WO2006123597A1 - デジタル信号処理装置 - Google Patents

デジタル信号処理装置 Download PDF

Info

Publication number
WO2006123597A1
WO2006123597A1 PCT/JP2006/309630 JP2006309630W WO2006123597A1 WO 2006123597 A1 WO2006123597 A1 WO 2006123597A1 JP 2006309630 W JP2006309630 W JP 2006309630W WO 2006123597 A1 WO2006123597 A1 WO 2006123597A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode
anode
comb terminal
digital signal
terminal
Prior art date
Application number
PCT/JP2006/309630
Other languages
English (en)
French (fr)
Inventor
Hiroshi Serikawa
Kenji Kuranuki
Junichi Kurita
Tsuyoshi Yoshino
Katsuyuki Nakamura
Hiroshi Fujii
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005309361A external-priority patent/JP2007123309A/ja
Priority claimed from JP2005309360A external-priority patent/JP4770391B2/ja
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to EP06746377A priority Critical patent/EP1883085A4/en
Priority to US11/885,458 priority patent/US7787234B2/en
Priority to CN2006800173292A priority patent/CN101180692B/zh
Publication of WO2006123597A1 publication Critical patent/WO2006123597A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/40Structural combinations of fixed capacitors with other electric elements, the structure mainly consisting of a capacitor, e.g. RC combinations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/023Reduction of cross-talk, noise or electromagnetic interference using auxiliary mounted passive components or auxiliary substances
    • H05K1/0231Capacitors or dielectric substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • H01G9/012Terminals specially adapted for solid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • H01G9/10Sealing, e.g. of lead-in wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/28Structural combinations of electrolytic capacitors, rectifiers, detectors, switching devices with other electric components not covered by this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/35Feed-through capacitors or anti-noise capacitors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10621Components characterised by their electrical contacts
    • H05K2201/10689Leaded Integrated Circuit [IC] package, e.g. dual-in-line [DIL]

