JP2009163260A - 硬化性樹脂組成物及び反射防止膜 - Google Patents

硬化性樹脂組成物及び反射防止膜 Download PDF

Info

Publication number
JP2009163260A
JP2009163260A JP2009101583A JP2009101583A JP2009163260A JP 2009163260 A JP2009163260 A JP 2009163260A JP 2009101583 A JP2009101583 A JP 2009101583A JP 2009101583 A JP2009101583 A JP 2009101583A JP 2009163260 A JP2009163260 A JP 2009163260A
Authority
JP
Japan
Prior art keywords
group
meth
acrylate
refractive index
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009101583A
Other languages
English (en)
Inventor
Takao Yashiro
隆郎 八代
Takahiro Kawai
高弘 川合
Yasuharu Yamada
康晴 山田
Akio Taira
晃雄 平
Tetsuya Yamamura
哲也 山村
Hideaki Takase
英明 高瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2009101583A priority Critical patent/JP2009163260A/ja
Publication of JP2009163260A publication Critical patent/JP2009163260A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】耐擦傷性に優れる反射防止膜を提供する。
【解決手段】基材12と、25℃におけるNa−D線の屈折率が1.45以下の低屈折率層18とを有する反射防止膜10であって、前記低屈折率層が、(A)エチレン性不飽和基含有含フッ素重合体、(B)(メタ)アクリレート化合物、(C)数平均粒径1〜30nmのシリカを主成分とする粒子、及び、(D)数平均粒径40〜100nmのシリカを主成分とする粒子、を含有する硬化性樹脂組成物を硬化して得られることを特徴とする反射防止膜。
【選択図】図1

