WO2007004473A1 - Izoスパッタリングターゲットの製造方法 - Google Patents

Izoスパッタリングターゲットの製造方法 Download PDF

Info

Publication number
WO2007004473A1
WO2007004473A1 PCT/JP2006/312825 JP2006312825W WO2007004473A1 WO 2007004473 A1 WO2007004473 A1 WO 2007004473A1 JP 2006312825 W JP2006312825 W JP 2006312825W WO 2007004473 A1 WO2007004473 A1 WO 2007004473A1
Authority
WO
WIPO (PCT)
Prior art keywords
sputtering target
molding
oxide powder
sintering
powder
Prior art date
Application number
PCT/JP2006/312825
Other languages
English (en)
French (fr)
Inventor
Kazuyoshi Inoue
Akira Kaijo
Masato Matsubara
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005193505A external-priority patent/JP4755453B2/ja
Priority claimed from JP2005193504A external-priority patent/JP4758697B2/ja
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Priority to KR1020077030586A priority Critical patent/KR101317080B1/ko
Publication of WO2007004473A1 publication Critical patent/WO2007004473A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6585Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage above that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Definitions

  • the present invention relates to a method for producing an IZO sputtering target mainly composed of indium oxide and zinc oxide or a powder thereof.
  • an indium stannate (hereinafter abbreviated as ITO) film dominates. This is because the ITO film is excellent in transparency and conductivity, can be etched with a strong acid, and has excellent adhesion to the substrate.
  • This ITO film is generally formed by sputtering, ion plating, or vapor deposition.
  • ITO is a powerful crystalline metal oxide having excellent performance in terms of the above properties
  • ITO is not crystallized.
  • crystal grains are generated on the surface of the transparent conductive film, resulting in a problem that the surface accuracy of the film is lowered.
  • this ITO has crystallinity, when the etching force is measured, the local force at the crystal grain interface of the transparent conductive film is etched. As a result, the crystal particles are left behind in the etched portion of the transparent conductive film, which causes a display defect due to conduction when used as a display element.
  • an ITO sputtering target is manufactured through many steps of mixing indium oxide and zinc oxide powder, pulverization, drying, calcination, pulverization, granulation, molding, sintering (for example, And Patent Document 3).
  • the production of sputtering targets over many processes as described above has not been fully studied for improvements such as the reduction of power processes, which leads to a decrease in productivity and increases costs.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 8-171824
  • Patent Document 2 Japanese Patent Laid-Open No. 2000-256059
  • Patent Document 3 International Publication No. WO2003Z14409
  • the present invention can improve productivity and reduce manufacturing costs by reducing processes while maintaining the characteristics as an IZO sputtering target in the manufacture of an IZO sputtering target. It aims at providing the manufacturing method which becomes possible. It is another object of the present invention to provide a manufacturing method that can improve productivity and reduce manufacturing costs by lowering the sintering temperature.
  • the present inventors have made indium oxide powder and zinc oxide powder having specific properties, or raw material powders mainly composed of these powders. It has been found that the manufacturing process can be reduced while maintaining the characteristics as an IZO sputtering target. The present invention has been completed based on strong knowledge.
  • Indium oxide powder and zinc oxide powder or raw materials mainly composed of these powders Mixing and pulverizing step for obtaining fine powder by mixing and pulverizing the material powder, molding step for obtaining the molded product by molding the fine powder, 1250 to 1450 ° C in the oxygen atmosphere, or pressing the molded product under pressure
  • the median diameter of the particle size distribution of the indium oxide powder is 1 to 2 m, and the median diameter of the particle size distribution of the zinc oxide powder is 65 nm to 0.2 m.
  • the present invention in the production of an IZO sputtering target, production that can improve productivity and reduce production costs by reducing the number of processes while maintaining the characteristics as an IZO sputtering target.
  • a method can be provided.
  • the present invention relates to indium oxide powder and zinc oxide powder having specific properties, or By using raw material powders mainly composed of these powders, the manufacturing process can be reduced.
  • the specific surface areas of the indium oxide powder and zinc oxide powder used as raw materials in the present invention are 8 to: LOm 2 / g, respectively, in order to reduce the appearance of defects called white spots (white spot unevenness) on the surface of the sputtering target. It needs to be 10m 2 / g or more.
  • the median size of the particle size distribution of the indium oxide powder and zinc oxide powder used as a raw material in the present invention is 1-2 ⁇ m and 65 ⁇ , respectively, in order to reduce the appearance of white spots! It should be ⁇ 0.2 / zm.
  • the average median diameter of the fine powder after the mixing and pulverizing step is preferably as fine as possible, but is pulverized to be 0.5 to 1 / ⁇ ⁇ .
  • the powder as the raw material preferably satisfies both the specific surface area and the median diameter.
  • the amount of the indium oxide powder and the zinc oxide powder used is preferably 75:25 to 95: 5 by weight, and more preferably 80:20 to 94: 6.
  • the raw material of the sputtering target is mainly composed of indium oxide and zinc oxide
  • other components may be added for the purpose of improving the characteristics of the target.
  • positive tetravalent elements such as tin, zirconium, titanium, hafnium, genoremanium, and cerium can be added at about 100 to 2000 ppm.
  • the IZO sputtering target is manufactured as follows. After finely pulverizing fine powder obtained by wet-grinding a mixture of indium oxide powder and zinc oxide powder, or a mixture containing these powders as a main component, using a spray dryer or the like, the particles are press-molded and sintered. It can be manufactured by subjecting a sintered body of a molded product to cutting.
  • the mixing and pulverizing step refers to the indium oxide powder and the zinc oxide powder, or the raw material powder containing these powders as a main component is a wet mixing and pulverizing machine such as a wet ball mill, a bead mill, and an ultrasonic wave. This is a process of obtaining a fine powder by uniformly mixing and pulverizing.
  • the particle size of the pulverized fine powder is the density of the IZO sputtering target as described above, and Adjust from the viewpoint of reducing the amount of impurities such as pulverizers.
  • the fine powder obtained is dried.
  • a spray dryer, a general powder dryer or the like can be used for drying the fine powder.
  • the dried fine powder is subjected to a molding process in which the mold is filled and press-molded into a desired shape using a general cold press or the like.
  • the press molding can be performed using a uniaxial press, a cold isostatic press (CIP), or the like.
  • a molded product obtained by press molding becomes a sintered body for an IZO sputtering target through a sintering process.