Definitions

  • the present invention relates to a digital signal processing device that processes a digital signal.
  • FIG. 13 is a circuit diagram of a conventional digital signal processing device 5001. SI) 25, power supply terminal 26, power supply line 27, decoupling capacitor 28, DC / DC converter 29, smoothing capacitors 30, 31, and multiple capacitors 32 for noise removal Prepare.
  • a DC power supply 26 A is connected to the power supply terminal 26, and a power supply line 27 connects the power supply terminal 26 and the LSI 25.
  • the decoupling capacitor 28 is a solid electrolytic capacitor and is connected between the power line 27 and the ground 5001A.
  • the DC / DC converter 29 is connected to the power supply line 27, converts the voltage of the DC power supply 26A, and outputs it to the power supply line 27.
  • the smoothing capacitor 30 is connected between the input terminal 29A of the DCZDC converter 29 and the ground 5001A, and the smoothing capacitor 31 is connected between the output terminal 29B of the DCZDC converter 29 and the ground 5001A.
  • the LSI 25 driven at a low voltage is susceptible to load fluctuations. Therefore, when the power consumption of the LSI 25 rapidly increases due to load fluctuations, current can be supplied from the decoupling capacitor 28 to the LSI 25, and the supply voltage to the LSI 25 can be kept stable.
  • the value of the series equivalent resistance (ESR) of the decoupling capacitor 28 is R, and the series equivalent inductor
  • the decoupling capacitor 28 has the following voltage drop V, where L is the capacitance (ESL) value and i is the current supplied from the decoupling capacitor 28 to the LSI 25.
  • V RX i + L X di / dt
  • FIG. 14 shows digital noise of the digital signal processing device 5001.
  • the digital signal processing device 5001 generates digital noise as shown in FIG. 14 in order to compress a large amount of signals for high-speed processing. Especially when used in digital television, this digital noise appears prominently as image distortion.
  • a large amount of noise removing capacitor 32 is connected between LSI 25 and ground 5001A.
  • As the capacitor 32 a multilayer ceramic capacitor is generally used. The number of capacitors 32 is 30 or more for one LSI 25, and this large amount of capacitors 32 must be mounted in the vicinity of the LSI 25. Therefore, it is necessary to increase the size of the substrate on which the circuit of the digital signal processing device is mounted, thereby increasing the cost.
  • the capacitor 32 since the digital noise can be evaluated only after the digital signal processing apparatus 5001 is completed, the capacitor 32 must be set by cut-and-try. Therefore, the time for countermeasures against digital noise cannot be predicted, and the development schedule is long and the cost is increased.
  • the ESR and ESL of the solid electrolytic capacitor used as the decoupling capacitor 28 cannot sufficiently guarantee the voltage required to drive the LSI 25, and it is necessary to further reduce the ESR and ESL of the solid electrolytic capacitor. There is.
  • the digital signal processing device includes a component that processes a digital signal, a power supply line that supplies power to the component, and a decoupling capacitor connected between the power supply line and the ground.
  • the decoupling capacitor has a series equivalent resistance greater than 0 and less than 25 ⁇ ⁇ at 100kHz and a series equivalent inductance greater than 0 and less than 800 ⁇ at 500MHz.
  • This digital signal processing device does not generate much digital noise, and can be small and thin.
  • FIG. 1 is a circuit diagram of a digital signal processing apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 shows digital noise of the digital signal processing device according to the first embodiment.
  • FIG. 3A is a plan sectional view of a solid electrolytic capacitor used in the digital signal processing device according to Embodiment 1.
  • FIG. 3A is a plan sectional view of a solid electrolytic capacitor used in the digital signal processing device according to Embodiment 1.
  • FIG. 3B is a front cross-sectional view taken along line 3B-3B of the solid electrolytic capacitor shown in FIG. 3A.
  • FIG. 3C is a bottom cross-sectional view of the solid electrolytic capacitor shown in FIG. 3A.
  • FIG. 3D is a side sectional view of the solid electrolytic capacitor shown in FIG. 3A.
  • FIG. 4 is a partially cutaway perspective view of the capacitor element of the solid electrolytic capacitor according to Embodiment 1.
  • FIG. 5 is a perspective view of an anode comb terminal and a cathode comb terminal of the solid electrolytic capacitor according to Embodiment 1.
  • FIG. 6A is a cross-sectional view of the anode comb terminal and the cathode comb terminal shown in FIG. 5 taken along line 6A-6A.
  • FIG. 6B is a cross-sectional view taken along line 6B-6B of the anode comb terminal and the cathode comb terminal shown in FIG.
  • FIG. 6C is a cross-sectional view taken along line 6C-6C of the anode comb terminal and the cathode comb terminal shown in FIG.
  • FIG. 7 shows the characteristics of the solid electrolytic capacitor according to Embodiment 1.
  • FIG. 8 shows the characteristics of the solid electrolytic capacitor according to the first embodiment.
  • FIG. 9 is a circuit diagram of a digital signal processing device according to Embodiment 2 of the present invention.
  • FIG. 10A is a cross-sectional view of the digital signal processing device according to the second embodiment.
  • FIG. 10B is a cross-sectional view of the digital signal processing device according to the second embodiment.
  • FIG. 11 shows digital noise characteristics of the digital signal processing device according to the second embodiment.
  • FIG. 12 is a cross-sectional view of a digital signal processing device of a comparative example.
  • FIG. 13 is a circuit diagram of a conventional digital signal processing device.
  • FIG. 14 shows digital noise characteristics of a conventional digital signal processing device. Explanation of symbols
  • Capacitor element (first capacitor element, second capacitor element) 4 Anode part (first anode part, second anode part)
  • Solid electrolyte layer (first solid electrolyte layer, second solid electrolyte layer)
  • Multi-layer substrate substrate
  • Conductive layer (first conductive layer)
  • Conductive layer (second conductive layer)
  • FIG. 1 is a circuit diagram of digital signal processing apparatus 1001 according to Embodiment 1 of the present invention.
  • the digital signal processing device 1001 includes a component 16, a power terminal 17, a power line 18, a decoupling capacitor 19, a DCZDC converter 20, smoothing capacitors 21 and 22, and a plurality of noise removing capacitors 23.
  • the component 16 is a large-scale integrated circuit (LSI) that has a power supply terminal 16A, processes a digital signal using the power supplied to the power supply terminal 16A, and outputs the digital signal from the signal terminal 16B.
  • the power supply terminal 17 is connected to the DC power supply 17A.
  • the power supply line 18 connects the power supply terminal 17 and the power supply terminal 16A of the component 16.
  • the decoupling capacitor 19 is a solid electrolytic capacitor connected between the power line 18 and the ground 1001A.
  • DCZDC converter 20 has its input terminal 20A supplied with DC voltage output from DC power supply 17A.
  • DCZDC converter 20 converts the voltage and outputs DC voltage to power line 18 from output terminal 20B.
  • Smoothing capacitor 21 is connected between input end 20A of DCZDC converter 20 and ground 1001A, and smoothing capacitor 22 is connected between output end 20B of DCZDC converter 20 and ground 1 001A.
  • the capacitor 23 is connected between the power supply terminal 16A of the component 16 and the ground 1001A, and a multilayer ceramic capacitor is generally used.
  • the solid electrolytic capacitor 22 and the smoothing capacitor 22 which are decoupling capacitors 19 are surface mount type solid electrolytic capacitors using a conductive polymer as a solid electrolyte, at 100 kHz! /, Greater than 0 It has a series equivalent resistance of 25 m ⁇ or less and a series equivalent inductance (ESL) at 500 MHz! /, Greater than 0 and less than 800 pH.
  • ESL series equivalent inductance
  • the capacitors 19 and 22 having such small ESR and ESL can sufficiently guarantee the voltage required to drive the component 16.
  • Component 16 operates in synchronization with the clock.
  • the clock generates high frequency radiation noise.
  • the DC / DC converter 20 has a switching element.
  • the switching element generates switching noise.
  • the high-frequency radiation noise and the switching noise flow to the earth 1001A through capacitors 19 and 22.
  • the high-frequency radiation noise and switching noise transmitted through the power line 18 can be greatly reduced.
  • FIG. 2 shows digital noise of digital signal processing apparatus 1001 according to the first embodiment.
  • the digital noise of the digital signal processing apparatus 1001 is reduced from the digital noise of the conventional digital signal processing apparatus 5001 shown in FIG. Furthermore, the number of capacitors 23 shown in FIG. 1 can be reduced to about 1Z2 to 1Z3, which is the number of capacitors 32 for noise removal shown in FIG.
  • Digital signal processing apparatus 1001 can greatly reduce digital noise by using a solid electrolytic capacitor having a small ESR and ESL as decoupling capacitor 19 and smoothing capacitor 22.
  • the digital signal processing device 1001 can reduce the number of capacitors 23 for removing digital noise, and is small, thin, and inexpensive.
  • the same solid electrolytic capacitor as the decoupling capacitor 19 and the smoothing capacitor 22 may be used as the smoothing capacitor 21.
  • FIG. 3A is a plan cross-sectional view of solid electrolytic capacitor 201 used for decoupling capacitor 19 and smoothing capacitor 22.
  • FIG. 3B is a front cross-sectional view taken along line 3B-3B of solid electrolytic capacitor 201 shown in FIG. 3A.
  • 3C and 3D are a bottom sectional view and a side sectional view of the solid electrolytic capacitor 201 shown in FIG. 3A, respectively.
  • FIG. 4 is a partially cutaway perspective view of capacitor element 1 of solid electrolytic capacitor 201.
  • Capacitor element 1 includes anode body 2, insulating resist portion 3, solid electrolyte layer 6, and cathode layer 7.
  • the anode body 2 is an aluminum foil that is a valve metal. The surface of the anode body 2 is roughened, and an anodized film layer 2A is formed on the surface. After the formation of the anodic oxide film layer 2 A, the anode body is separated into the anode part 4 and the cathode forming part 5 by the insulating resist part 3.
  • the solid electrolyte layer 6 is provided on the surface of the cathode forming portion 5.
  • the cathode layer 7 is made of carbon and silver paste and is formed on the solid electrolyte layer 6 to form a cathode portion 107.
  • a plurality of (5 in the first embodiment) capacitor elements 1 are laminated, and the anode portion 4 is placed on the anode comb frame 8. Anode comb frame 8 Then, the anode part 4 is wrapped, and the anode part 4 and the joining part 8B are laser-welded and joined together.
  • a plurality of capacitor elements 1 are laminated, and the cathode portion 107 is placed on the cathode comb frame 9 via a conductive adhesive.
  • Capacitor element 1 is positioned and fixed by guide portions 9A at both ends of cathode comb frame 9 and guide portion 9B at the end, and is integrally joined.
  • the plurality of integrated capacitor elements 1, the anode comb frame 8 and the cathode comb frame 9 form a capacitor element unit 1A.
  • FIG. 5 is a perspective view of a main part of the anode comb terminal 10 and the cathode comb terminal 11 used in the solid electrolytic capacitor 201.
  • 6A, 6B, and 6C are cross-sectional views of the anode comb terminal 10 and the cathode comb terminal 11 shown in FIG. 5 taken along lines 6A-6A, 6B-6B, and 6C-6C, respectively.
  • the anode comb terminal 10 is located in the direction 201A from the cathode comb terminal 11.
  • the anode comb terminal 10 has a placement surface 10H, a connection portion 10E, and a flat portion 10A.
  • a capacitor element unit 1A is placed on the placement surface 10H.
  • the connecting portion 10E extends from the both ends of the mounting surface 10H in the direction 201B intersecting the direction 201A to the outside in the direction 10K force of the mounting surface 10H in the direction 10K.
  • the planar portion 10A also extends the connecting portion 10E so as to be directed in the direction 10J. That is, the planar portion 10A forms a stepped step through the connecting portion 10E.
  • Both the end force opposite to the direction 201A of the mounting surface 10H and the connecting portion 10F extend in the direction 10L in the direction 10L.
  • the shielding part 10B extends from the connecting part 10E to the cathode comb terminal 11 with a direct force.
  • the shielding part 10B has an orientation force flat part 10G in the same direction 10J as the mounting face 10A.
  • the shielding part 10B forms a stepped step through the connection part 10F.
  • the anode comb frame 8 of the capacitor element unit 1A is placed on the flat surface portion 10A, and is joined by laser welding at the joint portion 10C.
  • the protruding part 10D protrudes from the outer casing 12.
  • the protruding portion 10D is bent upward along the side surface of the exterior resin 12.
  • the mounting surface 10H, the connecting portions 10E and 10F, the flat surface portion 10A, the shielding portion 10B, and the protruding portion 10D are integrally formed by punching and bending a single metal plate.
  • the lower surface 11J of the cathode comb terminal 11 becomes a mounting surface when the solid electrolytic capacitor 201 is mounted.
  • the lower surface 11J is formed in substantially the same shape as the cathode portion 107 of the capacitor element 1, so that it is as close as possible to the anode comb terminal 10.
  • a connecting part 1 IF is provided to extend to.
  • a flat planar portion 11A joined to the cathode comb frame 9 via the connecting portion 11F is provided so as to form a stepped step.
  • the connecting portion 11G extends obliquely upward from the lower surface 11J, which becomes the mounting surface, in the directional force direction 201A toward the anode comb terminal 10.
  • the shielding part 11B is provided so as to form a stepped step through the connection part 11G.
  • the shielding part 11B has a flat part 11H.
