aは小さな値とする。さらに、閾値Aは、アンモニア吸着量が変化するとNOx浄化率も変化するようなアンモニア吸着量であって、NOx浄化率が比較的高くなるアンモニア吸着量とする。閾値Cについては後述する。
さらに、閾値Aは、第二SCR触媒8における飽和アンモニア吸着量よりも少ない値とし、第二SCR触媒8における飽和アンモニア吸着量に対して余裕を持った値とする。例えば、フィルタ再生処理を実行中には、第一SCR触媒7aからアンモニアが脱離するため、該アンモニアを第二SCR触媒8において吸着できるようにしておいてもよい。
図4は、SCR触媒の温度と、飽和アンモニア吸着量(実線)と、アンモニア酸化率(一点鎖線)と、の関係を示した図である。アンモニア酸化率は、供給されるアンモニアの量に対する、酸化されてNOxに変化するアンモニアの量の比である。TPMは、PMの酸化が始まる温度である。飽和アンモニア吸着量は、SCR触媒の温度が高くなるほど、少なくなり、閾値TA以上では0となる。この閾値TAは、SCR触媒がアンモニアを吸着できる最大温度である。一方、SCR触媒の温度が閾値TA以上になると、温度が高くなるほど、アンモニア酸化率が高くなる。フィルタ再生処理が実行されると、第一SCR触媒7aの温度はTPM以上となるが、第二SCR触媒8の温度は閾値TA以下となる。図4に示した関係を予め実験またはシミュレーション等により求めておけば、第二SCR触媒8の温度に基づいて、該第二SCR触媒8における飽和アンモニア吸着量を求めることができる。
第二SCR触媒8のアンモニア吸着量は、ECU10により推定される。第二SCR触媒8のアンモニア吸着量は、例えば、第二SCR触媒8に流入するアンモニア量から、第二SCR触媒8で消費されるアンモニア量を減算することにより求める。第二SCR触媒8に流入するアンモニア量は、第一SCR触媒7aから流出するアンモニア量に等しい。第一SCR触媒7aから流出するアンモニア量は、運転条件及び第一SCR触媒7aにおけるNOx浄化率と相関関係にあるため、これらの関係を予め実験またはシミュレーションにより求めてECU10に記憶させておく。
なお、第一SCR触媒7aと第二SCR触媒8との間の排気通路3に、アンモニアを検出するアンモニアセンサを取り付けて、該アンモニアセンサの検出値に基づいて、第一SCR触媒7aから流出するアンモニア量を算出してもよい。第二SCR触媒8で消費されるアンモニア量は、運転条件及び第二SCR触媒8におけるNOx浄化率と相関関係にあるため、これらの関係を予め実験またはシミュレーションにより求めてECU10に記憶させておく。なお、第一SCR触媒7a及び第二SCR触媒8におけるNOx浄化率は、各触媒の温度及び吸入空気量と相関関係にあるため、各触媒の温度及び吸入空気量に基づいて推定することができる。また、内燃機関1から排出されるNOx濃度の推定値と、第一NOxセンサ13及び第二NOxセンサ15により検出されるNOx濃度と、に基づいて、各触媒のNOx浄化率を求めることもできる。
図5は、本実施例に係るフィルタ再生処理のフローを示したフローチャートである。本ルーチンは、ECU10により所定の時間毎に繰り返し実行される。
ステップS101では、フィルタ再生処理の実行が要求されているか否か判定される。本ステップでは、SCRF7に流入する排気の温度が、アンモニアを酸化させる温度になる昇温制御が実施されるか否か判定している。例えば、前回のフィルタ再生処理の実行が終了してから所定時間が経過する毎にフィルタ再生処理の実行が要求される。また、内燃機関1を搭載した車両が所定の走行距離を走行する毎にフィルタ再生処理の実行を要求してもよい。また、SCRF7におけるPM堆積量が所定の堆積量に達する毎にフィルタ再生処理の実行を要求してもよい。ステップS101で肯定判定がなされた場合にはステップS102へ進み、一方、否定判定がなされた場合には本ルーチンを終了させる。