  • Sintering is performed in an oxygen atmosphere.
  • the oxygen atmosphere means that the oxygen concentration is 21% to less than 50%, preferably 21% to less than 40%. If it is in this range, it is possible to sinter efficiently, and the firing furnace does not burn out.
  • Sintering can also be performed in an air atmosphere.
  • the sintering can be performed at atmospheric pressure, and the pressure is higher than atmospheric pressure to 0 to 0 ° C under pressure for the purpose of increasing the sintering density and preventing the cost of the sintering apparatus including the sintering furnace. It can also be done at 5MPa.
  • the sintering temperature is 1250 to 1400 ° C, preferably 1300 to 1400 ° C. Cost can be reduced.
  • the sintering time is 2 to 48 hours, preferably 4 to 36 hours, in order to increase the sintered density and reduce the manufacturing cost, and the preferred temperature increase rate during sintering is 2 to 24 ° CZ .
  • the sintering temperature is 1100 to 1250 ° C, preferably 1150 to 1250 ° C, which may be lower than when sintering at atmospheric pressure. If it is within this range, the sintered density becomes high and the manufacturing cost can be reduced.
  • the sintering time is 2 to 48 hours, preferably 10 to 36 hours, in order to increase the sintered density and reduce the manufacturing cost, and the preferred heating rate during sintering is 2 to 24 ° CZ min. It is.
  • the sintered body is cut into a shape suitable for mounting on a sputtering apparatus, and a mounting jig is attached thereto. do it.
  • mirror finishing may be performed to improve the average surface roughness of the target.
  • a general polishing method such as chemical polishing, mechanical polishing, chemical mechanical polishing, or the like can be used.
  • indium oxide powder and zinc oxide powder having specific properties By using raw material powders mainly composed of these powders, a high pressure of 6.9 g / cm 3 or higher is obtained under atmospheric pressure without passing through the calcining process that was generally performed before the molding process by press molding.
  • a sintered body for an IZO sputtering target having a density can be obtained.
  • a sintered body for an IZO sputtering target having a high density of 6.5 g / cm 3 or more can be obtained under pressure.
  • the IZO sputtering target produced by cutting the obtained sintered body has a high density and has an excellent characteristic that there is no defect called white spot (white spot unevenness) on the target surface.
  • the manufacturing method of the present invention can improve productivity and reduce manufacturing costs by reducing the number of processes while maintaining the characteristics of the IZO sputtering target.
  • the IZO sputtering target obtained by the production method of the present invention has the characteristics as described above, and therefore, a black precipitate (projection) called nodules on the surface of the target when the film is formed by the sputtering method. Suppresses the occurrence of Therefore, foreign matter does not enter the transparent conductive film due to nodules scattered due to abnormal discharge without causing a decrease in film formation speed, enabling stable sputtering and obtaining a transparent conductive film with excellent film characteristics. be able to.
  • Example 2 90 parts by weight of indium oxide powder having a median diameter of 1.5 ⁇ m and 10 parts by weight of zinc oxide powder having a median diameter of 0.1 l ⁇ m are mixed and ground for 24 hours using a wet bead mill. The median diameter after crushing was set to 0. The medium used was 1 mm zirconia beads. After mixing and grinding, the fine powder obtained by drying with a spray dryer was filled in a mold and press-molded at ltZcm 2 using a cold press and a cold isostatic press. The obtained molded product was placed in a firing furnace and sintered at 1280 ° C for 4 hours in an oxygen atmosphere with an oxygen concentration of 30%. The obtained sintered body for IZO sputtering target was a sintered body having a high density of 6.91 gZcm 3 even though there was no calcining step.
  • indium oxide powder having a specific surface area of 9 m 2 / g and 10 parts by weight of zinc oxide powder having a specific surface area of 12 m 2 / g were mixed and ground using a wet bead mill for 24 hours.
  • 1 mm ⁇ Zirco Your beads were used.
  • the fine powder obtained by drying with a spray dryer was filled in a mold and press-molded at lt / cm 2 using a cold press and a cold isostatic press.
  • the obtained molded product was placed in a firing furnace and sintered at 1230 ° C. for 24 hours in an oxygen atmosphere with an oxygen concentration of 25% under a pressure of 0.15 MPa.
  • the obtained sintered body for IZO sputtering target was a sintered body having a high density of 6.72 gZcm 3 even though there was no calcining step.
  • indium oxide powder having a median diameter of 1.5 ⁇ m and 10 parts by weight of zinc oxide powder having a median diameter of 0.1 l ⁇ m are mixed and ground for 24 hours using a wet bead mill.
  • the median diameter after crushing was set to 0.
  • the medium used was 1 mm zirconia beads.
  • the fine powder obtained by drying with a spray dryer was filled in a mold and press-molded at ltZcm 2 using a cold press and a cold isostatic press.
  • the obtained molded product was placed in a firing furnace and sintered at 1180 ° C. for 24 hours in an oxygen atmosphere with an oxygen concentration of 30% under a pressure of 0.12 MPa.
  • the obtained sintered body for IZO sputtering target was a sintered body having a high density of 6.65 gZcm 3 even though there was no calcination step.
  • Comparative Example 1 and Comparative Example 2 after mixing and pulverizing and before press molding, calcining was performed in an air atmosphere at 1200 ° C for 2 hours, and the obtained calcined powder was pulverized using a wet bead mill.
  • the resulting density of the sintered body respectively as compared with Comparative Examples 1 and 2 6. 73g / cm 3, 6 . 73g / cm 3 and high Natsuta.
  • the increase in density is due to calcination, but the productivity is still improved by adding a calcination process and a pulverization process on top of the density of Example 1 and Example 2. Declined.
  • Comparative Example 4 and Comparative Example 5 after mixing and pulverizing and before press molding, calcining was performed in an air atmosphere at 1200 ° C for 2 hours, and the obtained calcined powder was pulverized using a wet bead mill. Produced a sintered body for an IZO sputtering target in the same manner as in Comparative Example 1 and Comparative Example 2. The resulting density of the sintered body, respectively, as compared to Comparative Examples 4 and 5 6. 73g / cm 3, 6 . 73g / cm 3 and high Natsuta. The increase in density is due to calcination, and a sintered body with a higher density than in Example 3 and Example 4 was obtained, but the calcination step and the pulverization step were added. Productivity declined.
  • productivity can be improved and production cost can be reduced by reducing the number of steps while maintaining the characteristics as the IZO sputtering target. Moreover, productivity can be improved and manufacturing costs can be reduced by lowering the sintering temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Thermal Sciences (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

