WO2007001012A1 - フラットダイ、並びに、積層樹脂フィルム又はシートの製造方法 - Google Patents

フラットダイ、並びに、積層樹脂フィルム又はシートの製造方法 Download PDF

Info

Publication number
WO2007001012A1
WO2007001012A1 PCT/JP2006/312865 JP2006312865W WO2007001012A1 WO 2007001012 A1 WO2007001012 A1 WO 2007001012A1 JP 2006312865 W JP2006312865 W JP 2006312865W WO 2007001012 A1 WO2007001012 A1 WO 2007001012A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
viscosity
width direction
flat die
hold
Prior art date
Application number
PCT/JP2006/312865
Other languages
English (en)
French (fr)
Inventor
Kenichi Shirai
Yuji Yamashita
Original Assignee
Sekisui Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005232471A external-priority patent/JP2007045020A/ja
Application filed by Sekisui Chemical Co., Ltd. filed Critical Sekisui Chemical Co., Ltd.
Priority to CN200680024094XA priority Critical patent/CN101213064B/zh
Priority to US11/921,576 priority patent/US20090020909A1/en
Publication of WO2007001012A1 publication Critical patent/WO2007001012A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/305Extrusion nozzles or dies having a wide opening, e.g. for forming sheets
    • B29C48/307Extrusion nozzles or dies having a wide opening, e.g. for forming sheets specially adapted for bringing together components, e.g. melts within the die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/305Extrusion nozzles or dies having a wide opening, e.g. for forming sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2009/00Layered products