ステップS102では、第二SCR触媒8のアンモニア吸着量が閾値A以上であるか否か判定される。閾値Aは、予め実験またはシミュレーション等により求めておく。ステップS102で肯定判定がなされた場合にはステップS103へ進み、一方、否定判定がなされた場合には本ルーチンを終了させる。
ステップS103では、フィルタ再生処理が実行される。これにより、第一SCR触媒7aにおいては、NOxを浄化することが困難となる。
ステップS104では、フィルタの再生が完了したか否か判定される。SCRF7に捕集されているPM量が十分に少なくなった場合に、フィルタの再生が完了する。なお、フィルタ再生処理が開始されてから、所定時間が経過したときにフィルタの再生が完了したと判定してもよい。ステップS104で肯定判定がなされた場合には本ルーチンを終了させ、一方、否定判定がなされた場合には再度ステップS104が実行される。すなわち、フィルタの再生が完了するまで、ステップS104が繰り返し実行される。
このように、フィルタ再生処理が実行されるときには、第二SCR触媒8に十分な量のアンモニアが吸着されているので、フィルタ再生処理の実行中であっても、第二SCR触媒8においてNOxを浄化することができる。これにより、システム全体としてのNOx浄化率の低下を抑制することができる。
なお、本実施例においては、フィルタ再生処理の実行中において、第一SCR触媒7aの温度が高くなる場合について説明したが、他の理由により第一SCR触媒7aの温度が高くなる場合についても同様に考えることができる。例えば、前段触媒5よりも下流の触媒の温度を上昇させる目的のために、該前段触媒5に燃料を供給することがある。すなわち、前段触媒5よりも下流に設けられる触媒の活性化のため、又は、吸蔵還元型NOx触媒を設けている場合において該吸蔵還元型NOx触媒の硫黄被毒を解消するために前段触媒5に燃料を供給することがある。すなわち、これらの場合においても、昇温制御が実施される。このような場合において、第一SCR触媒7aの温度が、アンモニアの酸化する温度まで上昇するのであれば、それよりも前に第二SCR触媒8にアンモニアを吸着させておいてもよい。
(実施例2)
本実施例では、フィルタ再生処理を実行する前に、第一SCR触媒7aに供給するアンモニア量を積極的に増加させる。これにより、第二SCR触媒8に吸着されているアンモニア量を速やかに増加させる。その他の装置等は実施例1と同じため、説明を省略する。
ここで、還元剤供給弁6からアンモニアを供給したときに、第一SCR触媒7aにおいて吸着されなかったアンモニア、又は、第一SCR触媒7aから脱離したアンモニアが、第二SCR触媒8に吸着される。第一SCR触媒7aがアンモニアを吸着可能な状態であれば、第一SCR触媒7aから流出するアンモニア量は少ないため、第二SCR触媒8に
吸着されるアンモニア量も少なくなる。このため、第二SCR触媒8に吸着されているアンモニア量が閾値A以上となるまでに時間がかかる虞がある。本実施例では、フィルタ再生処理を実行する要求があるときには、フィルタ再生処理を実行する要求がないときと比較して、第一SCR触媒7aに供給するアンモニア量を多くする。例えば、排気中のアンモニア濃度をより高くすることにより、第一SCR触媒7aから流出するアンモニア量を増加させることができる。このときには、アンモニアを供給する時間を長くすることによりアンモニアの供給量を多くすることで排気中のアンモニア濃度を高くしてもよいし、単位時間当たりのアンモア供給量を増加させることによりアンモニアの供給量を多くすることで排気中のアンモニア濃度を高くしてもよい。これにより、第一SCR触媒7aから流出するアンモニア量が増加するため、第二SCR触媒8に吸着されるアンモニア量が増加する。