 IZOスパッタリングターゲットの製造において、IZOスパッタリングターゲットとしての特性を維持しつつ、工程を削減することにより生産性の向上及び製造コストの低減が可能となる製造方法を提供する。また、焼結温度を下げることにより生産性の向上及び製造コストの低減が可能となる製造方法を提供する。  特定の性状を有する酸化インジウム粉末と酸化亜鉛粉末とを、又はこれらの粉末を主成分とする原料粉末を混合粉砕して微粉末を得る混合粉砕工程、前記微粉末を成型して成型物を得る成型工程、前記成型物を酸素雰囲気中1250~1450°Cで、又は前記成型物を加圧下、酸素雰囲気中1100~1250°Cで焼結して焼結体を得る焼結工程を含むことを特徴とするIZOスパッタリングターゲットの製造方法である。

Description

明 細 書
IZOスパッタリングターゲットの製造方法
技術分野
[0001] 本発明は、酸化インジウム及び酸化亜鉛又はこれらの粉末を主成分とする IZOスパ ッタリングターゲットの製造方法に関する。
背景技術
[0002] 近年、表示装置の発展はめざましぐ液晶表示装置やエレクト口ルミネッセンス表示 装置、フィールドェミッションディスプレイなどが、パーソナルコンピュータやワードプロ セッサなどの事務機器や、工場における制御システム用に開発されている。そして、 これら表示装置は、いずれも表示素子を透明導電膜により挟み込んだサンドイッチ構 造を有している。
これら表示装置に使用される透明導電膜としては、インジウム錫酸ィ匕物(以下、 ITO と略称する。)膜が主流を占めている。これは、 ITO膜が、透明性や導電性に優れる ほ力、強酸によるエッチング力卩ェが可能であり、さらに基板との密着性にも優れてい る力 である。そして、この ITO膜は、一般にはスパッタリング法やイオンプレーティン グ法、蒸着法によって製膜されている。
[0003] しかし、 ITOは、上記の性質に関しては優れた性能を有する力 結晶性の金属酸 化物であることから、 ITOのターゲットを用いてスパッタリング法などにより製膜する際 、 ITOの結晶化が進行し、その結晶が成長すると、透明導電膜の表面に結晶粒が生 成し、膜の表面精度が低下するという問題がある。
さらに、この ITOが結晶性を有することから、エッチング力卩ェに際し、透明導電膜の 結晶粒の界面の部位力 エッチングされる。そうすると、透明導電膜のエッチング部 位に、この結晶粒子が取り残され、表示素子とした場合に導通による表示不良の原 因になるという問題もある。
[0004] そこで、 ITO以外の組合せによる、例えば酸ィ匕亜鉛と酸ィ匕錫を主原料としたもの、 酸ィ匕錫にアンチモンを添カ卩したもの、酸ィ匕亜鈴にアルミニウムを添カ卩したもの、あるい は酸化インジウムと酸ィ匕亜鉛を主成分とする IZO等が提案されている(例えば、特許 文献 1、特許文献 2参照)。中でも、酸化インジウムと酸化亜鉛を主成分とする IZOは 、 ITOに比べてエッチング速度が大きいという特徴を有することから、注目^^めてい る。
[0005] 一般に、 ITOスパッタリングターゲットは酸化インジウムおよび酸ィ匕亜鉛の粉末を混 合、粉砕、乾燥、仮焼、粉砕、造粒、成型、焼結という多くの工程を経て製造されてい る(例えば、特許文献 3参照)。このような多くの工程にわたるスパッタリングターゲット の製造は、生産性の低下を招き、コスト増になる要因となっている力 工程の削減な どの改善は、十分に検討されていない。 IZOスパッタリングターゲットの製造において も、前記の従来通りの製造工程が踏襲され、工程の削減などの製造面での改善がな されて 、な 、のが現状であり、生産性の向上及び製造コストの低減が望まれて 、る。
[0006] 特許文献 1 :特開平 8— 171824号公報
特許文献 2:特開 2000 - 256059号公報
特許文献 3:国際公開第 WO2003Z14409号
発明の開示
発明が解決しょうとする課題
[0007] 本発明は、このような状況の下で、 IZOスパッタリングターゲットの製造において、 IZ Oスパッタリングターゲットとしての特性を維持しつつ、工程を削減することにより生産 性の向上及び製造コストの低減が可能となる製造方法を提供することを目的とする。 また、焼結温度を低くすることにより生産性の向上及び製造コストの低減が可能となる 製造方法を提供することを目的とする。
課題を解決するための手段
[0008] 本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、特定の性状を 有する酸化インジウム粉末と酸化亜鉛粉末とを、又はこれらの粉末を主成分とする原 料粉末を用いることで、 IZOスパッタリングターゲットとしての特性を維持しつつ、製造 工程を削減することが可能となることを見出した。本発明は、力かる知見に基づいて 完成したものである。
[0009] すなわち、本発明は、
(1) 酸化インジウム粉末と酸化亜鉛粉末とを、又はこれらの粉末を主成分とする原 料粉末を混合粉砕して微粉末を得る混合粉砕工程、前記微粉末を成型して成型物 を得る成型工程、前記成型物を酸素雰囲気中 1250〜1450°Cで、又は前記成型物 を加圧下、酸素雰囲気中 1100〜 1250°Cで焼結して焼結体を得る焼結工程を含む ことを特徴とする IZOスパッタリングターゲットの製造方法であって、前記酸化インジゥ ム粉末の比表面積が 8〜: LOm2Zgであり、前記酸ィ匕亜鉛粉末の比表面積が 10m2Z g以上である IZOスパッタリングターゲットの製造方法、