Description

本発明は、硬化性樹脂組成物及び反射防止膜に関する。より詳細には、エチレン性不飽和基含有含フッ素重合体を含み、硬化させたときに、耐擦傷性、塗工性、及び耐久性に優れた硬化物が得られる硬化性樹脂組成物、及びそのような硬化物からなる低屈折率層を含む反射防止膜に関する。
液晶表示パネル、冷陰極線管パネル、プラズマディスプレー等の各種表示パネルにおいて、外光の映りを防止し、画質を向上させるために、低屈折率性、耐擦傷性、塗工性、及び耐久性に優れた硬化物からなる低屈折率層を含む反射防止膜が求められている。
これら表示パネルにおいては、付着した指紋、埃等を除去するため表面をエタノール等を含侵したガーゼで拭くことが多く、耐擦傷性が求められている。
特に、液晶表示パネルにおいては、反射防止膜は、偏光板と貼り合わせた状態で液晶ユニット上に設けられている。また、基材としては、例えば、トリアセチルセルロース等が用いられているが、このような基材を用いた反射防止膜では、偏光板と貼り合わせる際の密着性を増すために、通常、アルカリ水溶液でケン化を行う必要がある。
従って、液晶表示パネルの用途においては、耐久性において、特に、耐アルカリ性に優れた反射防止膜が求められている。
反射防止膜の低屈折率層用材料として、例えば、水酸基含有含フッ素重合体を含むフッ素樹脂系塗料が知られている(例えば、特許文献1〜3)。
しかし、このようなフッ素樹脂系塗料では、塗膜を硬化させるために、水酸基含有含フッ素重合体と、メラミン樹脂等の硬化剤とを、酸触媒下、加熱して架橋させる必要があり、加熱条件によっては、硬化時間が過度に長くなったり、使用できる基材の種類が限定されてしまうという問題があった。
また、得られた塗膜についても、耐候性には優れているものの、耐擦傷性や耐久性に乏しいという問題があった。
そこで、上記の問題点を解決するため、少なくとも1個のイソシアネート基と少なくとも1個の付加重合性不飽和基とを有するイソシアネート基含有不飽和化合物と水酸基含有含フッ素重合体とを、イソシアネート基の数/水酸基の数の比が0.01〜1.0の割合で反応させて得られる不飽和基含有含フッ素ビニル重合体を含む塗料用組成物が提案されている(例えば、特許文献4)。
しかし、上記公報では、不飽和基含有含フッ素ビニル重合体を調製する際に、水酸基含有含フッ素重合体のすべての水酸基を反応させるのに十分な量のイソシアネート基含有不飽和化合物を用いず、積極的に当該重合体中に未反応の水酸基を残存させるものであった。
このため、このような重合体を含む塗料用組成物は、低温、短時間での硬化を可能とするものの、残存した水酸基を反応させるために、メラミン樹脂等の硬化剤をさらに用いて硬化させる必要があった。さらに、上記公報で得られた塗膜は、塗工性、耐擦傷性についても十分とはいえないという課題があった。
また、反射防止膜の耐擦傷性を改善するために、反射防止膜の最外層である低屈折率膜にシリカ粒子を添加する技術が広く用いられている(例えば、特許文献5,6)。しかし、多くの場合、粒径が比較的均一なシリカ粒子が1種類用いられているため、粒子の充填率を上げることができず、十分な耐擦傷性が得られるには至っていない。
さらに、より低反射率の反射防止膜を提供するために従来よりもさらに低屈折率を有する低屈折率膜用材料が望まれている。そこでアクリル等の樹脂成分よりも空気の屈折率が低いことを利用して、多孔質粒子や中空粒子等の粒子内部に空隙を有する粒子(以下、総称として中空粒子」という。)を用いた技術が知られている(例えば、特許文献7〜9)。
しかし、中空粒子を用いるとかかる空隙を有しない粒子(中実粒子)に比べて硬化膜の耐擦傷性が低下する欠点があった。
特開昭57−34107号公報 特開昭59−189108号公報 特開昭60−67518号公報 特開昭61−296073号公報 特開2002−265866号公報 特開平10−316860号公報 特開2003−139906号公報 特開2002−317152号公報 特開平10−142402号公報
従って、本発明は、屈折率が低く、耐擦傷性に優れる硬化性樹脂組成物及び反射防止膜を提供することを目的とする。
本発明によれば、以下の硬化性樹脂組成物及び反射防止膜が提供される。
[1] 下記成分(A)、(B)、(C)及び(D):
(A)エチレン性不飽和基含有含フッ素重合体、
(B)(メタ)アクリレート化合物、
(C)数平均粒径1〜30nmのシリカを主成分とする粒子、
(D)数平均粒径40〜100nmのシリカを主成分とする粒子、
を含有する硬化性樹脂組成物。
[2] 前記(B)(メタ)アクリレート化合物が、分子内に少なくとも2個以上の(メタ)アクリロイル基を含有する化合物を含有することを特徴とする[1]に記載の硬化性樹脂組成物。
[3] 前記(A)エチレン性不飽和基含有含フッ素重合体が、
1個のイソシアネート基と、少なくとも1個のエチレン性不飽和基とを含有する化合物と、
水酸基含有含フッ素重合体と、
をイソシアネート基/水酸基のモル比が1.1〜1.9の割合で反応させて得られるエチレン性不飽和基含有含フッ素重合体である[1]又は[2]に記載の硬化性樹脂組成物。
[4] 前記(C)シリカを主成分とする粒子、及び前記(D)シリカを主成分とする粒子が、重合性不飽和基を含む有機化合物によって表面処理がなされている[1]〜[3]のいずれか一に記載の硬化性樹脂組成物。
[5] 反射防止膜用である[1]〜[4]のいずれか一に記載の硬化性樹脂組成物。
[6] [1]〜[5]のいずれか一に記載の硬化性樹脂組成物を硬化させて得られる硬化膜。
[7] [6]に記載の硬化物からなる低屈折率層を有する反射防止膜。
本発明の硬化性樹脂組成物及び反射防止膜によれば、低い屈折率、優れた耐擦傷性が得られる。
本発明の一実施形態による反射防止膜の断面図である。
本発明の硬化性樹脂組成物及び反射防止膜の実施形態について以下説明する。
1.硬化性樹脂組成物
本発明の硬化性樹脂組成物は、下記の成分(A)〜(G)を含み得る。これらの成分のうち、(A)〜(D)は必須成分であり、(E)〜(G)は適宜含むことのできる任意成分である。
(A)エチレン性不飽和基含有含フッ素重合体
(B)(メタ)アクリレート化合物
(C)数平均粒径1〜30nmのシリカを主成分とする粒子、
(D)数平均粒径40〜100nmのシリカを主成分とする粒子、
(E)活性エネルギー線の照射又は熱により活性種を発生する化合物
(F)有機溶媒
(G)その他の添加剤
本発明の組成物においては、異なる2種類の粒子((C)成分及び(D)成分)により、硬化物中の粒子の充填率が高い硬化膜が得られるため、高い耐擦傷性を有する硬化膜(低屈折率膜)が得られると考えられる。
(C)成分と(D)成分のいずれか一方又は両方を中空粒子とすることにより、より屈折率の低い硬化膜が得られる。特に、(C)成分の中実粒子と(D)成分の中空粒子を組み合わせることにより、屈折率を低くしながら、耐擦傷性を高めることができる。
また、成分(A)と粒子成分((C)成分及び(D)成分)を光架橋性とすることにより、光重合性の(B)成分との親和性が改善される。
これらの成分について以下説明する。
(A)エチレン性不飽和基含有含フッ素重合体
エチレン性不飽和基含有含フッ素重合体(A)は、フッ素系オレフィンの重合物である。(A)成分により本発明の組成物は低屈折率、防汚性、耐薬品性、耐水性等の反射防止膜用低屈折率材料としての基本性能を発現する。
好ましくは、(A)成分は、側鎖水酸基が(メタ)アクリル系化合物で変性されている。さらに好ましくは、イソシアネート基を有する(メタ)アクリル系化合物によって変性されている。このような変性により、ラジカル重合性(メタ)アクリル化合物と共架橋化することができ、耐擦傷性が向上する。
エチレン性不飽和基含有含フッ素重合体は、1個のイソシアネート基と、少なくとも1個のエチレン性不飽和基とを含有する化合物と、水酸基含有含フッ素重合体とをイソシアネート基/水酸基のモル比が1.1〜1.9の割合で反応させて得られる。
(1)1個のイソシアネート基と、少なくとも1個のエチレン性不飽和基とを含有する化合物
1個のイソシアネート基と、少なくとも1個のエチレン性不飽和基とを含有する化合物としては、分子内に、1個のイソシアネート基と、少なくとも1個のエチレン性不飽和基を含有している化合物であれば特に制限されるものではない。
尚、イソシアネート基を2個以上含有すると、水酸基含有含フッ素重合体と反応させる際にゲル化を起こす可能性がある。
また、上記エチレン性不飽和基として、後述する硬化性樹脂組成物をより容易に硬化させることができることから、(メタ)アクリロイル基を有する化合物がより好ましい。
このような化合物としては、2−(メタ)アクリロイルオキシエチルイソシアネート、2−(メタ)アクリロイルオキシプロピルイソシアネートの一種単独又は二種以上の組み合わせが挙げられる。
尚、このような化合物は、ジイソシアネート及び水酸基含有(メタ)アクリレートを反応させて合成することもできる。
ジイソシアネートの例としては、2,4−トリレンジイソシアネ−ト、イソホロンジイソシアネート、キシリレンジイソシアネート、メチレンビス(4−シクロヘキシルイソシアネア−ト)、1,3−ビス(イソシアネートメチル)シクロヘキサンが好ましい。
水酸基含有(メタ)アクリレートの例としては、2−ヒドロキシエチル(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレートが好ましい。
尚、水酸基含有多官能(メタ)アクリレートの市販品としては、例えば、大阪有機化学(株)製 商品名 HEA、日本化薬(株)製 商品名 KAYARAD DPHA、PET−30、東亞合成(株)製 商品名 アロニックス M−215、M−233、M−305、M−400等として入手することができる。
(2)水酸基含有含フッ素重合体
水酸基含有含フッ素重合体は、好ましくは、下記構造単位(a)、(b)及び(c)を含んでなる。
(a)下記式(1)で表される構造単位。
(b)下記式(2)で表される構造単位。
(c)下記式(3)で表される構造単位。
Figure 2009163260
[式(1)中、R1はフッ素原子、フルオロアルキル基又は−OR2で表される基(R2はアルキル基又はフルオロアルキル基を示す)を示す]
Figure 2009163260
[式(2)中、R3は水素原子又はメチル基を、R4はアルキル基、−(CH2)x−OR5若しくは−OCOR5で表される基(R5はアルキル基又はグリシジル基を、xは0又は1の数を示す)、カルボキシル基又はアルコキシカルボニル基を示す]
Figure 2009163260
[式(3)中、R6は水素原子又はメチル基を、R7は水素原子又はヒドロキシアルキル基を、vは0又は1の数を示す]
(i)構造単位(a)
上記式(1)において、R1及びR2のフルオロアルキル基としては、トリフルオロメチル基、パーフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロヘキシル基、パーフルオロシクロヘキシル基等の炭素数1〜6のフルオロアルキル基が挙げられる。また、R2のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、シクロヘキシル基等の炭素数1〜6のアルキル基が挙げられる。
構造単位(a)は、含フッ素ビニル単量体を重合成分として用いることにより導入することができる。このような含フッ素ビニル単量体としては、少なくとも1個の重合性不飽和二重結合と、少なくとも1個のフッ素原子とを有する化合物であれば特に制限されるものではない。このような例としてはテトラフルオロエチレン、ヘキサフルオロプロピレン、3,3,3−トリフルオロプロピレン等のフルオロレフィン類;アルキルパーフルオロビニルエーテル又はアルコキシアルキルパーフルオロビニルエーテル類;パーフルオロ(メチルビニルエーテル)、パーフルオロ(エチルビニルエーテル)、(プロピルビニルエーテル)、パーフルオロ(ブチルビニルエーテル)、パーフルオロ(イソブチルビニルエーテル)等のパーフルオロ(アルキルビニルエーテル)類;パーフルオロ(プロポキシプロピルビニルエーテル)等のパーフルオロ(アルコキシアルキルビニルエーテル)類の一種単独又は二種以上の組み合わせが挙げられる。
これらの中でも、ヘキサフルオロプロピレンとパーフルオロ(アルキルビニルエーテル)又はパーフルオロ(アルコキシアルキルビニルエーテル)がより好ましく、これらを組み合わせて用いることがさらに好ましい。
尚、構造単位(a)の含有率は、水酸基含有含フッ素重合体の全体量を100モル%としたときに、20〜70モル%である。この理由は、含有率が20モル%未満になると、本願が意図するところの光学的にフッ素含有材料の特徴である、低屈折率の発現が困難となる場合があるためであり、一方、含有率が70モル%を超えると、水酸基含有含フッ素重合体の有機溶剤への溶解性、透明性、又は基材への密着性が低下する場合があるためである。
また、このような理由により、構造単位(a)の含有率を、水酸基含有含フッ素重合体の全体量に対して、25〜65モル%とするのがより好ましく、30〜60モル%とするのがさらに好ましい。
(ii)構造単位(b)
式(2)において、R4又はR5のアルキル基としては、メチル基、エチル基、プロピル基、ヘキシル基、シクロヘキシル基、ラウリル基等の炭素数1〜12のアルキル基が挙げられ、アルコキシカルボニル基としては、メトキシカルボニル基、エトキシカルボニル基等が挙げられる。
構造単位(b)は、上述の置換基を有するビニル単量体を重合成分として用いることにより導入することができる。このようなビニル単量体の例としては、メチルビニルエーテル、エチルビニルエーテル、n−プロピルビニルエーテル、イソプロピルビニルエーテル、n−ブチルビニルエーテル、イソブチルビニルエーテル、tert−ブチルビニルエーテル、n−ペンチルビニルエーテル、n−ヘキシルビニルエーテル、n−オクチルビニルエーテル、n−ドデシルビニルエーテル、2−エチルヘキシルビニルエーテル、シクロヘキシルビニルエーテル等のアルキルビニルエーテルもしくはシクロアルキルビニルエーテル類;エチルアリルエーテル、ブチルアリルエーテル等のアリルエーテル類;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、ピバリン酸ビニル、カプロン酸ビニル、バーサチック酸ビニル、ステアリン酸ビニル等のカルボン酸ビニルエステル類;メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、2−メトキシエチル(メタ)アクリレート、2−エトキシエチル(メタ)アクリレート、2−(n−プロポキシ)エチル(メタ)アクリレート等の(メタ)アクリル酸エステル類;(メタ)アクリル酸、クロトン酸、マレイン酸、フマル酸、イタコン酸等の不飽和カルボン酸類等の一種単独又は二種以上の組み合わせが挙げられる。
尚、構造単位(b)の含有率は、水酸基含有含フッ素重合体の全体量を100モル%としたときに、10〜70モル%である。この理由は、含有率が10モル%未満になると、水酸基含有含フッ素重合体の有機溶剤への溶解性が低下する場合があるためであり、一方、含有率が70モル%を超えると、水酸基含有含フッ素重合体の透明性、及び低反射率性等の光学特性が低下する場合があるためである。
また、このような理由により、構造単位(b)の含有率を、水酸基含有含フッ素重合体の全体量に対して、20〜60モル%とするのがより好ましく、30〜60モル%とするのがさらに好ましい。
(iii)構造単位(c)
式(3)において、R7のヒドロキシアルキル基としては、2−ヒドロキシエチル基、2−ヒドロキシプロピル基、3−ヒドロキシプロピル基、4−ヒドロキシブチル基、3−ヒドロキシブチル基、5−ヒドロキシペンチル基、6−ヒドロキシヘキシル基が挙げられる。
構造単位(c)は、水酸基含有ビニル単量体を重合成分として用いることにより導入することができる。このような水酸基含有ビニル単量体の例としては、2−ヒドロキシエチルビニルエーテル、3−ヒドロキシプロピルビニルエーテル、2−ヒドロキシプロピルビニルエーテル、4−ヒドロキシブチルビニルエーテル、3−ヒドロキシブチルビニルエーテル、5−ヒドロキシペンチルビニルエーテル、6−ヒドロキシヘキシルビニルエーテル等の水酸基含有ビニルエーテル類、2−ヒドロキシエチルアリルエーテル、4−ヒドロキシブチルアリルエーテル、グリセロールモノアリルエーテル等の水酸基含有アリルエーテル類、アリルアルコール等が挙げられる。
また、水酸基含有ビニル単量体としては、上記以外にも、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、カプロラクトン(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート等を用いることができる。
