WO2006137235A1 - 液晶表示装置 - Google Patents

液晶表示装置 Download PDF

Info

Publication number
WO2006137235A1
WO2006137235A1 PCT/JP2006/310232 JP2006310232W WO2006137235A1 WO 2006137235 A1 WO2006137235 A1 WO 2006137235A1 JP 2006310232 W JP2006310232 W JP 2006310232W WO 2006137235 A1 WO2006137235 A1 WO 2006137235A1
Authority
WO
WIPO (PCT)
Prior art keywords
operating time
liquid crystal
read
unit
time
Prior art date
Application number
PCT/JP2006/310232
Other languages
English (en)
French (fr)
Inventor
Hiroki Ikeya
Original Assignee
Komatsu Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd. filed Critical Komatsu Ltd.
Priority to GB0801244A priority Critical patent/GB2448791B/en
Priority to US11/917,645 priority patent/US20090033591A1/en
Priority to JP2007522217A priority patent/JPWO2006137235A1/ja
Publication of WO2006137235A1 publication Critical patent/WO2006137235A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • H05B41/39Controlling the intensity of light continuously
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K2360/00Indexing scheme associated with groups B60K35/00 or B60K37/00 relating to details of instruments or dashboards
    • B60K2360/20Optical features of instruments
    • B60K2360/33Illumination features
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • G09G2320/048Preventing or counteracting the effects of ageing using evaluation of the usage time
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0606Manual adjustment
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/08Arrangements within a display terminal for setting, manually or automatically, display parameters of the display terminal
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/04Display protection
    • G09G2330/045Protection against panel overheating