  • the cathode comb terminal 11 is integrally formed by punching one metal plate and bending it.
  • the cathode comb frame 9 of the capacitor element unit 1A is placed on the flat surface 11A, and is joined by laser welding at the joint 11C.
  • the protruding portions 11D and 11E of the cathode comb terminal 11 protrude from the exterior resin 12 and are bent upward along the side surface of the exterior resin 12.
  • the cathode comb terminal 11 has a placement surface 11N on which the capacitor element unit 1A is placed.
  • the outer layer resin 12 made of an insulating resin such as epoxy resin exposes the lower surface 10M of the anode comb terminal 10 and the lower surface 10J of the cathode comb terminal 11 to cover the capacitor element unit 1A.
  • the anode comb terminal 10 has a mounting surface 10H on the opposite side of the lower surface 10M that is the mounting surface and on which the capacitor element unit 1A is mounted.
  • the cathode comb terminal 11 has a mounting surface 11N on the opposite side of the lower surface 11J that is the mounting surface and on which the capacitor element unit 1A is mounted.
  • the shielding part 10B has a connecting part 10F in which the anode comb terminal 10 extends in the direction 10L from the bottom face 10M to the cathode comb terminal 11 and in the direction 10L toward the capacitor element unit 1A, and the connecting part 10F force is also opposite to the direction 201A. It further has a flat surface portion 10G extending in the direction 201C.
  • the shielding part 10B is covered with the outer casing 12.
  • the shielding part 11B has a connection part 11G extending from the lower surface 11J toward the anode comb terminal 10 and extending in the direction of force I IP to the capacitor element unit 1A, and further includes a plane part 11H extending in the connection part 11G force direction 201A. .
  • the shielding part 1 1B is covered with an outer casing 12.
  • Anode comb terminal 10 has both ends 10N of direction 201B intersecting direction 201A.
  • the anode comb terminal 10 has a connection portion 10E extending from each of both ends 10N and a flat portion 10A connected to the connection portion 10E.
  • the connection portion 10E intersects the placement surface 10H and is placed on the placement surface 10H. Power Extends in the direction of turning away.
  • the flat surface portion 10A has a flat shape and extends in a phrase in which the placement surface 10H force also moves away.
  • Cathode comb terminal 11 has both ends 11Q in direction 201B intersecting direction 201A.
  • the cathode comb terminal 11 has a connecting portion 11F extending from each of both ends 11Q, and a flat planar portion 11A that also extends the force of the connecting portion 11F.
  • the connecting portion 11F extends in the direction of crossing the placement surface 11N and the placement surface 11N force away.
  • the flat surface portion 11A is connected to the connection portion 11F and extends in a phrase that moves away from the placement surface 11N.
  • Capacitor element unit 1A is joined to flat portion 11A of cathode comb terminal 11.
  • the conductive paste 13 containing silver is provided in the gap between the cathode comb frame 9 and the cathode comb terminal 11 of the capacitor element unit 1A to reduce the connection resistance between the cathode comb frame 9 and the cathode comb terminal 11. And improve connection reliability.
  • the plurality of anode comb terminals 10 and the plurality of cathode comb terminals 11 are continuously provided at predetermined intervals on a hoop-like base material having a copper alloy force.
  • the capacitor element unit 1A is mounted on and bonded to the plurality of anode comb terminals 10 and the plurality of cathode comb terminals 11, and each is integrally covered with the outer layer resin 12. Thereafter, the solid electrolytic capacitor 201 is obtained by dividing the substrate.
  • the shielding part 11B having 11H force is covered with the outer casing 12 and is not exposed to the outside. Since the flat portions 10G and 11H are provided stepwise via the connecting portions 10F and 11G, it is difficult to form R at the boundary between the lower surfaces 10M and 11J, which are the mounting surfaces of the comb terminals 10 and 11. Therefore, it is possible to prevent the outer casing 12 from wrapping around the lower surfaces 10M and 11J that are the mounting surfaces of the comb terminals 10 and 11.
  • the anode part 4 and the cathode part 107 of the capacitor element 1 are connected to the outside by the shortest possible distance by the substantially flat anode comb terminal 10 and the cathode comb terminal 11. It can be taken out. Furthermore, the capacitor 201 has a small ESR by making the bottom surface 11J of the cathode comb terminal 11 as close as possible to the bottom surface 10M of the anode comb terminal 10 and minimizing the path between the anode comb terminal 10 and the cathode comb terminal 11. Has a small ESL. In particular, the ESL of the capacitor 201 is as low as 500 pH, which is 1/3 of the 1500 pH of the conventional capacitor ESL.
  • the positive comb frame 8 and the negative comb frame 9 are joined to the flat portions 10A and 11A provided on the anode comb terminal 10 and the negative comb terminal 11, respectively, by laser welding, and the flat portions 10A and 11A are joined to each other. Cover with outer grease 12.
  • the weld marks on the flat surfaces 10A and 11A are covered with the outer grease 12, so the appearance is clean, and it is possible to prevent the float that causes defects when mounting the capacitor 201 due to the weld marks. Can be improved.
  • the shielding part 10B extends obliquely upward from the end face of the anode comb terminal 10 toward the cathode comb terminal 11, and the shielding part 11B acts obliquely upward from the end face of the cathode comb terminal 11 toward the anode comb terminal 10. Extend.
  • the shielding parts 10B and 1 IB are covered with the outer casing 12.
  • the shielding parts 10B and 11B prevent moisture contained in oxygen entering from the outer resin 12 from reaching the capacitor element 1 and adversely affecting it, and improving the reliability of the capacitor 201.
  • the anode body 2 of the capacitor element 1 is made of an aluminum foil.
  • the present invention is not limited to this, but a tantalum or niobium foil, a sintered body, or any of these. It may be formed by a combination of materials.
  • FIG. 7 shows. The leakage current was measured 2 minutes after applying a voltage of 10 V to the solid electrolytic capacitor 201. The rated voltage of the solid electrolytic capacitor 201 is 6.3 V and the capacitance is.
  • FIG. 7 also shows the reduction rate of the number of capacitors 23 shown in FIG. 1 using the sample of the capacitor 201 with respect to the number of capacitors 23 in the conventional digital signal processing apparatus 5001 shown in FIG.
  • the number of capacitors 23 for removing digital noise can be efficiently reduced by setting ESR to 25 m ⁇ or less.
  • ESL As shown in FIG. 8, when the distance L between the anode comb terminal 10 and the cathode comb terminal 11 is short, ESL The value becomes lower, especially by making the distance L greater than 0 and 2 mm or less, the ESL becomes 800 pH or less, and the number of capacitors 23 can be efficiently reduced.
  • FIG. 9 is a circuit diagram of digital signal processing apparatus 1002 according to Embodiment 2 of the present invention.
  • the digital signal processing apparatus 1002 includes a component 516, a power supply terminal 517, power supply lines 518A and 518B, a decoupling capacitor 519, a DCZDC converter 520, smoothing capacitors 521 and 522, and a plurality of noise removing capacitors 523.
  • the component 516 is a large-scale integrated circuit (LSI) that has a power supply terminal 516A, processes a digital signal with the power supplied to the power supply terminal 516A, and outputs the digital signal from the signal terminal 516B.
  • the power supply terminal 517 is connected to the DC power supply 517A.
  • the power line 518B connects the power terminal 517 and the input terminal 502A of the DCZDC converter 520.
  • the power supply line 518A connects the output terminal 520B of the DC / DC converter 520 and the power supply terminal 516A of the component 516.
  • the decoupling capacitor 519 is a solid electrolytic capacitor connected between the power supply line 518A and the ground 1002A.
  • DCZDC converter 52 0 input terminal 520A is supplied with DC voltage output from DC power supply 17A via power line 518B, DC / DC converter 520 converts the voltage and output terminal 520B power is also applied to power supply line 518A DC voltage Is output.
  • Smoothing capacitor 521 is connected between input terminal 520A of DCZDC converter 520 and ground 1002A, and smoothing capacitor 522 is connected between output terminal 520B of DCZDC converter 520 and ground 1002A.
  • the ground end 51 6C of the part 516 is connected to the ground 1002A.
  • a multilayer ceramic capacitor is generally used for the capacitor 523.
  • the ground terminal 520C of the DC / DC converter 520 is connected to the ground 1002A.
  • Capacitor 523 is connected between power supply terminal 516A of component 516 and ground 1002A, and a multilayer ceramic capacitor is generally used.
  • FIG. 10A and FIG. 10B are cross-sectional views of the digital signal processing device 1002.
  • Digital signal processing Physical device 1002. A circuit shown in FIG. 9, that is, a multilayer substrate 601 on which a component 516, a DCZDC converter 520, and capacitors 519, 521, 522, and 523 are mounted.
  • the multilayer substrate 601 includes layer S3, insulating layer D5 on layer S3, layer G2 on insulating layer D5, insulating layer D4 on layer G2, layer Vcc on insulating layer D4, and insulating layer on layer Vcc. It consists of D3, layer S2 on insulating layer D3, insulating layer D2 on layer S2, layer G1 on insulating layer D2, insulating layer D1 on layer G1, and layer S1 on insulating layer D1.
  • the power supply line 518A shown in FIG. 9 corresponds to the conductive layer 602 provided in the layer Vcc.
  • the ground 1002A corresponds to the conductive layer 603 provided in the layer G1 and the conductive layer 604 provided in the layer G2.
  • the layers S1 to S3, Gl, G2, and Vcc are provided with these conductive layers and a resist 601A that insulates the conductive layers.
  • the decoupling capacitor 519 is connected between the conductive layer 602 and the conductive layer 603 which are the power supply lines 518A.
  • the power supply terminal 516 A of the component 516 is connected to the conductive layer 602.
  • the grounding terminal 516C of the component 516 is connected to the conductive layer 603 provided in the layer G1 in the same manner as the decoupling capacitor 519 not provided in the conductive layer 604 provided in the layer G2.
  • the ground end 516C of the component 516 can be connected to the decoupling capacitor 519 in the shortest distance, and the impedance generated in the ground 1002A can be reduced.
  • the power supply line 518B shown in FIG. 9 corresponds to the conductive layer 605 provided in the layer Vcc.
  • the ground 1002A corresponds to the conductive layer 603 provided in the layer G1 and the conductive layer 604 provided in the layer G2.
  • the smoothing capacitor 521 is connected between the conductive layer 605 and the conductive layer 603 which are power supply lines 518B.
  • the input end 520A of the DCZDC converter 520 is connected to the conductive layer 605.
  • the ground terminal 520C of the DC / DC converter 520 is connected not to the conductive layer 604 provided in the layer G2, but to the conductive layer 603 provided in the layer G1 like the smoothing capacitor 521.
  • the ground end 520C of the DC / DC converter 520 By connecting the ground end 520C of the DC / DC converter 520 to the same conductive layer 603 as the smoothing capacitor 521, the ground end 520C can be connected to the smoothing capacitor 521 in the shortest distance, and the impedance generated in the ground 1002A can be reduced.
  • solid electrolytic capacitor 201 As decoupling capacitor 519 and smoothing capacitor 522, solid electrolytic capacitor 201 according to Embodiment 1 shown in FIGS. 2 to 5 and FIGS. 6A to 6C is used. [0049] In the digital signal processing device 1002 according to the second embodiment, in order to drive the component 516 by the capacitors 519 and 522 having small ESR and ESL, as in the digital signal processing device 1001 according to the first embodiment. The necessary voltage can be sufficiently guaranteed.
  • the part 516 operates in synchronization with the clock.
  • the clock generates high frequency radiation noise.
  • the DCZDC converter 520 has a switching element. The switching element generates a switching noise.
  • the high-frequency radiation noise and the switching noise flow through the capacitors 519 and 522 to the ground 1002A, that is, the conductive layers 603 and 604, and the high-frequency radiation noise and switching noise transmitted through the power line 518A can be greatly reduced.
  • the solid electrolytic capacitor 201 for the decoupling capacitor 519 and the smoothing capacitor 522 digital noise can be greatly reduced. Therefore, the number of capacitors 523 for removing digital noise can be greatly reduced, and the digital signal processing apparatus 1002 can be made small, thin, and inexpensive.
  • FIG. 12 is a cross-sectional view of a digital signal processing device 1003 of a comparative example. Similar to the digital signal processing device 1002 shown in FIG. 10, the digital signal processing device 1003 has a multilayer substrate 601 on which the circuit shown in FIG. 9 is mounted.
  • the ground end 516C of the component 516 is connected to the conductive layer 603 provided in the layer G1
  • the decoupling capacitor 519 is connected to the conductive layer 604 provided in the layer G2. That is, the ground terminal 516C of the component 516 is connected to a conductive layer 603 different from the decoupling capacitor 519.
  • This structure is not preferable because the circuit length between the ground terminal 516C of the component 516 and the decoupling capacitor 519 becomes long, and the impedance in the ground 1002A becomes high, so that the effect of reducing digital noise is reduced.
  • the same solid electrolytic capacitor 201 as the decoupling capacitor 519 and the smoothing capacitor 522 may be used as the smoothing capacitor 521.
  • the digital signal processing device does not generate much digital noise, can be made small and thin, and is useful for home appliances that perform digital signal processing, particularly television receivers.

