WO2006126375A1 - 強誘電性ガラスセラミックスおよびその製造方法、ならびに、ガラス組成物 - Google Patents

強誘電性ガラスセラミックスおよびその製造方法、ならびに、ガラス組成物 Download PDF

Info

Publication number
WO2006126375A1
WO2006126375A1 PCT/JP2006/309089 JP2006309089W WO2006126375A1 WO 2006126375 A1 WO2006126375 A1 WO 2006126375A1 JP 2006309089 W JP2006309089 W JP 2006309089W WO 2006126375 A1 WO2006126375 A1 WO 2006126375A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
ferroelectric
glass ceramic
temperature
ceramic
Prior art date
Application number
PCT/JP2006/309089
Other languages
English (en)
French (fr)
Inventor
Keisuke Kageyama
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to JP2007517755A priority Critical patent/JP4613954B2/ja
Publication of WO2006126375A1 publication Critical patent/WO2006126375A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0072Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition having a ferro-electric crystal phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase

Definitions

  • the present invention relates to a ferroelectric glass ceramics obtained by low-temperature firing and capable of controlling a relative dielectric constant, a method for producing the same, and a method for producing the ferroelectric glass ceramics.
  • V relates to possible glass compositions.
  • Ceramic multilayer substrates are widely used as electronic circuit components used in various electric devices.
  • substrate materials that can be fired at a low temperature of 1000 ° C or lower and that can be fired simultaneously with low melting point metal materials such as SAG, Ag, and Cu have been developed as ceramic materials for substrates. I came.
  • a ceramic multilayer substrate requires a capacitor element and a resistor element as circuit components. Conventionally, these elements are individually mounted on the substrate surface. There has been a limit to the miniaturization of multilayer substrates, and thus electronic circuit components.
  • a ceramic multilayer substrate with a structure in which a ceramic multilayer substrate has a high relative dielectric constant and a ferroelectric ceramic layer and a capacitor element is formed therein to reduce the size and increase the density has been proposed. It is being put into practical use.
  • ferroelectric ceramic materials are based on BaTiO, CaTiO, etc.
  • the sintering temperature of these ceramics is usually a high temperature of 1300 ° C or higher and cannot be fired at the same time as a low-melting-point metal material (see Japanese Patent Laid-Open No. 4-286181 (Patent Document 1)).
  • various glass ceramics in which ferroelectric ceramic particles are dispersed in a glass phase such as silica glass and borosilicate glass have been developed as ferroelectric materials that can be fired at low temperature.
  • the glass phase generally has a low relative dielectric constant, and these glass ceramics are not necessarily sufficiently high in relative dielectric constant.
  • ferroelectric glass ceramics that can be fired at low temperature
  • the most practically used is the BaO-TiO-SiO-AlO-based aluminosilicate glass ceramics.
  • firing at 1000 ° C. or lower is possible by selecting a composition having a high dielectric constant and a low dielectric loss at high frequencies compared to other glass compositions.
  • a glass ceramic that has a high relative dielectric constant and can be incorporated into a substrate by low-temperature firing can be made a variable frequency filter if the dielectric constant can be made variable by applying a DC voltage.
  • the application range can be greatly expanded to a phase control type antenna or the like.
  • the Curie temperature is controlled by replacing it partially.
  • Patent Document 1 Japanese Patent Laid-Open No. 4-286181
  • Patent Document 2 JP-A-5-152158
  • the present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a ferroelectric glass cell having a low Curie temperature and capable of cofiring with a low melting point metal material such as Ag or Cu.
  • An object of the present invention is to provide a glass composition that is a raw material for a ferroelectric glass ceramic, and a method for producing the mix.
  • the present invention provides x [(l -y) BaTiO -vLnAlO] -uSiO ⁇ ⁇ 1 O (provided that 0.3
  • the present invention relates to a ferroelectric glass ceramic obtained by firing a glass composition.
  • ferroelectric glass ceramic of the present invention is (Ba, Ln) (Ti, A1) 0
  • a ferroelectric phase mainly composed of 3 may be precipitated, and the Curie temperature may be in the range of -100 ° C force to 80 ° C.
  • A1F is used as a raw material of Al 2 O, which is a constituent component of the glass composition, and raw material powder having a predetermined composition is mixed.
  • a method of producing a ferroelectric glass ceramic comprising: a step of melting glass at 1300 to 1400 ° C. and then rapidly cooling to obtain glass powder; and a step of firing the glass powder at 900 to 1200 ° C. Is to provide.
  • the present invention provides a glass composition used in the production of the ferroelectric glass ceramic of the present invention as x [(l-y) BaTiO-yLnAlO] -uSiO ⁇ ⁇ O1 O (provided that 0.35
  • a ferroelectric glass ceramic having a low Curie temperature and capable of simultaneous firing with a low melting point metal material such as Ag or Cu.
  • a low melting point metal material such as Ag or Cu.
  • the decrease in Curie temperature in ferroelectric glass ceramics makes it possible to form variable-capacitance capacitor elements whose capacitance can be changed by the applied voltage, and for applications with variable permittivity such as voltage-variable filters and phase-controlled antennas. Therefore, the application range of this ferroelectric glass ceramic can be expanded.
  • the ferroelectric glass ceramic of the present invention is a ferroelectric glass ceramic of the present invention.
  • the strongly dielectric glass ceramic of the present invention is obtained by firing a glass composition represented as: That is, the strongly dielectric glass ceramic of the present invention is obtained by firing a glass composition having a specific composition represented by the above-mentioned oxide notation, and is a sintered body after firing.
  • a ferroelectric phase mainly composed of BaTiO is present in the glass network structure.
  • x, y, u, and V represent the molar ratio of each constituent component
  • the value of X is preferably 0.5 or more and 0.7 or less.
  • the ferroelectric phase has a low dielectric constant and no force precipitation occurs.
  • the value of y is preferably 0.1 or more and 0.3 or less in order to increase the ratio of the ferroelectric phase with a high relative dielectric constant and sufficiently increase the relative dielectric constant of the glass ceramic.