Definitions

  • the present invention relates to a liquid crystal display device mounted on a work vehicle such as a construction machine. Specifically, the backlight brightness in the liquid crystal display device is adjusted within an appropriate adjustment range according to the total operating time of the work vehicle.
  • the present invention relates to an enabled liquid crystal display device.
  • liquid crystal display devices are used in various fields such as displays of instruments in automobiles, construction machines, etc., and displays such as notebook computers and televisions.
  • the liquid crystal display device is configured to include, for example, a transmissive liquid crystal panel and a backlight. According to such a liquid crystal display device, it is possible to project an image on the liquid crystal panel by controlling the transmission and blocking of the backlight light emitted from the back side of the liquid crystal panel. For this reason, the brightness (brightness) of the knocklight affects the brightness and contrast of the screen of the liquid crystal panel, and by causing the knocklight to emit light with a certain level of brightness, it is possible to display a clear image on the liquid crystal panel. it can.
  • a cold cathode fluorescent tube having a cold cathode is generally used as a light source of a knock light.
  • a cold cathode fluorescent tube a cathode and an anode are arranged at both ends of a glass tube coated with a fluorescent layer, and an appropriate amount of mercury and an inert gas such as argon are sealed in the glass tube. It is configured.
  • Such a cold cathode fluorescent tube emits secondary electrons from the cathode by applying a predetermined voltage between the electrodes. These secondary electrons collide with mercury in the glass tube, and the mercury excited by this collision emits ultraviolet rays. Then, the ultraviolet light excites the fluorescent layer of the glass tube to generate visible light, whereby the cold cathode fluorescent tube can emit light.
  • the secular change in luminance in a cold cathode fluorescent tube is caused by the deterioration of the fluorescent layer applied to the glass tube by the ultraviolet rays emitted when the cold cathode fluorescent tube emits light.
  • the deterioration of the fluorescent layer due to ultraviolet rays progresses quickly, and the lifetime of the backlight tends to be shortened.
  • the brightness of the knocklight is set high and the liquid crystal display device is used, the deterioration of the fluorescent layer due to ultraviolet rays progresses quickly, and the lifetime of the backlight tends to be shortened.
  • the brightness of the knocklight to be low, deterioration of the fluorescent layer due to ultraviolet rays can be delayed, and as a result, the lifetime of the backlight can be extended.
  • the lifetime of the knocklight generally refers to the state when the state described below is reached. That is, at the start of use of the liquid crystal display device, the applied voltage to the knock light when the backlight emits the brightest is the specified voltage, and the brightness of the backlight that emits light at that time is the reference brightness ( 100%).
  • the specified voltage and reference brightness are specified, even when a voltage of the same magnitude as the specified voltage is applied to the knocklight when the liquid crystal display device is used, the reference brightness of 50
  • the lifespan of the knocklight is defined as when it is in a state where the brightness is% and cannot be obtained, or when the backlight is turned off and does not light.
  • the brightness of the backlight is set low enough to obtain a sufficient function as a light source, for example, about 50 to 60% of the reference brightness.
  • the LCD screen To display the LCD screen.
  • Patent Document 1 Japanese Patent Laid-Open No. 6-167695
  • Japanese Patent Laid-Open No. 6-167695 Japanese Patent Laid-Open No. 6-167695
  • the contrast correction device described in Patent Document 1 changes the luminance of the backlight when the voltage applied to the backlight is changed. It uses the characteristics and is equipped with means to change the voltage applied to the backlight from the power supply circuit as the usage time of the knocklight changes.
  • the contrast correction device of Patent Document 1 controls the voltage applied to the knocklight at the start of use of the liquid crystal display device, so that the knocklight functions sufficiently as a light source. Lights at a brightness of 50-60% of the reference brightness. At the same time, the elapsed time of use of the knocklight is started to be measured by the measuring means. Then, as the elapsed time of use of the knocklight becomes longer, the applied voltage to the backlight is gradually increased so as to correct the decrease in luminance.
  • the brightness of the knocklight can be constantly maintained at a certain value of about 50 to 60% of the reference brightness. Accordingly, it is possible to prevent the deterioration of the image quality of the liquid crystal screen due to the aging deterioration of the knocklight.
  • the backlight brightness is always maintained at a constant value, the operator can be prevented from setting the backlight brightness higher than necessary. For this reason, it is possible to extend the life of the knocklight.
  • Patent Document 1 Japanese Patent Laid-Open No. 6-167695
  • liquid crystal display devices vary greatly in the visibility of the liquid crystal display depending on the time of use (daytime or nighttime), the place of use, and individual differences among operators.
  • the brightness of the cold cathode fluorescent tube which is the light source of the backlight, also changes depending on the vapor pressure of mercury sealed in the glass tube, so that it greatly depends on the environmental temperature in which the liquid crystal display device is used. There is. That is, for example, when the same liquid crystal display device is used in a place where the ambient temperature is 20 ° C., for example, and in a place where ⁇ 20 ° C. There was a problem that the picture quality of the screen was completely different.
  • the brightness of the knocklight depends on the operating operator or the usage environment of the liquid crystal display device.
  • the operator can freely adjust the brightness of the knocklight.
  • the liquid crystal display device is configured as described above, there is a concern that the operator sets the brightness of the knocklight higher than necessary as described above, and shortens the lifetime of the backlight.
  • the use of the contrast correction device as in Patent Document 1 can extend the life of the knocklight.
  • the brightness of the backlight is always maintained at a predetermined value as described above, so that the operator can adjust the backlight according to the usage environment. There was a problem that the brightness of the image could not be adjusted arbitrarily.
  • the present invention has been made in order to solve the conventional problems that are striking, and a specific object thereof is in the middle of use in a liquid crystal display device mounted on a work vehicle such as a construction machine.
  • the operator can arbitrarily adjust the backlight brightness according to usage conditions, etc., and it prevents the operator from setting the backlight brightness higher than necessary to extend the backlight life.
  • an object of the present invention is to provide a liquid crystal display device that can prevent a decrease in contrast and a deterioration in image quality due to aged deterioration of the knocklight.
  • a liquid crystal display device is a liquid crystal display device mounted on a work vehicle as a basic configuration, and manually controls the luminance of a backlight in the liquid crystal panel.
  • a brightness adjusting unit that can be adjusted by the brightness adjusting unit, a setting unit that sets a range in which the brightness can be adjusted by the brightness adjusting unit, and a measuring unit that measures the total operating time that the work vehicle has actually operated until now.
  • the setting means has a first storage unit that stores a predetermined brightness adjustment range for each backlight operating time, and has substantially the total operating time measured by the measuring means.
  • the brightness adjustment range corresponding to the operation time is read from the first storage unit, and the read adjustment range is set as a brightness adjustable range in the brightness adjustment unit. The most important feature is that it is set.
  • the liquid crystal display device comprises temperature measuring means for measuring the environmental temperature in which the liquid crystal display device is used, and the setting means is a predetermined correction for each environmental temperature.
  • the total operation which has the 2nd storage part which memorized the coefficient, and was measured by the above-mentioned measuring means Read the time and the environmental temperature measured by the temperature measuring means, read the correction coefficient corresponding to the read environmental temperature from the second storage unit, and multiply the read total operating time by the read correction coefficient.
  • the main feature is that the calculated virtual first total operating time is used as the actual operating time of the backlight until now.
  • the setting unit determines whether the environmental temperature read from the temperature measurement unit is equal to or higher than a predetermined temperature, and when the read environmental temperature is equal to or higher than the predetermined temperature, Without calculating the virtual first total operating time, the total operating time measured by the measuring means is used as the actual operating time up to the present time in the backlight, and the read environmental temperature is less than a predetermined temperature.
  • the virtual first total operating time is calculated based on the environmental temperature, and the calculated virtual first total operating time is used as the substantial operating time up to the present time in the backlight. And the main features.
  • the liquid crystal display device includes a temperature measurement unit that measures an environmental temperature in which the liquid crystal display device is used, and a total number read from the measurement unit after the work vehicle starts working.
  • a third storage unit that stores the virtual second total operation time by sequentially adding and storing the corrected operation time calculated in step (b), and the calculation means is configured for each environmental temperature defined in advance. Each time the total operating time read from the measuring means after the work vehicle has started work is equal to the unit operating time.
  • Temperature measurement in time An average value or minimum value of the environmental temperature read from the stage is calculated, a correction coefficient corresponding to the calculated average value or minimum value of the environmental temperature is read from the second storage unit, and the read correction coefficient is By multiplying the value of the unit operating time, the corrected operating time is calculated by correcting the unit operating time, and each time the corrected operating time is calculated, the calculated corrected operating time is sequentially added to the third storage unit.
  • Storing the virtual second total operating time in the third storage unit, and the setting means includes the third storage unit. The virtual second total operating time is read from the storage unit, and the read virtual second total operating time is used as a substantial operating time up to the present time in the backlight.
  • the setting means has a first storage unit that predefines a brightness adjustment range for each operation time, and the total operation of the work vehicle measured by the measurement means Using the time as the substantial operation time, the first memory unit force reads out the brightness adjustment range corresponding to the operation time. Then, the read brightness adjustment range can be set as the brightness adjustable range in the brightness adjustment unit. That is, according to the present invention, it is possible to appropriately set the range in which the luminance can be adjusted in the luminance adjustment unit based on the substantial operating time of the backlight that serves as an index representing the deterioration state of the luminance in the knocklight. I'll do it.
  • the operator of the work vehicle can arbitrarily adjust the brightness of the backlight in accordance with the usage state of the liquid crystal display device within the brightness adjustment range appropriately set by the setting means.
  • the brightness adjustment range in this brightness adjustment unit is set appropriately according to the actual operating time of the knocklight. For this reason, even if the operator can arbitrarily adjust the brightness of the knocklight, it is possible to prevent the backlight brightness from being set higher than necessary and to extend the life of the knocklight. Can do.
  • the range is expanded so that the upper limit of the adjustable range of luminance in the luminance adjusting unit is increased.
  • the adjustment range can be set so that a higher voltage can be applied.
  • the setting means includes a total operating time of the work vehicle and a liquid crystal display.
  • the virtual first operating time can be calculated based on the environmental temperature of the display device, and the calculated virtual first operating time can be used as the current actual operating time of the backlight.
  • the setting unit can stably set an appropriate luminance adjustment range corresponding to the environmental temperature in the luminance adjustment unit. Therefore, the operator can arbitrarily adjust the luminance of the backlight within the adjustment range set according to the environmental temperature by manually operating the luminance adjustment unit.
  • the setting means can read out the adjustment range corresponding to the total operating time from the first storage unit and set it in the luminance adjustment unit.
  • the setting means calculates a virtual first total operating time based on the environmental temperature. Then, the adjustment range corresponding to the calculated virtual first total operating time can be read from the first storage unit and set in the luminance adjustment unit. In this way, by determining whether or not to calculate the virtual first operating time according to the environmental temperature, it is possible to improve the efficiency of the work in the setting means and stabilize the luminance adjustment range for the luminance adjustment unit. Can be set.
  • the calculating means can calculate a corrected operation time obtained by correcting the unit operation time of the work vehicle based on the environmental temperature. Further, the calculated corrected operation time can be sequentially added and stored in the third storage unit. Thereby, the calculation means can store the virtual second total operating time corresponding to the change in the environmental temperature for each unit operating time in the third storage unit.
  • the setting means reads the virtual second total operating time from the third storage unit, and uses the read virtual second operating time as the current substantial operating time of the backlight. Can do. Thereby, the setting means can appropriately set the adjustment range corresponding to the change in the environmental temperature for each unit operating time as the range in which the luminance can be adjusted in the luminance adjustment unit.
  • FIG. 1 is a block diagram illustrating a configuration of a liquid crystal display device according to a first embodiment.
  • FIG. 2 is a diagram showing an example of an instrument display screen displayed on a liquid crystal panel
  • FIG. 2 (b) is a diagram showing an example of an image quality adjustment screen displayed on a liquid crystal panel
  • FIG. 6C is a diagram showing another example of the image quality adjustment screen displayed on the liquid crystal panel.
  • FIG. 3 is a diagram showing the brightness adjustment range for each backlight operation time stored in the first storage unit in (a), and (b) stored in the second storage unit in Example 2. It is the figure which showed the correction coefficient for every environmental temperature.
  • FIG. 4 is a flowchart showing setting of a luminance adjustment range in the liquid crystal display device of Example 1.
  • FIG. 5 is a block diagram illustrating a configuration of a liquid crystal display device according to a second embodiment.
  • FIG. 6 is a flowchart showing setting of a luminance adjustment range in the liquid crystal display device of Example 2.
  • FIG. 7 is a block diagram illustrating a configuration of a liquid crystal display device according to a third embodiment.
  • FIG. 8 is a diagram showing correction coefficients for each environmental temperature stored in the second storage unit of the third embodiment.
  • FIG. 9 is a flowchart showing setting of a luminance adjustment range in the liquid crystal display device of Example 3.
  • FIG. 10 shows the calculation of the virtual second total operating time in the liquid crystal display device of Example 3!
  • liquid crystal display device mounted on a hydraulic excavator that is one of work vehicles
  • a liquid crystal display device mounted on a hydraulic excavator that is one of work vehicles
  • the present invention is not limited to this, and can be applied to liquid crystal display devices mounted on various work vehicles such as other construction machines and automobiles.
  • the brightness adjustment range of the brightness adjustment unit in the liquid crystal display device and the total operating time of the hydraulic excavator are exemplified with specific numerical values, but the present invention is limited to these.
  • the liquid crystal display device can be changed as appropriate according to the environment in which the liquid crystal display device is used.
  • FIG. 1 is a block diagram illustrating a configuration of the liquid crystal display device according to the first embodiment.
  • the liquid crystal display device 1 shown in FIG. 1 detects an operating state of a hydraulic excavator, a monitor unit 2 where an operator visually observes a liquid crystal screen, performs various operations, a controller unit 3 that controls the monitor unit 2, and the like. It consists of a sensor unit 4 and
  • the monitor unit 2 is disposed in the driver's seat of the hydraulic excavator, and includes a transmissive liquid crystal panel 5 that displays an image, and a backlight 6 that is disposed on the back side of the liquid crystal panel 5 and performs illumination. And an image quality adjustment unit 7 for adjusting the image quality of the screen projected on the liquid crystal panel 5.
  • a brightness adjustment unit 8 As the image quality adjustment unit 7, a brightness adjustment unit 8, a contrast adjustment unit 9, and a luminance adjustment unit 10 are provided.
  • Each of these adjusting units 8 to 10 is configured so that the liquid crystal panel 5 is provided with a touch panel function so that it can be displayed on the liquid crystal panel 5 and manually operated by the operator on the screen. You can also
  • the brightness adjustment unit 8 and the contrast adjustment unit 9 are set to levels 0 to 7 as in the image quality adjustment screen 16 shown in FIG. 2 (b) described below, for example.
  • the screen brightness and contrast can be adjusted in 8 stages.
  • the brightness adjusting unit 10 is configured so that the adjustable range of brightness can be changed according to the substantial operating time of the knocklight 6.
  • the range in which the luminance can be adjusted in the luminance adjusting unit 10 is limited to about 50 to 75% of the specified voltage when the range is set to be the narrowest.
  • the brightness of the knocklight can be adjusted in 9 levels from 0 to 8.
  • the control range of the applied voltage to the knocklight is set to approximately 50 to: LOO% of the specified voltage, and the backlight brightness is adjusted in 16 levels from 0 to 15. It can be configured as possible.
  • the specified voltage is a voltage applied to the knocklight when the knocklight is made to emit the brightest light when the use of the liquid crystal display device is started as described above.
  • the liquid crystal panel 5 is configured to be able to switch and display several screens, for example, as shown in FIGS. 2 (a) and (b) by an image switching button (not shown).
  • the display screen shown in Fig. 2 (a) is a time display that displays the total operating time of the fuel gauge 12, engine coolant temperature gauge 13, hydraulic oil temperature gauge 14, and hydraulic excavator.
  • This is an instrument display screen 11 composed of parts 15 and 15. Normally, the instrument display screen 11 is displayed on the liquid crystal panel 5 when the hydraulic excavator is operating. As a result, the operator can also check the remaining power of the fuel, the temperature of the cooling water and hydraulic oil, the operating time of the hydraulic excavator, and information on when the liquid crystal panel 5 is displayed.
  • the display screen shown in FIG. 2 (b) is an image quality adjustment screen 16 composed of a brightness display section 17, a contrast display section 18, and a brightness display section 19, and is set by the image quality adjustment section 7.
  • the adjusted image quality adjustment status can be displayed.
  • This image quality adjustment screen 16 can be displayed when the operator presses the image switching button while the hydraulic excavator is in operation.
  • the display screen shown in Fig. 2 (c) adjusts the image quality when the upper limit of the brightness adjustment range in the brightness adjustment unit is expanded as compared with the display screen shown in Fig. 2 (b). Screen 16 '.
  • the knock light 6 includes a cold cathode fluorescent tube as a light source.
  • the backlight 6 is configured such that the operator can manually adjust the brightness of the backlight 6 by adjusting the voltage applied to the electrode of the knock light by manually operating the brightness adjusting unit 10.
  • the controller unit 3 includes a setting unit 20 and a measurement unit 21. Also set hand
  • the stage 20 has a first storage unit 22.
  • a brightness adjustment range is defined in advance for each operation time of the backlight 6, and stored.
  • the substantial operating time of the backlight 6 serves as an index indicating the deterioration state of the luminance in the backlight, and as the substantial operating time becomes longer, the aging of the luminance in the backlight progresses. Therefore, the brightness adjustment range for each operation time of the backlight 6 stored in the first storage unit 22 takes into account the deterioration of the luminance of the backlight over time, and the substantial operation time of the knock light is long. The upper limit of the adjustment range is specified to be higher. In the first embodiment, as will be described below, the total operating time of the hydraulic excavator measured by the measuring means 21 is used as the substantial operating time up to the present time in the knocklight.
  • the measuring means 21 has a time measuring function, and can measure the total operating time that has actually been operated up to the present time. Further, the total operating time measured to date by the measuring means 21 can be read by the setting means 20.
  • the controller unit 3 has a fourth storage unit (not shown) that stores the setting state of the image quality set in the monitor unit 2.
  • the controller unit 3 can store the image quality setting state set in the monitor unit 2 at that time in the fourth storage unit.
  • the controller unit 3 can read the image quality setting state stored at the time of the previous stoppage from the fourth storage unit and set the image quality for the monitor unit 2. it can.
  • the sensor unit 4 includes a coolant temperature sensor 25, a hydraulic oil temperature sensor 26, and a fuel tank level sensor 27.
  • the water temperature of the cooling water measured by the water temperature sensor 25 of the sensor unit 4 is input to the monitor unit 2 via the controller unit 3 and displayed on the water temperature meter 13 on the instrument display screen 11 of the liquid crystal panel 5.
  • FIG. 4 is a flowchart showing the setting of the luminance adjustment range in the liquid crystal display device 1.
  • steps 1 to 8 are abbreviated as S1 to S8, respectively.