Definitions

  • the present invention relates to a flat die, and also relates to a method for producing a laminated resin film or sheet in which two or more kinds of resins are laminated using this flat die.
  • a flat die (T die) is used because the lip opening of the die needs to be elongated and shaped.
  • This die is provided with a resin inflow portion and a hold, which is longer in the width direction than the resin inflow portion and is connected to the resin inflow portion. Then, the resin supplied also with the inflow force of the resin flows so as to expand in the width direction within the hold and then is discharged from the lip opening.
  • two or more types of resin are supplied in a layered state at the resin inflow portion, and are expanded in the width direction while maintaining the layered state in the hold. This is a method of discharging in a laminated state from the lip opening.
  • the multi-hold system is a method in which a resin inflow portion and a hold are provided for each resin, and the layers are stacked in front of the lip opening in a state where the resin spreads in the width direction.
  • a resin with low viscosity occupies the end portion or wraps around the back side of the resin with high viscosity.
  • the end portion in the width direction of the formed laminated sheet is cut, the central portion is used as a product, and the end portion is reused.
  • the low-viscosity resin is an adhesive resin, such as a pressure-sensitive adhesive sheet, there is little merit in collecting and reusing it. The smaller the ratio of viscous rosin, the better.
  • Patent Documents 1 and 2 and the like a technique for making the thickness distribution uniform is disclosed in the case of coagulating fats having greatly different viscosities.
  • a bulging portion is provided on the upstream side of the malleous oil inflow portion side, and a low viscosity layer is laminated on the bulging portion side.
  • This is a method of supplying to the hold from the oil inflow portion. Then, the flow velocity distribution within the hold is controlled to make the thickness distribution uniform.
  • Patent Document 1 Japanese Patent Laid-Open No. 2000-289085
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-94506
  • an object of the present invention is to provide a flat die capable of achieving a thickness distribution even when the different types of resin having different viscosities at the time of molding are laminated.
  • the flat die is a generic term for a coat hanger die, a fish tail die, and a straight-mould die.
  • a flat die for solving the above-described problems has a resin inflow portion, a merge connected to the resin inflow portion, and a lip opening, and the merge is orthogonal to each other.
  • This is a space having a width direction, a thickness direction, and a direction in which the resin travels, and the length of the manifold in the width direction flows in from the resin inflow part longer than the width in the width direction of the resin inflow part.
  • the resin that has entered the hold flows so as to expand in the width direction within the hold, and then is discharged from the lip opening.
  • each resin flows into the mold so that the spread of the resin in the width direction of the other layer changes with respect to the resin in one adjacent layer. It is a flat die characterized by this.
  • each resin flows into the resin so that the spread in the width direction changes with each resin.
  • the thickness can be adjusted by 1 mm when manufacturing a laminated resin film or sheet in which different viscosity resins are laminated.
  • the state in which different types of resin are laminated in the thickness direction may be three or more types only when two types of resin are laminated.
  • a flat die for solving the above problems has a resin inflow portion, a hold, an overhang space, and a lip opening, and the hold is longer in the width direction than the resin inflow portion. Therefore, the overhang space is a space that is located in the vicinity of the connection portion of the resin inflow portion and the resin inflow portion of the hold and projects in the thickness direction perpendicular to the width direction. The resin that has flowed in from the resin inflow portion and the overhanging space enters the hold, flows so as to expand in the width direction in the hold, and can be discharged from the lip opening.
  • the length in the width direction of the overhang space on the side of the hold of the flat die is set to be longer than the length in the width direction of the overhang space on the side of the resin inflow portion. This makes it easy to stabilize the flow from the overhang space to the hold.
  • an inclined surface can be provided so that the overhang is smaller toward the lip opening side.
  • the flow can be made smooth.
  • the projection surface in the thickness direction of the overhanging space can be prevented from forming a corner on the lip opening side, which makes the flow to the overhanging space force hold less biased. Easy to make the thickness uniform in the width direction.
  • a plurality of types of resin are laminated in the width direction from the resin inflow portion and the overhanging space.
  • the resin can be molded so as to be on the overhanging space side, and in this manufacturing method, the resin can be molded while limiting the development in the width direction of the resin having low viscosity.
  • a flat die for solving the above problems has a resin inflow portion, a marl connected to the resin inflow portion, and a lip opening, and the mars are mutually connected.
  • the inflow direction of the inflow portion to the manifold is in a relationship intersecting the above-mentioned direction of the grease, and the inflow from the inflow portion enters the hold, and in the width direction within the hold. After flowing in an enlarged manner, it can be discharged from the lip opening.
  • the shape of the resin inflow portion is not limited as long as the inflow direction of the resin inflow portion to the hold intersects with the direction of travel of the resin.
  • the route force to the resin inflow locator hold in which the molten resin flows in the resin inflow portion may be linear or partially or entirely curved or bent.
  • the cross-sectional shape in the direction perpendicular to the direction of the flow of the molten resin flowing in the resin inflow part may be the same shape or different in the entire region of the resin inflow part.
  • the inflow direction of the resin inflow portion to the hold is in a relationship intersecting with the direction of travel of the resin, so that the outside flowed from the resin inflow portion in the laminated state.
  • the resin on the side can be expanded in the width direction with respect to the inner resin, and the desired thickness distribution can be obtained immediately.
  • the resin inflow part of the flat die can be a columnar space, and the longitudinal direction of the resin inflow part can be the inflow direction to the hold of the resin inflow part.
  • the production is easy, and it is easy to adjust the inflow direction to the hold! /.
  • the cross-sectional shape in the direction perpendicular to the direction of the flow of the molten resin flowing inside the resin inflow part can be substantially the same in the entire region of the resin inflow part. Therefore, since the flow is hardly disturbed when the molten resin flows in the laminated state, the thickness distribution of the molded product can be stabilized when the laminated resin film or sheet is molded.
  • cross-sectional shape is not completely the same in a part of the oil inflow portion, and even if it has a shape, small irregularities are formed in the oil inflow portion or there are some sizes. Also good.
  • a method for producing a laminated resin film or sheet performed using the flat die Then, a method for producing a laminated resin film or sheet performed using the flat die Then, a low-viscosity resin at a molding temperature can be molded by flowing a lip opening side force, so that a laminated resin film or sheet can be produced. It is possible to mold while restricting the development.
  • a flat die for solving the above-described problems has a plurality of resin inflow portions, a mould connected to each of the resin inflow portions, and a lip opening. Is a space having a width direction, a thickness direction, and a direction of travel of the resin that are orthogonal to each other, and the length of the manifold in the width direction is longer than the length of the resin inflow portion in the width direction, The positional relationship of the connection portions of the plurality of resin inflow portions to the hold is the same position in the width direction and is shifted in the traveling direction. After flowing so as to expand in the width direction in the manifold, it can be discharged from the lip opening.
  • the positional relationship of the connection portions of the plurality of resin inflow portions to the hold is the same position in the width direction and is shifted in the traveling direction.
  • the degree of development in the width direction of the molten resin flowing in from the part can be changed, and the desired thickness distribution can be obtained.
  • the method for producing a laminated resin film or sheet performed using this flat die different types of resin are flowed into each resin inflow part, and the viscosity at the molding temperature is low.
  • the low resin inflow can be made from the resin inflow portion that is connected to the hold on the side of the lip opening, and can be formed while restricting the development in the width direction of the resin having low viscosity.
  • the ratio of the low-viscosity resin to the entirety of the low-viscosity resin is located at other positions near both ends of the laminated resin film or sheet immediately after being discharged from the lip opening. Smaller or less viscous resin may be absent. Accordingly, when the end portion of the resin after molding is cut and the end portion is recycled, the ratio of the resin having high viscosity becomes high, which is convenient for recycling.
  • a sheet for laminating resin having greatly different viscosities during molding is formed. Even in the case of forming, the feed block method can be used, and the thickness distribution can be aimed at even when the difference in viscosity is large.
  • FIG. 1 is a perspective view showing an internal space of a flat die in a first embodiment of the present invention.
  • FIG. 2 is an enlarged perspective view of the vicinity of an overhang space of the flat die shown in FIG.
  • FIG. 3 Cross-sectional view showing low-viscosity and high-viscosity resin in the flat die, (a) is AA cross-sectional view, (b) is BB cross-sectional view, (c) is CC cross-sectional view Figure, (d) is a cross section of D-D, (e) is E
  • -E is a cross-sectional view.
  • (f) is an enlarged sectional view of the vicinity of the end of (e).
  • FIG. 4 is a perspective view showing a part of the internal space of the flat die in the second embodiment of the present invention.
  • FIG. 5 is a perspective view showing a part of the internal space of the flat die in the third embodiment of the present invention.
  • FIG. 6 is a view showing a part of the internal space of the flat die shown in FIG. 5, (a) is a front view, and (b) is a side view.
  • FIG. 7 is a perspective view showing an internal space of a modification of the flat die in the embodiment of the present invention.
  • FIG. 8 is a perspective view showing an internal space of a modification of the flat die in the embodiment of the present invention.
  • FIG. 9 is a perspective view showing an internal space of a modification of the flat die in the embodiment of the present invention.
  • FIG. 10 is a perspective view showing an internal space of a modification of the flat die in the embodiment of the present invention.
  • FIG. 11 is a perspective view showing an internal space of a modification of the flat die in the embodiment of the present invention.
  • FIG. 12 is a perspective view showing an internal space of a modification of the flat die in the embodiment of the present invention.
  • FIG. 13 is a perspective view showing an internal space of a modification of the flat die in the embodiment of the present invention. It is.
  • FIG. 14 is a perspective view showing an internal space of a modification of the flat die in the embodiment of the present invention.
  • FIG. 15 is a perspective view showing an internal space of a modification of the flat die in the embodiment of the present invention.
  • FIG. 16 is a perspective view showing an internal space of a modification of the flat die in the embodiment of the present invention.
  • FIG. 17 is a perspective view showing an internal space of a modification of the flat die in the embodiment of the present invention.
  • FIG. 18 is a perspective view showing an internal space of a modification of the flat die in the embodiment of the present invention.
  • FIG. 19 is a perspective view showing an internal space of a modification of the flat die in the embodiment of the present invention.
  • FIG. 20 is a perspective view showing an internal space of a modification of the flat die in the embodiment of the present invention.
  • FIG. 21 is a perspective view showing an internal space of a modification of the flat die in the embodiment of the present invention.
  • FIG. 22 is a perspective view showing an internal space of a modification of the flat die in the embodiment of the present invention.
  • FIG. 23 is a perspective view showing an internal space of a modification of the flat die in the embodiment of the present invention.
  • FIG. 24 is a perspective view showing the internal space of the flat die in the fourth embodiment of the present invention.
  • FIG. 25 is a view of the flat die shown in FIG. 24, (a) is an enlarged perspective view of the vicinity of the oil inflow portion, and (b) is an EE cross-sectional view.
  • FIG. 27 is a perspective view showing an internal space of a flat die according to a modification of the fourth embodiment of the present invention.
  • FIG. 28 is a view of the flat die shown in FIG. 27, (a) is an enlarged perspective view of the vicinity of the oil inflow portion, and (b) is an FF cross-sectional view.
  • FIG. 29 is a perspective view showing an internal space of a flat die in a fifth embodiment of the present invention.
  • FIG. 30 is a view of the flat die shown in FIG. 29, (a) is an enlarged perspective view of the vicinity of the oil inflow portion, and (b) is a GG cross-sectional view.
  • FIG. 31 is a perspective view showing a part of the internal space of a flat die according to a modification of the fifth embodiment of the present invention.
  • FIG. 32 is a graph showing the thickness distribution of the low-viscosity resin in Example 4.
  • FIG. 33 is a graph showing the thickness distribution of a low-viscosity resin in Comparative Example 4.
  • FIG. 1 The internal structure of the flat die 1 in the first embodiment of the present invention is shown in FIG.
  • the flat die 1 is provided with a resin inlet 10, an internal space 11, and a lip opening 12.
  • the flat die 1 of the present invention is provided with at least two molds in the same manner as a normal one, and these molds are used together.
  • the resin inlet 10 is connected to a feed block (not shown), and is a portion into which the molten resin 90 that has become a stacked state in the feed block enters.
  • the molten resin 90 entering from the resin inlet 10 passes through the internal space 11 and is extruded from the opening-like lip opening 12 as a laminated sheet 91 and discharged.
  • the internal space 11 is provided with a resin inflow portion 20, a maroonoled 21, an overhanging space 22, a preland portion 23, and a lip land portion 25, and has a symmetrical shape.
  • the resin inflow part 20 is a square columnar space, and the resin inflow port 10 is arranged on one end side, and the other end part is connected to the hold 21.
  • the position where the resin inflow portion 20 is connected is near the center in the width direction W of the hold 21.
  • the hold 21 is a space longer in the width direction W than the resin inflow portion 20, and the length of the hold 21 in the width direction W is the length of the lip land portion 25 and the width direction W of the lip opening 12 in the width direction W. Sato is almost the same length.
  • an overhanging space 22 is provided that is located from the resin inflow part 20 to the vicinity of the connection part of the resin inflow part 20 of the hold 21.
  • the overhanging space 22 is a space overhanging in the thickness direction T (direction orthogonal to the width direction), and is provided on only one side in the flat die 1 of the present embodiment.
  • the thickness direction T of the internal space 11 is thicker than the other portions, and the upper thickness direction T of the manifold 21 is thick only in the vicinity of the center.
  • the projection surface in the thickness direction T of the overhang space 22 of the present embodiment is rectangular, and has the same thickness throughout the overhang space 22.
  • the length of the overhanging space 22 in the width direction W is the same as that of the resin inflow portion 20.
  • the length of the overhanging space 22 in the direction of travel of the resin S (the direction perpendicular to the width direction W and the thickness direction) is longer than the length of the resin inflow part 20 and the length of the resin inflow part 20 and the manifold. Less than the total length of
  • the length of the overhang space 22 in the width direction W on the side of the malle 21 is the width of the resin inflow portion 20. If the length is shorter than the length in the direction W, the flow flows toward the side of the malle 21 of the overhanging space 22, so it is desirable that the length is longer than the length in the width direction W of the resin inflow portion 20. In addition, the length force in the width direction W of the overhang space 22 on the manifold 21 side is too long than the length in the width direction W of the oil inflow portion 20. The fat 90a flows in the width direction W, and it becomes difficult to restrict the flow in the width direction W of the low-viscosity resin 90a.
  • the maximum value of the length 21 in the width direction W on the side of the hold 21 of the overhang space 22 be 50% or less with respect to the overall length in the width direction W of the hold 21. More preferably, it is 20% or less, most preferably 10% or less.
  • the length of the grease traveling direction S on the side of the hold 21 of the overhanging space 22 is shorter than the length of the grease 21 in the grease traveling direction S.
  • a preferable shape of the overhanging space 22 is as follows.
  • the thickness al (length in the thickness direction T) of the overhang space 22 is 0.5 mm or more and 20 mm or less, more preferably 1 mm or more and 10 mm or less.
  • the width a2 of the overhanging space 22 is not less than the length of the width a3 of the resin inlet 10 and not more than the length of the width a3 + 20 mm.
  • the length a4 of the lower portion 35 (the portion on the side of the hold 21) of the overhanging space 22 is not more than the length a5 of the hold 21.