  • the value of u is preferably 0.1 or more, and the value of u is preferably 0.3 or less because the ferroelectric phase is sufficiently precipitated.
  • V if the value of V exceeds 0.4, the ferroelectricity with a small amount of the deposited ferroelectric phase is not sufficiently developed. If the value of V is less than 0.1, the amount of Al O, which is a glass network forming oxide or intermediate oxide, decreases, and glass formation is reduced.
  • the value of V is preferably 0.05 or more.
  • the value of V is preferably 0.25 or less in order to sufficiently precipitate the ferroelectric phase.
  • Ln is a force indicating a rare earth element.
  • Ln is a force indicating a rare earth element.
  • Sc is a force indicating a rare earth element.
  • Y and various lanthanoid elements can be used, and Nd, La, and Sm are particularly preferable.
  • the ferroelectric glass ceramic of the present invention has a ferroelectricity mainly composed of (Ba, Ln) (Ti, A1) 0.
  • the phase is preferably precipitated.
  • (Ba, Ln) (Ti, A1) 0 is contained in a glass matrix mainly composed of SiO and Al 2 O 3.
  • the 2 2 3 3 ferroelectric phase is deposited.
  • the ferroelectric phase of (Ba, Ln) (Ti, Al) O, BaO-SiO-TiO system, BaO-SiO-TiO-Ln O system
  • a part of Ti may be substituted with Sn.
  • the substitution ratio of Sn is preferably 42 mol% or less when the Ti amount before substitution is 100 mol%. Due to this, the glass after firing In ceramics, part of the Ti site is replaced with Sn, and the relative dielectric constant is further increased.
  • a part of Ba may be substituted with Sr. In this case, replacement ratio of Sr, when the Ba content before replacement 100 mol 0/0, 10 to 70 mole 0/0, more preferably a child and 12 to 28 mole 0/0.
  • the ferroelectric glass ceramic of the present invention may have a Curie temperature in the range of 1100 ° C to 80 ° C.
  • the Curie temperature is room temperature (25 ° C) or lower. In this way, if the Curie temperature is 80 ° C or lower, or even room temperature or lower, it becomes possible to form a variable capacitor element whose capacitance can be changed by the applied voltage, and the ferroelectric glass ceramic is changed to a voltage variable filter, It can be applied to a phase control type antenna.
  • a ferroelectric glass ceramic having a relative dielectric constant of about 60 to 500 can be obtained, and even when the capacity variable rate is improved and the Curie temperature is further lowered, 2 Ferroelectric glass ceramics having a relative dielectric constant of about 00 to 300 can be sufficiently obtained.
  • the method for producing a ferroelectric glass ceramic of the present invention uses A1F as a raw material for AlO, which is a constituent of a glass composition, in obtaining the above-described ferroelectric glass ceramic.
  • glass powder is mixed with raw material powders such as SiO and Al 2 O, and the mixture is heated at a high temperature.
  • the glass ceramic is obtained by heating and melting to a homogeneous phase melt, quenching the resulting melt, and further crushing the quench.
  • the glass ceramic is obtained by adding a binder or the like to the glass powder, kneading and forming into a required shape, followed by firing.
  • Glass ceramics precipitated in glass and this ferroelectric phase is surrounded by a glass network Takes the form of The above glass composition can be heated and melted at a temperature of 1500 ° C or higher.
  • the melting temperature during glass production can be lowered to less than 1500 ° C. That is, when A1F is used as a raw material, a glass melt can be obtained at a melting temperature below 1500 ° C.
  • the melting temperature of the glass can be lowered by adding other low melting point oxalic acid compounds, but such additives remain in the obtained glass ceramics. It may affect the relative permittivity and temperature characteristics, especially the dielectric loss in the high frequency band.
  • A1F is a process of quenching glass melt or glass ceramics.
  • A1F is used as a raw material.
  • the melting temperature at the time of glass production can be lowered, in particular, the substitution of rare earth elements for Ba can be facilitated, and the Curie temperature can be easily lowered.
  • the Curie temperature of the glass ceramics can be further lowered.
  • the amount of A1 component in the raw material is all A1F
  • At least 0.05 mol of Al O component amount that is, raw material composition
  • the melting temperature at the time of glass production should be sufficient.
  • the melting temperature of the glass is preferably 1300 to 1400 ° C. This is because if the melting temperature is less than 1300 ° C, the raw materials will not melt sufficiently and a uniform glass may not be obtained. , Formulation This is because the composition may be greatly different.
  • the obtained glass composition can be baked at 900 to 1200 ° C after adding a binder solvent to the glass powder, kneading and molding into a desired shape in the same manner as ordinary glass ceramics. .
  • the firing temperature can be in a temperature range that can be co-fired with a low melting point metal such as Ag, Cu, or Ni. At 900 ° C or lower, ferroelectric phase precipitation may be insufficient, while 1200 ° C. If the temperature exceeds 50 ° C, simultaneous firing with a low melting point metal becomes difficult, and the glass composition may be softened and deformed during firing.
  • the glass composition in the method for producing a ferroelectric glass ceramic of the present invention, may be used as a paste for thick film printing, or as a green sheet for a green sheet laminating method. It does n’t matter.
  • All of these raw material powders have a purity of 99% or more.
  • these raw material powders are weighed, wet-mixed in a ball mill, dried, placed in a platinum crucible, melted at 1300-1400 ° C for 2 hours, and then quenched into ion-exchanged water. Glass cullet. Next, these glass cullets were dry pulverized and then wet pulverized with a ball mill to obtain glass powder.
  • the obtained glass powder was granulated with a 10% by weight PVA aqueous solution as a noda, formed into a disk with a diameter of 15mm and a thickness of 2mm, and then the temperature was preliminarily changed.
  • the temperature at which it was fired to become glass ceramics was confirmed, and fired in an electric furnace at the temperatures and times shown in Table 1 to obtain glass ceramic pieces.
  • Ag electrodes were screen-printed on both surfaces of the obtained glass ceramic, and baked at 650 ° C. to obtain a specimen. Using this specimen, the relative permittivity ( ⁇ r), the Curie temperature (Tc), and the capacity tunability (Tunability) at 5 GHz were measured. These results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Insulating Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Capacitors (AREA)