本実施例では、第一SCR触媒7aにおいてアンモニアが飽和するよりも多くの量のアンモニアを該第一SCR触媒7aに供給することで、第一SCR触媒7aからアンモニアを積極的に流出させてもよい。
図6は、本実施例に係るフィルタ再生処理のフローを示したフローチャートである。本ルーチンは、ECU10により所定の時間毎に繰り返し実行される。なお、前記フローと同じ処理がなされるステップについては、同じ符号を付して説明を省略する。
本実施例では、ステップS101で肯定判定がなされると、ステップS201へ進む。ステップS201では、還元剤供給弁6から供給するアンモニア量を増加させる。すなわち、フィルタ再生処理の実行の要求があるときのアンモニア供給量を、フィルタ再生処理の実行の要求がないときのアンモニア供給量よりも、多くする。フィルタ再生処理の実行の要求がないときのアンモニア供給量は、第一SCR触媒7aに流入するNOx量に応じて決定される。アンモニア供給量の増加は、ステップS102で肯定判定がなされるまで続ける。すなわち、ステップS102で否定判定がなされると、ステップS201へ戻る。なお、増量後のアンモニア供給量の最適値は、予め実験またはシミュレーション等により求めておいてもよい。
そして、ステップS102で肯定判定がなされると、ステップS202へ進む。ステップS202では、アンモニアの供給が停止される。このときには、第二SCR触媒8に十分な量のアンモニアが吸着されているため、アンモニアの供給を停止しても、第二SCR触媒8に吸着されているアンモニアによりNOxを浄化することができる。なお、ステップS202においては、アンモニアの供給を停止させることに代えて、アンモニアの供給量を減少させてもよい。すなわち、第二SCR触媒8が吸着しているアンモニア量が閾値A未満の場合よりも、第一SCR触媒7aに供給するアンモニアの量を少なくしてもよい。
さらに、ステップS104において肯定判定がなされた場合、すなわちフィルタの再生が完了したと判定された場合には、ステップS203へ進んで、アンモニアの供給が再開される。ステップS203では、フィルタ再生処理の実行の要求がないときのアンモニア供給量に設定して、アンモニアを供給する。
以上説明したように、本実施例によれば、フィルタ再生処理の実行の要求があるときには、第一SCR触媒7aから流出するアンモニア量を積極的に増加させるため、第二SCR触媒8に速やかにアンモニアを吸着させることができる。したがって、フィルタ再生処理を速やかに開始することができる。
(実施例3)
本実施例では、フィルタ再生処理の実行中に、第二SCR触媒8に吸着されているアンモニア量が少なくなった場合について説明する。その他の装置等は実施例1と同じため、説明を省略する。
ここで、第二SCR触媒8に予めアンモニアを吸着させておいたとしても、フィルタ再生処理の実行中にはアンモニアが供給されないので、第二SCR触媒8に吸着されていたアンモニアが全て消費されてしまう虞がある。このときには第一SCR触媒7aにもアンモニアが吸着されていないため、システム全体としてのNOx浄化率が低下してしまう。そこで、本実施例では、フィルタ再生処理の実行中であっても、第一SCR触媒7aの温度がアンモニアを吸着可能な温度またはアンモニアが酸化しない温度となっている場合には、還元剤供給弁6からアンモニアを供給する。このときには、第一SCR触媒7aに吸着されているアンモニア量が閾値B以上となるまでアンモニアを供給する。閾値Bは、第二SCR触媒8においてNOxを浄化するのに必要となるアンモニア量とすることができる。また、閾値Bは、第一SCR触媒7aの飽和アンモニア量としてもよい。第一SCR触媒7aにアンモニアを吸着させておけば、フィルタ再生処理の実行初期に第一SCR触媒7aからアンモニアが脱離するので、第二SCR触媒8にアンモニアを供給することができる。