  • the projection surface in the thickness direction T of the overhanging space 22 has a shape other than a rectangular shape, and the width a2 of the overhanging space 22 and the length a4 of the lower part 35 can be changed depending on the location. Further, the thickness al of the overhanging space 22 may be changed depending on the location.
  • the side 33 formed in the overhanging space 22 can be formed in an R shape or provided with an inclination to improve the flow of the resin. In addition, when providing an inclination, it is desirable to make the length of the overhanging space 22 in the thickness direction T shorter as it goes downward.
  • the molten resin 90 flows in the internal space 11, but basically proceeds in the resin travel direction S.
  • the resin inflow part 20 faces the resin travel direction S.
  • the molten resin 90 then enters the hold 21 from the resin inflow part 20 and the overhanging space 22.
  • the molten resin 90 that has entered from the resin inlet 10 spreads in the width direction W, and in the direction of the flow of the molten resin 90 in the hold 21, there is a width Direction W (Horizontal (Cutting direction) component.
  • the molten resin 90 that has passed through the mould 21 passes through the pre-land portion 23 and the lip land portion 25, and is pushed out of the lip opening 12 and discharged.
  • the pre-land part 23 is a part provided with a region that is harder to pass than other parts, and the pressure distribution in the width direction W is adjusted to stabilize the flow of the molten resin 90 after the pre-land part 23. That's right.
  • molten molten resin 90 is put into the internal space 11 from the resin inlet 10. At this time, as shown in FIG. 1, a low-viscosity resin 90a and a high-viscosity resin 90b are laminated. The lamination of the molten resin 90 is performed in the thickness direction T so that the low-viscosity resin 90a is on the extending space 22 side.
  • the low-viscosity resin 90a has a lower viscosity at the molding temperature than the high-viscosity resin 90b. As a means for comparing this, zero shear viscosity can be used.
  • fat is a non-Eutonian fluid whose viscosity changes depending on the shear rate.
  • Zero shear viscosity is the viscosity when the shear rate is O (lZs), which is assumed from the viscosity near the low shear rate. Normally, in the case of fat, the viscosity is almost constant when the shear rate is low (less than 0. l (lZs)). By measuring the viscosity at such a low shear rate, Can be confirmed.
  • any resin may be used.
  • the following can be used.
  • Ultra-low density polyethylene low density polyethylene, linear low density polyethylene, medium density polyethylene, high density polyethylene, ethylene monochloride butyl copolymer, polybutyl alcohol, ethylene monoacetate butyl copolymer, ethylene monoethyl acrylate, polyacetic acid butyl
  • thermoplastic resins such as polypropylene, polybutene, polycarbonate, polybutylene terephthalate, polyethylene terephthalate, polystyrene, maleimide, polysulfone, polyether sulfone, polyvinylidene fluoride, poly (meth) acrylate, cellulose ester, and polynorbornene.
  • the above-mentioned thermoplastic resin has a plasticizer and UV absorption. Additives such as agents may be added.
  • the laminated molten resin 90 from the resin inlet 10 passes through the resin inflow part 20 and the overhanging space 22 and enters the hold 21.
  • FIG. 3 (a) shows the state of the molten resin 90 in the vicinity of the resin inflow part 20, which is the same as the laminated state entered at the resin inflow port 10.
  • molten resin 90 flows to the side of the hold 21.
  • molten resin 90 flows in the entire width direction W, but as shown in Fig. 3 (b), the low-viscosity resin 90a mainly flows through the overhanging space 22. Since it is difficult for the viscous resin 90b to proceed in the width direction W, the thickness distribution of the low-viscosity resin 90a can be adjusted.
  • the low-viscosity resin 90a that mainly flows through the overhanging space 22 is difficult to flow because the thickness direction T becomes narrow in order to proceed in the width direction W, so the flow of the low-viscosity resin 90a that is relatively easy to flow is adjusted. be able to.
  • the shape of the overhang space 22 can be changed to make it easy to flow from the overhang space 22 to the mall holder 21, and to provide a portion and a non-flowing portion. Since the flow direction in the width direction W of 90a can be adjusted, the thickness distribution can be targeted.
  • the low-viscosity resin 90a has better fluidity than the high-viscosity resin 90b. As shown, the low-viscosity resin 90a gradually advances in the width direction W. Then, proceed to the vicinity of the end portion of the hold 21 on the preland portion 23 side (the exit of the hold 21). In this state, as shown in Fig. 3 (d), the range in the width direction W of the low-viscosity resin 90a is the range of the width direction W of the low-viscosity resin 90a across the entire width direction W of the malle 21. The inner side of the two-hold 21 is in the width direction W. Further, the width in the thickness direction T of the low-viscosity resin 90a is almost uniform except for the vicinity of the end. The other parts are occupied by highly viscous resin 90b.
  • the molten resin 90 that has passed through the hold 21 is pushed out of the lip opening 12 from the preland 23 through the lipland 25. During this time, the melted resin 90 has no flow in the width direction W / so that it flows in a state where the thickness ratio of the low-viscosity resin 90a and the high-viscosity resin 90b is maintained, as shown in FIG. The state is as shown in (f).
  • both ends in the width direction W of the low-viscosity resin 90a are inside of both ends in the width direction W of the high-viscosity resin 90b, and the width in the thickness direction T of the low-viscosity resin 90a is an end portion. The situation is almost the same except for the vicinity.
  • the winding of the laminated sheet 91 is not limited.
  • the laminated sheet 91 that also has a lip opening 12 force may be cooled with a chill roll while being rolled, or an air knife or the like.
  • the resin may be pressed against the chill roll using a touch roll or electrostatic piling. It may be immersed in a water tank and cooled. In any case, it is possible to adopt a method in which the layer ratio distribution as it comes out of the flat die 1 is maintained as it is.
  • the flat die 1 of the present embodiment is used, the overhanging space 22 side is laminated so as to be a low-viscosity resin 90a, and the molten resin 90 is supplied from the resin inlet 10.
  • the laminated sheet 91 can be molded so that the thickness direction T of the low-viscosity resin 90a is in the target state.
  • the thickness distribution of the low-viscosity resin 90a in the laminated sheet 91 is the viscosity of the low-viscosity resin 90a and the high-viscosity resin 90b used, the thickness ratio between the low-viscosity resin 90a and the high-viscosity resin 90b, and the tension. It varies depending on the shape of the projecting space 22 (length in the width direction W, thickness in the thickness direction T, length of the grease traveling direction S, shape of the projection surface in the thickness direction T of the overhanging space), etc. By changing the shape of the space 22, it can be changed to a desired thickness distribution.
  • the difference in viscosity between the low-viscosity coagulant 90a and the high-viscosity coagulant 90b is small.
  • the thickness al of the overhanging space 22 is reduced (approximately 0.1 mm to 5 mm), and the viscosity difference is large. In this case, the thickness al of the overhanging space 22 is increased.
  • the laminated sheet 91 is cooled to complete the molding, but if necessary, the end portion is cut so that only the portions where the low-viscosity resin 90a and the high-viscosity resin 90b are uniform in thickness are removed. It can be left behind. In this case, since the low-viscosity resin 90a having a high proportion of the high-viscosity resin 90b is hardly mixed in the cut end part, the cut-off end part of the high-viscosity resin 90a has a high viscosity. Recyclable for easy use as a synthetic resin 90b.
  • the flat die 2 in the second embodiment of the present invention is shown in FIG. Unlike the flat die 1, the flat die 2 has a semicircular lower part 35 below the overhanging space 22 (opposite to the oil inlet 11), and the diameter of the flat die 2 is that of the oil inflow part 20. It is almost the same as the width, and its edge is curved. The shape of the entire edge of the overhanging space 22 is “U” -shaped, and the shape of the other portions is the same as that of the flat die 1.
  • the projection surface in the thickness direction T of the overhang space 22 has a shape with no corners on the lip opening 12 side (below the overhang space 22).
  • the low-viscosity resin 90a tends to flow into the hold 21 because the partial force at the corner is stronger than the other parts.
  • the laminated sheet 91 is likely to have a locally thick portion having a low-viscosity resin 90a. However, this is not likely to occur with the flat die 2, which is convenient when the thickness is uniform.
  • the upper shape of the overhang space 22 of the flat die 3 is the same, but the lower portion 35 on the lower side is semicircular, and its diameter is larger than the width of the oil inflow portion 20, and its edge is curved. It has become.
  • the lower portion 35 is a portion located on the side of the hold 21 and the width of the lower portion 35 is longer than the width of the upper portion 34 on the side of the resin inflow portion 20.
  • the projection surface in the thickness direction T of the overhanging space 22 has a shape with no corners on the lip opening 12 side.
  • the overhang becomes smaller toward the lip opening 12 side, and the length in the thickness direction T gradually becomes smaller, so that an inclined surface 30 is formed.
  • the side 33 extending in the flow direction S of the resin outside the thickness direction T of the overhang space 22 has a curved surface shape (R shape).
  • the molding is performed using the flat die 3, as in the case of the flat die 2. Therefore, it is difficult to make a thick portion of low-viscosity resin 90a locally.
  • the length of the edge 31 of the overhanging space 22 is increased by connecting the length 21 in the width direction W of the lower portion 35 of the overhanging space 22 of the flat die 3 with the length of the malle 21 and the thickness direction T. can do. Therefore, it is easy to stabilize the flow when the low-viscosity resin 90a flows from the lower part 35 of the overhanging space 22 to the hold 21.
  • FIGS. 7 to 23 can also be used.
  • FIGS. 7 to 23 only one of the symmetrical shapes is shown, and the other side is not shown.
  • the shape other than the overhanging space 22 is the same shape as the flat die 1 described above unless otherwise specified.
  • the entire lower portion 35 of the overhanging space 22 has a shape close to a circle, and the diameter thereof is slightly larger than the width of the resin inflow portion 20.
  • the flat die 5 shown in FIG. 8 has a shape in which a protruding portion 36 is provided so as to extend in the width direction W in the protruding space 22 of the flat die 1 shown in FIGS.
  • the edges of the protrusions 36 are generally curved and the corners are formed!
  • the overhanging space 22 of the flat die 6 shown in FIG. 9 is the same as the flat die 5 shown in FIG. It is located below the tip 36a (the lip opening 12 side).
  • the flat die 7 shown in FIG. 10 has a shape in which a protruding portion 36 is provided in the protruding space 22 of the flat die 1 shown in FIGS. 1 and 2 so as to extend in the width direction W.
  • the projecting portion 36 has a curved edge near the tip 36a, and an inclined portion 37 is provided at the other portion.
  • the inclined portion 37 is located above the tip 36a (the resin inlet 10 side).
  • the flat die 8 shown in FIG. 11 has an inclined surface 30 formed in the vicinity of the lower end portion of the overhang space 22 of the flat die 5 shown in FIG.
  • the flat die 9 shown in FIG. 12 has an inclined surface 30 formed in the vicinity of the lower end portion of the overhang space 22 of the flat die 5 shown in FIG.
  • a flat die 51 shown in FIG. 13 has a shape in which a protruding portion 36 is provided in the overhanging space 22 of the flat die 1 shown in FIGS.
  • the protruding portion 36 has a shape extending from the vicinity of the lower end portion of the overhanging space 22 in the width direction W, and is directed toward the distal end side in the width direction W, so that the grease traveling direction S is increased.
  • the length and the thickness of the inclined portion gradually become smaller, and the inclined portion 38 is formed.
  • the flat die 52 shown in Fig. 14 is provided with an inclined portion 38 in the protruding space 22 of the flat die 2 shown in Fig. 4, and the protruding space 22 of the flat die 52 is formed in the thickness direction.
  • the length in the width direction W becomes shorter toward the outside of T.
  • the lower part 35 of the overhang space 22 is wide as a whole, and the projection surface in the thickness direction T of the lower part 35 is rectangular.
  • a flat die 55 shown in FIG. 17 has an inclined surface 30 formed at the lower end of the overhang space 22 of the flat die 1 shown in FIGS.
  • a flat die 56 shown in FIG. 18 has a shape in which a protruding portion 36 protruding in the width direction is provided in the overhanging space 22 of the flat die 1 shown in FIGS.
  • the protruding portion 36 has a shape extending in the width direction W from the vicinity of the lower end portion of the overhanging space 22, and the length of the resin traveling direction S gradually decreases toward the distal end side in the width direction W. Yes.
  • a flat die 57 shown in FIG. 19 is formed by forming an inclined surface 30 at the lower end of the overhang space 22 of the flat die 2 shown in FIG.
  • the flat die 58 shown in FIG. 20 is formed by increasing the length W in the width direction W of the oil inflow portion 20 and the overhanging space 22 of the flat die 1 shown in FIG. 1 and FIG. 30 is provided.
  • a flat die 59 shown in FIG. 21 is obtained by providing an R portion 41 which is a curved (R-shaped) portion in the protruding space 22 of the flat die 2 shown in FIG.
  • the dotted line in the figure is drawn for convenience in order to display the R part 41.
  • a flat die 60 shown in FIG. 22 has a shape in which a protruding portion 36 is provided in the overhanging space 22 of the flat die 1 shown in FIGS.
  • the protruding portion 36 has a shape extending from the overhanging space 22 in the width direction W, and gradually decreases in thickness toward the distal end side in the width direction W, so that a curved inclined surface portion 38 is formed.
  • An R portion 44 is formed at the end of the protruding portion 36 so as to connect the step between the overhanging space 22 and the malle 21 and the surface is smooth.
  • the molding method described above can also be applied to the three or more layers of the force described for the two-layer laminated sheet 91 of the low-viscosity resin 90a and the high-viscosity resin 90b.
  • the outermost layer resin on the overhanging space 22 side is molded so as to be laminated using a resin having a relationship smaller than the viscosity of the resin and the resin of the adjacent layer.
  • two overhanging spaces 22 may be provided so that the overhanging space 22 projects over both sides in the thickness direction T.
  • the outermost resin on both sides is molded so that the viscosity of the resin is smaller than the viscosity of the resin of the adjacent layer.
  • the internal structure of the flat die 101 according to the fourth embodiment of the present invention is shown in FIG. 24.
  • the flat die 101 includes a resin inlet 10, an internal space 11, and a lip opening 12. It is provided.
  • the flat die 101 of the present invention is provided with at least two molds in the same manner as a normal one, and these molds are used together.
  • the resin inlet 10 is connected to a feed block (not shown), and is a portion into which the molten resin 90 that has become a stacked state in the feed block enters.
  • the molten resin 90 entering from the resin inlet 10 passes through the internal space 11 and is extruded from the opening-like lip opening 12 as a laminated sheet 91 and discharged.
  • the internal space 11 is provided with a resin inflow portion 20, a maroonoledo 21, a pre-land portion 23, and a lip land portion 25, and has a symmetrical shape.
  • the resin inflow portion 20 is a quadrangular prism-like space and has a longitudinal direction N.
  • the resin inflow port 10 is disposed on one end side of the resin inflow portion 20, and the other end is connected to the malle 21. Therefore, the longitudinal direction N becomes the inflow direction to the mold 21. Further, the connection position of the resin inflow portion 20 is near the center of the width direction W of the malle 21.
  • the shape of the resin inflow part 20 is a quadrangular prism, and the molten resin 90 flows in the longitudinal direction N. Therefore, the flow direction of the molten resin 90 flowing inside the resin inflow part 20 is Drooping
  • the cross-sectional shape in the straight direction is the same in the entire region of the resin inflow portion 20. It should be noted that this cross-sectional shape may be applied to substantially the same shape even if it is not completely the same.
  • the hold 21 is a space longer in the width direction W than the resin inflow portion 20 and has a flat plate shape.
  • the length in the width direction W of the mall holder 21 is substantially the same as the length in the width direction W of the lip land portion 25 and the lip opening 12.
  • the manifold 21 has a resin traveling direction S and a thickness direction T that are perpendicular to the width direction W, and the resin traveling direction S is the molten resin in the mold 21. Is basically the direction of flow.
  • the longitudinal direction N of the resin inflow portion 20 is a direction that is inclined and intersects with the resin travel direction S, and the longitudinal direction N and the resin travel direction S have an angle ⁇ . ing.
  • the longitudinal direction N is a direction perpendicular to the width direction W of the hold 21.
  • the other end side of the grease inflow portion 20 is a force connected to the hold 21, as shown in FIG. 25, an end face that is the front side surface of the hold 21 in the grease traveling direction S. It is connected so as to straddle 21a and the side surface 21b. Therefore, when molding using the flat die 101, as described later, the high-viscosity resin 90b flows into the mold 21 from the end surface 21a side, and the low-viscosity resin 90a flows from the side surface 21b side.
  • the molten resin 90 enters the hold 21 from the resin inflow part 20.
  • the mold hold 21 is a space in which the melted resin 90 entering from the resin inlet 10 spreads in the width direction W.