Abstract

 キュリー温度が低く、かつ、AgやCuなどの低融点金属と同時焼成が可能な強誘電性ガラスセラミックスを提供するため、本発明は、x[(1-y)BaTiO3・yLnAlO3]・uSiO2・vAl2O3(ただし、0.35≦x≦0.75,0<y≦0.6,0<u≦0.6,0<v≦0.4,x+y=1,x+u+v=1,Lnは希土類元素)で表されるガラス組成物を焼成してなる強誘電性ガラスセラミックスであり、(Ba,Ln)(Ti,Al)O3を主とする強誘電性相を析出しており、かつ、キュリー温度が-100°Cから80°Cまでの範囲にある態様が好ましい。

Description

明 細 書
強誘電性ガラスセラミックスおよびその製造方法、ならびに、ガラス組成物 技術分野
[0001] 本発明は、低温焼成で得られ、比誘電率の制御が可能な強誘電性ガラスセラミック スおよびその製造方法、ならびに、この強誘電性ガラスセラミックスを製造する際に用
V、られ得るガラス組成物に関するものである。
背景技術
[0002] セラミックス多層基板は、各種の電気機器に用いられる電子回路部品として広く用 いられている。特に、近年、携帯電話や携帯型パソコンなどの需要増大に伴い、これ ら電子機器の小型化、軽量化、高機能化等が要望されており、それに伴い、回路の 高密度化や高周波化が進行している。このような動向に対し、基板用セラミックス材 料としては、高周波における損失力 、さぐ Ag、 Cu等の低融点金属材料と同時に焼 成できる 1000°C以下の低温焼成が可能な基板材料が開発されてきた。
[0003] 一方、セラミックス多層基板には、回路構成要素として、コンデンサ素子や抵抗素 子が必要となるが、従来、これらの素子は個々に基板表面に実装されており、このた めに、セラミックス多層基板、ひいては電子回路部品の小型化には限界があった。こ れに対して、セラミックス多層基板に比誘電率の高 、強誘電性セラミックス層を内蔵 し、ここにコンデンサ素子を形成して、小型化、高密度化した構造のセラミックス多層 基板が提案され、実用化されつつある。
[0004] 強誘電性のセラミックス材料には、 BaTiO、 CaTiOなどをベースにしたものが多く
3 3
使われる力 これらのセラミックスの焼結温度は、通常 1300°C以上の高温であり、低 融点金属材料と同時に焼成することができない (特開平 4— 286181号公報 (特許文 献 1)参照)。このため、シリカガラスやホウケィ酸ガラスなどガラス相の中に強誘電性 セラミックス粒子が分散したガラスセラミックスが、低温焼成可能な強誘電性の材料と して種々開発されている。し力しながら、ガラス相は一般的に比誘電率が低ぐこれら のガラスセラミックスでは必ずしも十分高 、比誘電率は得られて 、な 、。
[0005] 焼結温度を低くできる強誘電性セラミックスとして、 BaTiOの Baサイトを Pbで置換 し、 Tiサイトを 3価 5価や 2価 6価のイオンの組合せで置換した複合べロブスカイ ト型化合物が知られている力 Pbを含むセラミックスは環境への負荷がある(特開平 5 - 152158号公報 (特許文献 2)参照)。
[0006] 低温焼成可能な強誘電性ガラスセラミックスの中で、現在、実用的に最も多く活用 されているのは、 BaO— TiO— SiO— Al O系のアルミノケィ酸ガラスセラミックスで
2 2 2 3
ある。これはガラスの熱処理により、強誘電性の BaTiOを主とする相を析出させるも
3
ので、他のガラス組成物に比較して比誘電率が高ぐ高周波における誘電損失が低 ぐ組成を選ぶことにより 1000°C以下での焼成が可能である。
[0007] この高い比誘電率を有し、し力も低温焼成により基板に組込むことができるガラスセ ラミックスは、さらに直流電圧印加により誘電率可変とすることが可能になれば、周波 数可変型フィルタ、位相制御型アンテナ等へ、その適用範囲を大幅に拡大できる。
[0008] 一般に、強誘電性セラミックスでは、温度を上げて 、くと強誘電性相が常誘電性相 に転移する力 この転移温度はキュリー温度と呼ばれている。キュリー温度を超えた 温度では、常誘電性相でありながら強誘電性相ドメインが残存して 、るので高誘電率 であり、誘電損失が小さぐヒステリシスがない。このためマイクロ波帯などの高周波帯 域での誘電率可変用途には、主としてこの領域が利用される。
[0009] BaTiO系セラミックスの場合、ぺロブスカイト型結晶構造の各サイトのイオンを Srな
3
どに部分的に置き換えることで、キュリー温度の制御が行なわれている。 BaO -TiO
2
- SiO -Al O系のガラスセラミックスにおいても、その強誘電性は、析出する BaTi
2 2 3
oを主とする強誘電性相の特性に基づいており、この相のイオンを置き換える変性を
3
行なえば、強誘電性ガラスセラミックスのキュリー温度が低下できると推測される(K. Kageyama and J. Takahashi, Tunable Microwave Properties of Barium Titan ate- Based Ferroelectric Glass- Ceramics" Communications of the American C eramic Society, 2004, vol.87, no.8, 1602- 1605 (非特許文献 1)参照)。
[0010] しかしながら、これまで BaO— TiO—SiO—Al O系のガラスセラミックスにおいて