なお、実施例2と同様に、第一SCR触媒7aからアンモニアが流出するように、アンモニアを供給してもよい。これにより、フィルタ再生処理中には、第一SCR触媒7aから脱離するアンモニアと、第二SCR触媒8に吸着されていたアンモニアと、により第二SCR触媒8においてNOxを浄化することができる。
ここで、フィルタ再生処理を実行していても、例えば減速中には、温度の低い排気がSCRF7を流通するため、第一SCR触媒7aの温度がアンモニアを吸着可能な温度まで低下し得る。このときには、アンモニアがNOxに酸化されることもない。このときに第一SCR触媒7aにアンモニアを吸着させておくことにより、次にSCRF7の温度が上昇したときに、第一SCR触媒7aからアンモニアが脱離する。そして、このアンモニアは第二SCR触媒8に吸着される。したがって、第二SCR触媒8においてNOxの浄化が可能となる。
なお、SCRF7の温度がアンモニアを吸着可能な温度まで低下しない場合で、且つ、第二SCR触媒8に吸着されているアンモニア量が閾値C以下の場合には、SCRF7の温度を下降させる制御である温度下降制御を実施してもよい。温度下降制御は、例えば、前段触媒5への燃料の供給を停止することで実現される。温度下降制御は、昇温制御を停止する制御としてもよい。すなわち、燃料添加弁4からの燃料添加、または、ポスト噴射を停止または禁止することにより実施される。そして、SCRF7の温度がアンモニアを吸着可能な温度まで低下した後に、還元剤供給弁6からアンモニアを供給する。
閾値Cは、第二SCR触媒8において、これ以上アンモニア吸着量が低下すると、NOx浄化率が目標値に対して一定値以上下回るアンモニア吸着量である。すなわち、閾値Cは、これ以上アンモニア吸着量が減少すると、NOx浄化率が著しく低下するアンモニア吸着量である。なお、閾値Cは、第二SCR触媒8がNOxを浄化するために要求されるアンモニアの吸着量に対して、一定値以上下回るアンモニアの吸着量としてもよい。なお、本実施例においては閾値Cが、本発明におけるアンモニア供給閾値に相当する。
図7は、本実施例に係るフィルタ再生処理のフローを示したフローチャートである。本ルーチンは、ECU10により所定の時間毎に繰り返し実行される。なお、前記フローと同じ処理がなされるステップについては、同じ符号を付して説明を省略する。
本実施例においては、ステップS103の処理の後に、ステップS301が処理される。ステップS301では、第二SCR触媒8におけるアンモニア吸着量が閾値A以上であるか否か判定される。閾値Aは、ステップS102における閾値Aと同じ値である。ただし、閾値Aを、ステップS102における閾値Aと異なる値に設定することもできる。第二SCR触媒8におけるアンモニア吸着量は、ステップS202においてアンモニアの供給が停止されてからのNOx浄化量に基づいて推定される。NOx浄化量は、第二SCR触媒8に流入するNOx量と、第二SCR触媒8の温度と、内燃機関1の吸入空気量と、に基づいて推定される。ここで、第二SCR触媒8に流入するNOx量が多いほど、第二SCR触媒8におけるアンモニアの消費量が多くなる。第二SCR触媒8におけるNOx浄化率は、第二SCR触媒8の温度及び内燃機関1の吸入空気量と関連している。そして、第二SCR触媒8に流入するNOx量と、第二SCR触媒8におけるNOx浄化率と、から、第二SCR触媒8におけるアンモニアの消費量を算出することができる。なお、ステップS102において第二SCR触媒8のアンモニア吸着量が閾値A以上であると判定されているため、NOxを浄化する前のアンモニア吸着量は、閾値Aとして計算する。これらの関係は、予め実験またはシミュレーション等により求めてマップ化しておいてもよい。
ステップS301で肯定判定がなされた場合には、ステップS104へ進む。その後、ステップS104で否定判定がなされた場合には、ステップS301へ戻る。