  • the flow direction of the melted resin 90 in the manifold 21 is the width direction. W (cross direction) component.
  • the flow direction of the molten resin 90 changes when the molten resin 90 flows from the resin inflow part 20 to the manifold 21. Then, a bent portion is formed such that the thickness direction T (direction perpendicular to the resin traveling direction S and the width direction W) is inward and outward. The melted resin 90 flowing outside the portion bent by this inclination is easier to spread in the width direction W in the mall 21 than the melted resin 90 flowing inside.
  • the molten resin 90 that has passed through the mould 21 passes through the pre-land portion 23 and the lip land portion 25, and is pushed out of the lip opening 12 and discharged.
  • the pre-land part 23 is a part provided with a region that is harder to pass than other parts, and the pressure distribution in the width direction W is adjusted to stabilize the flow of the molten resin 90 after the pre-land part 23. That's right.
  • the angle ⁇ between the longitudinal direction N and the resin travel direction S is not particularly limited, such as the viscosity ratio between the low-viscosity resin 90a and the high-viscosity resin 90b and the thickness of the laminated sheet 91. It can be changed according to the molding conditions. For example, a flat die 101a shown in FIGS. 27 and 28 can be used with this angle ⁇ force.
  • the angle 0 is desirably 10 ° to 135 °, preferably 45 ° to 120 °.
  • molten molten resin 90 is put into the internal space 11 from the resin inlet 10.
  • the low-viscosity resin 90a and the high-viscosity resin 90b are stacked in the thickness direction T (direction perpendicular to the resin travel direction S and the width direction W). Make sure that the high-viscosity resin 90b is on the outside.
  • the low-viscosity resin 90a has a lower viscosity at the molding temperature than the high-viscosity resin 90b.
  • the zero shear viscosity described above can be used.
  • the resin used in the flat die 101 of the present invention any resin can be used, and the same resin as the above-described resin can be used.
  • the molten molten resin 90 in the laminated state from the resin inlet 10 passes through the resin inflow part 20 and enters the manifold 21.
  • FIG. 26 (a) shows the same state as the layered state entered at the force-oil inlet 10 showing the state of the molten resin 90 in the vicinity of the oil inlet 20.
  • the molten resin 90 flows to the side of the hold 21.
  • molten resin 90 flows in the entire width direction W.
  • the low-viscosity coagulant 90a flowing on the bent inner side is repelled by the high-viscosity coagulant 90b flowing on the outer side.
  • the flow component in the resin traveling direction S becomes larger than the width direction W, and as a result, the portion outside the width direction W has a low viscosity resin 90
  • the thickness of a can be made relatively thin.
  • the low-viscosity resin 90a has better fluidity than the high-viscosity resin 90b.
  • the low-viscosity resin 90a gradually advances in the width direction W.
  • the range in the width direction W of the low-viscosity resin 90a is the entire range in the width direction W of the hold 21.
  • the inner side of the second hold 21 is inward of both ends of the width direction W.
  • the width in the thickness direction T of the low-viscosity resin 90a is almost uniform except for the vicinity of the end. The other parts are occupied by highly viscous resin 90b.
  • the molten resin 90 that has passed through the hold 21 is pushed out from the lip opening 12 through the pre-land portion 23, the lip land portion 25, and the like. During this time, the melted resin 90 does not flow in the width direction W / soot, so that it flows while maintaining the thickness ratio of the low-viscosity resin 90a and the high-viscosity resin 90b, as shown in Fig. 26 (d), The state shown in (e) is obtained.
  • the ratio of the low-viscosity resin 90a to the whole is smaller than the other positions. .
  • both ends in the width direction W of the low-viscosity resin 90a are inside of both ends in the width direction W of the high-viscosity resin 90b, and the width in the thickness direction T of the low-viscosity resin 90a is the end.
  • the situation is almost the same except for the vicinity.
  • the winding of the laminated sheet 91 is not limited, and the above-described method can be adopted.
  • the low-viscosity resin 90a and the high-viscosity resin 90b in the thickness direction T (direction perpendicular to the resin travel direction S and the width direction W). And laminating By feeding the molten resin 90 from the resin inlet 10 and forming it so that the high-viscosity resin 90b is on the outside, the thickness direction T of the low-viscosity resin 90a is in the target state. Laminated sheet 91 can be formed.
  • the thickness distribution of the low viscosity resin 90a in the laminated sheet 91 depends on the viscosity of the low viscosity resin 90a and the high viscosity resin 90b used, the flow ratio of the low viscosity resin 90a and the high viscosity resin 90b, and the like. Although it changes, it can be changed to a desired thickness distribution by changing the angle ⁇ .
  • the laminated sheet 91 is cooled to complete the forming, but if necessary, the end portion is cut so that only the portions where the low-viscosity resin 90a and the high-viscosity resin 90b are uniform in thickness are removed. It can be left behind. In this case, since the low-viscosity resin 90a having a high ratio of the high-viscosity resin 90b is hardly mixed in the cut end portion, the cut-off end resin is used as the high-viscosity resin 90b. It is easy to recycle.
  • the internal structure of the flat die 102 is shown in FIGS. 29 and 30, and the flat die 102 is provided with a plurality of resin inlets 40, an internal space 11, and a lip opening 12.
  • the number of the resin inlets 40 provided is the same as the number of types of the resin used, and each is connected to an unillustrated extruder or the like. Each type of molten resin 90 enters from the resin inlet 40, and the molten resin 90 that enters from the resin inlet 40 passes through the internal space 11 and is laminated from the lip opening 12. Extruded as 91.
  • the internal space 11 is provided with a resin inflow portion 50, a maroonoled 21, a preland portion 23, and a lip land portion 25, and has a symmetrical shape.
  • the resin inflow part 50 is a rectangular column-shaped space, and is provided in the same number as the type of the resin used as in the case of the resin inlet 40.
  • the first oil inflow part 50a and the first resin inflow part 50 are provided. 2 It has an inflow part 50b.
  • the resin inlet 40 is disposed on one end side of the resin inflow part 50, and the other end is connected to the hold 21.
  • the hold 21 is a space that is longer in the width direction W than the resin inflow portion 50, and the length of the hold 21 in the width direction W is the width direction of the lip land portion 25 and the lip opening 12. It is almost the same length as W.
  • the malleable 21 has a grease that is perpendicular to the width direction W. It has a traveling direction S and a thickness direction T, and the resin traveling direction S is the direction in which the molten resin 90 in the mold 21 basically flows.
  • the position at which the grease inflow portion 50 of the two power stations is connected to the mall hold 21 is the width direction W of the mall hold 21.
  • the position of S is different in each of the oil inflow portions 50. Specifically, the first oil inflow part 50a is upstream of the resin advancing direction S, and the second oil inflow part 50b is downstream of the resin advancing direction S, upstream of the lip opening 12. On the side.
  • Each of the oil inflow portions 50 is a quadrangular columnar space, and the direction of the longitudinal direction N of each of the oil inflow portions 50 is different.
  • the first and second oil inflow portions 50a and 50b are different, the angle ⁇ of the first oil inflow portion 50a is 0 °, and the angle 0 of the second oil inflow portion 50b is 90 °. is there.
  • the molten resin 90 then enters the hold 21 from the resin inflow part 50.
  • the molten resin 90 that has entered from the resin inlet 40 spreads in the width direction W.
  • the flow direction of the molten resin 90 in the manifold 21 is the width direction. W (cross direction) component.
  • connection portion of the first grease inflow portion 50a with the hold 21 is on the near side in the direction of travel S of the oil compared to that of the second oil inflow portion 50b.
  • the melted resin 90 supplied from the bottom is easily spread in the width direction W due to the inflow pressure of the melted resin 90 supplied from the second resin inflow part 50b, and changes the way of spreading in the width direction W. be able to
  • the molten resin 90 that has passed through the hold 21 passes through the pre-land portion 23 and the lip land portion 25, and is pushed out of the lip opening 12 and discharged.
  • the pre-land part 23 is a part provided with a region that is harder to pass than other parts, and the pressure distribution in the width direction W is adjusted to stabilize the flow of the molten resin 90 after the pre-land part 23. That's right.
  • the angle ⁇ between the longitudinal direction N and the direction of travel of the grease S in the first and second grease inflow portions 50a and 50b is not particularly limited. What is necessary is just to make it the positional relationship which 50a and the 2nd oil inflow part 50b do not interfere, ie, the 1st oil inflow part 50a and the 2nd oil inflow part 50b do not cross
  • molten resin 90 is introduced into the internal space 11 through the resin inlet 40 from an extruder (not shown). At this time, as shown in FIG. 29, the high-viscosity resin 90b is introduced into the first resin inflow part 50a, and the low-viscosity resin 90a is introduced into the second resin inflow part 50b.
  • the zero shear viscosity described above can be used to compare the viscosity of the low-viscosity resin 90a and the high-viscosity resin 90b. Further, the resin described above can also be used for the resin used in the flat die 102 of the present invention.
  • the molten resin 90 from each of the resin inlets 40 passes through the resin inflow part 50 and enters the manifold 21.
  • the force that flows in the entire width direction W when the molten resin 90 enters the hold 21 Since the connecting portion of each molten resin 90 to the resin inflow part 50 is different, the width of each molten resin 90 in the width direction W is expanded. Can change the way. Specifically, the high-viscosity coagulant 90b flowing in from the first oil inflow part 50a flows in from the near side in the direction S of fat progression than the low-viscosity coagulant 90a flowing in from the second oil inflow part 50b. Therefore, it spreads in the width direction W more. Therefore, the thickness of the low-viscosity resin 90a can be made relatively thin at the outer portion in the width direction W, and the thickness distribution of the low-viscosity resin 90a can be adjusted.
  • the low-viscosity resin 90a and the high-viscosity resin 90b are extruded from the lip opening 12, and the laminated sheet 91 is formed.
  • the thickness distribution in the mold 21 and the thickness distribution of the laminated sheet 91 at the time of molding are the same as those molded by the flat die 101 in the above-described fourth embodiment.
  • the winding method is the same.
  • the high-viscosity resin 90b is introduced into the first resin inflow part 50a, and the low-viscosity resin 90a is introduced into the second resin inflow part 50b.
  • the laminated sheet 91 can be formed so that the thickness direction T of the low-viscosity resin 90a is in a target state by being poured and formed.
  • the resin inflow portion 50 may be provided in three or more places.
  • the flat die 102a is formed with the inflow portions 50a, 50b, 50c of the resin, and the highly viscous high-viscosity 90b is supplied to the inflow portion 50a connected to the front side in the direction of travel S. Then, molding is performed by supplying low-viscosity resin 90a having low viscosity to the other resin inflow parts 50b and 50c.
  • the laminated sheet 91 was molded by the following method, and the thickness distribution of the molded product was confirmed.
  • the shape of the flat die 1 of the first embodiment described above was used.
  • the thickness al of the overhang space 22 of the used flat die 1 is 5 mm
  • the width a2 of the overhang space 22 is 50 mm
  • the length a4 of the lower part 35 of the overhang space 22 is 35 mm.
  • the width W of the hold 21 is 1000 mm.
  • the length of the resin inflow portion 20 in the thickness direction T is 25 mm
  • the length of the mold 21 in the thickness direction T is 20 mm.
  • the temperature of the feed block during molding is 170 ° C
  • the temperature of the flat die 1 is 190 ° C.
  • Styrene-ethylene'butylene block copolymer (trade name “Clayton G1657” manufactured by Kraton Polymer Co., Ltd.) was used as low-viscosity resin 90a, and LDPE (low-density polyethylene, Mitsui Chemicals) as high-viscosity resin 90b.
  • LDPE low-density polyethylene, Mitsui Chemicals
  • the viscosity of the low-viscosity resin 90a and the high-viscosity resin 90b was measured with a mecha-cal spectrometer (RMS800 rheometric 'Scientific' F 'Co., Ltd.).
  • the measurement condition is a shear rate of 0.1 (lZs).
  • the low-viscosity resin 90a had a styrene-ethylene 'butylene block copolymer of 200 Pa's
  • the high-viscosity resin 90b had an LDPE of 5 OOOPa's.
  • the low-viscosity resin 90a and the high-viscosity resin 90b were supplied to the feed block in a molten state and supplied to the flat die 1 in a laminated state. And when supplying to the flat die 1 The low-viscosity 90a was used as the overhanging space 22 side.
  • the supply amount of the resin is 1 OkgZ time for the low-viscosity resin 90a and 50 kgZ for the high-viscosity resin 90b.
  • the test was performed under the same conditions as in Example 1 except that the amount of low-viscosity resin 90a supplied was 20 kgZ hours.
  • Example 2 The test was performed under the same conditions as in Example 1 except that the low-viscosity resin 90a and the high-viscosity resin 90b were changed, and the temperature of the feed block and the flat die was 250 ° C.
  • the low-viscosity resin 90a used in Example 3 is polybutylene terephthalate (Diuranex 700FP manufactured by Polyplastics Co., Ltd.), and the viscosity measured by the above method is 600 Pa's.
  • the high-viscosity rosin 90b is an ethylene-ethyl acrylate terpolymer (EEA) (Mitsui • Dupont Polychemical Co., Ltd. EVAFLEX A-710), and the viscosity measured by the above method is 29000Pa ⁇ s.
  • ESA ethylene-ethyl acrylate terpolymer
  • Example 1 The same conditions as in Example 1 were used except that another flat die was used.
  • the flat die used in Comparative Example 1 is a flat die 1 used in Example 1 in which no overhang space 22 is provided.
  • the same conditions as in Example 2 were used except that another flat die was used.
  • the flat die used in Comparative Example 2 is a flat die 1 used in Example 1 in which no overhang space 22 is provided.
  • the same conditions as in Example 3 were used except that another flat die was used.
  • the flat die used in Comparative Example 3 is a flat die 1 used in Example 1 in which no overhang space 22 is provided.
  • Examples 1 to 3 and Comparative Examples 1 to 3 the thickness variation of the low-viscosity resin 90a (the ratio of the difference between the minimum and maximum thickness portions with respect to the average thickness) was confirmed.
  • Examples 1 and 3 are 10% of the average thickness and Example 2 is 7% of the average thickness, while Comparative Example 1 is 25% of the average thickness and Comparative Example 2
  • the average thickness was 35% of the average thickness, and in Comparative Example 3, the average thickness was 30%.
  • the single-layer region of low-viscosity resin 90a has an edge force of 20 mm
  • the single-layer region of low-viscosity resin 90a is 35 mm from the end
  • the low-viscosity resin The monolayer region of fat 90a is 15mm from the edge.
  • the laminated sheet 91 was formed by the following method, the thickness distribution of the molded product was confirmed, and the influence of the inclination angle ⁇ of the resin inflow portion 20 was confirmed.
  • a laminated sheet 91 of Example 4 was formed using a flat die 101a shown in FIG.
  • the angle ⁇ is 90 °, and the length of the mall 21 in the width direction W is 1000 mm.
  • the length of the resin inflow portion 20 in the thickness direction T is 20 mm, and the length in the width direction W is 50 mm.
  • a molten resin 90 composed of a low-viscosity resin 90a and a high-viscosity resin 90b is laminated and flows into the internal space 11 from the resin inlet 10. At this time, lamination is performed so that the high-viscosity resin 90b is outside the bent portion.
  • the temperature of the feed block during molding is 170 ° C
  • the temperature of the flat die 101a is 190 ° C.
  • the low-viscosity resin 90a and the high-viscosity resin 90b used in the laminated sheet 91 of Example 4 and the supply amount of the resin are the same as in Example 1.
  • Example 4 The test was carried out under the same conditions as in Example 4 except that another flat die was used.
  • the flat die used in Comparative Example 4 is the same as Comparative Example 1 in that the angle ⁇ is 0 ° and the oil inflow portion 20 is not inclined with respect to the flat die 101a used in Example 4. It is.
  • Example 4 As described above, for Example 4 and Comparative Example 4, the area 200 mm inside from the end in the width direction W was The variation in the thickness of the low-viscosity resin 90a in the enclosure (difference between the minimum and maximum thickness portions) was confirmed by comparison with the average thickness of the low-viscosity resin 90a. As a result, in Example 4, the variation was good at 20% with respect to the average thickness of the low-viscosity resin 90a layer, while in Comparative Example 4, the average thickness of the low-viscosity resin 90a layer was good. The variation was as great as 40%.
  • Example 4 the thickness distribution of the low-viscosity resin 90a was confirmed.
  • FIG. 32 is a graph of the thickness distribution of the low-viscosity resin 90a of Example 4
  • FIG. 33 is a graph of the thickness distribution of the low-viscosity resin 90a of Comparative Example 4.
  • the thickness of the low-viscosity resin 90a near the both ends is thin with respect to the whole.
  • the thickness of the low-viscosity resin 90a near both ends is It is getting thicker.
  • the molding method of the present invention can also be applied to the three or more layers described for the two-layer laminated sheet 91 of the low-viscosity resin 90a and the high-viscosity resin 90b.
  • What is formed using the flat die of the present invention is not limited to the laminated sheet 91, and a laminated film thinner than the laminated sheet 91 may be formed as long as it is a laminated resin. It is out.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