尚、構造単位(c)の含有率を、水酸基含有含フッ素重合体の全体量を100モル%としたときに、5〜70モル%とすることが好ましい。この理由は、含有率が5モル%未満になると、水酸基含有含フッ素重合体の有機溶剤への溶解性が低下する場合があるためであり、一方、含有率が70モル%を超えると、水酸基含有含フッ素重合体の透明性、及び低反射率性等の光学特性が低下する場合があるためである。
また、このような理由により、構造単位(c)の含有率を、水酸基含有含フッ素重合体の全体量に対して、5〜40モル%とするのがより好ましく、5〜30モル%とするのがさらに好ましい。
(iv)構造単位(d)及び構造単位(e)
水酸基含有含フッ素重合体は、さらに下記構造単位(d)を含んで構成することも好ましい。
(d)下記式(4)で表される構造単位。
Figure 2009163260
[式(4)中、R8及びR9は、同一でも異なっていてもよく、水素原子、アルキル基、ハロゲン化アルキル基又はアリール基を示す]
式(4)において、R8又はR9のアルキル基としては、メチル基、エチル基、プロピル基等の炭素数1〜3のアルキル基が、ハロゲン化アルキル基としてはトリフルオロメチル基、パーフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基等の炭素数1〜4のフルオロアルキル基等が、アリール基としてはフェニル基、ベンジル基、ナフチル基等がそれぞれ挙げられる。
構造単位(d)は、前記式(4)で表されるポリシロキサンセグメントを有するアゾ基含有ポリシロキサン化合物を用いることにより導入することができる。このようなアゾ基含有ポリシロキサン化合物の例としては、下記式(5)で表される化合物が挙げられる。
Figure 2009163260
[式(5)中、R10〜R13は、同一でも異なっていてもよく、水素原子、アルキル基又はシアノ基を示し、R14〜R17は、同一でも異なっていてもよく、水素原子又はアルキル基を示し、p、qは1〜6の数、s、tは0〜6の数、yは1〜200の数、zは1〜20の数を示す。]
式(5)で表される化合物を用いた場合には、構造単位(d)は、構造単位(e)の一部として水酸基含有含フッ素重合体に含まれる。
(e)下記式(6)で表される構造単位。
Figure 2009163260
[式(6)中、R10〜R13、R14〜R17、p、q、s、t及びyは、上記式(5)と同じである。]
式(5),(6)において、R10〜R13のアルキル基としては、メチル基、エチル基、プロピル基、ヘキシル基、シクロヘキシル基等の炭素数1〜12のアルキル基が挙げられ、R14〜R17のアルキル基としてはメチル基、エチル基、プロピル基等の炭素数1〜3のアルキル基が挙げられる。
本発明において、上記式(5)で表されるアゾ基含有ポリシロキサン化合物としては、下記式(7)で表される化合物が特に好ましい。
Figure 2009163260
[式(7)中、y及びzは、上記式(5)と同じである。]
尚、構造単位(d)の含有率を、水酸基含有含フッ素重合体の全体量を100モル%としたときに、0.1〜10モル%とすることが好ましい。この理由は、含有率が0.1モル%未満になると、硬化後の塗膜の表面滑り性が低下し、塗膜の耐擦傷性が低下する場合があるためであり、一方、含有率が10モル%を超えると、水酸基含有含フッ素重合体の透明性に劣り、コート材として使用する際に、塗布時にハジキ等が発生し易くなる場合があるためである。
また、このような理由により、構造単位(d)の含有率を、水酸基含有含フッ素重合体の全体量に対して、0.1〜5モル%とするのがより好ましく、0.1〜3モル%とするのがさらに好ましい。同じ理由により、構造単位(e)の含有率は、その中に含まれる構造単位(d)の含有率を上記範囲にするよう決定することが望ましい。
(v)構造単位(f)
水酸基含有含フッ素重合体は、さらに下記構造単位(f)を含んで構成することも好ましい。
(f)下記式(8)で表される構造単位。
Figure 2009163260
[式(8)中、R18は乳化作用を有する基を示す]
式(8)において、R18の乳化作用を有する基としては、疎水性基及び親水性基の双方を有し、かつ、親水性基がポリエチレンオキサイド、ポリプロピレンオキサイド等のポリエーテル構造である基が好ましい。
このような乳化作用を有する基の例としては下記式(9)で表される基が挙げられる。
Figure 2009163260
[式(9)中、nは1〜20の数、mは0〜4の数、uは3〜50の数を示す]
構造単位(f)は、反応性乳化剤を重合成分として用いることにより導入することができる。このような反応性乳化剤としては、下記式(10)で表される化合物が挙げられる。
Figure 2009163260
[式(10)中、n、m及びuは、上記式(9)と同様である]
尚、構造単位(f)の含有率を、水酸基含有含フッ素重合体の全体量を100モル%としたときに、0.1〜5モル%とすることが好ましい。この理由は、含有率が0.1モル%以上になると、水酸基含有含フッ素重合体の溶剤への溶解性が向上し、一方、含有率が5モル%以内であれば、硬化性樹脂組成物の粘着性が過度に増加せず、取り扱いが容易になり、コート材等に用いても耐湿性が低下しないためである。
また、このような理由により、構造単位(f)の含有率を、水酸基含有含フッ素重合体の全体量に対して、0.1〜3モル%とするのがより好ましく、0.2〜3モル%とするのがさらに好ましい。
(vi)分子量
水酸基含有含フッ素重合体は、ゲルパーミエーションクロマトグラフィーで、テトラヒドロフランを溶剤として測定したポリスチレン換算数平均分子量が5,000〜500,000であることが好ましい。この理由は、数平均分子量が5,000未満になると、水酸基含有含フッ素重合体の機械的強度が低下する場合があるためであり、一方、数平均分子量が500,000を超えると、後述する硬化性樹脂組成物の粘度が高くなり、薄膜コーティングが困難となる場合があるためである。
また、このような理由により、水酸基含有含フッ素重合体のポリスチレン換算数平均分子量を10,000〜300,000とするのがより好ましく、10,000〜100,000とするのがさらに好ましい。
(3)反応モル比
エチレン性不飽和基含有含フッ素重合体は、上述した、1個のイソシアネート基と、少なくとも1個のエチレン性不飽和基とを含有する化合物と、水酸基含有含フッ素重合体とを、イソシアネート基/水酸基のモル比が1.1〜1.9の割合で反応させて得られる。この理由は、モル比が1.1未満になると耐擦傷性及び耐久性が低下する場合があるためであり、一方、モル比が1.9を超えると、硬化性樹脂組成物の塗膜のアルカリ水溶液浸漬後の耐擦傷性が低下する場合があるためである。
また、このような理由により、イソシアネート基/水酸基のモル比を、1.1〜1.5とするのが好ましく、1.2〜1.5とするのがより好ましい。
(A)成分の添加量については、特に制限されるものではないが、有機溶剤以外の組成物全量に対して通常10〜60重量%である。この理由は、添加量が10重量%未満となると、硬化性樹脂組成物の硬化塗膜の屈折率が高くなり、十分な反射防止効果が得られない場合があるためであり、一方、添加量が60重量%を超えると、硬化性樹脂組成物の硬化塗膜の耐擦傷性が得られない場合があるためである。
また、このような理由から、(A)成分の添加量を15〜55重量%とするのがより好ましく、20〜50重量%の範囲内の値とするのがさらに好ましい。
(B)(メタ)アクリレート化合物
(メタ)アクリレート化合物は、硬化性樹脂組成物を硬化して得られる硬化物及びそれを用いた反射防止膜の耐擦傷性を高めるために用いられる。
この化合物については、分子内に少なくとも1個以上の(メタ)アクリロイル基を含有する化合物であれば特に制限されるものではない。
(メタ)アクリロイル基を1個有するモノマーとしては、例えばアクリルアミド、(メタ)アクリロイルモルホリン、7−アミノ−3,7−ジメチルオクチル(メタ)アクリレート、イソブトキシメチル(メタ)アクリルアミド、イソボルニルオキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、エチルジエチレングリコール(メタ)アクリレート、t−オクチル(メタ)アクリルアミド、ジアセトン(メタ)アクリルアミド、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ジシクロペンタジエン(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、N,N−ジメチル(メタ)アクリルアミドテトラクロロフェニル(メタ)アクリレート、2−テトラクロロフェノキシエチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、テトラブロモフェニル(メタ)アクリレート、2−テトラブロモフェノキシエチル(メタ)アクリレート、2−トリクロロフェノキシエチル(メタ)アクリレート、トリブロモフェニル(メタ)アクリレート、2−トリブロモフェノキシエチル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、ビニルカプロラクタム、N−ビニルピロリドン、フェノキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、ペンタクロロフェニル(メタ)アクリレート、ペンタブロモフェニル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、ボルニル(メタ)アクリレート、メチルトリエチレンジグリコール(メタ)アクリレートで表される化合物を例示することができる。これらの単官能性モノマーうち、イソボルニル(メタ)アクリレート、ラウリル(メタ)アクリレート、フェノキシエチル(メタ)アクリレートが特に好ましい。
これらの単官能性モノマーの市販品としては、例えばアロニックスM−101、M−102、M−111、M−113、M−117、M−152、TO−1210(以上、東亞合成(株)製)、KAYARAD TC−110S、R−564、R−128H(以上、日本化薬(株))、ビスコート192、ビスコート220、ビスコート2311HP、ビスコート2000、ビスコート2100、ビスコート2150、ビスコート8F、ビスコート17F(以上、大阪有機化学工業(株)製)等を挙げることができる。
また、(メタ)アクリロイル基が2個以上のモノマーとしては、例えば、エチレングリコールジ(メタ)アクリレート、ジシクロペンテニルジ(メタ)アクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジ(メタ)アクリレート、トリシクロデカンジイルジメチレンジ(メタ)アクリレート、トリス(2−ヒドロキシエチル)イソシアヌレートジ(メタ)アクリレート、トリス(2−ヒドロキシエチル)イソシアヌレートトリ(メタ)アクリレート、カプロラクトン変性トリス(2−ヒドロキシエチル)イソシアヌレートトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド(以下「EO」という。)変性トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキシド(以下「PO」という。)変性トリメチロールプロパントリ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ビスフェノールAジグリシジルエーテルの両末端(メタ)アクリル酸付加物、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ポリエステルジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールペンタ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、EO変性ビスフェノールAジ(メタ)アクリレート、PO変性ビスフェノールAジ(メタ)アクリレート、EO変性水添ビスフェノールAジ(メタ)アクリレート、PO変性水添ビスフェノールAジ(メタ)アクリレート、EO変性ビスフェノールFジ(メタ)アクリレート、フェノールノボラックポリグリシジルエーテルの(メタ)アクリレート等を例示することができる。
これらの多官能性モノマーの市販品としては、例えば、SA1002(以上、三菱化学(株)製)、ビスコート195、ビスコート230、ビスコート260、ビスコート215、ビスコート310、ビスコート214HP、ビスコート295、ビスコート300、ビスコート360、ビスコートGPT、ビスコート400、ビスコート700、ビスコート540、ビスコート3000、ビスコート3700(以上、大阪有機化学工業(株)製)、カヤラッドR−526、HDDA、NPGDA、TPGDA、MANDA、R−551、R−712、R−604、R−684、PET−30、GPO−303、TMPTA、THE−330、DPHA、DPHA−2H、DPHA−2C、DPHA−2I、D−310、D−330、DPCA−20、DPCA−30、DPCA−60、DPCA−120、DN−0075、DN−2475、T−1420、T−2020、T−2040、TPA−320、TPA−330、RP−1040、RP−2040、R−011、R−300、R−205(以上、日本化薬(株)製)、アロニックスM−210、M−220、M−233、M−240、M−215、M−305、M−309、M−310、M−315、M−325、M−400、M−6200、M−6400(以上、東亞合成(株)製)、ライトアクリレートBP−4EA、BP−4PA、BP−2EA、BP−2PA、DCP−A(以上、共栄社化学(株)製)、ニューフロンティアBPE−4、BR−42M、GX−8345(以上、第一工業製薬(株)製)、ASF−400(以上、新日鐵化学(株)製)、リポキシSP−1506、SP−1507、SP−1509、VR−77、SP−4010、SP−4060(以上、昭和高分子(株)製)、NKエステルA−BPE−4(以上、新中村化学工業(株)製)等を挙げることができる。
尚、本発明の組成物には、これらのうち、分子内に少なくとも2個以上の(メタ)アクリロイル基を含有する化合物を含有することが好ましい。さらに好ましくは、分子内に少なくとも3個以上の(メタ)アクリロイル基を含有する化合物が特に好ましい。かかる3個以上の化合物としては、上記に例示されたトリ(メタ)アクリレート化合物、テトラ(メタ)アクリレート化合物、ペンタ(メタ)アクリレート化合物、ヘキサ(メタ)アクリレート化合物等の中から選択することができ、これらのうち、トリメチロールプロパントリ(メタ)アクリレート、EO変性トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレートが特に好ましい。上記の化合物は、各々1種単独でまたは2種以上組み合わせを用いることができる。
また、(メタ)アクリレート化合物はフッ素を含んでいてもよい。このような化合物の例として、パーフルオロオクチルエチル(メタ)アクリレート、オクタフルオロペンチル(メタ)アクリレート、トリフルオロエチル(メタ)アクリレート、等の一種単独又は二種以上の組み合わせが挙げられる。
(B)成分の添加量については、特に制限されるものではないが、有機溶剤以外の組成物全量に対して通常1〜88重量%である。この理由は、添加量が1重量%未満となると、硬化性樹脂組成物の硬化塗膜の耐擦傷性が得られない場合があるためであり、一方、添加量が88重量%を超えると、硬化性樹脂組成物の硬化塗膜の屈折率が高くなり、十分な反射防止効果が得られない場合があるためである。
また、このような理由から、(B)成分の添加量を1〜60重量%とするのがより好ましく、1〜40重量%の範囲内の値とするのがさらに好ましい。
(C),(D)数平均粒径1〜30nm又は数平均粒径40〜100nmのシリカを主成分とする粒子(1)シリカを主成分とする粒子
本発明の硬化性樹脂組成物には、数平均粒径1〜30nmのシリカを主成分とする粒子(C)と、数平均粒径40〜100nmのシリカを主成分とする粒子(D)の粒径が異なる2種類の粒子を配合する。粒径は、透過型電子顕微鏡により測定する。
数平均粒径1〜30nmのシリカを主成分とする粒子(C)は、本発明の硬化性樹脂組成物の硬化物の耐擦傷性、特にスチールウール耐性を改善するために配合する。
数平均粒径40〜100nmのシリカを主成分とする粒子(D)は、本発明の硬化性樹脂組成物の硬化物において、低屈折率、耐擦傷性を発現させるために配合する。