(2) 酸化インジウム粉末と酸化亜鉛粉末とを、又はこれらの粉末を主成分とする原 料粉末を混合粉砕して微粉砕を得る混合粉砕工程、前記微粉末を成型して成型物 を得る成型工程、前記成型物を酸素雰囲気中 1250〜1450°Cで、又は前記成型物 を加圧下、酸素雰囲気中 1100〜 1250°Cで焼結して焼結体を得る焼結工程を含む ことを特徴とする IZOスパッタリングターゲットの製造方法であって、前記酸化インジゥ ム粉末の粒度分布のメジアン径が 1〜2 mであり、前記酸化亜鉛粉末の粒度分布 のメジアン径が 65nm〜0. 2 mであり、前記混合粉砕工程後の平均メジアン径が 0 . 5〜1 mである IZOスパッタリングターゲットの製造方法、
(3) 前記成型工程の前に、仮焼しないことを特徴とする上記(1)又は(2)に記載の I ZOスパッタリングターゲットの製造方法、及び
(4) 前記焼結体の密度が 6. 5gZcm3以上であることを特徴とする上記(1)〜(3)の いずれかに記載の IZOスパッタリングターゲットの製造方法、
を提供するものである。
発明の効果
[0010] 本発明によれば、 IZOスパッタリングターゲットの製造において、 IZOスパッタリン グターゲットとしての特性を維持しつつ、工程を削減することにより生産性の向上及 び製造コストの低減が可能となる製造方法を提供することができる。また、焼結温度 を低くすることにより生産性の向上及び製造コストの低減が可能となる製造方法を提 供することができる。
発明を実施するための最良の形態
[0011] [原料粉末]
本発明は、特定の性状を有する酸化インジウム粉末と酸化亜鉛粉末とを、又はこれ らの粉末を主成分とする原料粉末を用いることで、製造工程の削減を可能とするもの である。
本発明で原料として用いる酸化インジウム粉末及び酸化亜鉛粉末の比表面積は、 スパッタリングターゲット表面のホワイトスポット(白色斑点むら)と呼ばれる欠損の発 現を低減するために、各々 8〜: LOm2/g及び 10m2/g以上であることを要する。 また、本発明で原料として用いる酸化インジウム粉末及び酸化亜鉛粉末の粒度分 布のメジアン径は、ホワイトスポットの発現を低減するために、各々 1〜2 μ m及び 65 ηπ!〜 0. 2 /z mであることを要する。混合粉砕工程後の微粉末の平均メジアン径は、 微細にするほど良いが、 0. 5〜1 /ζ πιとなるように粉砕する。この範囲内であれば、高 密度の ΙΖΟスパッタリングターゲットを得ることができ、粉砕時の粉砕機などからの不 純物の混入量を低減させることが可能となる。なお、前記の原料となる粉末は、前記 比表面積及びメジアン径を、両方満足することが好ま 、。
[0012] 前記酸化インジウム粉末と酸化亜鉛粉末の使用量は、重量比で 75: 25〜95: 5が 好ましく、 80:20〜94 : 6カ^さらに好ましぃ。
本発明の製造に力かる ΙΖΟスパッタリングターゲットの原料は、酸化インジウム及び 酸化亜鉛を主成分とする限り、該ターゲットの特性を向上させる目的で、他の成分を 添カ卩してもよい。例えば、 ΙΖΟスパッタリングターゲットのバルタ電気抵抗値を低くする ために、 100〜2000ppm程度の錫、ジルコニウム、チタン、ハフニウム、ゲノレマニウ ム、セリウム等の正 4価の元素を添加することができる。
[0013] [製造方法]
IZOスパッタリングターゲットは、次のようにして製造される。酸化インジウム粉末と酸 化亜鉛の粉末との、又はこれらの粉末を主成分とする混合物を湿式粉砕した微粉末 を、スプレードライヤー等を用いて乾燥させた粒子をプレス成型し焼結した後、その 成型物の焼結体に切削加工を施すことにより製造することができる。
[0014] 混合粉砕工程とは、上記酸化インジウム粉末と酸化亜鉛粉末とを、又はこれらの粉 末を主成分とする原料粉末は、湿式混合粉砕機、例えば湿式ボールミルやビーズミ ル、超音波などを用いて、均一に混合'粉砕して微粉末を得る工程である。粉砕した 微粉末の粒径は、前記のように IZOスパッタリングターゲットの密度、及び粉砕時の 粉砕機など力ゝらの不純物の混入量低減の観点より調整する。
[0015] っ 、で、得られた微粉末を乾燥させる。微粉末の乾燥には、スプレードライヤー、一 般の粉末用乾燥機等を使用することができる。
乾燥した微粉末は、金型に充填して一般のコールドプレス機等を用いて所望の形 状にプレス成型する成型工程を経る。プレス成型は、一軸プレス、冷間静水圧プレス (CIP)等を用いてすることができる。
[0016] プレス成型して得られた成型物は、焼結工程を経て、 IZOスパッタリングターゲット 用焼結体となる。焼結は、酸素雰囲気下で行われる。酸素雰囲気とは、酸素濃度が 2 1%〜50%未満、好ましくは 21%〜40%未満であることをいう。この範囲内であれば 、効率よく焼結することが可能であり、焼成炉が焼損することもない。なお、空気雰囲 気でも焼結することもできる。また、焼結は、大気圧で行うこともできるし、焼結密度を 高くし、焼結炉を含めた焼結装置がコストアップしないようにする目的で、加圧下、大 気圧超〜 0. 5MPaで行うこともできる。