2 2 2 3
、 Srの置換によるキュリー温度の低下が種々試みられてきた力 100°Cを大きく下回 る温度へのキュリー温度のシフトは実現されて 、な 、。
特許文献 1 :特開平 4— 286181号公報 特許文献 2 :特開平 5- 152158号公報
非特言午文献 Kageyama and J. Takahashi, "Tunable Microwave Properties of Barium Titanate- Based Ferroelectric Glass- Ceramics" Communications of the American Ceramic Society, 2004, vol.87, no.8, 1602—1605
発明の開示
発明が解決しょうとする課題
[0011] 本発明は、上述した実情に鑑みてなされたものであり、その目的は、キュリー温度が 低ぐかつ、 Agや Cuなどの低融点金属材料と同時焼成が可能な強誘電性ガラスセ ラミックスおよびその製造方法、ならびに、強誘電性ガラスセラミックスの素原料である ガラス組成物を提供することにある。
課題を解決するための手段
[0012] すなわち、本発明は、 x[ (l -y) BaTiO -vLnAlO ] -uSiO ·νΑ1 O (ただし、 0. 3
3 3 2 2 3
5≤x≤0. 75, 0<y≤0. 6, 0<u≤0. 6, 0<v≤0. 4, x+u+v= l,: Lnは希土類 元素)で表されるガラス組成物を焼成してなる、強誘電性ガラスセラミックスに関する ものである。
[0013] 本発明の強誘電性ガラスセラミックスは、より具体的に言うと、 (Ba, Ln) (Ti, A1) 0
3 を主とする強誘電性相を析出しており、かつ、キュリー温度が— 100°C力も 80°Cまで の範囲にあるものであってよい。
[0014] また、本発明は、本発明の強誘電性ガラスセラミックスを得るに際し、ガラス組成物 の構成成分である Al Oの素原料として A1Fを用い、所定組成の原料粉末を混合し
2 3 3
て、 1300〜1400°Cにて溶融した後、急冷して、ガラス粉末を得る工程と、ガラス粉 末を 900〜1200°Cで焼成する工程と、を有する、強誘電性ガラスセラミックスの製造 方法を提供するものである。
[0015] また、本発明は、本発明の強誘電性ガラスセラミックスを製造するに際し用いられる ガラス組成物として、 x[ (l— y) BaTiO -yLnAlO ] -uSiO ·νΑ1 O (ただし、 0. 35
3 3 2 2 3
≤x≤0. 75, 0<y≤0. 6, 0<u≤0. 6, 0<v≤0. 4, x+u+v= l,: Lnは希土類 元素)で表されるガラス組成物を提供するものである。 発明の効果
[0016] 本発明によれば、キュリー温度が低ぐかつ、 Agや Cuなどの低融点金属材料と同 時焼成が可能な強誘電性ガラスセラミックスを得ることができる。特に、強誘電性ガラ スセラミックスにおけるキュリー温度の低下は、印加電圧で容量を変えられる可変容 量コンデンサ素子の形成が可能になり、電圧可変型フィルタ、位相制御型アンテナ などの誘電率可変用途へ、この強誘電性ガラスセラミックスの適用範囲を拡大させる ことができる。
発明を実施するための最良の形態
[0017] まず、本発明の強誘電性ガラスセラミックスを説明する。
本発明の強誘電性ガラスセラミックスは、
ー般式1 [ (1 ) &1 0 -yLnAlO ] -uSiO ·νΑ1 O
3 3 2 2 3
として表されるガラス組成物を焼成して得られるものである。すなわち、本発明の強誘 電性ガラスセラミックスは、上記の酸ィ匕物表記にて表される特定組成のガラス組成物 を焼成することによって得られるものであり、その焼成後の焼結体である強誘電性ガ ラスセラミックスにおいては、ガラスの網目構造中に BaTiOを主とする強誘電性相が
3
析出した構造となっている。
[0018] ここで、一般式 1にお 、て、 x、 y、 uおよび Vは、各構成成分のモル比を表すもので あって、
(1) 0. 35≤x≤0. 75
(2) 0<y≤0. 6
(3) 0<u≤0. 6
(4) 0<v≤0. 4
(5) x+u+v= l
を満たすものである。
[0019] 一般式 1において、 xの値が 0. 35未満であると、ガラスの形成は容易となるものの、 析出する強誘電性相が少なぐ相対的に比誘電率が低くなつてしまい、他方、 Xの値 が 0. 75を超えると、相対的に、ガラスの網目形成酸ィ匕物である SiOの量が少なくな
2
つてしまい、ガラスの形成が困難になってしまう。なお、強誘電性相の比率を増やして 比誘電率を上げ、かつ、ガラスを効率良く形成するため、 Xの値は、 0. 5以上、 0. 7 以下が好ましい。
[0020] また、一般式 1において、 yの値が 0. 6を超えると、高温処理で析出する BaTiO系
3 強誘電性相において、誘電率の低い強誘電性相し力析出しなくなってしまう。なお、 比誘電率の高 、強誘電性相の比率を増やし、ガラスセラミックスの比誘電率を十分 に上げるため、 yの値は、 0. 1以上、 0. 3以下が好ましい。
[0021] また、一般式 1において、 uの値が 0. 6を超えると、析出する強誘電性相の量が少 なぐ強誘電性が十分に発現しない。なお、 uの値が 0. 1未満であると、ガラスの網目 形成酸化物である SiOの量が少なくなつてしまい、ガラスの形成が難しくなることから
