WO2006137365A1 - 硬化性樹脂組成物及び反射防止膜 - Google Patents

硬化性樹脂組成物及び反射防止膜 Download PDF

Info

Publication number
WO2006137365A1
WO2006137365A1 PCT/JP2006/312253 JP2006312253W WO2006137365A1 WO 2006137365 A1 WO2006137365 A1 WO 2006137365A1 JP 2006312253 W JP2006312253 W JP 2006312253W WO 2006137365 A1 WO2006137365 A1 WO 2006137365A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
refractive index
resin composition
curable resin
meth
Prior art date
Application number
PCT/JP2006/312253
Other languages
English (en)
French (fr)
Inventor
Takaro Yashiro
Yasuharu Yamada
Akio Taira
Hideaki Takase
Original Assignee
Jsr Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr Corporation filed Critical Jsr Corporation
Publication of WO2006137365A1 publication Critical patent/WO2006137365A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials

Definitions

  • the present invention relates to a curable resin composition and an antireflection film. More specifically, it contains silica particles and a fluorine-containing polymer containing an ethylenically unsaturated group, and has a low refractive index and a low reflectance when cured, resulting in high scratch resistance, coating properties, and durability.
  • the present invention relates to a curable resin composition capable of obtaining an excellent cured product, and an antireflection film having a low refractive index layer composed of such a cured product.
  • the surface is often wiped with gauze impregnated with ethanol or the like in order to remove attached fingerprints, dust, and the like.
  • a fluorine-based resin coating containing a hydroxyl group-containing fluoropolymer is known (eg, Patent Documents 1 to 3).
  • the obtained coating film had excellent weather resistance, but was poor in scratch resistance and durability!
  • an isocyanate group-containing unsaturated compound having at least one isocyanate group and at least one addition-polymerizable unsaturated group, and a hydroxyl group-containing fluorine-containing polymer.
  • a coating composition comprising an unsaturated group-containing fluorine-containing vinyl polymer obtained by reacting a polymer with a compound at a ratio of the number of isocyanate groups to the number of Z hydroxyl groups of 0.01 to 1.0.
  • Compositions have been proposed (for example, Patent Document 4).
  • a coating composition containing such a polymer can be cured at a low temperature in a short time, but a curing agent such as melamine resin is further used to react the remaining hydroxyl groups. Needed to be cured. Furthermore, the coating film obtained in the above publication has a problem that it is sufficient in terms of coatability and scratch resistance.
  • a material for a low refractive index film having a lower refractive index than before is desired! Therefore, by utilizing the fact that the refractive index of air is lower than that of a cocoon resin component such as acrylic, particles having voids inside the particles such as porous particles and hollow particles (hereinafter collectively referred to as hollow particles) are used.
  • the technique used is known (for example, Patent Documents 7 to 9).
  • an imaging optical system of an on-chip color filter such as a facsimile, an electronic copying machine, a solid-state image sensor, or an optical system material of an optical fiber connector
  • a microlens having a lens diameter of about 3 to 100 / zm Alternatively, a microphone array in which the microlenses are regularly arranged is used.
  • a microlens is a lens having a function of condensing light from the outside onto a photosensitive part such as a solid-state imaging device.
  • a photosensitive part such as a solid-state imaging device.
  • the size of the device has been reduced.
  • the amount of light incident on one element tends to decrease. For this reason, it is a problem to collect light incident on the element on the photosensitive portion without loss (improvement of the light collection rate).
  • an antireflection film is formed on the surface layer of the microlens to suppress reflection of light caused by a change in refractive index between the air medium and the lens (example) For example, see Patent Document 10).
  • the conventional fluorine material for forming a low refractive index layer has a problem that a uniform image cannot be obtained due to uneven film thickness due to repellency, unevenness and the like when applied.
  • a microlens such as a solid-state imaging device
  • the phenomenon of flare that enters the solid-state image sensor and appears in the image is a problem.
  • Patent Documents 11 to L3 a technique for solving the above problem by providing a flat layer on a solid-state imaging device.
  • the flattening layer used in the solid-state imaging device includes a light receiving unit flat layer between the condensing microlenses (Patent Document 11), and a light receiving unit flattening layer for flattening the surface of the light receiving unit that performs photoelectric conversion.
  • Patent Document 13 a color filter flattening layer (Patent Document 12) formed on a color filter formed on a light receiving portion flattening layer, and the like.
  • the flattened layer is produced by applying a liquid curable resin composition by spin coating or the like and then curing the composition.
  • a liquid curable resin composition by spin coating or the like and then curing the composition.
  • the material used for the conventional planarized layer is used.
  • the refractive index is not sufficiently low, it is difficult to effectively prevent flare, and the light collection rate cannot be sufficiently improved.
  • the liquid composition is applied, the uneven application of the repellency occurs immediately. Therefore, it is difficult to make the film thickness of the flat layer uniform, and as a result, uniform light transmission is imparted. There was a problem above.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 57-34107
  • Patent Document 2 Japanese Patent Application Laid-Open No. 59-189108
  • Patent Document 3 Japanese Patent Application Laid-Open No. 60-67518
  • Patent Document 4 Japanese Patent Laid-Open No. 61-296073
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2002-265866
  • Patent Document 6 Japanese Patent Laid-Open No. 10-316860
  • Patent Document 7 Japanese Unexamined Patent Publication No. 2003-139906
  • Patent Document 8 Japanese Patent Laid-Open No. 2002-317152
  • Patent Document 9 Japanese Patent Laid-Open No. 10-142402
  • Patent Document 10 JP-A-4 223371
  • Patent Document 11 Japanese Patent Laid-Open No. 06-232379
  • Patent Document 12 Japanese Patent Laid-Open No. 06-204441
  • Patent Document 13 JP 2001-308300 A
  • the present invention provides a curable resin composition that provides a cured film having a low refractive index and a low refractive index and excellent scratch resistance and stain resistance, an antireflection film using the same, and an antireflection film for microlenses.
  • An object is to provide an anti-reflection film.
  • the present invention provides a low-refractive-index cured product for a flat layer of a solid-state imaging device, and a radiation-curable resin composition excellent in application by a spin coat method, and prevention of flare using the same
  • An object of the present invention is to provide a solid-state imaging device.
  • the present inventors have intensively studied and use particles having a shape in which a plurality of spherical silica particles are chained as components of the composition.
  • a cured product having a low refractive index can be obtained, and by binding an organic compound having a polymerizable unsaturated group to silica particles, the particles can have a binding force, and the resulting cured product can be scratch-resistant.
  • the present invention was completed.
  • the following curable resin composition, cured product and antireflection film, antireflection film for microlens, planarization layer, method for producing the planarization layer, and solid-state imaging device are provided. It is done.
  • a curable resin composition containing the following components (A) and (B), with respect to the total amount of the composition other than the organic solvent:
  • the ethylenically unsaturated group-containing fluoropolymer is A compound containing one isocyanate group and at least one ethylenically unsaturated group;
  • the (B) chain spherical silica particles having two or more, number average particle size 1 to: substantially spherical silica particles of LOOnm are connected in a linear or branched form.
  • the curable resin composition according to any one of the above.
  • the (B) chain spherical silica particles have a bead-like form in which the substantially spherical silica particles are connected in a linear or branched form, or the substantially spherical silica particles are in a linear form. 5.
  • curable resin composition according to any one of 1 to 5, further comprising (C) a compound that generates active species upon irradiation with active energy rays.
  • curable rosin composition according to any one of the above 1 to 6, further comprising (D) a (meth) acrylate compound.
  • the manufacturing method of the planarization layer which has.
  • a solid-state imaging device comprising at least a base material layer, the flattening layer as described in 14 above, and a microlens.
  • the antireflection film of the present invention having a low refractive index layer made of the cured product of the present invention exhibits excellent antireflection properties.
  • the curable resin composition of the present invention uses chain spherical silica particles, the cured film obtained by curing the particles has a very low refractive index, such as a CCD (Charge Coupled Device).
  • a CCD Charge Coupled Device
  • the antireflection film for a microlens of the present invention can suppress the reflection of light on the lens surface due to the refractive index difference between the air medium and the microlens, so that the light transmittance of the microlens can be improved. it can. For this reason, it is possible to increase the amount of light incident on the photosensitive portion such as a solid-state imaging device.
  • the radiation-curable resin composition for a planarization layer of the present invention has a low refractive index and excellent coating property by a spin coating method.
  • the radiation curable resin composition for a flattening layer of the present invention does not cause repellency or coating unevenness when applied, so the coating uniformity is good. Therefore, the radiation cured product for a flattening layer of the present invention is uniform. Can give a good image. Moreover, since it can be applied uniformly, the yield of a solid-state imaging device or the like containing the radiation cured product for a flat layer of the present invention can be improved.
  • the solid-state imaging device of the present invention including the planarization layer of the present invention effectively prevents flare that is a problem in a microphone lens such as a solid-state imaging device, and has a refractive index higher than that of the conventional one.
  • the radiation-curable composition for a planarization layer of the present invention can be cured by irradiation, a planar layer patterned by means of mask exposure or the like can be produced. V and part where no planarization layer is formed around each microlens (between microlenses) can be provided. In this way, the flat layer is formed! By forming the portion, the flat layer can be formed only at the target location.
  • FIG. 1 is a cross-sectional view of an antireflection film according to an embodiment of the present invention.
  • FIG. 2 is an electron micrograph of methacryl-modified chain spherical silica particles B-1 (beaded silica particles) produced in Production Example 6.
  • FIG. 3 is an electron micrograph of methacryl-modified chain spherical silica particles B-2 (beaded silica particles) produced in Production Example 7.
  • FIG. 4 is an electron micrograph of methacryl-modified chain spherical silica particles B-3 produced in Production Example 8.
  • FIG. 5 is an electron micrograph of acrylic modified spherical silica particles X-1 (beaded silica particles) produced in Production Example 5.
  • FIG. 6 is a cross-sectional view of an antireflection film for microlens that is an embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of an antireflection film for microlens that is another embodiment of the present invention.
  • FIG. 8 is a cross-sectional view of a solid-state image sensor which is an embodiment of the present invention.
  • FIG. 9 is a cross-sectional view of a solid-state image sensor which is another embodiment of the present invention.
  • FIG. 10 is a cross-sectional view (a) and a plan view (b) of a microlens portion of a solid-state imaging device in which a flat layer is selectively formed on a microlens according to another embodiment of the present invention. .
  • FIG. 11 is a cross-sectional view of an antireflection film for microlenses formed in an example.
  • FIG. 12 is a cross-sectional view of an antireflection film for microlens that is another embodiment of the present invention.
  • the curable resin composition of the present invention may contain the following components (A) to (F). Among these components, (A) and (B) are essential components, and (C) to (F) are optional components that can be appropriately contained.
  • the ethylenically unsaturated group-containing fluoropolymer (A) is a fluoroolefin polymer.
  • the composition of the present invention exhibits basic performance as a low refractive index material for an antireflection film such as low refractive index, antifouling property, chemical resistance, and water resistance.
  • it is present between the particles of the component (B) described later, and is a component necessary for giving the particles a binding force.
  • the component (A) has a side chain hydroxyl group modified with a (meth) acrylic compound. More preferably, it is modified with a (meth) acrylic compound having an isocyanate group.
  • the chain spherical silica particles having a polymerizable group (component (B) described later) and (meth) acrylic compound (component (D) described later) can be co-crosslinked, and scratch resistance is improved. improves.
  • An ethylenically unsaturated group-containing fluoropolymer is obtained by reacting a compound containing one isocyanate group, at least one ethylenically unsaturated group, and a hydroxyl group-containing fluoropolymer. can get.
  • gelling may occur when reacting with a hydroxyl group-containing fluoropolymer.
  • a curable rosin composition to be described later can be hardened more easily, and therefore a compound having a (meth) atallyloyl group is more preferable.
  • examples of such a compound include 2- (meth) atalylooxychetyl isocyanate and 2- (meth) atalylooxypropylisocyanate alone or in combination of two or more.
  • such a compound can be synthesized by reacting diisocyanate and a hydroxyl group-containing (meth) acrylate.
  • diisocyanates examples include 2,4 tolylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate, methylene bis (4-cyclohexylenoisocyanate)
  • hydroxyl group-containing (meth) acrylates examples include 2-hydroxyethyl (meth) acrylate.
  • Pentaerythritol tri (meth) acrylate is preferred.
  • hydroxyl group-containing polyfunctional (meth) atalylate examples include, for example, Osaka Organic Chemical Co., Ltd., trade name HEA, Nippon Kayaku Co., Ltd., trade name KAYARAD DPHA, PET-30, Toagosei ( Product name Alonics M-215, M-233, M-305, M-400, etc.
  • the hydroxyl group-containing fluoropolymer preferably comprises the following structural unit (a), (b-1) or (b-2), and (c).
  • R 1 represents a fluorine atom, a fluoroalkyl group or a group represented by OR 2 (R 2 represents an alkyl group or a fluoroalkyl group)]
  • R 3 represents a hydrogen atom or a methyl group
  • R 4 represents an alkyl group
  • R 5 represents an alkyl group or a glycidyl group, n represents a number of 0 or 1), a carboxyl group or an alkoxycarbo group
  • R 3 is as defined in formula (2-1), R 24 represents a fluoroalkyl group, and X represents a number from 0 to 2]
  • R 6 represents a hydrogen atom or a methyl group
  • R 7 represents a hydrogen atom or a hydroxyalkyl group
  • V represents a number of 0 or 1
  • the fluoroalkyl group of R 1 and R 2 includes a trifluoromethyl group, a perfluoroethyl group, a perfluoropropyl group, a perfluorobutyl group, and a perfluorohexyl. And a fluoroalkyl group having 1 to 6 carbon atoms such as a perfluorocyclohexyl group.
  • alkyl group for R 2 examples include alkyl groups having 1 to 6 carbon atoms such as a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, and a cyclohexyl group.
  • the structural unit (a) can be introduced by using a fluorine-containing vinyl monomer as a polymerization component.
  • a fluorine-containing butyl monomer is not particularly limited as long as it is a compound having at least one polymerizable unsaturated double bond and at least one fluorine atom. Examples of this include fluoroolefins such as tetrafluoroethylene, hexafluoropropylene, 3, 3, 3-trifluoropropylene; alkyl perfluoro oral ether or alkoxyalkyl perfluorobule.
  • Ethers Perfluoro (alkyl butyl ether) such as perfluoro (methyl vinyl ether), perfluoro (ethyl vinyl ether), (propyl vinyl ether), perfluoro (butinolevino reetenole), perfluoro (isobutino vinyl ether), etc.
  • a single perfluoro (alkoxyalkyl butyl ether) such as perfluoro (propoxypropyl butyl ether) or a combination of two or more thereof.
  • hexafluoropropylene and perfluoro (alkyl butyl ether) or perfluoro (alkoxy alkyl butyl ether) are more preferred and used in combination!
  • the content of the structural unit (a) is determined when the total of the structural unit (a) and (b-1) or (b-2) and (c) is 100 mol%. , 20 to 70 mol 0/0. This is because when the content is less than 20 mol%, it may be difficult to develop a low refractive index, which is an optical characteristic of the fluorine-containing material intended by the present application. This is because when the ratio exceeds 70 mol%, the solubility of the hydroxyl group-containing fluoropolymer in an organic solvent, transparency, or adhesion to a substrate may be lowered.
  • the content of the structural unit (a) is determined by adding the total of the structural units (a), (b-1) or (b-2), and (c) to 100 mol 0 / when set to 0, more that a 25 to 65 mole 0/0 Preferably, it is more preferably 30 to 60 mol%! /.
  • the alkyl group of R 4 or R 5 is an alkyl group having 1 to 12 carbon atoms such as a methyl group, an ethyl group, a propyl group, a hexyl group, a cyclohexyl group, or a lauryl group.
  • the alkoxycarbo yl group include a methoxy carbo ol group and an ethoxy carbo ol group.
  • the structural unit (b-1) can be introduced by using the above-mentioned vinyl monomer having a substituent as a polymerization component.
  • bur monomers include methylvinyl etherenole, ethinolevinoreethenole, n-propinolevinoreethenole, isopropinolevinole ether, n -butyl vinyl ether, isobutyl vinyl ether, tert- N-pentinorevininoreatenore, n-hexinorevininoreetenore, n-octinorebi-noreethenore, n-dodecinorebi-noreethenore, 2-ethinorehexinolevenore ter, cyclohexyl ether, etc.
  • the content of the structural unit (b-1) is 10 to 70 mol when the total of the structural units (a), (b-1) and (c) is 100 mol%. %.
  • the reason for this is that when the content is less than 10 mol%, the solubility of the hydroxyl group-containing fluoropolymer in the organic solvent may be reduced.
  • the hydroxyl group when the content exceeds 70 mol%, the hydroxyl group contains a hydroxyl group. This is because optical properties such as transparency and low reflectance of the fluorine-containing polymer may be deteriorated.
  • the content of the structural units (b-1), the structural units (a), (b- 1) and, when a total of 100 mole 0/0 and (c) , 20 to 60 mole 0/0 and more preferably tool 3 is to More preferably, it is 0-60 mol%.
  • (b-2) can be used instead of the structural unit (b 1).
  • the structural unit (b-2) can be introduced by using a vinyl monomer represented by the formula (2-2) as a polymerization component.
  • vinyl monomers include those having the following structural formula.
  • R 2 is a hydrogen atom or a methyl group
  • X represents a number from 0 to 2.
  • the group marked F in the aromatic ring is all five hydrogens are fluorine. Indicates that it is substituted with an atom.
  • the content of the structural unit (b-2) is the sum of the structural units (a), (b-2), and (c). When it is mol%, it is 10 to 70 mol%. The reason for this is that when the content is less than 30 mol%, the solubility of the hydroxyl group-containing fluorine-containing copolymer in the organic solvent may be reduced. On the other hand, when the content exceeds 60 mol%, This is because the optical properties such as transparency and low reflectivity of the hydroxyl group-containing fluorine-containing copolymer may deteriorate.
  • R 7 hydroxyalkyl group includes 2-hydroxyethyl group, 2-hydroxypropyl group, 3-hydroxypropyl group, 4-hydroxybutyl group, 3-hydroxybutyl group, 5- Examples thereof include a hydroxypentyl group and a 6-hydroxyhexyl group.
  • the structural unit (c) can be introduced by using a hydroxyl group-containing vinyl monomer as a polymerization component.
  • hydroxyl-containing butyl monomers include 2-hydroxyethyl vinyl ether, 3-hydroxypropyl vinyl ether, 2-hydroxypropyl vinyl ether, 4-hydroxybutyl vinyl ether, 3-hydroxybutyl vinyl ether, 5-hydroxypentyl.
  • Hydroxyl-containing butyl ethers such as vinyl ether, 6-hydroxyhexyl vinyl ether, etc.
  • hydroxyl-containing butyl ethers such as 2-hydroxyethyl allyl ether, 4-hydroxybutyl allyl ether, glycerol monoallyl ether, allyl alcohol, etc. Can be mentioned.
  • hydroxyl group-containing vinyl monomers include 2-hydroxyethyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and force prolatatone ( (Meth) acrylate, polypropylene glycol (meth) atrelate, etc. can be used.
  • the content of the structural unit (c) is 100 mol% with the total of the structural unit (a) and (b-1) or (b-2) and (c) , preferably in the 5 to 70 mole 0/0.
  • the reason for this is that when the content is less than 5 mol%, the solubility of the hydroxyl group-containing fluoropolymer in the organic solvent may be reduced.
  • the content exceeds 70 mol%, This is because the optical properties such as transparency and low reflectivity of the hydroxyl-containing fluorine-containing polymer may deteriorate. is there.
  • the content of the structural unit (c) is determined by adding the total of the structural units (a), (b-1) or (b-2), and (c) to 100 mol 0 / when set to 0, further preferably a more favorable Mashigu 5-30 mole percent of 5 to 40 mole 0/0.
  • the hydroxyl group-containing fluoropolymer preferably further comprises the following structural unit (d).
  • R 8 and R 9 may be the same or different and each represents a hydrogen atom, an alkyl group, a non-alkylated alkyl group or an aryl group]
  • the alkyl group of R 8 or R 9 is an alkyl group having 1 to 3 carbon atoms such as a methyl group, an ethyl group, or a propyl group.
  • a fluoroalkyl group having 1 to 4 carbon atoms such as a trifluoromethyl group, a perfluoroethyl group, a perfluoropropyl group, a perfluorobutyl group, or the like is a phenyl group or a benzyl group.
  • a naphthyl group and the like is a phenyl group or a benzyl group.
  • the structural unit (d) can be introduced by using an azo group-containing polysiloxane compound having a polysiloxane segment represented by the formula (4).
  • an azo group-containing polysiloxane compound having a polysiloxane segment represented by the formula (4).
  • Examples of such an azo group-containing polysiloxane compound include compounds represented by the following formula (5).
  • R 1Q to R ′′ represent the same or different hydrogen atoms, alkyl groups or cyan groups, and R ′′ to R 17 may be the same or different.
  • the structural unit (d) is included in the hydroxyl group-containing fluoropolymer as a part of the structural unit (e).
  • R 1Q to R 13 , R ′′ to R 17 , p, q, s, t, and y are the same as the above formula (5).
  • examples of the alkyl group represented by R 1Q to R 13 include alkyl groups having 1 to 12 carbon atoms such as a methyl group, an ethyl group, a propyl group, a hexyl group, and a cyclohexyl group.
  • the alkyl group represented by “ ⁇ R 17 ” includes an alkyl group having 1 to 3 carbon atoms such as a methyl group, an ethyl group, and a propyl group.
  • the azo group-containing polysiloxane compound represented by the above formula (5) is particularly preferably a compound represented by the following formula (7).
  • the content of the structural unit (d) is 0.1 to 10 mole parts with respect to 100 mole parts in total of the structural units (a), (b-1), and (c). It is preferable to do.
  • the reason for this is that when the content is less than 0.1 mol part, the surface slipperiness of the cured coating film decreases and the scratch resistance of the coating film decreases.
  • the content exceeds 10 parts by mole the hydroxyl group-containing fluoropolymer is inferior in transparency, and when used as a coating material, repelling or the like is likely to occur during coating. Because there is.
  • the content of the structural unit (d) is set to 100 mol parts in total of the structural units (a), (b-1), (b-2), and (c). Thus, it is more preferably 0.1 to 5 mole parts, and still more preferably 0.1 to 3 mole parts. For the same reason, it is desirable that the content of the structural unit (e) is determined so that the content of the structural unit (d) contained therein falls within the above range.
  • the hydroxyl group-containing fluoropolymer preferably further comprises the following structural unit (f).
  • R 18 represents a group having an emulsifying action
  • the group having an emulsifying action for R 18 has both a hydrophobic group and a hydrophilic group, and the hydrophilic group is a polyether structure such as polyethylene oxide or polypropylene oxide.
  • the group is preferred. Specific examples include Adeka Soap NE-30 and ER-30 manufactured by Asahi Denki Kogyo.
  • the content of the structural unit (f) is 0 with respect to 100 mol parts of the total of the structural units (a) and (1 ) 1) or 0 ) -2) and (c). It is preferable to be 1 to 5 mole parts. This is because, when the content is 0.1 mol part or more, the solubility of the hydroxyl group-containing fluoropolymer in the solvent is improved. On the other hand, if the content is within 5 mol parts, the curable resin composition This is because the stickiness of objects does not increase excessively, handling becomes easy, and moisture resistance does not decrease even when used as a coating material.
  • the content of the structural unit (f) is set to 100 mol parts in total of the structural units (a) and (b-1) or (b-2) and (c). More preferably, the content is 0.1 to 3 mol parts, and more preferably 0.2 to 3 mol parts.
  • the hydroxyl group-containing fluoropolymer preferably has a polystyrene equivalent number average molecular weight of 5,000 to 500,000 as measured by gel permeation chromatography using tetrahydrofuran as a solvent.
  • the reason for this is that when the number average molecular weight is less than 5,000, the mechanical strength of the hydroxyl group-containing fluoropolymer may be reduced.
  • the number average molecular weight exceeds 500,000, it will be described later. This is because the viscosity of the curable resin composition becomes high and thin film coating may be difficult.
  • the hydroxyl group-containing fluoropolymer has a polystyrene-reduced number average molecular weight of preferably 10,000 to 300,000, more preferably 10,000 to 100,000.
  • the ethylenically unsaturated group-containing fluorine-containing polymer comprises the above-mentioned compound containing one isocyanate group, at least one ethylenically unsaturated group, and a hydroxyl group-containing fluorine-containing polymer. It is preferable to carry out the reaction at a hydroxyl group molar ratio of 1.1 to 1.9. The reason for this is that if the molar ratio is less than 1.1, the scratch resistance and durability may be reduced. On the other hand, if the molar ratio exceeds 1.9, the application of the curable resin composition will be difficult. This is because the scratch resistance of the membrane after immersion in an alkaline aqueous solution may be lowered.
  • the molar ratio of the isocyanate group Z hydroxyl group is preferably 1.1 to 1.5, more preferably 1.2 to 1.5.
  • the amount of component (A) added is usually 1 to 90% by mass with respect to the total amount of the composition other than the organic solvent. The reason for this is that when the addition amount is less than 1% by mass, the antifouling property and slipperiness of the curable resin composition are lowered and the performance as an antireflection film cannot be maintained, while the addition amount is 90% by mass. This is because if it exceeds%, the scratch resistance of the cured coating film of the curable resin composition may not be obtained.
  • component (A) it is more preferable to add 1 to 80% by mass of component (A). More preferably, the value is in the range of 5 to 60% by mass.
  • Component (B) is blended in the cured product of the curable resin composition of the present invention in order to exhibit a low refractive index and scratch resistance.
  • Component (B) has the effect of forming voids in the coating film and greatly reducing the refractive index of the coating film. In terms of hardness, it exhibits harder scratch resistance than component (A), but by itself, the binding force between the particles is reduced, and scratch resistance cannot be obtained.
  • the chain spherical silica particles constituting the component (B) are a plurality of substantially spherical silica particles (hereinafter sometimes simply referred to as “silica particles”) connected in a linear or branched form. This refers to the silica particles that are present.
  • the chain spherical silica particles preferably have two or more number average particle diameters 1 to: substantially spherical silica particles having a LOOnm connected in a linear or branched form.
  • substantially spherical means that particles having an aspect ratio of 1 to LO may be used, even if they are indefinite shapes that are not necessarily true spheres.
  • the number average particle diameter of the substantially spherical silica particles is measured with a transmission electron microscope.
  • the specific shape of the chain spherical silica particles includes, for example, a bead shape having a branch as shown in Figs. 2 and 3 (pearl-slide shape), or two silica particles as shown in Fig. 4.
  • the shape is a concatenated shape.
  • normal spherical silica particles in which the particles are not connected are shown in FIG.
  • the individual particles mainly composed of silica known particles can be used, and if the shape is substantially spherical, not only ordinary colloidal silica but also hollow particles, porous particles, core shells. It may be mold particles. However, hollow particles and porous particles are preferred from the viewpoint of reducing the refractive index of the composition. Further, colloidal silica having a solid content of 5 to 40% by mass is preferable.
  • the dispersion medium is water! /
  • organic solvents are preferred.