[0017] 大気圧下で焼結を行う場合は、焼結温度は 1250〜1400°C、好ましくは 1300〜1 400°Cであり、この範囲内にあれば、焼結密度は高くなり、製造コストを低減すること ができる。焼結時間は焼結密度を高くし、製造コストを低減するために、 2〜48時間、 好ましくは 4〜36時間であり、焼結時の好ましい昇温速度は 2〜24°CZ分である。 また、加圧下で焼結を行う場合は、焼結温度は 1100〜1250°C、好ましくは 1150 〜1250°Cと、大気圧下で焼結を行う場合よりも低い温度で焼結することが可能であ り、この範囲内にあれば、焼結密度は高くなり、製造コストを低減することができる。焼 結時間は焼結密度を高くし、製造コストを低減するために、 2〜48時間、好ましくは 1 0〜36時間であり、焼結時の好ま 、昇温速度は 2〜24°CZ分である。
[0018] 得られた成型物の焼結体からスパッタリングターゲットを製作するには、この焼結体 をスパッタリング装置への装着に適した形状に切削加工して、これに装着用治具の 取付をすればよい。この際、該ターゲットの平均表面粗さを向上させるために、鏡面 加工をしてもよい。この鏡面加工には、化学研磨、機械研磨、化学機械研磨等の一 般的な研磨方法を用いることができる。
[0019] このように、特定の性状を有する酸化インジウム粉末と酸化亜鉛粉末とを、又はこれ らの粉末を主成分とする原料粉末を用いることで、一般的にプレス成型による成型ェ 程前に行っていた仮焼工程を経ることなぐ大気圧下においては 6. 9g/cm3以上の 高密度を有する IZOスパッタリングターゲット用焼結体を得ることができる。また、加圧 下においては 6. 5g/cm3以上の高密度を有する IZOスパッタリングターゲット用焼 結体を得ることができる。得られた焼結体を切削加工して製造した IZOスパッタリング ターゲットは、高密度であり、かつ該ターゲット表面にはホワイトスポット(白色斑点む ら)と呼ばれる欠陥が存在しない優れた特性を有する。本発明の製造方法は、 IZOス ノ ッタリングターゲットの特性を維持しつつ、工程を削減することにより生産性の向上 及び製造コストの低減が図れるものである。
[0020] 本発明の製造方法により得られた IZOスパッタリングターゲットは、上記のような特 性を有することで、スパッタリング法により製膜する際にターゲット表面にノジュールと 呼ばれる黒色の析出物 (突起物)の発生を抑制する。従って、製膜速度の低下を招く ことなぐ異常放電で飛散したノジュールによる透明導電膜への異物混入を起こすこ ともないので、安定したスパッタを可能とし、また、膜特性に優れた透明伝導膜を得る ことができる。
実施例
[0021] 以下、本発明を実施例及び比較例によりさらに詳しく説明するが、本発明はこれら の実施例によって何ら限定されるものではない。
[0022] 実施例 1
比表面積が 9m2/gである酸化インジウム粉末 90重量部と比表面積が 12m2/gで ある酸化亜鉛粉末 10重量部とを、湿式ビーズミルを用いて 24時間混合粉砕した。媒 体には、 1mm φのジルコユアビーズを使用した。混合粉砕後、スプレードライヤーで 乾燥させて得た微粉末を、金型に充填してコールドプレス及び冷間等方圧プレスを 用いて ltZcm2でプレス成型した。得られた成型物を、焼成炉に装入し、酸素濃度 2 5%の酸素雰囲気中 1350°Cで 4時間焼結した。得られた IZOスパッタリングターゲッ ト用焼結体は、仮焼工程が無いにもかかわらず、 6. 92gZcm3と高密度の焼結体で めつに。
[0023] 実施例 2 メジアン径が 1. 5 μ mである酸化インジウム粉末 90重量部とメジアン径が 0. l ^ m である酸ィ匕亜鉛粉末 10重量部とを、湿式ビーズミルを用いて 24時間混合粉砕し、粉 砕後のメジアン径を 0. とした。媒体には、 1mm φのジルコ-ァビーズを使用し た。混合粉砕後、スプレードライヤーで乾燥させて得た微粉末を、金型に充填してコ 一ルドプレス及び冷間等方圧プレスを用いて ltZcm2でプレス成型した。得られた成 型物を、焼成炉に装入し、酸素濃度 30%の酸素雰囲気中 1280°Cで 4時間焼結した 。得られた IZOスパッタリングターゲット用焼結体は、仮焼工程が無いにもかかわらず 、 6. 91gZcm3と高密度の焼結体であった。
[0024] 実施例 3
比表面積が 9m2/gである酸化インジウム粉末 90重量部と比表面積が 12m2/gで ある酸化亜鉛粉末 10重量部とを、湿式ビーズミルを用いて 24時間混合粉砕した。媒 体には、 1mm φのジルコユアビーズを使用した。混合粉砕後、スプレードライヤーで 乾燥させて得た微粉末を、金型に充填してコールドプレス及び冷間等方圧プレスを 用いて lt/cm2でプレス成型した。得られたられた成型物を、焼成炉に装入し、 0. 1 5MPaの加圧下において酸素濃度 25%の酸素雰囲気中 1230°Cで 24時間焼結し た。得られた IZOスパッタリングターゲット用焼結体は、仮焼工程が無いにもかかわら ず、 6. 72gZcm3と高密度の焼結体であった。
[0025] 実施例 4