Abstract

 デジタル信号処理装置は、デジタル信号を処理する部品と、部品に電力を供給する電源ラインと、電源ラインとアースとの間に接続されたデカップリングコンデンサとを備える。デカップリングコンデンサは、100kHzにおいて0より大きく25mΩ以下の直列等価抵抗と、500MHzにおいて0より大きく800pH以下の直列等価インダクタンスとを有する。このデジタル信号処理装置はデジタルノイズをあまり発生せず、小型で薄型にできる。

Description

明 細 書
デジタル信号処理装置
技術分野
[0001] 本発明は、デジタル信号を処理するデジタル信号処理装置に関する。
背景技術
[0002] 近年、音響'映像分野の家電製品等の電子機器のデジタルィヒが急速に進んでいる 。このような電子機器は、デジタル信号やアナログ信号を MPEG2等の所定のデジタ ル信号に変換して圧縮処理するデジタル信号処理技術で支えられ、この技術を用い て大量の信号を高速処理する。
[0003] 図 13は従来のデジタル信号処理装置 5001の回路図である。大規模集積回路お SI) 25と、電源端子 26と、電源ライン 27と、デカップリングコンデンサ 28と、 DC/DC コンバータ 29と、平滑コンデンサ 30、 31と、ノイズ除去用の複数のコンデンサ 32とを 備える。電源端子 26には直流電源 26Aが接続され、電源ライン 27は電源端子 26と LSI25とを繋ぐ。デカップリングコンデンサ 28は固体電解コンデンサであり、電源ライ ン 27とアース 5001A間に接続されている。 DC/DCコンバータ 29は電源ライン 27 に接続され、直流電源 26Aの電圧を変換して電源ライン 27に出力する。平滑コンデ ンサ 30は DCZDCコンバータ 29の入力端 29Aとアース 5001A間に接続され、平滑 コンデンサ 31は DCZDCコンバータ 29の出力端 29Bとアース 5001A間に接続され ている。
[0004] 電子機器の動作の高速化に伴 、、 LSI25の動作周波数も高速ィ匕されて 、る。 LSI 25を高速ィ匕するとその消費電力が増える。したがって、 LSI25の消費電力を抑えて 発熱を最小にするように、直流電源 26Aの電圧を下げて LSI25を低電圧で駆動する ことが多い。
[0005] 低電圧で駆動される LSI25は負荷の変動に影響を受け易い。したがって、負荷の 変動により LSI25の電力消費量が急激に増大した時に、デカップリングコンデンサ 2 8から LSI25に電流を供給し、 LSI25への供給電圧を安定に保つことができる。
[0006] デカップリングコンデンサ 28の直列等価抵抗 (ESR)の値を R、直列等価インダクタ ンス(ESL)の値を L、デカップリングコンデンサ 28から LSI25への供給される電流を i とすると、デカップリングコンデンサ 28は以下の電圧降下 Vを生じる。
[0007] V=RX i+L X di/dt
すなわち、 ESR、 ESLが大きくなると、 LSI25に印加される電圧を十分に保証できな い。
[0008] 図 14はデジタル信号処理装置 5001のデジタルノイズを示す。デジタル信号処理 装置 5001では、大量の信号を圧縮して高速処理するために、図 14に示すように、 デジタルノイズが発生する。特にデジタルテレビに使用した場合では、このデジタルノ ィズが映像の乱れとなって顕著に現れる。このデジタルノイズを低減するために、 LSI 25とアース 5001A間に大量のノイズ除去用のコンデンサ 32を接続する。コンデンサ 32は一般に積層セラミックコンデンサが用いられている。コンデンサ 32の数は 1つの LSI25に対して 30個以上であり、この大量のコンデンサ 32を LSI25の近傍に実装し なければならない。したがって、デジタル信号処理装置の回路が搭載された基板を 多層化して大型化しなければならな 、こと力 コストアップが避けられな 、。
[0009] また、デジタルノイズはデジタル信号処理装置 5001を完成してからでないと評価で きないので、コンデンサ 32をカットアンドトライで設定しなければならない。したがって 、デジタルノイズの対策のための時間を予想できず、開発日程が長くコストを大きくす る。
[0010] デカップリングコンデンサ 28として用いられる固体電解コンデンサの ESR、 ESLは 、 LSI25を駆動させるために必要な電圧を十分保証することはできず、固体電解コン デンサの ESR、 ESLをさらに小さくする必要がある。
発明の開示
[0011] デジタル信号処理装置は、デジタル信号を処理する部品と、部品に電力を供給す る電源ラインと、電源ラインとアースとの間に接続されたデカップリングコンデンサとを 備える。デカップリングコンデンサは、 100kHzにおいて 0より大きく 25πι Ω以下の直 列等価抵抗と、 500MHzにおいて 0より大きく 800ρΗ以下の直列等価インダクタンス とを有する。
[0012] このデジタル信号処理装置はデジタルノイズをあまり発生せず、小型で薄型にでき る。
図面の簡単な説明
[図 1]図 1は、本発明の実施の形態 1によるデジタル信号処理装置の回路図である。
[図 2]図 2は、実施の形態 1によるデジタル信号処理装置のデジタルノイズを示す。
[図 3A]図 3Aは、実施の形態 1によるデジタル信号処理装置に使用される固体電解コ ンデンサの平面断面図である。
[図 3B]図 3Bは、図 3Aに示す固体電解コンデンサの線 3B— 3Bにおける正面断面図 である。
[図 3C]図 3Cは、図 3Aに示す固体電解コンデンサの底面断面図である。
[図 3D]図 3Dは、図 3Aに示す固体電解コンデンサの側面断面図である。
[図 4]図 4は、実施の形態 1による固体電解コンデンサのコンデンサ素子の一部切り 欠き斜視図である。
[図 5]図 5は、実施の形態 1による固体電解コンデンサの陽極コム端子と陰極コム端子 の斜視図である。
[図 6A]図 6Aは、図 5に示す陽極コム端子と陰極コム端子の線 6A— 6Aにおける断面 図である。
[図 6B]図 6Bは、図 5に示す陽極コム端子と陰極コム端子の線 6B— 6Bにおける断面 図である。
[図 6C]図 6Cは、図 5に示す陽極コム端子と陰極コム端子の線 6C— 6Cにおける断面 図である。
[図 7]図 7は、実施の形態 1による固体電解コンデンサの特性を示す。
[図 8]図 8は、実施の形態 1による固体電解コンデンサの特性を示す。
[図 9]図 9は、本発明の実施の形態 2によるデジタル信号処理装置の回路図である。
[図 10A]図 10Aは、実施の形態 2によるデジタル信号処理装置の断面図である。
[図 10B]図 10Bは、実施の形態 2によるデジタル信号処理装置の断面図である。
[図 11]図 11は、実施の形態 2によるデジタル信号処理装置のデジタルノイズ特性を 示す。
[図 12]図 12は、比較例のデジタル信号処理装置の断面図である。 [図 13]図 13は、従来のデジタル信号処理装置の回路図である。
[図 14]図 14は、従来のデジタル信号処理装置のデジタルノイズ特性を示す。 符号の説明
1 コンデンサ素子(第 1のコンデンサ素子、第 2のコンデンサ素子) 4 陽極部 (第 1の陽極部、第 2の陽極部)
6 固体電解質層 (第 1の固体電解質層、第 2の固体電解質層)
8 陽極コムフレーム
9 陰極コムフレーム
10 陽極コム端子
10A 平面部 (第 1の平面部)
10B 遮蔽部 (第 1の遮蔽部)
10E 接続部 (第 1の接続部)
10F 接続部
10G 平面部
10H 載置面 (第 1の載置面)
10M 実装面 (第 1の実装面)
11 陰極コム端子
11A 平面部 (第 2の平面部)
11B 遮蔽部 (第 2の遮蔽部)
11F 接続部 (第 2の接続部)
11G 接続部
11H 平面部
11J 実装面 (第 2の実装面)
11N 載置面 (第 2の載置面)
12 外装樹脂
13 導電性銀ペースト
16 部品
16A 電源端 電源端子
電源入力ライン
デカップリングコンデンサ
DCZDCコンノ ータ
平滑コンデンサ(第 1の平滑コンデンサ) 平滑コンデンサ(第 2の平滑コンデンサ) ノイズ除去用のコンデンサ
陰極部 (第 1の陰極部、第 2の陰極部) 固体電解コンデンサ
部品
A 電源端
C アース端
電源端子
A 電源ライン
B 電源ライン
デカップリングコンデンサ
DCZDCコンノ ータ
A 入力端
B 出力端
C アース端
平滑コンデンサ(第 1の平滑コンデンサ) 平滑コンデンサ(第 2の平滑コンデンサ) ノイズ除去用のコンデンサ
多層基板 (基板)
導電層
導電層(第 1の導電層)
導電層(第 2の導電層)
絶縁層 D2 絶縁層
D3 絶縁層
D4 絶縁層
発明を実施するための最良の形態
[0015] (実施の形態 1)
図 1は本発明の実施の形態 1によるデジタル信号処理装置 1001の回路図である。 デジタル信号処理装置 1001は、部品 16と、電源端子 17と、電源ライン 18と、デカツ プリングコンデンサ 19と、 DCZDCコンバータ 20と、平滑コンデンサ 21と 22と、複数 のノイズ除去用のコンデンサ 23とを備える。部品 16は電源端 16Aを有し、電源端 16 Aに供給された電力によりデジタル信号を処理して信号端 16Bから出力する大規模 集積回路 (LSI)である。電源端子 17は直流電源 17Aに接続される。電源ライン 18 は電源端子 17と部品 16の電源端 16Aを繋ぐ。デカツプリングコンデンサ 19は電源ラ イン 18とアース 1001A間に接続された固体電解コンデンサである。 DCZDCコンパ ータ 20の入力端 20Aには直流電源 17Aの出力する直流電圧が供給され、 DCZD Cコンバータ 20はその電圧を変換して出力端 20Bカゝら電源ライン 18に直流電圧を出 力する。平滑コンデンサ 21は DCZDCコンバータ 20の入力端 20Aとアース 1001A 間に接続され、平滑コンデンサ 22は DCZDCコンバータ 20の出力端 20Bとアース 1 001A間に接続される。コンデンサ 23は部品 16の電源端 16Aとアース 1001Aとの 間に接続され、一般に積層セラミックコンデンサが用いられて 、る。
[0016] デカップリングコンデンサ 19である固体電解コンデンサと平滑コンデンサ 22は、導 電性高分子を固体電解質として用いた面実装型の固体電解コンデンサである、 100 kHzにお!/、て 0より大きく 25m Ω以下の直列等価抵抗と、 500MHzにお!/、て 0より大 きく 800pH以下の直列等価インダクタンス (ESL)とを有する。