2
、 uの値は 0. 1以上が好ましぐまた、強誘電性相を十分に析出することから、 uの値 は 0. 3以下が好ましい。
[0022] また、一般式 1において、 Vの値が 0. 4を超えると、析出する強誘電性相の量が少 なぐ強誘電性が十分に発現しない。なお、 Vの値が 0. 1未満であると、ガラスの網目 形成酸ィ匕物または中間酸ィ匕物である Al Oの量が少なくなつてしまい、ガラスの形成
2 3
が難しくなることから、 Vの値は 0. 05以上が好ましい。また、強誘電性相を十分に析 出することから、 Vの値は 0. 25以下が好ましい。
[0023] なお、一般式 1にお 、て Lnは希土類元素を示す力 希土類元素 Lnとしては、 Scや
Y、各種ランタノイド元素を用いることができ、特に、 Nd、 La、 Smが好ましい。
[0024] 本発明の強誘電性ガラスセラミックスは、(Ba, Ln) (Ti, A1) 0を主とする強誘電性
3
相を析出していることが好ましい。つまり、本発明の強誘電性ガラスセラミックスにお いては、 SiOおよび Al Oを主とするガラスのマトリックス中に、(Ba, Ln) (Ti, A1) 0
2 2 3 3 の強誘電性相が析出した形態をとっていることが好ましい。なお、(Ba, Ln) (Ti, Al) Oの強誘電性相以外には、 BaO— SiO -TiO系、 BaO— SiO—TiO—Ln O系
3 2 2 2 2 2 3
、 BaO-SiO -TiO— Al O、 BaO— SiO—TiO— Al O— Ln Oなどの結晶相
2 2 2 3 2 2 2 3 2 3
が析出する。
[0025] なお、本発明の強誘電性ガラスセラミックスは、上記一般式 1のガラス組成物にお!ヽ て、 Tiの一部が Snで置換されていてもよい。この場合、 Snの置換比は、置換前の Ti 量を 100モル%とするとき、 42モル%以下が好ましい。これによつて、焼成後のガラ スセラミックスにおいて、 Tiサイトの一部が Snで置換され、その比誘電率がさらに高く なる。また、 Baの一部が Srで置換されていてもよい。この場合、 Srの置換比は、置換 前の Ba量を 100モル0 /0とするとき、 10〜70モル0 /0、さらには 12〜28モル0 /0とするこ とが好ましい。これによつて、焼成後のガラスセラミックスにおいて、 Baサイトの一部が Srで置換され、そのキュリー温度をさらに低下させることができる。 Srの置換比が 0. 1を下回る場合は、キュリー温度低下の顕著な効果が現れず、他方、 0. 7を超える場 合は、ガラスの溶融が困難になる傾向にある。
[0026] また、本発明の強誘電性ガラスセラミックスは、キュリー温度が一 100°Cから 80°Cま での範囲にあるものであってよい。好ましくは、キュリー温度が室温(25°C)以下であ る。このようにキュリー温度が 80°C以下、さらには室温以下であれば、印加電圧で容 量を変えられる可変容量コンデンサ素子の形成が可能になり、強誘電性ガラスセラミ ックスを電圧可変型フィルタ、位相制御型アンテナなどに適用できるようになる。なお 、本発明によれば、比誘電率が 60〜500程度の強誘電性ガラスセラミックスを得るこ とができ、容量の可変率を向上させ、キュリー温度をさらに低下したときであっても、 2 00〜300程度の比誘電率を有する強誘電性ガラスセラミックスを十分に得ることがで きる。
[0027] 次に、本発明の強誘電性ガラスセラミックスの製造方法を説明する。
本発明の強誘電性ガラスセラミックスの製造方法は、上述した強誘電性ガラスセラミ ックスを得るに際し、ガラス組成物の構成成分である Al Oの素原料として A1Fを用
2 3 3 い、所定組成の原料粉末を混合して、 1300〜1400°Cにて溶融した後、急冷して、 ガラス粉末を得る工程と、ガラス粉末を 900〜1200°Cで焼成する工程と、を有するも のである。
[0028] 通常、ガラス粉末は、 SiOや Al Oなどの素原料粉末を混合し、混合物を高温で加
2 2 3
熱 ·溶融して均一相の溶融物とした後、得られた溶融物を急冷し、さらに急冷物を粉 砕することによって得られる。そして、ガラスセラミックスは、ガラス粉末にバインダなど を添加し混練して所要形状に成形後、焼成することにより得られる。
[0029] 上記のガラス組成物の場合、その焼成の過程で、 BaTiOを主とする強誘電性相が
3
ガラス中に析出し、この強誘電性相がガラスの網目構造に囲まれたガラスセラミックス の形態をとる。上記ガラス組成物は、 1500°Cまたはそれ以上の温度にて加熱 '溶融 することにより単相化する力 素原料として Al Oの代わりに A1Fを原料に用いれば、
2 3 3
ガラス作製時の溶融温度を 1500°C未満まで低下させることができる。すなわち、素 原料として A1Fを用いると、ガラス溶融物が 1500°Cを下回る溶融温度で得られるた
3
め、粘性の低い単相のガラス融液が得られる。そして、ガラス製造時の溶融温度を低 くすることにより、析出する強誘電性相中への他成分 (特に、希土類元素)の固溶ある いは置換を容易にし、その結果として、キュリー温度を低下させることができる。