  • the controller unit 3 reads the image quality setting state from the fourth storage unit (not shown), and the read setting state is sent to the monitor unit 2.
  • the image quality setting state read out by the fourth storage unit force is the one stored in the fourth storage unit by the controller unit 3 when the excavator stopped the previous operation.
  • the measuring means 21 of the controller unit 3 resumes the measurement of the total operating time that the hydraulic excavator has actually operated until now.
  • step 3 After setting the image quality for the monitor unit 2 in step 2, voltage is applied to the knocklight 6 to turn on the backlight, and an image is displayed on the liquid crystal panel 5 (step 3). As a result, the instrument display screen 11 shown in FIG. 2A is displayed on the liquid crystal panel 5, and the operator can check the remaining amount of fuel.
  • the operator presses an image switching button (not shown) on the monitor unit 2 to instruct the liquid crystal panel 5 to switch from the instrument display screen 11 to the image quality adjustment screen 16.
  • the setting means 20 reads the total operating time up to the present time in the hydraulic excavator measured by the measuring means 21 from the measuring means 21 of the controller unit 3. (Step 5).
  • the setting means 20 uses the read total operating time as a substantial operating time up to the present time in the knocklight 6. Therefore, the setting means 20 can read out the brightness adjustment range corresponding to the read total operating time from the first storage unit 22 (step 6).
  • the setting means 20 when the total operating time up to the present time in the hydraulic excavator is measured as approximately 900 hours by the measuring means 21 and read by the setting means 20, the setting means 20 returns this "900 hours". Used as the actual operating time to date for the light. And The setting means 20 is set to “500 hours to 1000 hours”, which belongs to an operation time of 900 hours, from the adjustment range for each operation time of the knocklight stored in the first storage unit 22 shown in FIG. Read the adjustment range of “Level 0 to 9” corresponding to.
  • the setting means 20 uses this "4500 hours" as the actual operating time in the backlight. Used as Then, the adjustment range of “level 0 to 12” corresponding to 4500 hours is read from the first storage unit 22. In the first embodiment, the case where the total operation time is 900 hours will be described.
  • step 6 after the adjustment range of “level 0 to 9” is read by the setting unit 20, the setting unit 20 sets the read range of “level 0 to 9” in the luminance adjustment unit 10. Set as an adjustable range of brightness (step 7).
  • the display screen power of the liquid crystal panel 5 in the monitor unit 2 is switched from the instrument display screen 11 shown in FIG. 2 (a) to the image quality adjustment screen 16 shown in FIG. 2 (b).
  • the adjustable range of the luminance in the luminance adjusting unit 10 is set to “level 0 to 9” by the setting means 20. Accordingly, on the liquid crystal panel 5, the image quality adjustment screen 16 shown in FIG. 2 (b) including the luminance display unit 19 capable of performing the luminance adjustment in 10 levels of levels 0 to 9 is displayed.
  • the operator can arbitrarily adjust the brightness of the knocklight 6 in 10 steps of levels 0 to 9 by manually operating the brightness adjusting unit 10 of the monitor unit 2 (step S9). 8).
  • step 4 After the operator adjusts the brightness of the backlight 6 to a desired value, when the operator presses the image switching button of the monitor unit 2, the instrument display screen 11 shown in FIG. It will be displayed again. Thereafter, when the operator presses the image switching button of the monitor unit 2 again to give an instruction to switch the screen to the liquid crystal display device 1, the operation of step 4 is performed again. Thereby, the setting means 20 can set an appropriate luminance adjustment range for the luminance adjusting unit 10 every time the operator adjusts the image quality of the liquid crystal panel 5.
  • the total operation time of the hydraulic excavator can be used as the substantial operation time up to the present time in the backlight.
  • the setting means 20 reads an appropriate brightness adjustment range from the total operating time of the hydraulic excavator based on the brightness adjustment range defined in advance for each operation time of the knocklight, and this read range is It can be set as a luminance adjustment range in the luminance adjustment unit 10.
  • the operator can arbitrarily adjust the brightness of the knocklight 6 by manual operation within the adjustment range set by the setting means 20 when adjusting the brightness of the knocklight.
  • the setting means 20 can set the upper limit of the brightness adjustment range to a suitable value according to the total operating time of the hydraulic excavator. For this reason, it is possible to prevent the operator from setting the luminance of the backlight 6 to an unnecessarily high value, and to extend the lifetime of the backlight.
  • the setting means 20 can expand the upper limit of the adjustment range set in the brightness adjusting unit 10 as the total operating time of the hydraulic excavator becomes longer. As a result, even if the backlight 6 deteriorates over time as the total operation time increases, the operator can adjust the voltage so that a higher voltage can be applied to the backlight. Therefore, it is possible to prevent a decrease in contrast and a deterioration in image quality due to the aging of the backlight, which has been regarded as a problem in the past.
  • FIG. 5 is a block diagram showing the configuration of the liquid crystal display device according to the second embodiment.
  • members having the same configurations as those described in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the liquid crystal display device 28 includes a monitor unit 2, a controller unit 29 that controls the monitor unit 2, and a sensor unit 4.
  • the controller unit 29 includes setting means 30 and measurement means 21.
  • the setting means 30 has first and second storage units 22 and 23. As in the first embodiment, the first storage unit 22 predefines a range in which the brightness can be adjusted for each backlight operation time as shown in FIG.
  • the second storage unit 23 of the setting means 30 has a predetermined environmental temperature.
  • a correction coefficient for each degree is stored.
  • the correction coefficient for each ambient temperature stored in the second storage unit 23 takes into account the characteristic that the brightness of the knocklight has a temperature dependency, and the brightness of the liquid crystal display device 28 decreases as the ambient temperature decreases. It is stipulated that the upper limit of the adjustment range can be set large.
  • the adjustable range of the luminance in the luminance adjusting unit 10 can be expanded. For this reason, when the operator manually operates the brightness adjusting unit 10, voltage adjustment can be performed so that a larger voltage is applied to the backlight.
  • controller unit 29 in the second embodiment includes a fourth storage unit (not shown) that stores the image quality setting state set in the monitor unit 2 as in the first embodiment. /!
  • the sensor unit 4 further includes an environmental temperature sensor 24 that serves as a temperature measurement unit.
  • the environmental temperature sensor 24 is configured to measure the environmental temperature at which the liquid crystal display device 28 is used, and to read the measured environmental temperature by the setting means 30 of the controller unit 29! RU
  • FIG. 6 is a flowchart showing the setting of the luminance adjustment range in the liquid crystal display device 28.
  • the controller unit 29 reads the image quality setting state from the fourth storage unit (not shown), and sets the read setting state to the monitor part 2 (step 12). Further, when the engine is started in Step 11, the measuring means 21 of the controller unit 29 restarts the measurement of the total operating time of the hydraulic excavator. At the same time, the ambient temperature sensor 24 of the sensor unit 4 measures the ambient temperature at which the liquid crystal display device 28 is used.
  • step 12 After setting the image quality for the monitor unit 2 in step 12, a voltage is applied to the knock light 6 to turn on the backlight, and an image is displayed on the liquid crystal panel 5 (step 13). As a result, the instrument display screen 11 shown in FIG. 2A is displayed on the liquid crystal panel 5.
  • step 14 the setting means 30 of the controller unit 29 reads the total operating time from the measuring means 21 to the current time of the hydraulic excavator, and also reads the current environmental temperature from the environmental temperature sensor 24. Read (step 15).
  • the setting means 30 After reading the total operating time up to the present time and the current environmental temperature in step 15, the setting means 30 determines whether the read environmental temperature is equal to or higher than a predetermined temperature set in advance. Make a decision (step 16). In the second embodiment, the setting means 30 determines whether the environmental temperature is, for example, 10 ° C or higher or lower than 10 ° C. If the ambient temperature is 10 ° C or higher, the operations from step 17 described below are performed. On the other hand, if the ambient temperature is less than 10 ° C, work from step 20 is performed.
  • step 16 when the setting means 30 determines that the environmental temperature is 10 ° C. or higher, the setting means 30 is the same as in the first embodiment, and the total of the hydraulic excavator read from the measuring means 21 up to the present time.
  • the first storage unit 22 uses the operating time as the operating time of the backlight, the first storage unit 22 also reads the brightness adjustment range corresponding to the total operating time (step 17). That is, when the total operating time of the hydraulic excavator is about 900 hours, the setting means 30 uses the “900 hours” as the backlight operating time, and the corresponding “level 0” is stored in the first storage unit 22. Read the adjustment range of " ⁇ 9".
  • the setting means 30 can adjust the brightness in the adjustment range of the read "level 0 to 9" in the luminance adjustment unit 10. Set as a valid range (step 18).
  • the display screen of the liquid crystal panel 5 in the monitor unit 2 is switched to the image quality adjustment screen 16 shown in FIG. Then, the operator can manually adjust the brightness of the knocklight 6 in 10 levels from level 0 to 9 by manually operating the brightness adjusting unit 10 of the monitor unit 2 (step 19).
  • the current environmental temperature measured by the environmental temperature sensor 24 is, for example, 15 ° C.
  • the setting means 30 sets the environmental temperature to a predetermined temperature of 10 ° C or less. The case where it is determined to be full is described.
  • the setting means 30 reads the correction coefficient corresponding to the environmental temperature of 15 ° C. from the second storage unit 23 (step 20). That is, the correction of “4” corresponding to the environmental temperature of “1-20 ° C or more and less than 10 ° C” from the correction coefficient for each environmental temperature stored in the second storage unit 23 shown in FIG. The coefficient is read by the setting means 30.
  • the setting means 30 multiplies the read correction coefficient “4” by the total operating time “900 hours” read from the measuring means 21 up to the present time to obtain the virtual first total operating time “360”. “0 hours” is calculated (step 21).
  • the setting means 30 uses the calculated first virtual total operation time “3600 hours” as a substantial operation time up to the present time in the backlight, so that the first storage unit 22 also has a virtual power.
  • Read the brightness adjustment range corresponding to the first total operating time “3600 hours” step 22). That is, the setting means 30 reads the adjustment range of “level 0 to 11” corresponding to “2000 hours to 4000 hours” to which 3600 hours belong, from the first storage unit 22 shown in FIG.
  • the setting means 30 After the setting means 30 reads out the “level 0 to 11” brightness adjustable range in this way, the setting means 30 adjusts the brightness adjustment unit 10 using the read “level 0 to 11” adjustment range. Set as possible range (step 18).
  • the display screen of the liquid crystal panel 5 is switched to the image quality adjustment screen, so that the brightness of the knock light 6 can be adjusted in 12 levels from level 0 to 11, as shown in Fig. 2 (c). Appears on the LCD panel 5.
  • the operator can manually adjust the brightness of the knocklight 6 in the range of level 0 to: L1 by manually operating the brightness adjusting unit 10.
  • the setting means 30 is based on the total operating time of the hydraulic excavator and the environmental temperature of the liquid crystal display device 28.
  • the range in which the brightness can be adjusted in 10 can be appropriately set.
  • the operator can arbitrarily adjust the brightness of the knocklight 6 by manual operation within the set adjustment range.
  • the operator sets the brightness of the backlight 6 to a value higher than necessary. Can be prevented and the life of the knocklight can be extended.
  • it is possible to prevent deterioration in contrast and image quality due to aging deterioration of the knocklight.
  • the luminance adjustment range in the luminance adjusting unit 10 is appropriately set according to the environmental temperature in which the liquid crystal display device 28 is used. For this reason, it is possible to prevent deterioration in image quality due to the temperature dependence of the luminance in the knocklight 6.
  • the reference environmental temperature is exemplified as 10 ° C., but the present invention is not limited to this, and the environment in which the liquid crystal display device is used. It can be appropriately changed according to the above.
  • FIG. 7 is a block diagram showing the configuration of the liquid crystal display device of the third embodiment.
  • the liquid crystal display device 31 includes a monitor unit 2, a controller unit 32 that controls the monitor unit 2, and a sensor unit 4.
  • the controller unit 32 includes a setting unit 33, a calculation unit 34, a measurement unit 21, and a third storage unit 35.
  • the setting means 33 has a first storage unit 22 similar to that in the first embodiment as shown in FIG. 3 (a).
  • the calculation means 34 has a second storage unit 36.
  • the second storage unit 36 stores a correction coefficient for each predetermined environmental temperature, and the second storage unit 23 described in the second embodiment (FIG. 3B).
  • a correction coefficient “1” corresponding to an environmental temperature of “10 ° C or higher” is also specified.
  • the calculating means 34 is configured to sequentially read the total operating time from the measuring means 21 to the current time of the excavator. Further, the environmental temperature sensor 24 is configured to read the environmental temperature of the liquid crystal display device 31 at predetermined time intervals (for example, every minute). Further, the calculating means 34 is configured to read the total operating time read from the power measuring means 21 when the work vehicle starts working based on the total operating time and the environmental temperature read from the measuring means 21 and the environmental temperature sensor 24, respectively. Each time the unit operating time elapses, the average value of the environmental temperature read from the environmental temperature sensor 24 within the unit operating time that has elapsed is calculated. It is configured.
  • the calculation means 34 every time the total operation time read from the measurement means 21 after the excavator has started work exceeds the unit operation time. It is possible to calculate a corrected operating time obtained by correcting the unit operating time.
  • the third storage unit 35 is configured to store the virtual second total operating time by sequentially adding and storing the corrected operating time calculated by the calculating means 34.
  • the controller unit 32 in the third embodiment is a fourth storage unit (not shown) that stores the setting state of the image quality that is set in the monitor unit 2 as in the first and second embodiments.
  • the calculating means 34 may be configured to calculate the minimum value of the environmental temperature read from the environmental temperature sensor 24 in the unit operating time instead of calculating the average value of the environmental temperature in the unit operating time. Ryo.
  • FIG. 9 is a flowchart showing the setting of the luminance adjustment range in the liquid crystal display device 31.
  • FIG. 10 is a flowchart showing the calculation of the virtual second total operating time.
  • step 31 when the engine of the hydraulic excavator is started (step 31), the controller unit 32 reads a fourth storage unit (not shown) force image quality setting state, and sets the read setting state in the monitor unit 2 (step 32).
  • the measuring means 21 restarts the measurement of the total operation time of the hydraulic excavator, and the environmental temperature sensor 24 measures the environmental temperature of the liquid crystal display device 31. .
  • step 32 After setting the image quality in step 32, a voltage is applied to knock light 6 to turn on the backlight, and an image is displayed on liquid crystal panel 5 (step 33). As a result, the instrument display screen 11 shown in FIG. 2A is displayed on the liquid crystal panel 5.
  • the calculating means 34 sequentially reads the total operating time from the measuring means 21 to the current time of the excavator, and from the environmental temperature sensor 24 every predetermined time, for example, every minute. Read the ambient temperature (step 41).
  • the calculation means 34 sets the total operating time of the hydraulic excavator read from the measuring means 21 after the excavator starts working (after starting the engine) as the unit operating time. Every time 1 hour has elapsed, the average value of the environmental temperature read from the environmental temperature sensor 24 during the unit operating time is calculated (step 42).
  • the calculation means 34 After calculating the average value of the environmental temperature during the unit operating time, the calculation means 34 reads out the correction coefficient corresponding to the calculated average value of the environmental temperature from the second storage unit 36 (step 43). For example, when the average value of the environmental temperature during the unit operation time is calculated to be about 5 ° C., the correction coefficient “3” is read from the second storage unit 36.
  • the calculation means 34 multiplies the read correction coefficient “3” by “1 hour” set as the unit operating time.
  • “3 hours” can be calculated as the corrected operating time obtained by correcting the actual unit operating time (step 44). For example, when the average value of the environmental temperature in the unit operation time is about 20 ° C, the correction coefficient “1” is read from the second storage unit 36, so “1 hour” is set as the correction operation time. Calculated.
  • the calculating means 34 After calculating the corrected operating time in step 44, the calculating means 34 stores the calculated corrected operating time of "3 hours" in the third storage unit 35, and adds up the corrected operating time. Value, that is, added to the total value of the corrected operation time calculated so far by the calculation means 34 and stored (step 45).
  • the correction operation time is calculated by the calculation means 34 every time the total operation time of the hydraulic excavator passes the unit operation time after the excavator starts working. .
  • the third storage unit 35 calculates the corrected operation time by the calculation means 34. Each time, the corrected operation time calculated by the calculation means 34 can be added and stored in sequence. As a result, the third storage unit can update and store the virtual second total operating time up to the current shipping time of the hydraulic excavator every time the correction operating time is calculated by the calculating means 34. (Step 46).
  • the corrected operating time is calculated by the calculating means 34 even when the hydraulic excavator stops operating. Can be calculated. Further, the calculated corrected operation time can be added to the third storage unit 35 and stored.
  • the calculation means 34 calculates the previous correction operation time when the hydraulic excavator stops operating, and the operation time until the hydraulic excavator stops operating with the force (hereinafter, this operation time). Is calculated as the total operating time of the hydraulic excavator read from the measuring means 21. Then, the calculation means 34 calculates the corrected operation time by correcting the calculated operation time before stoppage.
  • the calculation means 34 operates the operation before the stop. Calculate “0.5 hours” as the time. Next, the calculating means 34 calculates the average value of the environmental temperature read from the environmental temperature sensor 24 during this “0.5 hours”.
  • the correction coefficient corresponding to the calculated average value of the environmental temperature is read from the second storage unit 36, and the read correction coefficient is multiplied by the operation time before stop “0.5 hours”. This makes it possible to calculate a corrected operating time obtained by correcting the operating time before stopping. Then, by adding the calculated corrected operation time to the third storage unit 35 and storing it, the virtual second total operation time at the time when the hydraulic excavator is stopped can be stored in the third storage unit 35.
  • the virtual second total operation time stored in the third storage unit can be suitably used as a substantial operation time up to the present time in the knocklight as described below. Furthermore, for example, the temperature difference between the environmental temperature when the hydraulic shovel is stopped and the environmental temperature when the operation is resumed. Even when the force S is present, the corrected operation time can be calculated based on the respective environmental temperature, so that the virtual second total operation time can be accurately obtained.
  • the setting means 33 uses the read virtual second total operating time as a substantial operating time up to the present time in the backlight. Then, the brightness adjustment range corresponding to the virtual second total operating time is read from the first storage unit 22 (step 36). Next, the setting means 33 sets the adjustment range read from the first storage unit 22 as a range in which the luminance adjustment unit 10 can adjust the luminance (step 37).
  • the display screen of the liquid crystal panel 5 is switched to the image quality adjustment screen.
  • the operator can arbitrarily adjust the brightness of the knocklight 6 within the adjustment range set by the setting means 33 in step 37 by manually operating the brightness adjusting unit 10 (step 38). .
  • the luminance adjustment range in the luminance adjustment unit 10 is greatly increased based on the virtual second total operation time corresponding to the environmental temperature change for each unit operation time. It can be set appropriately. This also allows the operator to arbitrarily adjust the brightness of the backlight 6 by manual operation within the set adjustment range. This also prevents the operator from unnecessarily increasing the brightness of the backlight and extends the life of the knocklight. Furthermore, it is possible to prevent a decrease in contrast and a deterioration in image quality due to aging deterioration of the knocklight.
  • the calculating means 34 calculates the average value of the environmental temperature for each unit operating time to obtain the virtual second total operating time.
  • the calculation means 34 instead of the calculation means 34 calculating the average value of the environmental temperature, a minimum value of the environmental temperature is calculated for each unit operating time, and the virtual value is calculated using the minimum value of the environmental temperature. The second total operating time is calculated.
  • the liquid crystal display device includes a construction machine such as a hydraulic excavator and an automobile! C which can be suitably applied to industrial vehicles