これらシリカを主成分とする粒子としては、公知のものを使用することができ、また、その形状も、球状であれば通常のコロイダルシリカに限らず中空粒子、多孔質粒子、コア・シェル型粒子等であっても構わない。しかし、組成物の屈折率を低減させる観点から中空粒子や多孔質粒子が好ましく、成分(C)及び(D)のいずれか一方又は両方が中空粒子であることが特に好ましい。また、球状に限らず、不定形の粒子であっても良い。固形分が10〜40重量%のコロイダルシリカが好ましい。
また、分散媒は、水あるいは有機溶媒が好ましい。有機溶媒としては、メタノール、イソプロピルアルコール、エチレングリコール、ブタノール、エチレングリコールモノプロピルエーテル等のアルコール類;メエチルエチルケトン、メチルイソブチルケトン等のケトン類;トルエン、キシレン等の芳香族炭化水素類;ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等のアミド類;酢酸エチル、酢酸ブチル、γ−ブチロラクトン等のエステル類;テトラヒドロフラン、1,4−ジオキサン等のエ−テル類等の有機溶剤を挙げることができ、これらの中で、アルコール類及びケトン類が好ましい。これら有機溶剤は、単独で、又は2種以上混合して分散媒として使用することができる。
シリカを主成分とする粒子の市販品としては、、例えば、コロイダルシリカとして、日産化学工業(株)製 商品名:メタノールシリカゾル、IPA−ST、MEK−ST、MEK−ST−S、MEK−ST−L、IPA−ZL、NBA−ST、XBA−ST、DMAC−ST、ST−UP、ST−OUP、ST−20、ST−40、ST−C、ST−N、ST−O、ST−50、ST−OL等を挙げることができる。
また、コロイダルシリカ表面に化学修飾等の表面処理を行ったものを使用することができ、例えば分子中に1以上のアルキル基を有する加水分解性ケイ素化合物又はその加水分解物を含有するもの等を反応させることができる。このような加水分解性ケイ素化合物としては、トリメチルメトキシシラン、トリブチルメトキシシラン、ジメチルジメトキシシラン、ジブチルジメトキシシラン、メチルトリメトキシシラン、ブチルトリメトキシシラン、オクチルトリメトキシシラン、ドデシルトリメトキシシラン、1,1,1―トリメトキシ−2,2,2−トリメチル−ジシラン、ヘキサメチル−1,3−ジシロキサン、1,1,1―トリメトキシ−3,3,3−トリメチル−1,3−ジシロキサン、α−トリメチルシリル−ω−ジメチルメトキシシリル−ポリジメチルシロキサン、α−トリメチルシリル−ω−トリメトキシシリル−ポリジメチルシロキサンヘキサメチル−1,3−ジシラザン等を挙げることができる。また、分子中に1以上の反応性基を有する加水分解性ケイ素化合物を使用することもできる。分子中に1以上の反応性基を有する加水分解性ケイ素化合物は、例えば反応性基としてNH基を有するものとして、尿素プロピルトリメトキシシラン、N―(2−アミノエチル)―3―アミノプロピルトリメトキシシラン等、OH基を有するものとして、ビス(2−ヒドロキシエチル)―3アミノトリプロピルメトキシシラン等、イソシアネート基を有するものとして3−イソシアネートプロピルトリメトキシシラン等、チオシアネート基を有するものとして3−チオシアネートプロピルトリメトキシシラン等、エポキシ基を有するものとして(3−グリシドキシプロピル)トリメトキシシラン、2−(3,4―エポキシシクロヘキシル)エチルトリメトキシシラン等、チオール基を有するものとして、3−メルカプトプロピルトリメトキシシラン等を挙げることができる。好ましい化合物として、3−メルカプトプロピルトリメトキシシランを挙げることができる。
シリカを主成分とする粒子(C),(D)は、重合性不飽和基を含む有機化合物(以下、「特定有機化合物」ということがある。)によって表面処理がなされたものであることが好ましい。かかる表面処理により、UV硬化系アクリルモノマーと共架橋化することができ、耐擦傷性が向上する。
(2)特定有機化合物
本発明に用いられる特定有機化合物は、分子内に重合性不飽和基含む重合性の化合物である。この化合物は、分子内に、さらに下記式(11)に示す基を含む化合物であること及び分子内にシラノ−ル基を有する化合物又は加水分解によってシラノ−ル基を生成する化合物であることが好ましい。
Figure 2009163260
[式(11)中、XはNH、O(酸素原子)又はS(イオウ原子)を示し、YはO又はSを示す。]
(i)重合性不飽和基
特定有機化合物に含まれる重合性不飽和基としては特に制限はないが、例えば、アクリロイル基、メタクリロイル基、ビニル基、プロペニル基、ブタジエニル基、スチリル基、エチニル基、シンナモイル基、マレエ−ト基、アクリルアミド基を好適例として挙げることができる。
この重合性不飽和基は、活性ラジカル種により付加重合をする構成単位である。
(ii)式(11)に示す基
特定有機化合物は、分子内に前記式(11)に示す基をさらに含むものであることが好ましい。前記式(11)に示す基[−X−C(=Y)−NH−]は、具体的には、[−O−C(=O)−NH−]、[−O−C(=S)−NH−]、[−S−C(=O)−NH−]、[−NH−C(=O)−NH−]、[−NH−C(=S)−NH−]、及び[−S−C(=S)−NH−]の6種である。これらの基は、1種単独で又は2種以上を組合わせて用いることができる。中でも、熱安定性の観点から、[−O−C(=O)−NH−]基と、[−O−C(=S)−NH−]基及び[−S−C(=O)−NH−]基の少なくとも1とを併用することが好ましい。
前記式(11)に示す基[−X−C(=Y)−NH−]は、分子間において水素結合による適度の凝集力を発生させ、硬化物にした場合、優れた機械的強度、基材との密着性及び耐熱性等の特性を付与せしめるものと考えられる。
(iii)シラノ−ル基又は加水分解によってシラノ−ル基を生成する基
特定有機化合物は、分子内にシラノール基を有する化合物(以下、「シラノール基含有化合物」ということがある)又は加水分解によってシラノール基を生成する化合物(以下、「シラノール基生成化合物」ということがある)であることが好ましい。このようなシラノール基生成化合物としては、ケイ素原子上にアルコキシ基、アリールオキシ基、アセトキシ基、アミノ基、ハロゲン原子等を有する化合物を挙げることができるが、ケイ素原子上にアルコキシ基又はアリールオキシ基を含む化合物、即ち、アルコキシシリル基含有化合物又はアリールオキシシリル基含有化合物が好ましい。
シラノール基又はシラノール基生成化合物のシラノール基生成部位は、縮合反応又は加水分解に続いて生じる縮合反応によって、酸化物粒子と結合する構成単位である。
(iv)好ましい態様
特定有機化合物の好ましい具体例としては、例えば、下記式(12)に示す化合物を挙げることができる。
Figure 2009163260
19、R20は、同一でも異なっていてもよく、水素原子又は炭素数1〜8のアルキル基若しくはアリール基であり、aは1、2又は3の数を示す。
19、R20の例として、メチル、エチル、プロピル、ブチル、オクチル、フェニル、キシリル基等を挙げることができる。
[(R19O)a20 3-aSi−]で示される基としては、例えば、トリメトキシシリル基、トリエトキシシリル基、トリフェノキシシリル基、メチルジメトキシシリル基、ジメチルメトキシシリル基等を挙げることができる。このような基のうち、トリメトキシシリル基又はトリエトキシシリル基等が好ましい。
21は炭素数1〜12の脂肪族又は芳香族構造を有する2価の有機基であり、鎖状、分岐状又は環状の構造を含んでいてもよい。そのような有機基としては例えば、メチレン、エチレン、プロピレン、ブチレン、ヘキサメチレン、シクロヘキシレン、フェニレン、キシリレン、ドデカメチレン等を挙げることができる。これらのうち好ましい例は、メチレン、プロピレン、シクロヘキシレン、フェニレン等である。
また、R22は2価の有機基であり、通常、分子量14から1万、好ましくは、分子量76から500の2価の有機基の中から選ばれる。例えば、ヘキサメチレン、オクタメチレン、ドデカメチレン等の鎖状ポリアルキレン基;シクロヘキシレン、ノルボルニレン等の脂環式又は多環式の2価の有機基;フェニレン、ナフチレン、ビフェニレン、ポリフェニレン等の2価の芳香族基;及びこれらのアルキル基置換体、アリール基置換体を挙げることができる。また、これら2価の有機基は炭素及び水素原子以外の元素を含む原子団を含んでいてもよく、ポリエーテル結合、ポリエステル結合、ポリアミド結合、ポリカーボネート結合、さらには前記式(11)に示す基を含むこともできる。
23は(b+1)価の有機基であり、好ましくは鎖状、分岐状又は環状の飽和炭化水素基、不飽和炭化水素基の中から選ばれる。
Zは活性ラジカル種の存在下、分子間架橋反応をする重合性不飽和基を分子中に有する1価の有機基を示す。例えば、アクリロイル(オキシ)基、メタアクリロイル(オキシ)基、ビニル(オキシ)基、プロペニル(オキシ)基、ブタジエニル(オキシ)基、スチリル(オキシ)基、エチニル(オキシ)基、シンナモイル(オキシ)基、マレエート基、アクリルアミド基、メタアクリルアミド基等を挙げることができる。これらの中でアクリロイル(オキシ)基及びメタアクリロイル(オキシ)基が好ましい。また、bは好ましくは1〜20の正の整数であり、さらに好ましくは1〜10、特に好ましくは1〜5である。
本発明で用いられる特定有機化合物の合成は、例えば、特開平9−100111号公報に記載された方法を用いることができる。即ち、(イ)メルカプトアルコキシシランと、ポリイソシアネート化合物と、活性水素基含有重合性不飽和化合物との付加反応により行うことができる。また、(ロ)分子中にアルコキシシリル基及びイソシアネート基を有する化合物と、活性水素含有重合性不飽和化合物との直接的反応により行うことができる。さらに、(ハ)分子中に重合性不飽和基及びイソシアネート基を有する化合物と、メルカプトアルコキシシラン又はアミノシランとの付加反応により直接合成することもできる。
前記式(12)に示す化合物を合成するためには、これらの方法のうち(イ)が好適に用いられる。より詳細には、例えば、
(a)法;まずメルカプトアルコキシシランとポリイソシアネート化合物とを反応させることで、分子中にアルコキシシリル基、[−S−C(=O)−NH−]基及びイソシアネート基を含む中間体を形成し、次に中間体中に残存するイソシアネートに対して活性水素含有重合性不飽和化合物を反応させて、この不飽和化合物を[−O−C(=O)−NH−]基を介して結合させる方法、
(b)法;まずポリイソシアネート化合物と活性水素含有重合性不飽和化合物とを反応させることで分子中に重合性不飽和基、[−O−C(=O)−NH−]基、及びイソシアネート基を含む中間体を形成し、これにメルカプトアルコキシシランを反応させてこのメルカプトアルコキシシランを[−S−C(=O)−NH−]基を介して結合させる方法、
等を挙げることができる。さらに両者の中では、マイケル付加反応による重合性不飽和基の減少がない点で(a)法が好ましい。
前記式(12)に示す化合物の合成において、イソシアネ−ト基との反応により[−S−C(=O)−NH−]基を形成することができるアルコキシシランの例としては、アルコキシシリル基とメルカプト基を分子中にそれぞれ1個以上有する化合物を挙げることができる。このようなメルカプトアルコキシシランとしては、例えば、メルカプトプロピルトリメトキシシラン、メルカプトプロピルトリエトキシシラン、メルカプトプロピルメチルジエトキシシラン、メルカプトプロピルジメトキシメチルシラン、メルカプトプロピルメトキシジメチルシラン、メルカプトプロピルトリフェノキシシシラン、メルカプトプロピルトリブトキシシシラン等を挙げることができる。これらの中では、メルカプトプロピルトリメトキシシラン、メルカプトプロピルトリエトキシシランが好ましい。また、アミノ置換アルコキシシランとエポキシ基置換メルカプタンとの付加生成物、エポキシシランとα,ω−ジメルカプト化合物との付加生成物を利用することもできる。
特定有機化合物を合成する際に用いられるポリイソシアネ−ト化合物としては鎖状飽和炭化水素、環状飽和炭化水素、芳香族炭化水素で構成されるポリイソシアネ−ト化合物の中から選ぶことができる。
このようなポリイソシアネ−ト化合物の例としては、例えば、2,4−トリレンジイソシアネ−ト、2,6−トリレンジイソシアネ−ト、1,3−キシリレンジイソシアネ−ト、1,4−キシリレンジイソシアネ−ト、1,5−ナフタレンジイソシアネ−ト、m−フェニレンジイソシアネート、p−フェニレンジイソシアネート、3,3’−ジメチル−4,4’−ジフェニルメタンジイソシアネ−ト、4,4’−ジフェニルメタンジイソシアネ−ト、3,3’−ジメチルフェニレンジイソシアネ−ト、4,4’−ビフェニレンジイソシアネ−ト、1,6−ヘキサンジイソシアネート、イソフォロンジイソシアネート、メチレンビス(4−シクロヘキシルイソシアネア−ト)、2,2,4−トリメチルヘキサメチレンジイソシアネ−ト、ビス(2−イソシアネートエチル)フマレート、6−イソプロピル−1,3−フェニルジイソシアネ−ト、4−ジフェニルプロパンジイソシアネ−ト、リジンジイソシアネ−ト、水添ジフェニルメタンジイソシアネ−ト、1,3−ビス(イソシアネートメチル)シクロヘキサン、テトラメチルキシリレンジイソシアネ−ト、2,5(又は6)−ビス(イソシアネートメチル)−ビシクロ[2.2.1]ヘプタン等を挙げることができる。これらの中で、2,4−トリレンジイソシアネ−ト、イソフォロンジイソシアネート、キシリレンジイソシアネート、メチレンビス(4−シクロヘキシルイソシアネア−ト)、1,3−ビス(イソシアネートメチル)シクロヘキサン、等が好ましい。これらは1種単独で又は2種以上を組合わせて用いることができる。
特定有機化合物の合成において、前記ポリイソシアネ−ト化合物と付加反応により[−O−C(=O)−NH−]基を介し結合できる活性水素含有重合性不飽和化合物の例としては、分子内にイソシアネ−ト基との付加反応により[−O−C(=O)−NH−]基を形成できる活性水素原子を1個以上有しかつ重合性不飽和基を1個以上含む化合物を挙げることができる。
これらの活性水素含有重合性不飽和化合物としては、例えば、2−ヒドロキシエチル(メタ)アクリレ−ト、2−ヒドロキシプロピル(メタ)アクリレ−ト、2−ヒドロキシブチル(メタ)アクリレ−ト、2−ヒドロキシ−3−フェニルオキシプロピル(メタ)アクリレ−ト、1,4−ブタンジオ−ルモノ(メタ)アクリレ−ト、2−ヒドロキシアルキル(メタ)アクリロイルフォスフェ−ト、4−ヒドロキシシクロヘキシル(メタ)アクリレ−ト、1,6−ヘキサンジオ−ルモノ(メタ)アクリレ−ト、ネオペンチルグリコ−ルモノ(メタ)アクリレ−ト、トリメチロ−ルプロパンジ(メタ)アクリレ−ト、トリメチロ−ルエタンジ(メタ)アクリレ−ト、ペンタエリスリト−ルトリ(メタ)アクリレ−ト、ジペンタエリスルト−ルペンタ(メタ)アクリレ−ト等を挙げることができる。また、アルキルグリシジルエーテル、アリルグリシジルエーテル、グリシジル(メタ)アクリレ−ト等のグリシジル基含有化合物と、(メタ)アクリル酸との付加反応により得られる化合物を用いることができる。これらの化合物の中では、2−ヒドロキシエチル(メタ)アクリレ−ト、2−ヒドロキシプロピル(メタ)アクリレ−ト、ペンタエリスリト−ルトリ(メタ)アクリレ−ト等が好ましい。
これらの化合物は1種単独で又は2種以上の混合物として用いることができる。
(3)特定有機化合物によるシリカを主成とする粒子(以下、粒子ともいう。)の表面処理方法
特定有機化合物による粒子の表面処理方法としては特に制限はないが、特定有機化合物と粒子とを混合し、加熱、攪拌処理することにより製造することも可能である。尚、特定有機化合物が有するシラノール基生成部位と、粒子とを効率よく結合させるため、反応は水の存在下で行われることが好ましい。ただし、特定有機化合物がシラノール基を有している場合は水はなくてもよい。従って、粒子及び特定有機化合物を少なくとも混合する操作を含む方法により表面処理できる。
粒子と特定有機化合物の反応量は、粒子及び特定有機化合物の合計を100重量%として、好ましくは0.01重量%以上であり、さらに好ましくは0.1重量%以上、特に好ましくは1重量%以上である。0.01重量%未満であると、組成物中における粒子の分散性が十分でなく、得られる硬化物の透明性、耐擦傷性が十分でなくなる場合がある。
以下、特定有機化合物として、前記式(12)に示すアルコキシシリル基含有化合物(アルコキシシラン化合物)を例にとり、表面処理方法をさらに詳細に説明する。