[0017] このように小さい ESRと ESLを有するコンデンサ 19、 22により、部品 16を駆動させ るために必要な電圧を十分に保証できる。部品 16はクロックに同期して動作する。そ のクロックは高周波輻射ノイズを発生させる。 DC/DCコンバータ 20はスイッチング 素子を有する。そのスイッチング素子はスイッチングノイズを発生する。その高周波輻 射ノイズとそのスイッチングノイズはコンデンサ 19、 22を介してアース 1001Aに流れ 、電源ライン 18を伝達する高周波輻射ノイズおよびスイッチングノイズを大きく低減す ることがでさる。
[0018] 図 2は実施の形態 1によるデジタル信号処理装置 1001のデジタルノイズを示す。
デジタル信号処理装置 1001のデジタルノイズは、図 14に示す従来のデジタル信号 処理装置 5001のデジタルノイズより低減されている。さら〖こ、図 1に示すコンデンサ 2 3の数を、図 13に示すノイズ除去用のコンデンサ 32の数の 1Z2〜1Z3程度に削減 できる。
[0019] 実施の形態 1によるデジタル信号処理装置 1001は、小さい ESRと ESLを有する固 体電解コンデンサをデカップリングコンデンサ 19と平滑コンデンサ 22として用いること により、デジタルノイズを大きく低減することができる。デジタル信号処理装置 1001は デジタルノイズ除去用のコンデンサ 23の数を削減でき、小型で薄型であり、低価格に できる。
[0020] 実施の形態 1においては、平滑コンデンサ 21にもデカップリングコンデンサ 19と平 滑コンデンサ 22と同じ固体電解コンデンサを用いてもよい。
[0021] 図 3Aは、デカップリングコンデンサ 19と平滑コンデンサ 22に使用される固体電解 コンデンサ 201の平面断面図である。図 3Bは、図 3Aに示す固体電解コンデンサ 20 1の線 3B— 3Bにおける正面断面図である。図 3Cと図 3Dは、それぞれ図 3Aに示す 固体電解コンデンサ 201の底面断面図と側面断面図である。図 4は固体電解コンデ ンサ 201のコンデンサ素子 1の一部切り欠き斜視図である。
[0022] コンデンサ素子 1は、陽極体 2と絶縁性のレジスト部 3と、固体電解質層 6と、陰極層 7よりなる。陽極体 2は弁作用金属であるアルミニウム箔カ なる。陽極体 2の表面は 粗面化されて、その表面上に陽極酸ィ匕皮膜層 2Aが形成される。陽極酸化皮膜層 2 Aが形成された後に、絶縁性のレジスト部 3により陽極体は陽極部 4と陰極形成部 5と に分離される。固体電解質層 6は陰極形成部 5の表面上に設けられる。陰極層 7は、 カーボンと銀ペーストからなり固体電解質層 6上に形成されて、陰極部 107を形成し ている。
[0023] 複数枚 (実施の形態 1では 5枚)のコンデンサ素子 1が積層され、陽極コムフレーム 8上に陽極部 4が載置される。陽極コムフレーム 8の両端のガイド部 8Aは折り曲げら れて陽極部 4を包み込み、陽極部 4と接合部 8Bでレーザー溶接されて一体に接合し ている。
[0024] 複数のコンデンサ素子 1が積層されて、陰極コムフレーム 9上に陰極部 107が導電 性接着剤を介して載置される。陰極コムフレーム 9の両端のガイド部 9Aと終端のガイ ド部 9Bによりコンデンサ素子 1が位置決めされて固定され、一体に接合している。一 体化された複数のコンデンサ素子 1と陽極コムフレーム 8と陰極コムフレーム 9はコン デンサ素子ユニット 1Aを形成する。
[0025] 図 5は固体電解コンデンサ 201に使用される陽極コム端子 10と陰極コム端子 11の 要部斜視図である。図 6A、図 6B、図 6Cは、それぞれ図 5に示すおける陽極コム端 子 10と陰極コム端子 11の線 6A— 6A、線 6B— 6B、線 6C— 6Cにおける断面図であ る。固体電解コンデンサ 201において、陽極コム端子 10は、陰極コム端子 11から方 向 201Aに位置する。陽極コム端子 10は、載置面 10Hと、接続部 10Eと、平面部 10 Aとを有する。載置面 10H上にはコンデンサ素子ユニット 1Aが載置される。接続部 1 0Eは、載置面 10Hの、方向 201Aと交差する方向 201Bの両端から載置面 10Hの 向力 方向 10J力 外に向力 方向 10Kに延出する。平面部 10Aは、方向 10Jに向 力 ように、接続部 10Eカも延出する。すなわち、平面部 10Aは接続部 10Eを介して 階段状の段差を形成する。載置面 10Hの方向 201 Aの反対の端力も接続部 10Fが 方向 10J力も外に向力 方向 10Lに延びる。遮蔽部 10Bが、接続部 10Eから陰極コ ム端子 11に向力つて延出する。遮蔽部 10Bは載置面 10Aと同じ方向 10Jに向力 平 面部 10Gを有する。すなわち、遮蔽部 10Bは接続部 10Fを介して階段状の段差を 形成する。平面部 10A上にコンデンサ素子ユニット 1Aの陽極コムフレーム 8が載置 され、接合部 10Cでレーザー溶接されて接合する。突出部 10Dは外装榭脂 12から 突出する。突出部 10Dは外装榭脂 12の側面に沿って上方へ折り曲げられている。 載置面 10Hと接続部 10E、 10Fと平面部 10Aと遮蔽部 10Bと突出部 10Dは 1枚の 金属板を打ち抜いて折り曲げることにより一体に形成されている。
[0026] 陰極コム端子 11の下面 11Jは固体電解コンデンサ 201が実装される際に実装面と なる。下面 11Jはコンデンサ素子 1の陰極部 107と略同形状に形成されることにより、 陽極コム端子 10に可能な限り近接する。陰極コム端子 11から方向 201Bに斜め上方 に延びる接続部 1 IFが設けられて 、る。接続部 11Fを介して陰極コムフレーム 9と接 合される平面状の平面部 11Aが階段状の段差を形成するように設けられる。接続部 11Gが、陽極コム端子 10に向力 方向 201Aに向力つて実装面となる下面 11Jから 斜め上方へ延びる。接続部 11Gを介して遮蔽部 11Bが階段状の段差を形成するよう に設けられている。遮蔽部 11Bは平面部 11Hを有する。陰極コム端子 11は 1枚の金 属板を打ち抜 、て折り曲げることにより一体に形成されて 、る。平面部 11 A上にコン デンサ素子ユニット 1Aの陰極コムフレーム 9が載置され、接合部 11Cでレーザー溶 接により接合されている。陰極コム端子 11の突出部 11D、 11Eは外装榭脂 12から突 出し、外装榭脂 12の側面に沿って上方へ折り曲げられている。陰極コム端子 11は、 コンデンサ素子ユニット 1 Aが載置される載置面 11Nを有する。
[0027] エポキシ榭脂等の絶縁性の樹脂よりなる外層榭脂 12は陽極コム端子 10の下面 10 Mと陰極コム端子 11の下面 10Jを露呈させて、コンデンサ素子ユニット 1Aを被覆す る。
[0028] すなわち、陽極コム端子 10は、実装面である下面 10Mの反対側でかつコンデンサ 素子ユニット 1Aが載置される載置面 10Hを有する。陰極コム端子 11は、実装面であ る下面 11Jの反対側でかつコンデンサ素子ュ-ット 1 Aが載置される載置面 11Nを有 する。遮蔽部 10Bは、陽極コム端子 10は、下面 10Mから陰極コム端子 11に向力 ヽ かつコンデンサ素子ユニット 1Aに向力 方向 10Lに延びる接続部 10Fを有し、接続 部 10F力も方向 201Aの反対の方向 201Cに延びる平面部 10Gをさらに有する。遮 蔽部 10Bは外装榭脂 12に被覆されている。遮蔽部 11Bは、下面 11Jから陽極コム端 子 10に向かいかつコンデンサ素子ユニット 1Aに向力 方向 I IPに延びる接続部 11 Gを有し、接続部 11G力 方向 201Aに延びる平面部 11Hをさらに有する。遮蔽部 1 1Bは外装榭脂 12に被覆されている。
[0029] 陽極コム端子 10は方向 201Aと交差する方向 201Bの両端 10Nを有する。陽極コ ム端子 10は、両端 10Nのそれぞれから延びる接続部 10Eと、接続部 10Eに接続さ れた平面部 10Aとを有する、接続部 10Eは、載置面 10Hと交差しかつ載置面 10H 力 遠ざ力る方向に延びる。平面部 10Aは平面状であり、載置面 10H力も遠ざかる 方句に延びる。 [0030] 陰極コム端子 11は方向 201Aと交差する方向 201Bの両端 11Qを有する。陰極コ ム端子 11は、両端 11Qのそれぞれから延びる接続部 11Fと、接続部 11F力も延びる 平面状の平面部 11 Aとを有する。接続部 11Fは載置面 11Nと交差しかつ載置面 11 N力 遠ざ力る方向に延びる。平面部 11 Aは接続部 11Fに接続され、載置面 11Nか ら遠ざ力る方句に延びる。
[0031] コンデンサ素子ユニット 1Aは陰極コム端子 11の平面部 11Aに接合される。銀を含 む導電性ペースト 13はコンデンサ素子ユニット 1Aの陰極コムフレーム 9と陰極コム端 子 11の間の空隙部に設けられ、陰極コムフレーム 9と陰極コム端子 11の間の接続抵 抗を低減し、接続の信頼性を向上させる。
[0032] 複数の陽極コム端子 10と複数の陰極コム端子 11は、銅合金力もなるフープ状の基 材に所定の間隔で連続して設けられる。この状態で複数の陽極コム端子 10と複数の 陰極コム端子 11上にコンデンサ素子ユニット 1Aをそれぞれ搭載して接合し外層榭 脂 12でそれぞれ一体に被覆する。その後に、基材から分断して個片の固体電解コン デンサ 201を得る。
[0033] 陽極コム端子 10の接続部 10Eと平面部 10Aと接続部 10Fと平面部 10G力もなる 遮蔽部 10B、および陰極コム端子 11の接続部 1 IFと平面部 11A、接続部 11Gと平 面部 11H力もなる遮蔽部 11Bは外装榭脂 12に被覆されて外には露呈しない。接続 部 10F、 11Gを介して階段状に平面部 10G、 11Hを設けているので、コム端子 10、 11の実装面となる下面 10M、 11Jとの間の境界に Rが形成され難くなる。したがって 、コム端子 10、 11の実装面となる下面 10M、 11Jに外装榭脂 12が回り込むのを防止 できる。
[0034] 実施の形態 1による固体電解コンデンサ 201では、略平板状の陽極コム端子 10と 陰極コム端子 11によりコンデンサ素子 1の陽極部 4と陰極部 107を外部に、可能な限 り短い距離で取り出すことができる。さらに、陰極コム端子 11の下面 11Jを陽極コム端 子 10の下面 10Mに可能な限り近づけて陽極コム端子 10と陰極コム端子 11間のパ スを最短にすることにより、コンデンサ 201は小さい ESRと小さい ESLを有する。特に コンデンサ 201の ESLは 500pHと低く、従来のコンデンサの ESLの 1500pHの 1/ 3となっている。 [0035] 陽極コム端子 10と陰極コム端子 11にそれぞれ設けられた平面部 10A、 11Aに陽 極コムフレーム 8、陰極コムフレーム 9をそれぞれレーザー溶接により接合し、かつ、 平面部 10A、 11 Aを外装榭脂 12で被覆する。この構造により、平面部 10A、 11 Aで の溶接痕が外装榭脂 12により被覆されるので外観が綺麗になり、溶接痕によりコン デンサ 201の実装時に不良を生じさせる浮きを防止でき、信頼性を向上できる。