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal (AREA)
  • Instrument Panels (AREA)

Abstract

 本発明により提供される作業車両に搭載される液晶表示装置(1,28,31)は、液晶パネル(5)のバックライト(6)の輝度を手動調整可能な輝度調整部(10)と、前記輝度調整部(10)による輝度の調整可能な範囲を設定する設定手段(20,30,33)と、前記作業車両の総稼働時間を計測する計測手段(21)とを備えてなり、前記設定手段(20,30,33)が、予め規定された、前記バックライト(6)の作動時間毎に輝度の調整範囲を記憶した第1記憶部(22)を有し、且つ、前記計測手段(21)により計測した総稼働時間を実質的な前記作動時間として用いて、同作動時間に対応する輝度の調整範囲を前記第1記憶部(22)から読み出し、同読み出した調整範囲を前記輝度調整部(10)における輝度の調整可能な範囲として設定する。これにより、オペレータがバックライトの輝度を任意に調節でき、且つ、オペレータが必要以上に輝度を高く設定することを防止し、しかも、バックライトの経年劣化に起因する画質の悪化を防ぐことができる。

Description

明 細 書
液晶表示装置
技術分野
[0001] 本発明は、建設機械等の作業車両に搭載される液晶表示装置に関し、詳しくは、 液晶表示装置におけるバックライトの輝度を作業車両の総稼働時間に応じて適切な 調整範囲内で調整可能とした液晶表示装置に関する。
背景技術
[0002] 現在、液晶表示装置は、自動車や建設機械等における計器類の表示や、ノート型 パソコンやテレビ等のディスプレイと 、つた様々な分野で利用されて 、る。液晶表示 装置は、例えば透過型の液晶パネルとバックライトとを備えた構成となっている。この ような液晶表示装置によれば、液晶パネルの背面側から照射したバックライトの光を 液晶パネルにより透過 ·遮断制御することによって、液晶パネルに映像を写し出すこ とができる。このため、ノ ックライトの明るさ (輝度)は、液晶パネルにおける画面の明 暗やコントラストに影響し、ノ ックライトをある程度以上の輝度で発光させることにより、 液晶パネルに映像を鮮明に表示させることができる。
[0003] このような液晶表示装置にお!、ては、ノ ックライトの光源として、冷陰極を有する冷 陰極蛍光管が一般的に用いられている。冷陰極蛍光管は、蛍光層が塗布されたガラ ス管の両端に陰極と陽極とが配設されており、またガラス管内には適量の水銀とアル ゴン等の不活性ガスとが封入されて構成されている。このような冷陰極蛍光管は、電 極間に所定の電圧を印加することにより、陰極から二次電子が放出される。この二次 電子がガラス管内の水銀に衝突し、この衝突により励起した水銀が紫外線を放射す る。そして、紫外線がガラス管の蛍光層を励起して可視光線が発生することにより、冷 陰極蛍光管を発光させることができる。
[0004] 一方、冷陰極蛍光管は、一定の電圧を印カロして使用していると、使用時間が長くな るにつれて輝度が少しずつ低下する、いわゆる輝度の経年劣化が生じることが知ら れている。液晶表示装置において、このようにバックライトとなる冷陰極蛍光管の輝度 が低下してしまうと、液晶パネルの画面が暗くなり、またコントラストも低下して画質が 悪ィ匕するなどの不具合が生じる。
[0005] 一般に、冷陰極蛍光管における輝度の経年変化は、冷陰極蛍光管の発光時に放 射される紫外線がガラス管に塗布した蛍光層を劣化させるために引き起こされる。こ のため、例えば、ノ ックライトの輝度を高く設定して液晶表示装置を使用していると、 紫外線による蛍光層の劣化が早く進行するため、バックライトの寿命が短くなる傾向 にある。反対に、ノ ックライトの輝度を低く設定して使用することにより、紫外線による 蛍光層の劣化を遅らせることができ、結果的にバックライトの寿命を延ばすことが可能 となる。
[0006] なお、ノ ックライトの寿命とは、一般に、以下に説明する状態になったときのことを指 している。即ち、液晶表示装置の使用開始時において、バックライトを最も明るく発光 させたときのノ ックライトへの印加電圧を規定電圧とし、またそのとき発光して!/ヽるバッ クライトの輝度を基準輝度(100%)とする。このような規定電圧及び基準輝度を規定 した場合において、その液晶表示装置を使用している際に、ノ ックライトに対して規 定電圧と同じ大きさの電圧を印加しても、基準輝度の 50%の輝度しカゝ得られない状 態になったとき、又はバックライトが切れて点灯しなくなつときを、ノ ックライトの寿命と している。
[0007] 従って、メーカ側では、バックライトの寿命を少しでも延ばすために、バックライトの 輝度を、光源として十分な機能が得られる程度、例えば前記基準輝度の 50〜60% 程度に低く設定して液晶画面を表示させることを推奨している。し力しながら、実際に 液晶表示装置を使用するオペレータやユーザーによっては、液晶画面をより鮮明に 表示させるために、ノ ックライトの輝度を使用初期段階力も必要以上 (例えば、基準 輝度の 90〜: LOO%)に高く設定して使用し、ノ ックライトの寿命を短くさせてしまうこと かあつた。
[0008] そこで、特許文献 1 (特開平 6— 167695号公報)では、ノ ックライトの輝度をォペレ ータが必要以上に高めることを防ぎ、またバックライトにおける輝度の経年劣化が生じ ても、コントラストの低下や画質の悪ィ匕を防止する手段として、液晶表示装置のコント ラスト補正装置を開示して 、る。この特許文献 1に記載されて 、るコントラスト補正装 置は、バックライトに印加する電圧を変化させたときにバックライトの輝度が変化する 特性を利用しており、電源回路からバックライトに対して印加する電圧を、ノ ックライト の使用時間の経過とともに変化させる手段を備えている。
[0009] より具体的に説明すると、特許文献 1のコントラスト補正装置は、液晶表示装置の使 用開始時に、ノ ックライトに印加する電圧を制御して、ノ ックライトを光源として十分に 機能する程度の輝度、即ち基準輝度の 50〜60%の輝度で点灯する。また同時に、 ノ ックライトの使用経過時間を計測手段によって計測し始める。そして、ノ ックライトの 使用経過時間が長くなるにつれて、輝度の低下を補正するようにバックライトへの印 加電圧を徐々に増大させる。
[0010] これによつて、ノ ックライトの経年劣化が生じても、ノ ックライトの輝度を基準輝度の 50〜60%程度のある一定の値に常時維持することができる。従って、ノ ックライトの 経年劣化に起因する液晶画面の画質悪ィ匕を防止することができる。し力も、バックラ イトの輝度は、常に一定の値に維持されているため、オペレータがバックライトの輝度 を必要以上に高く設定することを防ぐことができる。このため、ノ ックライトの寿命を延 ばすことが可能となる。
特許文献 1 :特開平 6— 167695号公報
発明の開示
発明が解決しょうとする課題
[0011] ところで、液晶表示装置は、一般的に、その使用時間帯 (昼間又は夜間)や使用場 所、またオペレータの個人差等に応じて液晶表示の見易さが大きく異なる。また、バ ックライトの光源である冷陰極蛍光管の輝度は、ガラス管に封入された水銀の蒸気圧 によっても変化してしまうため、液晶表示装置が使用される環境温度に大きく依存す るという性質がある。すなわち、例えば同一の液晶表示装置を、例えば環境温度が 2 0°Cの場所で使用した場合と、—20°Cの場所で使用した場合とでは、ノ ックライトの 輝度が大きく変化して、液晶画面の画質が全く異なるという問題があった。
[0012] このため、液晶表示装置においては、特に使用環境が厳しい建設機械等に搭載さ れる液晶表示装置においては、操作を行うオペレータや液晶表示装置の使用環境 等に応じて、ノ ックライトの輝度や画面のコントラスト等が適宜調整可能であることが 望まれている。しかしながら、ノ ックライトの輝度をオペレータが自由に調整可能とな るように液晶表示装置を構成すると、前記のようにオペレータがノ ックライトの輝度を 必要以上に高く設定してしまい、バックライトの寿命を短くさせるという心配があった。
[0013] 一方、前記特許文献 1のようなコントラスト補正装置を用いることにより、ノ ックライト の寿命を延ばすことが可能となる。し力しながら、この特許文献 1のコントラスト補正装 置では、前記のようにバックライトの輝度が予め設定された一定の値に常に維持され てしまうため、オペレータが使用環境等に応じてバックライトの輝度を任意に調整する ことができな 、という問題があった。
[0014] 本発明は、力かる従来の課題を解消すべくなされたものであり、その具体的な目的 は、建設機械等の作業車両に搭載される液晶表示装置において、その使用途中で あってもオペレータが使用状態等に応じてバックライトの輝度を任意に調節すること が可能であり、且つ、オペレータが必要以上にバックライトの輝度を高く設定すること を防止してバックライトの寿命の延長を図り、しかも、ノ ックライトの経年劣化に起因す るコントラストの低下や画質の悪ィ匕を防ぐことができる液晶表示装置を提供することに ある。
課題を解決するための手段
[0015] 上記目的を達成するために、本発明により提供される液晶表示装置は、基本的な 構成として、作業車両に搭載される液晶表示装置であって、液晶パネルにおけるバ ックライトの輝度を手動により調整可能な輝度調整部と、前記輝度調整部による輝度 の調整可能な範囲を設定する設定手段と、前記作業車両が現在までに実際に稼動 した総稼働時間を計測する計測手段と、を備えてなり、前記設定手段は、予め規定さ れた、前記バックライトの作動時間毎に輝度の調整範囲を記憶した第 1記憶部を有し 、且つ、前記計測手段により計測した総稼働時間を実質的な前記作動時間として用 いて、同作動時間に対応する輝度の調整範囲を前記第 1記憶部から読み出し、同読 み出した調整範囲を前記輝度調整部における輝度の調整可能な範囲として設定し てなることを最も主要な特徴とするものである。
[0016] また、本発明に係る液晶表示装置は、前記液晶表示装置が使用される環境温度を 測定する温度測定手段を備えてなり、前記設定手段は、予め規定された、環境温度 毎の補正係数を記憶した第 2記憶部を有し、且つ、前記計測手段で計測した総稼働 時間と前記温度測定手段で測定した環境温度とを読み込み、前記読み込んだ環境 温度に対応する補正係数を前記第 2記憶部から読み出し、前記読み出した補正係 数を、前記読み込んだ総稼働時間に乗じることにより、仮想の第 1総稼働時間を算出 し、前記算出した仮想の第 1総稼働時間を前記バックライトにおける現在までの実質 的な作動時間として用いてなることを主要な特徴となして 、る。
[0017] この場合、前記液晶表示装置において、前記設定手段は、前記温度測定手段から 読み込んだ環境温度が所定温度以上か未満かを判断し、前記読み込んだ環境温度 が所定温度以上のときには、前記仮想の第 1総稼働時間の算出を行わずに、前記計 測手段で計測した総稼働時間を前記バックライトにおける現在までの実質的な作動 時間として用い、前記読み込んだ環境温度が所定温度未満のときには、同環境温度 に基づいて前記仮想の第 1総稼働時間の算出を行い、同算出した仮想の第 1総稼 働時間を前記バックライトにおける現在までの実質的な作動時間として用いてなるこ とを主要な特徴となして 、る。
[0018] 更に、本発明に係る液晶表示装置は、前記液晶表示装置が使用される環境温度 を測定する温度測定手段と、前記作業車両が作業を開始してからの前記計測手段 から読み込んだ総稼働時間が、単位稼働時間を経過する毎に、前記温度測定手段 から読み込んだ環境温度に基づ!、て、経過した単位稼働時間を補正した補正稼動 時間を算出する算出手段と、前記算出手段で算出した補正稼動時間を順次加算し て記憶することにより、仮想の第 2総稼働時間を記憶する第 3記憶部と、を備えてなり 、前記算出手段は、予め規定された、環境温度毎の補正係数を記憶した第 2記憶部 を有し、且つ、前記作業車両が作業を開始してからの前記計測手段から読み込んだ 総稼働時間が、単位稼働時間を経過する毎に、同単位稼動時間内で前記温度測定 手段から読み込んだ環境温度の平均値又は最小値を算出し、前記算出した環境温 度の平均値又は最小値に対応する補正係数を前記第 2記憶部から読み出し、前記 読み出した補正係数を、前記単位稼動時間の値に乗じることにより、前記単位稼働 時間を補正した補正稼動時間を算出し、前記補正稼動時間を算出する毎に、前記 算出した補正稼動時間を前記第 3記憶部に順次加算して記憶することにより、前記 第 3記憶部に仮想の第 2総稼働時間を記憶させてなり、前記設定手段は、前記第 3 記憶部から前記仮想の第 2総稼働時間を読み出し、前記読み出した仮想の第 2総稼 働時間を前記バックライトにおける現在までの実質的な作動時間として用いてなるこ とを主要な特徴となして 、る。
発明の効果
[0019] 本発明に係る液晶表示装置においては、設定手段が、作動時間毎に輝度の調整 範囲を予め規定した第 1記憶部を有しており、計測手段により計測された作業車両の 総稼働時間を実質的な作動時間として用いて、第 1記憶部力 前記作動時間に対応 する輝度の調整範囲を読み出す。そして、その読み出した輝度の調整範囲を輝度調 整部における輝度の調整可能な範囲として設定することができる。即ち、本発明は、 ノ ックライトにおける輝度の劣化状態を表す指標となるようなバックライトの実質的な 作動時間に基づいて、輝度調整部における輝度の調整可能な範囲を適切に設定す ることがでさる。