  • the organic solvent include alcohols such as methanol, isopropyl alcohol, ethylene glycolol, butanol, ethylene glycol monopolypropyl ether; ketones such as methyl ethyl ketone and methyl isobutyl ketone; aromatic carbonization such as toluene and xylene. Hydrogens; Amides such as dimethylformamide, dimethylacetamide, N-methylpyrrolidone; Ethyl acetate, butyl acetate, ⁇ -petite Examples include esters such as oral ratatones; ethers such as tetrahydrofuran and 1,4 dioxane. Among these, alcohols and ketones are preferred, and ketones are particularly preferred. These organic solvents can be used alone or in combination as a dispersion medium.
  • Examples of commercially available chain spherical silica particles that can be used in the present invention include, for example, Nissan Chemical Industries, Ltd. trade names: Snowtex PS-M, PS-S, PS-SO, UP, OU P, manufactured by Sakai Chemical Industry Co., Ltd. Trade names: PL-1, PL-2, PL-3, PL-3H, and the like.
  • a surface of chain spherical silica that has been subjected to a surface treatment such as chemical modification can be used.
  • a hydrolyzable silicon compound having one or more alkyl groups in the molecule or a hydrolyzate thereof. And the like can be reacted.
  • hydrolyzable silicon compounds include trimethylmethoxysilane, tryptylmethoxysilane, dimethyldimethoxysilane, dibutinoresimethoxysilane, methinoretrimethoxysilane, butinoretrimethoxysilane, octyltrimethoxysilane, dodecyl.
  • a hydrolyzable silicon compound having one or more reactive groups in the molecule can be used. Hydrolyzable silicon compounds having one or more reactive groups in the molecule include, for example, urea propyltrimethoxysilane, ⁇ — (2—
  • Examples of those having a thiol group, such as (xyl) ethyltrimethoxysilane include 3-mercaptopropyltrimethoxysilane.
  • the chain-spherical silica particles (B) are bound to an organic compound containing a polymerizable unsaturated group (hereinafter sometimes referred to as "specific organic compound”). By comprising in this way, it can co-crosslink with radically polymerizable (meth) acrylic compound (component (D) mentioned later), and scratch resistance is improved.
  • specific organic compound organic compound containing a polymerizable unsaturated group
  • the specific organic compound used in the present invention is a polymerizable compound containing a polymerizable unsaturated group in the molecule.
  • examples thereof include ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -atarioxypropylpropyltrimethoxysilane, vinyltriacetoxysilane, vinyltrimethoxysilane, and the like.
  • a compound further containing a group represented by the following formula (11) in the molecule, a compound having a silanol group in the molecule, or a compound that generates a silanol group by hydrolysis is used. I can do it.
  • X represents ⁇ , 0 (oxygen atom) or S (Yu atom), ⁇ represents ⁇ or S ⁇ ]
  • the polymerizable unsaturated group contained in the specific organic compound is not particularly limited.
  • the polymerizable unsaturated group includes, but is not limited to, atalyloyl group, methacryloyl group, vinyl group, probe group, butagel group, styryl group, ethynyl group, cinnamoyl group, Maleate groups and acrylamide groups can be mentioned as preferred examples.
  • This polymerizable unsaturated group is a structural unit that undergoes addition polymerization with active radical species.
  • the specific organic compound preferably further contains a group represented by the formula (11) in the molecule.
  • the specific organic compound is a compound having a silanol group in the molecule (hereinafter referred to as “silanol group-containing compound” t) or a compound that generates a silanol group by hydrolysis (hereinafter referred to as “silanol group-generating compound”). Is preferred).
  • silanol group-generating compound include compounds having an alkoxy group, an aryloxy group, a acetoxy group, an amino group, a halogen atom, etc. on the silicon atom.
  • An alkoxy group or an aryloxy group is formed on the silicon atom.
  • a compound containing the compound, that is, an alkoxysilyl group-containing compound or an aryloxysilyl group-containing compound is preferable.
  • the silanol group-forming site of the silanol group or the silanol group-generating compound is a structural unit that binds to the oxide particles by a condensation reaction or a condensation reaction that occurs following hydrolysis.
  • the specific organic compound include, for example, a compound represented by the following formula (12).
  • R 19 and R 2Q are the same or different hydrogen atoms, alkyl groups having 1 to 8 carbon atoms or aryl groups, and a represents a number of 1, 2 or 3.
  • R 19 and R 2 ° include methyl, ethyl, propyl, butyl, octyl, phenol, xylyl group and the like.
  • Examples of the group represented by [(R 19 0) R 20 Si—] include, for example, a trimethoxysilyl group and a triethoxy group.
  • Examples thereof include a silyl group, a triphenoxysilyl group, a methyldimethoxysilyl group, and a dimethylmethoxysilyl group. Of these groups, a trimethoxysilyl group or a triethoxysilyl group is preferable.
  • R 21 is a divalent organic group having an aliphatic or aromatic structure having 1 to 12 carbon atoms, and may contain a chain, branched or cyclic structure.
  • examples of such an organic group include methylene, ethylene, propylene, butylene, hexamethylene, cyclohexylene, phenylene, xylylene, and dodecamethylene.
  • preferred examples are methylene, propylene, cyclohexylene, and phenylene.
  • R 22 is a divalent organic group, and usually a molecular weight of 14 to 10,000, preferably a medium force of a divalent organic group having a molecular weight of 76 or 500 is selected.
  • chain polyalkylene groups such as hexamethylene, otatamethylene, dodecamethylene, etc .
  • alicyclic or polycyclic divalent organic groups such as cyclohexylene, norvolylene, etc .
  • phenylene, naphthylene, biphenylene, And divalent aromatic groups such as polyphenylene, and these alkyl group-substituted and aryl-substituted groups.
  • these divalent organic groups may include a polyether bond, a polyester bond, a polyamide bond, a polycarbonate bond, which may contain an atomic group containing an element other than carbon and hydrogen atoms, and further in the above formula (11). Indicating groups can also be included.
  • R 23 is a (b + 1) -valent organic group, and is preferably selected from a chain, branched or cyclic saturated hydrocarbon group and unsaturated hydrocarbon group.
  • Z represents a monovalent organic group having a polymerizable unsaturated group in the molecule that undergoes an intermolecular crosslinking reaction in the presence of an active radical species.
  • an active radical species for example, ataryloyl (oxy) group, meta-atallyloyl (oxy) group, bur (oxy) group, probe (oxy) group, butagel (oxy) group, styryl (oxy) group, ethur ( Oxy) group, cinnamoyl (oxy) group, maleate group, allylamido group, methacrylamide group and the like.
  • an allyloyl (oxy) group and a methacryloyl (oxy) group are preferable.
  • b is preferably a positive integer of 1 to 20, more preferably 1 to 10, particularly preferably 1 to 5.
  • the method described in JP-A-9-100111 can be used. That is, (i) it can be carried out by an addition reaction of mercaptoalkoxysilane, polyisocyanate compound, and active hydrogen group-containing polymerizable unsaturated compound. Alternatively, the reaction can be performed by a direct reaction between a compound having an alkoxysilyl group and an isocyanate group in the molecule and an active hydrogen-containing polymerizable unsaturated compound. Furthermore, (c) it can be synthesized directly by an addition reaction between a compound having a polymerizable unsaturated group and an isocyanate group in the molecule and mercaptoalkoxysilane or aminosilane.
  • (i) is preferably used for synthesizing the compound represented by the formula (12). More specifically, for example,
  • mercaptoalkoxysilanes include mercaptopropyltrimethoxysilane, mercaptopropyltriethoxysilane, mercaptopropylmethyldiethoxysilane, mercaptopropyldimethoxymethylsilane, mercaptopropylmethoxydimethylsilane, mercaptopropyltriphenoxysilane, mercapto Propyl Tribute And xylsilane.
  • mercaptopropyltrimethoxysilane and mercaptopropyltriethoxysilane are preferable.
  • an addition product of an amino-substituted alkoxysilane and an epoxy group-substituted mercaptan, or an addition product of an epoxysilane and an ⁇ , ⁇ -dimethylcaptoy compound can also be used.
  • the polyisocyanate compound used in the synthesis of the specific organic compound is selected from among the polyisocyanate compounds composed of chain saturated hydrocarbons, cyclic saturated hydrocarbons, and aromatic hydrocarbons. Can do.
  • polyisocyanate compounds examples include 2,4 tolylene diisocyanate, 2,6 tolylene diisocyanate, 1,3 xylylene diisocyanate, 1, 4-Xylylene diisocyanate, 1,5 Naphthalene diisocyanate, m-Phenolene diisocyanate, p-Phenolene diisocyanate, 3,3, -Dimethylolene 4,4, -Diphenylmethane diisocyanate, 4,4 '-Diphenylmethane diisocyanate, 3,3, -dimethylphenolene diisocyanate, 4,4, -biphenol-diisocyanate, 1,6 hexanediisocyanate, isophorone diisocyanate, methylenebis ( 4 cyclohexinolesocyanate), 2, 2,4 trimethylhexamethylene diisocyanate, bis (2-isocyanateethyl) fumarate, 6 isopropyl 1
  • 2,4 tolylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate, methylene bis (4-cyclohexylenoisocyanate), 1,3 bis (isocyanate methyl) cycloto Xane, etc. are preferred. These can be used alone or in combination of two or more.
  • Examples of these active hydrogen-containing polymerizable unsaturated compounds include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2- Hydroxy-1-3-propyloxypropyl (meth) ate, 1,4-butanediol mono (meth) acrylate, 2-hydroxyalkyl (meth) attalyloyl phosphate, 4-hydroxycyclohexyl (meth) acrylate, 1, 6—Hexanediol mono (meth) atarylate, neopentyldaricomonomono (meth) atalylate, trimethylolpropanedi (meth) atalylate, trimethylolethanedi (meth) atalylate, pentaerythritol tri (meth) acrylate Dipentaerythritol penta (meth) a And the like can be given Re
  • a compound obtained by addition reaction of a glycidyl group-containing compound such as alkyl glycidyl ether, allyl glycidyl ether, glycidyl (meth) acrylate, and (meth) acrylic acid can be used.
  • a glycidyl group-containing compound such as alkyl glycidyl ether, allyl glycidyl ether, glycidyl (meth) acrylate, and (meth) acrylic acid
  • 2-hydroxyxetyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, pentaerythritol tri (meth) acrylate and the like are preferable.
  • the surface treatment method of the particles with the specific organic compound is not particularly limited, but it can also be produced by mixing the specific organic compound and particles, heating and stirring.
  • the reaction is preferably carried out in the presence of water in order to efficiently combine the silanol group-generating site of the specific organic compound with the particles.
  • the surface treatment can be performed by a method including an operation of mixing at least the particles and the specific organic compound.
  • the reaction amount of the particles and the specific organic compound is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, particularly preferably, with the total of the particles and the specific organic compound being 100% by mass. Is 1% by mass or more. If the content is less than 0.01% by mass, the transparency and scratch resistance of the resulting cured product may be insufficient due to insufficient dispersibility of the particles in the composition.
  • alkoxysilyl group-containing compound represented by the formula (12) as an example of the specific organic compound.
  • the amount of water consumed by hydrolysis of the alkoxysilane compound during the surface treatment should be such that at least one alkoxy group on the silicon in one molecule is hydrolyzed.
  • the amount of water added or present during hydrolysis is at least one third of the number of moles of all alkoxy groups on the silicon, more preferably two minutes of the number of moles of all alkoxy groups. 1 to less than 3 times.
  • the product obtained by mixing the alkoxysilane compound and the particles in a completely moisture-free condition is a product in which the alkoxysilane compound is physically adsorbed on the particle surface.
  • the effect of developing high hardness and scratch resistance is low.
  • the alkoxysilane compound is separately subjected to a hydrolysis operation, and then mixed with powder particles or a solvent-dispersed sol of particles, followed by heating and stirring.
  • a method of hydrolyzing the alkoxysilane compound in the presence of particles; or a method of surface-treating the particles in the presence of other components such as a polymerization initiator can be selected.
  • a method in which the alkoxysilane compound is hydrolyzed in the presence of particles is preferable.
  • the temperature is preferably 0 ° C or higher and 150 ° C or lower, more preferably 20 ° C or higher and 100 ° C or lower.
  • the processing time is usually in the range of 5 minutes to 24 hours.
  • an organic solvent may be added for the purpose of smoothly and uniformly carrying out the reaction with the alkoxysilane compound.
  • organic solvents include alcohols such as methanol, ethanol, isopropanol, butanol, and octanol; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; ethyl acetate, butyl acetate, and lactate.
  • Esters such as ethylene and Y-butyrolatatatone; ethers such as ethylene glycol monomethyl ether and polyethylene glycol monobutyl ether; aromatic hydrocarbons such as benzene, toluene and xylene; dimethylformamide, dimethylacetamide, N-methylpyrrole Examples include amides such as redone. Among them, methanol, isopropanol, butanol, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, butyl acetate, toluene And xylene are preferred.
  • the amount of these solvents added is not particularly limited as long as it meets the purpose of carrying out the reaction smoothly and uniformly.
  • a solvent-dispersed sol When a solvent-dispersed sol is used as the particles, it can be produced by mixing at least the solvent-dispersed sol and the specific organic compound.
  • an organic solvent which is uniformly compatible with water may be added for the purpose of ensuring uniformity at the initial stage of the reaction and allowing the reaction to proceed smoothly.
  • an acid, salt or base may be added as a catalyst to promote the reaction.
  • the acid examples include inorganic acids such as hydrochloric acid, nitric acid, sulfuric acid, and phosphoric acid; organic acids such as methanesulfonic acid, toluenesulfonic acid, phthalic acid, malonic acid, formic acid, acetic acid, and succinic acid; methacrylic acid, acrylic acid, An unsaturated organic acid such as itaconic acid, as a salt, for example, an ammonium salt such as tetramethyl ammonium hydrochloride, tetraptyl ammonium hydrochloride, etc., and as a base, for example, Ammonia water, jetylamine, triethylamine, dibutylamine, primary amines such as cyclohexylamine, secondary or tertiary aliphatic amines, aromatic amines such as pyridine, sodium hydroxide, potassium hydroxide, tetramethylammonium hydroxide, Examples include quaternary ammonium hydrox
  • the organic acid, unsaturated organic acid, as the base tertiary Amin or quaternary ammonium - a Umuhidorokishido is preferably from 0.001 parts by mass to 1.0 parts by mass, more preferably from 0.01 parts by mass to 0.1 parts by mass with respect to 100 parts by mass of the alkoxysilane compound. 1 part by mass.
  • inorganic compounds such as zeolite, anhydrous silica and anhydrous alumina, and organic compounds such as methyl orthoformate, ethyl orthoformate, tetraethoxymethane, and tetrabutoxymethane can be used.
  • orthoesters such as methyl orthoformate and ethyl orthoformate are preferred.
  • the amount of the alkoxysilane compound bound to the particles is usually 110 ° C to 800 ° C in air as a constant value of mass loss% when the dry powder is completely burned in air.
  • the blending amount of the component (B) in the curable resin composition is usually 1 to 99% by mass with respect to the total amount of the composition other than the organic solvent, preferably 20 to 95% by mass. 90% by weight is even more preferable.
  • the amount of particles means a solid content, and when the component (B) particles are used in the form of a solvent-dispersed sol, the blending amount does not include the amount of solvent.
  • Component (B) blending amount If it is less than ⁇ % by mass, the refractive index of the resulting cured product may be insufficient in scratch resistance, and if it exceeds 99% by mass, the binding force between the particles will be insufficient. There is a risk that the abrasion resistance will be reduced.
  • a compound that generates active species upon irradiation with active energy rays or heat is used to cure the curable resin composition.
  • photopolymerization initiators examples include photoradical generators that generate radicals as active species.
  • the active energy ray is defined as an energy ray capable of decomposing a compound that generates active species to generate active species.
  • active energy rays include optical energy rays such as visible light, ultraviolet rays, infrared rays, X rays, ⁇ rays, j8 rays, and ⁇ rays.
  • ultraviolet light it is preferable to use ultraviolet light because it has a certain energy level, has a high curing speed, is relatively inexpensive, and is compact.
  • photo radical generators include, for example, acetophenone, acetophenone benzil ketal, anthraquinone, 1- (4-isopropylphenol) 2 hydroxy-1-methylpropanone 1-on, carbazole, xanthone, 4-clobenbenzophenone.
  • photopolymerization initiators 2, 2 dimethoxy-2-phenylacetophenone, 2-hydroxy-2-methyl-1-phenylpropane-1-one, 1-hydroxycyclohexyl phenyl ketone, 2, 4, 6 Trimethylbenzoyl diphosphine phosphine oxide, 2-methyl- 1 1 [4 (methylthio) phenol] 2 Morpholinopropane 1-one, 2 (dimethylamino) 1 4 (morpholinyl) phenol] 2 methanol 1) -butanone and the like are more preferable, 1-hydroxycyclohexylphenylketone, 2-methyl-11 [4 (methylthio) phenol] 2 morpholinopropane 1-ion, 2- (dimethylamino) ) -1- [4- (morpholol) phenol] -2 phenolmethyl) -1-butanone and the like.
  • the addition amount of the photopolymerization initiator is not particularly limited.
  • the solid content of the curable resin composition is 100 parts by mass. It is preferably 0.1 20 parts by mass. This is because if the amount added is less than 0.1 parts by mass, the curing reaction is insufficient and the scratch resistance may be lowered.
  • the addition amount of the photopolymerization initiator exceeds 20 parts by mass, the refractive index of the cured product increases, the antireflection effect may be reduced, and the scratch resistance may be insufficient.
  • the addition amount of the photopolymerization initiator is more preferably 1 to: L0 parts by mass.
  • thermal polymerization initiator examples include a thermal radical generator that generates a radical as the active species.
  • thermal radical generators examples include benzoyl peroxide, tert-butyloxybenzoate, azobisisobutyoxy-tolyl, acetylyl peroxide, lauryl peroxide, tert-butyl peracetate, tamil peroxide, tert-butyl peroxide, tert-butyl hydride Oral peroxide, 2,2, -azobis (2,4-dimethylvale-tolyl), 2,2, -azobis (4-methoxy-2,4-dimethylvale-tolyl), etc., alone or in combination of two or more Can be mentioned.
  • the addition amount of the thermal polymerization initiator is not particularly limited, but the solid content of the curable resin composition (total of components (A) and components (B) other than organic solvent) is 100 parts by mass.
  • the content is preferably 0.1 to 20 parts by mass. This is because when the amount added is less than 0.1 parts by mass, the curing reaction becomes insufficient and the scratch resistance and the scratch resistance after immersion in an alkaline aqueous solution may be lowered.
  • the addition amount of the photopolymerization initiator exceeds 20 parts by mass, the refractive index of the cured product increases and the antireflection effect may decrease.
  • the thermal polymerization initiator in an amount of 1 to L0 parts by mass.
  • the (meth) acrylate compound is used for enhancing the scratch resistance of a cured product obtained by curing a curable resin composition and an antireflection film using the cured product.
  • This compound is not particularly limited as long as it is a compound containing at least one (meth) attaroyl group in the molecule.
  • Monomers having one (meth) atallyloyl group include, for example, acrylamide, (meth) acryloylmorpholine, 7-amino-3,7-dimethyloctyl (meth) acrylate, isobutoxymethyl (meth) acrylamide, isobornyloxychetyl ( (Meth) Atarylate, Isovolyl (Meth) Atylate, 2-Ethylhexyl (Meth) Atylate, Ethyl Jetylene Glycol (Meth) Atylate, t-Octyl (Meth) acrylamide, Diacetone (Meth) Acrylate Mido, dimethylaminoethyl (meth) acrylate, jetylaminoethyl (meth) acrylate, lauryl (meth) acrylate, dicyclopentagen (meth) acrylate, dicyclopente-roxetyl (meth) acrylate, dicyclopentale (Met
  • examples of the monomer having two or more (meth) atalyloyl groups include, for example, ethylene glycol di (meth) acrylate, dicyclopentadidi (meth) acrylate, triethylene glycol dialate, tetraethylene glycol diacrylate.
  • the composition of the present invention preferably contains a compound containing at least two (meth) atalyloyl groups in the molecule. More preferably, a compound containing at least 3 or more (meth) atalyloyl groups in the molecule is particularly preferable.
  • Such three or more compounds include the tri (meth) atareto toy compounds exemplified above, tetra (meth) atta relay toy compounds, penta (meth) atalyto toy compounds, hexa ( It is possible to select from among meta) attareito toy compounds, etc.
  • trimethylolpropane tri (meth) acrylate EO-modified trimethylol propane tri (meth) acrylate, dipentaerythritol Sa (meth) acrylate, dipentaerythritol penta (meth) acrylate, and ditrimethylol propanetetra (meth) acrylate are particularly preferred.
  • Each of the above compounds may be used alone or in combination of two or more.
  • the (meth) atta relay toy compound may contain fluorine.
  • examples of such compounds include perfluorooctylethyl (meth) acrylate, octafluoropentyl (meth) acrylate, trifluoroethyl (meth) acrylate, and the like alone or in combination The combination of the above is mentioned.
  • the amount of component (D) to be added is not particularly limited, but is a curable resin composition.
  • the solid content of the product (total of component (A) and component (B) other than organic solvent) is usually 1 to 30 parts by mass with respect to 100 parts by mass. The reason for this is that if the amount added is less than 1 part by mass, the scratch resistance of the cured coating film of the curable resin composition may not be obtained, while the amount added exceeds 30 parts by mass. This is because the refractive index of the cured coating film of the curable resin composition becomes high and a sufficient antireflection effect may not be obtained.
  • the amount of addition of the component (D) is 1 to 20 parts by mass, and it is more preferable that the value be within the range of 1 to 15 parts by mass.
  • the curable resin composition is preferably further diluted with an organic solvent.
  • organic solvents include esters such as ethyl acetate, butyl acetate, ethyl acetate, propylene glycol monomethyl acetate, methyl amyl ketone, ketones such as methyl isobutyl ketone, methyl ethyl ketone, acetone, t-butanol, isopropanol,
  • esters such as ethyl acetate, butyl acetate, ethyl acetate, propylene glycol monomethyl acetate, methyl amyl ketone, ketones such as methyl isobutyl ketone, methyl ethyl ketone, acetone, t-butanol, isopropanol,
  • alcohols such as propylene glycol monomethyl ether can be mentioned.
  • the amount of dilution with an organic solvent is not particularly limited, it is preferable to add 100 to parts by weight of an organic solvent with respect to 100 parts by weight of the total solid content. For this reason, when the addition amount is less than 100 parts by mass or 100,000 parts by mass or more, an optical thin film suitable for an antireflection film cannot be obtained.
  • a photosensitizer In the curable resin composition, a photosensitizer, a polymerization inhibitor, a polymerization initiation assistant, a leveling agent, a wettability improver, a surfactant, an acceptable agent are used as long as the objects and effects of the present invention are not impaired. It is also preferable to further contain additives such as plasticizers, ultraviolet absorbers, antioxidants, antistatic agents, silane coupling agents, inorganic fillers other than the component (ii), pigments, and dyes.
  • additives such as plasticizers, ultraviolet absorbers, antioxidants, antistatic agents, silane coupling agents, inorganic fillers other than the component (ii), pigments, and dyes.
  • the curable resin composition of the present invention comprises the above (ii) ethylenically unsaturated group-containing fluoropolymer, the above (ii) component, and, if necessary, the above (C) component and (D) component, ( ⁇ ) Organic solvent, and (F) Additives are added and mixed at room temperature or under heating conditions.
  • a mixer such as a mixer, an ader, a ball mill, or a three roll.
  • the cured product of the present invention is obtained by curing the curable resin composition of the present invention.
  • the curing conditions of the curable resin composition for example, when an active energy ray is used, the exposure dose is set to a value within the range of 0.01 to 10 j / cm 2. It is preferable to do this.
  • the exposure amount it is more preferable to set the exposure amount to a value in the range of 0.05 to 5 jZcm 2 , and more preferably to a value in the range of 0.1 to 3 jZcm 2 .
  • the curing atmosphere be an inert gas atmosphere in order to prevent polymerization inhibition by oxygen.
  • the inert gas include helium, argon, nitrogen, carbon dioxide and the like.
  • the atmosphere of these inert gases preferably has a residual oxygen concentration of 5000 ppm or less, more preferably lOOOppm or less, and particularly preferably lOOppm or less. If the residual oxygen concentration exceeds 5000 ppm, poor curing may occur.
  • the curable resin composition When the curable resin composition is cured by heating, it is preferably heated at a temperature in the range of 30 to 200 ° C for 1 to 180 minutes. By heating in this way, an antireflection film having excellent scratch resistance can be obtained more efficiently without damaging the substrate and the like.
  • the cured product of the present invention has a very low refractive index and excellent scratch resistance.
  • the antireflection film of the present invention is a low-concentration made of a cured product obtained by curing the curable resin composition. Includes a refractive index layer. Further, the antireflection film of the present invention has a high refractive index layer under the low refractive index layer.
  • a hard coat layer and z or a substrate A hard coat layer and z or a substrate.
  • Figure 1 shows a powerful antireflection coating 10. As shown in FIG. 1, a hard coat layer 14 and a low refractive index layer 18 are laminated on a substrate 12.
  • the low refractive index layer is composed of a cured product obtained by curing the curable resin composition of the present invention. Since the configuration and the like of the curable resin composition are as described above, a specific description thereof will be omitted, and the refractive index and thickness of the low refractive index layer will be described below.
  • the curable resin composition of the present invention uses chain spherical silica particles, voids are formed between the particles, and it is immediately formed in the film as compared with the case of using normal spherical silica particles.
  • a cured film having a very low refractive index can be formed by the voids.
  • the refractive index of the cured product obtained by curing the curable resin composition (the refractive index of Na-D line, measurement temperature 25 ° C), that is, the refractive index of the low refractive index film should be 1.43 or less. It is preferable. The reason for this is that if the refractive index of the low refractive index film exceeds 1.43, the antireflection effect may be insufficient.
  • the refractive index of the low refractive index film is more preferably 1.40 or less, and even more preferably 1.37 or less.
  • the other low refractive index films exceed 1.46. It may be a value.
  • the refractive index difference from the underlying hard coat layer is preferably 0.05 or more.
  • the refractive index difference between the low refractive index layer and the hard coat layer is less than 0.05, the synergistic effect of these antireflective film layers cannot be obtained, and the antireflection effect decreases instead. You may Because there is.
  • the refractive index difference between the low refractive index layer and the underlying hard coat layer it is more preferable to set the refractive index difference between the low refractive index layer and the underlying hard coat layer to a value within the range of 0.05 to 0.7. It is more preferable to use the value of.
  • the thickness of the low refractive index layer is not particularly limited, but is preferably 50 to 300 nm, for example. This is because if the thickness of the low refractive index layer is less than 50 nm or more than 300 nm, optical interference may occur and the antireflection effect may be reduced.
  • the thickness of the low refractive index layer is more preferably 50 to 250 nm, and more preferably 60 to 150 nm.
  • the total thickness may be 50 to 300 nm.
  • the curable composition for forming the high refractive index layer is not particularly limited.
  • epoxy resin, phenol resin, melamine resin, alkyd resin It is preferable to include one kind or a combination of two or more kinds of cyanate resin, acrylic resin, polyester resin, urethane resin, and siloxane resin. This is because with these resins, a strong thin film can be formed as the high refractive index layer, and as a result, the scratch resistance of the antireflection film can be remarkably improved.
  • the refractive index of these resins alone is 1.45 to L62, which may not be sufficient to obtain high antireflection performance. Therefore, it is more preferable to blend high refractive index inorganic particles, for example, metal oxide particles.
  • a curable composition capable of thermosetting, ultraviolet curing, and electron beam curing can be used, but an ultraviolet curable composition having good productivity is more preferably used.
  • the thickness of the high refractive index layer is not particularly limited, but is preferably, for example, 50-30, OOOnm.
  • the reason for this is that when the thickness of the high refractive index layer is less than 50 nm, when combined with the low refractive index layer, the antireflection effect may decrease the adhesion to the substrate, while the thickness This is because if the thickness exceeds 30, OOOnm, optical interference may occur and the antireflection effect may decrease. Therefore, the thickness of the high refractive index layer is more preferably 50 to: L, OOOnm, and more preferably 60 to 500 nm.
  • the total thickness may be 50 to 30 and OOOnm.
  • the thickness of a high refractive index layer can be 50-300 nm.
  • the constituent material of the hard coat layer used for the antireflection film of the present invention is not particularly limited.
  • siloxane resin, acrylic resin, melamine resin, epoxy resin, etc. can be used alone or in combination of two or more.