表面処理時においてアルコキシシラン化合物の加水分解で消費される水の量は、1分子中のケイ素上のアルコキシ基の少なくとも1個が加水分解される量であればよい。好ましくは加水分解の際に添加、又は存在する水の量は、ケイ素上の全アルコキシ基のモル数に対し3分の1以上であり、さらに好ましくは全アルコキシ基のモル数の2分の1以上3倍未満である。完全に水分の存在しない条件下でアルコキシシラン化合物と粒子とを混合して得られる生成物は、粒子表面にアルコキシシラン化合物が物理吸着した生成物であり、そのような成分から構成される粒子を含有する組成物の硬化物においては、高硬度及び耐擦傷性の発現の効果は低い。
表面処理時においては、前記アルコキシシラン化合物を別途加水分解操作に付した後、これと粉体粒子又は粒子の溶剤分散ゾルを混合し、加熱、攪拌操作を行う方法;前記アルコキシシラン化合物の加水分解を粒子の存在下で行う方法;又は、他の成分、例えば、重合開始剤等の存在下、粒子の表面処理を行う方法等を選ぶことができる。この中では、前記アルコキシシラン化合物の加水分解を粒子の存在下で行う方法が好ましい。表面処理時、その温度は、好ましくは0℃以上150℃以下であり、さらに好ましくは20℃以上100℃以下である。また、処理時間は通常5分から24時間の範囲である。
表面処理時において、粉体状の粉体を用いる場合、前記アルコキシシラン化合物との反応を円滑にかつ均一に行わせることを目的として、有機溶剤を添加してもよい。そのような有機溶剤としては、例えば、メタノール、エタノール、イソプロパノール、ブタノール、オクタノール等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;酢酸エチル、酢酸ブチル、乳酸エチル、Y−ブチロラクトン等のエステル類;エチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル等のエーテル類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;ジメチルフォルムアミド、ジメチルアセトアミド、N−メチルピロリドン等のアミド類を挙げることができる。中でも、メタノール、イソプロパノール、ブタノール、メチルエチルケトン、メチルイソブチルケトン、酢酸エチル、酢酸ブチル、トルエン、キシレンが好ましい。
これらの溶剤の添加量は反応を円滑、均一に行わせる目的に合う限り特に制限はない。
粒子として溶剤分散ゾルを用いる場合、溶剤分散ゾルと、特定有機化合物とを少なくとも混合することにより製造することができる。ここで、反応初期の均一性を確保し、反応を円滑に進行させる目的で、水と均一に相溶する有機溶剤を添加してもよい。
また、表面処理時において、反応を促進するため、触媒として酸、塩又は塩基を添加してもよい。
酸としては、例えば、塩酸、硝酸、硫酸、リン酸等の無機酸;メタンスルフォン酸、トルエンスルフォン酸、フタル酸、マロン酸、蟻酸、酢酸、蓚酸等の有機酸;メタクリル酸、アクリル酸、イタコン酸等の不飽和有機酸を、塩としては、例えば、テトラメチルアンモニウム塩酸塩、テトラブチルアンモニウム塩酸塩等のアンモニウム塩を、また、塩基としては、例えば、アンモニア水、ジエチルアミン、トリエチルアミン、ジブチルアミン、シクロヘキシルアミン等の1級、2級又は3級脂肪族アミン、ピリジン等の芳香族アミン、水酸化ナトリウム、水酸化カリウム、テトラメチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド等の4級アンモニウムヒドロキシド類等を挙げることができる。
これらの中で好ましい例は、酸としては、有機酸、不飽和有機酸、塩基としては3級アミン又は4級アンモニウムヒドロキシドである。これらの酸、塩又は塩基の添加量は、アルコキシシラン化合物100重量部に対して、好ましくは0.001重量部から1.0重量部、さらに好ましくは0.01重量部から0.1重量部である。
また、反応を促進するため、脱水剤を添加することも好ましい。
脱水剤としては、ゼオライト、無水シリカ、無水アルミナ等の無機化合物や、オルト蟻酸メチル、オルト蟻酸エチル、テトラエトキシメタン、テトラブトキシメタン等の有機化合物を用いることができる。中でも、有機化合物が好ましく、オルト蟻酸メチル、オルト蟻酸エチル等のオルトエステル類がさらに好ましい。
尚、粒子に結合したアルコキシシラン化合物の量は、通常、乾燥粉体を空気中で完全に燃焼させた場合の重量減少%の恒量値として、空気中で110℃から800℃までの熱重量分析により求めることができる。
(C)成分の樹脂組成物中における配合量は、有機溶剤以外の組成物全量に対して通常1〜40重量%配合され、1〜30重量%が好ましく、1〜10重量%がさらに好ましい。(D)成分の樹脂組成物中における配合量は、有機溶剤以外の組成物全量に対して通常1〜70重量%配合され、10〜60重量%が好ましく、20〜50重量%がさらに好ましい。尚、粒子の量は、固形分を意味し、粒子が溶剤分散ゾルの形態で用いられるときは、その配合量には溶剤の量を含まない。
(E)活性エネルギー線の照射又は熱により活性種を発生する化合物
活性エネルギー線の照射又は熱により活性種を発生する化合物は、硬化性樹脂組成物を硬化させるために用いられる。
(1)活性エネルギー線の照射により活性種を発生する化合物
活性エネルギー線の照射により活性種を発生する化合物(以下「光重合開始剤」という。)としては、活性種として、ラジカルを発生する光ラジカル発生剤等が挙げられる。
尚、活性エネルギー線とは、活性種を発生する化合物を分解して活性種を発生させることのできるエネルギー線と定義される。このような活性エネルギー線としては、可視光、紫外線、赤外線、X線、α線、β線、γ線等の光エネルギー線が挙げられる。ただし、一定のエネルギーレベルを有し、硬化速度が速く、しかも照射装置が比較的安価で、小型な観点から、紫外線を使用することが好ましい。
(i)種類
光ラジカル発生剤の例としては、例えばアセトフェノン、アセトフェノンベンジルケタール、アントラキノン、1−(4−イソプロピルフェニル)−2−ヒドロキシ−2−メチルプロパン−1−オン、カルバゾール、キサントン、4−クロロベンゾフェノン、4,4’−ジアミノベンゾフェノン、1,1−ジメトキシデオキシベンゾイン、3,3’−ジメチル−4−メトキシベンゾフェノン、チオキサントン、2,2−ジメトキシ−2−フェニルアセトフェノン、1−(4−ドデシルフェニル)−2−ヒドロキシ−2−メチルプロパン−1−オン、2−メチル−1−〔4−(メチルチオ)フェニル〕−2−モルフォリノプロパン−1−オン、トリフェニルアミン、2,4,6−トリメチルベンゾイルジフェニルホスフィンオキサイド、1−ヒドロキシシクロヘキシルフェニルケトン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、フルオレノン、フルオレン、ベンズアルデヒド、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾフェノン、ミヒラーケトン、3−メチルアセトフェノン、3,3’,4,4’−テトラ(tert−ブチルパーオキシカルボニル)ベンゾフェノン(BTTB)、2−(ジメチルアミノ)−1−〔4−(モルフォリニル)フェニル〕−2−フェニルメチル)−1−ブタノン、4−ベンゾイル−4’−メチルジフェニルサルファイド、ベンジル、又はBTTBとキサンテン、チオキサンテン、クマリン、ケトクマリン、その他の色素増感剤との組み合わせ等を挙げることができる。
これらの光重合開始剤のうち、2,2−ジメトキシ−2−フェニルアセトフェノン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、1−ヒドロキシシクロヘキシルフェニルケトン、2,4,6−トリメチルベンゾイルジフェニルホスフィンオキサイド、2−メチル−1−〔4−(メチルチオ)フェニル〕−2−モルフォリノプロパン−1−オン、2−(ジメチルアミノ)−1−〔4−(モルフォリニル)フェニル〕−2−フェニルメチル)−1−ブタノン等が好ましく、さらに好ましくは、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−1−〔4−(メチルチオ)フェニル〕−2−モルフォリノプロパン−1−オン、2−(ジメチルアミノ)−1−〔4−(モルフォリニル)フェニル〕−2−フェニルメチル)−1−ブタノン等を挙げることができる。
(ii)添加量
光重合開始剤の添加量は特に制限されるものではないが、有機溶剤以外の組成物全量に対して0.1〜10重量%とするのが好ましい。この理由は、添加量が0.1重量%未満となると、硬化反応が不十分となり耐擦傷性、アルカリ水溶液浸漬後の耐擦傷性が低下する場合があるためである。一方、光重合開始剤の添加量が10重量%を超えると、硬化物の屈折率が増加し反射防止効果が低下する場合があるためである。
また、このような理由から、光重合開始剤の添加量を、有機溶剤以外の組成物全量に対して1〜5重量%とすることがより好ましい。
(2)熱により活性種を発生する化合物
熱により活性種を発生する化合物(以下「熱重合開始剤」という。)としては、活性種として、ラジカルを発生する熱ラジカル発生剤等が挙げられる。
(i)種類
熱ラジカル発生剤の例としては、ベンゾイルパーオキサイド、tert−ブチル−オキシベンゾエート、アゾビスイソブチロニトリル、アセチルパーオキサイド、ラウリルパーオキサイド、tert−ブチルパーアセテート、クミルパーオキサイド、tert−ブチルパーオキサイド、tert−ブチルハイドロパーオキサイド、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、2,2’−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)等の一種単独又は二種以上の組み合わせを挙げることができる。
(ii)添加量
熱重合開始剤の添加量についても特に制限されるものではないが、有機溶剤以外の組成物全量に対して0.1〜10重量%とするのが好ましい。この理由は、添加量が0.1重量%未満となると、硬化反応が不十分となり耐擦傷性、アルカリ水溶液浸漬後の耐擦傷性が低下する場合があるためである。一方、光重合開始剤の添加量が10重量%を超えると、硬化物の屈折率が増加し反射防止効果が低下する場合があるためである。
また、このような理由から、有機溶剤以外の組成物全量に対して熱重合開始剤の添加量を1〜5重量%とするのがより好ましい。
(F)有機溶媒
硬化性樹脂組成物には、さらに有機溶媒を添加することが好ましい。このように有機溶媒を添加することにより、薄膜の反射防止膜を均一に形成することができる。このような有機溶媒としては、メチルイソブチルケトン、メチルエチルケトン、メタノール、エタノール、t−ブタノール、イソプロパノール等の一種単独又は二種以上の組み合わせが挙げられる。
有機溶媒の添加量についても特に制限されるものではないが、エチレン性不飽和基含有含フッ素重合体100重量部に対し、100〜100,000重量部とするのが好ましい。この理由は、添加量が100重量部未満となると、硬化性樹脂組成物の粘度調整が困難となる場合があるためであり、一方、添加量が100,000重量部を超えると、硬化性樹脂組成物の保存安定性が低下したり、あるいは粘度が低下しすぎて取り扱いが困難となる場合があるためである。
(G)添加剤
硬化性樹脂組成物には、本発明の目的や効果を損なわない範囲において、光増感剤、重合禁止剤、重合開始助剤、レベリング剤、濡れ性改良剤、界面活性剤、可塑剤、紫外線吸収剤、酸化防止剤、帯電防止剤、シランカップリング剤、(C),(D)成分以外の無機充填剤若しくは顔料、染料等の添加剤をさらに含有させることも好ましい。
次に、本発明の硬化性樹脂組成物の調製方法及び硬化条件を説明する。
本発明の硬化性樹脂組成物は、上記(A)エチレン性不飽和基含有含フッ素重合体、上記(B)成分、(C)成分及び(D)成分、又は必要に応じて上記(E)成分、(F)有機溶剤、及び(G)添加剤をそれぞれ添加して、室温又は加熱条件下で混合することにより調製することができる。具体的には、ミキサ、ニーダー、ボールミル、三本ロール等の混合機を用いて、調製することができる。ただし、加熱条件下で混合する場合には、熱重合開始剤の分解開始温度以下で行うことが好ましい。
硬化性樹脂組成物の硬化条件についても特に制限されるものではないが、例えば活性エネルギー線を用いた場合、露光量を0.01〜10J/cm2の範囲内の値とするのが好ましい。
この理由は、露光量が0.01J/cm2未満となると、硬化不良が生じる場合があるためであり、一方、露光量が10J/cm2を超えると、硬化時間が過度に長くなる場合があるためである。
また、このような理由により、露光量を0.1〜5J/cm2の範囲内の値とするのがより好ましく、0.3〜3J/cm2の範囲内の値とするのがより好ましい。
また、硬化性樹脂組成物を、加熱して硬化させる場合には、30〜200℃の範囲内の温度で、1〜180分間加熱するのが好ましい。このように加熱することにより、基材等を損傷することなく、より効率的に耐擦傷性に優れた反射防止膜を得ることができる。
また、このような理由から、50〜180℃の範囲内の温度で、2〜120分間加熱するのがより好ましく、80〜150℃の範囲内の温度で、5〜60分間加熱するのがさらに好ましい。
2.反射防止膜
本発明の反射防止膜は、上記硬化性樹脂組成物を硬化させた硬化物からなる低屈折率層を含む。さらに、本発明の反射防止膜は、低屈折率層の下に、高屈折率層、ハードコート層及び/又は基材等を含むことができる。
図1に、かかる反射防止膜10を示す。図1に示すように、基材12の上に、ハードコート層14、高屈折率層16及び低屈折率層18が積層されている。
このとき、基材12の上に、ハードコート層14を設けずに、直接、高屈折率層16を形成してもよい。
また、高屈折率層16と低屈折率層18の間、又は高屈折率層16とハードコート層14の間に、さらに、中屈折率層(図示せず。)を設けてもよい。
(1)低屈折率層
低屈折率層は、本発明の硬化性樹脂組成物を硬化して得られる硬化物から構成される。硬化性樹脂組成物の構成等については、上述の通りであるため、ここでの具体的な説明は省略するものとし、以下、低屈折率層の屈折率及び厚さについて説明する。
硬化性樹脂組成物を硬化して得られる硬化物の屈折率(Na−D線の屈折率、測定温度25℃)、即ち、低屈折率膜の屈折率を1.45以下とすることが好ましい。この理由は、低屈折率膜の屈折率が1.45を超えると、高屈折率膜と組み合わせた場合に、反射防止効果が著しく低下する場合があるためである。
従って、低屈折率膜の屈折率を1.44以下とするのがより好ましく、1.43以下とするのがさらに好ましい。
尚、低屈折率膜を複数層設ける場合には、そのうちの少なくとも一層が上述した範囲内の屈折率の値を有していれば良く、従って、その他の低屈折率膜は1.45を超えた値であってもよい。
また、低屈折率層を設ける場合、より優れた反射防止効果が得られることから、高屈折率層との間の屈折率差を0.05以上の値とするのが好ましい。この理由は、低屈折率層と、高屈折率層との間の屈折率差が0.05未満の値となると、これらの反射防止膜層での相乗効果が得られず、却って反射防止効果が低下する場合があるためである。
従って、低屈折率層と、高屈折率層との間の屈折率差を0.1〜0.5の範囲内の値とするのがより好ましく、0.15〜0.5の範囲内の値とするのがさらに好ましい。
低屈折率層の厚さについても特に制限されるものではないが、例えば、50〜300nmであることが好ましい。この理由は、低屈折率層の厚さが50nm未満となると、下地としての高屈折率膜に対する密着力が低下する場合があるためであり、一方、厚さが300nmを超えると、光干渉が生じて反射防止効果が低下する場合があるためである。
従って、低屈折率層の厚さを50〜250nmとするのがより好ましく、60〜200nmとするのがさらに好ましい。
尚、より高い反射防止性を得るために、低屈折率層を複数層設けて多層構造とする場合には、その合計した厚さを50〜300nmとすれば良い。
(2)高屈折率層
高屈折率層を形成するための硬化性組成物としては、特に制限されるものでないが、被膜形成成分として、エポキシ系樹脂、フェノ−ル系樹脂、メラミン系樹脂、アルキド系樹脂、シアネート系樹脂、アクリル系樹脂、ポリエステル系樹脂、ウレタン系樹脂、シロキサン樹脂等の一種単独又は二種以上の組み合わせを含むことが好ましい。これらの樹脂であれば、高屈折率層として、強固な薄膜を形成することができ、結果として、反射防止膜の耐擦傷性を著しく向上させることができるためである。
しかしながら、通常、これらの樹脂単独での屈折率は1.45〜1.62であり、高い反射防止性能を得るには十分で無い場合がある。そのため、高屈折率の無機粒子、例えば金属酸化物粒子を配合することがより好ましい。また、硬化形態としては、熱硬化、紫外線硬化、電子線硬化できる硬化性組成物を用いることができるが、より好適には生産性の良好な紫外線硬化性組成物が用いられる。