一方、ステップS301で否定判定がなされた場合には、ステップS302へ進む。ステップS302では、第二SCR触媒8のアンモニア吸着量を増加させる制御が実施される。
ここで、図8は、図7に示されるステップS302において実施される第二SCR触媒8のアンモニア吸着量を増加させる制御のフローを示したフローチャートである。本ルーチンは、ECU10により所定の時間毎に繰り返し実行される。なお、前記フローと同じ処理がなされるステップについては、同じ符号を付して説明を省略する。
ステップS303では、SCRF7の温度が、閾値TA以下であるか否か判定される。閾値TAは、第一SCR触媒7aにおいてアンモニアを吸着可能な温度の上限値である。閾値TAは、図4における閾値TAである。本ステップでは、第一SCR触媒7aがアンモニアを吸着可能であるか否か判定される。ステップS303で肯定判定がなされた場合にはステップS304へ進む。
ステップS304では、アンモニアの増量供給が開始される。ステップS304におけるアンモニア供給量は、フィルタ再生処理実行時以外のときのアンモニア供給量よりも多くしている。これにより、第一SCR触媒7aへ速やかにアンモニアを吸着させることができる。ただし、ステップS304におけるアンモニア供給量を、フィルタ再生処理実行時以外のときのアンモニア供給量と同じにしてもよい。
ステップS305では、第一SCR触媒7aのアンモニア吸着量が閾値B以上であるか否か判定される。閾値Bは、予め実験またはシミュレーション等により求めておいてもよい。
ステップS305で肯定判定がなされた場合には、ステップS202へ進み、一方、否定判定がなされた場合には、ステップS304へ戻る。すなわち、第一SCR触媒7aのアンモニア吸着量が閾値B以上となるまで、アンモニアの供給が継続される。
ステップS202でアンモニアの供給が停止された後、ステップS306においてSC
RF7の温度を急上昇させるための制御であるSCRF温度急上昇制御が実施される。このステップS306では、内燃機関1から温度の高い排気または未燃燃料を排出させたり、燃料添加弁4から燃料を添加したりして、SCRF7の温度をPMが酸化される温度まで速やかに上昇させる。
ステップS306においてSCRF7の温度を上昇させる過程において、第一SCR触媒7aの温度がアンモニアを吸着可能な温度よりも高くなり、該第一SCR触媒7aからアンモニアが脱離する。このアンモニアが第二SCR触媒8に吸着されることにより、フィルタ再生処理の実行中に第二SCR触媒8においてNOxを浄化することができる。
一方、ステップS303で否定判定がなされた場合には、ステップS307へ進む。ステップS307では、第二SCR触媒8のアンモニア吸着量が閾値C以下であるか否か判定される。閾値Cは、予め実験またはシミュレーション等により求めておいてもよい。ステップS307では、第二SCR触媒8にアンモニアを供給しなければ、システム全体としてのNOx浄化率が著しく低下するか否か判定している。ステップS307で肯定判定がなされた場合にはステップS308へ進み、一方、否定判定がなされた場合にはステップS303へ戻る。
ステップS308では、SCRF7の温度を下降させるための制御である温度下降制御が実施される。このステップS308では、SCRF7の温度を、アンモニアを吸着可能な温度まで上昇させる。すなわち、第二SCR触媒8のアンモニア吸着量が閾値C以下の場合には、SCRF7の温度を下降させることにより、第一SCR触媒7aにおいてアンモニアを吸着可能とする。
図9は、本実施例に係るフィルタ再生処理を実施したときの各種値の推移を示したタイムチャートである。「温度」における、実線は、第一SCR触媒7a(SCRF7)の温度を示し、一点鎖線は第二SCR触媒8の温度を示している。「アンモニア供給量」は、第一SCR触媒7aに供給されるアンモニア量と関連している。図9において、T1の時点は、フィルタ再生処理を実行する要求が始まる時点である。T1の時点よりも前は、排気中のNOx濃度に応じてアンモニアの供給量が決定される。