[0020] 従って、作業車両のオペレータは、設定手段により適切に設定された輝度の調整 範囲内で、液晶表示装置の使用状態等に応じてバックライトの輝度を任意に調整す ることができる。し力も、この輝度調整部における輝度の調整範囲は、ノ ックライトに おける現在までの実質的な作動時間に従って適切に設定されている。このため、ォ ペレータがノ ックライトの輝度を任意に調整することが可能であっても、バックライトの 輝度を必要以上に高い値に設定することを防止して、ノ ックライトの寿命延長を図る ことができる。
[0021] 更に、本発明では、バックライトの実質的な作動時間が長くなるにつれて、輝度調 整部における輝度の調整可能な範囲の上限が大きくなるようにその範囲を拡大し、 ノックライトに対してより高い電圧を印加できるように調整範囲を設定することができる 。これにより、ノ ックライトの経年劣化が生じても、その経年劣化に応じてバックライト に対してより高い電圧を印加することができる。このため、ノ ックライトの作動時間が長 くなるほど、高い電圧を印加して輝度の低下を防ぐことが可能となり、従来から問題と されていたバックライトの経年劣化に起因するコントラストの低下や画質の悪ィ匕を防止 することができる。
[0022] また、本発明の液晶表示装置では、設定手段が、作業車両の総稼働時間と液晶表 示装置の環境温度とに基づいて仮想の第 1稼働時間を算出し、この算出した仮想の 第 1稼働時間をバックライトにおける現在の実質的な作動時間として用いることができ る。これにより、設定手段は、例えば液晶表示装置の環境温度が大きく変化しても、 その環境温度に応じた適切な輝度の調整範囲を輝度調整部に対して安定して設定 することができる。このため、オペレータは、輝度調整部を手動で操作することによつ て、環境温度に応じて設定された調整範囲内でバックライトの輝度を任意に調整する ことができる。
[0023] この場合、温度測定手段で測定された環境温度が所定温度以上のときには、前記 仮想の第 1稼働時間の算出を行わずに、計測手段で計測した総稼働時間をバックラ イトにおける現在の実質的な作動時間として用いることができる。従って、設定手段 は、総稼働時間に対応する調整範囲を第 1記憶部力 読み出して輝度調整部に設 定することができる。
[0024] 一方、測定された環境温度が所定温度未満のときには、設定手段においてその環 境温度に基づいて仮想の第 1総稼働時間を算出する。そして、この算出した仮想の 第 1総稼働時間に対応する調整範囲を第 1記憶部から読み出して、輝度調整部に設 定することができる。このように環境温度に応じて仮想の第 1稼働時間の算出を行う か否かを判断することにより、設定手段における作業の効率化を図り、輝度調整部に 対して輝度の調整範囲を安定して設定することができる。
[0025] 本発明の液晶表示装置では、算出手段が、環境温度に基づいて作業車両の単位 稼働時間を補正した補正稼動時間を算出することができる。また、この算出した補正 稼動時間を第 3記憶部に順次加算して記憶させることができる。これにより、算出手 段は、単位稼働時間毎の環境温度の変化に対応した仮想の第 2総稼働時間を、第 3 記憶部に記憶させることができる。
[0026] 更に、設定手段は、この仮想の第 2総稼働時間を第 3記憶部から読み出し、この読 み出した仮想の第 2稼働時間をバックライトにおける現在の実質的な作動時間として 用いることができる。これにより、設定手段は、単位稼働時間毎の環境温度の変化に 対応した調整範囲を、輝度調整部における輝度の調整可能な範囲として適切に設 定することができる。 図面の簡単な説明
[0027] [図 1]図 1は、実施例 1に係る液晶表示装置の構成を示すブロック図である。
[図 2]図 2は、(a)が液晶パネルに表示される計器表示画面の一例を示した図であり、 (b)が液晶パネルに表示される画質調整画面の一例を示した図であり、(c)が液晶パ ネルに表示される画質調整画面の別の例を示した図である。
[図 3]図 3は、(a)が第 1記憶部に記憶したバックライトの作動時間毎の輝度調整範囲 を示した図であり、 (b)が実施例 2の第 2記憶部に記憶した環境温度毎の補正係数を 示した図である。
[図 4]図 4は、実施例 1の液晶表示装置における輝度調整範囲の設定について示し たフローチャートである。
[図 5]図 5は、実施例 2に係る液晶表示装置の構成を示すブロック図である。
[図 6]図 6は、実施例 2の液晶表示装置における輝度調整範囲の設定について示し たフローチャートである。
[図 7]図 7は、実施例 3に係る液晶表示装置の構成を示すブロック図である。
[図 8]図 8は、実施例 3の第 2記憶部に記憶した環境温度毎の補正係数を示した図で ある。
[図 9]図 9は、実施例 3の液晶表示装置における輝度調整範囲の設定について示し たフローチャートである。
[図 10]図 10は、実施例 3の液晶表示装置における仮想の第 2総稼働時間の算出に つ!ヽて示したフローチャートである。
符号の説明
[0028]
2 モニター部
3 コントローラ部
4 センサ部
5 液晶パネル
6 ノ ックライ卜
7 明るさ調整部 コントラスト調整部 輝度調整部 計器表示画面 燃料計 水温計 油温計 時間表示部 質調整画面 明るさ表示部 コントラスト表示部 輝度表示部 設定手段 計測手段 第 1記憶部 第 2記憶部 環境温度センサ 水温センサ 油温センサ 液面センサ 液晶表示装置 コントローラ咅 設定手段 液晶表示装置 コントローラ咅 設定手段 算出 段 第 3記憶部 36 第 2記憶部
発明を実施するための最良の形態
[0029] 次に、本発明に係る液晶表示装置について、実施例を挙げて図面を参照しながら 詳細に説明する。なお、以下に示す各実施例においては、作業車両の一つである油 圧ショベルに搭載される液晶表示装置を例に挙げて説明を行う。しかし、本発明はこ れに限定されず、その他の建設機械や自動車などのような様々な作業車両に搭載さ れる液晶表示装置に対して適用することができる。また、以下の説明においては、液 晶表示装置における輝度調整部の輝度調整範囲や油圧ショベルの総稼働時間に ついて具体的な数値を挙げて例示しているが、本発明はこれらに限定されるもので はなぐ液晶表示装置を使用する環境等に応じて適宜変更することができるものであ る。
実施例 1
[0030] 図 1は、本実施例 1に係る液晶表示装置の構成を示すブロック図である。
図 1に示した液晶表示装置 1は、オペレータが液晶画面を視認し、各種の操作を行 うモニター部 2と、モニター部 2の制御を行うコントローラ部 3と、油圧ショベルの稼動 状態を検知するセンサ部 4とから構成されて 、る。
[0031] モニター部 2は、油圧ショベルの運転席に配設されており、画像を表示する透過型 の液晶パネル 5と、液晶パネル 5の背面側に配設されて照明を行うバックライト 6と、液 晶パネル 5に写し出される画面の画質調整を行う画質調整部 7とを備えている。画質 調整部 7としては、明るさ調整部 8、コントラスト調整部 9、及び輝度調整部 10が設け られている。なお、これらの各調整部 8〜10は、前記液晶パネル 5にタツチパネル機 能を設けることによって、液晶パネル 5上に表示してオペレータによる画面上での手 動操作が可能なよう〖こ構成することもできる。
[0032] 本実施例 1にお 、て、明るさ調整部 8及びコントラスト調整部 9は、例えば以下で説 明する図 2 (b)に示した画質調整画面 16のように、レベル 0〜7の 8段階で画面の明 るさ及びコントラストを調整することが可能なように構成されている。また、輝度調整部 10は、ノ ックライト 6における実質的な作動時間に応じて、輝度の調整可能な範囲を 変えることができるように構成されて 、る。 [0033] 例えば、輝度調整部 10における輝度の調整可能な範囲は、その範囲を最も狭く設 定した場合では、バックライトへ印加する電圧の制御範囲を規定電圧の約 50〜75% に制限して、ノ ックライトの輝度をレベル 0〜8の 9段階で調整可能なように構成する ことができる。また、輝度調整可能範囲を最も広く設定した場合では、ノ ックライトに 対する印加電圧の制御範囲を規定電圧の約 50〜: LOO%にして、バックライトの輝度 をレベル 0〜 15の 16段階で調整可能なように構成することができる。なお、規定電圧 とは、前述のように、液晶表示装置の使用開始時において、ノ ックライトを最も明るく 発光させたときのノ ックライトに印加した電圧である。
[0034] モニター部 2において、液晶パネル 5は、不図示の画像切換ボタンによって、例え ば図 2 (a)及び (b)に示すような幾つかの画面を切り換え表示できるように構成されて いる。ここで、図 2 (a)に示した表示画面は、燃料計 12と、エンジンの冷却水の水温 計 13と、作動油の油温計 14と、油圧ショベルの総稼働時間を表示する時間表示部 1 5とによって構成された計器表示画面 11である。通常、油圧ショベルが稼動している ときには、この計器表示画面 11が液晶パネル 5に表示されている。これにより、オペ レータは、燃料の残量、冷却水及び作動油の温度、油圧ショベルの稼働時間といつ た情報を、液晶パネル 5の画面力も確認することができる。
[0035] また、図 2 (b)に示した表示画面は、明るさ表示部 17、コントラスト表示部 18、輝度 表示部 19から構成された画質調整画面 16であり、前記画質調整部 7によって設定さ れた画質の調整状態を表示することができる。この画質調整画面 16は、油圧ショべ ルの稼動中にオペレータが画像切換ボタンを押すことによって表示することができる 。なお、図 2 (c)に示した表示画面は、以下で説明するように、図 2 (b)の表示画面よ りも、輝度調整部における輝度の調整範囲の上限を拡大したときの画質調整画面 16 'である。
[0036] 更に、ノ ックライト 6は、光源として冷陰極蛍光管を備えて 、る。このバックライト 6は 、オペレータが輝度調整部 10を手動操作することによって、ノ ックライトの電極に印 加する電圧を調整してバックライト 6の輝度を任意に調節できるように構成されている
[0037] 前記コントローラ部 3は、設定手段 20と計測手段 21とを備えている。また、設定手 段 20は、第 1記憶部 22を有している。この第 1記憶部 22には、例えば図 3 (a)に示す ように、バックライト 6の作動時間毎に輝度の調整範囲が予め規定されて、記憶されて いる。
[0038] このバックライト 6の実質的な作動時間は、バックライトにおける輝度の劣化状態を 表す指標となり、この実質的な作動時間が長くなる程、バックライトにおける輝度の経 年劣化が進行する。従って、この第 1記憶部 22に記憶されているバックライト 6の作動 時間毎の輝度調整範囲は、バックライトにおける輝度の経年劣化を考慮して、ノ ック ライトの実質的な作動時間が長くなる程、調整範囲の上限が高くなるように規定され ている。なお、本実施例 1では、以下で説明するように、計測手段 21で計測した油圧 ショベルの総稼働時間を、ノ ックライトにおける現在までの実質的な作動時間として 用いている。
[0039] 計測手段 21は、計時機能を有しており、油圧ショベルの出荷時力 現在までに実 際に稼動した総稼働時間を計測することができる。更に、この計測手段 21で計測し た現在までの総稼働時間は、設定手段 20によって読み込むことができるように構成 されている。
[0040] 更に、コントローラ部 3は、モニター部 2に設定されている画質の設定状態を記憶す る第 4記憶部(不図示)を有している。これにより、コントローラ部 3は、例えば油圧ショ ベルの稼動が停止した際に、その時点でモニター部 2に設定されていた画質の設定 状態を第 4記憶部に記憶することができる。そして、油圧ショベルが稼動を再開したと きには、コントローラ部 3が前回の稼動停止時に記憶した画質の設定状態を第 4記憶 部から読み出し、モニター部 2に対して画質の設定を行うことができる。
[0041] センサ部 4には、冷却水の水温センサ 25、作動油の油温センサ 26、及び燃料タン クの液面センサ 27が備えられて 、る。センサ部 4の水温センサ 25で計測された冷却 水の水温は、コントローラ部 3を介してモニター部 2に入力され、液晶パネル 5の計器 表示画面 11における水温計 13に表示されるように構成されて 、る。
[0042] 同様に、センサ部 4の油温センサ 26で計測された作動油の温度は、計器表示画面 11の油温計 14に表示され、また液面センサ 27で計測された燃料タンク内の燃料残 量は、計器表示画面 11の燃料計 12に表示されるように構成されて 、る。 [0043] 次に、上記構成よりなる液晶表示装置 1の作動について図面を参照しながら説明 する。ここで、図 4は、液晶表示装置 1における輝度調整範囲の設定について示した フローチャートである。なお、図 4のフローチャートにおいて、ステップ 1〜8は、それ ぞれ S1〜S8として略記されている。