 成形時の粘性の異なる樹脂を積層する場合にも、構造が複雑にすることなく厚み分布を目的のものとすることが可能であるフラットダイを提供するものである。  本発明のフラットダイ(1)には、樹脂流入部(20)と、樹脂流入部(20)と接続しているマニホールド(21)と、リップ開口部(12)とを有している。そして、張出空間(22)を形成し、厚み方向に異なる種類の樹脂が積層状態でマニホールド(21)内で流れる際に、各樹脂の間で幅方向の広がり方が変わるようにすることができる。

Description

フラットダイ、並びに、積層樹脂フィルム又はシートの製造方法 技術分野
[0001] 本発明は、フラットダイに関するものであり、また、このフラットダイを用いて行われる 2種類以上の榭脂が積層された積層榭脂フィルム又はシートの製造方法に関するも のである。
背景技術
[0002] シートを成形する場合、ダイのリップ開口部は細長 、形状とする必要があるので、フ ラットダイ (Tダイ)が用いられる。このダイには、榭脂流入部及びマ-ホールドが設け られ、マ-ホールドは榭脂流入部よりも幅方向に長いものであって榭脂流入部に接 続した構造となっている。そして、榭脂流入部力も供給された榭脂はマ-ホールド内 で幅方向に拡大するように流れた後、リップ開口部から吐出される。
[0003] 2種類以上の榭脂の積層シートを成形する場合、全ての榭脂を溶融状態で積層す る共押出法が汎用されている。
共押出によって積層シートを成形する場合、押し出された榭脂を積層するタイミング によって、フィードブロック方式、マルチマ-ホールド方式などの数種類の方式がある
[0004] フィードブロック方式は、榭脂流入部で 2種類以上の榭脂を積層状態としてマ-ホ 一ルドに供給し、マ-ホールド内で積層状態を維持しながら幅方向を拡大させて、リ ップ開口部から積層状態で吐出する方式である。
マルチマ-ホールド方式は、それぞれの榭脂に対して榭脂流入部及びマ-ホール ドを設け、各層の榭脂が幅方向に拡がった状態で、リップ開口部手前で積層する方 式である。
また、他の方式として、それぞれの榭脂に対して榭脂流入部及びマ-ホールドを設 け、各層の榭脂が幅方向に拡がった状態で吐出させ、その後に積層する方式がある
[0005] フィードブロック方式は、積層される榭脂ごとにマ-ホールドを設ける必要が無いの で、他の方式に比べてフラットダイの構造を簡単にすることが可能である。しかしなが ら、成形時の流動性が異なる榭脂同士、例えば、粘性が異なる榭脂同士を積層する 場合、マ-ホールド内での幅方向への流動特性が違うため、成形品の厚み分布を幅 方向全域で均一化するなど、厚み分布を目的のものにすることが難しい。
そして、粘性の違いが大きい場合には、粘性が低い樹脂が端部を占有したり、粘性 が高い樹脂の裏側に回り込んだりする。
[0006] また、成形された積層シートの幅方向の端部は切断され、中央の部分が製品などと して利用され、端部は再利用される場合がある。粘着シートのように、低粘性の榭脂 が粘着性榭脂であると、これを回収再利用するメリットがほとんどないため、高粘性の 榭脂を回収することが再利用の価値が大きぐ低粘性の榭脂の比率は小さいほど好 ましい。
このため、低粘性の榭脂が端付近に多く分布すると、切断された端部の材料には 粘性の低い材料の割合が多くなり、粘性の高い材料を再利用することが難しくなつて しまう。
[0007] そのため、特許文献 1、 2などに示されるような、粘性の大きく異なる榭脂同士を積 層する場合に、厚み分布を均一化する技術が開示されている。
特許文献 1に示される方法では、榭脂流入部での榭脂の積層状態を、幅方向外側 ほど粘性が高く流動しにくい材料を多く配置して、幅方向内側ほど粘性が低い材料 を多く配置する様な積層状態とするものである。そして、マ-ホールド内で幅方向に 拡がる際に、粘性の高いものが、粘性の低いものに対して幅方向に拡がりやすくする ようにして、厚み分布を均一化するものである。
[0008] また、特許文献 2に示される方法では、マ-ホールドの榭脂流入部側の上流部に 膨出部を設けて、粘性の低いものを膨出部側となるように積層して、榭脂流入部から マ-ホールドへ供給する方法である。そして、マ-ホールド内での流速分布を制御し て、厚み分布を均一化するものである。
特許文献 1:特開 2000— 289085号公報
特許文献 2:特開 2003 - 94506号公報
発明の開示 発明が解決しょうとする課題
[0009] 上記の特許文献 1の方法では、榭脂流入部での積層状態を、幅方向外側ほど粘性 が高く流動しにくい材料を多く配置して、幅方向内側ほど粘性が低い材料を多く配置 することには限界がある。そのため、粘性の差が大きくなると、厚み分布を均一化する ことができなくなったり、粘性の低い材料が端付近に多く分布したりする。
また、特許文献 2の方法においても、膨出部の厚みを大きくすることは限界があり、 粘性の差が大きくなると、厚み分布を均一化することができなくなったり、粘性の低い 材料が端付近に多く分布したりする。そのため、粘性の高い材料を再利用することが 難しくなつてしまう。
[0010] そして、従来は、フィードブロック方式では厚み分布を目的通り成形することが困難 な場合には、マルチマ-ホールド方式など他の方式を用いて成形していた力 力か る方法では、上記したように、ダイなどの装置の構造が複雑となってしまう。
[0011] そこで、本発明は、成形時の粘性の異なる榭脂を積層する場合にも、厚み分布を 目的のものとすることが可能であるフラットダイを提供することを課題とする。
なお、本発明において、フラットダイとは、コートハンガーダイ、フィッシュテールダイ 、ストレートマ-ホールドダイを総称して用いるものとする。
課題を解決するための手段
[0012] 上記課題を解決するためのフラットダイは、榭脂流入部と、榭脂流入部と接続して いるマ-ホールドと、リップ開口部とを有し、マ-ホールドは、互いに直交する方向で ある幅方向、厚み方向、榭脂進行方向を有する空間であって、マ二ホールドの幅方 向の長さは榭脂流入部の幅方向の長さよりも長ぐ榭脂流入部から流入した榭脂は マ-ホールドに入り、マ-ホールド内で幅方向に拡大するように流れた後、リップ開口 部から吐出するものであり、厚み方向に異なる種類の榭脂が積層状態でマ-ホール ド内で流れる際に、隣接する一方の層の榭脂に対して、他方の層の榭脂の幅方向の 広がり方が変わるように、各榭脂をマ-ホールドへ流入させるものであることを特徴と するフラットダイである。
このフラットダイによれば、厚み方向に異なる種類の榭脂が積層状態でマ-ホール ド内で流れる際に、各榭脂で幅方向の広がり方が変わるように、各榭脂を榭脂流入 部からマ-ホールドへ流入させることができ、粘性の異なる榭脂を積層した積層榭脂 フィルムやシートを製造する場合に、厚みの調整を行 1ヽやす 、。
なお、厚み方向に異なる種類の榭脂が積層された状態は、 2種類の榭脂が積層さ れた場合だけでなぐ 3種類以上であってもよい。
[0013] また、上記課題を解決するためのフラットダイは、榭脂流入部、マ-ホールド、張出 空間及びリップ開口部を有し、マ-ホールドは榭脂流入部よりも幅方向に長いもので あって榭脂流入部に接続しており、張出空間は、榭脂流入部及びマ-ホールドの榭 脂流入部の接続部付近に位置する、幅方向に直交する厚み方向に張り出す空間で あり、榭脂流入部及び張出空間から流入した榭脂はマ-ホールドに入り、マ-ホール ド内で幅方向に拡大するように流れた後、リップ開口部から吐出できるものである。 このフラットダイによれば、榭脂流入部及びマ-ホールドの榭脂流入部の接続部付 近に位置して、厚み方向に張り出す張出空間が設けられているので、張出空間側の 榭脂の幅方向の展開を制限して、目的の厚み分布とすることが可能である。
[0014] また、上記フラットダイのマ-ホールド側の張出空間の幅方向の長さを、榭脂流入 部側の張出空間の幅方向の長さに比べて長い部分を有するようにすることができ、こ れによって、張出空間からマ-ホールドへの流れを安定させやすくすることができる。
[0015] 張出空間のリップ開口部側の先端付近に、リップ開口部側ほど張り出しが小さくな るような傾斜面を設けることができ、これによつて、張出空間からマ-ホールドへの流 れをスムーズにすることができる。
[0016] 張出空間の厚み方向の投影面を、リップ開口部側に角が形成されないようにするこ とができ、これによつて、張出空間力 マ-ホールドへの流れが偏りにくぐ幅方向に 厚みを均一化させやす 、。
[0017] また、上記のフラットダイを用いて行われる積層榭脂フィルム又はシートの製造方法 では、複数の種類の榭脂を幅方向に積層した状態で、榭脂流入部及び張出空間か ら当該榭脂を流入して、マ-ホールドを通過してリップ開口部から吐出させて行う積 層榭脂フィルム又はシートの製造方法であって、成形温度における粘性が低 、榭脂 である低粘性樹脂が張出空間側となるようにして成形することができ、この製造方法 では、粘性が低い樹脂の幅方向の展開を制限しながら成形することができる。 [0018] また、上記課題を解決するためのフラットダイは、榭脂流入部と、榭脂流入部と接続 しているマ-ホールドと、リップ開口部とを有し、マ-ホールドは、互いに直交する方 向である幅方向、厚み方向、榭脂進行方向を有する空間であって、マ二ホールドの 幅方向の長さは榭脂流入部の幅方向の長さよりも長いものであり、榭脂流入部のマ 二ホールドへの流入方向は、前記榭脂進行方向に対して交差する関係にあり、榭脂 流入部から流入した榭脂はマ二ホールドに入り、マ二ホールド内で幅方向に拡大す るように流れた後、リップ開口部から吐出することができるものである。
ここで、榭脂流入部は、榭脂流入部のマ-ホールドへの流入方向が榭脂進行方向 に対して交差する関係にあればよぐ榭脂流入部の形状は限定されるものでない。例 えば、榭脂流入部の、溶融樹脂が流入する榭脂流入ロカ マ-ホールドへ至る経路 力 直線状であってもよぐ一部又は全部が湾曲形状や屈曲形状であってもよい。ま た、榭脂流入部で流れる溶融樹脂の流れの方向に対して垂直な方向の断面形状が 、榭脂流入部の全域で同じ形状であってもよぐ異なる形状でも良い。
[0019] このフラットダイによれば、榭脂流入部のマ-ホールドへの流入方向は、前記榭脂 進行方向に対して交差する関係にあるので、積層状態で榭脂流入部から流入した外 側の樹脂が内側の榭脂に対して幅方向に展開させやすぐ目的の厚み分布とするこ とが可能である。
[0020] 上記フラットダイの榭脂流入部を柱状の空間とし、榭脂流入部の長手方向が榭脂 流入部のマ-ホールドへの流入方向とすることができ、これによつて、フラットダイの 製作がしゃすく、マ-ホールドへの流入方向を合わせやす!/、。
[0021] また、榭脂流入部の内部に流れる溶融榭脂の流れの方向に対して垂直な方向の 断面形状は、榭脂流入部の全域で実質的に同じ形状とすることができ、これによつて 、積層状態で溶融樹脂が流入する際に流れが乱れにくいので、積層榭脂フィルム又 はシートを成形する場合に、成形品の厚み分布を安定させることができる。
なお、断面形状は榭脂流入部の一部分で完全に同一でな 、形状を有する場合で あっても、榭脂流入部に小さい凹凸が形成されていたり、多少の大きさの大小などが あってもよい。
[0022] そして、このフラットダイを用いて行われる積層榭脂フィルム又はシートの製造方法 では、成形温度における粘性が低い榭脂がリップ開口部側力も流入させて成形する ことにより、積層榭脂フィルム又はシートの製造することができ、力かる製造方法により 、粘性が低い樹脂の幅方向の展開を制限しながら成形することができる。
[0023] また、上記課題を解決するためのフラットダイは、複数の榭脂流入部と、各榭脂流 入部と接続しているマ-ホールドと、リップ開口部とを有し、マ-ホールドは、互いに 直交する方向である幅方向、厚み方向、榭脂進行方向を有する空間であって、マ二 ホールドの幅方向の長さは榭脂流入部の幅方向の長さよりも長いものであり、複数の 榭脂流入部のマ-ホールドへの接続部の位置関係は、幅方向の同じ位置であって 進行方向にずれており、各榭脂流入部から流入した榭脂はマ二ホールドに入り、マ 二ホールド内で幅方向に拡大するように流れた後、リップ開口部から吐出することが できるものである。
[0024] このフラットダイによれば、複数の榭脂流入部のマ-ホールドへの接続部の位置関 係は、幅方向の同じ位置であって進行方向にずれているので、各榭脂流入部から流 入する溶融樹脂の幅方向の展開の程度を変えることができ、目的の厚み分布とする ことが可能である。
[0025] さらにこのフラットダイを用いて行われる積層榭脂フィルム又はシートの製造方法で は、各榭脂流入部に異なる種類の榭脂を流入させて成形するものであり、成形温度 における粘性が低い樹脂の流入は、マ-ホールドとの接続がリップ開口部側である 榭脂流入部から行うことができ、粘性が低い樹脂の幅方向の展開を制限しながら成 形することができる。
[0026] 上記積層榭脂フィルム又はシートの製造方法にぉ 、て、リップ開口部から吐出され た直後の積層榭脂フィルム又はシートの両端付近は、低粘性樹脂の全体に対する割 合が他の位置よりも小さい、又は、低粘性樹脂が存在しないようにすることができる。 これによつて、成形後の樹脂の端部を切断して端部をリサイクルする際などに、粘性 が高い樹脂の割合が高くなり、リサイクルする上で好都合なものとなる。
[0027] また、成形温度における粘性の比較は、ゼロせん断粘度を用いることができる。
発明の効果
[0028] 本発明のフラットダイでは、成形時の粘性の大きく異なる榭脂を積層するシートを成 形する場合にも、フィードブロック方式を用いることができ、特に、粘性の差が大きな 場合であっても、厚み分布を目的のものとすることが可能である。
図面の簡単な説明
[図 1]本発明の第 1の実施形態におけるフラットダイの内部空間を示した斜視図であ る。
[図 2]図 1に示すフラットダイの張出空間付近を拡大した斜視図である。
[図 3]フラットダイ内の低粘性榭脂及び高粘性榭脂を示した断面図であり、 (a)は、 A A断面図、(b)は B— B断面図、(c)は C C断面図、(d)は D— D断面図、(e)は E
—E断面図である。 (f)は (e)の端部付近を拡大した断面図である。
[図 4]本発明の第 2の実施形態におけるフラットダイの内部空間の一部を示した斜視 図である。
[図 5]本発明の第 3の実施形態におけるフラットダイの内部空間の一部を示した斜視 図である。
[図 6]図 5に示すフラットダイの内部空間の一部を示す図であり、(a)は正面図、(b)は 側面図である。
[図 7]本発明の実施形態におけるフラットダイの変形例の内部空間を示した斜視図で ある。
[図 8]本発明の実施形態におけるフラットダイの変形例の内部空間を示した斜視図で ある。
[図 9]本発明の実施形態におけるフラットダイの変形例の内部空間を示した斜視図で ある。
[図 10]本発明の実施形態におけるフラットダイの変形例の内部空間を示した斜視図 である。
[図 11]本発明の実施形態におけるフラットダイの変形例の内部空間を示した斜視図 である。
[図 12]本発明の実施形態におけるフラットダイの変形例の内部空間を示した斜視図 である。
[図 13]本発明の実施形態におけるフラットダイの変形例の内部空間を示した斜視図 である。
圆 14]本発明の実施形態におけるフラットダイの変形例の内部空間を示した斜視図 である。
圆 15]本発明の実施形態におけるフラットダイの変形例の内部空間を示した斜視図 である。
圆 16]本発明の実施形態におけるフラットダイの変形例の内部空間を示した斜視図 である。
圆 17]本発明の実施形態におけるフラットダイの変形例の内部空間を示した斜視図 である。
圆 18]本発明の実施形態におけるフラットダイの変形例の内部空間を示した斜視図 である。
圆 19]本発明の実施形態におけるフラットダイの変形例の内部空間を示した斜視図 である。
圆 20]本発明の実施形態におけるフラットダイの変形例の内部空間を示した斜視図 である。
圆 21]本発明の実施形態におけるフラットダイの変形例の内部空間を示した斜視図 である。
圆 22]本発明の実施形態におけるフラットダイの変形例の内部空間を示した斜視図 である。
圆 23]本発明の実施形態におけるフラットダイの変形例の内部空間を示した斜視図 である。
圆 24]本発明の第 4の実施形態におけるフラットダイの内部空間を示した斜視図であ る。
圆 25]図 24に示すフラットダイの図であり、 (a)は榭脂流入部付近を拡大した斜視図 であり、(b)は E— E断面図である。
圆 26]フラットダイ内の低粘性榭脂及び高粘性榭脂を示した断面図であり、 (a)は、 A —A断面図、(b)は B— B断面図、(c)は C— C断面図、(d)は D— D断面図、(e)は( d)の端部付近を拡大した断面図である。 [図 27]本発明の第 4の実施形態の変形例のフラットダイの内部空間を示した斜視図 である。
[図 28]図 27に示すフラットダイの図であり、 (a)は榭脂流入部付近を拡大した斜視図 であり、(b)は F— F断面図である。
[図 29]本発明の第 5の実施形態におけるフラットダイの内部空間を示した斜視図であ る。
[図 30]図 29に示すフラットダイの図であり、 (a)は榭脂流入部付近を拡大した斜視図 であり、(b)は G— G断面図である。
[図 31]本発明の第 5の実施形態の変形例のフラットダイの内部空間の一部を示した 斜視図である。
[図 32]実施例 4における低粘性樹脂の厚み分布を示したグラフである。
[図 33]比較例 4における低粘性樹脂の厚み分布を示したグラフである。
符号の説明
[0030] 1、 la、 2、 3、 4、 5、 6、 7、 8、 9 フラットダイ
51、 52、 53、 54、 55、 56、 57、 58、 59、 60 フラットダイ
101、 101a, 102、 102a フラットダイ
20、 50 榭脂流入部
21 マ二ホールド
22 張出空間
90a 低粘性榭脂
90b 高粘性榭脂
91 積層シート
N 長手方向
T 厚み方向
S 樹脂進行方向
w 幅方向
発明を実施するための最良の形態
[0031] 本発明の第 1の実施形態におけるフラットダイ 1の内部構造は、図 1に示されており 、フラットダイ 1には、榭脂流入口 10、内部空間 11、リップ開口部 12とが設けられて いる。
なお、図示していないが、本発明のフラットダイ 1は、通常のものと同様に、少なくと も 2個の金型が設けられて、これらの金型を合わせて用いられるものである。
[0032] 榭脂流入口 10は、図示しな 、フィードブロックと接続しており、フィードブロックで積 層状態となつた溶融榭脂 90が入る部分である。そして、榭脂流入口 10から入る溶融 榭脂 90は内部空間 11を通過して、開口状のリップ開口部 12から積層シート 91として 押し出されて吐出する。
[0033] また、内部空間 11には、榭脂流入部 20、マ-ホーノレド 21、張出空間 22、プレラン ド部 23、リップランド部 25が設けられており、左右対称の形状である。
榭脂流入部 20は四角柱状の空間であり、一方の端部側に榭脂流入口 10が配置し 、他方の端部はマ-ホールド 21に接続している。榭脂流入部 20の接続する位置は、 マ-ホールド 21の幅方向 Wの中央付近である。
マ-ホールド 21は、榭脂流入部 20よりも幅方向 Wに長い空間であり、マ-ホールド 21の幅方向 Wの長さは、リップランド部 25やリップ開口部 12の幅方向 Wの長さとほ ぼ同じ長さである。
[0034] さらに、図 1に示すように、榭脂流入部 20からマ-ホールド 21の榭脂流入部 20の 接続部付近にかけて位置する張出空間 22が設けられている。張出空間 22は、厚み 方向 T (幅方向に直交する方向)に張り出す空間であり、本実施形態のフラットダイ 1 では、一方の側のみに設けられている。
そのため、張出空間 22が設けられた部分は、内部空間 11の厚み方向 Tが他の部 分よりも厚くなり、マ二ホールド 21の上側の厚み方向 Tは、中央付近のみが厚くなる。
[0035] 本実施形態の張出空間 22の厚み方向 Tの投影面は長方形状であり、張出空間 22 の全域で同じ厚みである。また、張出空間 22の幅方向 Wの長さは、榭脂流入部 20と 同じ幅である。そして、張出空間 22の榭脂進行方向 S (幅方向 W及び厚み方向丁に 直交する方向)の長さは、榭脂流入部 20の長さよりも長ぐ榭脂流入部 20とマ二ホー ルド 21との合計の長さよりも短い。
[0036] なお、張出空間 22のマ-ホールド 21側の幅方向 Wの長さは、榭脂流入部 20の幅 方向 Wの長さよりも短いと、張出空間 22のマ-ホールド 21側に流れに《なるので、 榭脂流入部 20の幅方向 Wの長さよりも長いことが望ましい。また、張出空間 22のマ 二ホールド 21側の幅方向 Wの長さ力 榭脂流入部 20の幅方向 Wの長さよりも長すぎ る場合には、張出空間 22で後述する低粘性榭脂 90aが幅方向 Wに流れ、低粘性榭 脂 90aの幅方向 Wの流れを制限しにくくなる。そのため、張出空間 22のマ-ホールド 21側の幅方向 Wの長さの最大値を、マ-ホールド 21の幅方向 Wの全体の長さに対 して、 50%以下とするのが望ましぐより好ましくは 20%以下、最も好ましくは 10%以 下である。