[0030] なお、ガラスの溶融温度は、他の融点の低!ヽ酸ィ匕物を添加しても低下させることが 可能であるが、このような添加物は得られるガラスセラミックスに残存した場合、その 比誘電率や温度特性、特に高周波帯域における誘電損失に影響を与えることがある 。これに対し、 A1Fは、ガラス融液を急冷する過程で、あるいは、ガラスセラミックスを
3
得るための焼成過程で、酸化物すなわち Al Oに変化するため、得られるガラスセラ
2 3
ミックス中に A1Fは実質的には残存しない。すなわち、 A1Fを素原料として用いるこ
3 3
とにより、ガラス作製時の溶融温度を低下させることができ、特に Baへの希土類元素 の置換を容易にし、キュリー温度を容易に低下させることができる。なお、この A1F
3を 用いれば、他の SrO、 SnO、 ZrOなどによる変性も容易になり、これらの成分を添加
2 2
することによって、ガラスセラミックスのキュリー温度をさらに低下させることも可能であ る。
[0031] A1Fをガラス組成物の素原料とする場合、素原料中の A1成分量は、すべてが A1F
3 3 である必要はなぐ A1Fと他の原料、たとえば Al Oとを混合して用いてもよい。その
3 2 3
場合、 A1成分量のうち少なくとも 0. 05モル以上の Al O成分量、すなわち原料配合
2 3
比率にて 0. 1モル以上の A1Fが用いられていれば、ガラス作製時の溶融温度を十
3
分に低下させることができる。他の構成成分である BaO、 TiOおよび SiOについて
2 2 は、酸ィ匕物や炭酸塩などを用いればよい。これらの素原料は、 A1Fを含め、いずれも
3
純度 95%以上のものを用いることが好ましい。
[0032] また、ガラスの溶融温度は、 1300〜1400°Cとすることが好ましい。これは、溶融温 度が 1300°C未満では素原料が十分に溶融せず、均一なガラスを得ることができない ことがあり、他方、 1400°Cを超える温度では、 A1Fの蒸散が甚だしくなるため、配合 組成と大きく異なってくるおそれがあるからである。
[0033] 得られたガラス組成物は、通常のガラスセラミックスと同様、ガラス粉末にバインダゃ 溶剤などを添加して混練し、所望形状に成形後、 900〜1200°Cにて焼成することが できる。焼成温度は、 Ag、 Cuあるいは Niなどの低融点金属と同時焼成できる温度範 囲にできる、 900°C以下では、強誘電性相の析出が不十分になることがあり、他方、 1200°Cを超える温度では、低融点金属との同時焼成が困難になるとともに、ガラス 組成物が焼成中に軟化変形するおそれがある。
[0034] なお、本発明の強誘電性ガラスセラミックスの製造方法にぉ 、て、ガラス組成物は、 ペーストとして厚膜印刷に用いられても構わないし、グリーンシートとしてグリーンシー ト積層法に用いられても構わな 、。
実施例 1
[0035] 以下、本発明を具体的な実施例に基づいて説明する。
下記表 1に示されるガラス組成物: x[ (l— y) BaTiO -yLnAlO ] -uSiO ·νΑ1 O
3 3 2 2 3 を得るため、素原料粉末として、 BaCO、 TiO、 SiO、 Al Oを用意した。なお、これ
3 2 2 2 3
らの素原料粉末は、いずれも純度 99%以上のものである。次いで、これらの素原料 粉末を秤量し、ボールミルにて湿式混合し、乾燥後、白金るつぼに入れ、 1300〜14 00°Cで 2時間かけて溶融した後、イオン交換水に投入することにより急冷してガラス カレットとした。次いで、これらガラスカレットを乾式粉砕後、さらにボールミルにて湿 式粉砕し、ガラス粉末を得た。
[0036] 次 、で、得られたガラス粉末に、ノインダとして 10重量%の PVA水溶液をカ卩えて 造粒し、直径 15mm、厚さ 2mmの円板に成形後、予備的に温度を変えて焼成して ガラスセラミックスとなる温度を確認し、表 1中に示すその温度および時間で電気炉 中にて焼成し、ガラスセラミックス片を得た。そして、得られたガラスセラミックスの両面 に Ag電極をスクリーン印刷し、 650°Cで焼付けることにより、試片を得た。この試片に て比誘電率( ε r)、キュリー温度 (Tc)、および、 5GHzにおける容量可変率 (Tunabili ty)を測定した。これらの結果を合わせて表 1に示す。
[0037] [表 1]
Figure imgf000010_0001
[0038] 以上、表 1から分かるように、一般式 l :x[ (l— y) BaTiO -yLnAlO ] -uSiO ·νΑ1
3 3 2 2
Oで表され、 0. 35≤x≤0. 75, 0<y≤0. 6, 0<u≤0. 6, 0<v≤0. 4, x+u+v
3
= 1を満たすガラス組成物を、 Agや Cuなどの低融点金属材料と同時焼成が可能な 温度で焼成することによって得られたガラスセラミックス(サンプル No. 2, 3, 8、 10) は、 Pbのような環境負荷物質を含有せずとも、キュリー温度が十分に低い。特に、ガ ラス糸且成物の糸且成によっては、比誘電率が 60以上、キュリー温度が 25°C以下、容量 可変率が 10%以上となるような強誘電性ガラスセラミックスを得ることができた。
[0039] 今回開示された実施例はすべての点で例示であって制限的なものではないと考え られるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示さ れ、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図 される。