メジアン径が 1. 5 μ mである酸化インジウム粉末 90重量部とメジアン径が 0. l ^ m である酸ィ匕亜鉛粉末 10重量部とを、湿式ビーズミルを用いて 24時間混合粉砕し、粉 砕後のメジアン径を 0. とした。媒体には、 1mm φのジルコ-ァビーズを使用し た。混合粉砕後、スプレードライヤーで乾燥させて得た微粉末を、金型に充填してコ 一ルドプレス及び冷間等方圧プレスを用いて ltZcm2でプレス成型した。得られた成 型物を、焼成炉に装入し、 0. 12MPaの加圧下において酸素濃度 30%の酸素雰囲 気中 1180°Cで 24時間焼結した。得られた IZOスパッタリングターゲット用焼結体は、 仮焼工程が無いにもかかわらず、 6. 65gZcm3と高密度の焼結体であった。
[0026] 比較例 1
比表面積が 9m2/gである酸化インジウム粉末を 90重量部と比表面積が 3m2/gで ある酸化亜鉛粉末 10重量部とを、湿式ビーズミルを用いて 24時間混合粉砕した。媒 体には、 1mm φのジルコユアビーズを使用した。混合粉砕後、スプレードライヤーで 乾燥させて得た微粉末を、金型に充填してコールドプレス及び冷間等方圧プレスを 用いて lt/cm2でプレス成型した。得られた成型物を、焼成炉に装入し、酸素濃度 2 5%の酸素雰囲気中 1400°Cで 4時間焼結した。得られた IZOスパッタリングターゲッ ト用焼結体の密度は 6. 10g/cm3と低いものであった。
[0027] 比較例 2
メジアン径が 1. 5 mである酸化インジウム粉末 90重量部とメジアン径が 1. O ^ m である酸ィ匕亜鉛粉末 10重量部とを、湿式ビーズミルを用いて 24時間混合粉砕し、粉 砕後のメジアン径を 1. とした。媒体には、 1mm φのジルコ-ァビーズを使用し た。混合粉砕後、スプレードライヤーで乾燥させて得た微粉末を、金型に充填してコ 一ルドプレス及び冷間等方圧プレスを用いて ltZcm2でプレス成型した。得られた成 型物を、焼成炉に装入し、酸素濃度 25%の酸素雰囲気中 1400°Cで 10時間焼結し た。得られた IZOスパッタリングターゲット用焼結体の密度は 6. OOg/cm3と低いもの であった。
[0028] 比較例 3
比較例 1及び比較例 2において、混合粉砕後、かつプレス成型前に、空気雰囲気 中 1200°Cで仮焼を 2時間行 、、得られた仮焼粉末を湿式ビーズミルを用 、て粉砕 する以外は、比較例 1及び比較例 2と同様にして IZOスパッタリングターゲット用焼結 体を得た。得られた焼結体の密度は、比較例 1及び 2に比べて各々 6. 73g/cm3、 6 . 73g/cm3と高くなつた。前記密度の上昇は仮焼を行ったことによるものであるが、 それでも実施例 1及び実施例 2の密度には及ばなヽ上に、仮焼工程及び粉砕工程 が追加されたことで生産性は低下した。
[0029] 比較例 4
比表面積が 9m2/gである酸化インジウム粉末を 90重量部と比表面積が 3m2/gで ある酸化亜鉛粉末 10重量部とを、湿式ビーズミルを用いて 24時間混合粉砕した。媒 体には、 1mm φのジルコユアビーズを使用した。混合粉砕後、スプレードライヤーで 乾燥させて得た微粉末を、金型に充填してコールドプレス及び冷間等方圧プレスを 用いて ltZcm2でプレス成型した。得られた成型物を、焼成炉に装入し、空気雰囲 気中で 1400°C、大気圧で 24時間焼結した。得られた IZOスパッタリングターゲット用 焼結体の密度は 6. lOgZcm3と低いものであった。
[0030] 比較例 5
メジアン径が 1. 5 mである酸化インジウム粉末 90重量部とメジアン径が 1. O ^ m である酸ィ匕亜鉛粉末 10重量部とを、湿式ビーズミルを用いて 24時間混合粉砕し、粉 砕後のメジアン径を 1. とした。媒体には、 1mm φのジルコ-ァビーズを使用し た。混合粉砕後、スプレードライヤーで乾燥させて得た微粉末を、金型に充填してコ 一ルドプレス及び冷間等方圧プレスを用いて ltZcm2でプレス成型した。得られた成 型物を、焼成炉に装入し、空気雰囲気中で 1200°C、大気圧で 24時間焼結した。得 られた IZOスパッタリングターゲット用焼結体の密度は 6. OOg/cm3と低 、ものであつ た。
[0031] 比較例 6
比較例 4及び比較例 5において、混合粉砕後、かつプレス成型前に、空気雰囲気 中 1200°Cで仮焼を 2時間行 、、得られた仮焼粉末を湿式ビーズミルを用 、て粉砕 する以外は、比較例 1及び比較例 2と同様にして IZOスパッタリングターゲット用焼結 体を得た。得られた焼結体の密度は、比較例 4及び 5に比べて各々 6. 73g/cm3、 6 . 73g/cm3と高くなつた。前記密度の上昇は仮焼を行ったことによるものであり、実 施例 3及び実施例 4よりも高密度の焼結体を得られたが、仮焼工程及び粉砕工程が 追加されたことで生産性は低下した。
産業上の利用可能性
[0032] 本発明の IZOスパッタリングターゲットの製造は、 IZOスパッタリングターゲットとして の特性を維持しつつ、工程を削減することにより生産性の向上及び製造コストの低減 することができる。また、焼結温度を低くすることにより生産性の向上及び製造コスト の低減することができる。