また、張出空間 22のマ-ホールド 21側の榭脂進行方向 Sの長さは、マ-ホールド 2 1の榭脂進行方向 Sの長さよりも短い。
[0037] 張出空間 22の形状の好ましい形状は、以下のようなものである。
図 2を用いて説明すると、張出空間 22の厚み al (厚み方向 Tの長さ)は 0. 5mm以 上、 20mm以下であり、より好ましくは lmm以上、 10mm以下である。また、張出空 間 22の幅 a2は、榭脂流入口 10の幅 a3の長さ以上、幅 a3の長さ + 20mm以下であ る。張出空間 22の下方部 35 (マ-ホールド 21側の部分)の長さ a4は、マ-ホールド 21の長さ a5以下である。
また、張出空間 22の厚み方向 Tの投影面は長方形状以外の形状として、張出空間 22の幅 a2、下方部 35の長さ a4は、場所によって変化させることができる。また、張出 空間 22の厚み alを場所によって変化させても良い。
[0038] 張出空間 22に形成される辺 33を R状としたり、傾斜を設けたりして、榭脂の流れを 向上させることができる。なお、傾斜を設ける場合には、下方に向かうほど、張出空間 22の厚み方向 Tの長さが短くなるようにすることが望ま 、。
[0039] 溶融榭脂 90は内部空間 11を流れるが、基本的には榭脂進行方向 Sに進む。また 、榭脂流入部 20は、榭脂進行方向 Sに向いている。
そして、溶融榭脂 90は、榭脂流入部 20と張出空間 22から、マ-ホールド 21へと入 る。
マ-ホールド 21では、榭脂流入口 10から入った溶融榭脂 90が幅方向 Wへと拡が る空間であり、マ-ホールド 21内での溶融榭脂 90の流れの方向には、幅方向 W (横 断方向)の成分を有する。
[0040] さらに、マ-ホールド 21を通過した溶融榭脂 90は、プレランド部 23やリップランド部 25を通過して、リップ開口部 12から押し出されて吐出する。
プレランド部 23は、他の部分よりも通過しにくい領域が設けられた部分であり、幅方 向 Wの圧力分布を調整してプレランド部 23以降の溶融榭脂 90の流れを安定ィ匕させ ることがでさる。
[0041] 次に、本発明の第 1の実施形態におけるフラットダイ 1を用いて、積層シート 91を成 形する方法について説明する。
まず、図示しないフィードブロックから、積層状態の溶融榭脂 90を榭脂流入口 10か ら、内部空間 11に入れる。このとき、図 1に示されるように、低粘性榭脂 90a、高粘性 榭脂 90bとを積層した状態とする。この溶融榭脂 90の積層は、低粘性榭脂 90aが張 出空間 22側となるように、厚み方向 Tに積層する。
[0042] 低粘性榭脂 90aは高粘性榭脂 90bに比べて、成形温度での粘性が低!、ものである 力 これを比較する手段として、ゼロせん断粘度を用いることができる。
一般に榭脂などは非-ユートン流体であり、せん断速度により粘性率が変化するも のである。そして、ゼロせん断粘度は、せん断速度が小さい付近の粘性率から想定さ れる、せん断速度が O(lZs)の時の粘性率のことである。通常、榭脂の場合には、せ ん断速度が小さいとき (0. l (lZs)以下)の粘性率はほぼ一定であり、このような低 せん断速度の時の粘性率を測定することにより確認することができる。
[0043] また、本発明のフラットダイ 1に用いられる榭脂としては、どのようなものを用いても 良いが、例えば以下のものを用いることができる。
超低密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、中密度 ポリエチレン、高密度ポリエチレン、エチレン一塩化ビュルコポリマー、ポリビュルァ ルコール、エチレン一酢酸ビュルコポリマー、エチレン一ェチルアタリレート、ポリ酢 酸ビュル、ポリプロピレン、ポリブテン、ポリカーボネート、ポリブチレンテレフタレート、 ポリエチレンテレフタレート、ポリスチレン、マレイミド、ポリサルフォン、ポリエーテルサ ルホン、ポリフッ化ビ-リデン、ポリ(メタ)アタリレート、セルロースエステル、ポリノルボ ルネン等の熱可塑性榭脂である。なお上記熱可塑性榭脂には可塑剤、紫外線吸収 剤等の添加剤が添加されて 、ても良 、。
[0044] そして、榭脂流入口 10から積層状態の溶融榭脂 90は、榭脂流入部 20及び張出空 間 22を通過してマ-ホールド 21に入る。
図 3 (a)は、榭脂流入部 20付近での溶融榭脂 90の状態を示しているが、榭脂流入 口 10で入った積層状態と同じ状態である。
[0045] さらに、溶融榭脂 90はマ-ホールド 21側に流れる。マ-ホールド 21に入ると、幅方 向 Wの全体に溶融榭脂 90が流れるが、図 3 (b)に示されるように、低粘性榭脂 90aは 主として張出空間 22を流れるので、高粘性榭脂 90bに対して幅方向 Wに進みにくい ので、低粘性榭脂 90aの厚み分布の調節が可能である。
すなわち、主として張出空間 22を流れる低粘性榭脂 90aが、幅方向 Wに進むには 厚み方向 Tが狭くなるため流れにくいので、相対的に流動しやすい低粘性榭脂 90a の流れを調節することができる。また、必要に応じて、張出空間 22の形状を変えるこ とにより、張出空間 22からマ-ホールド 21に流れやす 、部分と流れにく 、部分とを 設けるようにして、低粘性榭脂 90aの幅方向 Wの流れ方を調節することができるので 、厚み分布を目的のものとすることができる。
[0046] そして、溶融榭脂 90がマ-ホールド 21内を榭脂進行方向 Sに進むと、低粘性榭脂 90aは高粘性榭脂 90bに対して流動性が良いので、図 3 (c)に示すように、低粘性榭 脂 90aは徐々に幅方向 Wに進む。そして、マ-ホールド 21のプレランド部 23側端部 (マ-ホールド 21の出口)付近まで進む。この状態では、図 3 (d)のように、低粘性榭 脂 90aの幅方向 Wの範囲は、マ-ホールド 21の幅方向 Wの全域になぐ低粘性榭 脂 90aの幅方向 Wの両端は、マ二ホールド 21の幅方向 Wの両端よりも内側である。 また、低粘性榭脂 90aの厚み方向 Tの幅は端部付近を除 、てほぼ一様な状態となつ ている。なお、他の部分は高粘性榭脂 90bが占めている。
[0047] マ-ホールド 21を通過した溶融榭脂 90は、プレランド部 23からリップランド部 25を 経て、リップ開口部 12から押し出される。この間の溶融榭脂 90には、幅方向 Wの流 れがな!/ヽので、低粘性榭脂 90aと高粘性榭脂 90bとの厚み比を維持した状態で流れ 、図 3 (e)、(f)に示すような状態となる。
また、図 3 (f)に示されるように、リップ開口部 12から吐出された直後の端部の状態 は、全体に対する低粘性榭脂 90aの割合力 他の位置よりも小さくなつている。
[0048] また、低粘性榭脂 90aの幅方向 Wの両端が高粘性榭脂 90bの幅方向 Wの両端より も内側であり、また、低粘性榭脂 90aの厚み方向 Tの幅は端部付近を除いてほぼ一 様な状態である。
[0049] また、積層シート 91の巻き取りは、限定されるものでなぐ例えば、リップ開口部 12 力も出てきた積層シート 91を、ロール延伸しながらチルロールで冷却しても良いし、 エアーナイフゃタツチロール、静電ピユングを用いて榭脂をチルロールに押し付けて も良い。また水槽に漬けて冷却しても良い。いずれにしてもフラットダイ 1から出てきた 状態の層比分布をそのまま維持される方法を採用することができる。
[0050] このように、本実施形態のフラットダイ 1を用い、張出空間 22側を低粘性榭脂 90aと なるように積層して、榭脂流入口 10から溶融榭脂 90を供給して成形することにより、 低粘性榭脂 90aの厚み方向 Tを目的の状態となるように、積層シート 91を成形するこ とがでさる。
[0051] 積層シート 91における低粘性榭脂 90aの厚み分布は、用いられる低粘性榭脂 90a 及び高粘性榭脂 90bの粘性、低粘性榭脂 90aと高粘性榭脂 90bとの厚み比、張出 空間 22の形状 (幅方向 Wの長さ、厚み方向 Tの厚み、榭脂進行方向 Sの長さ、張出 空間の厚み方向 Tの投影面の形状)等、により変化するが、張出空間 22の形状を変 えることにより、所望の厚み分布となるように変えることができる。
例えば、用いられる低粘性榭脂 90aと高粘性榭脂 90bとの粘性の差が小さ 、場合 には張出空間 22の厚み alを小さくし(0. lmm〜5mm程度)、粘性の差が大きい場 合には張出空間 22の厚み alを大きくする。
張出空間 22の形状を変える場合、別のものを製作して使用しても良いが、張出空 間 22となる位置に、着脱可能な治具などを設けて、力かる治具を必要に応じて取り 付けたり、取り外して使用することも可能である。
[0052] さらに、積層シート 91は冷却されて成形が完了するが、必要に応じて、端部を切断 して、低粘性榭脂 90a及び高粘性榭脂 90bとの厚みが均一な部分のみを残すように したものとすることができる。この場合、切断された端部には、高粘性榭脂 90bの割合 が多ぐ低粘性榭脂 90aがほとんど混入しないので、切断された端部の榭脂を高粘 性榭脂 90bとして使用するリサイクルが行 、やす 、。
[0053] そして、第 1の実施形態におけるフラットダイ 1に対して、張出空間 22のみを変えた 実施形態として、以下のようなものがあり、これらを用いて、積層シート 91を成形する ことができる。
[0054] 本発明の第 2の実施形態におけるフラットダイ 2は、図 4に示されている。フラットダイ 2は、フラットダイ 1とは異なり、張出空間 22の下方 (榭脂流入口 11とは反対側)側の 下方部 35が半円状であり、その直径は榭脂流入部 20の幅とほぼ同じであり、その縁 は曲線状となっている。そして、張出空間 22の全体の縁の形状は「U」字状であり、 他の部分の形状はフラットダイ 1と同じである。
[0055] そのため、フラットダイ 2では、張出空間 22の厚み方向 Tの投影面は、リップ開口部 12側(張出空間 22の下側)には角がない形状である。ここで、張出空間 22のマニホ 一ルド 21側に角があると、他の部分に比べて力かる角の部分力も低粘性榭脂 90aが マ-ホールド 21へと流れやすいので、成形された積層シート 91に、局部的に低粘性 榭脂 90aの厚い部分ができやすいが、フラットダイ 2ではこのようなことが発生しにくく 、厚みを均一化させる場合に都合がよい。
[0056] 本発明の第 3の実施形態におけるフラットダイ 3は、図 5、図 6に示されている。フラッ トダイ 3の張出空間 22の上方の形状は同じであるが、下方側の下方部 35が半円状 であり、その直径は榭脂流入部 20の幅よりも大きぐその縁は曲線状となっている。ま た、下方部 35はマ-ホールド 21側に位置する部分であり、下方部 35の幅は、榭脂 流入部 20側の上方部 34の幅よりも長 、。
[0057] また、フラットダイ 3についても、上記のフラットダイ 2と同様に、張出空間 22の厚み 方向 Tの投影面は、リップ開口部 12側に角がない形状である。
さらに、張出空間 22の下方部 35の下端付近は、リップ開口部 12側ほど張り出しが 小さくなつて徐々に厚み方向 Tの長さが小さくなつており、傾斜面 30が形成されてい る。
張出空間 22の厚み方向 Tの外側の榭脂流動方向 Sに延びる辺 33は曲面状 (R状) となっている。
[0058] そして、フラットダイ 3を用いて成形を行った場合には、フラットダイ 2の場合と同様に 、局部的に低粘性榭脂 90aの厚い部分ができにくい。また、フラットダイ 3の張出空間 22の下方部 35の幅方向 Wの長さが長ぐマ-ホールド 21側と厚み方向 Tに接続す る、張出空間 22の縁 31の長さを長くすることができる。そのため、低粘性榭脂 90aが 張出空間 22の下方部 35からマ-ホールド 21に流れる際に、流れを安定させやすい
[0059] さらに、図 7〜図 23に示すものも用いることができる。なお、図 7〜図 23では、対称 形の一方のみを図示しているものであり、他方側の図示を省略している。また、張出 空間 22以外の形状については、特に記載がない限り、上記したフラットダイ 1と同様 な形状である。
[0060] 図 7に示されるフラットダイ 4は、張出空間 22の下方部 35の全体が円形に近い形状 であり、その直径は、榭脂流入部 20の幅よりやや大きい形状である。
図 8に示されるフラットダイ 5は、図 1、図 2に示されるフラットダイ 1の張出空間 22に 、幅方向 Wに延びるように突出させて突出部 36を設けた形状である。そして、突出部 36の縁は全体的に湾曲状であり角は形成されて!ヽな 、。
図 9に示されるフラットダイ 6の張出空間 22は、図 8に示されるフラットダイ 5と同様に 、突出部 36を設けた形状である力 突出部 36の先端 36aの位置が、フラットダイ 5の 先端 36aよりも下側(リップ開口部 12側)〖こ位置している。
図 10に示されるフラットダイ 7は、図 1、図 2に示されるフラットダイ 1の張出空間 22 に、幅方向 Wに延びるように突出させて突出部 36を設けた形状である。そして、突出 部 36は、先端 36aの付近の縁が湾曲状であり、他の部分には傾斜部 37が設けられ ている。傾斜部 37は、先端 36aよりも上側 (榭脂流入口 10側)〖こ位置している。
[0061] 図 11に示されるフラットダイ 8は、図 8に示されるフラットダイ 5の張出空間 22の下端 部付近に傾斜面 30を形成したものである。
また、図 12に示されるフラットダイ 9は、図 7に示されるフラットダイ 5の張出空間 22 の下端部付近に傾斜面 30を形成したものである。
[0062] 図 13に示されるフラットダイ 51は、図 1、図 2に示されるフラットダイ 1の張出空間 22 に突出部 36を設けた形状である。突出部 36は、張出空間 22の下端部付近から幅方 向 Wに向力つて延びる形状であり、幅方向 Wの先端側に向力つて、榭脂進行方向 S の長さ及び厚みが徐々に小さくなつており、傾斜部 38が形成されている。
[0063] 図 14に示されるフラットダイ 52は、図 4に示されるフラットダイ 2の張出空間 22に傾 斜部 38を設けたものであり、フラットダイ 52の張出空間 22は、厚み方向 Tの外側に 向かって幅方向 Wの長さが短くなるようにしたものである。
[0064] 図 15に示されるフラットダイ 53の張出空間 22は、下側に向力つて幅方向 Wに拡が るものである。
図 16に示されるフラットダイ 54は、張出空間 22の下方部 35が全体に幅広であり、 下方部 35の厚み方向 Tの投影面が長方形状となっている。
図 17に示されるフラットダイ 55は、図 1、図 2に示されるフラットダイ 1の張出空間 22 の下端に傾斜面 30を形成したものである。
[0065] 図 18に示されるフラットダイ 56は、図 1、図 2に示されるフラットダイ 1の張出空間 22 に幅方向に突出する突出部 36を設けた形状である。突出部 36は、張出空間 22の下 端部付近から幅方向 Wに向力つて延びる形状であり、幅方向 Wの先端側に向かって 榭脂進行方向 Sの長さが徐々に小さくなつている。
[0066] 図 19に示されるフラットダイ 57は、図 4に示されるフラットダイ 2の張出空間 22の下 端に傾斜面 30を形成したものである。
図 20に示されるフラットダイ 58は、図 1、図 2に示されるフラットダイ 1の榭脂流入部 20及び張出空間 22を、幅方向 Wの長さを長くし、かつ、下端に傾斜面 30を設けたも のである。
図 21に示されるフラットダイ 59は、図 4に示されるフラットダイ 2の張出空間 22に曲 面状 (R状)の部分である R部 41を設けたものである。なお、図中の点線は R部 41を 表示するために便宜的に書き込んだものである。
図 22に示されるフラットダイ 60は、図 1、図 2に示されるフラットダイ 1の張出空間 22 に突出部 36を設けた形状である。突出部 36は、張出空間 22から幅方向 Wに向かつ て延びる形状であり、幅方向 Wの先端側に向かって、厚みが徐々に小さくなつており 、湾曲面状の傾斜部 38が形成されている。そして、突出部 36の端は、張出空間 22と マ-ホールド 21との段差をつなぐように R部 44が形成されており、表面がなだらかに なっている。 [0067] なお、上記した成形方法では、低粘性榭脂 90a及び高粘性榭脂 90bの 2層の積層 シート 91について説明した力 3層以上のものについても適用することができる。なお 、この場合、張出空間 22側の最外層の樹脂の粘性を、この樹脂と隣の層の樹脂の粘 性よりも小さい関係となるような榭脂を用いて積層するように成形する。
[0068] また、図 23に示すフラットダイ laのように、張出空間 22を厚み方向 Tの両側に張り 出すように 2力所設けても良い。この場合には、両側の最外層の樹脂の粘性を、この 榭脂と隣の層の樹脂の粘性よりも小さい関係となるような榭脂を用いて積層するよう に成形する。
[0069] 以下に示すフラットダイ 101、 101a, 102、 102aのように、榭脂流入部 20が傾斜す るものを採用することができる。
[0070] 本発明の第 4の実施形態におけるフラットダイ 101の内部構造は、図 24に示されて おり、フラットダイ 101には、榭脂流入口 10、内部空間 11、リップ開口部 12とが設け られている。
なお、図示していないが、本発明のフラットダイ 101は、通常のものと同様に、少なく とも 2個の金型が設けられて、これらの金型を合わせて用いられるものである。
[0071] 榭脂流入口 10は、図示しないフィードブロックと接続しており、フィードブロックで積 層状態となつた溶融榭脂 90が入る部分である。そして、榭脂流入口 10から入る溶融 榭脂 90は内部空間 11を通過して、開口状のリップ開口部 12から積層シート 91として 押し出されて吐出する。
[0072] また、内部空間 11には、榭脂流入部 20、マ-ホーノレド 21、プレランド部 23、リップ ランド部 25が設けられており、左右対称の形状である。
榭脂流入部 20は、図 24、図 25に示されるように、四角柱状の空間であって長手方 向 Nを有している。そして榭脂流入部 20の、一方の端部側に榭脂流入口 10が配置 し、他方の端部はマ-ホールド 21に接続している。そのため、長手方向 Nがマ-ホー ルド 21への流入方向となる。また、榭脂流入部 20の接続する位置は、マ-ホールド 21の幅方向 Wの中央付近である。
そして、榭脂流入部 20の形状は、四角柱状であって、長尺方向 Nに溶融榭脂 90 が流れるので、榭脂流入部 20の内部に流れる溶融榭脂 90の流れの方向に対して垂 直な方向の断面形状は、榭脂流入部 20の全域で同じ形状である。なお、この断面形 状は、完全に同一以外の場合であってもよぐ実質的に同一のものについても採用 することができる。
[0073] マ-ホールド 21は、榭脂流入部 20よりも幅方向 Wに長い空間であり、平板状であ る。また、マ-ホールド 21の幅方向 Wの長さは、リップランド部 25やリップ開口部 12 の幅方向 Wの長さとほぼ同じ長さである。そして、マ二ホールド 21は、幅方向 Wに垂 直な方向である榭脂進行方向 Sと厚み方向 Tを有しており、榭脂進行方向 Sは、マ ホールド 21内での溶融榭脂 90が基本的に流れる方向である。
[0074] そして、榭脂流入部 20の長手方向 Nは、榭脂進行方向 Sに対して傾斜して交差す る方向であり、長手方向 Nと榭脂進行方向 Sとは角度 Θを有している。また、この長手 方向 Nは、マ-ホールド 21の幅方向 Wに対して垂直な方向である。
また、榭脂流入部 20の他方の端部側は、マ-ホールド 21に接続している力 図 25 に示すように、マ-ホールド 21の榭脂進行方向 Sの手前側の面である端面 21aと、側 面 21bとを跨ぐように接続している。したがって、フラットダイ 101を用いて成形する際 に、後述するように、高粘性榭脂 90bは端面 21a側からマ-ホールド 21に流入し、低 粘性榭脂 90aは側面 21b側から流入する。
[0075] そして、溶融榭脂 90は、榭脂流入部 20から、マ-ホールド 21へと入る。マ-ホール ド 21は、榭脂流入口 10から入った溶融榭脂 90が幅方向 Wへと拡がる空間であり、 マ二ホールド 21内での溶融榭脂 90の流れの方向には、幅方向 W (横断方向)の成 分を有する。
長手方向 Nと榭脂進行方向 Sとは角度 Θを有しているので、榭脂流入部 20からマ 二ホールド 21に溶融榭脂 90が流れる際に、溶融榭脂 90の流れの方向が変化し、厚 み方向 T (榭脂進行方向 S及び幅方向 Wに対して垂直な方向)が内外となるように屈 曲する部分が形成される。そして、この傾斜によって屈曲する部分の外側を流れる溶 融榭脂 90は、内側を流れる溶融榭脂 90よりも、マ-ホールド 21内で幅方向 Wに広 力きやすくなる。