  • the thickness of the hard coat layer is not particularly limited, but is preferably 1 to 50 / ⁇ ⁇ , more preferably 5 to 10 m. The reason for this is that when the thickness of the hard coat layer is less than 1 ⁇ m, the adhesion of the antireflection film to the substrate may not be improved, whereas the thickness exceeds 50 / zm. This is because it may be difficult to form a uniform layer.
  • the type of substrate used in the antireflection film of the present invention is not particularly limited.
  • glass polycarbonate-based resin, polyester-based resin, acrylic-based resin, triacetylcellulose-based resin (TAC)
  • TAC triacetylcellulose-based resin
  • examples of such a base material include: By adopting an antireflection film containing these base materials, a wide range of reflections such as liquid crystal display devices and plasma displays used in monitors for televisions, televisions, mobile phones, digital cameras, digital video screens, etc. Excellent antireflection effect can be obtained in the field of application of anti-reflection coatings.
  • the antireflection film for a microlens of the present invention is an antireflection film 20 having a low refractive index film 22 which is a cured film obtained from the composition of the present invention on the surface of the microlens 24 as shown in FIG.
  • the microlens refers to a microlens array (a microlens is compounded). It is used in the sense that includes a number of substrates formed.
  • the refractive index of the low refractive index film is smaller than the refractive index of the high refractive index film. Specifically, the refractive index is preferably less than 1.45. When the refractive index exceeds 1.45, the antireflection effect may be significantly reduced when combined with a high refractive index film.
  • the refractive index of the low refractive index film is more preferably 1.43 or less, and further preferably 1.40 or less.
  • low refractive index films When a plurality of low refractive index films are provided, at least one of them may have a refractive index value within the above-mentioned range. Therefore, other low refractive index films may exceed 1.45.
  • the thickness of the low refractive index film is not particularly limited, but is preferably 50 to 300 nm, for example.
  • the thickness of the low refractive index film is less than 50 nm, the adhesion to the high refractive index film as the base may be lowered. On the other hand, if the thickness exceeds 300 nm, optical interference may occur and the antireflection effect may be reduced.
  • the thickness of the low refractive index film is more preferably 50 to 250 nm, and more preferably 60 to 200 nm! / ⁇ .
  • the total thickness should be 50 to 300 nm.
  • microlens on which the antireflection film of the present invention is formed is generally used for an imaging optical system of an on-chip color filter such as a facsimile, an electronic copying machine, a solid-state image sensor, or an optical system of an optical fiber connector. Anything that is used in can be used without problems.
  • microlens manufacturing methods include a method of making a distributed refractive index type flat microlens by ion exchange, a method of making a convex microlens by photosensitive glass, and a positive photoresist for semiconductor integrated circuits. For example, there are a manufacturing method by the melt flow method and a method of transferring the lens shape to the base by dry etching using the melted photosensitive resin as a mask.
  • a method for forming a microlens in the present invention will be described.
  • a radiation-resistant resin composition containing alkali-soluble resin for producing microlenses can be applied to the surface of a base substrate, and a solvent can be removed by a prebeta to form a coating film.
  • Application method For example, various methods such as a spray method, a roll coating method, and a spin coating method can be employed.
  • the pre-beta conditions vary depending on the type of each component, blending ratio, and the like. Usually, conditions of 70 to 90 ° C for 1 to 15 minutes are optimal.
  • the pre-coated coating film is irradiated with radiation such as ultraviolet rays through a predetermined pattern mask, and further developed with an alkali developer, and unnecessary portions are removed to form a predetermined pattern.
  • the development time is usually 30 to 180 seconds, which may be any of the liquid deposition method, the dating method and the shower method.
  • Examples of the developer include an alkaline aqueous solution, for example, inorganic alkalis such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, and ammonia; ethylamine, n-propylamine Primary amines such as: Jetylamine, secondary namines such as di-n-propylamine; Tertiary amines such as trimethylamine, methyljetylamine, dimethylethylamine, and triethylamine; Dimethylethanolamine , Tertiary amines such as methyljetanolamine and triethanolamine; pyrrole, piperidine, N-methylbiperidine, N-methylpyrrolidine, 1,8-diazabicyclo [5.4.0] -7-undecene, 1, 5—Dazabicyclo [4.
  • inorganic alkalis such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, and ammonia
  • an aqueous solution obtained by adding an appropriate amount of a water-soluble organic solvent such as methanol or ethanol and Z or a surfactant to the alkaline aqueous solution can also be used as a developer.
  • the formed pattern is irradiated with radiation such as ultraviolet rays, and then this pattern is heated at a predetermined temperature, for example, 150 to 250 ° C., for a predetermined time, for example, 5 to 5 on a hot plate by a heating device such as a hot plate or oven.
  • a heating device such as a hot plate or oven.
  • a high refractive index film and a low refractive index film from a high refractive index material and a low refractive index material, respectively, it is preferable to coat the microlens.
  • coating methods include datebing, spraying, spin coating, and ink jet methods. This method can be used. Among them, spin coating method makes it easy to obtain a uniform cured film by datebing method! / Speak.
  • the means for curing the high refractive index material or the low refractive index material is not particularly limited, but for example, heating is preferable. In that case, it is preferable to heat at 30 to 200 ° C. for 1 to 180 minutes. By heating in this way, it is possible to obtain an antireflection laminate excellent in antireflection properties more efficiently without damaging the microlenses and the formed antireflection film. Preferably, heating is performed at 50 to 180 ° C. for 2 to 120 minutes, more preferably at 80 to 150 ° C. for 5 to 60 minutes.
  • the degree of curing of the high refractive index material or the low refractive index material is determined by, for example, using the amount of methylol group or alkoxylated methyl group of the melamine compound in the infrared when a melamine compound is used as the curable compound. It can be confirmed quantitatively by spectroscopic analysis or by measuring the gelation rate using a Soxhlet extractor.
  • the antireflection film for microlens of the present invention may contain various functional layers in addition to the low refractive index film shown in FIG.
  • a hard coat layer 23 may be interposed between the microlens 24 and the high refractive index film 21. That is, the antireflection film 20 including the node coat layer 23, the high refractive index film 21, and the low refractive index film 22 in order on the microlens 24 may be used. In this case, the reflectance can be further reduced by providing the high refractive index layer 21. Further, by interposing the hard coat layer 23, the adhesion of the high refractive index film 21 to the microlens 24 can be further improved.
  • an antireflection film can be formed by the low refractive index layer 22 and the high refractive index film 21 without providing a hard coat layer.
  • the high refractive index film 21 secures the function of the hard coat layer, the configuration of the antireflection film 20 becomes simple, and the production process can be simplified and the cost can be reduced.
  • the refractive index difference between the high refractive index film and the low refractive index film is preferably 0.05 or more. If the difference in refractive index is less than 0.05, the synergistic effect of these antireflection coating layers cannot be obtained, and reflection is not achieved. The prevention effect may be reduced.
  • the refractive index difference is more preferably 0.1 to 0.8, and further preferably 0.15 to 0.7.
  • the thickness of the high refractive index film is not particularly limited, but for example, 50 to 30 and OOOnm are preferable.
  • the thickness of the high refractive index film is less than 50 nm, the antireflection effect and the adhesion to the microphone lens may be lowered when combined with the low refractive index film.
  • the thickness exceeds 30, OOOnm, optical interference may occur, and the antireflection effect may decrease.
  • Thickness of high refractive index film ⁇ , 50 ⁇ : L, OOOnm force is more preferred, 60-500nm force ⁇ more preferred! / ,.
  • a plurality of high refractive index films may be provided to form a multilayer structure.
  • the total thickness of the plurality of high refractive index films is set to 50 to 30. , OOOnm.
  • the thickness of the high refractive index film can be set to 50 to 300 nm.
  • the hard coat layer is, for example, SiO, epoxy resin, acrylic resin, melamine resin
  • the thickness of the hard coat layer is not particularly limited, but specifically, 1 to 50 / ⁇ ⁇ is preferable.
  • LO / z m is more preferable. If the thickness is less than 1 ⁇ m, the adhesion of the antireflection film to the microlens may not be improved. On the other hand, if the thickness exceeds 50 m, it may be difficult to form a hard coat layer uniformly.
  • the planarization layer of the present invention is obtained by curing the curable resin composition of the present invention, and has a refractive index.
  • the solid-state imaging device 30 includes a photodiode 33, an antihalation layer 34, a color resist layer 35, a planarization layer 36, and a microlens 37 provided on a CCD substrate 32. Have it!
  • the “flat layer” refers to a layer provided between the microlens 37 and the color resist layer 35 as shown in FIG. Only)
  • the antihalation layer 34 and the color layer as shown in FIG. 9 (b) In the form of covering the microlens 37 as shown in FIG. 9 (a) (36b; also referred to as a light receiving portion flat layer between the microlenses), the antihalation layer 34 and the color layer as shown in FIG. 9 (b).
  • the deformation of the light receiving portion flattening layer (36b) between the microlenses is performed by means such as patterning exposure. 10 As shown in (a) and (b), a flattening layer (36b-2) is provided only around the microlens 37.
  • the flattening layer of the present invention in particular, the composition of the present invention described above, is provided with a low refractive index flat layer 36b on the microlens 37 as shown in FIG. It is possible to effectively prevent flare, which is a problem with microlenses such as elements. Since the composition of the present invention is radiation curable, a flat film is selectively formed only around each microlens as shown in FIG. 10 by means such as mask exposure. You can also.
  • the flat layer of the present invention is formed by coating the composition of the present invention and then curing it.
  • coating methods include datebing, spraying, die coating, slit coating, bar coating, roll coating, spin coating, curtain coating, gravure printing, silk screen, or inkjet.
  • the spin coating method is easy to obtain a uniform cured film, and is excellent in terms of the point.
  • the flat coating layer of the present invention is formed by applying the composition of the present invention by a spin coating method to form a coating film of the composition, and then irradiating with radiation to cure the coating film. Can be manufactured. When irradiating with radiation, the portion of the coating film irradiated with radiation is cured through a predetermined pattern mask to cure only the portion irradiated with the radiation. By removing by dissolving, for example, a planarization layer having a desired pattern as shown in FIG. 10 can be formed.
  • Examples of the developer include ketones such as methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone, and esters such as ethyl acetate and butyl acetate. It is preferable to use processing methods such as a shower developing method, a dip developing method, a step paddle developing method, and a vibration developing method as the conditions for the developing process.
  • processing methods such as a shower developing method, a dip developing method, a step paddle developing method, and a vibration developing method as the conditions for the developing process.
  • composition of the present invention has good coating uniformity, it has no coating, unevenness, coating unevenness, and the like, and is particularly excellent in coating by a spin coating method.
  • the solid-state imaging device of the present invention includes a base material layer, the planarization layer of the present invention, and a microlens.
  • the flat layer of the present invention includes (1) only a layer provided between the microlens and the color resist layer (color filter flat layer), and (2) a layer covering the microlens. (Light receiving portion flat layer between microlenses; including those in the form of FIGS. 9 (a) and 10), (3) Provided between the antihalation layer and the color resist layer (light receiving portion flat layer) Including all of
  • the effect of improving the light collection rate can be obtained.
  • the flat layer is provided at the position (2) above, the pattern shown in FIG.
  • a flattening layer is provided between the microlenses, and a portion is formed, and a wiring extraction place can be provided in this portion.
  • the microlens constituting the solid-state imaging device of the present invention is generally used for an imaging optical system of an on-chip color filter such as a facsimile, an electronic copying machine, a solid-state imaging device, or an optical system of an optical fiber connector. If it is used, it can be used without problems.
  • microlens manufacturing methods include a method of making a distributed refractive index type flat microlens by ion exchange, a method of making a convex microlens by photosensitive glass, and a positive photoresist for semiconductor integrated circuits. For example, there are a manufacturing method by the melt flow method and a method of transferring the lens shape to the base by dry etching using the melted photosensitive resin as a mask.
  • the method for forming the microlens in the solid-state imaging device of the present invention is as described above, and is omitted here.
  • the solid-state imaging device of the present invention can be manufactured according to the method for manufacturing a planarization layer of the present invention.
  • VPS1001 is an azo group-containing polydimethylsiloxane represented by the above formula (7) having a number average molecular weight of 70 to 90,000 and a molecular weight of the polysiloxane portion of about 10,000.
  • NE-30 is a nonionic reactive emulsifier wherein n is 9, m is 1 and u is 30 in the following formula (10).
  • TMM- 3LM- N (consisting of 40 wt% pentaerythritol Atari rate 60 mass 0/0 and pentaerythritol Lumpur tetra strike rate Among them, involved in the reaction It is only pentaerythritol triatalylate having a hydroxyl group.)
  • the following formula (14) and formula 993 parts of a composition (Ba-1) containing the compound (Ba) represented by (15) (including 220 parts of pentaerythritol tetratalate which was not involved in the reaction) was obtained.
  • NK ester A-TMM-3LM-N 50% by mass of pentaerythritol triacrylate and 40% by mass of pentaerythritol tetraacrylate, manufactured by Shin Nakamura Chemical Co., Ltd.
  • NK ester A-TMM-3LM-N 50% by mass of pentaerythritol triacrylate and 40% by mass of pentaerythritol tetraacrylate, manufactured by Shin Nakamura Chemical Co., Ltd.
  • the average particle diameter of the silica-based particles was 20 nm.
  • the average particle diameter was measured with a transmission electron microscope (FIG. 5).
  • Pearl-like silica sol (manufactured by Nissan Chemical Industries, Ltd., trade name: PS-SO (silica concentration 16%)) 80 parts, 2 parts of 10% ammonia water, and 200 parts of ethanol are mixed at room temperature and stirred. 0.5 parts of methacryloxypropyltrimethoxysilane (manufactured by Toray Dow Cowing Silicone Co., Ltd., trade name: SZ6030) was added. Then, it was made to react at 70 degreeC for 3 hours. The reaction mixture was cooled to room temperature, 200 parts of methyl isobutyl ketone was added, and the mixture was concentrated to a solid content of 30% by mass using an evaporator.
  • PS-SO silicon concentration 16%
  • Specific organic compound (Ba-1) synthesized in Production Example 3 1.59 parts, methyl ethyl ketone-dispersed silica sol (manufactured by Sakai Chemical Industry Co., Ltd., trade name: PL-1 (silica concentration 14%)) 196 parts (27.4 parts of solid content), 0.2 part of isopropanol and 0.1 part of ion-exchanged water were stirred at 80 ° C for 3 hours, and then 1.4 parts of orthoformate methyl ester was added. Furthermore, colorless transparent particle dispersion B-3 was obtained by heating and stirring at the same temperature for 1 hour.
  • Specific organic compound (Ba-2) synthesized in Production Example 4 8.7 parts, beaded silica sol (manufactured by Nissan Chemical Industries, Ltd., trade name: MEK-ST-UP (silica concentration 22%)) 125 parts ( 27.4 parts of solid content), 0.2 part of isopronool V and 0.1 part of ion-exchanged water were stirred at 80 ° C for 3 hours, and then 1.4 parts of orthoformate methyl ester was added. Further, by heating and stirring at the same temperature for 1 hour, colorless and transparent particle dispersion B-5 was obtained. After weighing 2g of B-5 in an aluminum pan, 120 The solid content was determined by drying on a hot plate at ° C for 1 hour and weighing, and it was 25% by mass. When the particles were observed with a transmission electron microscope, it was confirmed that 10 to 20 spherical silica particles were connected and had a length of about 50 to 150 nm.
  • NK ester A—TMM—3LM—N (made by Shin-Nakamura Chemical Co., Ltd.) for a powerful solution of 18.8 parts of isophorone diisocyanate and 0.2 part of dibutyltin dilaurate in a vessel equipped with a stirrer Only the pentaerythritol triatalylate having a hydroxyl group is involved.) After 93 parts are added dropwise at 10 ° C for 1 hour, the mixture is stirred at 60 ° C for 6 hours, did.
  • the product in this reaction solution that is, the amount of residual isocyanate was measured with FT-IR in the same manner as in Production Example 3, and was 0.1% by mass or less, indicating that the reaction was carried out almost quantitatively. confirmed. In addition, it was confirmed that the molecule contained a urethane bond and an allyloyl group (polymerizable unsaturated group).
  • composition (D-1) in addition to 75 parts of the compound represented by the formula (13), a composition (D-1) was obtained in which 37 parts of bentaerythritol tetraatalylate that was not involved in the reaction were mixed.
  • the composition for the silica particle-containing node coat layer prepared in Production Example 13 is used with a wire bar coater
  • the film was applied to a thickness of 3 ⁇ m and dried in an oven at 80 ° C for 1 minute to form a coating film.
  • ultraviolet rays were irradiated under a light irradiation condition of 0.9 j / cm 2 using a high-pressure mercury lamp in the air to prepare a curable resin composition coating substrate.
  • Each curable resin composition was obtained in the same manner as in Example 1 except that the composition in Table 4 was followed.
  • the unit of the component composition in the table is mass% with respect to the total solid content excluding the organic solvent.
  • Each curable resin composition was obtained in the same manner as in Example 1 except that the composition in Table 5 or Table 6 was followed.
  • the unit of the component composition in the table is mass% with respect to the total solid content excluding the organic solvent.
  • SR399E Dipentaerythritol pentaatrate (Sartoma I Co., Ltd.)
  • MEK-ST-UP Chain spherical silica sol manufactured by Nissan Chemical Industries, Ltd.
  • Antireflective films were prepared using the curable resin compositions obtained in Examples 1 to 4 and Comparative Examples 1 and 2, and the following characteristics were evaluated. The results are shown in Table 4.
  • Each curable resin composition was coated on a curable resin composition coating substrate obtained in Production Example 10 using a wire bar coater so that the film thickness was 0 .: L m.
  • the film was dried at 80 ° C. for 1 minute to form a coating film.
  • an antireflection film layer was produced by irradiating ultraviolet rays under a light irradiation condition of 0.3 jZcm 2 using a high-pressure mercury lamp under a nitrogen stream. The appearance of the obtained antireflection film was visually confirmed and evaluated according to the following criteria.
  • Each curable resin composition was applied onto a silicon wafer by a spin coater so that the thickness after drying was about 0.1 m, and then a 0.3 jZcm 2 light was applied using a high-pressure mercury lamp under nitrogen. It was cured by irradiation with ultraviolet rays under irradiation conditions. With respect to the obtained cured product, the refractive index (n 25 ) at a wavelength of 589 nm at 25 ° C. was measured using an ellipsometer.
  • the back surface of the antireflection film obtained in (1) above is painted with black spray, and a spectral reflectance measurement device (a self-recording spectrophotometer U—3410 incorporating a large sample chamber integrating sphere attachment device 150-09090, Hitachi, Ltd. ( The reflectance was measured from the microlens side in the wavelength range of 340 to 700 nm. Specifically, the reflectance of the antireflection laminate (antireflection film) at each wavelength was measured using the reflectance of the aluminum deposited film as a reference (100%). [0191] (4) Scratch resistance test (steel wool resistance test)
  • the steel film (Bonster No. 0000, manufactured by Nippon Steel Wool Co., Ltd.) is applied to the Gakushin friction fastness tester (AB-301, manufactured by Tester Sangyo Co., Ltd.) using the cured film obtained in (1) above.
  • the surface of the cured film was repeatedly rubbed 10 times under the condition of a load of 500 g, and the presence or absence of scratches on the surface of the cured film was visually confirmed and evaluated according to the following criteria.
  • a fingerprint was attached to the antireflection film obtained in (1) above, and the surface of the coating film was wiped with a non-woven fabric (Bencot S-2, manufactured by Asahi Kasei Corporation). Contamination resistance was evaluated according to the following criteria.
  • a separable flask equipped with a stirrer, condenser, nitrogen inlet and thermometer was charged with 95 g of p-tert-butoxystyrene, 5 g of styrene, 10 g of 2,2'-azobisisobutyronitrile, and 100 g of dioxan.
  • the separable flask was immersed in an oil bath, and the internal temperature was kept at 80 ° C., and polymerization was carried out for 5 hours with stirring to synthesize a resin.
  • 60 g of a 7.2% hydrochloric acid aqueous solution was added and stirred at 80 ° C.
  • the microlens photosensitive ⁇ composition obtained in Production Example 17 in a quartz substrate, 2. was spin-coated to a film thickness of 5 u m, and pre-beta for 3 minutes on a hot plate at 70 ° C .
  • the low refractive index curable resin composition obtained in Examples 5 to 8 and Comparative Examples 3 and 4 was applied to the substrate with microlenses obtained in Production Example 18 using a spin coater. ImL of the curable resin composition was dropped on the substrate and spin-coated at 500 rpm for 30 seconds and 2000 rpm for 3 minutes. Next, it was cured with a high pressure mercury lamp UZcm 2 to form a low refractive index cured film having a thickness of about 0.1 ⁇ m on the microlens.
  • the curable resin composition prepared in each example and comparative example was applied on a 4-inch silicon wafer using a spin coater (MIKASA 1H-360S type).
  • the spin coater was rotated and cured in the same manner as in the formation of the low refractive index film.
  • Each low refractive index cured film on the obtained silicon wafer was measured for refractive index (n 25 ) at a wavelength of 589 nm at 25 ° C. using an ellipsometer.
  • the low refractive index curable resin composition prepared in each Example and Comparative Example was applied on a substrate with a microlens using a spin coater (MIKASA 1H-360S type).
  • the rotation conditions and curing conditions of the spin coater were the same as the formation of the low refractive index film.
  • the resulting substrate with microlenses having a low refractive index film was visually evaluated according to the following criteria.
  • A Uniform coating with no coating unevenness, wind ripples, streaks, etc. on the entire substrate.
  • Even though there is uneven coating on a small part of the substrate, it is applied uniformly throughout.
  • Coating unevenness, wind ripples and streaks are present in more than half of the substrate.
  • the reflectance is 0.5% or less.
  • ⁇ : Reflectance exceeds 0.5% and is 1.0% or less.
  • ⁇ : Reflectance exceeds 1.0% and is 1.5% or less.
  • the turbidity (Haze value) of the microlens substrate with an antireflection film was measured using a color haze meter and evaluated according to the following criteria.
  • Haze value is 2% or less.
  • Haze value is over 2% and below 3%.
  • a 6cm cellophane tape was adhered to the microlens substrate with the antireflection film 3cm (hold 3cm) and peeled off by hand.
  • the peeled surface of the cellophane tape was visually evaluated according to the following criteria.
  • a spectral reflectance measuring device self-recording spectrophotometer U—3410 with built-in large sample chamber integrating sphere attachment device 150-09090, manufactured by Hitachi, Ltd.
  • the reflectance of the cured film at each wavelength is measured using the reflectance of the deposited aluminum film as a reference (100%), and further applied to the cured film.
  • the reflectance was measured in the same manner and evaluated according to the following criteria.
  • The wavelength shift of the minimum reflectance of the reflectance curve before and after the light resistance test is 50 nm or less
  • the decrease in maximum reflectance value is less than 1%.
  • the wavelength shift of the minimum reflectance of the reflectance curve is less than lOOnm, or the decrease in the maximum reflectance value is less than 2%.
  • the antireflection film for microlens of the present invention is excellent in bothersome prevention and excellent in transparency.
  • the low refractive index curable resin composition obtained in Examples 9 to 12 and Comparative Examples 5 and 6 was applied to the substrate with a microlens obtained in Production Example 18 using a spin coater. 10 mL of the curable resin composition was dropped on the substrate, spin-coated at 500 rpm for 5 seconds, lOOO rpm for 1 minute, and dried at 80 ° C. for 1 minute. Then harden with high pressure mercury lamp UZcm 2
  • the curable resin composition prepared in each example and comparative example was applied on a 4-inch silicon wafer using a spin coater (MIKASA 1H-360S type).
  • the spin coater was rotated and cured in the same manner as in the formation of the low refractive index film.
  • Each low refractive index cured film on the obtained silicon wafer was measured for refractive index (n 25 ) at a wavelength of 589 nm at 25 ° C. using an ellipsometer.
  • the low refractive index curable resin composition prepared in each Example and Comparative Example was applied on a substrate with a microlens using a spin coater (MIKASA 1H-360S type).
  • the rotation conditions and curing conditions of the spin coater were the same as the formation of the low refractive index film.
  • the resulting substrate with microlenses having a low refractive index film was visually evaluated according to the following criteria.
  • A Uniform coating with no coating unevenness, wind ripples, streaks, etc. on the entire substrate.
  • Even though there is uneven coating on a small part of the substrate, it is applied uniformly throughout.
  • Coating unevenness, wind ripples and streaks are present in more than half of the substrate.
  • the low refractive index curable resin composition prepared in each Example and Comparative Example was applied on a substrate with a microlens using a spin coater (MIKASA 1H-360S type).
  • the rotation conditions and curing conditions of the spin coater were the same as the formation of the low refractive index film.
  • the obtained cured film was immersed in a 2.4% tetramethylammonium hydroxide aqueous solution at 23 ° C. for 30 minutes.
  • the appearance of the cured film after rinsing with water and drying was visually observed, and X was indicated when there was a change compared to the initial stage, and ⁇ was indicated when there was no change.
  • the low refractive index curable resin composition prepared in each Example and Comparative Example was applied on a substrate with a microlens using a spin coater (MIKASA 1H-360S type).
  • the rotation conditions and curing conditions of the spin coater were the same as the formation of the low refractive index film.
  • the obtained cured film was immersed in acetone at 23 ° C for 30 minutes. The appearance of the cured film after rinsing with water and drying was visually observed, and X was indicated as having changed compared to the initial value, and ⁇ was indicated as having no change.
  • the curable resin composition of the present invention it is possible to form a cured film that is excellent in coating property and durability and has a very low refractive index and reflectance. Therefore, it is particularly useful as a material for forming a low refractive index layer of an antireflection film.
  • the curable composition of the present invention provides a cured film having a low refractive index and excellent light resistance, and also has good coatability.
  • the antireflection film for microlens of the present invention can suppress the reflection of light on the lens surface due to the refractive index difference between the air medium and the microlens, thereby improving the light transmittance of the microlens. Can do. Therefore, on-chip color filter imaging optical systems such as facsimiles, electronic copying machines, solid-state image sensors, or optical fiber connectors It can be suitably used for microlenses such as these optical systems. In particular, since the amount of light incident on the photosensitive portion of the solid-state image sensor can be increased, it can be suitably used for a microlens for a solid-state image sensor.
  • the curable resin composition of the present invention has a low refractive index, no repellency and coating unevenness, and particularly excellent coating properties by a spin coat method, so that a uniform flat coating layer can be formed.
  • the flat layer of the present invention has a low refractive index and excellent transparency.
  • the flat layer of the present invention can be selectively formed by means such as mask exposure, it is easy to form a wiring extraction place.
  • the flat layer of the present invention can be applied to solid-state imaging devices, CCDs, CMOSs, and other lens-shaped articles.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