高屈折率層の厚さは特に制限されるものではないが、例えば、50〜30,000nmであることが好ましい。この理由は、高屈折率層の厚さが50nm未満となると、低屈折率層と組み合わせた場合に、反射防止効果や基材に対する密着力が低下する場合があるためであり、一方、厚さが30,000nmを超えると、光干渉が生じて逆に反射防止効果が低下する場合があるためである。
従って、高屈折率層の厚さを50〜1,000nmとするのがより好ましく、60〜500nmとするのがさらに好ましい。
また、より高い反射防止性を得るために、高屈折率層を複数層設けて多層構造とする場合には、その合計した厚さを50〜30,000nmとすれば良い。
尚、高屈折率層と基材との間にハードコート層を設ける場合には、高屈折率層の厚さを50〜300nmとすることができる。
(3)ハードコート層
本発明の反射防止膜に用いるハードコート層の構成材料については特に制限されるものでない。このような材料としては、シロキサン樹脂、アクリル樹脂、メラミン樹脂、エポキシ樹脂等の一種単独又は二種以上の組み合わせを挙げることができる。
また、ハードコート層の厚さについても特に制限されるものではないが、1〜50μmとするのが好ましく、5〜10μmとするのがより好ましい。この理由は、ハードコート層の厚さが1μm未満となると、反射防止膜の基材に対する密着力を向上させることができない場合があるためであり、一方、厚さが50μmを超えると、均一に形成するのが困難となる場合があるためである。
(4)基材
本発明の反射防止膜に用いる基材の種類は特に制限されるものではないが、例えば、ガラス、ポリカーボネート系樹脂、ポリエステル系樹脂、アクリル系樹脂、トリアセチルセルロース樹脂(TAC)等からなる基材を挙げることができる。これらの基材を含む反射防止膜とすることにより、カメラのレンズ部、テレビ(CRT)の画面表示部、あるいは液晶表示装置におけるカラーフィルター等の広範な反射防止膜の利用分野において、優れた反射防止効果を得ることができる。
以下、本発明の実施例を詳細に説明するが、本発明の範囲はこれら実施例の記載に限定されるものではない。
(製造例1)
水酸基含有含フッ素重合体の合成
内容積2.0リットルの電磁攪拌機付きステンレス製オートクレーブを窒素ガスで十分置換した後、酢酸エチル400g、パーフルオロ(プロピルビニルエーテル)53.2g、エチルビニルエーテル36.1g、ヒドロキシエチルビニルエーテル44.0g、過酸化ラウロイル1.00g、上記式(7)で表されるアゾ基含有ポリジメチルシロキサン(VPS1001(商品名)、和光純薬工業(株)製)6.0g及びノニオン性反応性乳化剤(NE−30(商品名)、旭電化工業(株)製)20.0gを仕込み、ドライアイス−メタノールで−50℃まで冷却した後、再度窒素ガスで系内の酸素を除去した。
次いでヘキサフルオロプロピレン120.0gを仕込み、昇温を開始した。オートクレーブ内の温度が60℃に達した時点での圧力は5.3×105Paを示した。その後、70℃で20時間攪拌下に反応を継続し、圧力が1.7×105Paに低下した時点でオートクレーブを水冷し、反応を停止させた。室温に達した後、未反応モノマーを放出してオートクレーブを開放し、固形分濃度26.4%のポリマー溶液を得た。得られたポリマー溶液をメタノールに投入しポリマーを析出させた後、メタノールにて洗浄し、50℃にて真空乾燥を行い220gの水酸基含有含フッ素重合体を得た。これを水酸基含有含フッ素重合体とする。使用した単量体と溶剤を表1に示す。
Figure 2009163260
得られた水酸基含有含フッ素重合体に付き、ゲルパーミエーションクロマトグラフィーでによるポリスチレン換算数平均分子量及びアリザリンコンプレクソン法によるフッ素含量をそれぞれ測定した。また、1H−NMR、13C−NMRの両NMR分析結果、元素分析結果及びフッ素含量から、水酸基含有含フッ素重合体を構成する各単量体成分の割合を決定した。結果を表2に示す。
Figure 2009163260
尚、VPS1001は、数平均分子量が7〜9万、ポリシロキサン部分の分子量が約10,000の、上記式(7)で表されるアゾ基含有ポリジメチルシロキサンである。NE−30は、上記式(10)において、nが9、mが1、uが30であるノニオン性反応性乳化剤である。
さらに、表2において、単量体と構造単位との対応関係は以下の通りである。
単量体 構造単位
ヘキサフルオロプロピレン (a)
パーフルオロ(プロピルビニルエーテル) (a)
エチルビニルエーテル (b)
ヒドロキシエチルビニルエーテル (c)
NE−30 (f)
ポリジメチルシロキサン骨格 (d)
(製造例2)
エチレン性不飽和基含有含フッ素重合体A−1(メタアクリル変性フッ素重合体)((A)成分)の合成
電磁攪拌機、ガラス製冷却管及び温度計を備えた容量1リットルのセパラブルフラスコに、製造例1で得られた水酸基含有含フッ素重合体を50.0g、重合禁止剤として2,6−ジ−t−ブチルメチルフェノール0.01g及びメチルイソブチルケトン(MIBK)370gを仕込み、20℃で水酸基含有含フッ素重合体1がMIBKに溶解して、溶液が透明、均一になるまで攪拌を行った。
次いで、この系に、2−メタクリロイルオキシエチルイソシアネートを15.1gを添加し、溶液が均一になるまで攪拌した後、ジブチルチンジラウレート0.1gを添加して反応を開始し、系の温度を55〜65℃に保持し5時間攪拌を継続することにより、エチレン性不飽和基含有含フッ素重合体A−1のMIBK溶液を得た。
この溶液をアルミ皿に2g秤量後、150℃のホットプレート上で5分間乾燥、秤量して固形分含量を求めたところ、15.2重量%であった。使用した化合物、溶剤及び固形分含量を表3に示す。
(製造例3)
エチレン性不飽和基含有含フッ素重合体A−2(アクリル変性フッ素重合体)((A)成分)の合成
製造例2と同様に製造例1で得られた水酸基含有含フッ素重合体を50.0g、2,6−ジ−t−ブチルメチルフェノール0.01g及びMIBK370g、2−アクリロイルオキシエチルイソシアネートを13.7g、ジブチルチンジラウレート0.1gを用いて反応を行い、エチレン性不飽和基含有含フッ素重合体A−2のMIBK溶液を得た。固形分含量を求めたところ、15.0重量%であった。使用した化合物、溶剤及び固形分含量を表3に示す。
Figure 2009163260
(製造例4)
特定有機化合物(S1)の合成
乾燥空気中、メルカプトプロピルトリメトキシシラン7.8部、ジブチルスズジラウレート0.2部からなる溶液に対し、イソホロンジイソシアネート20.6部を攪拌しながら50℃で1時間かけて滴下後、60℃で3時間攪拌した。これにペンタエリスリトールトリアクリレート71.4部を30℃で1時間かけて滴下後、60℃で3時間加熱攪拌することで特定有機化合物(S1)を得た。
生成物の赤外吸収スペクトルは原料中のメルカプト基に特徴的な2550カイザ−の吸収ピ−ク及びイソシアネ−ト基に特徴的な2260カイザ−の吸収ピ−クが消失し、新たに、[−O−C(=O)−NH−]基及び[−S−C(=O)−NH−]基中のカルボニルに特徴的な1660カイザ−のピ−ク及びアクリロイル基に特徴的な1720カイザ−のピ−クが観察され、重合性不飽和基としてのアクリロイル基と[−S−C(=O)−NH−]基、[−O−C(=O)−NH−]基を共に有する特定有機化合物が生成していることを示した。
(製造例5)
シリカを主成分とする粒子C−1((C)成分)の調製
製造例4で合成した特定有機化合物(S1)8.7部、メチルエチルケトンシリカゾル(日産化学工業(株)製、商品名:MEK−ST(数平均粒子径0.022μm、シリカ濃度30%))91.3部(固形分27.4部)、イソプロパノール0.2部及びイオン交換水0.1部の混合液を、80℃、3時間攪拌後、オルト蟻酸メチルエステル1.4部を添加し、さらに1時間同一温度で加熱攪拌することで無色透明の粒子分散液C−1を得た。C−1をアルミ皿に2g秤量後、120℃のホットプレ−ト上で1時間乾燥、秤量して固形分含量を求めたところ、35重量%であった。
このシリカ系粒子の平均粒子径は、20nmであった。ここで、平均粒子径は透過型電子顕微鏡により測定した。
(製造例6)
シリカを主成分とする粒子D−1((D)成分)の調製
平均粒径5nm、SiO2濃度20重量%のシリカゾル100gと純水1900gの混合物を80℃に加温した。この反応母液のpHは10.5であり、同母液にSiO2として1.17重量%の珪酸ナトリウム水溶液9000gとAl23として0.83重量%のアルミン酸ナトリウム水溶液9000gとを同時に添加した。その間、反応液の温度を80℃に保持した。反応液のpHは添加直後、12.5に上昇し、その後、殆ど変化しなかった。添加終了後、反応液を室温まで冷却し、限外濾過膜で洗浄して固形分濃度20重量%のSiO2・Al23核粒子分散液を調製した。
この核粒子分散液500gに純水1,700gを加えて98℃に加温し、この温度を保持しながら、珪酸ナトリウム水溶液を陽イオン交換樹脂で脱アルカリして得られた珪酸液(SiO2濃度3.5重量%)3,000gを添加してシリカ外殻を形成した核粒子の分散液を得た。
次いで、限外濾過膜で洗浄して固形分濃度13重量%になったシリカ外殻を形成した核粒子の分散液500gに純水1,125gを加え、さらに濃塩酸(35.5%)を滴下してpH1.0とし、脱アルミニウム処理を行った。次いで、pH3の塩酸水溶液10リットルと純水5リットルを加えながら限外濾過膜で溶解したアルミニウム塩を分離し、ついで限外濾過膜を用いて溶媒をエタノールに置換して、固形分濃度20重量%のシリカ外殻からなる中空のシリカ系粒子の分散液D−1を調製した。
このシリカ系粒子の平均粒子径、屈折率は、それぞれ、50nm、1.29であった。ここで、平均粒子径は透過型電子顕微鏡により測定した。
(製造例7)
シリカを主成分とする粒子D−2((D)成分)の調製
製造例5と同様に製造例4で合成した特定有機化合物(S1)3.0部、製造例6で合成した中空シリカ粒子(D−1)137部(固形分27.4部)、イオン交換水0.1部、0.05mol/Lの希硫酸0.01部、オルト蟻酸メチルエステル1.4部を用いて粒子分散液D−2を得た。D−2の固形分含量を求めたところ、25重量%であった。
このシリカ系粒子の平均粒子径は、50nmであった。ここで、平均粒子径は透過型電子顕微鏡により測定した。
(製造例8)
シリカを主成分とする粒子D−3((D)成分)の調製
製造例5と同様に製造例4で合成した特定有機化合物(S1)3.0部、メチルエチルケトンシリカゾル(日産化学工業(株)製、商品名:MEK−ST―L(数平均粒子径0.050μm、シリカ濃度30%))91.3部(固形分27.4部)、イオン交換水0.1部、オルト蟻酸メチルエステル1.4部を用いて粒子分散液D−3を得た。D−3の固形分含量を求めたところ、25重量%であった。
このシリカ系粒子の平均粒子径は、50nmであった。ここで、平均粒子径は透過型電子顕微鏡により測定した。
(製造例9)
シリカ粒子含有ハードコート層用組成物の調製
紫外線を遮蔽した容器中において、製造例5で合成したC−1を86部(固形分として30部)、ジペンタエリスリト−ルヘキサアクリレ−ト65部、2−メチル−1−〔4−(メチルチオ)フェニル〕−2−モルフォリノプロパン−1−オン5部、MIBK44部を50℃で2時間攪拌することで均一な溶液のハードコート層用組成物を得た。この組成物をアルミ皿に2g秤量後、120℃のホットプレート上で1時間乾燥、秤量して固形分含量を求めたところ、50重量%であった。
(製造例10)
硬化性樹脂組成物塗工用基材の作製
片面易接着ポリエチレンテレフタレートフィルムA4100(東洋紡績(株)製、膜厚188μm)の易接着処理面に、製造例9で調製したシリカ粒子含有ハードコート層用組成物をワイヤーバーコータで膜厚3μmとなるように塗工し、オーブン中、80℃で1分間乾燥し、塗膜を形成した。次いで、空気下、高圧水銀ランプを用いて、0.9mJ/cm2の光照射条件で紫外線を照射し、硬化性樹脂組成物塗工用基材を作製した。
製造例11
表4に示すように、製造例2で得たエチレン性不飽和基含有含フッ素重合体A−1のMIBK溶液を267g((A)成分の固形分として40g)、ジペンタエリスリトールペンタアクリレート(SR399E、サートマー(株)製)((B)成分)8g、製造例5で得られたシリカを主成分とする粒子C−1を14.3g((C)成分の固形分として5g)、製造例7で得られたシリカを主成分とする粒子D−2を180g((D)成分の固形分として45g)、光重合開始剤として2−メチル−1−〔4−(メチルチオ)フェニル〕−2−モルフォリノプロパン−1−オン(イルガキュア907、チバ・スペシャルティ・ケミカルズ製)2g、及びMIBK
1530gを、攪拌機をつけたガラス製セパラブルフラスコに仕込み、室温にて1時間攪拌し均一な硬化性樹脂組成物を得た。また、製造例2の方法により固形分濃度を求めたところ5重量%であった。
製造例12〜15、比較例1〜3)
表4の組成に従った他は、製造例11と同様にして各硬化性組成物を得た。表中の(A)〜(E)成分の組成の単位は重量部である。
Figure 2009163260
実施例1〜5
製造例11〜15で得られた各硬化性樹脂組成物をワイヤーバーコータを用いて製造例10で得られたハードコート上に膜厚0.1μmとなるように塗工し、80℃で1分間乾燥し、塗膜を形成した。次いで、窒素気流下、高圧水銀ランプを用いて、0.3mJ/cm2の光照射条件で紫外線を照射し、反射防止膜層を作成した。
(評価例1)
外観の評価
実施例1〜5で得られた反射防止膜の外観を目視で評価した。評価基準は以下の通り。結果を表4に示す。
○:塗布ムラなし
△:若干塗布ムラあり
×:全面に塗布ムラあり
(評価例2)
透過率及びヘーズの測定
実施例1〜5で得られた反射防止膜をカラーヘーズメーターで光線透過率及びヘーズを測定した。結果を表4に示す。
(評価例3)
硬化膜の屈折率測定
製造例11〜15で得られた各硬化性樹脂組成物をスピンコーターによりシリコンウェハー上に、乾燥後の厚さが約0.1μmとなるように塗布後、窒素下、高圧水銀ランプを用いて、0.3mJ/cmの光照射条件で紫外線を照射して硬化させた。得られた硬化物について、エリプソメーターを用いて25℃での波長539nmにおける屈折率(n 25)を測定した。結果を表4に示す。
(評価例4)
反射防止膜の反射率測定
実施例1〜5で得られた反射防止膜の裏面を黒色スプレーで塗装し、分光反射率測定装置(大型試料室積分球付属装置150−09090を組み込んだ自記分光光度計U−3410、日立製作所(株)製)により、波長340〜700nmの範囲で反射率をマイクロレンズ側から測定して評価した。具体的には、アルミの蒸着膜における反射率を基準(100%)として、各波長における反射防止用積層体(反射防止膜)の反射率を測定した。結果を表4に示す。
(評価例5)
耐擦傷性テスト(スチールウール耐性テスト)
評価例で得られた硬化膜を、スチールウール(ボンスターNo.0000、日本スチールウール(株)製)を学振型摩擦堅牢度試験機(AB-301、テスター産業(株)製)に取りつけ、硬化膜の表面を荷重500gの条件で10回繰り返し擦過し、当該硬化膜の表面における傷の発生の有無を、以下の基準により目視で確認した。結果を表4に示す。
◎:硬化膜の剥離や傷の発生がほとんど認められない。
○:硬化膜にわずかな細い傷が認められる。
△:硬化膜全面に筋状の傷が認められる。
×:硬化膜の剥離が生じる。
(評価例6)
耐汚染性テスト
実施例1〜5で得られた反射防止膜に指紋をつけ、不織布(ベンコットン)にて塗膜表面を拭き取った。耐汚染性を、以下の基準により評価した。結果を表4に示す。
○:塗膜表面の指紋跡がほぼ完全に拭き取られた。
×:拭き取られずに指紋跡が試料表面に残存した。
(評価例7)
耐薬品性テスト
実施例1〜5で得られた反射防止膜(評価用試料)を、25°の2N水酸化ナトリウム水溶液に2分間浸漬し、蒸留水にて洗浄し風乾後、その表面を、エタノールを染み込ませたセルロース製不織布(商品名ベンコット、旭化成工業(株))を用いて往復200回手で擦り、評価用試料表面のアルカリ水溶液浸漬後の耐擦傷性を、以下の基準により評価した。結果を表4に示す。
○:評価用試料表面が無傷。
△:評価用試料表面に傷がついている。
×:塗膜の剥離が見られる。
本発明の硬化性樹脂組成物は、耐擦傷性、塗工性及び耐久性に優れ、特に反射防止膜として有用である。
10 反射防止膜
12 基材
16 ハードコート層
18 低屈折率層