[0076] さらに、マ-ホールド 21を通過した溶融榭脂 90は、プレランド部 23やリップランド部 25を通過して、リップ開口部 12から押し出されて吐出する。 プレランド部 23は、他の部分よりも通過しにくい領域が設けられた部分であり、幅方 向 Wの圧力分布を調整してプレランド部 23以降の溶融榭脂 90の流れを安定ィ匕させ ることがでさる。
[0077] なお、長手方向 Nと榭脂進行方向 Sとの角度 Θは、特に限定されるものでなぐ低 粘性榭脂 90aと高粘性榭脂 90bとの粘度比や積層シート 91の厚みなどの成形条件 等に応じて変更することができる。例えば、図 27、図 28に示されるフラットダイ 101a のように、この角度 Θ力 のものを用いることができる。
[0078] この角度 Θが小さい場合には、積層シート 91の厚み分布を目的のものとすることが 難しぐまた、大きい場合には、榭脂流入部 20からマ-ホールド 21への流れが不安 定となりやすいので、角度 0は 10° 〜135° 、好ましくは 45° 〜120° とするのが 望ましい。
[0079] 次に、本発明の第 4の実施形態におけるフラットダイ 101を用いて、積層シート 91を 成形する方法にっ 、て説明する。
まず、図示しないフィードブロックから、積層状態の溶融榭脂 90を榭脂流入口 10か ら、内部空間 11に入れる。このとき、図 24に示されるように、厚み方向 T (榭脂進行方 向 S及び幅方向 Wに対して垂直な方向)に低粘性榭脂 90a、高粘性榭脂 90bとを積 層し、高粘性榭脂 90bが外側となるようにする。
[0080] 低粘性榭脂 90aは高粘性榭脂 90bに比べて、成形温度での粘性が低!ヽものである 力 これを比較する手段として、上記したゼロせん断粘度を用いることができる。 また、本発明のフラットダイ 101に用いられる榭脂としては、どのようなものを用いて も良ぐ上記した榭脂と同様な榭脂を用いることができる。
[0081] そして、榭脂流入口 10から積層状態の溶融榭脂 90は、榭脂流入部 20を通過して マ二ホールド 21に入る。
図 26 (a)は、榭脂流入部 20付近での溶融榭脂 90の状態を示している力 榭脂流 入口 10で入った積層状態と同じ状態である。
[0082] さらに、溶融榭脂 90はマ-ホールド 21側に流れる。マ-ホールド 21に入ると、幅方 向 Wの全体に溶融榭脂 90が流れる。そして、図 26 (b)に示されるように、屈曲する内 側を流れる低粘性榭脂 90aは、外側を流れる高粘性榭脂 90bの反発を受けるととも に、マ-ホールド 21に入る位置がリップ開口部 12側であるので、幅方向 Wよりも榭脂 進行方向 Sの流動成分が大きくなる結果、幅方向 Wの外側の部分は低粘性榭脂 90 aの厚みを比較的薄くすることができる。
[0083] そして、溶融榭脂 90がマ-ホールド 21内を榭脂進行方向 Sに進むと、低粘性榭脂 90aは高粘性榭脂 90bに対して流動性が良いので、図 26 (c)に示すように、低粘性 榭脂 90aは徐々に幅方向 Wに進む。そして、マ-ホールド 21のプレランド部 23側端 部(マ-ホールド 21の出口)付近まで進む。この状態では、図 26 (d)のように、低粘性 榭脂 90aの幅方向 Wの範囲は、マ-ホールド 21の幅方向 Wの全域になぐ低粘性 榭脂 90aの幅方向 Wの両端は、マ二ホールド 21の幅方向 Wの両端よりも内側である 。また、低粘性榭脂 90aの厚み方向 Tの幅は端部付近を除いてほぼ一様な状態とな つている。なお、他の部分は高粘性榭脂 90bが占めている。
[0084] マ-ホールド 21を通過した溶融榭脂 90は、プレランド部 23からリップランド部 25を 経て、リップ開口部 12から押し出される。この間の溶融榭脂 90には、幅方向 Wの流 れがな!/ヽので、低粘性榭脂 90aと高粘性榭脂 90bとの厚み比を維持した状態で流れ 、図 26 (d)、(e)に示すような状態となる。
また、図 26 (e)に示されるように、リップ開口部 12から吐出された直後の端部の状 態は、全体に対する低粘性榭脂 90aの割合が、他の位置よりも小さくなつている。
[0085] また、低粘性榭脂 90aの幅方向 Wの両端が高粘性榭脂 90bの幅方向 Wの両端より も内側であり、また、低粘性榭脂 90aの厚み方向 Tの幅は端部付近を除いてほぼ一 様な状態である。
このように、従来技術のものとは異なり、低粘性榭脂 90aと高粘性榭脂 90bとの間で マ-ホールド 21内での広がり方を変えることができ、低粘性榭脂 90aの厚み方向丁の 分布を目的のものとすることが可能となり、低粘性榭脂 90aの厚み分布の調節を行う ことが可能である。
[0086] また、積層シート 91の巻き取りは、限定されるものでなぐ上記した方法を採用する ことができる。
[0087] このように、本実施形態のフラットダイ 101を用い、厚み方向 T (榭脂進行方向 S及 び幅方向 Wに対して垂直な方向)に低粘性榭脂 90a、高粘性榭脂 90bとを積層し、 高粘性榭脂 90bが外側となるようにして、榭脂流入口 10から溶融榭脂 90を供給して 成形することにより、低粘性榭脂 90aの厚み方向 Tを目的の状態となるように、積層シ ート 91を成形することができる。
[0088] 積層シート 91における低粘性榭脂 90aの厚み分布は、用いられる低粘性榭脂 90a 及び高粘性榭脂 90bの粘性、低粘性榭脂 90aと高粘性榭脂 90bとの流量比等により 変化するが、角度 Θを変えることにより、所望の厚み分布となるように変えることがで きる。
[0089] さらに、積層シート 91は冷却されて成形が完了するが、必要に応じて、端部を切断 して、低粘性榭脂 90a及び高粘性榭脂 90bとの厚みが均一な部分のみを残すように したものとすることができる。この場合、切断された端部には、高粘性榭脂 90bの割合 が多ぐ低粘性榭脂 90aがほとんど混入しないので、切断された端部の榭脂を高粘 性榭脂 90bとして使用するリサイクルが行 、やす 、。
[0090] 次に、本発明の第 5の実施形態におけるフラットダイ 102について説明する。
フラットダイ 102の内部構造は、図 29、図 30に示されており、フラットダイ 102には、 複数の榭脂流入口 40、内部空間 11、リップ開口部 12とが設けられている。
[0091] 榭脂流入口 40は、用いられる榭脂の種類の数だけ設けられ、それぞれ図示しない 押し出し機などと接続している。そして、榭脂流入口 40から、それぞれの種類の溶融 榭脂 90が入るものであり、榭脂流入口 40から入る溶融榭脂 90は内部空間 11を通過 して、リップ開口部 12から積層シート 91として押し出されて吐出する。
[0092] また、内部空間 11には、榭脂流入部 50、マ-ホーノレド 21、プレランド部 23、リップ ランド部 25が設けられており、左右対称の形状である。
榭脂流入部 50は四角柱状の空間であり、榭脂流入口 40と同様に、用いられる榭 脂の種類の数だけ設けられており、本実施形態では、第 1榭脂流入部 50aと第 2榭脂 流入部 50bとを有している。そして、榭脂流入部 50の一方の端部側に榭脂流入口 4 0が配置し、他方の端部はマ-ホールド 21に接続して 、る。
[0093] マ-ホールド 21は、榭脂流入部 50よりも幅方向 Wに長い空間であり、マ-ホールド 21の幅方向 Wの長さは、リップランド部 25やリップ開口部 12の幅方向 Wの長さとほ ぼ同じ長さである。そして、マ-ホールド 21には、幅方向 Wに垂直な方向である榭脂 進行方向 Sと厚み方向 Tを有しており、榭脂進行方向 Sは、マ-ホールド 21内での溶 融榭脂 90が基本的に流れる方向である。
[0094] 2力所の榭脂流入部 50がマ-ホールド 21と接続する位置は、マ-ホールド 21の幅 方向 Wの位置は、中央付近であってほぼ同じ位置である力 榭脂進行方向 Sの位置 は、それぞれの榭脂流入部 50で異なっている。具体的には、第 1榭脂流入部 50aが 榭脂進行方向 Sの上流側であり、第 2榭脂流入部 50bが榭脂進行方向 Sの下流側で あって、リップ開口部 12より上流側である。
それぞれの榭脂流入部 50は四角柱状の空間であり、また、各榭脂流入部 50の長 手方向 Nの向きが異なっており、長手方向 Nと榭脂進行方向 Sとの角度 Θは、第 1榭 脂流入部 50aと第 2榭脂流入部 50bでは違っており、第 1榭脂流入部 50aの角度 Θ は 0° であり、第 2榭脂流入部 50bの角度 0は 90° である。
[0095] そして、溶融榭脂 90は、榭脂流入部 50から、マ-ホールド 21へと入る。マ-ホール ド 21では、榭脂流入口 40から入った溶融榭脂 90が幅方向 Wへと拡がる空間であり 、マ二ホールド 21内での溶融榭脂 90の流れの方向には、幅方向 W (横断方向)の成 分を有する。
[0096] 榭脂流入部 50がマ-ホールド 21と接続する榭脂進行方向 Sの位置は、それぞれ の榭脂流入部 50で異なって 、るので、それぞれの榭脂流入部 50からマ-ホールド 2 1に溶融榭脂 90が流れた場合、幅方向 Wへの流れに違 ヽが発生する。
すなわち、第 1榭脂流入部 50aのマ-ホールド 21との接続部分は、第 2榭脂流入 部 50bのそれよりも榭脂進行方向 Sの手前側であるので、第 1榭脂流入部 50aから供 給される溶融榭脂 90は、第 2榭脂流入部 50bから供給される溶融榭脂 90の流入圧 を受けて、幅方向 Wへ広がりやすくなり、幅方向 Wへの広がり方を変えることができる
[0097] さらに、マ-ホールド 21を通過した溶融榭脂 90は、プレランド部 23やリップランド部 25を通過して、リップ開口部 12から押し出されて吐出する。
プレランド部 23は、他の部分よりも通過しにくい領域が設けられた部分であり、幅方 向 Wの圧力分布を調整してプレランド部 23以降の溶融榭脂 90の流れを安定ィ匕させ ることがでさる。 [0098] なお、第 1榭脂流入部 50a、第 2榭脂流入部 50bにおける、長手方向 Nと榭脂進行 方向 Sとの角度 Θは、特に限定されるものでなぐ第 1榭脂流入部 50aと第 2榭脂流 入部 50bとが干渉しない位置関係、すなわち、第 1榭脂流入部 50aと第 2榭脂流入部 50bとが交差しないようにすればよい。また、低粘性榭脂 90aと高粘性榭脂 90bとの 粘度比や積層シート 91の厚みなどの成形条件等に応じて、榭脂流入部 50のマニホ 一ルド 21との接続部分の榭脂進行方向 Sの位置関係を変えることができる。
[0099] 次に、本発明の第 5の実施形態におけるフラットダイ 102を用いて、積層シート 91を 成形する方法にっ 、て説明する。
まず、図示しない押出機から、溶融榭脂 90を榭脂流入口 40から、内部空間 11に 入れる。このとき、図 29に示されるように、第 1榭脂流入部 50aには高粘性榭脂 90b を流入させ、第 2榭脂流入部 50bには低粘性榭脂 90aを流入させる。
なお、低粘性榭脂 90aと高粘性榭脂 90bとの粘性の比較は、上記で説明したゼロ せん断粘度を用いることができる。また、本発明のフラットダイ 102に用いられる榭脂 についても、上記で説明したものを用いることができる。
[0100] そして、それぞれの榭脂流入口 40から溶融榭脂 90は、榭脂流入部 50を通過して マ二ホールド 21に入る。
溶融榭脂 90がマ-ホールド 21に入ると幅方向 Wの全体に流れる力 各溶融榭脂 9 0の榭脂流入部 50の接続部分が異なるため、各溶融榭脂 90の幅方向 Wの広がり方 を変えることができる。具体的には、第 1榭脂流入部 50aから流入する高粘性榭脂 90 bは、第 2榭脂流入部 50bから流入する低粘性榭脂 90aよりも榭脂進行方向 Sの手前 側から流入するので、より幅方向 Wへ広がる。そのため、幅方向 Wの外側の部分は 低粘性榭脂 90aの厚みを比較的薄くすることができ、低粘性榭脂 90aの厚み分布の 調節が可能である。
[0101] そして、上記した第 4の実施形態におけるフラットダイ 101と同様に、低粘性榭脂 90 a及び高粘性榭脂 90bはリップ開口部 12から押し出されて、積層シート 91の成形が 行われる。なお、この成形の際のマ-ホールド 21内の厚み分布や、積層シート 91の 厚み分布は、上記した第 4の実施形態におけるフラットダイ 101により成形されたもの と同様である。また、巻き取りの方法なども同様である。 [0102] このように、本実施形態のフラットダイ 102を用い、第 1榭脂流入部 50aには高粘性 榭脂 90bを流入させ、第 2榭脂流入部 50bには低粘性榭脂 90aを流入させて成形す ることにより、低粘性榭脂 90aの厚み方向 Tを目的の状態となるように、積層シート 91 を成形することができる。
[0103] また、図 31に示すフラットダイ 102aのように、榭脂流入部 50を 3力所以上設けても よい。フラットダイ 102aには、榭脂流入部 50a、 50b、 50cが形成されており、榭脂進 行方向 Sの手前側に接続する榭脂流入部 50aに粘性の高い高粘性榭脂 90bを供給 し、他の榭脂流入部 50b、 50cに粘性の低い低粘性榭脂 90aを供給して成形が行わ れる。
実施例
[0104] 以下の方法で、積層シート 91を成形し、成形品の厚み分布などを確認した。
[0105] (実施例 1)
上記した第 1の実施形態のフラットダイ 1の形状のものを用いた。そして、用いたフラ ットダイ 1の、張出空間 22の厚み alは 5mmであり、張出空間 22の幅 a2は 50mmで あり、張出空間 22の下方部 35の長さ a4は、 35mmである。また、マ-ホールド 21の 幅 Wは 1000mmである。榭脂流入部 20の厚み方向 Tの長さは、 25mmであり、マ- ホールド 21の厚み方向 Tの長さは 20mmである。成形時のフィードブロックの温度は 170°C、フラットダイ 1の温度は 190°Cである。
[0106] 低粘性榭脂 90aとして、スチレン—エチレン'ブチレンブロック共重合体 (商品名「ク レイトン G1657」クレイトンポリマー社製)を用い、高粘性榭脂 90bとして、 LDPE (低 密度ポリエチレン、三井化学株式会社製 商品名「ミラソン 12」)を用いた。
低粘性榭脂 90a及び高粘性榭脂 90bの粘性の測定は、メカ-カルスぺクトロメータ (RMS800 レオメトリック 'サイエンティフィック'エフ'ィー (株)製)で行った。測定条 件は、せん断速度 0. 1 (lZs)である。その結果、低粘性榭脂 90aであるスチレン— エチレン 'ブチレンブロック共重合体が 200Pa ' s、高粘性榭脂 90bである LDPEが 5 OOOPa' sであった。
[0107] そして、上記低粘性榭脂 90a及び高粘性榭脂 90bを溶融状態でフィードブロックに 供給し、積層状態でフラットダイ 1に供給した。そして、フラットダイ 1に供給する際に は、低粘性榭脂 90aを張出空間 22側とした。また、榭脂の供給量は、低粘性榭脂 90 aが 1 OkgZ時間、高粘性榭脂 90bが 50kgZ時間である。
[0108] (実施例 2)
低粘性榭脂 90aの供給量を 20kgZ時間とした以外は、実施例 1と同じ条件で行つ た。
[0109] (実施例 3)
低粘性榭脂 90a及び高粘性榭脂 90bを変更したこと及びフィードブロック、フラット ダイの温度を 、ずれも 250°Cとしたこと以外は、実施例 1と同じ条件で行った。
実施例 3で用いた低粘性榭脂 90aは、ポリブチレンテレフタレート (ポリプラスチック ス社製 ジユラネックス 700FPであって、上記の方法で測定した粘性は 600Pa'sで ある。
また、高粘性榭脂 90bは、エチレン一ェチルアタリレート共重合榭脂 (EEA) (三井 •デュポンポリケミカル株式会社 EVAFLEX A— 710)であって、上記の方法で測 定した粘'性は 29000Pa · sである。
[0110] (比較例 1)
フラットダイを別のものを用いた以外は、実施例 1と同じ条件で行った。比較例 1で 使用されるフラットダイは、実施例 1で用いるフラットダイ 1に対して、張出空間 22を設 けないものである。
[0111] (比較例 2)
フラットダイを別のものを用いた以外は、実施例 2と同じ条件で行った。比較例 2で 使用されるフラットダイは、実施例 1で用いるフラットダイ 1に対して、張出空間 22を設 けないものである。
[0112] (比較例 3)
フラットダイを別のものを用いた以外は、実施例 3と同じ条件で行った。比較例 3で 使用されるフラットダイは、実施例 1で用いるフラットダイ 1に対して、張出空間 22を設 けないものである。
[0113] 上記のように実施例 1〜3、比較例 1〜3について、低粘性榭脂 90aの厚みのバラッ キ(平均厚みに対する最小及び最大厚み部の差の割合)を確認した。その結果、実 施例 1及び 3については、平均厚みに対して 10%、実施例 2については、平均厚み に対して 7%であるのに対し、比較例 1では平均厚みに対して 25%、比較例 2では平 均厚みに対して 35%、比較例 3では平均厚みに対して 30%と大きぐ実施例 1〜3は 良好であった。
[0114] また、積層シート 91の幅方向 Wの端部を確認し、積層状態を確認した。その結果、 実施例 1〜3では積層不良は発生しておらず、低粘性榭脂 90aが単層(高粘性榭脂 90bが無い状態)となっておらず良好であった力 比較例 1〜3では積層不良及び低 粘性榭脂 90aの単層領域が発生した。
具体的には、比較例 1では低粘性榭脂 90aの単層領域が端部力も 20mm、比較例 2では低粘性榭脂 90aの単層領域が端部から 35mm、比較例 3では低粘性榭脂 90a の単層領域が端部から 15mmである。
[0115] また、上記とは別に、以下の方法で、積層シート 91を成形し、成形品の厚み分布な どを確認し、榭脂流入部 20の傾斜角度 Θによる影響を確認した。
[0116] (実施例 4)
図 27に示されるフラットダイ 101aを用いて、実施例 4の積層シート 91を成形した。 なお、角度 Θは 90° であり、マ-ホールド 21の幅方向 Wの長さは 1000mmである。 榭脂流入部 20の厚み方向 Tの長さは 20mmであり、幅方向 Wの長さは 50mmである 。そして、図示しないフィードブロックから、低粘性榭脂 90a及び高粘性榭脂 90bから なる溶融榭脂 90を積層した状態で、榭脂流入口 10から内部空間 11へ流入させる。 このとき、高粘性榭脂 90bが屈曲する部分の外側となるように積層する。また、成形 時のフィードブロックの温度は 170°C、フラットダイ 101aの温度は 190°Cである。
[0117] なお、実施例 4の積層シート 91に用いられる低粘性榭脂 90a及び高粘性榭脂 90b や、榭脂の供給量は、実施例 1と同様である。
[0118] (比較例 4)
フラットダイを別のものを用いた以外は、実施例 4と同じ条件で行った。比較例 4で 使用されるフラットダイは、実施例 4で用いるフラットダイ 101aに対して、角度 Θが 0° であり、榭脂流入部 20が傾斜していないものであり、比較例 1と同じである。
[0119] 上記のように実施例 4、比較例 4について、幅方向 Wの端部より 200mm内側の範 囲における低粘性榭脂 90aの厚みのバラツキ(最小及び最大厚み部の差)を、低粘 性榭脂 90aの平均厚みに対する比較により確認した。その結果、実施例 4について は、低粘性榭脂 90a層の平均厚みに対してバラツキが 20%で良好であるのに対し、 比較例 4では、低粘性榭脂 90a層の平均厚みに対してバラツキが 40%と大き力つた 。また、比較例 4では、端部付近の低粘性榭脂 90aの比率が大きくなり、フィルム端部 での積層不良が発生し、幅方向 Wの 18mmが低粘性榭脂 90aの単層部となった。
[0120] また、実施例 4、比較例 4につ ヽて、低粘性榭脂 90aの厚み分布を確認した。そして 、図 32は、実施例 4の低粘性榭脂 90aの厚み分布のグラフであり、図 33は、比較例 4 の低粘性榭脂 90aの厚み分布のグラフである。このように、実施例 4では、両端付近 での低粘性榭脂 90aの厚みは全体に対して薄くなつている力 比較例 4では、逆に、 両端付近での低粘性榭脂 90aの厚みが厚くなつている。
[0121] なお、本発明の成形方法では、低粘性榭脂 90a及び高粘性榭脂 90bの 2層の積層 シート 91について説明した力 3層以上のものについても適用することができる。
[0122] 本発明のフラットダイを用いて成形されるものは積層シート 91に限定されるもので はなく積層状態の榭脂であればよぐ積層シート 91よりも薄い積層フィルムを成形す ることがでさる。