 下記成分(A)及び(B)を含有する硬化性樹脂組成物であって、有機溶剤を除く組成物全量に対して、(A)エチレン性不飽和基含有含フッ素重合体 1~90質量%、(B)重合性不飽和基を有する有機化合物と結合されている、連鎖球状のシリカ粒子 10~99質量%、を含有する硬化性樹脂組成物であり、この硬化性樹脂組成物を硬化させた硬化物は、低屈折率層(18)として反射防止膜(10)に用いることができる。

Description

明 細 書
硬化性樹脂組成物及び反射防止膜
技術分野
[0001] 本発明は、硬化性榭脂組成物及び反射防止膜に関する。より詳細には、シリカ粒 子と、エチレン性不飽和基含有含フッ素重合体を含み、硬化させたときに、屈折率及 び反射率が低ぐ耐擦傷性、塗工性、及び耐久性に優れた硬化物が得られる硬化性 榭脂組成物、及びそのような硬化物からなる低屈折率層を有する反射防止膜に関す る。
背景技術
[0002] 液晶表示パネル、冷陰極線管パネル、プラズマディスプレイ等の各種表示パネル において、外光の映りを防止し、画質を向上させるために、低屈折率性、耐擦傷性、 塗工性、及び耐久性に優れた硬化物力 なる低屈折率層を含む反射防止膜が求め られている。
これら表示パネルにおいては、付着した指紋、埃等を除去するため表面をエタノー ル等を含侵したガーゼで拭くことが多ぐ耐擦傷性が求められて 、る。
[0003] 反射防止膜の低屈折率層用材料として、例えば、水酸基含有含フッ素重合体を含 むフッ素榭脂系塗料が知られている(例えば、特許文献 1〜3)。
しかし、このようなフッ素榭脂系塗料では、塗膜を硬化させるために、水酸基含有含 フッ素重合体と、メラミン榭脂等の硬化剤とを、酸触媒下、加熱して架橋させる必要が あり、加熱条件によっては、硬化時間が過度に長くなつたり、使用できる基材の種類 が限定されてしまうと 、う問題があった。
また、得られた塗膜についても、耐候性には優れているものの、耐擦傷性や耐久性 に乏し!/、と!/、う問題があった。
[0004] そこで、上記の問題点を解決するため、少なくとも 1個のイソシァネート基と少なくと も 1個の付加重合性不飽和基とを有するイソシァネート基含有不飽和化合物と水酸 基含有含フッ素重合体とを、イソシァネート基の数 Z水酸基の数の比が 0. 01〜1. 0 の割合で反応させて得られる不飽和基含有含フッ素ビニル重合体を含む塗料用組 成物が提案されている (例えば、特許文献 4)。
[0005] しかし、上記公報では、不飽和基含有含フッ素ビュル重合体を調製する際に、水 酸基含有含フッ素重合体のすべての水酸基を反応させるのに十分な量のイソシァネ ート基含有不飽和化合物を用いず、積極的に当該重合体中に未反応の水酸基を残 存させるものであった。
このため、このような重合体を含む塗料用組成物は、低温、短時間での硬化を可能 とするものの、残存した水酸基を反応させるために、メラミン榭脂等の硬化剤をさら〖こ 用いて硬化させる必要があった。さらに、上記公報で得られた塗膜は、塗工性、耐擦 傷性にっ ヽても十分とは 、えな ヽと 、う課題があった。
[0006] また、反射防止膜の耐擦傷性を改善するために、反射防止膜の最外層である低屈 折率膜にシリカ粒子を添加する技術が広く用いられている(例えば、特許文献 5, 6)
。しかし、多くの場合、粒径が比較的均一なシリカ粒子が 1種類用いられているため、 粒子の充填率を上げることができず、十分な耐擦傷性が得られるには至って 、な 、。
[0007] さらに、より低反射率の反射防止膜を提供するために従来よりもさらに低屈折率を 有する低屈折率膜用材料が望まれて!/、る。そこでアクリル等の榭脂成分よりも空気の 屈折率が低いことを利用して、多孔質粒子や中空粒子等の粒子内部に空隙を有す る粒子(以下、総称として中空粒子」という。)を用いた技術が知られている(例えば、 特許文献 7〜9)。
しかし、中空粒子を用いるとかかる空隙を有しない粒子(中実粒子)に比べて硬化 膜の耐擦傷性が低下する欠点があった。
[0008] また、ファクシミリ、電子複写機、固体撮像素子等のオンチップカラーフィルターの 結像光学系あるいは光ファイバ一コネクタの光学系材料として、 3〜100 /z m程度の レンズ径を有するマイクロレンズ、又はそれらのマイクロレンズを規則的に配列したマ イク口レンズアレイが使用されて 、る。
[0009] マイクロレンズは、外部からの光を、固体撮像素子等の感光部に集光する機能を有 するレンズであるが、近年の素子の高集積化により、素子のサイズが小さくなつており 、 1つの素子に入射する光量は減少する傾向にある。そのため、素子に入射する光 を損失なく感光部に集光させること (集光率の向上)が課題となっている。 [0010] この課題に対して、例えば、マイクロレンズの表層に反射防止膜を形成し、空気媒 体とレンズとの屈折率変化に起因する光の反射を抑制することが検討されている(例 えば、特許文献 10参照)。
[0011] さらに、従来の低屈折率層形成用のフッ素材料では、塗布したときのハジキ、ムラ 等により膜厚ムラが生じ、均一な画像が得られないという問題があった。また、固体撮 像素子等のマイクロレンズでは、カメラレンズから入射する光の強度が大きいと、カメ ラレンズ、リツドガラスを透過した光の一部力 カラーフィルタ表面で反射し、その光が リツドガラスで再度反射して固体撮像素子に入り、映像に映る、フレアという現象が生 じることが問題となっている。
[0012] 上記問題に対して、固体撮像素子に平坦ィ匕層を設けることにより上記課題を解決し ようとする技術が知られている(特許文献 11〜: L3)。固体撮像素子に用いられる平坦 化層としては、集光用のマイクロレンズ間の受光部平坦ィ匕層(特許文献 11)、光電変 換を行う受光部の表面を平坦化する受光部平坦化層 (特許文献 13)、受光部平坦 化層上に形成されるカラーフィルタ上に形成されるカラーフィルタ平坦化層(特許文 献 12)等が挙げられる。
[0013] しかし、平坦ィ匕層は液状硬化性榭脂組成物をスピンコート方等により塗布した後こ れを硬化せしめて製造されるものであるところ、従来の平坦化層に用いられた材料で は、屈折率が十分に低くないため、フレアを効果的に防止することが困難であり、集 光率を十分に向上させることができないという問題があった。また、液状組成物を塗 布した際のハジキゃ塗布ムラを生じやすぐこのため平坦ィ匕層の膜厚を均一にするこ とが困難であり、その結果、均一な光透過性を付与する上で問題があった。
[0014] 特許文献 1 :特開昭 57— 34107号公報
特許文献 2:特開昭 59 - 189108号公報
特許文献 3:特開昭 60— 67518号公報
特許文献 4:特開昭 61 - 296073号公報
特許文献 5:特開 2002— 265866号公報
特許文献 6:特開平 10— 316860号公報
特許文献 7:特開 2003— 139906号公報 特許文献 8:特開 2002— 317152号公報
特許文献 9:特開平 10— 142402号公報
特許文献 10 :特開平 4 223371号公報
特許文献 11:特開平 06 - 232379号公報
特許文献 12:特開平 06 - 204441号公報
特許文献 13:特開 2001— 308300号公報
[0015] 従って、本発明は、屈折率及び反射率が低ぐ耐擦傷性及び耐汚染性に優れる硬 化膜を与える硬化性榭脂組成物及びそれを用いた反射防止膜、マイクロレンズ用反 射防止膜を提供することを目的とする。
さらに、本発明は、固体撮像素子の平坦ィ匕層用の低屈折率硬化物を与え、かつス ピンコート法による塗布性に優れた放射線硬化性樹脂組成物、及びこれを用いた、 フレアの防止された固体撮像素子を提供することを目的とする。
発明の開示
[0016] 上記目的を達成できる硬化性榭脂組成物を得るため、本発明者らは鋭意研究を重 ね、組成物の成分として複数の球状シリカ粒子が連鎖した形状を有する粒子を用い ることにより、低屈折率の硬化物が得られ、シリカ粒子に重合性不飽和基を有する有 機化合物を結合させることにより、粒子同士に結着力を持たせることができ、得られる 硬化物の耐擦傷性を高めることができることを見出し、本発明を完成させた。
[0017] 本発明によれば、以下の硬化性榭脂組成物、硬化物及び反射防止膜、マイクロレ ンズ用反射防止膜、平坦化層、平坦化層の製造方法、及び固体撮像素子が提供さ れる。
1.下記成分 (A)及び (B)を含有する硬化性榭脂組成物であって、有機溶剤以外の 組成物全量に対して、
(A)エチレン性不飽和基含有含フッ素重合体 1〜90質量%
(B)重合性不飽和基を有する有機化合物によって表面変性された連鎖球状のシリカ 粒子 10〜99質量%
を含有する硬化性榭脂組成物。
2.前記 (A)エチレン性不飽和基含有含フッ素重合体が、 1個のイソシァネート基と、少なくとも 1個のエチレン性不飽和基とを含有する化合物 と、
水酸基含有含フッ素重合体と、
を反応させて得られるエチレン性不飽和基含有含フッ素重合体である上記 1に記 載の硬化性榭脂組成物。
3.前記 (A)エチレン性不飽和基含有含フッ素重合体のエチレン性不飽和基が (メタ )アクリル基である上記 1又は 2に記載の硬化性榭脂組成物。
4.前記 (B)連鎖球状シリカ粒子が、 2個以上の、数平均粒径 1〜: LOOnmの略球状 のシリカ粒子が直鎖状又は分岐した形で連結した形態である上記 1〜3のいずれか に記載の硬化性榭脂組成物。
5.前記 (B)連鎖球状シリカ粒子が、前記略球状のシリカ粒子が直鎖状又は分岐した 形で繋がった数珠状の形態、又は前記略球状のシリカ粒子が直鎖状に繋がった形 態を有する上記 4に記載の硬化性榭脂組成物。
6.さらに (C)活性エネルギー線の照射により活性種を発生する化合物を含有する上 記 1〜5のいずれか〖こ記載の硬化性榭脂組成物。
7.さらに (D) (メタ)アタリレート化合物を含有する上記 1〜6のいずれかに記載の硬 化性榭脂組成物。
8.前記 (D) (メタ)アタリレートイ匕合物力 分子内に少なくとも 2個以上の (メタ)アタリ口 ィル基を含有する化合物を含有する上記 7に記載の硬化性榭脂組成物。
9.反射防止膜用である上記 1〜8の!、ずれかに記載の硬化性榭脂組成物。
10.上記 1〜9の ヽずれかに記載の硬化性榭脂組成物を硬化させて得られる硬化物
11.上記 10に記載の硬化物力もなる低屈折率層を有する反射防止膜。
12.上記 10に記載の硬化物力もなる低屈折率層を有するマイクロレンズ用反射防止 膜。
13.上記 10に記載の硬化物からなる低屈折率膜と、これより高屈折率の硬化膜とを 有する上記 12に記載のマイクロレンズ用反射防止膜。
14.上記 1〜9の ヽずれかに記載の硬化性榭脂組成物を硬化させて得られる平坦化 層。
15.上記 1〜9のいずれかに記載の硬化性榭脂組成物をスピンコート法により塗布し て該組成物の塗布膜を形成した後に、放射線を照射して該塗布膜を硬化せしめるェ 程を有する平坦化層の製造方法。
16.パターンマスクを介して前記放射線を照射して前記塗布膜を硬化せしめた後、 現像処理することによって、パターン化された平坦化層を形成する上記 15に記載の 平坦化層の製造方法。
17.少なくとも基材層、上記 14に記載の平坦化層、及びマイクロレンズを含む固体 撮像素子。
[0018] 本発明の硬化性榭脂組成物によれば、屈折率及び反射率が低ぐ優れた耐擦傷 性及び耐汚染性を有する硬化物が得られる。
また、本発明の硬化物からなる低屈折率層を有する、本発明の反射防止膜は、優 れた反射防止特性を示す。
本発明の硬化性榭脂組成物は、連鎖球状のシリカ粒子を用いているため、これを 硬化させて得られる硬化膜は屈折率が非常に低ぐ CCD (電荷結合素子; Charge Coupled Device)等のイメージセンサーのマイクロレンズ上に塗布することで反射防 止膜又は平坦ィ匕膜として機能し、イメージセンサーの集光効率を向上させることがで きる。
[0019] 本発明のマイクロレンズ用反射防止膜は、空気媒体とマイクロレンズとの屈折率差 に起因するレンズ表面での光の反射を抑制できるため、マイクロレンズの光線透過率 を向上させることができる。このため、固体撮像素子等の感光部に入射する光量を向 上することができる。
[0020] 本発明の平坦化層用放射線硬化性榭脂組成物は、低屈折率で、スピンコート法に よる塗布性に優れている。本発明の平坦化層用放射線硬化性榭脂組成物は、塗布 したときのハジキ、塗布ムラが生じないため、塗布均一性が良ぐ従って、本発明の平 坦化層用放射線硬化物は均一な画像を与えることができる。また、均一に塗布するこ とができるため、本発明の平坦ィ匕層用放射線硬化物を含む固体撮像素子等の歩留 まりの向上が図れる。 [0021] 上記本発明の平坦化層を含む、本発明の固体撮像素子は、固体撮像素子等のマ イク口レンズで問題となるフレアが効果的に防止されている他、従来よりも屈折率の低
V、平坦化層が得られるため集光率が向上して 、る。
[0022] さらに、本発明の平坦化層用放射線硬化性組成物は、放射線照射によって硬化し うるため、マスク露光等の手段によりパターンィ匕された平坦ィ匕層を作製することができ 、例えば、各マイクロレンズの周囲(マイクロレンズ間)に平坦化層が形成されていな V、部分を設けることができる。このように平坦ィ匕層が形成されて!、な 、部分を形成で きることによって、目的とする箇所だけに平坦ィ匕層を形成できる。
図面の簡単な説明
[0023] [図 1]本発明の一実施形態による反射防止膜の断面図である。
[図 2]製造例 6で作製したメタアクリル変性連鎖球状シリカ粒子 B— 1 (数珠状シリカ粒 子)の電子顕微鏡写真である。
[図 3]製造例 7で作製したメタアクリル変性連鎖球状シリカ粒子 B— 2 (数珠状シリカ粒 子)の電子顕微鏡写真である。
[図 4]製造例 8で作製したメタアクリル変性連鎖球状シリカ粒子 B— 3の電子顕微鏡写 真である。
[図 5]製造例 5で作製したアクリル変性球状シリカ粒子 X— 1 (数珠状シリカ粒子)の電 子顕微鏡写真である。
[図 6]本発明の一実施形態であるマイクロレンズ用反射防止膜の断面図である。
[図 7]本発明の他の実施形態であるマイクロレンズ用反射防止膜の断面図である。
[図 8]本発明の一実施形態である固体撮像素子の断面図である。
[図 9]本発明の他の実施形態である固体撮像素子の断面図である。
[図 10]本発明の他の実施形態である、マイクロレンズ上に位置選択的に平坦ィ匕層を 形成した固体撮像素子のマイクロレンズ部分の断面図(a)及び平面図 (b)である。
[図 11]実施例で形成したマイクロレンズ用反射防止膜の断面図である。
[図 12]本発明の他の実施形態であるマイクロレンズ用反射防止膜の断面図である。 発明を実施するための最良の形態
[0024] 本発明の硬化性榭脂組成物、反射防止膜、マイクロレンズ用反射防止膜、平坦ィ匕 層、平坦化層の製造方法及び固体撮像素子の実施形態について以下説明する。
[0025] 1.硬化性榭脂組成物
本発明の硬化性榭脂組成物(以下、「本発明の組成物」ということがある)は、下記 の成分 (A)〜 (F)を含み得る。これらの成分のうち、(A)及び (B)は必須成分であり、 (C)〜 (F)は適宜含むことのできる任意成分である。
(A)エチレン性不飽和基含有含フッ素重合体
(B)重合性不飽和基を有する有機化合物により表面変性された連鎖球状のシリカ粒 子
(C)活性エネルギー線の照射又は熱により活性種を発生する化合物
(D) (メタ)アタリレートイ匕合物
(E)有機溶剤
(F)その他の添加剤
これらの成分にっ 、て以下説明する。
[0026] (A)エチレン性不飽和基含有含フッ素重合体
エチレン性不飽和基含有含フッ素重合体 (A)は、フッ素系ォレフインの重合物であ る。(A)成分により本発明の組成物は低屈折率、防汚性、耐薬品性、耐水性等の反 射防止膜用低屈折率材料としての基本性能を発現する。また、後述する成分 (B)の 粒子間に存在し、粒子同士の結着力を持たせるのに必要な成分である。
好ましくは、 (A)成分は、側鎖水酸基が (メタ)アクリル系化合物で変性されて 、る。 さらに好ましくは、イソシァネート基を有する (メタ)アクリル系化合物によって変性され ている。このような変性により、重合性基を有する連鎖球状シリカ粒子 (後述する成分 (B) )や (メタ)アクリル化合物 (後述する成分 (D) )と共架橋化することができ、耐擦傷 性が向上する。
[0027] エチレン性不飽和基含有含フッ素重合体は、 1個のイソシァネート基と、少なくとも 1 個のエチレン性不飽和基とを含有する化合物と、水酸基含有含フッ素重合体とを反 応させて得られる。
[0028] (1) 1個のイソシァネート基と、少なくとも 1個のエチレン性不飽和基とを含有する化合 物 1個のイソシァネート基と、少なくとも 1個のエチレン性不飽和基とを含有する化合物 としては、分子内に、 1個のイソシァネート基と、少なくとも 1個のエチレン性不飽和基 とを含有して 、る化合物であれば特に制限されるものではな 、。
尚、イソシァネート基を 2個以上含有すると、水酸基含有含フッ素重合体と反応させ る際にゲルィ匕を起こす可能性がある。
また、上記エチレン性不飽和基として、後述する硬化性榭脂組成物をより容易に硬 ィ匕させることができることから、(メタ)アタリロイル基を有する化合物がより好ま 、。 このような化合物としては、 2— (メタ)アタリロイルォキシェチルイソシァネート、 2- ( メタ)アタリロイルォキシプロピルイソシァネートの一種単独又は二種以上の組み合わ せが挙げられる。
[0029] 尚、このような化合物は、ジイソシァネート及び水酸基含有 (メタ)アタリレートを反応 させて合成することちでさる。
ジイソシァネートの例としては、 2,4 トリレンジイソシァネート、イソホロンジイソシァ ネート、キシリレンジイソシァネート、メチレンビス(4ーシクロへキシノレイソシァネアート
) , 1, 3 ビス (イソシァネートメチル)シクロへキサンが好ましい。
[0030] 水酸基含有 (メタ)アタリレートの例としては、 2 ヒドロキシェチル (メタ)アタリレート
、ペンタエリスリトールトリ(メタ)アタリレートが好ましい。
尚、水酸基含有多官能 (メタ)アタリレートの市販品としては、例えば、大阪有機化 学 (株)製 商品名 HEA、 日本化薬 (株)製 商品名 KAYARAD DPHA、 PET — 30、東亞合成(株)製 商品名 ァロニックス M— 215、 M— 233、 M— 305、 M —400等として入手することができる。
[0031] (2)水酸基含有含フッ素重合体
水酸基含有含フッ素重合体は、好ましくは、下記構造単位 (a)と、(b— 1)又は (b— 2)と、(c)とを含んでなる。
(a)下記式(1)で表される構造単位。
(b- 1)下記式 (2— 1)で表される構造単位。
(b 2)下記式 ( 2— 2)で表される構造単位。
(c)下記式 (3)で表される構造単位。 [0032] [化 1]
F R1
— C-C― (1)
[式(1)中、 R1はフッ素原子、フルォロアルキル基又は OR2で表される基 (R2はァ ルキル基又はフルォロアルキル基を示す)を示す]
[0033] [化 2]
H R3
— C-C— (2-1)
H R4
[式(2—1)中、 R3は水素原子又はメチル基を、 R4はアルキル基、—(CH ) -OR5
2 n 若しくは OCOR5で表される基 (R5はアルキル基又はグリシジル基を、 nは 0又は 1 の数を示す)、カルボキシル基又はアルコキシカルボ-ル基を示す]
[0034] [化 3]
H R3
一 C— C一 (2-2)
I I A
H 0(CH2)xR24
[式中、 R3は式(2— 1)で定義した通りであり、 R24はフロロアルキル基を示し、 Xは 0〜 2の数を示す]
[0035] [化 4]
H R6
— C-C—— (3)
H (CH2)vOR7
[式(3)中、 R6は水素原子又はメチル基を、 R7は水素原子又はヒドロキシアルキル 基を、 Vは 0又は 1の数を示す]
[0036] (i)構造単位 (a) 上記式(1)において、 R1及び R2のフルォロアルキル基としては、トリフルォロメチル 基、パーフルォロェチル基、パーフルォロプロピル基、パーフルォロブチル基、パー フルォ口へキシル基、パーフルォロシクロへキシル基等の炭素数 1〜6のフルォロア ルキル基が挙げられる。また、 R2のアルキル基としては、メチル基、ェチル基、プロピ ル基、ブチル基、へキシル基、シクロへキシル基等の炭素数 1〜6のアルキル基が挙 げられる。
[0037] 構造単位 (a)は、含フッ素ビニル単量体を重合成分として用いることにより導入する ことができる。このような含フッ素ビュル単量体としては、少なくとも 1個の重合性不飽 和二重結合と、少なくとも 1個のフッ素原子とを有する化合物であれば特に制限され るものではない。このような例としてはテトラフルォロエチレン、へキサフルォロプロピ レン、 3, 3, 3—トリフルォロプロピレン等のフルォロレフィン類;アルキルパーフルォ 口ビュルエーテル又はアルコキシアルキルパーフルォロビュルエーテル類;パーフル ォロ(メチルビ-ルエーテル)、パーフルォロ(ェチルビ-ルエーテル)、(プロピルビ -ルエーテル)、パーフルォロ(ブチノレビニノレエーテノレ)、パーフルォロ(イソブチノレビ -ルエーテル)等のパーフルォロ(アルキルビュルエーテル)類;パーフルォロ(プロ ポキシプロピルビュルエーテル)等のパーフルォロ(アルコキシアルキルビュルエー テル)類の一種単独又は二種以上の組み合わせが挙げられる。
これらの中でも、へキサフルォロプロピレンとパーフルォロ(アルキルビュルエーテ ル)又はパーフルォロ(アルコキシアルキルビュルエーテル)がより好ましぐこれらを 組み合わせて用いることがさらに好まし!/、。
[0038] 尚、構造単位 (a)の含有率は、構造単位 (a)と、(b— 1)又は (b— 2)と、(c)との合 計を 100モル%としたときに、 20〜70モル0 /0である。この理由は、含有率が 20モル %未満になると、本願が意図するところのフッ素含有材料の光学的特徴である、低屈 折率の発現が困難となる場合があるためであり、一方、含有率が 70モル%を超えると 、水酸基含有含フッ素重合体の有機溶剤への溶解性、透明性、又は基材への密着 性が低下する場合があるためである。
また、このような理由により、構造単位 (a)の含有率を、構造単位 (a)と、(b— 1)又 は(b— 2)と、(c)との合計を 100モル0 /0としたときに、 25〜65モル0 /0とするのがより 好ましく、 30〜60モル%とするのがさらに好まし!/、。
[0039] (ii)構造単位 (b— 1)
式(2—1)において、 R4又は R5のアルキル基としては、メチル基、ェチル基、プロピ ル基、へキシル基、シクロへキシル基、ラウリル基等の炭素数 1〜12のアルキル基が 挙げられ、アルコキシカルボ-ル基としては、メトキシカルボ-ル基、エトキシカルボ- ル基等が挙げられる。
[0040] 構造単位 (b— 1)は、上述の置換基を有するビニル単量体を重合成分として用いる こと〖こより導入することができる。このようなビュル単量体の例としては、メチルビ-ル エーテノレ、ェチノレビニノレエーテノレ、 n—プロピノレビニノレエーテノレ、イソプロピノレビ二ノレ エーテル、 n—ブチルビニルエーテル、イソブチルビニルエーテル、 tert—ブチルビ ニノレエーテノレ、 n—ペンチノレビニノレエーテノレ、 n—へキシノレビニノレエーテノレ、 n—ォク チノレビ-ノレエーテノレ、 n—ドデシノレビ-ノレエーテノレ、 2—ェチノレへキシノレビ-ノレエー テル、シクロへキシルビ-ルエーテル等のアルキルビュルエーテルもしくはシクロア ルキルビュルエーテル類;ェチルァリルエーテル、ブチルァリルエーテル等のァリル エーテル類;酢酸ビュル、プロピオン酸ビュル、酪酸ビュル、ピバリン酸ビュル、カプ ロン酸ビニル、バーサチック酸ビュル、ステアリン酸ビュル等のカルボン酸ビュルエス テル類;メチル (メタ)アタリレート、ェチル (メタ)アタリレート、 n—ブチル (メタ)アタリレ ート、イソブチル (メタ)アタリレート、 2—メトキシェチル (メタ)アタリレート、 2—エトキシ ェチル (メタ)アタリレート、 2- (n—プロボキシ)ェチル (メタ)アタリレート等の (メタ)ァ クリル酸エステル類;(メタ)アクリル酸、クロトン酸、マレイン酸、フマル酸、ィタコン酸 等の不飽和カルボン酸類等の一種単独又は二種以上の組み合わせが挙げられる。
[0041] 尚、構造単位 (b— 1)の含有率は、構造単位 (a)と、(b— 1)と、(c)との合計を 100 モル%としたときに、 10〜70モル%である。この理由は、含有率が 10モル%未満に なると、水酸基含有含フッ素重合体の有機溶剤への溶解性が低下する場合があるた めであり、一方、含有率が 70モル%を超えると、水酸基含有含フッ素重合体の透明 性、及び低反射率性等の光学特性が低下する場合があるためである。
また、このような理由により、構造単位 (b— 1)の含有率を、構造単位 (a)と、(b— 1) と、(c)との合計を 100モル0 /0としたときに、 20〜60モル0 /0とするのがより好ましぐ 3 0〜60モル%とするのがさらに好ましい。
[0042] (iii)構造単位 (b— 2)
また、本発明の共重合体にぉ 、て構造単位 (b 1)の代わりに (b— 2)を用いること ができる。構造単位 (b— 2)は、式(2— 2)で示されるビニル単量体を重合成分として 用いることにより導入することができる。このようなビニル単量体の具体例としては、以 下の構造式を有するものが挙げられる。
[化 5]
Figure imgf000014_0001
(式中、 R2は水素原子又はメチル基であり、 Xは 0〜2の数を表す。また、上記式中、 芳香環の中に Fと記した基は、 5つの水素の全てがフッ素原子で置換されて 、ること を示す。)
[0043] 尚、構造単位 (b— 2)の含有率は、構造単位 (a)と、(b— 2)と、(c)との合計を 100 モル%としたときに、 10〜70モル%である。この理由は、含有率が 30モル%未満に なると、水酸基含有含フッ素共重合体の有機溶剤への溶解性が低下する場合がある ためであり、一方、含有率が 60モル%を超えると、水酸基含有含フッ素共重合体の 透明性、及び低反射率性等の光学特性が低下する場合があるためである。
また、このような理由により、構造単位 (b' )の含有率を、構造単位 (a)と、(b— 1)と 、(c)との合計を 100モル0 /0としたときに、 20〜60モル0 /0とすることがより好ましぐ 30 〜60モル%とすることがさらに好ましい。
[0044] (iv)構造単位 (c)
式(3)において、 R7のヒドロキシアルキル基としては、 2—ヒドロキシェチル基、 2—ヒ ドロキシプロピル基、 3—ヒドロキシプロピル基、 4ーヒドロキシブチル基、 3—ヒドロキシ ブチル基、 5—ヒドロキシペンチル基、 6—ヒドロキシへキシル基が挙げられる。
[0045] 構造単位 (c)は、水酸基含有ビニル単量体を重合成分として用いることにより導入 することができる。このような水酸基含有ビュル単量体の例としては、 2—ヒドロキシェ チルビニルエーテル、 3—ヒドロキシプロピルビニルエーテル、 2—ヒドロキシプロピル ビニルエーテル、 4ーヒドロキシブチルビニルエーテル、 3—ヒドロキシブチルビニル エーテル、 5—ヒドロキシペンチルビニルエーテル、 6—ヒドロキシへキシルビニルェ 一テル等の水酸基含有ビュルエーテル類、 2—ヒドロキシェチルァリルエーテル、 4 ーヒドロキシブチルァリルエーテル、グリセロールモノアリルエーテル等の水酸基含有 ァリルエーテル類、ァリルアルコール等が挙げられる。
また、水酸基含有ビニル単量体としては、上記以外にも、 2—ヒドロキシェチル (メタ )アタリレート、 2—ヒドロキシブチル (メタ)アタリレート、 2—ヒドロキシプロピル (メタ)ァ タリレート、力プロラタトン (メタ)アタリレート、ポリプロピレングリコール (メタ)アタリレー ト等を用いることができる。
[0046] 尚、構造単位 (c)の含有率を、構造単位 (a)と、(b— 1)又は (b— 2)と、(c)との合 計を 100モル%としたときに、 5〜70モル0 /0とすることが好ましい。この理由は、含有 率が 5モル%未満になると、水酸基含有含フッ素重合体の有機溶剤への溶解性が低 下する場合があるためであり、一方、含有率が 70モル%を超えると、水酸基含有含フ ッ素重合体の透明性、及び低反射率性等の光学特性が低下する場合があるためで ある。
また、このような理由により、構造単位 (c)の含有率を、構造単位 (a)と、(b— 1)又 は(b— 2)と、(c)との合計を 100モル0 /0としたときに、 5〜40モル0 /0とするのがより好 ましぐ 5〜30モル%とするのがさらに好ましい。
[0047] (V)構造単位 (d)及び構造単位 (e)
水酸基含有含フッ素重合体は、さらに下記構造単位 (d)を含んで構成することも好 ましい。
[0048] (d)下記式 (4)で表される構造単位。
[化 6]
Figure imgf000016_0001
[式 (4)中、 R8及び R9は、同一でも異なっていてもよぐ水素原子、アルキル基、ノヽ ロゲン化アルキル基又はァリール基を示す]
[0049] 式 (4)にお!/、て、 R8又は R9のアルキル基としては、メチル基、ェチル基、プロピル基 等の炭素数 1〜3のアルキル基力 ハロゲンィ匕アルキル基としてはトリフルォロメチル 基、パーフルォロェチル基、パーフルォロプロピル基、パーフルォロブチル基等の炭 素数 1〜4のフルォロアルキル基等が、ァリール基としてはフエ-ル基、ベンジル基、 ナフチル基等がそれぞれ挙げられる。
[0050] 構造単位 (d)は、前記式 (4)で表されるポリシロキサンセグメントを有するァゾ基含 有ポリシロキサン化合物を用いることにより導入することができる。このようなァゾ基含 有ポリシロキサン化合物の例としては、下記式(5)で表される化合物が挙げられる。
[0051] [化 7]
Figure imgf000016_0002
(5) [式(5)中、 R1Q〜R "は、同一でも異なっていてもよぐ水素原子、アルキル基又はシ ァノ基を示し、 R"〜R17は、同一でも異なっていてもよぐ水素原子又はアルキル基を 示し、 p、 qは 1〜6の数、 s、 tは 0〜6の数、 yは 1〜200の数、 zは 1〜20の数を示す。 ]
[0052] 式(5)で表される化合物を用いた場合には、構造単位 (d)は、構造単位 (e)の一部 として水酸基含有含フッ素重合体に含まれる。
[0053] (e)下記式 (6)で表される構造単位。
[化 8]
R11 R14 R15 R10
—— C— (CH2)qCONH(CH2)s— Si— (OSi)y(CH2)tNHCO(CH2)p-C—— (6) R13 R16 R17 R12
[式 (6)中、 R1Q〜R13、 R"〜R17、 p、 q、 s、 t及び yは、上記式(5)と同じである。 ] [0054] 式(5) , (6)にお 、て、 R1Q〜R13のアルキル基としては、メチル基、ェチル基、プロピ ル基、へキシル基、シクロへキシル基等の炭素数 1〜12のアルキル基が挙げられ、 R
"〜R17のアルキル基としてはメチル基、ェチル基、プロピル基等の炭素数 1〜3のァ ルキル基が挙げられる。
[0055] 本発明にお 、て、上記式(5)で表されるァゾ基含有ポリシロキサンィ匕合物としては、 下記式(7)で表される化合物が特に好ま 、。
[0056] [化 9]
Figure imgf000017_0001
(7)
[式(7)中、 y及び zは、上記式(5)と同じである。 ]
[0057] 尚、構造単位 (d)の含有率を、構造単位 (a)と、 (b- 1)と、 (c)との合計 100モル部 に対して、 0. 1〜10モル部とすることが好ましい。この理由は、含有率が 0. 1モル部 未満になると、硬化後の塗膜の表面滑り性が低下し、塗膜の耐擦傷性が低下する場 合があるためであり、一方、含有率が 10モル部を超えると、水酸基含有含フッ素重合 体の透明性に劣り、コート材として使用する際に、塗布時にハジキ等が発生し易くな る場合があるためである。
また、このような理由により、構造単位 (d)の含有率を、構造単位 (a)と、(b— 1)又 は(b— 2)と、(c)との合計 100モル部に対して、 0. 1〜5モル部とするのがより好まし 0. 1〜3モル部とするのがさらに好ましい。同じ理由により、構造単位 (e)の含有 率は、その中に含まれる構造単位 (d)の含有率を上記範囲にするよう決定することが 望ましい。
[0058] (V)構造単位 (f)
水酸基含有含フッ素重合体は、さらに下記構造単位 (f)を含んで構成することも好 ましい。
[0059] (f)下記式 (8)で表される構造単位。
[化 10]
H R18
— C-C— (8)
H H
[式 (S)中、 R18は乳化作用を有する基を示す]
[0060] 式 (8)において、 R18の乳化作用を有する基としては、疎水性基及び親水性基の双 方を有し、かつ、親水性基がポリエチレンオキサイド、ポリプロピレンオキサイド等のポ リエーテル構造である基が好まし 、。具体的には旭電ィ匕工業製アデカリアソープ NE — 30、 ER— 30などが挙げられる。
[0061] 尚、構造単位 (f)の含有率を、構造単位 (a)と、(1) 1)又は0)— 2)と、(c)との合 計 100モル部に対して、 0. 1〜5モル部とすることが好ましい。この理由は、含有率が 0. 1モル部以上になると、水酸基含有含フッ素重合体の溶剤への溶解性が向上し、 一方、含有率が 5モル部以内であれば、硬化性榭脂組成物の粘着性が過度に増加 せず、取り扱いが容易になり、コート材等に用いても耐湿性が低下しないためである また、このような理由により、構造単位 (f)の含有率を、構造単位 (a)と、(b— 1)又 は(b— 2)と、(c)との合計 100モル部に対して、 0. 1〜3モル部とするのがより好まし ぐ 0. 2〜3モル部とするのがさらに好ましい。