Claims

請求の範囲
[1] x[ (l -y) BaTiO -yLnAlO ] -uSiO -vAl O (ただし、 0. 35≤x≤0. 75, 0<y
3 3 2 2 3
≤0. 6, 0<u≤0. 6, 0<v≤0. 4, x+u+v= l,: Lnは希土類元素)で表されるガ ラス組成物を焼成してなる、強誘電性ガラスセラミックス。
[2] (Ba, Ln) (Ti, Al) Oを主とする強誘電性相を析出しており、かつ、キュリー温度が
3
- 100°C力も 80°Cまでの範囲にある、請求の範囲第 1項に記載の強誘電性ガラスセ ラミックス。
[3] 請求の範囲第 1項に記載の強誘電性ガラスセラミックスを得るに際し、
Al Oの素原料として A1Fを用い、所定組成の原料粉末を混合し、 1300-1400
2 3 3
°Cにて溶融した後、急冷して、ガラス粉末を得る工程と、
前記ガラス粉末を 900〜 1200°Cで焼成する工程と、
を有する、強誘電性ガラスセラミックスの製造方法。
[4] x[ (l -v) BaTiO -vLnAlO ] -uSiO -vAl O (ただし、 0. 35≤x≤0. 75, 0<y
3 3 2 2 3
≤0. 6, 0<u≤0. 6, 0<v≤0. 4, x+u+v= l,: Lnは希土類元素)で表されるガ ラス組成物。
PCT/JP2006/309089 2005-05-23 2006-05-01 強誘電性ガラスセラミックスおよびその製造方法、ならびに、ガラス組成物 WO2006126375A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007517755A JP4613954B2 (ja) 2005-05-23 2006-05-01 強誘電性ガラスセラミックスおよびその製造方法、ならびに、ガラス組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005149805 2005-05-23
JP2005-149805 2005-05-23

Publications (1)

Publication Number Publication Date
WO2006126375A1 true WO2006126375A1 (ja) 2006-11-30