T1からT3までの期間では、フィルタ再生処理は実行しておらず、アンモニアの供給量を、フィルタ再生処理の要求がなされる前よりも増加させている。これにより、T1からT3の期間では、アンモニアの増量供給により、第一SCR触媒7aのアンモニア吸着量が増加する。そして、T2の時点において、第一SCR触媒7aのアンモニア吸着量が閾値B以上になる。したがって、T2からT3の期間において、第一SCR触媒7aからアンモニアが流出するため、第二SCR触媒8のアンモニア吸着量が増加する。第二SCR触媒8のアンモニア吸着量が閾値A以上になると、フィルタ再生処理が開始される。T3の時点において、第二SCR触媒8のアンモニア吸着量が閾値Aとなるので、アンモニアの供給が停止されると共に、フィルタ再生処理が開始される。
T3の時点以降では、フィルタ再生処理が実行されているため、第一SCR触媒7a及び第二SCR触媒8の温度が高くなる。これにより、第一SCR触媒7aからアンモニアが脱離し、該アンモニアが第二SCR触媒8に吸着される。したがって、T3からT4までの期間には、第一SCR触媒7aのアンモニア吸着量が低下し、且つ、第二SCR触媒8のアンモニア吸着量が増加する。
T4の時点では、第一SCR触媒7aのアンモニア吸着量が0となる。これにより、第一SCR触媒7aから流出するアンモニアがなくなるので、第二SCR触媒8に供給されるアンモニアがなくなる。そして、T4の時点以降では、第二SCR触媒8に吸着されて
いるアンモニアがNOxの浄化に消費されるので、該第二SCR触媒8におけるアンモニア吸着量が減少する。
T5の時点では、第一SCR触媒7aの温度が閾値TA未満となり、且つ、第二SCR触媒8のアンモニア吸着量が閾値A未満となっている。このときには、第一SCR触媒7aにアンモニアを吸着させることができる。このため、アンモニアが供給される。このアンモニアの供給により、第一SCR触媒7aのアンモニア吸着量が増加する。このときには、第一SCR触媒7aからアンモニアが流出しないようにアンモニアを供給するため、第二SCR触媒8のアンモニア吸着量は増加しない。ただし、第一SCR触媒7aにおいてNOxが浄化されるため、第二SCR触媒8のアンモニア吸着量の減少が抑制される。
そして、T6からT7の期間は、第一SCR触媒7aの温度が閾値TA以上となるため、アンモニアの供給が停止される。この期間では、第一SCR触媒7aからアンモニアが脱離するため、該第一SCR触媒7aのアンモニア吸着量が減少する。一方、第二SCR触媒8には第一SCR触媒7aから流出するアンモニアが供給されるものの、アンモニアの供給量が少ないために、アンモニア吸着量が減少している。T7からT9の期間も、T5からT7の期間と同様の処理となる。
さらに、T9の時点において、第一SCR触媒7aの温度が閾値TA未満となり、且つ、第二SCR触媒8のアンモニア吸着量が閾値A未満となっているので、アンモニアが供給される。そして、T10の時点において、第一SCR触媒7aのアンモニア吸着量が閾値Bに到達するため、アンモニアの供給が停止される。その後、第一SCR触媒7aからアンモニアが脱離して第一SCR触媒7aのアンモニア吸着量が減少する。それにしたがって、第二SCR触媒8のアンモニア吸着量が増加する。
以上説明したように本実施例によれば、フィルタ再生処理を実施しているときであっても、第二SCR触媒8にアンモニアを吸着させることができるため、NOx浄化率が低下することを抑制できる。
1 内燃機関
2 吸気通路
3 排気通路
4 燃料添加弁
5 前段触媒
6 還元剤供給弁
7a 第一SCR触媒
8 第二SCR触媒
17 燃料噴射弁