[0062] (vi)分子量
水酸基含有含フッ素重合体は、ゲルパーミエーシヨンクロマトグラフィーで、テトラヒ ドロフランを溶剤として測定したポリスチレン換算数平均分子量が 5, 000-500, 00 0であることが好ましい。この理由は、数平均分子量が 5, 000未満になると、水酸基 含有含フッ素重合体の機械的強度が低下する場合があるためであり、一方、数平均 分子量が 500, 000を超えると、後述する硬化性榭脂組成物の粘度が高くなり、薄膜 コーティングが困難となる場合があるためである。
また、このような理由により、水酸基含有含フッ素重合体のポリスチレン換算数平均 分子量を 10, 000〜300, 000とするの力より好ましく、 10, 000〜100, 000とする のがさらに好ましい。
[0063] (3)反応モル比
エチレン性不飽和基含有含フッ素重合体は、上述した、 1個のイソシァネート基と、 少なくとも 1個のエチレン性不飽和基とを含有する化合物と、水酸基含有含フッ素重 合体とを、イソシァネート基 Z水酸基のモル比が 1. 1〜1. 9の割合で反応させるの が好ましい。この理由は、モル比が 1. 1未満になると耐擦傷性及び耐久性が低下す る場合があるためであり、一方、モル比が 1. 9を超えると、硬化性榭脂組成物の塗膜 のアルカリ水溶液浸漬後の耐擦傷性が低下する場合があるためである。
また、このような理由により、イソシァネート基 Z水酸基のモル比を、 1. 1〜1. 5とす るのが好ましぐ 1. 2〜1.5とするのがより好ましい。
[0064] (A)成分の添加量は、有機溶剤以外の組成物全量に対して通常 1〜90質量%で ある。この理由は、添加量が 1質量%未満となると、硬化性榭脂組成物の防汚性や滑 り性が低下し、反射防止膜としての性能を維持できなくなる、一方、添加量が 90質量 %を超えると、硬化性榭脂組成物の硬化塗膜の耐擦傷性が得られな 、場合があるた めである。
また、このような理由力ら、(A)成分の添加量を 1〜80質量%とするのがより好まし く、 5〜60質量%の範囲内の値とするのがさらに好ましい。
[0065] (B)重合性不飽和基を有する有機化合物によって表面変性された連鎖球状のシリカ 粒子
成分 (B)は、本発明の硬化性榭脂組成物の硬化物において、低屈折率、耐擦傷 性を発現させるために配合する。成分 (B)は、塗膜内に空隙を形成し、塗膜の屈折 率を大幅に低下させる効果がある。硬度の点では、成分 (A)よりも硬ぐ耐擦傷性を 発現させるが、単独では粒子間の結着力が低下し、耐擦傷性が得られない。
成分 (B)を構成する連鎖球状のシリカ粒子とは、複数の略球状のシリカ粒子 (以下 、単に「シリカ粒子」と 、うことがある)が直鎖状又は分岐した形で連結した形状を有す るシリカ粒子をいう。連鎖球状のシリカ粒子は、 2個以上の、数平均粒径 1〜: LOOnm の略球状のシリカ粒子が直鎖状又は分岐した形で連結して 、ることが好ま 、。ここ で、略球状とは、必ずしも真球である必要はなぐ不定形であっても、例えば、ァスぺ タト比が 1〜: LOの範囲の粒子であればよいことを意味する。略球状シリカ粒子の数平 均粒径は、透過型電子顕微鏡により測定する。
[0066] 連鎖球状のシリカ粒子の具体的な形状としては、例えば、図 2及び 3に示すような分 岐を有する数珠状 (パールスライク形状)や、図 4に示すような 2個のシリカ粒子が連 結した形状が挙げられる。また、比較例として、粒子同士が連結していない通常の球 状シリカ粒子を図 5に示す。
シリカを主成分とする個々の粒子としては、公知のものを使用することができ、また、 その形状も、略球状であれば通常のコロイダルシリカに限らず中空粒子、多孔質粒 子、コア'シェル型粒子等であっても構わない。しかし、組成物の屈折率を低減させる 観点から中空粒子や多孔質粒子が好ましい。また、固形分が 5〜40質量%のコロイ ダルシリカが好ましい。
[0067] また、分散媒は、水ある!/、は有機溶剤が好ま Uヽ。有機溶剤としては、メタノール、 イソプロピルアルコール、エチレングリコーノレ、ブタノール、エチレングリコーノレモノプ 口ピルエーテル等のアルコール類;メチルェチルケトン、メチルイソブチルケトン等の ケトン類;トルエン、キシレン等の芳香族炭化水素類;ジメチルホルムアミド、ジメチル ァセトアミド、 N—メチルピロリドン等のアミド類;酢酸ェチル、酢酸ブチル、 γ—プチ 口ラタトン等のエステル類;テトラヒドロフラン、 1, 4 ジォキサン等のエーテル類等を 挙げることができ、これらの中で、アルコール類及びケトン類が好ましぐ特にケトン類 が好ましい。これら有機溶剤は、単独で、又は 2種以上混合して分散媒として使用す ることがでさる。
[0068] 本発明で用いることができる連鎖球状のシリカ粒子の市販品としては、例えば、 日 産化学工業 (株)製 商品名:スノーテックス PS— M、 PS— S、 PS— SO、 UP、 OU P、芙蓉化学工業 (株)製 商品名: PL— 1、 PL— 2、 PL— 3、 PL— 3H等を挙げること ができる。
[0069] また、連鎖球状シリカ表面に化学修飾等の表面処理を行ったものを使用することが でき、例えば分子中に 1以上のアルキル基を有する加水分解性ケィ素化合物又はそ の加水分解物を含有するもの等を反応させることができる。このような加水分解性ケ ィ素化合物としては、トリメチルメトキシシラン、トリプチルメトキシシラン、ジメチルジメト キシシラン、ジブチノレジメトキシシラン、メチノレトリメトキシシラン、ブチノレトリメトキシシラ ン、ォクチルトリメトキシシラン、ドデシルトリメトキシシラン、 1, 1, 1ートリメトキシ一 2, 2, 2 トリメチル一ジシラン、へキサメチル一 1, 3 ジシロキサン、 1, 1, 1ートリメトキ シ— 3, 3, 3 トリメチルー 1, 3 ジシロキサン、 α—トリメチルシリル— ω—ジメチル メトキシシリル一ポリジメチルシロキサン、 at—トリメチルシリル一 ω—トリメトキシシリル ポリジメチルシロキサンへキサメチルー 1, 3 ジシラザン等を挙げることができる。 また、分子中に 1以上の反応性基を有する加水分解性ケィ素化合物を使用すること もできる。分子中に 1以上の反応性基を有する加水分解性ケィ素化合物は、例えば 反応性基として ΝΗ基を有するものとして、尿素プロピルトリメトキシシラン、 Ν— (2—
2
アミノエチル) 3—ァミノプロピルトリメトキシシラン等、 ΟΗ基を有するものとして、ビ ス(2 ヒドロキシェチル) 3アミノトリプロピルメトキシシラン等、イソシァネート基を有 するものとして 3—イソシァネートプロピルトリメトキシシラン等、チオシァネート基を有 するものとして 3—チオシァネートプロピルトリメトキシシラン等、エポキシ基を有するも のとして(3 グリシドキシプロピノレ)トリメトキシシラン、 2- (3, 4 エポキシシクロへキ シル)ェチルトリメトキシシラン等、チオール基を有するものとして、 3—メルカプトプロ ピルトリメトキシシラン等を挙げることができる。 [0070] 連鎖球状のシリカ粒子 (B)は、重合性不飽和基を含む有機化合物(以下、「特定有 機化合物」ということがある。)と結合されている。このように構成することにより、ラジカ ル重合性 (メタ)アクリルィ匕合物 (後述する成分 (D) )と共架橋化することができ、耐擦 傷性が向上する。
[0071] (2)特定有機化合物
本発明に用いられる特定有機化合物は、分子内に重合性不飽和基を含む重合性 の化合物である。例えば、 γ—メタクリロキシプロピルトリメトキシシラン、 γ—アタリ口 キシプロピルトリメトキシシラン、ビニルトリァセトキシシラン、ビニルトリメトキシシラン等 が挙げられる。さらに、特定有機化合物としては、分子内に、さらに下記式(11)に示 す基を含む化合物であること及び分子内にシラノール基を有する化合物又は加水分 解によってシラノール基を生成する化合物を用いることが出来る。
[0072] [化 11]
Figure imgf000022_0001
Υ
[式(11)中、 Xは ΝΗ、 0 (酸素原子)又は S (ィォゥ原子)を示し、 Υは Ο又は Sを示す ο ]
[0073] (i)重合性不飽和基
特定有機化合物に含まれる重合性不飽和基としては特に制限はないが、例えば、 アタリロイル基、メタクリロイル基、ビニル基、プロべ-ル基、ブタジェ-ル基、スチリル 基、ェチニル基、シンナモイル基、マレエート基、アクリルアミド基を好適例として挙げ ることがでさる。
この重合性不飽和基は、活性ラジカル種により付加重合をする構成単位である。
[0074] (ii)式(11)に示す基
特定有機化合物は、分子内に前記式(11)に示す基をさらに含むものであることが 好ましい。前記式(11)に示す基 [― X— C (=Y)— NH— ]は、具体的には、 [― O— C ( = 0)— NH— ]、 [一 O— C ( = S)— NH— ]、 [一 S— C ( = 0)— NH— ]、 [一 NH 一 C ( = 0)— NH— ]、 [一 NH— C ( = S)— NH— ]、及び [一 S— C ( = S)— NH— ] の 6種である。これらの基は、 1種単独で又は 2種以上を組合わせて用いることができ る。中でも、熱安定性の観点から、 [― O— C ( = 0)— NH— ]基と、 [― O— C ( = S) — NH— ]基及び [― S— C ( = 0)— NH— ]基の少なくとも 1とを併用することが好ま しい。
前記式(11)に示す基 [― X— C (=Y)— NH— ]は、分子間において水素結合に よる適度の凝集力を発生させ、硬化物にした場合、優れた機械的強度、基材との密 着性及び耐熱性等の特性を付与せしめるものと考えられる。
[0075] (iii)シラノール基又は加水分解によってシラノール基を生成する基
特定有機化合物は、分子内にシラノール基を有する化合物(以下、「シラノール基 含有化合物」 t 、うことがある)又は加水分解によってシラノール基を生成する化合物 (以下、「シラノール基生成化合物」ということがある)であることが好ましい。このような シラノール基生成化合物としては、ケィ素原子上にアルコキシ基、ァリールォキシ基、 ァセトキシ基、アミノ基、ハロゲン原子等を有する化合物を挙げることができる力 ケィ 素原子上にアルコキシ基又はァリールォキシ基を含む化合物、即ち、アルコキシシリ ル基含有ィ匕合物又はァリールォキシシリル基含有ィ匕合物が好ましい。
シラノール基又はシラノール基生成化合物のシラノール基生成部位は、縮合反応 又は加水分解に続 ヽて生じる縮合反応によって、酸ィ匕物粒子と結合する構成単位で ある。
[0076] (iv)好ましい態様
特定有機化合物の好ましい具体例としては、例えば、下記式(12)に示す化合物を 挙げることができる。
[0077] [化 12]
Figure imgf000023_0001
[0078] R19、 R2Qは、同一でも異なっていてもよぐ水素原子又は炭素数 1〜8のアルキル基 若しくはァリール基であり、 aは 1、 2又は 3の数を示す。 R19、 R2°の例として、メチル、ェチル、プロピル、ブチル、ォクチル、フエ-ル、キシリ ル基等を挙げることができる。
[0079] [ (R190) R20 Si— ]で示される基としては、例えば、トリメトキシシリル基、トリェトキ
a 3~a
シシリル基、トリフエノキシシリル基、メチルジメトキシシリル基、ジメチルメトキシシリル 基等を挙げることができる。このような基のうち、トリメトキシシリル基又はトリエトキシシ リル基等が好ましい。
[0080] R21は炭素数 1〜12の脂肪族又は芳香族構造を有する 2価の有機基であり、鎖状、 分岐状又は環状の構造を含んでいてもよい。そのような有機基としては例えば、メチ レン、エチレン、プロピレン、ブチレン、へキサメチレン、シクロへキシレン、フエ二レン 、キシリレン、ドデカメチレン等を挙げることができる。これらのうち好ましい例は、メチ レン、プロピレン、シクロへキシレン、フエ二レン等である。
[0081] また、 R22は 2価の有機基であり、通常、分子量 14から 1万、好ましくは、分子量 76 力も 500の 2価の有機基の中力も選ばれる。例えば、へキサメチレン、オタタメチレン 、ドデカメチレン等の鎖状ポリアルキレン基;シクロへキシレン、ノルボル-レン等の脂 環式又は多環式の 2価の有機基;フエ-レン、ナフチレン、ビフエ-レン、ポリフエ-レ ン等の 2価の芳香族基;及びこれらのアルキル基置換体、ァリール基置換体を挙げる ことができる。また、これら 2価の有機基は炭素及び水素原子以外の元素を含む原子 団を含んでいてもよぐポリエーテル結合、ポリエステル結合、ポリアミド結合、ポリ力 ーボネート結合、さらには前記式(11)に示す基を含むこともできる。
[0082] R23は (b+ 1)価の有機基であり、好ましくは鎖状、分岐状又は環状の飽和炭化水 素基、不飽和炭化水素基の中から選ばれる。
[0083] Zは活性ラジカル種の存在下、分子間架橋反応をする重合性不飽和基を分子中に 有する 1価の有機基を示す。例えば、アタリロイル (ォキシ)基、メタアタリロイル (ォキ シ)基、ビュル (ォキシ)基、プロべ-ル (ォキシ)基、ブタジェ-ル (ォキシ)基、スチリ ル (ォキシ)基、ェチュル (ォキシ)基、シンナモイル (ォキシ)基、マレエート基、アタリ ルアミド基、メタアクリルアミド基等を挙げることができる。これらの中でアタリロイル (ォ キシ)基及びメタアタリロイル (ォキシ)基が好ましい。また、 bは好ましくは 1〜20の正 の整数であり、さらに好ましくは 1〜10、特に好ましくは 1〜5である。 [0084] 本発明で用いられるこれらの特定有機化合物の合成は、例えば、特開平 9— 1001 11号公報に記載された方法を用いることができる。即ち、(ィ)メルカプトアルコキシシ ランと、ポリイソシァネート化合物と、活性水素基含有重合性不飽和化合物との付カロ 反応により行うことができる。また、(口)分子中にアルコキシシリル基及びイソシァネー ト基を有する化合物と、活性水素含有重合性不飽和化合物との直接的反応により行 うことができる。さらに、(ハ)分子中に重合性不飽和基及びイソシァネート基を有する 化合物と、メルカプトアルコキシシラン又はアミノシランとの付加反応により直接合成 することちでさる。
[0085] 前記式(12)に示すィ匕合物を合成するためには、これらの方法のうち (ィ)が好適に 用いられる。より詳細には、例えば、
(a)法;まずメルカプトアルコキシシランとポリイソシァネートイ匕合物とを反応させること で、分子中にアルコキシシリル基、 [ S— C ( = 0)— NH ]基及びイソシァネート 基を含む中間体を形成し、次に中間体中に残存するイソシァネートに対して活性水 素含有重合性不飽和化合物を反応させて、この不飽和化合物を [ 0— c( = o) - NH ]基を介して結合させる方法、
(b)法;まずポリイソシァネート化合物と活性水素含有重合性不飽和化合物とを反応 させることで分子中に重合性不飽和基、 [— 0— C ( = 0)— NH ]基、及びイソシァ ネート基を含む中間体を形成し、これにメルカプトアルコキシシランを反応させてこの メルカプトアルコキシシランを [ S— C ( = 0)— NH ]基を介して結合させる方法、 等を挙げることができる。さらに両者の中では、マイケル付加反応による重合性不飽 和基の減少がな 、点で (a)法が好ま 、。
[0086] 前記式(12)に示す化合物の合成において、イソシァネート基との反応により [ S
-C ( = 0) NH ]基を形成することができるアルコキシシランの例としては、アル コキシシリル基とメルカプト基を分子中にそれぞれ 1個以上有する化合物を挙げるこ とができる。このようなメルカプトアルコキシシランとしては、例えば、メルカプトプロピ ルトリメトキシシラン、メルカプトプロピルトリエトキシシラン、メルカプトプロピルメチルジ エトキシシラン、メルカプトプロピルジメトキシメチルシラン、メルカプトプロピルメトキシ ジメチルシラン、メルカプトプロピルトリフエノキシシシラン、メルカプトプロピルトリブト キシシシラン等を挙げることができる。これらの中では、メルカプトプロピルトリメトキシ シラン、メルカプトプロピルトリエトキシシランが好ましい。また、ァミノ置換アルコキシ シランとエポキシ基置換メルカプタンとの付カ卩生成物、エポキシシランと α , ω—ジメ ルカプトイ匕合物との付加生成物を利用することもできる。
[0087] 特定有機化合物を合成する際に用いられるポリイソシァネートイ匕合物としては鎖状 飽和炭化水素、環状飽和炭化水素、芳香族炭化水素で構成されるポリイソシァネー ト化合物の中力 選ぶことができる。
[0088] このようなポリイソシァネートイ匕合物の例としては、例えば、 2,4 トリレンジイソシァ ネート、 2,6 トリレンジイソシァネート、 1,3 キシリレンジイソシァネート、 1,4ーキシ リレンジイソシァネート、 1,5 ナフタレンジイソシァネート、 m—フエ-レンジイソシァ ネート、 p—フエ-レンジイソシァネート、 3,3,ージメチノレー 4,4,ージフエ-ルメタンジ イソシァネート、 4,4'ージフエ-ルメタンジイソシァネート、 3,3,ージメチルフエ-レン ジイソシァネート、 4,4,ービフエ-レンジイソシァネート、 1, 6 へキサンジイソシァネ ート、イソホロンジイソシァネート、メチレンビス(4 シクロへキシノレイソシァネート)、 2, 2,4 トリメチルへキサメチレンジイソシァネート、ビス(2—イソシァネートェチル)フマ レート、 6 イソプロピル 1,3 フエ-ルジイソシァネート、 4ージフエ-ルプロパンジ イソシァネート、リジンジイソシァネート、水添ジフエ二ノレメタンジイソシァネート、 1, 3 ビス(イソシァネートメチル)シクロへキサン、テトラメチルキシリレンジイソシァネート 、 2, 5 (又は 2, 6)—ビス(イソシァネートメチル)一ビシクロ [2. 2. 1]ヘプタン等を挙 げることができる。これらの中で、 2,4 トリレンジイソシァネート、イソホロンジイソシァ ネート、キシリレンジイソシァネート、メチレンビス(4ーシクロへキシノレイソシァネート) 、 1, 3 ビス (イソシァネートメチル)シクロへキサン、等が好ましい。これらは 1種単独 で又は 2種以上を組合わせて用いることができる。
[0089] 特定有機化合物の合成において、前記ポリイソシァネートイ匕合物と付加反応により
[一 O C ( = 0)— NH—]基を介し結合できる活性水素含有重合性不飽和化合物 の例としては、分子内にイソシァネ—ト基との付加反応により [— 0— C ( = 0)— NH ]基を形成できる活性水素原子を 1個以上有しかつ重合性不飽和基を 1個以上含 む化合物を挙げることができる。 [0090] これらの活性水素含有重合性不飽和化合物としては、例えば、 2—ヒドロキシェチ ル (メタ)アタリレート、 2—ヒドロキシプロピル (メタ)アタリレート、 2—ヒドロキシブチル( メタ)アタリレート、 2—ヒドロキシ一 3—フエ-ルォキシプロピル (メタ)アタリレート、 1,4 —ブタンジォ一ルモノ(メタ)アタリレート、 2—ヒドロキシアルキル (メタ)アタリロイルフ ォスフェート、 4—ヒドロキシシクロへキシル (メタ)アタリレート、 1,6—へキサンジォ一 ルモノ (メタ)アタリレート、ネオペンチルダリコ一ルモノ (メタ)アタリレート、トリメチロ一 ルプロパンジ (メタ)アタリレート、トリメチロールエタンジ (メタ)アタリレート、ペンタエリ スリトールトリ(メタ)アタリレート、ジペンタエリスルトールペンタ (メタ)アタリレート等を 挙げることができる。また、アルキルグリシジルエーテル、ァリルグリシジルエーテル、 グリシジル (メタ)アタリレート等のグリシジル基含有ィ匕合物と、(メタ)アクリル酸との付 加反応により得られる化合物を用いることができる。これらの化合物の中では、 2—ヒ ドロキシェチル (メタ)アタリレート、 2—ヒドロキシプロピル (メタ)アタリレート、ペンタエ リスリトールトリ(メタ)アタリレート等が好まし 、。
これらの化合物は 1種単独で又は 2種以上の混合物として用いることができる。
[0091] (3)特定有機化合物による連鎖球状シリカ粒子 (以下、単に「粒子」ともいう。)の表面 処理方法
特定有機化合物による粒子の表面処理方法としては特に制限はないが、特定有機 化合物と粒子とを混合し、加熱、攪拌処理することにより製造することも可能である。 尚、特定有機化合物が有するシラノール基生成部位と、粒子とを効率よく結合させる ため、反応は水の存在下で行われることが好ましい。ただし、特定有機化合物がシラ ノール基を有している場合は水はなくてもよい。従って、粒子及び特定有機化合物を 少なくとも混合する操作を含む方法により表面処理できる。
[0092] 粒子と特定有機化合物の反応量は、粒子及び特定有機化合物の合計を 100質量 %として、好ましくは 0. 01質量%以上であり、さらに好ましくは 0. 1質量%以上、特 に好ましくは 1質量%以上である。 0. 01質量%未満であると、組成物中における粒 子の分散性が十分でなぐ得られる硬化物の透明性、耐擦傷性が十分でなくなる場 合がある。
また、これら特定有機化合物は単独若しくは 2種類以上を併用することができる。 [0093] 以下、特定有機化合物として、前記式(12)に示すアルコキシシリル基含有ィ匕合物 (アルコキシシラン化合物)を例にとり、表面処理方法をさらに詳細に説明する。 表面処理時においてアルコキシシランィ匕合物の加水分解で消費される水の量は、 1分子中のケィ素上のアルコキシ基の少なくとも 1個が加水分解される量であればよ い。好ましくは加水分解の際に添加、又は存在する水の量は、ケィ素上の全アルコキ シ基のモル数に対し 3分の 1以上であり、さらに好ましくは全アルコキシ基のモル数の 2分の 1以上 3倍未満である。完全に水分の存在しない条件下でアルコキシシランィ匕 合物と粒子とを混合して得られる生成物は、粒子表面にアルコキシシランィ匕合物が 物理吸着した生成物であり、そのような成分力 構成される粒子を含有する組成物の 硬化物にお!、ては、高硬度及び耐擦傷性の発現の効果は低 、。
[0094] 表面処理時においては、前記アルコキシシランィ匕合物を別途加水分解操作に付し た後、これと粉体粒子又は粒子の溶剤分散ゾルを混合し、加熱、攪拌操作を行う方 法;前記アルコキシシラン化合物の加水分解を粒子の存在下で行う方法;又は、他の 成分、例えば、重合開始剤等の存在下、粒子の表面処理を行う方法等を選ぶことが できる。この中では、前記アルコキシシランィ匕合物の加水分解を粒子の存在下で行う 方法が好ましい。表面処理時、その温度は、好ましくは 0°C以上 150°C以下であり、さ らに好ましくは 20°C以上 100°C以下である。また、処理時間は通常 5分から 24時間 の範囲である。
[0095] 表面処理時にお!、て、粉体状のシリカ粒子を用いる場合、前記アルコキシシラン化 合物との反応を円滑にかつ均一に行わせることを目的として、有機溶剤を添加しても よい。そのような有機溶剤としては、例えば、メタノール、エタノール、イソプロパノール 、ブタノール、ォクタノール等のアルコール類;アセトン、メチルェチルケトン、メチルイ ソブチルケトン、シクロへキサノン等のケトン類;酢酸ェチル、酢酸ブチル、乳酸ェチ ル、 Y—ブチロラタトン等のエステル類;エチレングリコールモノメチルエーテル、ジェ チレングリコールモノブチルエーテル等のエーテル類;ベンゼン、トルエン、キシレン 等の芳香族炭化水素類;ジメチルホルムアミド、ジメチルァセトアミド、 N—メチルピロ リドン等のアミド類を挙げることができる。中でも、メタノール、イソプロパノール、ブタノ ール、メチルェチルケトン、メチルイソブチルケトン、酢酸ェチル、酢酸ブチル、トルェ ン、キシレンが好ましい。
これらの溶剤の添加量は反応を円滑、均一に行わせる目的に合う限り特に制限は ない。
[0096] 粒子として溶剤分散ゾルを用いる場合、溶剤分散ゾルと、特定有機化合物とを少な くとも混合することにより製造することができる。ここで、反応初期の均一性を確保し、 反応を円滑に進行させる目的で、水と均一に相溶する有機溶剤を添加してもよい。
[0097] また、表面処理時において、反応を促進するため、触媒として酸、塩又は塩基を添 カロしてちょい。
酸としては、例えば、塩酸、硝酸、硫酸、リン酸等の無機酸;メタンスルフォン酸、ト ルエンスルフォン酸、フタル酸、マロン酸、蟻酸、酢酸、蓚酸等の有機酸;メタクリル酸 、アクリル酸、ィタコン酸等の不飽和有機酸を、塩としては、例えば、テトラメチルアン モ -ゥム塩酸塩、テトラプチルアンモ -ゥム塩酸塩等のアンモ-ゥム塩を、また、塩基 としては、例えば、アンモニア水、ジェチルァミン、トリェチルァミン、ジブチルァミン、 シクロへキシルァミン等の 1級、 2級又は 3級脂肪族ァミン、ピリジン等の芳香族ァミン 、水酸化ナトリウム、水酸ィ匕カリウム、テトラメチルアンモ-ゥムヒドロキシド、テトラプチ ルアンモ-ゥムヒドロキシド等の 4級アンモ-ゥムヒドロキシド類等を挙げることができる これらの中で好ましい例は、酸としては、有機酸、不飽和有機酸、塩基としては 3級 ァミン又は 4級アンモ-ゥムヒドロキシドである。これらの酸、塩又は塩基の添カ卩量は、 アルコキシシラン化合物 100質量部に対して、好ましくは 0. 001質量部から 1. 0質 量部、さらに好ましくは 0. 01質量部から 0. 1質量部である。
[0098] また、反応を促進するため、脱水剤を添加することも好ま 、。
脱水剤としては、ゼォライト、無水シリカ、無水アルミナ等の無機化合物や、オルト 蟻酸メチル、オルト蟻酸ェチル、テトラエトキシメタン、テトラブトキシメタン等の有機化 合物を用いることができる。中でも、有機化合物が好ましぐオルト蟻酸メチル、オルト 蟻酸ェチル等のオルトエステル類がさらに好まし 、。
尚、粒子に結合したアルコキシシランィ匕合物の量は、通常、乾燥粉体を空気中で 完全に燃焼させた場合の質量減少%の恒量値として、空気中で 110°Cから 800°Cま での熱質量分析により求めることができる。
[0099] (B)成分の硬化性榭脂組成物中における配合量は、有機溶剤以外の組成物全量 に対して通常 1〜99質量%であり、 20〜95質量%が好ましぐ 30〜90質量%がさら に好ましい。尚、粒子の量は、固形分を意味し、成分 (B)の粒子が溶剤分散ゾルの 形態で用いられるときは、その配合量には溶剤の量を含まない。(B)成分の配合量 力 ^質量%未満であると、得られる硬化物の屈折率ゃ耐擦傷性が不十分となることが あり、 99質量%を超えると、粒子間の結着力が不十分となり耐擦傷性が低下する恐 れがある。
[0100] (C)活性エネルギー線の照射又は熱により活性種を発生する化合物
活性エネルギー線の照射又は熱により活性種を発生する化合物は、硬化性榭脂 組成物を硬化させるために用いられる。
[0101] (1)活性エネルギー線の照射により活性種を発生する化合物
活性エネルギー線の照射により活性種を発生する化合物(以下「光重合開始剤」と いう。)としては、活性種として、ラジカルを発生する光ラジカル発生剤等が挙げられ る。
尚、活性エネルギー線とは、活性種を発生する化合物を分解して活性種を発生さ せることのできるエネルギー線と定義される。このような活性エネルギー線としては、 可視光、紫外線、赤外線、 X線、 α線、 j8線、 γ線等の光エネルギー線が挙げられる 。ただし、一定のエネルギーレベルを有し、硬化速度が速ぐしかも照射装置が比較 的安価で、小型である点で、紫外線を使用することが好ましい。
[0102] (i)種類
光ラジカル発生剤の例としては、例えばァセトフエノン、ァセトフエノンべンジルケタ ール、アントラキノン、 1— (4—イソプロピルフエ-ル) 2 ヒドロキシ一 2—メチルプ 口パン 1 オン、カルバゾール、キサントン、 4 クロ口べンゾフエノン、 4, 4'ージァ ミノべンゾフエノン、 1, 1—ジメトキシデォキシベンゾイン、 3, 3, 一ジメチル一 4—メト キシベンゾフエノン、チ才キサントン、 2, 2—ジメトキシー 2—フエ-ルァセトフエノン、 1— (4—ドデシルフエ-ル) 2—ヒドロキシ一 2—メチルプロパン一 1—オン、 2—メ チルー 1一〔4 (メチルチオ)フエ-ル〕 2 モルフォリノプロパン 1 オン、トリフ ェ-ルァミン、 2, 4, 6 トリメチルベンゾィルジフエ-ルホスフィンオキサイド、 1ーヒド 口キシシクロへキシルフェニルケトン、 2—ヒドロキシ 2—メチルー 1 フエニルプロ パン 1 オン、フルォレノン、フルオレン、ベンズアルデヒド、ベンゾインェチルエー テル、ベンゾインプロピルエーテル、ベンゾフエノン、ミヒラーケトン、 3—メチルァセト フエノン、 3, 3 ' , 4, 4'ーテトラ(tert ブチルパーォキシカルボ-ル)ベンゾフエノン (BTTB)、 2- (ジメチルァミノ)— 1—〔4— (モルフオリ-ル)フエ-ル〕—2—フエ-ル メチル) 1ーブタノン、 4一べンゾィルー 4'ーメチルジフエ-ルサルファイド、ベンジ ル、又は BTTBとキサンテン、チォキサンテン、クマリン、ケトクマリン、その他の色素 増感剤との組み合わせ等を挙げることができる。
[0103] これらの光重合開始剤のうち、 2, 2 ジメトキシ一 2 フエ-ルァセトフエノン、 2 ヒ ドロキシ 2—メチル 1—フエニルプロパン一 1 オン、 1 ヒドロキシシクロへキシ ルフエ二ルケトン、 2, 4, 6 トリメチルベンゾィルジフエ-ルホスフィンオキサイド、 2 ーメチルー 1一〔4 (メチルチオ)フエ-ル〕 2 モルフォリノプロパン 1 オン、 2 (ジメチルァミノ) 1 4 (モルフオリ-ル)フエ-ル〕 2 フエ-ルメチル) 1 —ブタノン等が好ましぐさらに好ましくは、 1—ヒドロキシシクロへキシルフェニルケト ン、 2—メチルー 1一〔4 (メチルチオ)フエ-ル〕 2 モルフォリノプロパン 1ーォ ン、 2— (ジメチルァミノ)— 1—〔4— (モルフオリ-ル)フエ-ル〕—2 フエ-ルメチル ) - 1—ブタノン等を挙げることができる。
[0104] (ii)添加量
光重合開始剤の添加量は特に制限されるものではな ヽが、硬化性榭脂組成物の 固形分 (有機溶剤以外の成分 (A)と成分 (B)の合計) 100質量部に対して 0. 1 20 質量部とするのが好ましい。この理由は、添加量が 0. 1質量部未満となると、硬化反 応が不十分となり耐擦傷性が低下する場合があるためである。一方、光重合開始剤 の添加量が 20質量部を超えると、硬化物の屈折率が増加し反射防止効果が低下し たり、耐擦傷性が不十分となる場合があるためである。
また、このような理由から、光重合開始剤の添加量を 1〜: L0質量部とすることがより 好ましい。
[0105] (2)熱により活性種を発生する化合物 熱により活性種を発生する化合物(以下「熱重合開始剤」という。)としては、活性種 として、ラジカルを発生する熱ラジカル発生剤等が挙げられる。
[0106] (i)種類
熱ラジカル発生剤の例としては、ベンゾィルパーオキサイド、 tert—ブチルーォキシ ベンゾエート、ァゾビスイソブチ口-トリル、ァセチルパーオキサイド、ラウリルパーォキ サイド、 tert—ブチルパーアセテート、タミルパーオキサイド、 tert—ブチルパーォキ サイド、 tert—ブチルハイド口パーオキサイド、 2, 2,ーァゾビス(2, 4—ジメチルバレ 口-トリル)、 2, 2,—ァゾビス(4—メトキシ— 2, 4—ジメチルバレ口-トリル)等の一種 単独又は二種以上の組み合わせを挙げることができる。
[0107] (ii)添加量
熱重合開始剤の添加量についても特に制限されるものではないが、硬化性榭脂組 成物の固形分 (有機溶剤以外の成分 (A)と成分 (B)の合計) 100質量部に対して 0. 1〜20質量部とするのが好ましい。この理由は、添加量が 0. 1質量部未満となると、 硬化反応が不十分となり耐擦傷性、アルカリ水溶液浸漬後の耐擦傷性が低下する場 合があるためである。一方、光重合開始剤の添加量が 20質量部を超えると、硬化物 の屈折率が増加し反射防止効果が低下する場合があるためである。
また、このような理由から、熱重合開始剤の添加量を 1〜: L0質量部とするのがより好 ましい。
[0108] (D) (メタ)アタリレートイ匕合物
(メタ)アタリレート化合物は、硬化性榭脂組成物を硬化して得られる硬化物及びそ れを用いた反射防止膜の耐擦傷性を高めるために用いられる。
[0109] この化合物については、分子内に少なくとも 1個以上の (メタ)アタリロイル基を含有 する化合物であれば特に制限されるものではない。