Claims

請求の範囲
[1] 榭脂流入部と、榭脂流入部と接続して 、るマ-ホールドと、リップ開口部とを有し、 マ二ホールドは、互いに直交する方向である幅方向、厚み方向、榭脂進行方向を有 する空間であって、マ二ホールドの幅方向の長さは榭脂流入部の幅方向の長さよりも 長ぐ
榭脂流入部力 流入した榭脂はマ-ホールドに入り、マ-ホールド内で幅方向に 拡大するように流れた後、リップ開口部から吐出するものであり、
厚み方向に異なる種類の榭脂が積層状態でマ-ホールド内で流れる際に、隣接す る一方の層の榭脂に対して、他方の層の樹脂の幅方向の広がり方が変わるように、 各榭脂をマ-ホールドへ流入させるものであることを特徴とするフラットダイ。
[2] 榭脂流入部、マ-ホールド、張出空間及びリップ開口部を有し、マ-ホールドは榭 脂流入部よりも幅方向に長いものであって榭脂流入部に接続しており、
張出空間は、榭脂流入部及びマ二ホールドの榭脂流入部の接続部付近に位置す る、幅方向に直交する厚み方向に張り出す空間であり、榭脂流入部及び張出空間か ら流入した榭脂はマ-ホールドに入り、マ-ホールド内で幅方向に拡大するように流 れた後、リップ開口部力 吐出することが可能であることを特徴とするフラットダイ。
[3] マ二ホールド側の張出空間の幅方向の長さは、榭脂流入部側の張出空間の幅方 向の長さに比べて長い部分を有するものであることを特徴とする請求項 2に記載のフ ラットダイ。
[4] 張出空間のリップ開口部側の先端付近には、リップ開口部側ほど張り出しが小さく なるような傾斜面が設けられていることを特徴とする請求項 2又は 3に記載のフラット ダイ。
[5] 張出空間の厚み方向の投影面は、リップ開口部側に角が形成されていないことを 特徴とする請求項 2〜4のいずれかに記載のフラットダイ。
[6] 請求項 2〜5のいずれかに記載のフラットダイを用い、複数の種類の榭脂を幅方向 に積層した状態で、榭脂流入部及び張出空間から当該榭脂を流入して、マ-ホール ドを通過してリップ開口部から吐出させて行う積層榭脂フィルム又はシートの製造方 法であって、成形温度における粘性が低 、榭脂である低粘性樹脂が張出空間側と なるようにして成形することを特徴とする積層榭脂フィルム又はシートの製造方法。
[7] リップ開口部から吐出された直後の積層榭脂フィルム又はシートの両端付近は、低 粘性樹脂の全体に対する割合が他の位置よりも小さい、又は、低粘性樹脂が存在し ないことを特徴とする請求項 6に記載の積層榭脂フィルム又はシートの製造方法。
[8] 成形温度における粘性の比較は、ゼロせん断粘度が用いられることを特徴とする請 求項 6又は 7に記載の積層榭脂フィルム又はシートの製造方法。
[9] 榭脂流入部と、榭脂流入部と接続して!/、るマ-ホールドと、リップ開口部とを有し、 マ二ホールドは、互いに直交する方向である幅方向、厚み方向、榭脂進行方向を有 する空間であって、マ二ホールドの幅方向の長さは榭脂流入部の幅方向の長さよりも 長いものであり、榭脂流入部のマ-ホールドへの流入方向は、前記榭脂進行方向に 対して交差する関係にあり、榭脂流入部力 流入した榭脂はマ-ホールドに入り、マ 二ホールド内で幅方向に拡大するように流れた後、リップ開口部から吐出することが 可能であることを特徴とするフラットダイ。
[10] 榭脂流入部は柱状の空間であり、榭脂流入部の長手方向が榭脂流入部のマニホ 一ルドへの流入方向となっていることを特徴とする請求項 9に記載のフラットダイ。
[11] 榭脂流入部の内部に流れる溶融榭脂の流れの方向に対して垂直な方向の断面形 状は、榭脂流入部の全域で実質的に同じ形状であることを特徴とする請求項 9又は 1 0に記載のフラットダイ。
[12] 複数の榭脂流入部と、各榭脂流入部と接続して!/、るマ-ホールドと、リップ開口部と を有し、マ-ホールドは、互いに直交する方向である幅方向、厚み方向、榭脂進行 方向を有する空間であって、マ二ホールドの幅方向の長さは榭脂流入部の幅方向の 長さよりも長いものであり、複数の榭脂流入部のマ-ホールドへの接続部の位置関係 は、幅方向の同じ位置であって進行方向にずれており、各榭脂流入部から流入した 榭脂はマ-ホールドに入り、マ-ホールド内で幅方向に拡大するように流れた後、リ ップ開口部から吐出することが可能であることを特徴とするフラットダイ。
[13] 請求項 9〜11のいずれかに記載のフラットダイを用い、成形温度における粘性が低 V、榭脂がリップ開口部側となるように複数の種類の榭脂を幅方向に積層した状態で、 榭脂流入部力 当該榭脂を流入させて成形することを特徴とする積層榭脂フィルム 又はシートの製造方法。
[14] 請求項 12に記載のフラットダイを用い、各榭脂流入部に異なる種類の榭脂を流入 させて成形するものであり、成形温度における粘性が低い樹脂の流入は、マ-ホー ルドとの接続がリップ開口部側である榭脂流入部力 行うものであることを特徴とする 積層榭脂フィルム又はシートの製造方法。
[15] リップ開口部から吐出された直後の積層榭脂フィルム又はシートの両端付近は、低 粘性樹脂の全体に対する割合が他の位置よりも小さい、又は、低粘性樹脂が存在し ないことを特徴とする請求項 13又は 14に記載の積層榭脂フィルム又はシートの製造 方法。
[16] 成形温度における粘性の比較は、ゼロせん断粘度が用いられることを特徴とする請 求項 13〜 15のいずれかに記載の積層榭脂フィルム又はシートの製造方法。
PCT/JP2006/312865 2005-06-29 2006-06-28 フラットダイ、並びに、積層樹脂フィルム又はシートの製造方法 WO2007001012A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200680024094XA CN101213064B (zh) 2005-06-29 2006-06-28 平模及层叠树脂膜或片材的制造方法
US11/921,576 US20090020909A1 (en) 2005-06-29 2006-06-28 Flat Die and Method for Manufacturing Laminated Resin Film or Sheet Using the Same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-190773 2005-06-29
JP2005190773 2005-06-29
JP2005232471A JP2007045020A (ja) 2005-08-10 2005-08-10 フラットダイ、並びに、積層樹脂フィルム又はシートの製造方法
JP2005-232471 2005-08-10

Publications (1)

Publication Number Publication Date
WO2007001012A1 true WO2007001012A1 (ja) 2007-01-04

Family

ID=37595261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/312865 WO2007001012A1 (ja) 2005-06-29 2006-06-28 フラットダイ、並びに、積層樹脂フィルム又はシートの製造方法

Country Status (5)

Country Link
US (1) US20090020909A1 (ja)
KR (1) KR20080023757A (ja)
CN (1) CN101213064B (ja)
TW (1) TW200706345A (ja)
WO (1) WO2007001012A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9670809B2 (en) 2011-11-29 2017-06-06 Corning Incorporated Apparatus and method for skinning articles
US10611051B2 (en) 2013-10-15 2020-04-07 Corning Incorporated Systems and methods for skinning articles
US10744675B2 (en) 2014-03-18 2020-08-18 Corning Incorporated Skinning of ceramic honeycomb bodies

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016536238A (ja) 2013-09-30 2016-11-24 コーニング インコーポレイテッド ガラス積層板の外層を形成するための装置および方法
KR102158011B1 (ko) * 2020-04-10 2020-09-21 현 동 장 다중 평면 접합용 다이가 구비된 압출기

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH071560A (ja) * 1993-06-18 1995-01-06 Sekisui Chem Co Ltd 多層樹脂フィルムの成形プロセスにおける層分布制御条件設定システム
JPH07178793A (ja) * 1993-12-21 1995-07-18 Sekisui Chem Co Ltd 多層フィルム成形プロセスの条件設定方法
JPH10323879A (ja) * 1997-05-26 1998-12-08 Sekisui Chem Co Ltd Tダイおよび熱可塑性樹脂の積層方法
JP2000289085A (ja) * 1999-04-08 2000-10-17 Tsutsunaka Plast Ind Co Ltd 多層シート形成方法及び多層シート形成用フィードブロック
JP2003094506A (ja) * 2001-09-21 2003-04-03 Sekisui Chem Co Ltd Tダイ及びこのtダイを使用した熱可塑性樹脂の積層方法
JP2004142339A (ja) * 2002-10-25 2004-05-20 Sekisui Chem Co Ltd Tダイおよび熱可塑性樹脂積層製品の押出成形方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH071560A (ja) * 1993-06-18 1995-01-06 Sekisui Chem Co Ltd 多層樹脂フィルムの成形プロセスにおける層分布制御条件設定システム
JPH07178793A (ja) * 1993-12-21 1995-07-18 Sekisui Chem Co Ltd 多層フィルム成形プロセスの条件設定方法
JPH10323879A (ja) * 1997-05-26 1998-12-08 Sekisui Chem Co Ltd Tダイおよび熱可塑性樹脂の積層方法
JP2000289085A (ja) * 1999-04-08 2000-10-17 Tsutsunaka Plast Ind Co Ltd 多層シート形成方法及び多層シート形成用フィードブロック
JP2003094506A (ja) * 2001-09-21 2003-04-03 Sekisui Chem Co Ltd Tダイ及びこのtダイを使用した熱可塑性樹脂の積層方法
JP2004142339A (ja) * 2002-10-25 2004-05-20 Sekisui Chem Co Ltd Tダイおよび熱可塑性樹脂積層製品の押出成形方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9670809B2 (en) 2011-11-29 2017-06-06 Corning Incorporated Apparatus and method for skinning articles
US10634025B2 (en) 2011-11-29 2020-04-28 Corning Incorporated Apparatus and method for skinning articles
US10611051B2 (en) 2013-10-15 2020-04-07 Corning Incorporated Systems and methods for skinning articles
US10744675B2 (en) 2014-03-18 2020-08-18 Corning Incorporated Skinning of ceramic honeycomb bodies

Also Published As

Publication number Publication date
CN101213064B (zh) 2010-04-14
CN101213064A (zh) 2008-07-02
KR20080023757A (ko) 2008-03-14
TW200706345A (en) 2007-02-16
US20090020909A1 (en) 2009-01-22

Similar Documents

Publication Publication Date Title
US4536362A (en) Method for producing longitudinally ribbed plastic film
WO2007001012A1 (ja) フラットダイ、並びに、積層樹脂フィルム又はシートの製造方法
JP2013515636A (ja) 共押出し成形ダイ及びシステム、共押出し成形された物品を作製する方法、並びにそれによって作製される共押出し成形された物品
EP3814092B1 (en) Coextruded articles, dies and methods of making the same
EP3377286A1 (en) Extrusion dies for honeycomb body
EP1352728A1 (en) Apparatus and method for extruding multi layers resin molded product, pattern of layers easyly changeable with exchangeable flow guide block in nozzle
JP2007045020A (ja) フラットダイ、並びに、積層樹脂フィルム又はシートの製造方法
JP3944846B2 (ja) 樹脂膜の形成方法及び装置
TWI377123B (ja)
WO2009038214A1 (en) Method and apparatus for manufacturing molded plate
JP5434002B2 (ja) 積層シートの製造装置および製造方法
JP2009029104A (ja) フィードブロック、積層樹脂フィルム又はシートの成形装置及び製造方法
US11607832B2 (en) Feed block and sheet manufacturing apparatus provided with the same, and method of manufacturing sheet
JP2004142339A (ja) Tダイおよび熱可塑性樹脂積層製品の押出成形方法
JP2009297945A (ja) フラットダイ、シート製造方法
JP5166767B2 (ja) フィードブロック、積層樹脂フィルム又はシートの成形装置及び製造方法
JP2007038655A (ja) フラットダイ、並びに、積層樹脂フィルム又はシートの製造方法
JP4066604B2 (ja) 樹脂膜の形成方法
JP2010280157A (ja) 押出成形用金型と押出成形方法
JP4893069B2 (ja) 積層シートの製造装置および製造方法
JP4714390B2 (ja) Tダイ及びこのtダイを使用した熱可塑性樹脂の積層方法
JP2001009894A (ja) 発泡シート成形用ダイ及び発泡シート成形装置
JP2013103367A (ja) ダイアダプタ及びシート押出成形装置
JP4944842B2 (ja) フィードブロック及びシート又はフィルムの製造方法
JPS6258299B2 (ja)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680024094.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11921576

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087002296

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 06767482

Country of ref document: EP

Kind code of ref document: A1