[0036] 遮蔽部 10Bは陽極コム端子 10の端面から陰極コム端子 11に向力つて斜め上方へ 延び、遮蔽部 11Bは陰極コム端子 11の端面から陽極コム端子 10に向力つて斜め上 方へ延びる。遮蔽部 10B、 1 IBは外装榭脂 12で被覆されている。遮蔽部 10B、 11B は、外装榭脂 12から浸入する酸素に含まれる水分がコンデンサ素子 1に到達して悪 影響を及ぼすことを防止し、コンデンサ 201の信頼性を向上させる。
[0037] なお、実施の形態 1においては、コンデンサ素子 1の陽極体 2はアルミニウム箔から なるが、これに限定されるものではなぐタンタルやニオブの箔、あるいは焼結体、さら にはこれらの材料の組み合わせにより形成されてもよい。
[0038] 固体電解コンデンサ 201の特性について説明する。
[0039] 様々な等価直列抵抗値 (ESR)を有する固体電解コンデンサ 201の試料を作製し、 静電容量、損失角の正接、等価直列インダクタンス (ESL)、漏れ電流の初期特性を 測定した結果を図 7に示す。漏れ電流は固体電解コンデンサ 201に 10Vの電圧を印 カロして 2分後の値を測定した。固体電解コンデンサ 201の定格電圧は 6. 3Vで静電 容量は である。図 7は、図 13に示す従来のデジタル信号処理装置 5001での コンデンサ 23の数に対する、コンデンサ 201の試料を用いた図 1に示すコンデンサ 2 3の数の削減率を併せて示す。
[0040] 図 7に示すように、 ESRを 25m Ω以下にすることにより、デジタルノイズを除去する コンデンサ 23の数を効率的に削減できる。
[0041] 陽極コム端子 10と陰極コム端子 11の間の様々な距離 Lを有する固体電解コンデン サ 201の試料を作製し、静電容量、損失角の正接、等価直列抵抗値 (ESR)、等価 直列インダクタンス (ESL)、漏れ電流の初期特性を測定した結果を図 8に示す。距 離 Lは 0より大きい。
[0042] 図 8に示すように、陽極コム端子 10と陰極コム端子 11間の距離 Lが短いと ESLの 値が低くなり、特に距離 Lを 0より大きく 2mm以下にすることによって ESLが 800pH 以下になり、これによりコンデンサ 23の数を効率的に削減できる。
[0043] 以上のように、デカップリングコンデンサ 19および平滑コンデンサ 22に実施の形態 による固体電解コンデンサ 201を用いることにより、デジタル信号処理装置 1001から 発生するデジタルノイズを大きく低減できる。したがって、デジタルノイズを低減するコ ンデンサ 23の数を削減して、デジタル信号処理装置 1001を小型で薄型、低価格に することができる。
[0044] (実施の形態 2)
図 9は、本発明の実施の形態 2によるデジタル信号処理装置 1002の回路図である 。デジタル信号処理装置 1002は、部品 516と、電源端子 517と、電源ライン 518A、 518Bと、デカップリングコンデンサ 519と、 DCZDCコンバータ 520と、平滑コンデン サ 521と 522と、複数のノイズ除去用のコンデンサ 523とを備える。部品 516は電源 端 516 Aを有し、電源端 516 Aに供給された電力によりデジタル信号を処理して信号 端 516Bから出力する大規模集積回路 (LSI)である。電源端子 517は直流電源 517 Aに接続される。電源ライン 518Bは電源端子 517と DCZDCコンバータ 520の入力 端 502Aとを繋ぐ。電源ライン 518Aは、 DC/DCコンバータ 520の出力端 520Bと 部品 516の電源端 516Aとを繋ぐ。デカップリングコンデンサ 519は電源ライン 518A とアース 1002A間に接続された固体電解コンデンサである。 DCZDCコンバータ 52 0の入力端 520Aに電源ライン 518Bを介して直流電源 17Aの出力する直流電圧が 供給され、 DC/DCコンバータ 520はその電圧を変換して出力端 520B力も電源ラ イン 518Aに直流電圧を出力する。平滑コンデンサ 521は DCZDCコンバータ 520 の入力端 520Aとアース 1002A間に接続され、平滑コンデンサ 522は DCZDCコン バータ 520の出力端 520Bとアース 1002A間に接続される。部品 516のアース端 51 6Cはアース 1002Aに接続されている。コンデンサ 523は一般に積層セラミックコン デンサが用いられて ヽる。 DC/DCコンバータ 520のアース端 520Cはアース 1002 Aに接続されている。コンデンサ 523は部品 516の電源端 516Aとアース 1002Aとの 間に接続され、一般に積層セラミックコンデンサが用いられて 、る。
[0045] 図 10Aと図 10Bはデジタル信号処理装置 1002の断面図である。デジタル信号処 理装置 1002は。図 9に示す回路、すなわち部品 516、 DCZDCコンバータ 520、コ ンデンサ 519、 521、 522、 523が搭載された多層基板 601を備える。多層基板 601 は層 S3と、層 S3上の絶縁層 D5と、絶縁層 D5上の層 G2と、層 G2上の絶縁層 D4と 、絶縁層 D4上の層 Vccと、層 Vcc上の絶縁層 D3と、絶縁層 D3上の層 S2と、層 S2 上の絶縁層 D2と、絶縁層 D2上の層 G1と、層 G1上の絶縁層 D1と、絶縁層 D1上の 層 S1よりなる。
[0046] 図 10Aにおいて、図 9に示す電源ライン 518Aは層 Vccに設けられた導電層 602に 対応する。アース 1002Aは層 G1に設けられた導電層 603と層 G2に設けられた導電 層 604に対応する。層 S1〜S3、 Gl、 G2、 Vccには、これらの導電層と、導電層間を 絶縁するレジスト 601Aとが設けられている。デカップリングコンデンサ 519は電源ラ イン 518Aである導電層 602と導電層 603との間に接続されている。部品 516の電源 端 516Aは導電層 602に接続されている。部品 516のアース端 516Cは、層 G2に設 けられた導電層 604ではなぐデカップリングコンデンサ 519と同様に層 G1に設けら れた導電層 603に接続されている。部品 516のアース端 516Cをデカップリングコン デンサ 519と同じ導電層 603に接続することにより、アース端 516Cをデカップリング コンデンサ 519と最短距離で接続でき、アース 1002A内で発生するインピーダンス を低減できる。
[0047] 図 10Bにおいて、図 9に示す電源ライン 518Bは層 Vccに設けられた導電層 605に 対応する。アース 1002Aは層 G1に設けられた導電層 603と層 G2に設けられた導電 層 604に対応する。平滑コンデンサ 521は電源ライン 518Bである導電層 605と導電 層 603との間に接続されている。 DCZDCコンバータ 520の入力端 520Aは導電層 605に接続されている。 DC/DCコンバータ 520のアース端 520Cは、層 G2に設け られた導電層 604ではなく、平滑コンデンサ 521と同様に層 G1に設けられた導電層 603に接続されている。 DC/DCコンバータ 520のアース端 520Cを平滑コンデンサ 521と同じ導電層 603に接続することにより、アース端 520Cを平滑コンデンサ 521と 最短距離で接続でき、アース 1002A内で発生するインピーダンスを低減できる。
[0048] デカップリングコンデンサ 519と平滑コンデンサ 522には、図 2〜図 5、図 6A〜図 6 Cに示す実施の形態 1による固体電解コンデンサ 201を使用する。 [0049] 実施の形態 2によるデジタル信号処理装置 1002では、実施の形態 1によるデジタ ル信号処理装置 1001と同様に、小さい ESRと ESLを有するコンデンサ 519、 522に より、部品 516を駆動させるために必要な電圧を十分に保証できる。部品 516はクロ ックに同期して動作する。そのクロックは高周波輻射ノイズを発生させる。 DCZDCコ ンバータ 520はスイッチング素子を有する。そのスイッチング素子はスイッチングノィ ズを発生する。その高周波輻射ノイズとそのスイッチングノイズはコンデンサ 519、 52 2を介してアース 1002Aすなわち導電層 603、 604に流れ、電源ライン 518Aを伝達 する高周波輻射ノイズおよびスイッチングノイズを大きく低減することができる。また、 固体電解コンデンサ 201をデカップリングコンデンサ 519と平滑コンデンサ 522に用 いることにより、デジタルノイズを大きく低減することができる。したがって、デジタルノ ィズ除去用のコンデンサ 523の数を大幅に削減でき、デジタル信号処理装置 1002 を小型で薄型にできかつ低価格にできる。
[0050] 図 12は、比較例のデジタル信号処理装置 1003の断面図である。デジタル信号処 理装置 1003は、図 10に示すデジタル信号処理装置 1002と同様に、図 9に示す回 路を搭載する多層基板 601を有する。デジタル信号処理装置 1003では、部品 516 のアース端 516Cは層 G1に設けられた導電層 603に接続され、デカップリングコン デンサ 519は層 G2に設けられた導電層 604に接続されている。すなわち、部品 516 のアース端 516Cは、デカップリングコンデンサ 519と異なる導電層 603に接続され ている。この構造では、部品 516のアース端 516Cとデカップリングコンデンサ 519と の間の回路長が長くなり、アース 1002A内でのインピーダンスが高くなつて、デジタ ルノイズを低減する効果が減少するので好ましくない。
[0051] 実施の形態 1においては、平滑コンデンサ 521にもデカップリングコンデンサ 519と 平滑コンデンサ 522と同じ固体電解コンデンサ 201を用いてもよい。
[0052] 以上のように、デカップリングコンデンサ 519および平滑コンデンサ 522に実施の形 態 1による固体電解コンデンサ 201を用いることにより、デジタル信号処理装置 1002 カゝら発生するデジタルノイズを大きく低減できる。したがって、デジタルノイズを低減 するコンデンサ 523の数を削減して、デジタル信号処理装置 1002を小型で薄型、低 価格にすることができる。 産業上の利用可能性
本発明によるデジタル信号処理装置はデジタルノイズをあまり発生せず、小型で薄 型にでき、デジタル信号処理を行う家電製品、特にテレビ受信機に有用である。