(メタ)アタリロイル基を 1個有するモノマーとしては、例えばアクリルアミド、(メタ)ァク リロイルモルホリン、 7—アミノー 3, 7—ジメチルォクチル (メタ)アタリレート、イソブトキ シメチル (メタ)アクリルアミド、イソボル-ルォキシェチル (メタ)アタリレート、イソボル -ル (メタ)アタリレート、 2—ェチルへキシル (メタ)アタリレート、ェチルジェチレングリ コール (メタ)アタリレート、 t—ォクチル (メタ)アクリルアミド、ジアセトン (メタ)アクリルァ ミド、ジメチルアミノエチル (メタ)アタリレート、ジェチルアミノエチル (メタ)アタリレート 、ラウリル (メタ)アタリレート、ジシクロペンタジェン (メタ)アタリレート、ジシクロペンテ -ルォキシェチル (メタ)アタリレート、ジシクロペンテ-ル (メタ)アタリレート、 N, N— ジメチル (メタ)アクリルアミドテトラクロ口フエ-ル (メタ)アタリレート、 2—テトラタロロフ エノキシェチル (メタ)アタリレート、テトラヒドロフルフリル (メタ)アタリレート、テトラブロ モフエ-ル (メタ)アタリレート、 2—テトラブロモフエノキシェチル (メタ)アタリレート、 2 -トリクロ口フエノキシェチル(メタ)アタリレート、トリブロモフエ-ル(メタ)アタリレート、 ート、 2—ヒドロキシプロピル(メタ)アタリレート、ビ-ルカプロラタタム、 N—ビニルピロ リドン、フエノキシェチル (メタ)アタリレート、ブトキシェチル (メタ)アタリレート、ペンタ クロ口フエ-ル(メタ)アタリレート、ペンタブロモフエ-ル(メタ)アタリレート、ポリエチレ ングリコールモノ(メタ)アタリレート、ポリプロピレングリコールモノ(メタ)アタリレート、 ボル-ル (メタ)アタリレート、メチルトリエチレンジグリコール (メタ)アタリレートで表さ れる化合物を例示することができる。これらの単官能性モノマーうち、イソボルニル (メ タ)アタリレート、ラウリル (メタ)アタリレート、フエノキシェチル (メタ)アタリレートが特に 好ましい。
[0110] これらの単官能性モノマーの市販品としては、例えばァロニックス M— 101、 M— 1 02、 M— 111、 M— 113、 M— 117、 M— 152、 TO— 1210 (以上、東亞合成(株) 製)、 KAYARAD TC—110S、R—564、R—128H (以上、日本化薬 (株))、ビス コート 192、ビスコート 220、ビスコート 2311HP、ビスコート 2000、ビスコート 2100、 ビスコート 2150、ビスコート 8F、ビスコート 17F (以上、大阪有機化学工業 (株)製)等 を挙げることができる。
[0111] また、 (メタ)アタリロイル基が 2個以上のモノマーとしては、例えば、エチレングリコー ルジ(メタ)アタリレート、ジシクロペンテ-ルジ (メタ)アタリレート、トリエチレングリコー ルジアタリレート、テトラエチレングリコールジ (メタ)アタリレート、トリシクロデカンジィ ルジメチレンジ (メタ)アタリレート、トリス(2—ヒドロキシェチル)イソシァヌレートジ (メタ )アタリレート、トリス(2—ヒドロキシェチル)イソシァヌレートトリ(メタ)アタリレート、カプ 口ラタトン変性トリス(2—ヒドロキシェチル)イソシァヌレートトリ(メタ)アタリレート、トリメ チロールプロパントリ(メタ)アタリレート、エチレンォキシド(以下「EO」という。)変性ト リメチロールプロパントリ(メタ)アタリレート、プロピレンォキシド(以下「PO」という。)変 性トリメチロールプロパントリ(メタ)アタリレート、トリプロピレングリコールジ (メタ)アタリ レート、ネオペンチルグリコールジ (メタ)アタリレート、ビスフエノール Aジグリシジルェ 一テルの両末端 (メタ)アクリル酸付加物、 1, 4—ブタンジオールジ (メタ)アタリレート 、 1, 6—へキサンジオールジ (メタ)アタリレート、ペンタエリスリトールトリ(メタ)アタリレ ート、ペンタエリスリトールテトラ (メタ)アタリレート、ポリエステルジ (メタ)アタリレート、 ポリエチレングリコールジ (メタ)アタリレート、ジペンタエリスリトールへキサ (メタ)アタリ レート、ジペンタエリスリトールペンタ(メタ)アタリレート、ジペンタエリスリトールテトラ( メタ)アタリレート、力プロラタトン変性ジペンタエリスリトールへキサ (メタ)アタリレート、 力プロラタトン変性ジペンタエリスリトールペンタ(メタ)アタリレート、ジトリメチロールプ 口パンテトラ(メタ)アタリレート、 EO変性ビスフエノール Aジ (メタ)アタリレート、 PO変 性ビスフエノール Aジ (メタ)アタリレート、 EO変性水添ビスフエノール Aジ (メタ)アタリ レート、 PO変性水添ビスフエノール Aジ (メタ)アタリレート、 EO変性ビスフエノール F ジ(メタ)アタリレート、フエノールノボラックポリグリシジルエーテルの(メタ)アタリレート や、下記式(13)で表される化合物等を例示することができる。
[化 13]
Figure imgf000034_0001
[式(13)中、「Acryl」は、アタリロイル基を示す。 ]
これらの多官能性モノマーの市販品としては、例えば、 SA1002 (以上、三菱化学( 株)製)、ビスコート 195、ビスコート 230、ビスコート 260、ビスコート 215、ビスコート 3 10、ビスコート 214HP、ビスコート 295、ビスコート 300、ビスコート 360、ビスコート G PT、ビスコート 400、ビスコート 700、ビスコート 540、ビスコート 3000、ビスコート 370 0 (以上、大阪有機化学工業 (株)製)、カャラッド R— 526、 HDDA、 NPGDA、 TPG DA、 MANDA、 R— 551、 R— 712、 R— 604、 R— 684、 PET— 30、 GPO— 303 、 TMPTA、 THE— 330、 DPHAゝ DPHA—2Hゝ DPHA—2Cゝ DPHA—2I、 D
— 310、 D— 330、 DPCA— 20、 DPCA— 30、 DPCA— 60、 DPCA— 120、 DN
— 0075、 DN— 2475、 T— 1420、 T— 2020、 T— 2040、 TPA— 320、 TPA— 33 0、 RP— 1040、 RP— 2040、 R— 011、 R— 300、 R— 205 (以上、 日本ィ匕薬 (株)製 )、ァロニックス M— 210、 M— 220、 M— 233、 M— 240、 M— 215、 M— 305、 M
— 309、 M— 310、 M— 315、 M— 325、 M— 400、 M— 6200、 M— 6400 (以上、 東亞合成(株)製)、ライトアタリレート BP— 4EA、 BP— 4PA、 BP— 2EA、 BP— 2P A、 DCP—A (以上、共栄社ィ匕学 (株)製)、ニューフロンティア BPE— 4、 BR—42M 、 GX— 8345 (以上、第一工業製薬 (株)製)、 ASF— 400 (以上、新日鐡化学 (株) 製)、リポキシ SP— 1506、 SP- 1507, SP- 1509, VR- 77, SP— 4010、 SP-4 060 (以上、昭和高分子(株)製)、NKェステルA—BPE—4 (以上、新中村化学ェ 業 (株)製)等を挙げることができる。
[0113] 尚、本発明の組成物には、これらのうち、分子内に少なくとも 2個以上の (メタ)アタリ ロイル基を含有する化合物を含有することが好ましい。さらに好ましくは、分子内に少 なくとも 3個以上の (メタ)アタリロイル基を含有する化合物が特に好ましい。かかる 3個 以上の化合物としては、上記に例示されたトリ (メタ)アタリレートイ匕合物、テトラ (メタ) アタリレートイ匕合物、ペンタ (メタ)アタリレートイ匕合物、へキサ (メタ)アタリレートイ匕合物 等の中から選択することができ、これらのうち、トリメチロールプロパントリ(メタ)アタリレ ート、 EO変性トリメチロールプロパントリ(メタ)アタリレート、ジペンタエリスリトールへキ サ(メタ)アタリレート、ジペンタエリスリトールペンタ(メタ)アタリレート、ジトリメチロール プロパンテトラ (メタ)アタリレートが特に好ましい。上記の化合物は、各々 1種単独で 又は 2種以上組み合わせを用いることができる。
[0114] また、(メタ)アタリレートイ匕合物はフッ素を含んでいてもよい。このような化合物の例 として、パーフルォロォクチルェチル(メタ)アタリレート、ォクタフルォロペンチル(メタ )アタリレート、トリフルォロェチル (メタ)アタリレート、等の一種単独又は二種以上の 組み合わせが挙げられる。
[0115] (D)成分の添加量については、特に制限されるものではないが、硬化性榭脂組成 物の固形分 (有機溶剤以外の成分 (A)と成分 (B)の合計) 100質量部に対して通常 1〜30質量部である。この理由は、添加量が 1質量部未満となると、硬化性榭脂組成 物の硬化塗膜の耐擦傷性が得られない場合があるためであり、一方、添加量が 30質 量部を超えると、硬化性榭脂組成物の硬化塗膜の屈折率が高くなり、十分な反射防 止効果が得られな 、場合があるためである。
また、このような理由力 、(D)成分の添加量を 1〜20質量部とするのがより好まし く、 1〜15質量部の範囲内の値とするのがさらに好ましい。
[0116] (E)有機溶剤
硬化性榭脂組成物は、さらに有機溶剤で希釈することが好ましい。有機溶剤によつ て希釈することにより、薄膜の反射防止膜を均一に形成することができる。このような 有機溶剤としては、酢酸ェチル、酢酸ブチル、乳酸ェチル、プロピレングリコールモノ メチルアセテート、メチルアミルケトン等のエステル類、メチルイソブチルケトン、メチル ェチルケトン、アセトン等のケトン類、 t—ブタノール、イソプロパノール、プロピレングリ コールモノメチルエーテル等のアルコール類等の一種単独又は二種以上の組み合 わせが挙げられる。
[0117] 有機溶剤による希釈量についても特に制限されるものではないが、全固形分 100 質量部に対し、 100〜: ίΟΟ,ΟΟΟ質量部の有機溶剤を添加するのが好ましい。この理 由は、添加量が 100質量部未満又は 100, 000質量部以上となると、反射防止膜に 適した光学薄膜を得ることが出来ない。
[0118] (F)添加剤
硬化性榭脂組成物には、本発明の目的や効果を損なわない範囲において、光増 感剤、重合禁止剤、重合開始助剤、レべリング剤、濡れ性改良剤、界面活性剤、可 塑剤、紫外線吸収剤、酸化防止剤、帯電防止剤、シランカップリング剤、(Β)成分以 外の無機充填剤若しくは顔料、染料等の添加剤をさらに含有させることも好ましい。
[0119] 次に、本発明の硬化性榭脂組成物の調製方法を説明する。
本発明の硬化性榭脂組成物は、上記 (Α)エチレン性不飽和基含有含フッ素重合 体、上記 (Β)成分、及び必要に応じて上記 (C)成分及び (D)成分、(Ε)有機溶剤、 及び (F)添加剤をそれぞれ添加して、室温又は加熱条件下で混合することにより調 製することができる。具体的には、ミキサ、エーダー、ボールミル、三本ロール等の混 合機を用いて、調製することができる。ただし、加熱条件下で混合する場合には、熱 重合開始剤の分解開始温度以下で行うことが好ましい。
[0120] 2.硬化物
本発明の硬化物は、本発明の硬化性榭脂組成物を硬化させて得られる。 硬化性榭脂組成物の硬化条件にっ 、ては特に制限されるものではな 、が、例えば 活性エネルギー線を用いた場合、露光量を 0. 01〜10j/cm2の範囲内の値とする のが好ましい。
この理由は、露光量が 0. OljZcm2未満となると、硬化不良が生じる場合があるた めであり、一方、露光量が lOjZcm2を超えると、硬化時間が過度に長くなる場合が あるためである。
また、このような理由により、露光量を 0. 05〜5jZcm2の範囲内の値とするのがより 好ましぐ 0. l〜3jZcm2の範囲内の値とするのがより好ましい。
さらに酸素による重合阻害を防ぐために硬化雰囲気を不活性ガス雰囲気とすること が望ましい。不活性ガスとは、ヘリウム、アルゴン、窒素、二酸化炭素等が挙げられる 。これらの不活性ガスの雰囲気としては、残存酸素濃度が 5000ppm以下となること が好ましぐさらに好ましくは lOOOppm以下、特に好ましくは lOOppm以下である。 残存酸素濃度が 5000ppmを超えると硬化不良が生じることがある。
[0121] また、硬化性榭脂組成物を、加熱して硬化させる場合には、 30〜200°Cの範囲内 の温度で、 1〜180分間加熱するのが好ましい。このように加熱することにより、基材 等を損傷することなぐより効率的に耐擦傷性に優れた反射防止膜を得ることができ る。
また、このような理由から、 50〜180°Cの範囲内の温度で、 2〜120分間加熱する のがより好ましぐ 80〜150°Cの範囲内の温度で、 5〜60分間加熱するのがさらに好 ましい。
本発明の硬化物は、屈折率が非常に低ぐかつ耐擦傷性に優れている。
[0122] 3.反射防止膜
本発明の反射防止膜は、上記硬化性榭脂組成物を硬化させた硬化物からなる低 屈折率層を含む。さらに、本発明の反射防止膜は、低屈折率層の下に、高屈折率層
、ハードコート層及び z又は基材等を含むことができる。
図 1に、力かる反射防止膜 10を示す。図 1に示すように、基材 12の上に、ハードコ ート層 14、低屈折率層 18が積層されている。
また、ハードコート層 14と低屈折率層 18の間にハードコート層よりも屈折率の高い 高屈折率層や低屈折率層と高屈折率層の中間の屈折率を有する中屈折率層(図示 せず。)を設けてもよい。
[0123] (1)低屈折率層
低屈折率層は、本発明の硬化性榭脂組成物を硬化して得られる硬化物から構成さ れる。硬化性榭脂組成物の構成等については、上述の通りであるため、ここでの具体 的な説明は省略するものとし、以下、低屈折率層の屈折率及び厚さについて説明す る。
[0124] 本発明の硬化性榭脂組成物は、連鎖球状のシリカ粒子を用いているため、粒子間 に空隙が生じやすぐ通常の球状シリカ粒子を用いた場合に比べて膜内に形成され る空隙により屈折率が非常に低い硬化膜を形成することができる。
硬化性榭脂組成物を硬化して得られる硬化物の屈折率 (Na— D線の屈折率、測 定温度 25°C)、即ち、低屈折率膜の屈折率は 1. 43以下とすることが好ましい。この 理由は、低屈折率膜の屈折率が 1. 43を超えると、反射防止効果が不十分になる場 合があるためである。
従って、低屈折率膜の屈折率を 1. 40以下とするのがより好ましぐ 1. 37以下とす るのがさらに好ましい。
尚、低屈折率膜を複数層設ける場合には、そのうちの少なくとも一層が上述した範 囲内の屈折率の値を有していればよぐ従って、その他の低屈折率膜は 1. 46を超え た値であってもよい。
[0125] また、低屈折率層を設ける場合、より優れた反射防止効果が得られることから、下地 のハードコート層との間の屈折率差を 0. 05以上の値とするのが好ましい。この理由 は、低屈折率層とハードコート層との間の屈折率差が 0. 05未満の値となると、これら の反射防止膜層での相乗効果が得られず、却って反射防止効果が低下する場合が あるためである。
従って、低屈折率層と、下地のハードコート層との間の屈折率差を 0. 05〜0. 7範 囲内の値とするのがより好ましぐ 0. 15-0. 5の範囲内の値とするのがさらに好まし い。
[0126] 低屈折率層の厚さについても特に制限されるものではないが、例えば、 50〜300n mであることが好ましい。この理由は、低屈折率層の厚さが 50nm未満又は 300nm を超えると、光干渉が生じて反射防止効果が低下する場合があるためである。
従って、低屈折率層の厚さを 50〜250nmとするのがより好ましぐ 60〜150nmと するのがさらに好ましい。
尚、より高い反射防止性を得るために、低屈折率層を複数層設けて多層構造とす る場合には、その合計した厚さを 50〜300nmとすればよい。
[0127] (2)高屈折率層
高屈折率層を形成するための硬化性組成物としては、特に制限されるものでな ヽ 力 被膜形成成分として、エポキシ系榭脂、フエノール系榭脂、メラミン系榭脂、アル キド系榭脂、シァネート系榭脂、アクリル系榭脂、ポリエステル系榭脂、ウレタン系榭 脂、シロキサン榭脂等の一種単独又は二種以上の組み合わせを含むことが好ま ヽ 。これらの榭脂であれば、高屈折率層として、強固な薄膜を形成することができ、結 果として、反射防止膜の耐擦傷性を著しく向上させることができるためである。
し力しながら、通常、これらの榭脂単独での屈折率は 1. 45〜: L 62であり、高い反 射防止性能を得るには十分でない場合がある。そのため、高屈折率の無機粒子、例 えば金属酸ィ匕物粒子を配合することがより好ましい。また、硬化形態としては、熱硬 ィ匕、紫外線硬化、電子線硬化できる硬化性組成物を用いることができるが、より好適 には生産性の良好な紫外線硬化性組成物が用いられる。
[0128] 高屈折率層の厚さは特に制限されるものではないが、例えば、 50-30, OOOnmで あることが好ましい。この理由は、高屈折率層の厚さが 50nm未満となると、低屈折率 層と組み合わせた場合に、反射防止効果ゃ基材に対する密着力が低下する場合が あるためであり、一方、厚さが 30, OOOnmを超えると、光干渉が生じて逆に反射防止 効果が低下する場合があるためである。 従って、高屈折率層の厚さを 50〜: L, OOOnmとするのがより好ましぐ 60〜500nm とするのがさらに好ましい。
また、より高い反射防止性を得るために、高屈折率層を複数層設けて多層構造とす る場合には、その合計した厚さを 50〜30, OOOnmとすればよい。
尚、高屈折率層と基材との間にハードコート層を設ける場合には、高屈折率層の厚 さを 50〜300nmとすることができる。
[0129] (3)ハードコート層
本発明の反射防止膜に用いるハードコート層の構成材料については特に制限され るものでない。このような材料としては、シロキサン榭脂、アクリル榭脂、メラミン榭脂、 エポキシ榭脂等の一種単独又は二種以上の組み合わせを挙げることができる。
[0130] また、ハードコート層の厚さについても特に制限されるものではないが、 1〜50 /ζ πι とするのが好ましぐ 5〜10 mとするのがより好ましい。この理由は、ハードコート層 の厚さが 1 μ m未満となると、反射防止膜の基材に対する密着力を向上させることが できない場合があるためであり、一方、厚さが 50 /z mを超えると、均一に形成するの が困難となる場合があるためである。
[0131] (4)基材
本発明の反射防止膜に用いる基材の種類は特に制限されるものではないが、例え ば、ガラス、ポリカーボネート系榭脂、ポリエステル系榭脂、アクリル系榭脂、トリァセ チルセルロース榭脂 (TAC)等カゝらなる基材を挙げることができる。これらの基材を含 む反射防止膜とすることにより、ノソコン用モニターやテレビ、携帯電話、デジタル力 メラ、デジタルビデオの画面表示部などに用いられる液晶表示装置やプラズマデイス プレイ等の広範な反射防止膜の利用分野にお!、て、優れた反射防止効果を得ること ができる。
[0132] 4.マイクロレンズ用反射防止膜
本発明のマイクロレンズ用反射防止膜は、図 6に示すようにマイクロレンズ 24表面 に、本発明の組成物から得られた硬化膜である低屈折率膜 22を有する反射防止膜 20である。
尚、本発明において、マイクロレンズとは、マイクロレンズアレイ(マイクロレンズを複 数形成した基板)を含む意味で使用している。
[0133] 低屈折率膜における屈折率 (Na— D線の屈折率、測定温度 25°C)は、低い程、高 屈折率膜と組み合わせた場合に優れた反射防止効果が得られる。低屈折率膜の屈 折率は、高屈折率膜の屈折率よりも小さぐ具体的には、 1. 45未満とするのが好まし い。屈折率が 1. 45を超えると、高屈折率膜と組み合わせた場合に、反射防止効果 が著しく低下する場合がある。低屈折率膜の屈折率は、より好ましくは 1. 43以下で あり、さらに好ましくは 1. 40以下である。
また、低屈折率膜を複数設ける場合には、そのうちの少なくとも一層が上述した範 囲内の屈折率の値を有していればよい。従って、その他の低屈折率膜は 1. 45を超 える場合があってもよい。
[0134] また、低屈折率膜の厚さについても特に制限されないが、例えば、 50〜300nmが 好ましい。低屈折率膜の厚さが 50nm未満となると、下地としての高屈折率膜に対す る密着性が低下する場合がある。一方、厚さが 300nmを超えると、光干渉が生じて、 反射防止効果が低下する場合がある。低屈折率膜の厚さは、 50〜250nmがより好 ましく、 60〜200nm力さらに好まし!/ヽ。
尚、より高い反射防止性を得るために、低屈折率膜を複数層設けて多層構造とす る場合には、その合計の厚さを 50〜300nmとすればょ 、。
[0135] 本発明の反射防止膜が形成されるマイクロレンズとしては、ファクシミリ、電子複写 機、固体撮像素子等オンチップカラーフィルターの結像光学系あるいは光ファイバ一 コネクタの光学系等に、一般的に使用されているものであれば、問題なく使用できる 。マイクロレンズの製造法としては、例えば、イオン交換法による分布屈折率型平板 マイクロレンズを作る方法、感光性ガラスによる凸型マイクロレンズを作る方法、半導 体集積回路用ポジ型フォトレジスト等を用いてメルトフロー法による作製法やメルトフ ローさせた感光性榭脂をマスクにしてドライエッチングにより下地にレンズ形状を転写 させる方法等がある。
[0136] 本発明におけるマイクロレンズを形成する方法について述べる。マイクロレンズ作製 用のアルカリ可溶性榭脂を含む放射線性榭脂組成物は、下地基板表面に塗布し、 プレベータにより溶媒を除去することによって塗膜とすることができる。塗布方法とし て、例えばスプレー法、ロールコート法、回転塗布法等の各種の方法を採用すること ができる。また、プレベータの条件は、各成分の種類、配合割合等によっても異なる 力 通常 70〜90°Cで 1〜15分間程度の条件が最適である。次にプレベータされた 塗膜に所定パターンマスクを介して紫外線等の放射線を照射し、さらにアルカリ現像 液により現像し、不要な部分を除去して所定パターンを形成する。現像方法は液盛り 法、デイツビング法、シャワー法等のいずれでもよぐ現像時間は通常 30〜180秒間 である。
[0137] 上記現像液としては、アルカリ水溶液、例えば水酸ィ匕ナトリウム、水酸ィ匕カリウム、炭 酸ナトリウム、ケィ酸ナトリウム、メタケイ酸ナトリウム、アンモニア等の無機アルカリ類; ェチルァミン、 n—プロピルアミン等の 1級ァミン類;ジェチルァミン、ジ— n—プロピル ァミン等の 2級ァミン類;トリメチルァミン、メチルジェチルァミン、ジメチルェチルァミン 、トリェチルァミン等の 3級ァミン類;ジメチルエタノールァミン、メチルジェタノールアミ ン、トリエタノールァミン等の 3級ァミン類;ピロール、ピぺリジン、 N—メチルビペリジン 、 N—メチルピロリジン、 1, 8—ジァザビシクロ [5. 4. 0]— 7—ゥンデセン、 1, 5—ジ ァザビシクロ [4. 3. 0]—5—ノネン等の環状 3級ァミン類;ピリジン、コリジン、ルチジ ン、キノリン等の芳香族 3級ァミン類;テトラメチルアンモ-ゥムヒドロキシド、テトラエチ ルアンモ-ゥムヒドロキシド等の 4級アンモ-ゥム塩の水溶液を使用することができる。 また上記アルカリ水溶液に、メタノール、エタノール等の水溶性有機溶媒及び Z又は 界面活性剤を適当量添加した水溶液を現像液として使用することもできる。
[0138] 現像後、流水洗浄を 30〜90秒間行い、不要な部分を除去し、さらに圧縮空気や圧 縮窒素で風乾させることによって、パターンが形成される。形成されたパターンに紫 外線等の放射線を照射し、その後このパターンを、ホットプレート、オーブン等の加熱 装置により、所定温度、例えば 150〜250°Cで、所定時間、例えばホットプレート上 なら 5〜30分間、オーブン中では 30〜90分間加熱処理をすることにより、 目的とす るマイクロレンズであるパターン状塗膜を得ることができる。
[0139] 高屈折率材料や低屈折率材料から、それぞれ高屈折率膜や低屈折率膜を形成す る場合、マイクロレンズに対してコーティングすることが好ましい。このようなコーティン グ方法としては、デイツビング法、スプレー法、スピンコート法又はインクジェット法等 の方法を用いることができる。このなかで、スピンコート法ゃデイツビング法が均一な 硬化膜が得られやす!ヽ点で優れて!/ヽる。
[0140] また、高屈折率材料や低屈折率材料を硬化する手段も特に制限されないが、例え ば、加熱することが好ましい。その場合、 30〜200°Cで、 1〜180分間加熱するのが 好ましい。このように加熱することにより、マイクロレンズや形成される反射防止膜を損 傷することなぐより効率的に反射防止性に優れた反射防止用積層体を得ることがで きる。好ましくは、 50〜180°Cで、 2〜120分間、より好ましくは、 80〜150°Cで、 5〜 60分間加熱する。
尚、高屈折率材料や低屈折率材料の硬化程度は、例えば、硬化性化合物としてメ ラミンィ匕合物を用いた場合は、メラミンィ匕合物のメチロール基又はアルコキシ化メチル 基の量を赤外分光分析したり、又は、ゲル化率を、ソックスレー抽出器を用いて測定 することにより、定量的に確認することができる。
[0141] 本発明のマイクロレンズ用反射防止膜は、図 6に示す低屈折率膜の他に、各種機 能層を含んでいてもよい。例えば、図 7に示すように、マイクロレンズ 24と高屈折率膜 21との間にハードコート層 23を介在させてもよい。即ち、マイクロレンズ 24上に、ノヽ ードコート層 23と、高屈折率膜 21と、低屈折率膜 22とを順次に含む反射防止膜 20 としてもよい。この場合高屈折率層 21を設けることで反射率をさらに低減することがで きる。また、ハードコート層 23を介在させることにより、高屈折率膜 21のマイクロレンズ 24に対する密着性をより向上させることができる。また、ハードコート層 23の機械的 特性により、反射防止膜 20の耐久性をより向上させることができる。さらに、図 12に 示すようにハードコート層を設けず、低屈折率層 22と高屈折率膜 21とで反射防止膜 を形成することもできる。この場合、高屈折率膜 21がハードコート層の機能を担保し ているため、反射防止膜 20の構成がシンプルとなり、生産プロセスの簡略化と低コス ト化が可能になる。
[0142] 以下、本例の特徴である高屈折率層とハードコート層について説明する。
また、高屈折率膜を設ける場合、より優れた反射防止効果が得られることから、高屈 折率膜と低屈折率膜との間の屈折率差を 0. 05以上とするのが好ましい。屈折率差 が 0. 05未満となると、これらの反射防止膜層での相乗効果が得られず、却って反射 防止効果が低下する場合がある。屈折率差は、 0. 1〜0. 8がより好ましぐ 0. 15〜0 . 7がさらに好ましい。
[0143] 次に、高屈折率膜及び低屈折率膜の厚さについて説明する。まず、高屈折率膜の 厚さは特に制限されないが、例えば、 50〜30, OOOnmが好ましい。高屈折率膜の 厚さが 50nm未満となると、低屈折率膜と組み合わせた場合に、反射防止効果やマ イク口レンズに対する密着性が低下する場合がある。一方、厚さが 30, OOOnmを超 えると、光干渉が生じて、逆に反射防止効果が低下する場合がある。高屈折率膜の 厚さ ίま、 50〜: L, OOOnm力より好ましく、 60〜500nm力 ^さらに好まし!/、。
また、より高い反射防止性を得るために、高屈折率膜を複数層設けて多層構造とす ることもでき、この場合には、複数の高屈折率膜の合計の厚さを 50〜30, OOOnmと すればよい。
尚、高屈折率膜とマイクロレンズとの間にハードコート層を設ける場合には、高屈折 率膜の厚さを 50〜300nmとすることができる。
[0144] ハードコート層は、例えば、 SiO、エポキシ系榭脂、アクリル系榭脂、メラミン系榭脂
2
等の材料力も構成するのが好まし 、。
ハードコート層の厚さは特に制限されないが、具体的には、 1〜50 /ζ πιが好ましぐ
5〜: LO /z mがより好ましい。厚さが 1 μ m未満となると、反射防止膜のマイクロレンズ に対する密着性を向上させることができない場合がある。一方、厚さが 50 mを超え ると、ハードコート層を、均一に形成するのが困難となる場合がある。
[0145] 5.平坦化膜
本発明の平坦化層は、前記本発明の硬化性榭脂組成物を硬化させてなり、屈折率
1. 3〜1. 5を有することが好ましい。屈折率が前記範囲であれば、フレアが有効に 防止され、集光率が向上する。
[0146] 図 8に示すように、一般に、固体撮像素子 30は、 CCD基板 32上に設けられたフォ トダイオード 33、ハレーション防止層 34、カラーレジスト層 35、平坦化層 36及びマイ クロレンズ 37を有して!/、る。
[0147] ここで、本発明でいう、「平坦ィ匕層」とは、図 8に示すようなマイクロレンズ 37とカラー レジスト層 35の間に設けられるもの(36a ;カラーフィルタ平坦ィ匕層ともいう。)のみで なぐ図 9 (a)に示すようなマイクロレンズ 37を覆う形態のもの(36b ;マイクロレンズ間 の受光部平坦ィ匕層ともいう)、図 9 (b)に示すようなハレーション防止層 34とカラーレ ジスト層 35との間に設けられるもの(36c ;受光部平坦ィ匕層ともいう)をも含む概念で ある。
[0148] さらに、本発明の組成物によれば、放射線硬化性であることを利用して、マイクロレ ンズ間の受光部平坦化層(36b)の変形として、パターニング露光等の手段により、図 10 (a)及び(b)に示すような、マイクロレンズ 37の周囲のみに平坦化層(36b— 2)を 設けることちでさる。
[0149] 本発明の平坦化層、特に、上記本発明の組成物で、図 9 (a)に示すようにマイクロ レンズ 37上に低屈折率の平坦ィ匕層 36bを設けることにより、固体撮像素子等のマイ クロレンズで問題となるフレアを効果的に防止することができる。そして、本発明の組 成物は放射線硬化性であるため、マスク露光等の手段により、図 10に示すような個 々のマイクロレンズの周囲のみに位置選択的に平坦ィ匕膜を形成することもできる。
[0150] 6.平坦化膜の製造方法
本発明の平坦ィ匕層は、上記本発明の組成物をコーティングした後、これを硬化させ て形成される。このようなコーティング方法としては、デイツビング法、スプレー法、ダイ コート法、スリットコート法、バーコート法、ロールコート法、スピンコート法、カーテンコ ート法、グラビア印刷法、シルクスクリーン法、又はインクジェット法等の方法を用いる ことができるが、スピンコート法が均一な硬化膜が得られ易 、点で優れて!/、る。
[0151] 本発明の平坦ィ匕層は、上記本発明の組成物をスピンコート法により塗布して該組 成物の塗布膜を形成した後に、放射線を照射して該塗布膜を硬化せしめることによ つて製造することができる。放射線を照射する際に、所定のパターンマスクを介して 放射線を照射して該塗布膜の放射線が当たった部分のみを硬化せしめた後、現像 液によって、放射線が当たらな力つた部分の塗布膜を溶解して除去することによって 、例えば、図 10に示すような所望のパターンを有する平坦化層を形成することができ る。
[0152] 現像液としては、メチルェチルケトン、メチルイソブチルケトン、シクロへキサノン等 のケトン類、酢酸ェチル、酢酸ブチル等のエステル類を挙げることができる。 現像処理の条件は、シャワー現像方法、ディップ現像方法、ステップパドル現像方 法、振動現像方法等の処理方法を用いることが好ま ヽ。
[0153] 上記本発明の組成物は塗布均一性が良いため、ノ、ジキ、塗布ムラ等が無ぐ特に スピンコート法による塗布性に優れて 、る。
[0154] 7.固体撮像素子
本発明の固体撮像素子は、基材層、前記本発明の平坦化層及びマイクロレンズを 含む。
前述したように、本発明の平坦ィ匕層は、(1)マイクロレンズとカラーレジスト層の間に 設けられるもの(カラーフィルタ平坦ィ匕層)のみでなぐ(2)マイクロレンズを覆う形態の もの(マイクロレンズ間の受光部平坦ィ匕層;図 9 (a)及び図 10の形態のものを含む)、( 3)ハレーション防止層とカラーレジスト層との間に設けられるもの(受光部平坦ィ匕層) の全てを含む。
[0155] 上記 (1)の位置に平坦ィ匕層を設けることは従来力 知られており、この位置に平坦 化層を設けることにより、集光率の向上という効果が得られる。
上記 (2)の位置に平坦ィ匕層を設けることにより、フレアを防止することができる。
上記 (3)の位置に平坦ィ匕層を設けることにより、集光率の向上という効果が得られる 上記 (2)の位置に平坦ィ匕層を設けるに当たり、図 8に示すようなパターン化された平 坦ィ匕膜とすることにより、マイクロレンズ間に平坦化層が設けられて 、な 、部分ができ 、この部分に配線取り出し場所を設けることができる。
[0156] 本発明の固体撮像素子を構成するマイクロレンズとしては、ファクシミリ、電子複写 機、固体撮像素子等オンチップカラーフィルターの結像光学系あるいは光ファイバ一 コネクタの光学系等に、一般的に使用されているものであれば、問題なく使用できる 。マイクロレンズの製造法としては、例えば、イオン交換法による分布屈折率型平板 マイクロレンズを作る方法、感光性ガラスによる凸型マイクロレンズを作る方法、半導 体集積回路用ポジ型フォトレジスト等を用いてメルトフロー法による作製法やメルトフ ローさせた感光性榭脂をマスクにしてドライエッチングにより下地にレンズ形状を転写 させる方法等がある。 [0157] 本発明の固体撮像素子におけるマイクロレンズを形成する方法については、上述 した通りであるためここでは省略する。本発明の固体撮像素子は、上記本発明の平 坦化層の製造方法に従って製造することができる。
[実施例]
[0158] 以下、本発明の実施例を詳細に説明するが、本発明の範囲はこれら実施例の記載 に限定されるものではない。
[0159] (製造例 1)
水酸基含有含フッ素重合体 1の合成