Family

ID=37451803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309089 WO2006126375A1 (ja) 2005-05-23 2006-05-01 強誘電性ガラスセラミックスおよびその製造方法、ならびに、ガラス組成物

Country Status (2)

Country Link
JP (1) JP4613954B2 (ja)
WO (1) WO2006126375A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242228A (ja) * 2008-02-26 2009-10-22 Schott Ag ガラス・セラミックの製造方法及びそのガラス・セラミックの使用
CN103762078A (zh) * 2014-01-20 2014-04-30 中国科学院物理研究所 基于组合薄膜的宽温区可调谐微波器件

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102503411B (zh) * 2011-11-07 2013-03-20 哈尔滨工业大学 一种以水为介质通过稀土气相扩渗制备BaTiO3导电陶瓷粉的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118060A (ja) * 1993-08-24 1995-05-09 Nippon Electric Glass Co Ltd 高誘電率ガラスセラミック
JPH0873239A (ja) * 1994-08-31 1996-03-19 Nippon Electric Glass Co Ltd ガラスセラミックス誘電体材料
JP2003221277A (ja) * 2001-11-21 2003-08-05 Asahi Glass Co Ltd 誘電体形成用ガラス粉末、誘電体形成用ガラスセラミックス組成物および誘電体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118060A (ja) * 1993-08-24 1995-05-09 Nippon Electric Glass Co Ltd 高誘電率ガラスセラミック
JPH0873239A (ja) * 1994-08-31 1996-03-19 Nippon Electric Glass Co Ltd ガラスセラミックス誘電体材料
JP2003221277A (ja) * 2001-11-21 2003-08-05 Asahi Glass Co Ltd 誘電体形成用ガラス粉末、誘電体形成用ガラスセラミックス組成物および誘電体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAKUBANA S.: "f. Fukkabutsu (fluoride)", GLASS HANDBOOK, KABUSHIKI KAISHA ASAKURA SHOTEN, 30 September 1975 (1975-09-30), pages 297, XP003007109 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242228A (ja) * 2008-02-26 2009-10-22 Schott Ag ガラス・セラミックの製造方法及びそのガラス・セラミックの使用
CN103762078A (zh) * 2014-01-20 2014-04-30 中国科学院物理研究所 基于组合薄膜的宽温区可调谐微波器件
CN103762078B (zh) * 2014-01-20 2017-02-01 中国科学院物理研究所 基于组合薄膜的宽温区可调谐微波器件

Also Published As

Publication number Publication date
JPWO2006126375A1 (ja) 2008-12-25
JP4613954B2 (ja) 2011-01-19

Similar Documents

Publication Publication Date Title
KR100946016B1 (ko) 저온 소성 및 고온 절연저항 강화용 유전체 조성물 및 이를이용한 적층 세라믹 커패시터
Thomas et al. Effect of Zn2+ substitution on the microwave dielectric properties of LiMgPO4 and the development of a new temperature stable glass free LTCC
WO2004094338A1 (ja) 誘電体形成用無鉛ガラス、誘電体形成用ガラスセラミックス組成物、誘電体および積層誘電体製造方法
CN101492293B (zh) 钛酸钡基y5p陶瓷介电材料及其制备方法
JP7179135B2 (ja) 誘電体
JP2008001531A (ja) ガラス
JP4706228B2 (ja) 無鉛ガラス、ガラスセラミックス組成物および誘電体
JP3737774B2 (ja) 誘電体セラミック組成物
JP4613954B2 (ja) 強誘電性ガラスセラミックスおよびその製造方法、ならびに、ガラス組成物
WO2020209039A1 (ja) 誘電性無機組成物
TWI585793B (zh) 低溫共燒陶瓷微波介電陶瓷及其製造方法
JP3882847B2 (ja) 強誘電性ガラスセラミックスおよびその製造方法
Kim et al. Low temperature sintering and microwave dielectric properties of Ba3Ti5Nb6O28 with ZnO–B2O3 glass additions for LTCC applications
Cheng et al. Effects of composition on low temperature sinterable Ba–Nd–Sm–Ti–O microwave dielectric materials
JP2000223352A (ja) 積層セラミックコンデンサ
KR101084710B1 (ko) 전자부품용 유전체 세라믹 조성물
JP2003221277A (ja) 誘電体形成用ガラス粉末、誘電体形成用ガラスセラミックス組成物および誘電体
JPH08259319A (ja) 低温焼成誘電体磁器及びその製造方法
JP4166012B2 (ja) 高誘電率材料用組成物
WO2004103929A1 (ja) 誘電体磁器組成物、並びにその製造方法、それを用いた誘電体磁器及び積層セラミック部品
JP2004026543A (ja) 誘電体磁器組成物およびこれを用いた積層セラミック部品
JP3624406B2 (ja) ガラスセラミックス誘電体材料
KR100635015B1 (ko) 저온 동시 소성이 가능한 유전체 세라믹 조성물
KR100509633B1 (ko) 절연 강화형 유리프릿과 이를 포함하는 내환원성 유전체조성물
JPH07330427A (ja) 誘電体磁器組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007517755

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06745940

Country of ref document: EP

Kind code of ref document: A1