Claims (6)

  1. 基材と、25℃におけるNa−D線の屈折率が1.45以下の低屈折率層とを有する反射防止膜であって、
    前記低屈折率層が、
    (A)エチレン性不飽和基含有含フッ素重合体、
    (B)(メタ)アクリレート化合物、
    (C)数平均粒径1〜30nmのシリカを主成分とする粒子、及び、
    (D)数平均粒径40〜100nmのシリカを主成分とする粒子、
    を含有する硬化性樹脂組成物を硬化して得られることを特徴とする反射防止膜。
  2. 前記(C)数平均粒径1〜30nmのシリカを主成分とする粒子、及び、前記(D)数平均粒径40〜100nmのシリカを主成分とする粒子の、いずれか一方又は両方が、中空粒子であることを特徴とする請求項1に記載の反射防止膜。
  3. 前記(B)(メタ)アクリレート化合物が、分子内に少なくとも2個以上の(メタ)アクリロイル基を含有する化合物を含有することを特徴とする請求項1又は2に記載の反射防止膜。
  4. 前記(A)エチレン性不飽和基含有含フッ素重合体が、
    1個のイソシアネート基と、少なくとも1個のエチレン性不飽和基とを含有する化合物と、
    水酸基含有含フッ素重合体と、
    をイソシアネート基/水酸基のモル比が1.1〜1.9の割合で反応させて得られるエチレン性不飽和基含有含フッ素重合体である請求項1〜3のいずれか一に記載の反射防止膜。
  5. 前記(C)数平均粒径1〜30nmのシリカを主成分とする粒子、及び前記(D)数平均粒径40〜100nmのシリカを主成分とする粒子が、重合性不飽和基を含む有機化合物によって表面処理がなされている請求項1〜4のいずれか一に記載の反射防止膜。
  6. さらに、基材と低屈折率層の間に、ハードコート層を有する請求項1〜5のいずれか一に記載の反射防止膜。
JP2009101583A 2009-04-20 2009-04-20 硬化性樹脂組成物及び反射防止膜 Pending JP2009163260A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009101583A JP2009163260A (ja) 2009-04-20 2009-04-20 硬化性樹脂組成物及び反射防止膜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009101583A JP2009163260A (ja) 2009-04-20 2009-04-20 硬化性樹脂組成物及び反射防止膜