内容積 2. 0リットルの電磁攪拌機付きステンレス製オートクレープを窒素ガスで十 分置換した後、酢酸ェチル 400g、パーフルォロ(プロピルビュルエーテル) 53. 2g、 ェチルビニルエーテル 36. lg、ヒドロキシェチルビ-ルエーテル 44. Og、過酸化ラウ ロイル 1. OOg、上記式(7)で表されるァゾ基含有ポリジメチルシロキサン (VPSIOOI (商品名)、和光純薬工業 (株)製) 6. Og及びノニオン性反応性乳化剤 (NE— 30 (商 品名)、旭電化工業 (株)製) 20. Ogを仕込み、ドライアイス—メタノールで— 50°Cま で冷却した後、再度窒素ガスで系内の酸素を除去した。
[0160] 次いでへキサフルォロプロピレン 120. Ogを仕込み、昇温を開始した。オートクレー ブ内の温度が 60°Cに達した時点での圧力は 5. 3 X 105Paを示した。その後、 70°C で 20時間攪拌下に反応を継続し、圧力が 1. 7 X 105Paに低下した時点でオートタレ ーブを水冷し、反応を停止させた。室温に達した後、未反応モノマーを放出してォー トクレーブを開放し、固形分濃度 26. 4%のポリマー溶液を得た。得られたポリマー溶 液をメタノールに投入しポリマーを析出させた後、メタノールにて洗浄し、 50°Cにて真 空乾燥を行 ヽ 220gの水酸基含有含フッ素重合体 1を得た。これを水酸基含有含フ ッ素重合体とする。使用した単量体と溶剤を表 1に示す。
[0161] [表 1] 細基含有
単量体及び溶剤
含フッ素重合体 1
へキサフルォロプロピレン 1 20. 0
仕 パ一フル才ロ (プ□ピノレビニルエーテル) 53. 2
込 ェチルビ二ルェ一テル 36. 1
ヒドロキシェチルビ二ルェ一テル 44. 0
量 過酸化ラウロイル 1. 0
V P S 1 001 6. 0
g
NE-30 20. 0
酢酸ェチル 400. 0
[0162] 得られた水酸基含有含フッ素重合体に付き、ゲルパーミエーシヨンクロマトグラフィ 一によるポリスチレン換算数平均分子量及びァリザリンコンプレクソン法によるフッ素 含量をそれぞれ測定した。また、 ^Η— ΝΜΙ^ 13C— NMRの両 NMR分析結果、元素 分析結果及びフッ素含量から、水酸基含有含フッ素重合体を構成する各単量体成 分の割合を決定した。結果を表 2に示す。但し、(a)と、(b— 1)と、(c)との合計を 10 0モノレ咅とした。
[0163] [表 2]
Figure imgf000048_0001
[0164] 尚、 VPS1001は、数平均分子量が 7〜9万、ポリシロキサン部分の分子量が約 10 , 000の、上記式(7)で表されるァゾ基含有ポリジメチルシロキサンである。 NE-30 は、下記式(10)において、 nが 9、 mが 1、 uが 30であるノ-オン性反応性乳化剤であ る。
[化 14]
Figure imgf000049_0001
[0165] さらに、表 2において、単量体と構造単位との対応関係は以下の通りである。
単量体 構造単位
へキサフルォロプロピレン (a)
パーフルォロ(プロピルビュルエーテル) (a)
ェチルビ-ルエーテル (b— 1)
ヒドロキシェチルビニルエーテル (c)
NE- 30 (f)
ポリジメチルシロキサン骨格 (d)
[0166] (製造例 2)
エチレン性不飽和基含有含フッ素重合体 A— 1 (メタアクリル変性フッ素重合体)( (A )成分)の合成
電磁攪拌機、ガラス製冷却管及び温度計を備えた容量 1リットルのセパラブルフラ スコに、製造例 1で得られた水酸基含有含フッ素重合体 1を 50.0g、重合禁止剤とし て 2, 6 ジー t ブチルメチルフエノール 0. Olg及びメチルイソブチルケトン(MIBK ) 370gを仕込み、 20°Cで水酸基含有含フッ素重合体 1が MIBKに溶解して、溶液が 透明、均一になるまで攪拌を行った。
次いで、この系に、 2—メタクリロイルォキシェチノレイソシァネートを 15. lgを添カロし 、溶液が均一になるまで攪拌した後、ジブチルチンジラウレート 0. lgを添加して反応 を開始し、系の温度を 55〜65°Cに保持し 5時間攪拌を継続することにより、エチレン 性不飽和基含有含フッ素重合体 A - 1の MIBK溶液を得た。
この溶液をアルミ皿に 2g秤量後、 150°Cのホットプレート上で 5分間乾燥、秤量して 固形分含量を求めたところ、 15. 2質量%であった。使用した化合物、溶剤及び固形 分含量を表 3に示す。
[0167] [表 3] エチレン性
不飽和基含有 仕 込 量
含フッ素重合体 A - 1 水酸基含有含フッ素重合体 (g ) 5 0 . 0
2 —メタク リロイルォキシェチルイソシァネ一 ト (g ) 1 5 . 1
2 , 6 —ジ一 t —プチルメチルフ ノール (g ) 0 . 0 1 ジブチル錫ジラウ レー ト (g ) 〇. 1 メチルイソプチルケト ン (g ) 3 7 0 水酸基含有含フッ素重合体の水酸基含有量に対する 2—
メタク リロイルォキシェチルイ ソシァネー トの仕込み量 1 . 1
(モル比)
固形分含量 (質量%) 1 5 . 2 (製造例 3)
特定有機化合物 (Ba)の合成 1
乾燥空気中、メルカプトプロピルトリメトキシシラン 221部、ジブチル錫ジラウレート 1 部からなる溶液に対し、イソホロンジイソシァネート 222部を攪拌しながら 50°Cで 1時 間かけて滴下後、 70°Cで 3時間加熱攪拌した。これに新中村ィ匕学製 NKエステル A — TMM— 3LM— N (ペンタエリスリトールトリアタリレート 60質量0 /0とペンタエリスリト ールテトラアタリレート 40質量%とからなる。このうち、反応に関与するのは、水酸基 を有するペンタエリスリトールトリアタリレートのみである。 ) 549部を 30°Cで 1時間かけ て滴下後、 60°Cで 10時間加熱攪拌することで、下記式(14)及び式(15)で示される 化合物(Ba)を含む組成物(Ba— 1) 993部 (反応に関与しなかったペンタエリスリトー ルテトラアタリレート 220部を含む)を得た。
[化 15]
Figure imgf000051_0001
[式中、「Acryl」は、アタリロイル基を示し、「Me」はメチル基を示す。 ]
[0169] (製造例 4)
特定有機化合物 (Ba)の合成 2
乾燥空気中、メルカプトプロピルトリメトキシシラン 23. 0部、ジブチル錫ジラウレート 0. 5部力もなる溶液に対し、イソホロンジイソシァネート 60. 0部を攪拌しながら 50°C で 1時間かけて滴下後、 70°Cで 3時間加熱攪拌した。これに新中村ィ匕学製 NKエス テルA—TMM— 3LM— N (ぺンタェリスリトールトリァクリレート60質量%とぺンタェ リスリトールテトラアタリレート 40質量%とからなる。このうち、反応に関与するのは、水 酸基を有するペンタエリスリトールトリアタリレートのみである。 ) 202部を 30°Cで 1時間 かけて滴下後、 60°Cで 10時間加熱攪拌することで、上記式(14)及び式(15)で示さ れる化合物(Ba)を含む組成物(Ba— 2) 285部を得た。
[0170] (製造例 5)
アクリル変性球状シリカ粒子 X— 1の調製
製造例 3で合成した特定有機化合物(Ba— 1) 1. 59部、メチルェチルケトンシリカ ゾル(日産化学工業 (株)製、商品名:MEK—ST(数平均粒子径0.022 iu m、シリカ 濃度 30%) ) 91. 3部(固形分 27. 4部)、イソプロパノール 0. 2部及びイオン交換水 0. 1部の混合液を、 80°C、 3時間攪拌後、オルト蟻酸メチルエステル 1. 4部を添加し 、さらに 1時間同一温度で加熱攪拌することで無色透明の粒子分散液 X— 1を得た。 X—1をアルミ皿に 2g秤量後、 120°Cのホットプレート上で 1時間乾燥、秤量して固形 分含量を求めたところ、 35質量%であった。
このシリカ系粒子の平均粒子径は、 20nmであった。ここで、平均粒子径は透過型 電子顕微鏡により測定した(図 5)。
[0171] (製造例 6)
メタアクリル変性連鎖球状シリカ粒子 B— 1 ( (B)成分)の調製
パール状シリカゾル(日産化学工業 (株)製、商品名: PS— SO (シリカ濃度 16%) ) 8 0部と 10%アンモニア水 2部、エタノール 200部を室温で混合し、攪拌しながら γ—メ タクリロキシプロピルトリメトキシシラン (東レ.ダウコーユング.シリコーン (株)製、商品 名: SZ6030) 0. 5部を加えた。その後、 70°Cで 3時間反応させた。反応混合物を室 温まで冷却し、メチルイソブチルケトン 200部をカ卩え、エバポレーターを用いて固形 分濃度 30質量%になるまで濃縮した。ここで得られたメチルイソプチルケトン数珠状 シリカゾル 91. 3部(固形分 27. 4部)と製造例 3で合成した特定有機化合物 (Ba—l ) 1. 59部、イソプロパノール 0. 2部及びイオン交換水 0. 1部の混合液を、 80°C、 3 時間攪拌後、オルト蟻酸メチルエステル 1. 4部を添加し、さらに 1時間同一温度でカロ 熱攪拌することで無色透明の粒子分散液 B— 1を得た。 B— 1をアルミ皿に 2g秤量後 、 120°Cのホットプレ—ト上で 1時間乾燥、秤量して固形分含量を求めたところ、 35質 量%であった。透過型電子顕微鏡により粒子を観察したところ粒径が 20〜50應球 状シリカ粒子が連結し、 50〜150nm程度の長さを有していることが確認された(図 2)
[0172] (製造例 7)
メタアクリル変性連鎖球状シリカ粒子 B— 2 ( (B)成分)の調製
製造例 3で合成した特定有機化合物 (Ba—l) 1. 59部、数珠状シリカゾル(日産化 学工業 (株)製、商品名: MEK—ST— UP (シリカ濃度 22%) ) 125部(固形分 27. 4 部)、イソプロノ V—ル 0. 2部及びイオン交換水 0. 1部の混合液を、 80°C、 3時間攪 拌後、オルト蟻酸メチルエステル 1. 4部を添加し、さらに 1時間同一温度で加熱攪拌 することで無色透明の粒子分散液 B— 2を得た。 B— 2をアルミ皿に 2g秤量後、 120 °Cのホットプレート上で 1時間乾燥、秤量して固形分含量を求めたところ、 25質量% であった。透過型電子顕微鏡により粒子を観察したところ粒径が 10〜20應球状シリ 力粒子が連結し、 50〜 150nm程度の長さを有して!/、ることが確認された(図 3)。
[0173] (製造例 8)
メタアクリル変性連鎖球状シリカ粒子 B— 3 ( (B)成分)の調製
製造例 3で合成した特定有機化合物 (Ba— 1) 1. 59部、メチルェチルケトン分散シ リカゾル (芙蓉化学工業 (株)製、商品名: PL— 1 (シリカ濃度 14%) ) 196部(固形分 2 7. 4部)、イソプロパノール 0. 2部及びイオン交換水 0. 1部の混合液を、 80°C、 3時 間攪拌後、オルト蟻酸メチルエステル 1. 4部を添加し、さらに 1時間同一温度で加熱 攪拌することで無色透明の粒子分散液 B— 3を得た。 B— 3をアルミ皿に 2g秤量後、 120°Cのホットプレ—ト上で 1時間乾燥、秤量して固形分含量を求めたところ、 20質 量%であった。透過型電子顕微鏡により粒子を観察したところ粒径が 10〜20應球 状シリカ粒子が連結し、 20〜50nm程度の長さを有して!/、ることが確認された(図 4)。
[0174] (製造例 9)
メタアクリル変性連鎖球状シリカ粒子 B— 4 ( (B)成分)の調製
パール状シリカゾル(日産化学工業 (株)製、商品名: PS— SO (シリカ濃度 16%) ) 8 0部と 10%アンモニア水 2部、エタノール 200部を室温で混合し、攪拌しながら γ—メ タクリロキシプロピルトリメトキシシラン (東レ.ダウコーユング.シリコーン (株)製、商品 名: SZ6030) 1. 5部を加えた。その後、 70°Cで 3時間反応させた。反応混合物を室 温まで冷却し、メチルイソブチルケトン 200部をカ卩え、エバポレーターを用いて固形 分濃度 35質量%になるまで濃縮することで無色透明の粒子分散液 B— 4を得た。透 過型電子顕微鏡により粒子を観察したところ粒径が 20〜50應球状シリカ粒子が連 結し、 50〜 150nm程度の長さを有して!/、ることが確認された。
[0175] (製造例 10)
メタアクリル変性連鎖球状シリカ粒子 B— 5 ( (B)成分)の調製
製造例 4で合成した特定有機化合物 (Ba— 2) 8. 7部、数珠状シリカゾル (日産化 学工業 (株)製、商品名: MEK—ST— UP (シリカ濃度 22%) ) 125部(固形分 27. 4 部)、イソプロノ V—ル 0. 2部及びイオン交換水 0. 1部の混合液を、 80°C、 3時間攪 拌後、オルト蟻酸メチルエステル 1. 4部を添加し、さらに 1時間同一温度で加熱攪拌 することで無色透明の粒子分散液 B— 5を得た。 B— 5をアルミ皿に 2g秤量後、 120 °Cのホットプレート上で 1時間乾燥、秤量して固形分含量を求めたところ、 25質量% であった。透過型電子顕微鏡により粒子を観察したところ粒径が 10〜20應球状シリ 力粒子が連結し、 50〜 150nm程度の長さを有して!/、ることが確認された。
[0176] (製造例 11)
メタアクリル変性連鎖球状シリカ粒子 B -6 ( (B)成分)の調製
製造例 4で合成した特定有機化合物 (Ba— 2) 8. 7部、メチルェチルケトン分散シリ カゾル (芙蓉化学工業 (株)製、商品名: PL— 1 (シリカ濃度 14%) 196部(固形分 27. 4部)、イソプロパノール 0. 2部及びイオン交換水 0. 1部の混合液を、 80°C、 3時間 攪拌後、オルト蟻酸メチルエステル 1. 4部を添加し、さらに 1時間同一温度で加熱攪 拌することで無色透明の粒子分散液 B— 6を得た。 B— 6をアルミ皿に 2g秤量後、 12 0°Cのホットプレ—ト上で 1時間乾燥、秤量して固形分含量を求めたところ、 20質量 %であった。透過型電子顕微鏡により粒子を観察したところ粒径が 10〜20應球状 シリカ粒子が連結し、 20〜50nm程度の長さを有して!/、ることが確認された。
[0177] (製造例 12)
前記式(13)で表される多官能アタリレート(D— 1)の合成
攪拌機付きの容器内のイソホロンジイソシァネート 18. 8部と、ジブチル錫ジラウレー ト 0. 2部と力 なる溶液に対し、新中村ィ匕学製 NKエステル A— TMM— 3LM— N ( 反応に関与するのは、水酸基を有するペンタエリスリトールトリアタリレートのみである 。)93部を、 10°C、 1時間の条件で滴下した後、 60°C、 6時間の条件で攪拌し、反応 液とした。
この反応液中の生成物、即ち、製造例 3と同様にして残存イソシァネート量を FT-I Rで測定したところ、 0. 1質量%以下であり、反応がほぼ定量的に行われたことを確 認した。また、分子内に、ウレタン結合、及びアタリロイル基 (重合性不飽和基)とを含 むことを確認した。
以上により、前記式(13)で示される化合物 75部のほか、反応に関与しな力つたべ ンタエリスリトールテトラアタリレート 37部が混在している組成物(D— 1)を得た。
[0178] (製造例 13)
シリカ粒子含有ノヽードコート層用組成物の調製 紫外線を遮蔽した容器中にぉ 、て、製造例 5で合成したアクリル変性球状シリカ粒 子 X— 1を 78. 4部(固形分として 27. 4部)、ジペンタエリスリトールへキサアタリレート 65部、製造例 12で合成した D—1を 2. 6部、 2—メチル—1—〔4— (メチルチオ)フエ -ル〕—2—モルフォリノプロパン— 1—オン 5部、 MIBK45部を 50°Cで 2時間攪拌す ることで均一な溶液のハードコート層用組成物を得た。この組成物をアルミ皿に 2g秤 量後、 120°Cのホットプレート上で 1時間乾燥、秤量して固形分含量を求めたところ、 50質量%であった。
[0179] (製造例 14)
硬化性榭脂組成物塗工用基材の作製
片面易接着ポリエチレンテレフタレートフィルム A4100 (東洋紡績 (株)製、膜厚 18 8 m)の易接着処理面に、製造例 13で調製したシリカ粒子含有ノヽードコート層用組 成物をワイヤーバーコ一タで膜厚 3 μ mとなるように塗工し、オーブン中、 80°Cで 1分 間乾燥し、塗膜を形成した。次いで、空気下、高圧水銀ランプを用いて、 0. 9j/cm2 の光照射条件で紫外線を照射し、硬化性榭脂組成物塗工用基材を作製した。
[0180] (実施例 1)
表 4に示すように、製造例 2で得たエチレン性不飽和基含有含フッ素重合体 A— 1 の MIBK溶液を 32. 9g ( (A)成分の固形分として 5g)、製造例 6で得られたメタアタリ ル変性連鎖球状シリカ粒子 B—1を 234. 5g ( (B)成分を主成分とする固形分として 8 2. lg)、光重合開始剤((C)成分)として 2—メチル—1—〔4— (メチルチオ)フエ-ル 〕一2—モルフォリノプロパン一 1—オン (ィルガキュア 907、チノく'スペシャルティ'ケミ カルズ製) 5g、(D)成分として製造例 12で得られた D—1を 7. 9g及び MIBK1720g を、攪拌機をつけたガラス製セパラブルフラスコに仕込み、室温にて 1時間攪拌し均 一な硬化性榭脂組成物を得た。また、製造例 2の方法により固形分濃度を求めたとこ ろ 5質量0 /0であった。
[0181] (実施例 2〜4、比較例 1、 2)
表 4の組成に従った他は、実施例 1と同様にして各硬化性榭脂組成物を得た。表中 の成分組成の単位は、有機溶剤を除く固形分全量に対する質量%である。
[0182] [表 4]
Figure imgf000056_0001
[0183] (実施例 5〜12、比較例 3〜6)
表 5又は表 6の組成に従った他は、実施例 1と同様にして各硬化性榭脂組成物を 得た。表中の成分組成の単位は、有機溶剤を除く固形分全量に対する質量%である
[0184] [表 5]
Figure imgf000058_0001
Figure imgf000058_0002
Figure imgf000059_0001
Figure imgf000059_0002
SR399E:ジペンタエリスリトールペンタアタリレート(サートマ一(株)製)
Irg. 907 : 2—メチルー 1 4 (メチルチオ)フエ-ル〕 2—モルフォリノプロパン — 1—オン(チバ'スペシャルティ ·ケミカルズ製)
MEK-ST-UP:日産化学工業 (株)製連鎖球状シリカゾル
[0187] <反射防止フィルムの製造及び評価 >
実施例 1〜4及び比較例 1、 2で得られた硬化性榭脂組成物を用 ヽて反射防止フィ ルムを製造し、下記特性について評価した。結果を表 4に示す。
[0188] (1)外観の評価
各硬化性榭脂組成物を、ワイヤーバーコータを用いて製造例 10で得られた硬化性 榭脂組成物塗工用基材上に膜厚 0.: L mとなるように塗工し、 80°Cで 1分間乾燥し 、塗膜を形成した。次いで、窒素気流下、高圧水銀ランプを用いて、 0. 3jZcm2の光 照射条件で紫外線を照射し、反射防止膜層を作製した。得られた反射防止膜の外 観を目視で確認し、下記基準に従って評価した。
〇:塗布ムラなし
△:若干塗布ムラあり
X:全面に塗布ムラあり
[0189] (2)硬化膜の屈折率測定
各硬化性榭脂組成物をスピンコーターによりシリコンウェハー上に、乾燥後の厚さ が約 0. 1 mとなるように塗布後、窒素下、高圧水銀ランプを用いて、 0. 3jZcm2の 光照射条件で紫外線を照射して硬化させた。得られた硬化物について、エリプソメ一 ターを用いて 25°Cでの波長 589nmにおける屈折率 (n 25)を測定した。
D
[0190] (3)反射防止膜の反射率測定
上記(1)で得られた反射防止膜の裏面を黒色スプレーで塗装し、分光反射率測定 装置 (大型試料室積分球付属装置 150— 09090を組み込んだ自記分光光度計 U — 3410、日立製作所 (株)製)により、波長 340〜700nmの範囲で反射率をマイクロ レンズ側から測定して評価した。具体的には、アルミの蒸着膜における反射率を基準 (100%)として、各波長における反射防止用積層体 (反射防止膜)の反射率を測定 した。 [0191] (4)耐擦傷性テスト (スチールウール耐性テスト)
上記(1)で得られた硬化膜を、スチールウール(ボンスター No. 0000、 日本スチー ルウール (株)製)を学振型摩擦堅牢度試験機 (AB-301、テスター産業 (株)製)に 取りつけ、硬化膜の表面を荷重 500gの条件で 10回繰り返し擦過し、当該硬化膜の 表面における傷の発生の有無を目視で確認し、以下の基準に従って評価した。
◎:硬化膜の剥離や傷の発生がほとんど認められない。
〇:硬化膜にわず力な細い傷が認められる。
△:硬化膜全面に筋状の傷が認められる。
X:硬化膜の剥離が生じる。
[0192] (5)耐汚染性テスト
上記(1)で得られた反射防止膜に指紋をつけ、不織布 (ベンコット S— 2、旭化成( 株)製)にて塗膜表面を拭き取った。耐汚染性を、以下の基準に従って評価した。
〇:塗膜表面の指紋跡がほぼ完全に拭き取られた。
X:拭き取られずに指紋跡が試料表面に残存した。
[0193] 表 4の結果から、重合性不飽和基を有する有機化合物によって表面変性された連 鎖球状のシリカ粒子を用いることにより、外観が良好で、屈折率が 1. 27〜: L 36と非 常に低ぐ反射率も 0. 2以下であることがわかる。(実施例 1〜4)
また、(メタ)アタリレートイ匕合物を配合することにより、耐擦傷性が向上することがわ かる。(実施例 4)
[0194] 製造例 15
[マイクロレンズ用アルカリ可溶性榭脂の合成(1) ]
攪拌機、冷却管、窒素導入管及び温度計を装着したセパラブルフラスコに p—tert —ブトキシスチレン 95g、スチレン 5g、 2, 2'—ァゾビスイソブチロニトリル 10g、ジォキ サン 100gを仕込み、 30分間窒素でパージした後、セパラブルフラスコを油浴に浸し 、内温を 80°Cに保ち、攪拌しながら 5時間重合を行い、榭脂を合成した。得られた榭 脂溶液に 7. 2%塩酸水溶液 60gを加え、 80°Cで 3時間攪拌し、 t—ブトキシ基の加 水分解によりポリマーに水酸基を導入した。反応混合物をメタノール Z水混合液 (メタ ノール:水 = 2: 8 (容積比) )に注ぎ、得られたスラリーをメタノール Z水混合液で 2回 再沈精製した。 50°Cで 12時間減圧乾燥させ、白色榭脂粉末を得た (以下、この榭脂 を「榭脂 A」と称する)。得られた榭脂のゲルパーミエーシヨンクロマトグラフィー(GPC )によるポリスチレン換算数平均分子量 (Mn)が 10, 000であった。
[0195] 製造例 16
[マイクロレンズ用アルカリ可溶性榭脂の合成 (2) ]
製造例 15と同様なセパラブルフラスコに、ブタジエン 7. 5g、メタクリル酸 20. Og、メ タクリル酸ジシクロペンタニル 22. 5g、メタクリル酸グリシジル 50. 0g、 2, 2, 一ァゾビ スイソプチ口-トリル 4. 0g、ジグライム 250. Ogを仕込み、 30分間窒素でパージした 後、セパラブルフラスコを油浴に浸し、内温を 80°Cに保ち、攪拌しながら 4時間重合 を行い、榭脂を合成した (以下、この榭脂を「榭脂 B」と称する)。
[0196] 製造例 17
[マイクロレンズ用感光性榭脂組成物の調製]
製造例 15で得られた榭脂 A100質量部に対して、製造例 16で得られた榭脂 B40. 0質量部(固形分換算)、 1 , 1 , 3 トリス(2, 5 ジメチルー 4 ヒドロキシフエ-ル) - 3—フエ-ルプロパン( 1モル)と 1 , 2 ナフトキノンジアジド 5—スルホン酸クロリ ド(1. 9モル)との縮合物 30. 0質量部、ビスフエノール A型エポキシ榭脂ェピコート 8 28 (ジャパンエポキシレジン (株)製) 30. 0質量部、サイメル 300 (三井サイアナミツド (株)製) 10. 0質量部、 2 - (4ーメトキシー /3ースチリル) ビス (4, 6 トリクロロメチ ル) S トリァジン 0. 5質量部を混合し、全体の固形分濃度が 32%になるように 3 ーメトキシプロピオン酸メチル (MMP)で希釈'溶解させた後、孔径 0. : L mのメンブ ランフィルターで濾過し、マイクロレンズ用感光性榭脂組成物を得た。
[0197] 製造例 18
[マイクロレンズの作製]
製造例 17で得られたマイクロレンズ用感光性榭脂組成物を石英基板に、 2. 5 u m の膜厚になるようにスピンコートし、 70°Cにて 3分間ホットプレート上でプレベータした 。ニコン製 NSR1755i7A縮小投景露光機(NA= 0. 50, λ = 365nm)で露光を行 つた後、 1. 5%テトラメチルアンモ-ゥムヒドロキシド水溶液にて 25°C、 1分間現像し た。水でリンスし、乾燥して石英板上にパターンを形成した。得られたパターン付き石 英板を lOmWZcm2の紫外線で 60秒間照射した。その後ホットプレート上、 150°C で 10分間加熱してパターンをメルトフローさせマイクロレンズを形成した。
[0198] <マイクロレンズ上の反射防止膜 (低屈折率膜)の形成及び評価 >
製造例 18で得られたマイクロレンズ付き基板に、実施例 5〜8及び比較例 3、 4で得 られた低屈折率の硬化性榭脂組成物を、スピンコート装置を用いて塗布した。当該 硬化性榭脂組成物を基板上に ImL滴下し、 500rpmで 30秒、 2000rpmで3分間で スピンコートした。次いで、高圧水銀灯 UZcm2で硬化させ、膜厚約 0. 1 μ mの低屈 折率硬化膜をマイクロレンズ上に形成した。
[0199] このようにして、図 6に示す反射防止膜を形成したマイクロレンズを作製した。
このマイクロレンズ上の反射防止膜の性能を以下の方法により評価した。結果を表
5に示す。
[0200] (1)屈折率
各実施例及び比較例で調製した硬化性榭脂組成物を、 4インチシリコンウェハー上 にスピンコーター(MIKASA社製 1H— 360S型)を用いて塗布した。スピンコーター の回転条件及び硬化条件は、前記低屈折率膜の形成と同様にして行った。
得られたシリコンウェハー上の各低屈折率硬化膜について、エリプソメーターを用 いて、 25°Cでの波長 589nmにおける屈折率 (n 25)を測定した。
D
[0201] (2)塗布性
各実施例及び比較例で調製した低屈折率の硬化性榭脂組成物を、マイクロレンズ 付き基板上にスピンコーター(MIKASA社製 1H— 360S型)を用いて塗布した。ス ビンコ一ターの回転条件及び硬化条件は、前記低屈折率膜の形成と同様にして行 つた。得られた低屈折率膜を有するマイクロレンズ付き基板を以下の基準で目視評 価し 7こ。
◎:基板全体に塗布ムラ、風紋、スジ等が全く無ぐ均一塗布されている。 〇:基板のごく一部に塗布ムラ等があるものの全体的に均一に塗布されて ヽる。 △:基板の半分以上に塗布ムラ、風紋、スジがある。
X:基板全体に塗布ムラ、風紋、スジがある。
[0202] (3)反射防止性 反射防止膜付きマイクロレンズ基板の裏面を黒色スプレーで塗装し、分光反射率 測定装置 (大型試料室積分球付属装置 150— 09090を組み込んだ自記分光光度 計 U— 3410、 日立製作所 (株)製)により、波長 340〜700nmの範囲で反射率をマ イク口レンズ側力 測定して評価した。具体的には、アルミの蒸着膜における反射率 を基準(100%)として、各波長における反射防止膜の反射率を測定し、そのうち波 長 550nmにおける光の反射率から、反射防止性を、以下の基準で評価した。
◎:反射率が 0. 5%以下である。
〇:反射率が 0. 5%を超え 1. 0%以下である。
△:反射率が 1. 0%を超え 1. 5%以下である。
X:反射率が 1. 5%を超える。
[0203] (4)透明性
反射防止膜付きマイクロレンズ基板の濁度 (Haze値)を、カラーヘイズメーターを用 いて測定し、以下の基準で評価した。
〇: Haze値が 2%以下である。
△: Haze値が 2%を超え 3%以下である。
X: Haze値が 3%を超える。
[0204] (5)基材密着性
反射防止膜付きマイクロレンズ基板上に 6cmのセロハンテープを 3cm (持ちしろ 3c m)接着させ、手で瞬間的に剥がした。セロハンテープの剥離面を以下の基準で目 視評価した。
〇:変化なし。
△:一部に積層体の剥離が確認できる。
X:積層体が全体的に剥離している。
[0205] (6)耐光性
反射防止膜付きマイクロレンズ基板の反射率を、分光反射率測定装置 (大型試料 室積分球付属装置 150— 09090を組み込んだ自記分光光度計 U— 3410、 日立製 作所 (株)製)で測定して評価した。具体的には、アルミの蒸着膜における反射率を 基準(100%)として、各波長における硬化膜の反射率を測定し、さらに硬化膜に対 して、 QUV促進耐候試験機 (Q— Panel社製)を用いて、 150時間紫外線を照射し た後、同様に反射率を測定して、以下の基準で評価した。
〇:耐光性試験前後で、反射率曲線の最低反射率の波長シフトが、 50nm以下
、又は最高反射率値の減少が 1%以下である。
X:耐光性試験前後で、反射率曲線の最低反射率の波長シフトが、 lOOnm以 下、又は最高反射率値の減少が 2%以下である。
[0206] 表 5の結果から、本発明のマイクロレンズ用反射防止膜は、煩瑣防止性に優れ、透 明'性に優れて ヽることがゎカゝる。
[0207] <マイクロレンズ上の平坦化膜の形成及び評価 >
製造例 18で得られたマイクロレンズ付き基板に、実施例 9〜12及び比較例 5、 6で 得られた低屈折率の硬化性榭脂組成物を、スピンコート装置を用いて塗布した。当 該硬化性榭脂組成物を基板上に 10mL滴下し、 500rpmで 5秒、 lOOOrpmで 1分間 スピンコートし、 80°Cで 1分間乾燥させた。次いで、高圧水銀灯 UZcm2で硬化させ
、マイクロレンズ上に低屈折率の平坦化膜を形成した。得られた平坦化膜を、下記特 性について評価した。結果を表 6に示す。
[0208] (1)屈折率
各実施例及び比較例で調製した硬化性榭脂組成物を、 4インチシリコンウェハー上 にスピンコーター(MIKASA社製 1H— 360S型)を用いて塗布した。スピンコーター の回転条件及び硬化条件は、前記低屈折率膜の形成と同様にして行った。
得られたシリコンウェハー上の各低屈折率硬化膜について、エリプソメーターを用 いて、 25°Cでの波長 589nmにおける屈折率 (n 25)を測定した。
D
[0209] (2)塗布性
各実施例及び比較例で調製した低屈折率の硬化性榭脂組成物を、マイクロレンズ 付き基板上にスピンコーター(MIKASA社製 1H— 360S型)を用いて塗布した。ス ビンコ一ターの回転条件及び硬化条件は、前記低屈折率膜の形成と同様にして行 つた。得られた低屈折率膜を有するマイクロレンズ付き基板を以下の基準で目視評 価し 7こ。
◎:基板全体に塗布ムラ、風紋、スジ等が全く無ぐ均一塗布されている。 〇:基板のごく一部に塗布ムラ等があるものの全体的に均一に塗布されて ヽる。 △:基板の半分以上に塗布ムラ、風紋、スジがある。
X:基板全体に塗布ムラ、風紋、スジがある。
[0210] (3)耐アルカリ性
各実施例及び比較例で調製した低屈折率の硬化性榭脂組成物を、マイクロレンズ 付き基板上にスピンコーター(MIKASA社製 1H— 360S型)を用いて塗布した。ス ビンコ一ターの回転条件及び硬化条件は、前記低屈折率膜の形成と同様にして行 つた。得られた硬化膜を 2. 4%テトラメチルアンモ-ゥムヒドロキシド水溶液に 23°Cに て 30分間浸潰した。水でリンスし乾燥した後の硬化膜の外観を目視にて観察し、初 期と比較して変化があったものを X、変化がなかったものを〇とした。
[0211] (4)耐有機溶剤性
各実施例及び比較例で調製した低屈折率の硬化性榭脂組成物を、マイクロレンズ 付き基板上にスピンコーター(MIKASA社製 1H— 360S型)を用いて塗布した。ス ビンコ一ターの回転条件及び硬化条件は、前記低屈折率膜の形成と同様にして行 つた。得られた硬化膜をアセトンに 23°Cにて 30分間浸漬した。水でリンスし乾燥した 後の硬化膜の外観を目視にて観察し、初期と比較して変化があったものを X、変化 がな力 たものを〇とした。
[0212] 表 6の結果から、本発明の放射線硬化性榭脂組成物によれば、塗布性、耐アルカリ 性及び耐有機溶剤性に優れた、低屈折率の硬化物が得られることがゎカゝる。
産業上の利用可能性
[0213] 本発明の硬化性榭脂組成物によれば、塗工性及び耐久性に優れ、かつ屈折率及 び反射率が非常に低い硬化膜を形成することができる。それ故、特に反射防止膜の 低屈折率層形成用材料として有用である。
[0214] 本発明の硬化性組成物は、屈折率が低ぐ耐光性に優れた硬化膜を与え、しかも 塗工性もよい。また、本発明のマイクロレンズ用反射防止膜は、空気媒体とマイクロレ ンズとの屈折率差に起因するレンズ表面での光の反射を抑制できるため、マイクロレ ンズの光線透過率を向上させることができる。従って、ファクシミリ、電子複写機、固体 撮像素子等オンチップカラーフィルターの結像光学系あるいは光ファイバ一コネクタ の光学系等のマイクロレンズに好適に使用できる。特に、固体撮像素子の感光部に 入射する光量を増加できることから、固体撮像素子用のマイクロレンズに好適に使用 できる。
本発明の硬化性榭脂組成物は、低屈折率でハジキ、塗布むらが無ぐ特にスピンコ ート法による塗布性に優れているため、均一な平坦ィ匕層を形成することができる。 本発明の平坦ィ匕層は、低屈折率で、透明性に優れている。
本発明の平坦ィ匕層は、マスク露光等の手段により、位置選択的に形成することがで きるため、配線の取り出し場所の形成が容易となる。
本発明の平坦ィ匕層を有する固体撮像素子は、固体撮像素子等のマイクロレンズで 問題となるフレアが有効に防止され、集光率が向上する。
本発明の平坦ィ匕層は、固体撮像素子、 CCD, CMOSその他レンズ形状の物品に 適用できる。