Claims

請求の範囲
[1] 酸化インジウム粉末と酸化亜鉛粉末とを、又はこれらの粉末を主成分とする原料粉 末を混合粉砕して微粉末を得る混合粉砕工程、前記微粉末を成型して成型物を得 る成型工程、前記成型物を酸素雰囲気中 1250〜1450°Cで、又は前記成型物を加 圧下、酸素雰囲気中 1100〜1250°Cで焼結して焼結体を得る焼結工程を含むこと を特徴とする IZOスパッタリングターゲットの製造方法であって、前記酸化インジウム 粉末の比表面積が 8〜: LOm2/gであり、前記酸ィ匕亜鉛粉末の比表面積が 10m2/g 以上である IZOスパッタリングターゲットの製造方法。
[2] 酸化インジウム粉末と酸化亜鉛粉末とを、又はこれらの粉末を主成分とする原料粉 末を混合粉砕して微粉砕を得る混合粉砕工程、前記微粉末を成型して成型物を得 る成型工程、前記成型物を酸素雰囲気中 1250〜1450°Cで、又は前記成型物を加 圧下、酸素雰囲気中 1100〜1250°Cで焼結して焼結体を得る焼結工程を含むこと を特徴とする IZOスパッタリングターゲットの製造方法であって、前記酸化インジウム 粉末の粒度分布のメジアン径力^〜 2 mであり、前記酸化亜鉛粉末の粒度分布の メジアン径が 65nm〜0. であり、前記混合粉砕工程後の平均メジアン径が 0. 5〜1 μ mである IZOスパッタリングターゲットの製造方法。
[3] 前記成型工程の前に、仮焼しないことを特徴とする請求項 1又は 2に記載の IZOス ノッタリングターゲットの製造方法。
[4] 前記焼結体の密度が 6. 5gZcm3以上であることを特徴とする請求項 1〜3のいず れかに記載の IZOスパッタリングターゲットの製造方法。
PCT/JP2006/312825 2005-07-01 2006-06-27 Izoスパッタリングターゲットの製造方法 WO2007004473A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020077030586A KR101317080B1 (ko) 2005-07-01 2006-06-27 Izo 스퍼터링 타겟의 제조방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005193505A JP4755453B2 (ja) 2005-07-01 2005-07-01 Izoスパッタリングターゲットの製造方法
JP2005-193504 2005-07-01
JP2005193504A JP4758697B2 (ja) 2005-07-01 2005-07-01 Izoスパッタリングターゲットの製造方法
JP2005-193505 2005-07-01

Publications (1)

Publication Number Publication Date
WO2007004473A1 true WO2007004473A1 (ja) 2007-01-11

Family

ID=37604342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/312825 WO2007004473A1 (ja) 2005-07-01 2006-06-27 Izoスパッタリングターゲットの製造方法

Country Status (4)