Claims

請求の範囲
[1] 電源端を有し、前記電源端に供給された電力によりデジタル信号を処理する部品と、 前記部品の前記電源端に前記電力を供給する電源ラインと、
100kHzにおいて 0より大きく 25πιΩ以下の直列等価抵抗と、 500MHzにおいて 0よ り大きく 800ρΗ以下の直列等価インダクタンスとを有する、前記電源ラインとアースと の間に接続されたデカップリングコンデンサと、
を備えたデジタル信号処理装置。
[2] 前記デカップリングコンデンサは、
導電性高分子よりなる第 1の固体電解質層を有し、第 1の陽極部と第 1の陰極部 とを有する第 1のコンデンサ素子と、
第 1の実装面を有して、前記第 1のコンデンサ素子の前記第 1の陽極部に接続 された陽極コム端子と、
前記第 1の実装面との距離が 0より大きく 2mm以下である第 2の実装面を有して 、前記第 1のコンデンサ素子の前記第 1の陰極部に接続された陰極コム端子と、 前記第 1の実装面と前記第 2の実装面を露呈するように、前記陽極コム端子と前 記陰極コム端子と前記第 1のコンデンサ素子とを被覆する絶縁性の外装樹脂と、 を含む、請求項 1に記載のデジタル信号処理装置。
[3] 前記陰極コム端子の前記第 2の実装面は前記第 1のコンデンサ素子の前記第 1の陰 極部と略同形状を有する、請求項 2に記載のデジタル信号処理装置。
[4] 前記陽極コム端子は、前記第 1の実装面の反対側でかつ前記第 1のコンデンサ素子 が載置される第 1の載置面を有し、
前記陰極コム端子は、前記第 2の実装面の反対側でかつ前記第 1のコンデンサ素子 が載置される第 2の載置面を有し、
前記陽極コム端子は、前記第 1の実装面力 前記陰極コム端子に向かいかつ前記 第 1のコンデンサ素子に向力う方向に延びてかつ前記外装樹脂に被覆された第 1の 遮蔽部を有し、
前記陰極コム端子は、前記第 2の実装面力 前記陽極コム端子に向かいかつ前記 第 1のコンデンサ素子に向力う方向に延びてかつ前記外装樹脂に被覆された第 2の 遮蔽部を有する、請求項 2に記載のデジタル信号処理装置。
[5] 前記陽極コム端子と前記陰極コム端子は所定の方向に配置され、
前記陽極コム端子は前記所定の方向と交差する方向の両端を有し、
前記陽極コム端子は、
前記陽極コム端子の前記両端のそれぞれから前記第 1の載置面と交差しかつ 前記第 1の載置面から遠ざかる方向に延びる第 1の接続部と、
前記第 1の接続部に接続され、前記第 1の載置面から遠ざかる方句に延びる平 面状の第 1の平面部と、
を含む、請求項 4に記載のデジタル信号処理装置。
[6] 前記陰極コム端子は前記所定の方向と交差する前記方向の両端を有し、
前記陰極コム端子は、
前記陰極コム端子の前記両端のそれぞれから前記第 2の載置面と交差しかつ 前記第 2の載置面から遠ざかる方向に延びる第 2の接続部と、
前記第 2の接続部に接続され、前記第 2の載置面から遠ざかる方句に延びる平 面状の第 2の平面部と、
を含む、請求項 5に記載のデジタル信号処理装置。
[7] 前記デカップリングコンデンサは、
導電性高分子よりなる第 2の固体電解質層を有し、第 2の陽極部と第 2の陰極部 とを有し、前記第 1のコンデンサ素子に積層された第 2のコンデンサ素子と、
前記第 1の陽極部と前記第 2の陽極部に接合され、かつ前記陽極コム端子に接 合された陽極コムフレームと、
前記第 1の陰極部と前記第 2の陰極部に接合され、かつ前記陰極コム端子に接 合された陰極コムフレームと、
をさらに含む、請求項 2に記載のデジタル信号処理装置。
[8] 電源が接続される入力端と、前記電源ラインに接続されて前記電力を供給する出力 端とを有する DCZDCコンバータと、
前記 DCZDCコンバータの前記入力端に接続された第 1の平滑コンデンサと、 100kHzにおいて 0より大きく 25πιΩ以下の直列等価抵抗と、 500MHzにおいて 0よ り大きく 800pH以下の直列等価インダクタンスとを有する、前記 DCZDCコンバータ の前記出力端に接続された第 2の平滑コンデンサと、
をさらに備えた、請求項 1に記載のデジタル信号処理装置。
[9] 前記第 2の平滑コンデンサは、
導電性高分子よりなる第 1の固体電解質層を有し、第 1の陽極部と第 1の陰極部 とを有する第 1のコンデンサ素子と、
第 1の実装面を有して、前記第 1のコンデンサ素子の前記第 1の陽極部に接続 された陽極コム端子と、
前記第 1の実装面との距離が 0より大きく 2mm以下である第 2の実装面を有して 、前記第 1のコンデンサ素子の前記第 1の陰極部に接続された陰極コム端子と、 前記第 1の実装面と前記第 2の実装面を露呈するように、前記陽極コム端子と前 記陰極コム端子と前記第 1のコンデンサ素子とを被覆する絶縁性の外装樹脂と、 を含む、請求項 8に記載のデジタル信号処理装置。
[10] 前記陰極コム端子の前記第 2の実装面は前記第 1のコンデンサ素子の前記第 1の陰 極部と略同形状を有する、請求項 9に記載のデジタル信号処理装置。
[11] 前記陽極コム端子は、前記第 1の実装面の反対側でかつ前記第 1のコンデンサ素子 が載置される第 1の載置面を有し、
前記陰極コム端子は、前記第 2の実装面の反対側でかつ前記第 1のコンデンサ素子 が載置される第 2の載置面を有し、
前記陽極コム端子は、前記第 1の実装面力 前記陰極コム端子に向かいかつ前記 第 1のコンデンサ素子に向力う方向に延びてかつ前記外装樹脂に被覆された第 1の 遮蔽部を有し、
前記陰極コム端子は、前記第 2の実装面力 前記陽極コム端子に向かいかつ前記 第 1のコンデンサ素子に向力う方向に延びてかつ前記外装樹脂に被覆された第 2の 遮蔽部を有する、請求項 9に記載のデジタル信号処理装置。
[12] 前記陽極コム端子と前記陰極コム端子は所定の方向に配置され、
前記陽極コム端子は前記所定の方向と交差する方向の両端を有し、
前記陽極コム端子は、 前記陽極コム端子の前記両端のそれぞれから前記第 1の載置面と交差しかつ 前記第 1の載置面から遠ざかる方向に延びる第 1の接続部と、
前記第 1の接続部に接続され、前記第 1の載置面から遠ざかる方句に延びる平 面状の第 1の平面部と、
を含む、請求項 11に記載のデジタル信号処理装置。
[13] 前記陰極コム端子は前記所定の方向と交差する前記方向の両端を有し、
前記陰極コム端子は、
前記陰極コム端子の前記両端のそれぞれから前記第 2の載置面と交差しかつ 前記第 2の載置面から遠ざかる方向に延びる第 2の接続部と、
前記第 2の接続部に接続され、前記第 2の載置面から遠ざかる方句に延びる平 面状の第 2の平面部と、
を含む、請求項 12に記載のデジタル信号処理装置。
[14] 前記第 2の平滑コンデンサは、
導電性高分子よりなる第 2の固体電解質層を有し、第 2の陽極部と第 2の陰極部 とを有し、前記第 1のコンデンサ素子に積層された第 2のコンデンサ素子と、
前記第 1の陽極部と前記第 2の陽極部に接合され、かつ前記陽極コム端子に接 合された陽極コムフレームと、
前記第 1の陰極部と前記第 2の陰極部に接合され、かつ前記陰極コム端子に接 合された陰極コムフレームと、
をさらに含む、請求項 8に記載のデジタル信号処理装置。
[15] 第 1の導電層と、前記第 1の導電層上に設けられた絶縁層とを含む基板をさらに備え 前記部品は前記導電層に接続されたアース端をさらに有し、
前記デカツプリングコンデンサは前記電源ラインと前記導電層との間に接続された、 請求項 1に記載のデジタル信号処理装置。
[16] 前記基板は前記第 1の導電層に接続された第 2の導電層をさらに含む、請求項 15に 記載のデジタル信号処理装置。
PCT/JP2006/309630 2005-05-18 2006-05-15 デジタル信号処理装置 WO2006123597A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06746377A EP1883085A4 (en) 2005-05-18 2006-05-15 DIGITAL SIGNAL PROCESSOR
US11/885,458 US7787234B2 (en) 2005-05-18 2006-05-15 Digital signal processor
CN2006800173292A CN101180692B (zh) 2005-05-18 2006-05-15 数字信号处理设备