Claims

請求の範囲
[1] 下記成分 (A)及び (B)を含有する硬化性榭脂組成物であって、有機溶剤以外の 組成物全量に対して、
(A)エチレン性不飽和基含有含フッ素重合体 1〜90質量%
(B)重合性不飽和基を有する有機化合物によって表面変性された連鎖球状のシリカ 粒子 10〜99質量%
を含有する硬化性榭脂組成物。
[2] 前記 (A)エチレン性不飽和基含有含フッ素重合体が、
1個のイソシァネート基と、少なくとも 1個のエチレン性不飽和基とを含有する化合物 と、
水酸基含有含フッ素重合体と、
を反応させて得られるエチレン性不飽和基含有含フッ素重合体である請求項 1〖こ 記載の硬化性榭脂組成物。
[3] 前記 (A)エチレン性不飽和基含有含フッ素重合体のエチレン性不飽和基が (メタ) アクリル基である請求項 1又は 2に記載の硬化性榭脂組成物。
[4] 前記 (B)連鎖球状シリカ粒子力 2個以上の、数平均粒径 1〜: LOOnmの略球状の シリカ粒子が直鎖状又は分岐した形で連結した形態である請求項 1〜3のいずれ力 1 項に記載の硬化性榭脂組成物。
[5] 前記 (B)連鎖球状シリカ粒子が、前記略球状のシリカ粒子が直鎖状又は分岐した 形で繋がった数珠状の形態、又は前記略球状のシリカ粒子が直鎖状に繋がった形 態を有する請求項 4に記載の硬化性榭脂組成物。
[6] さらに (C)活性エネルギー線の照射により活性種を発生する化合物を含有する請 求項 1〜5のいずれか 1項に記載の硬化性榭脂組成物。
[7] さらに (D) (メタ)アタリレートイ匕合物を含有する請求項 1〜6のいずれか 1項に記載 の硬化性榭脂組成物。
[8] 前記 (D) (メタ)アタリレートイ匕合物力 分子内に少なくとも 2個以上の (メタ)アタリ口 ィル基を含有する化合物を含有する請求項 7に記載の硬化性榭脂組成物。
[9] 反射防止膜用である請求項 1〜8の!ヽずれか 1項に記載の硬化性榭脂組成物。
[10] 請求項 1〜9の!ヽずれか 1項に記載の硬化性榭脂組成物を硬化させて得られる硬 化物。
[11] 請求項 10に記載の硬化物力もなる低屈折率層を有する反射防止膜。
[12] 請求項 10に記載の硬化物力 なる低屈折率層を有するマイクロレンズ用反射防止 膜。
[13] 請求項 10に記載の硬化物からなる低屈折率膜と、これより高屈折率の硬化膜とを 有する請求項 12に記載のマイクロレンズ用反射防止膜。
[14] 請求項 1〜9の!ヽずれか 1項に記載の硬化性榭脂組成物を硬化させて得られる平 坦化層。
[15] 請求項 1〜9のいずれか 1項に記載の硬化性榭脂組成物をスピンコート法により塗 布して該組成物の塗布膜を形成した後に、放射線を照射して該塗布膜を硬化せしめ る工程を有する平坦化層の製造方法。
[16] パターンマスクを介して前記放射線を照射して前記塗布膜を硬化せしめた後、現 像処理することによって、パターン化された平坦化層を形成する請求項 15に記載の 平坦化層の製造方法。
[17] 少なくとも基材層、請求項 14に記載の平坦化層、及びマイクロレンズを含む固体撮 像素子。
PCT/JP2006/312253 2005-06-24 2006-06-19 硬化性樹脂組成物及び反射防止膜 WO2006137365A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-185254 2005-06-24
JP2005185254 2005-06-24
JP2006-132394 2006-05-11
JP2006132394 2006-05-11

Publications (1)

Publication Number Publication Date
WO2006137365A1 true WO2006137365A1 (ja) 2006-12-28

Family

ID=37570393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/312253 WO2006137365A1 (ja) 2005-06-24 2006-06-19 硬化性樹脂組成物及び反射防止膜

Country Status (2)

Country Link
TW (1) TW200712118A (ja)
WO (1) WO2006137365A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327018A (ja) * 2005-06-24 2007-12-20 Jsr Corp 硬化性樹脂組成物及び反射防止膜
CN103376480A (zh) * 2012-04-16 2013-10-30 佳能株式会社 光学部件、光学部件的制造方法和光学部件的光学膜
CN110734561A (zh) * 2019-10-28 2020-01-31 中国工程物理研究院激光聚变研究中心 一种强激光装置倍频元件匹配薄膜及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002355936A (ja) * 2001-03-30 2002-12-10 Jsr Corp 積層体
WO2004073972A1 (ja) * 2003-02-21 2004-09-02 Asahi Kasei Kabushiki Kaisha シリカ含有積層体、及び多孔性シリカ層形成用塗布組成物
WO2004113966A1 (ja) * 2003-06-18 2004-12-29 Asahi Kasei Kabushiki Kaisha 反射防止膜
JP2006036835A (ja) * 2004-07-23 2006-02-09 Jsr Corp 硬化性樹脂組成物及び反射防止膜
JP2006097003A (ja) * 2004-08-31 2006-04-13 Jsr Corp 樹脂組成物及び反射防止膜
JP2006199902A (ja) * 2004-12-24 2006-08-03 Jsr Corp 平坦化層用放射線硬化性樹脂組成物、平坦化層、平坦化層の製造方法及び固体撮像素子

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002355936A (ja) * 2001-03-30 2002-12-10 Jsr Corp 積層体
WO2004073972A1 (ja) * 2003-02-21 2004-09-02 Asahi Kasei Kabushiki Kaisha シリカ含有積層体、及び多孔性シリカ層形成用塗布組成物
WO2004113966A1 (ja) * 2003-06-18 2004-12-29 Asahi Kasei Kabushiki Kaisha 反射防止膜
JP2006036835A (ja) * 2004-07-23 2006-02-09 Jsr Corp 硬化性樹脂組成物及び反射防止膜
JP2006097003A (ja) * 2004-08-31 2006-04-13 Jsr Corp 樹脂組成物及び反射防止膜
JP2006199902A (ja) * 2004-12-24 2006-08-03 Jsr Corp 平坦化層用放射線硬化性樹脂組成物、平坦化層、平坦化層の製造方法及び固体撮像素子

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327018A (ja) * 2005-06-24 2007-12-20 Jsr Corp 硬化性樹脂組成物及び反射防止膜
CN103376480A (zh) * 2012-04-16 2013-10-30 佳能株式会社 光学部件、光学部件的制造方法和光学部件的光学膜
CN110734561A (zh) * 2019-10-28 2020-01-31 中国工程物理研究院激光聚变研究中心 一种强激光装置倍频元件匹配薄膜及其制备方法
CN110734561B (zh) * 2019-10-28 2022-02-11 中国工程物理研究院激光聚变研究中心 一种强激光装置倍频元件匹配薄膜及其制备方法

Also Published As

Publication number Publication date
TW200712118A (en) 2007-04-01

Similar Documents

Publication Publication Date Title
TWI402281B (zh) Radiation hardening resin composition and anti-reflection film
JP5125507B2 (ja) 樹脂組成物、硬化膜及び積層体
JP5433926B2 (ja) 硬化性樹脂組成物及び反射防止膜
KR101273688B1 (ko) 경화성 수지 조성물 및 반사 방지막
JP4678399B2 (ja) 反射防止膜
JP2005089536A (ja) 硬化性樹脂組成物及び反射防止膜
JP2008044979A (ja) 硬化性樹脂組成物及び反射防止膜
JP4301115B2 (ja) 活性エネルギー線硬化性樹脂組成物及び反射防止膜
JP2006036835A (ja) 硬化性樹脂組成物及び反射防止膜
TW200538754A (en) Method for producing a multilayer body
JP2006097003A (ja) 樹脂組成物及び反射防止膜
JP4609088B2 (ja) 平坦化層用放射線硬化性樹脂組成物、平坦化層、平坦化層の製造方法及び固体撮像素子
JP2009029979A (ja) 硬化性樹脂組成物及び反射防止膜
JP4899572B2 (ja) 硬化性樹脂組成物及び反射防止膜
KR20070089718A (ko) 반사 방지막
JP2009163260A (ja) 硬化性樹脂組成物及び反射防止膜
CN102419515B (zh) 聚硅氧烷组合物、聚硅氧烷组合物的制造方法、显示元件的固化膜及其形成方法
JP2008116522A (ja) マイクロレンズ用反射防止膜形成用硬化性樹脂組成物及びマイクロレンズ用反射防止膜
KR20070091164A (ko) 반사 방지막
JP2007327018A (ja) 硬化性樹脂組成物及び反射防止膜
WO2006137365A1 (ja) 硬化性樹脂組成物及び反射防止膜
JP2008031327A (ja) 硬化性樹脂組成物及び積層体
JP4952047B2 (ja) 硬化性樹脂組成物、硬化膜及び反射防止膜積層体
WO2006057297A1 (ja) 硬化性樹脂組成物及び反射防止膜
JP2007277504A (ja) 硬化性樹脂組成物及び反射防止膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06766917

Country of ref document: EP

Kind code of ref document: A1