Claims (7)

  1. 内燃機関の排気通路に設けられ、アンモニアを還元剤として排気中のNOxを選択還元する選択還元型NOx触媒である第一SCR触媒と、
    前記第一SCR触媒よりも下流の排気通路に設けられ、アンモニアを還元剤として排気中のNOxを選択還元する選択還元型NOx触媒である第二SCR触媒と、
    前記第一SCR触媒へアンモニア又はアンモニアの前駆体を供給する供給装置と、
    前記第一SCR触媒の温度が所定温度以上となる制御である昇温制御を実施する制御装置と、
    を備える内燃機関の排気浄化システムにおいて、
    前記制御装置は、前記第二SCR触媒が吸着しているアンモニア量が、前記昇温制御を開始する閾値である昇温開始閾値以上のときに前記昇温制御を開始する内燃機関の排気浄化システム。
  2. 前記制御装置は、前記昇温制御を実施する要求があるときであって該昇温制御を実施する前には、前記昇温制御を実施する要求がないときよりも、前記供給装置から前記第一SCR触媒へ供給するアンモニア又はアンモニアの前駆体の量を多くする請求項1に記載の内燃機関の排気浄化システム。
  3. 前記制御装置は、前記昇温制御を実施する要求があるときであって該昇温制御を実施する前に、前記第二SCR触媒が吸着しているアンモニア量が前記昇温開始閾値未満の場合には、前記昇温開始閾値以上の場合よりも、前記供給装置から前記第一SCR触媒へ供給するアンモニア又はアンモニアの前駆体の量を多くする請求項2に記載の内燃機関の排気浄化システム。
  4. 前記制御装置は、前記昇温制御を実施する要求があるときであって該昇温制御を実施する前に、前記第一SCR触媒からアンモニア又はアンモニアの前駆体が流れ出るように、前記供給装置から前記第一SCR触媒へ供給するアンモニア又はアンモニアの前駆体の量を調整する請求項1から3の何れか1項に記載の内燃機関の排気浄化システム。
  5. 前記制御装置は、前記昇温制御を実施しているときには、前記供給装置から前記第一SCR触媒へのアンモニア又はアンモニアの前駆体の供給を停止する請求項1から4の何れ
    か1項に記載の内燃機関の排気浄化システム。
  6. 前記制御装置は、前記昇温制御を実施しているときであっても、前記第一SCR触媒の温度が前記所定温度よりも低い場合、且つ、前記第二SCR触媒が吸着しているアンモニア量が低下して前記昇温開始閾値未満となった場合には、前記供給装置から前記第一SCR触媒へのアンモニア又はアンモニアの前駆体の供給を再開する請求項5に記載の内燃機関の排気浄化システム。
  7. 前記制御装置は、前記昇温制御を実施しているときであっても、前記第一SCR触媒の温度が前記所定温度以上の場合、且つ、前記第二SCR触媒が吸着しているアンモニア量がアンモニアの吸着を再開させる閾値であり、前記昇温開始閾値よりも小さい値であるアンモニア供給閾値以下の場合には、前記第一SCR触媒の温度を前記所定温度よりも下降させる制御である温度下降制御を実施し、該温度下降制御により前記第一SCR触媒の温度が所定温度よりも低くなった後に、前記供給装置から前記第一SCR触媒へのアンモニア又はアンモニアの前駆体の供給を再開する請求項5に記載の内燃機関の排気浄化システム。
JP2013235782A 2013-11-14 2013-11-14 内燃機関の排気浄化システム Active JP5915623B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013235782A JP5915623B2 (ja) 2013-11-14 2013-11-14 内燃機関の排気浄化システム
EP14193252.5A EP2873823B1 (en) 2013-11-14 2014-11-14 Exhaust gas purification system for an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013235782A JP5915623B2 (ja) 2013-11-14 2013-11-14 内燃機関の排気浄化システム