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005144987 2005-05-18
JP2005-144987 2005-05-18
JP2005-309361 2005-10-25
JP2005309361A JP2007123309A (ja) 2005-10-25 2005-10-25 デジタル信号処理基板
JP2005-309360 2005-10-25
JP2005309360A JP4770391B2 (ja) 2005-05-18 2005-10-25 デジタル信号処理基板

Publications (1)

Publication Number Publication Date
WO2006123597A1 true WO2006123597A1 (ja) 2006-11-23

Family

ID=37431170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309630 WO2006123597A1 (ja) 2005-05-18 2006-05-15 デジタル信号処理装置

Country Status (5)

Country Link
US (1) US7787234B2 (ja)
EP (1) EP1883085A4 (ja)
KR (1) KR100919337B1 (ja)
CN (1) CN101180692B (ja)
WO (1) WO2006123597A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012074586A (ja) * 2010-09-29 2012-04-12 Ebara Corp 電磁石制御装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8451807B2 (en) * 2006-12-20 2013-05-28 Honeywell International Inc. Configuration aware packet routing in an ad-hoc network
JP2008172868A (ja) * 2007-01-09 2008-07-24 Denso Corp Dc−dcコンバータ及びその設計方法
US8057239B2 (en) * 2009-04-29 2011-11-15 GM Global Technology Operations LLC Power module assembly
DE112010005957B4 (de) 2010-10-22 2018-03-15 Hewlett-Packard Development Company, L.P. Computersystem und Griffmodul
US20140078647A1 (en) * 2012-09-14 2014-03-20 Apaq Technology Co., Ltd. Stacked-type solid electrolytic capacitor package structure having a plurality of negative lead pins and method of manufacturing the same
US10026685B2 (en) * 2015-09-25 2018-07-17 Qualcomm Incorporated Metal-oxide-metal (MOM) capacitor with reduced magnetic coupling to neighboring circuit and high series resonance frequency
CN105515164B (zh) * 2016-01-27 2018-04-13 京东方科技集团股份有限公司 电源组件及电子设备
CN111225489B (zh) * 2018-11-26 2021-06-11 杭州海康威视数字技术股份有限公司 一种电源传输电路和电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000031650A (ja) * 1998-07-14 2000-01-28 Sony Corp プリント基板
JP2000138138A (ja) * 1998-08-26 2000-05-16 Matsushita Electric Ind Co Ltd 固体電解コンデンサおよびその製造方法
JP2003133177A (ja) 2001-08-16 2003-05-09 Sanyo Electric Co Ltd 固体電解コンデンサ及びその製造方法
JP2003197485A (ja) * 2001-12-27 2003-07-11 Nippon Chemicon Corp チップ型固体電解コンデンサ及びその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6625009B2 (en) * 2001-04-05 2003-09-23 Rohm Co., Ltd. Solid electrolytic capacitor and method of making the same
CN1496571A (zh) * 2001-09-20 2004-05-12 松下电器产业株式会社 电容器、层叠型电容器及电容器内置基板
JP2003133183A (ja) 2001-10-26 2003-05-09 Matsushita Electric Ind Co Ltd 固体電解コンデンサおよびその製造方法
KR20030084256A (ko) * 2002-04-26 2003-11-01 삼화전기주식회사 고체 전해 콘덴서 및 그에 사용되는 리드 프레임
US6791822B2 (en) * 2002-06-07 2004-09-14 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitor
WO2003107367A1 (ja) * 2002-06-18 2003-12-24 ティーディーケイ株式会社 固体電解コンデンサおよび固体電解コンデンサ内蔵基板ならびにそれらの製造方法
TWI277992B (en) * 2002-10-30 2007-04-01 Matsushita Electric Ind Co Ltd Sheet capacitor, IC socket using the same, and manufacturing method of sheet capacitor
JP4472277B2 (ja) * 2003-04-10 2010-06-02 Necトーキン株式会社 チップ型固体電解コンデンサ
JP2005079463A (ja) * 2003-09-02 2005-03-24 Nec Tokin Corp 積層型固体電解コンデンサおよび積層型伝送線路素子
JP4126021B2 (ja) * 2004-02-05 2008-07-30 ローム株式会社 固体電解コンデンサ
JP2006073791A (ja) * 2004-09-02 2006-03-16 Nec Tokin Corp 表面実装薄型コンデンサ
JP4802585B2 (ja) * 2005-07-22 2011-10-26 パナソニック株式会社 固体電解コンデンサ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000031650A (ja) * 1998-07-14 2000-01-28 Sony Corp プリント基板
JP2000138138A (ja) * 1998-08-26 2000-05-16 Matsushita Electric Ind Co Ltd 固体電解コンデンサおよびその製造方法
JP2003133177A (ja) 2001-08-16 2003-05-09 Sanyo Electric Co Ltd 固体電解コンデンサ及びその製造方法
JP2003197485A (ja) * 2001-12-27 2003-07-11 Nippon Chemicon Corp チップ型固体電解コンデンサ及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012074586A (ja) * 2010-09-29 2012-04-12 Ebara Corp 電磁石制御装置

Also Published As

Publication number Publication date
CN101180692B (zh) 2011-01-12
CN101180692A (zh) 2008-05-14
US7787234B2 (en) 2010-08-31
KR100919337B1 (ko) 2009-09-25
EP1883085A4 (en) 2010-05-12
US20090160579A1 (en) 2009-06-25
EP1883085A1 (en) 2008-01-30
KR20080002903A (ko) 2008-01-04

Similar Documents

Publication Publication Date Title
WO2006123597A1 (ja) デジタル信号処理装置
JP3536722B2 (ja) チップ形固体電解コンデンサおよびその製造方法
US7460359B2 (en) Thin multi-terminal capacitor and method of manufacturing the same
JP2004055889A (ja) 固体電解コンデンサ
JP4613699B2 (ja) 固体電解コンデンサ及びその製造方法とこれを用いたデジタル信号処理基板
JP2006190929A (ja) 固体電解コンデンサ及びその製造方法
KR100220609B1 (ko) 고체전해 콘덴서 및 그 제조방법
JP4613669B2 (ja) 固体電解コンデンサ
JP2003234246A (ja) 複合コンデンサ
JP4770391B2 (ja) デジタル信号処理基板
JP2001291637A (ja) 球状キャパシタと該キャパシタの製造方法と球状キャパシタの実装構造と配線基板と該配線基板の製造方法
JP3142011B2 (ja) 固体電解コンデンサ
JP2007123309A (ja) デジタル信号処理基板
WO2024070563A1 (ja) コンデンサ
JP2958040B2 (ja) 固体電解コンデンサの製造方法
JP2902714B2 (ja) 固体電解コンデンサの製造方法
JP2902715B2 (ja) 固体電解コンデンサの製造方法
JPH10284809A (ja) 回路モジュール及びその製造方法
JP2001044077A (ja) チップ形固体電解コンデンサ
JP2955312B2 (ja) 固体電解コンデンサおよびその製造方法
JPH08752Y2 (ja) 固体電解コンデンサ
JP2007123795A (ja) デジタル信号処理基板
JPH11284477A (ja) 薄型圧電共振子及びその実装構造
JP2006352067A (ja) デジタル信号処理基板
JPS6158227A (ja) チツプ形電解コンデンサ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680017329.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11885458

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006746377

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077025089

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006746377

Country of ref document: EP