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004215468A Division JP2006036835A (ja) 2004-07-23 2004-07-23 硬化性樹脂組成物及び反射防止膜

Publications (1)

Publication Number Publication Date
JP2009163260A true JP2009163260A (ja) 2009-07-23

Family

ID=40965869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009101583A Pending JP2009163260A (ja) 2009-04-20 2009-04-20 硬化性樹脂組成物及び反射防止膜

Country Status (1)

Country Link
JP (1) JP2009163260A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011046149A1 (ja) * 2009-10-16 2011-04-21 大日本印刷株式会社 光学フィルム及びディスプレイパネル
KR101283452B1 (ko) * 2010-10-29 2013-07-15 도레이첨단소재 주식회사 터치스크린 패널용 반사방지 필름,산화방지 필름 및 이를 이용한 터치스크린 패널
WO2013115267A1 (ja) * 2012-01-31 2013-08-08 ダイキン工業株式会社 含フッ素重合体及びその製造方法
KR20170106920A (ko) * 2016-03-14 2017-09-22 주식회사 엘지화학 반사 방지 필름
US10222510B2 (en) 2016-03-09 2019-03-05 Lg Chem, Ltd Anti-reflective film
WO2019054806A1 (en) * 2017-09-15 2019-03-21 Lg Chem, Ltd. HARD COATING FILM
CN110914057A (zh) * 2017-09-15 2020-03-24 株式会社Lg化学 硬涂膜

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011046149A1 (ja) * 2009-10-16 2011-04-21 大日本印刷株式会社 光学フィルム及びディスプレイパネル
CN102576095A (zh) * 2009-10-16 2012-07-11 大日本印刷株式会社 光学薄膜以及显示面板
US9158044B2 (en) 2009-10-16 2015-10-13 Dai Nippon Printing Co., Ltd. Optical film and display panel
KR101283452B1 (ko) * 2010-10-29 2013-07-15 도레이첨단소재 주식회사 터치스크린 패널용 반사방지 필름,산화방지 필름 및 이를 이용한 터치스크린 패널
WO2013115267A1 (ja) * 2012-01-31 2013-08-08 ダイキン工業株式会社 含フッ素重合体及びその製造方法
JP2013177570A (ja) * 2012-01-31 2013-09-09 Daikin Industries Ltd 含フッ素重合体及びその製造方法
US10802178B2 (en) 2016-03-09 2020-10-13 Lg Chem, Ltd. Anti-reflective film
US10222510B2 (en) 2016-03-09 2019-03-05 Lg Chem, Ltd Anti-reflective film
US10627547B2 (en) 2016-03-09 2020-04-21 Lg Chem, Ltd. Anti-reflective film
US10895667B2 (en) 2016-03-09 2021-01-19 Lg Chem, Ltd. Antireflection film
US10983252B2 (en) 2016-03-09 2021-04-20 Lg Chem, Ltd. Anti-reflective film
US11262481B2 (en) 2016-03-09 2022-03-01 Lg Chem, Ltd. Anti-reflective film
US11275199B2 (en) 2016-03-09 2022-03-15 Lg Chem, Ltd. Anti-reflective film
KR20170106920A (ko) * 2016-03-14 2017-09-22 주식회사 엘지화학 반사 방지 필름
WO2019054806A1 (en) * 2017-09-15 2019-03-21 Lg Chem, Ltd. HARD COATING FILM
CN110914057A (zh) * 2017-09-15 2020-03-24 株式会社Lg化学 硬涂膜
JP2020526652A (ja) * 2017-09-15 2020-08-31 エルジー・ケム・リミテッド ハードコートフィルム
US10954409B2 (en) 2017-09-15 2021-03-23 Lg Chem, Ltd. Hard coating film

Similar Documents

Publication Publication Date Title
JP5163119B2 (ja) 放射線硬化性樹脂組成物及び反射防止膜
JP5125507B2 (ja) 樹脂組成物、硬化膜及び積層体
JP5433926B2 (ja) 硬化性樹脂組成物及び反射防止膜
JP5045052B2 (ja) 硬化性樹脂組成物及び反射防止膜
JP4678399B2 (ja) 反射防止膜
JP2006036835A (ja) 硬化性樹脂組成物及び反射防止膜
JP2008019402A (ja) 硬化性樹脂組成物及び反射防止膜
JP2005089536A (ja) 硬化性樹脂組成物及び反射防止膜
JP5169236B2 (ja) 硬化性樹脂組成物及び反射防止膜
JP2008044979A (ja) 硬化性樹脂組成物及び反射防止膜
JP4301115B2 (ja) 活性エネルギー線硬化性樹脂組成物及び反射防止膜
JP2006097003A (ja) 樹脂組成物及び反射防止膜
JP2009029979A (ja) 硬化性樹脂組成物及び反射防止膜
JP2009163260A (ja) 硬化性樹脂組成物及び反射防止膜
JP4899572B2 (ja) 硬化性樹脂組成物及び反射防止膜
JP2007327018A (ja) 硬化性樹脂組成物及び反射防止膜
JP2008031327A (ja) 硬化性樹脂組成物及び積層体
JP5050435B2 (ja) 積層体
JP2006336008A (ja) 硬化性樹脂組成物、硬化膜及び反射防止膜積層体
JP2008001872A (ja) 硬化性樹脂組成物及び反射防止膜
JP5092825B2 (ja) 硬化性組成物、硬化膜及び硬化膜の製造方法
JP2008137190A (ja) 反射防止積層体
JPWO2006057297A1 (ja) 硬化性樹脂組成物及び反射防止膜
JP5061967B2 (ja) 硬化性組成物、硬化膜及び硬化膜の製造方法
JP2007262127A (ja) 硬化性樹脂組成物及び反射防止膜

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090420

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20090702

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20090730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100302