Publications (2)

Publication Number Publication Date
JP2015094337A JP2015094337A (ja) 2015-05-18
JP5915623B2 true JP5915623B2 (ja) 2016-05-11

Family

ID=51900271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013235782A Active JP5915623B2 (ja) 2013-11-14 2013-11-14 内燃機関の排気浄化システム

Country Status (2)

Country Link
EP (1) EP2873823B1 (ja)
JP (1) JP5915623B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6444823B2 (ja) * 2015-07-06 2018-12-26 ヤンマー株式会社 ディーゼルエンジン
GB2556753B (en) * 2015-08-03 2020-12-09 Cummins Emission Solutions Inc Sensor configuration for aftertreatment system including SCR on filter
DE102015012736A1 (de) * 2015-10-01 2017-04-06 Man Truck & Bus Ag Verfahren zum Betreiben eines Abgasnachbehandlungssystems
JP6520971B2 (ja) * 2017-03-02 2019-05-29 トヨタ自動車株式会社 内燃機関の排気浄化装置
DE102017118215A1 (de) * 2017-08-10 2019-02-14 Volkswagen Ag Abgasnachbehandlungssystem und Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors
KR102563441B1 (ko) * 2018-11-12 2023-08-03 현대자동차 주식회사 배출 가스 정화 장치

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4592504B2 (ja) 2005-06-09 2010-12-01 三菱ふそうトラック・バス株式会社 排気浄化装置
WO2009128169A1 (ja) * 2008-04-18 2009-10-22 本田技研工業株式会社 内燃機関の排気浄化装置
JP2009264181A (ja) 2008-04-23 2009-11-12 Toyota Motor Corp 内燃機関の排気浄化装置
JP5054607B2 (ja) 2008-05-01 2012-10-24 三菱ふそうトラック・バス株式会社 排気浄化装置
CN102549245B (zh) * 2009-06-03 2014-06-11 丰田自动车株式会社 内燃机的排气净化装置
JP2011052612A (ja) * 2009-09-02 2011-03-17 Toyota Industries Corp 排気ガス浄化装置
JP5259653B2 (ja) * 2010-07-23 2013-08-07 本田技研工業株式会社 内燃機関の排気浄化システム
JP2012154238A (ja) 2011-01-26 2012-08-16 Isuzu Motors Ltd 排気ガス浄化システム及びディーゼルパティキュレートフィルタの強制再生方法
JP5837319B2 (ja) 2011-04-01 2015-12-24 本田技研工業株式会社 内燃機関の排気浄化システム

Also Published As

Publication number Publication date
EP2873823B1 (en) 2017-03-29
JP2015094337A (ja) 2015-05-18
EP2873823A1 (en) 2015-05-20

Similar Documents

Publication Publication Date Title
JP5915623B2 (ja) 内燃機関の排気浄化システム
JP5880731B2 (ja) 内燃機関の排気浄化装置
JP5790868B2 (ja) 内燃機関の排気浄化装置
JP5163754B2 (ja) 内燃機関の排気浄化装置
JP6187385B2 (ja) 内燃機関の排気浄化装置
JP2008255905A (ja) 内燃機関の排気浄化システム
JP6264048B2 (ja) 噴射制御装置
JP5915516B2 (ja) 内燃機関の排気浄化装置
JP5251711B2 (ja) 内燃機関の排気浄化装置
JP2015031166A (ja) 内燃機関の排気浄化装置
JP5994928B2 (ja) 内燃機関の排気浄化システム
JP2016079852A (ja) 内燃機関の排気浄化装置の異常判定システム
US9464554B2 (en) Exhaust gas purification system for internal combustion engine
JP5761255B2 (ja) 内燃機関の排気浄化装置
JP2006348905A (ja) 内燃機関の排気浄化システム
JP5570188B2 (ja) エンジンの排気浄化装置
JP6617865B2 (ja) エンジンの排気浄化装置
JP2020041428A (ja) 排気後処理装置
JP2015075011A (ja) 内燃機関の排気浄化装置
JP6398402B2 (ja) 排気浄化システム
JP5768767B2 (ja) 内燃機関の排気浄化装置
JP2009013930A (ja) 排気浄化装置
JP2007032396A (ja) 内燃機関の排気浄化装置
JP2021055565A (ja) 内燃機関の排気浄化装置、及び車両
JP2013238164A (ja) 内燃機関の排気浄化装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160321

R151 Written notification of patent or utility model registration

Ref document number: 5915623

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350