Country Link
KR (1) KR101317080B1 (ja)
CN (1) CN104710163A (ja)
TW (1) TWI422699B (ja)
WO (1) WO2007004473A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102367568A (zh) * 2011-10-20 2012-03-07 宁波江丰电子材料有限公司 高纯钽靶材制备方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101434318B1 (ko) * 2013-01-22 2014-08-29 국립대학법인 울산과학기술대학교 산학협력단 질화물계 발광다이오드 제조방법
JP6078189B1 (ja) * 2016-03-31 2017-02-08 Jx金属株式会社 Izo焼結体スパッタリングターゲット及びその製造方法
CN113149612A (zh) * 2021-05-17 2021-07-23 先导薄膜材料(广东)有限公司 一种izo靶材的回收方法
CN113402261B (zh) * 2021-06-04 2022-06-21 长沙壹纳光电材料有限公司 一种izo靶材前驱体及其制备方法与应用
CN115745573A (zh) * 2022-10-31 2023-03-07 芜湖映日科技股份有限公司 一种细晶izo靶材制备方法
CN116768604A (zh) * 2023-06-16 2023-09-19 芜湖映日科技股份有限公司 一种高密度izto靶材的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570943A (ja) * 1991-09-11 1993-03-23 Mitsubishi Materials Corp スパツタリングによる透明導電性薄膜形成用高密度焼結ターゲツト材
JPH0971860A (ja) * 1995-06-28 1997-03-18 Idemitsu Kosan Co Ltd ターゲットおよびその製造方法
JP2002356767A (ja) * 2001-05-30 2002-12-13 Nikko Materials Co Ltd Izoスパッタリングターゲットの製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1281544C (zh) * 1998-08-31 2006-10-25 出光兴产株式会社 透明导电膜用靶、透明导电材料、透明导电玻璃及透明导电薄膜
KR100603128B1 (ko) * 1999-05-10 2006-07-20 닛코킨조쿠 가부시키가이샤 스퍼터링 타겟트
JP3628566B2 (ja) * 1999-11-09 2005-03-16 株式会社日鉱マテリアルズ スパッタリングターゲット及びその製造方法
KR100744017B1 (ko) * 2001-06-26 2007-07-30 미츠이 긴조쿠 고교 가부시키가이샤 고저항 투명 도전막용 스퍼터링 타겟 및 고저항 투명도전막의 제조방법
JP4234006B2 (ja) * 2001-07-17 2009-03-04 出光興産株式会社 スパッタリングターゲットおよび透明導電膜

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570943A (ja) * 1991-09-11 1993-03-23 Mitsubishi Materials Corp スパツタリングによる透明導電性薄膜形成用高密度焼結ターゲツト材
JPH0971860A (ja) * 1995-06-28 1997-03-18 Idemitsu Kosan Co Ltd ターゲットおよびその製造方法
JP2002356767A (ja) * 2001-05-30 2002-12-13 Nikko Materials Co Ltd Izoスパッタリングターゲットの製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102367568A (zh) * 2011-10-20 2012-03-07 宁波江丰电子材料有限公司 高纯钽靶材制备方法
CN102367568B (zh) * 2011-10-20 2014-04-23 宁波江丰电子材料有限公司 高纯钽靶材制备方法

Also Published As

Publication number Publication date
KR101317080B1 (ko) 2013-10-11
TWI422699B (zh) 2014-01-11
TW200714726A (en) 2007-04-16
CN104710163A (zh) 2015-06-17
KR20080031873A (ko) 2008-04-11

Similar Documents

Publication Publication Date Title
JP4324470B2 (ja) スパッタリングターゲット、透明導電膜およびそれらの製造法
JP4234006B2 (ja) スパッタリングターゲットおよび透明導電膜
JP4960244B2 (ja) 酸化物材料、及びスパッタリングターゲット
JP4758697B2 (ja) Izoスパッタリングターゲットの製造方法
TWI433823B (zh) 複合氧化物燒結體、複合氧化物燒結體之製造方法、濺鍍靶材及薄膜之製造方法
WO2007004473A1 (ja) Izoスパッタリングターゲットの製造方法
EP1705154B1 (en) Method for producing indium oxide powder
JP6078189B1 (ja) Izo焼結体スパッタリングターゲット及びその製造方法
KR20140041950A (ko) 아모르퍼스 복합 산화막, 결정질 복합 산화막, 아모르퍼스 복합 산화막의 제조 방법, 결정질 복합 산화막의 제조 방법 및 복합 산화물 소결체
JP3457969B2 (ja) 高密度ito焼結体及びスパッタリングターゲット
JP5472655B2 (ja) 蒸着用タブレットとその製造方法
JPH0754132A (ja) Ito焼結体及びスパッタリングターゲット
JP5149262B2 (ja) 酸化インジウム−酸化亜鉛系焼結体ターゲット及びその製造法
JP2002356767A (ja) Izoスパッタリングターゲットの製造方法
JP4755453B2 (ja) Izoスパッタリングターゲットの製造方法
JP2005126766A (ja) 酸化インジウム系ターゲットおよびその製造方法
JPH02297812A (ja) 酸化物焼結体及びその製造方法並びにそれを用いたターゲツト
KR20130007676A (ko) 소결용 Sb-Te 계 합금 분말 및 그 분말의 제조 방법 그리고 소결체 타겟
WO2011061916A1 (ja) Ito焼結体の製造方法及びitoスパッタリングターゲットの製造方法
JPH0729770B2 (ja) 酸化物粉末及びその製造方法
JP2004143484A (ja) 高濃度酸化スズitoターゲットとその製造方法
JP3496239B2 (ja) Ito焼結体およびスパッタリングターゲット
KR20100079321A (ko) 알루미늄을 포함하는 비정질 산화물막용 금속산화물 타겟 및 그 제조방법
JP5890671B2 (ja) Itoスパッタリングターゲットの製造方法
JP2013067538A (ja) 酸化物焼結体および酸化物透明導電膜

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680021411.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077030586

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06767442

Country of ref document: EP

Kind code of ref document: A1