先ず、油圧ショベルのエンジンを始動して作業を開始すると (ステップ 1)、コントロー ラ部 3が第 4記憶部 (不図示)から画質設定状態を読み出して、この読み出した設定 状態をモニター部 2に設定する (ステップ 2)。このとき第 4記憶部力 読み出される画 質設定状態は、油圧ショベルが前回の稼動を停止した時に、コントローラ部 3が第 4 記憶部に記憶したものである。また、前記ステップ 1でエンジンが始動したときに、コン トローラ部 3の計測手段 21では、油圧ショベルが現在までに実際に稼動した総稼働 時間の計測が再開される。
[0044] ステップ 2でモニター部 2に対して画質の設定を行った後、ノ ックライト 6に電圧を印 カロしてバックライトを点灯させ、液晶パネル 5に画像を表示する (ステップ 3)。これによ り、液晶パネル 5においては、図 2 (a)に示した計器表示画面 11が写し出されて、ォ ペレータは燃料の残量等を確認することができる。
[0045] その後、油圧ショベルの稼動中に、オペレータがモニター部 2の画像切換ボタン( 不図示)を押すことによって、液晶パネル 5の画面を計器表示画面 11から画質調整 画面 16に切り換える指示が液晶表示装置 1に与えられる (ステップ 4)。このように画 面の切り換え指示が液晶表示装置 1に与えられると、設定手段 20は、コントローラ部 3の計測手段 21から、計測手段 21で計測した油圧ショベルにおける現在までの総稼 働時間を読み込む (ステップ 5)。
[0046] 設定手段 20は、前記ステップ 5で油圧ショベルの総稼働時間を読み込むと、この読 み込んだ総稼働時間を、ノ ックライト 6における現在までの実質的な作動時間とみな して用いる。従って、設定手段 20は、読み込んだ総稼働時間に対応する輝度の調 整範囲を第 1記憶部 22から読み出すことができる (ステップ 6)。
[0047] 例えば、油圧ショベルにおける現在までの総稼働時間が計測手段 21で約 900時 間と計測されて設定手段 20で読み込まれた場合には、設定手段 20では、この「900 時間」がバックライトにおける現在までの実質的な作動時間として用いられる。そして 、設定手段 20は、図 3 (a)に示した第 1記憶部 22に記憶されているノ ックライトの作 動時間毎の調整範囲から、 900時間の作動時間が属する「500時間〜 1000時間」 に対応した「レベル 0〜9」の調整範囲を読み出す。
[0048] また一方、例えば油圧ショベルの総稼働時間が計測手段 21で約 4500時間と計測 された場合、設定手段 20は、この「4500時間」をバックライトにおける現在までの実 質的な作動時間として用いる。そして、第 1記憶部 22からは、 4500時間に対応する「 レベル 0〜12」の調整範囲が読み出される。なお、本実施例 1においては、総稼働時 間が 900時間の場合について説明を行うものとする。
[0049] 前記ステップ 6において、設定手段 20により「レベル 0〜9」の調整範囲が読み出さ れた後、設定手段 20は、その読み出した「レベル 0〜9」の範囲を輝度調整部 10に おける輝度の調整可能な範囲として設定する (ステップ 7)。
[0050] その後、モニター部 2における液晶パネル 5の表示画面力 図 2 (a)に示した計器表 示画面 11から図 2 (b)に示した画質調整画面 16へ切り換えられる。このとき、輝度調 整部 10における輝度の調整可能な範囲は、設定手段 20によって「レベル 0〜9」に 設定されている。従って、液晶パネル 5には、輝度調整をレベル 0〜9の 10段階で行 うことが可能な輝度表示部 19を備えた図 2 (b)の画質調整画面 16が写し出される。
[0051] 従って、オペレータは、モニター部 2の輝度調整部 10を手動で操作することによつ て、ノ ックライト 6の輝度をレベル 0〜9の 10段階で任意に調整することができる(ステ ップ 8)。
[0052] オペレータがバックライト 6の輝度を所望の値に調整した後、オペレータがモニター 部 2の画像切換ボタンを押すことによって、液晶パネル 5に図 2 (a)に示した計器表示 画面 11が再び表示される。その後、オペレータがモニター部 2の画像切換ボタンを 再び押して、液晶表示装置 1に画面の切り換え指示が与えられると、前記ステップ 4 力 の作業が再び行われる。これにより、設定手段 20は、オペレータが液晶パネル 5 の画質調整を行う毎に、輝度調整部 10に対して適切な輝度の調整範囲を設定する ことができる。
[0053] 以上のように、本実施例 1における液晶表示装置 1によれば、油圧ショベルの総稼 働時間をバックライトにおける現在までの実質的な作動時間として用いることができる 。このため、設定手段 20は、ノ ックライトの作動時間毎に予め規定した輝度の調整範 囲に基づ 、て、油圧ショベルの総稼働時間から適切な輝度の調整範囲を読み出し、 この読み出した範囲を輝度調整部 10における輝度の調整範囲として設定することが できる。
[0054] 従って、オペレータは、ノ ックライトの輝度を調整するときに、設定手段 20によって 設定された調整範囲内において、ノ ックライト 6の輝度を手動操作によって任意に調 整することができる。特に、設定手段 20は、輝度の調整範囲の上限を油圧ショベル の総稼働時間に応じて好適な値に設定することができる。このため、オペレータがバ ックライト 6の輝度を必要以上に高い値に設定することを防止でき、バックライトの寿命 延長を図ることができる。
[0055] また、設定手段 20は、油圧ショベルの総稼働時間が長くなるにつれて、輝度調整 部 10に設定する調整範囲の上限を拡大させることができる。これにより、総稼働時間 が長くなるに従ってバックライト 6の経年劣化が生じても、バックライトに対してより高い 電圧を印加できるようにオペレータが電圧調整を行うことが可能となる。従って、従来 力 問題とされていたバックライトの経年劣化に起因するコントラストの低下や画質の 悪ィ匕を防ぐことができる。
実施例 2
[0056] 次に、本発明の実施例 2に係る液晶表示装置について説明する。図 5は、本実施 例 2の液晶表示装置の構成を示すブロック図である。なお、以下に記載する各実施 例の説明及び参照する図面において、前記実施例 1で説明した部材と同様の構成 を有する部材については、同じ符号を用いて示すことによりその説明を省略する。
[0057] 図 5に示した本実施例 2に係る液晶表示装置 28は、モニター部 2と、モニター部 2 の制御を行うコントローラ部 29と、センサ部 4とから構成されて 、る。
コントローラ部 29は、設定手段 30と計測手段 21とを備えている。また、設定手段 30 は、第 1及び第 2記憶部 22, 23を有している。この第 1記憶部 22には、前記実施例 1 と同様に、図 3 (a)に示すようなバックライトの作動時間毎に輝度の調整可能な範囲 が予め規定されている。
[0058] 設定手段 30の第 2記憶部 23には、図 3 (b)に示すように、予め規定された環境温 度毎の補正係数が記憶されている。この第 2記憶部 23に記憶されている環境温度毎 の補正係数は、ノ ックライトにおける輝度が温度依存性を有するという特性を考慮し て、液晶表示装置 28の環境温度が低くなる程、輝度の調整範囲の上限を大きく設定 できるように規定されている。
[0059] これにより、液晶表示装置 28が使用されている環境温度が低い場合には、輝度調 整部 10における輝度の調整可能な範囲を拡大させることができる。このため、ォペレ ータが輝度調整部 10を手動操作することにより、バックライトに対してより大きな電圧 が印加されるように電圧調整を行うことが可能となる。
[0060] また、本実施例 2におけるコントローラ部 29は、前記実施例 1と同様に、モニター部 2に設定されて 、る画質の設定状態を記憶する第 4記憶部(不図示)を有して!/、る。
[0061] 更に、センサ部 4には、水温センサ 25、油温センサ 26、液面センサ 27の他に、温 度測定手段となる環境温度センサ 24が更に備えられて 、る。この環境温度センサ 24 は、液晶表示装置 28が使用される環境温度を測定し、測定した環境温度をコント口 ーラ部 29の設定手段 30が読み込むことができるように構成されて!、る。
[0062] 次に、上記構成よりなる液晶表示装置 28の作動について図面を参照しながら説明 する。ここで、図 6は、液晶表示装置 28における輝度調整範囲の設定について示し たフローチャートである。
先ず、油圧ショベルのエンジンを始動すると (ステップ 11)、コントローラ部 29が第 4 記憶部 (不図示)から画質設定状態を読み出して、この読み出した設定状態をモニタ 一部 2に設定する (ステップ 12)。また、前記ステップ 11でエンジンが始動したときに、 コントローラ部 29の計測手段 21では、油圧ショベルにおける総稼働時間の計測が再 開される。また同時に、センサ部 4の環境温度センサ 24では、液晶表示装置 28が使 用される環境温度が測定される。
[0063] ステップ 12でモニター部 2に対して画質の設定を行った後、ノ ックライト 6に電圧を 印加してバックライトを点灯させ、液晶パネル 5に画像を表示する (ステップ 13)。これ により、液晶パネル 5には、図 2 (a)に示した計器表示画面 11が写し出される。
[0064] その後、油圧ショベルの稼動中にオペレータがモニター部 2の画像切換ボタンを押 すことによって、液晶パネル 5の画面を計器表示画面 11から画質調整画面 16に切り 換える指示が液晶表示装置 28に与えられる (ステップ 14)。オペレータから画面切り 換えの指示が与えられると、コントローラ部 29の設定手段 30は、計測手段 21から油 圧ショベルの現在までの総稼働時間を読み込むとともに、環境温度センサ 24から現 在の環境温度を読み込む (ステップ 15)。
[0065] 前記ステップ 15にお ヽて現在までの総稼働時間と現在の環境温度とを読み込んだ 後、設定手段 30は、この読み込んだ環境温度が、予め設定した所定温度以上か未 満かの判断を行う(ステップ 16)。本実施例 2においては、環境温度が例えば 10°C以 上であるか、又は 10°C未満であるかが設定手段 30によって判断される。そして、環 境温度が 10°C以上であった場合には、以下で説明するステップ 17からの作業が行 われる。一方、環境温度が 10°C未満であった場合には、ステップ 20からの作業が行 われる。
[0066] 先ずは、液晶表示装置 28の環境温度が 10°C以上であった場合について説明する 。前記ステップ 16において、設定手段 30が環境温度を 10°C以上と判断した場合、 同設定手段 30は、前記実施例 1と同様にして、計測手段 21から読み込んだ油圧ショ ベルの現在までの総稼働時間をバックライトの作動時間として用いて、第 1記憶部 22 力も総稼働時間に対応する輝度の調整範囲を読み出す (ステップ 17)。即ち、油圧 ショベルの総稼働時間が約 900時間である場合には、設定手段 30は、この「900時 間」をバックライトの作動時間として用いて、第 1記憶部 22から対応する「レベル 0〜9 」の調整範囲を読み出す。
[0067] 前記ステップ 17において「レベル 0〜9」の調整範囲が読み出された後、設定手段 30は、その読み出した「レベル 0〜9」の調整範囲を輝度調整部 10における輝度の 調整可能な範囲として設定する (ステップ 18)。
[0068] その後、モニター部 2における液晶パネル 5の表示画面が図 2 (b)に示した画質調 整画面 16へ切り換えられる。そして、オペレータは、モニター部 2の輝度調整部 10を 手動操作することにより、ノ ックライト 6の輝度をレベル 0〜9の 10段階で任意に調整 することができる (ステップ 19)。
[0069] 一方、環境温度センサ 24によって測定された現在の環境温度が例えば 15°Cで あり、前記ステップ 16において、設定手段 30が環境温度を所定温度である 10°C未 満と判断した場合について説明する。
この場合、設定手段 30は、第 2記憶部 23から、 15°Cの環境温度に対応する補 正係数を読み出す (ステップ 20)。即ち、図 3 (b)に示した第 2記憶部 23に記憶され ている環境温度毎の補正係数から、「一 20°C以上 10°C未満」の環境温度に対応 した「4」の補正係数が設定手段 30によって読み出される。
[0070] 設定手段 30は、この読み出した補正係数「4」を、計測手段 21から読み込んだ現在 までの総稼働時間「900時間」に乗じることにより、仮想の第 1総稼働時間となる「360 0時間」を算出する (ステップ 21)。
[0071] そして、設定手段 30は、この算出された仮想の第 1総稼働時間「3600時間」をバッ クライトにおける現在までの実質的な作動時間として用いることにより、第 1記憶部 22 力も仮想の第 1総稼働時間「3600時間」に対応する輝度の調整範囲を読み出す (ス テツプ 22)。即ち、設定手段 30は、図 3 (a)に示した第 1記憶部 22から、 3600時間が 属する「2000時間〜 4000時間」に対応した「レベル 0〜11」の調整範囲を読み出す
[0072] このように設定手段 30が「レベル 0〜11」の輝度調整可能範囲を読み出し後、設定 手段 30は、読み出した「レベル 0〜11」の調整範囲を輝度調整部 10における輝度の 調整可能な範囲として設定する (ステップ 18)。
[0073] その後、液晶パネル 5の表示画面が画質調整画面へと切り換わることにより、ノック ライト 6の輝度をレベル 0〜 11の 12段階で調整可能な図 2 (c)の画質調整画面 16, が液晶パネル 5に写し出される。これにより、オペレータは、輝度調整部 10を手動で 操作することにより、ノ ックライト 6の輝度をレベル 0〜: L1の範囲で任意に調整するこ とがでさる。
[0074] 以上のように、本実施例 2における液晶表示装置 28によれば、油圧ショベルの現在 までの総稼働時間及び液晶表示装置 28の環境温度に基づいて、設定手段 30が輝 度調整部 10における輝度の調整可能な範囲を適切に設定することができる。これに より、オペレータは、この設定された調整範囲内において、ノ ックライト 6の輝度を手 動操作によって任意に調整することが可能となる。しかも、本実施例 2は、前記実施 例 1と同様に、オペレータがバックライト 6の輝度を必要以上に高 、値に設定すること を防止し、ノ ックライトの寿命延長を図ることができる。また、ノ ックライトの経年劣化に 起因するコントラストの低下や画質の悪ィ匕を防ぐこともできる。
[0075] 更に、本実施例 2では、液晶表示装置 28が使用される環境温度に応じて輝度調整 部 10における輝度の調整範囲が適切に設定される。このため、ノ ックライト 6におけ る輝度の温度依存性に起因する画質の悪化も防ぐことが可能となる。
[0076] なお、上記本実施例 2の説明及び図 6のフローチャートにおいて、基準となる環境 温度を 10°Cとして例示したが、本発明はこれに限定されず、液晶表示装置を使用す る環境等に応じて適宜変更することができるものである。
実施例 3
[0077] 次に、本発明の実施例 3に係る液晶表示装置について説明する。図 7は、本実施 例 3の液晶表示装置の構成を示すブロック図である。
図 7に示した本実施例 3の液晶表示装置 31は、モニター部 2と、モニター部 2の制 御を行うコントローラ部 32と、センサ部 4とから構成されている。また、コントローラ部 3 2には、設定手段 33、算出手段 34、計測手段 21、及び第 3記憶部 35が備えられて いる。
[0078] コントローラ部 32において、設定手段 33は、図 3 (a)に示すような前記実施例 1と同 様の第 1記憶部 22を有している。また、算出手段 34は、第 2記憶部 36を有している。 この第 2記憶部 36は、例えば図 8に示すように、予め規定された環境温度毎の補正 係数が記憶されており、前記実施例 2で説明した第 2記憶部 23 (図 3 (b)を参照)に 規定されている補正係数に加えて、更に「10°C以上」の環境温度に対応する補正係 数「1」が規定されている。
[0079] 算出手段 34は、計測手段 21から油圧ショベルの現在までの総稼働時間を逐次読 み込むように構成されている。また、環境温度センサ 24からは、液晶表示装置 31の 環境温度を所定時間毎に(例えば、 1分毎に)読み込むように構成されている。更に、 算出手段 34は、計測手段 21及び環境温度センサ 24のそれぞれから読み込んだ総 稼働時間及び環境温度に基づいて、作業車両が作業を開始して力もの計測手段 21 から読み込んだ総稼働時間が、単位稼働時間を経過する毎に、その経過した単位 稼働時間内で環境温度センサ 24から読み込んだ環境温度の平均値を算出するよう に構成されている。
[0080] これにより、算出手段 34は、油圧ショベルが作業を開始してからの計測手段 21から 読み込んだ総稼働時間が、単位稼働時間を経過する毎に、以下で詳しく説明するよ うに、経過した単位稼働時間を補正した補正稼動時間を算出することが可能となる。
[0081] また、第 3記憶部 35は、算出手段 34で算出した補正稼動時間を順次加算して記憶 することにより、仮想の第 2総稼働時間を記憶するように構成されている。更に、本実 施例 3におけるコントローラ部 32は、前記実施例 1及び 2と同様に、モニター部 2に設 定されて!/、る画質の設定状態を記憶する第 4記憶部(不図示)を有して 、る。
[0082] なお、本実施例 3においては、単位稼動時間の値を「1時間」と設定した場合につ いて説明するが、本発明はこれに限定されず、前記単位稼動時間の値は任意に設 定することができる。また、本発明では、算出手段 34が単位稼動時間における環境 温度の平均値を算出する代わりに、単位稼動時間における環境温度センサ 24から 読み込んだ環境温度の最小値を算出するように構成しても良 ヽ。
[0083] 次に、本実施例 3における液晶表示装置 31の作動について図面を参照しながら説 明する。ここで、図 9は、液晶表示装置 31における輝度調整範囲の設定について示 したフローチャートである。また、図 10は、仮想の第 2総稼働時間の算出について示 したフローチャートである。
[0084] 先ず、油圧ショベルのエンジンを始動すると(ステップ 31)、コントローラ部 32が第 4 記憶部 (不図示)力 画質設定状態を読み出し、この読み出した設定状態をモニター 部 2に設定する (ステップ 32)。また、前記ステップ 31でエンジンが始動したときに、計 測手段 21では、油圧ショベルにおける総稼働時間の計測が再開され、また環境温 度センサ 24では、液晶表示装置 31の環境温度が測定される。
[0085] ステップ 32で画質の設定を行った後、ノ ックライト 6に電圧を印加してバックライトを 点灯させ、液晶パネル 5に画像を表示する (ステップ 33)。これにより、液晶パネル 5 には、図 2 (a)に示した計器表示画面 11が写し出される。
[0086] その後、油圧ショベルの稼動中にオペレータがモニター部 2の画像切換ボタンを押 すことによって、液晶パネル 5の画面を計器表示画面 11から画質調整画面 16に切り 換える指示が液晶表示装置 31に与えられる (ステップ 34)。液晶表示装置 31に画面 切り換えの指示が与えられると、コントローラ部 32の設定手段 33は、第 3記憶部 35か ら仮想の第 2総稼働時間を読み出す (ステップ 35)。このとき、第 3記憶部 35には、以 下で説明するステップ 41〜46が行われることにより算出された仮想の第 2総稼働時 間が記憶されている。
[0087] ここで、仮想の第 2総稼働時間の算出について図 10を参照しながら説明する。
先ず、前記ステップ 31でエンジンが始動すると、算出手段 34は、計測手段 21から 油圧ショベルの現在までの総稼働時間を逐次読み込み、また環境温度センサ 24か ら所定時間毎に、例えば 1分毎に環境温度を読み込む (ステップ 41)。
[0088] 次に、算出手段 34は、油圧ショベルが作業を開始してから (エンジンを始動してか ら)の計測手段 21から読み込んだ油圧ショベルの総稼働時間が、単位稼働時間とし て設定されている 1時間を経過する毎に、その単位稼働時間に環境温度センサ 24か ら読み込んだ環境温度の平均値を算出する (ステップ 42)。
[0089] 単位稼働時間における環境温度の平均値を算出した後、算出手段 34は、算出し た環境温度の平均値に対応する補正係数を第 2記憶部 36から読み出す (ステップ 4 3)。例えば、単位稼働時間における環境温度の平均値が約 5°Cと算出された場合 は、第 2記憶部 36から補正係数「3」が読み出される。
[0090] 続いて、算出手段 34は、読み出した補正係数「3」を、単位稼働時間として設定さ れている「1時間」に乗じる。これにより、実際に経過した単位稼働時間を補正した補 正稼動時間として「3時間」を算出することができる (ステップ 44)。また、例えば単位 稼働時間における環境温度の平均値が約 20°Cであった場合には、第 2記憶部 36か ら補正係数「1」が読み出されるため、補正稼動時間として「1時間」が算出される。
[0091] 前記ステップ 44で補正稼動時間を算出した後、算出手段 34は、この算出した「3時 間」の補正稼動時間を、第 3記憶部 35に記憶されて 、る補正稼動時間の合計の値、 即ち、算出手段 34がこれまでに算出してきた補正稼動時間の合計の値に加算して 記憶する (ステップ 45)。
[0092] つまり、本実施例 3においては、油圧ショベルが作業を開始してから、油圧ショベル の総稼働時間が単位稼働時間を経過する毎に、算出手段 34によって補正稼動時間 の算出が行われる。また、第 3記憶部 35は、算出手段 34が補正稼動時間を算出す る毎に、算出手段 34で算出した補正稼動時間を順次加算して記憶することができる 。これにより、第 3記憶部は、油圧ショベルの出荷時力 現在までの仮想の第 2総稼 働時間を、算出手段 34で補正稼動時間が算出される度に更新して記憶することがで きる(ステップ 46)。
[0093] なお、本実施例 3にお 、ては、油圧ショベルにおける仮想の第 2総稼働時間をより 正確に求めるために、油圧ショベルが稼動を停止した時点でも、算出手段 34により 補正稼働時間の算出を行うことができる。更に、この算出した補正稼働時間を第 3記 憶部 35に加算して記憶することができる。
[0094] 即ち、算出手段 34は、油圧ショベルが稼動を停止したときに、前回の補正稼働時 間の算出を行って力も油圧ショベルが稼動を停止するまでの稼動時間(以下、この稼 働時間を停止前稼働時間と記す)を、計測手段 21から読み込んだ油圧ショベルの総 稼働時間に基づいて算出する。そして、算出手段 34は、この算出した停止前稼働時 間を補正することにより補正稼働時間を算出する。
[0095] より具体的に説明すると、例えば前回の補正稼働時間の算出を行って力 油圧ショ ベルが稼動を停止するまでの時間が 30分であった場合、算出手段 34は、停止前稼 働時間として「0. 5時間」を算出する。次に、算出手段 34は、この「0. 5時間」の間に 環境温度センサ 24から読み込んだ環境温度の平均値を算出する。
[0096] 更に、この算出した環境温度の平均値に対応する補正係数を第 2記憶部 36から読 み出し、読み出した補正係数を前記停止前稼働時間「0. 5時間」に乗じる。これによ り、停止前稼働時間を補正した補正稼動時間を算出することができる。そして、この 算出した補正稼動時間を第 3記憶部 35に加算して記憶することにより、油圧ショベル の稼動停止時点における仮想の第 2総稼働時間を第 3記憶部 35に記憶させることが できる。
[0097] これにより、油圧ショベルが単位稼働時間の途中で稼動を停止しても、仮想の第 2 総稼働時間に誤差が生じることを防ぐことができる。従って、この第 3記憶部に記憶さ れている仮想の第 2総稼働時間は、以下で説明するように、ノ ックライトにおける現在 までの実質的な作動時間として好適に用いることができる。更に、例えば油圧ショべ ルの稼動停止時における環境温度と稼動再開時における環境温度との間に温度差 力 Sある場合でも、補正稼動時間をそれぞれの環境温度に基づいて算出できるため、 仮想の第 2総稼働時間を的確に求めることができる。
[0098] 以上のようにして第 3記憶部 35に記憶された仮想の第 2総稼働時間は、図 9に示し た前記ステップ 35において、設定手段 33によって読み出すことができる。
[0099] そして、設定手段 33は、前記ステップ 35で仮想の第 2総稼働時間を読み出した後 、この読み出した仮想の第 2総稼働時間をバックライトにおける現在までの実質的な 作動時間として用いて、第 1記憶部 22から仮想の第 2総稼働時間に対応する輝度の 調整範囲を読み出す (ステップ 36)。次に、設定手段 33は、第 1記憶部 22から読み 出した調整範囲を輝度調整部 10における輝度の調整可能な範囲として設定する (ス テツプ 37)。
[0100] その後、液晶パネル 5の表示画面が画質調整画面へと切り換えられる。これにより、 オペレータは、輝度調整部 10を手動で操作することによって、ノ ックライト 6の輝度を 前記ステップ 37で設定手段 33が設定した調整範囲内で任意に調整することができ る(ステップ 38)。
[0101] 以上のように、本実施例 3においては、単位稼働時間毎の環境温度の変化に対応 した仮想の第 2総稼働時間に基づいて、輝度調整部 10における輝度の調整範囲を 非常に適切に設定することができる。またこれにより、オペレータは、その設定された 調整範囲内でバックライト 6の輝度を手動操作によって任意に調整することができる。 し力も、オペレータがバックライトの輝度を必要以上に高めることを防止して、ノ ックラ イトの寿命延長を図ることができる。更に、ノ ックライトの経年劣化に起因するコントラ ストの低下や画質の悪ィ匕を防ぐこともできる。
[0102] なお、本実施例 3では、算出手段 34が単位稼働時間毎に環境温度の平均値を算 出して、仮想の第 2総稼動時間を求めている。しかし、本発明においては、算出手段 34が前記環境温度の平均値を算出する代わりに、単位稼働時間毎に環境温度の最 小値を算出し、この環境温度の最小値を用いて前記仮想の第 2総稼動時間を求める ことちでさる。
産業上の利用可能性
[0103] 本発明に係る液晶表示装置は、油圧ショベル等の建設機械及び自動車と!、つた作 業車両に対して好適に適用することができる c

Claims

請求の範囲
[1] 作業車両に搭載される液晶表示装置であって、
液晶パネルにおけるバックライトの輝度を手動により調整可能な輝度調整部と、 前記輝度調整部による輝度の調整可能な範囲を設定する設定手段と、 前記作業車両が現在までに実際に稼動した総稼働時間を計測する計測手段と、 を備えてなり、
前記設定手段は、
予め規定された、前記バックライトの作動時間毎に輝度の調整範囲を記憶した第 1 記憶部を有し、且つ、
前記計測手段により計測した総稼働時間を実質的な前記作動時間として用いて、 同作動時間に対応する輝度の調整範囲を前記第 1記憶部から読み出し、同読み出 した調整範囲を前記輝度調整部における輝度の調整可能な範囲として設定してなる ことを特徴とする液晶表示装置。
[2] 前記液晶表示装置が使用される環境温度を測定する温度測定手段を備えてなり、 前記設定手段は、
予め規定された、環境温度毎の補正係数を記憶した第 2記憶部を有し、且つ、 前記計測手段で計測した総稼働時間と前記温度測定手段で測定した環境温度と を読み込み、
前記読み込んだ環境温度に対応する補正係数を前記第 2記憶部から読み出し、 前記読み出した補正係数を、前記読み込んだ総稼働時間に乗じることにより、仮想 の第 1総稼働時間を算出し、
前記算出した仮想の第 1総稼働時間を前記バックライトにおける現在までの実質的 な作動時間として用いてなる、
請求の範囲第 1項記載の液晶表示装置。
[3] 前記設定手段は、
前記温度測定手段から読み込んだ環境温度が所定温度以上か未満かを判断し、 前記読み込んだ環境温度が所定温度以上のときには、前記仮想の第 1総稼働時 間の算出を行わずに、前記計測手段で計測した総稼働時間を前記バックライトにお ける現在までの実質的な作動時間として用い、
前記読み込んだ環境温度が所定温度未満のときには、同環境温度に基づ 、て前 記仮想の第 1総稼働時間の算出を行い、同算出した仮想の第 1総稼働時間を前記 バックライトにおける現在までの実質的な作動時間として用いてなる、
請求の範囲第 2項記載の液晶表示装置。
前記液晶表示装置が使用される環境温度を測定する温度測定手段と、 前記作業車両が作業を開始してからの前記計測手段から読み込んだ総稼働時間 力 単位稼働時間を経過する毎に、前記温度測定手段から読み込んだ環境温度に 基づいて、経過した単位稼働時間を補正した補正稼動時間を算出する算出手段と、 前記算出手段で算出した補正稼動時間を順次加算して記憶することにより、仮想 の第 2総稼働時間を記憶する第 3記憶部と、
を備えてなり、
前記算出手段は、
予め規定された、環境温度毎の補正係数を記憶した第 2記憶部を有し、且つ、 前記作業車両が作業を開始してからの前記計測手段から読み込んだ総稼働時間 が、単位稼働時間を経過する毎に、同単位稼動時間内で前記温度測定手段力ゝら読 み込んだ環境温度の平均値又は最小値を算出し、
前記算出した環境温度の平均値又は最小値に対応する補正係数を前記第 2記憶 部から読み出し、
前記読み出した補正係数を、前記単位稼動時間の値に乗じることにより、前記単位 稼働時間を補正した補正稼動時間を算出し、
前記補正稼動時間を算出する毎に、前記算出した補正稼動時間を前記第 3記憶 部に順次加算して記憶することにより、前記第 3記憶部に仮想の第 2総稼働時間を記 憶させてなり、
前記設定手段は、
前記第 3記憶部から前記仮想の第 2総稼働時間を読み出し、
前記読み出した仮想の第 2総稼働時間を前記バックライトにおける現在までの実質 的な作動時間として用いてなる、 請求の範囲第 1項記載の液晶表示装置。
PCT/JP2006/310232 2005-06-24 2006-05-23 液晶表示装置 WO2006137235A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GB0801244A GB2448791B (en) 2005-06-24 2006-05-23 Liquid crystal display
US11/917,645 US20090033591A1 (en) 2005-06-24 2006-05-23 Liquid crystal display
JP2007522217A JPWO2006137235A1 (ja) 2005-06-24 2006-05-23 液晶表示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-185333 2005-06-24
JP2005185333 2005-06-24

Publications (1)

Publication Number Publication Date
WO2006137235A1 true WO2006137235A1 (ja) 2006-12-28

Family

ID=37570270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/310232 WO2006137235A1 (ja) 2005-06-24 2006-05-23 液晶表示装置

Country Status (6)

Country Link
US (1) US20090033591A1 (ja)
JP (1) JPWO2006137235A1 (ja)
KR (1) KR20080018210A (ja)
CN (1) CN101203797A (ja)
GB (1) GB2448791B (ja)
WO (1) WO2006137235A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010083245A (ja) * 2008-09-30 2010-04-15 Denso Corp 計器用警報装置
EP2133861A3 (en) * 2008-06-10 2010-07-28 LG Electronics, Inc. Display device and control method thereof
WO2019172100A1 (ja) * 2018-03-08 2019-09-12 キヤノン株式会社 映像表示装置
JP2019161305A (ja) * 2018-03-08 2019-09-19 キヤノン株式会社 映像表示装置
JP2019208129A (ja) * 2018-05-29 2019-12-05 キヤノン株式会社 映像表示装置
JP2021146928A (ja) * 2020-03-19 2021-09-27 本田技研工業株式会社 制御装置、移動体、及び、プログラム

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8130204B2 (en) * 2007-09-27 2012-03-06 Visteon Global Technologies, Inc. Environment synchronized image manipulation
KR101149216B1 (ko) * 2009-01-21 2012-05-25 엘지전자 주식회사 디스플레이장치 및 그의 제어 방법
CN101661708B (zh) * 2008-08-26 2014-07-23 群创光电股份有限公司 显示器及其驱动装置与驱动方法
CN102054417B (zh) * 2009-10-28 2013-04-24 连营科技股份有限公司 显示系统
KR20140076984A (ko) * 2012-12-13 2014-06-23 삼성디스플레이 주식회사 표시 장치 및 그것의 구동 방법
US20140298241A1 (en) * 2013-03-29 2014-10-02 Deere & Company Retracting shortcut bars, status shortcuts and edit run page sets
JP6308777B2 (ja) * 2013-12-25 2018-04-11 Eizo株式会社 寿命予測方法、寿命予測プログラム及び寿命予測装置
CN104932663A (zh) * 2014-03-18 2015-09-23 联想(北京)有限公司 一种信息处理方法和电子设备
KR102231046B1 (ko) * 2015-05-28 2021-03-23 엘지디스플레이 주식회사 화질 향상을 위한 표시 장치 및 그 구동 방법
US11315521B2 (en) * 2017-09-21 2022-04-26 Samsung Electronics Co., Ltd. Electronic device and method for brightness control of electronic device
CN110890069B (zh) * 2018-09-07 2021-04-20 深圳市巨烽显示科技有限公司 一种显示器亮度调节方法、装置及显示器
CN110288935B (zh) * 2019-06-26 2022-07-12 广州小鹏汽车科技有限公司 一种车载液晶显示屏背光源的监测方法及监测装置
CN113851092B (zh) * 2021-11-16 2023-10-17 展讯通信(天津)有限公司 动态背光调节方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03118514A (ja) * 1989-10-02 1991-05-21 Hitachi Ltd 液晶表示バックライト用冷陰極管の電源装置
JPH06167695A (ja) * 1992-11-27 1994-06-14 Sony Corp 液晶表示装置のコントラスト補正装置
JPH09197374A (ja) * 1996-01-22 1997-07-31 Ricoh Co Ltd ファクシミリ装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3437391B2 (ja) * 1996-11-14 2003-08-18 株式会社小糸製作所 車輌用放電灯の点灯回路
KR100549304B1 (ko) * 2003-12-05 2006-02-02 엘지전자 주식회사 영상표시기기의 화면밝기 제어장치 및 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03118514A (ja) * 1989-10-02 1991-05-21 Hitachi Ltd 液晶表示バックライト用冷陰極管の電源装置
JPH06167695A (ja) * 1992-11-27 1994-06-14 Sony Corp 液晶表示装置のコントラスト補正装置
JPH09197374A (ja) * 1996-01-22 1997-07-31 Ricoh Co Ltd ファクシミリ装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2133861A3 (en) * 2008-06-10 2010-07-28 LG Electronics, Inc. Display device and control method thereof
JP2010083245A (ja) * 2008-09-30 2010-04-15 Denso Corp 計器用警報装置
WO2019172100A1 (ja) * 2018-03-08 2019-09-12 キヤノン株式会社 映像表示装置
JP2019161305A (ja) * 2018-03-08 2019-09-19 キヤノン株式会社 映像表示装置
US11470290B2 (en) 2018-03-08 2022-10-11 Canon Kabushiki Kaisha Image display apparatus
JP2019208129A (ja) * 2018-05-29 2019-12-05 キヤノン株式会社 映像表示装置
JP2021146928A (ja) * 2020-03-19 2021-09-27 本田技研工業株式会社 制御装置、移動体、及び、プログラム
JP7083366B2 (ja) 2020-03-19 2022-06-10 本田技研工業株式会社 制御装置、移動体、及び、プログラム

Also Published As

Publication number Publication date
CN101203797A (zh) 2008-06-18
GB2448791A (en) 2008-10-29
JPWO2006137235A1 (ja) 2009-01-08
KR20080018210A (ko) 2008-02-27
GB0801244D0 (en) 2008-02-27
US20090033591A1 (en) 2009-02-05
GB2448791B (en) 2009-09-30

Similar Documents

Publication Publication Date Title
WO2006137235A1 (ja) 液晶表示装置
US9019319B2 (en) Display device for vehicle
JP6154959B2 (ja) 投写型映像表示装置
JP2013508916A (ja) 高いルーメン維持および寿命末期調節の知識ベースドライバ装置
JP5082614B2 (ja) バックライト制御装置、液晶表示装置、発光体制御装置およびバックライト制御方法
JPWO2007097328A1 (ja) プラズマディスプレイパネルの駆動方法およびプラズマディスプレイ装置
WO2013046392A1 (ja) 劣化検出回路、表示装置、及び性能劣化検出方法
JP2010085807A (ja) 表示装置
US20090251389A1 (en) Plasma display panel driving method and plasma display device
JP2009048131A (ja) 液晶表示装置
JP2009093098A (ja) 液晶表示装置
KR20110052120A (ko) 플라즈마 디스플레이 패널의 구동 방법 및 장치
JP4318136B2 (ja) 表示デバイスの駆動方法
WO2014057560A1 (ja) プロジェクタおよび検知方法
KR101693384B1 (ko) 디스플레이의 목표 광량값 설정방법 및 그 방법을 이용한 디스플레이 장치
JP6000601B2 (ja) 液晶表示装置及びそのキャリブレーション方法
CN101529990B (zh) 显示装置及亮度控制方法
JP2004071507A (ja) Lcd表示装置及びその運転時間計測方法
KR101403683B1 (ko) 백라이트 구동방법 및 이를 적용한 디스플레이 장치
JP2013003179A (ja) 電子機器
KR100796627B1 (ko) 플라즈마 디스플레이 패널의 휘도 보정 방법
JP2002366088A (ja) プラズマディスプレイパネル表示装置
JP2011521409A (ja) Uhpガス放電ランプの駆動方法
WO2018092267A1 (ja) 輝度調整装置、表示装置及び輝度調整方法
JP2003150101A (ja) 画像表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680022175.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007522217

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11917645

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077030235

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 0801244

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20060523

WWE Wipo information: entry into national phase

Ref document number: 801244

Country of ref document: GB

Ref document number: 0801244.5

Country of ref document: GB

122 Ep: pct application non-entry in european phase

Ref document number: 06756488

Country of ref document: EP

Kind code of ref document: A1