WO2006123531A1 - プロトン含有型ニッケル系遷移金属酸化物を使用して正極を製造する方法 - Google Patents

プロトン含有型ニッケル系遷移金属酸化物を使用して正極を製造する方法 Download PDF

Info

Publication number
WO2006123531A1
WO2006123531A1 PCT/JP2006/308942 JP2006308942W WO2006123531A1 WO 2006123531 A1 WO2006123531 A1 WO 2006123531A1 JP 2006308942 W JP2006308942 W JP 2006308942W WO 2006123531 A1 WO2006123531 A1 WO 2006123531A1
Authority
WO
WIPO (PCT)
Prior art keywords
transition metal
proton
metal oxide
positive electrode
containing nickel
Prior art date
Application number
PCT/JP2006/308942
Other languages
English (en)
French (fr)
Inventor
Miki Yasutomi
Toru Tabuchi
Original Assignee
Gs Yuasa Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gs Yuasa Corporation filed Critical Gs Yuasa Corporation
Priority to JP2006520475A priority Critical patent/JPWO2006123531A1/ja
Publication of WO2006123531A1 publication Critical patent/WO2006123531A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • C01G51/50Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese of the type [MnO2]n-, e.g. Li(CoxMn1-x)O2, Li(MyCoxMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a positive electrode for a non-aqueous electrolyte secondary battery using a proton-containing nickel-based transition metal oxide.
  • Transition metal oxides such as lithium cobaltate, lithium manganate, or lithium nickelate are used as the positive electrode active material provided in the positive electrode of the nonaqueous electrolyte secondary battery.
  • those whose transition metal oxides are mainly nickel are highly expected because they generally exhibit a high discharge capacity.
  • this is referred to as “nickel-based transition metal oxide”.
  • a general Nikkenore transition metal oxide is manufactured through a heat treatment step.
  • LiOH, LiNO, LiCO, or LiO as a lithium source
  • 3 3 2 3 2 is mixed and manufactured by heat treatment at about 600-900 ° C in an oxygen stream.
  • Japanese Patent Application Laid-Open No. 09-219193 which is a Japanese patent publication, discloses a method of synthesizing lithium nickelate by reacting nickel oxyhydroxide with a lithium ion-containing solution.
  • Japanese Patent Publication No. 6-349494 which is a Japanese patent publication, has a general formula AB MO (where 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 2, 1.5 ⁇ z ⁇ 3, xyz by ion exchange).
  • M at least one selected from Mn, Fe, Ni, Co, V, Cr, Sc, and A and B are elements consisting of H, Li, Na, K, Cs, Ca, Mg, Rb, and mixtures thereof) Life A method for synthesizing substances is disclosed.
  • Japanese Patent Publication No. 09-320588 discloses a chemical formula H Li MO.
  • LiM 0 (0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 2, 1 ⁇ (x + y) ⁇ 2, where M is one or two transition metals with which Co and Ni are also selected)
  • the positive electrode active material since the positive electrode active material is manufactured in an aqueous solution, it does not undergo a heat treatment step. Therefore, the nickel-based transition metal oxide produced by this production method is less likely to produce an asymmetric structure, and thus is superior to that produced through a heat treatment step. There is also an advantage that the manufacturing force is easy.
  • the present invention relates to a proton-containing nickel-based transition metal oxide having a large BET specific surface area that has not been produced conventionally (the chemical formula thereof is represented by H Li Ni MO xy 1 — Aa 2
  • the object is to provide a non-aqueous electrolyte secondary battery with excellent characteristics.
  • an object of the present invention is to provide a non-aqueous electrolyte secondary battery having excellent self-discharge characteristics that cannot be predicted by those skilled in the art.
  • M is a proton-containing nickel-based transition metal oxide represented by Co, Ti, V, Cr, Mn, Fe, Al, Cu, and Zn).
  • the proton-containing nickel-based transition metal oxide has a specific surface area of 6 m 2 / g or more by BET method.
  • the present invention relates to a method for producing a proton-containing nickel-based transition metal oxide, the method comprising the formula Ni M (OH) (0 ⁇ a ⁇ 0.5, M is Co, Ti, V, Cr, Mn, Fe
  • this is the composition at the time of preparation.
  • the proton-containing nickel-based transition metal oxide represented by this chemical formula is charged, lithium ions are desorbed from the proton-containing nickel-based transition metal oxide to cause electron transfer.
  • the chemical formula is H Li Ni x y— z 1— a
  • the present invention relates to a proton-containing nickel whose chemical formula is represented by H Li Ni M O
  • the BET method is a Langmuir theory in which three members, Brunauer, Emmett, and Teller, are monolayer adsorption theory (molecules can be stacked and adsorbed indefinitely. This is a method for determining the surface area based on the theory that Langmuir's equation is established for each layer without interaction, and is extended to a multimolecular layer. Specifically, the surface area of the sample is determined from the amount of adsorbed molecules adsorbed on the surface of the powder particles.
  • a proton-containing alkenyl transition metal oxide having a BET specific surface area of 6 m 2 / g or more could be obtained.
  • the difference from the prior art is the second step. That is, conventionally, the product obtained in the first step has been washed with deionized water. Washing with deionized water is common knowledge for those skilled in the art as a method for synthesizing inorganic compounds. Therefore, changing the process of washing with deionized water is not usually employed. However, the inventors of the present application decided to allow a solution containing lithium ions to pass through without being washed with deionized water, and to dry the solution as it was.
  • lithium hydroxide, lithium hydroxide monohydrate, lithium carbonate, lithium oxide, lithium nitrate, lithium sulfate, lithium chloride, lithium oxalate A solution in which at least one selected from the group consisting of lithium acetate and lithium citrate is dissolved in a solvent such as water can be used.
  • a solution saturated with a lithium salt is preferred.
  • water or an organic solvent may be used as a solvent for the "solution" used in the second step.
  • the solution preferably contains only lithium ions (and protons) as cations.
  • lithium ions and protons
  • sodium ions or force ions may be included.
  • the lithium ion concentration from the viewpoint of reaction rate, it is preferable that the number of moles of lithium ion is excessive with respect to the number of moles of metal contained in the hydroxide.
  • a saturated aqueous solution of lithium hydroxide or the like is preferable.
  • the collected product is dried as it is.
  • a solution containing lithium ions and before drying do not wash with deionized water.
  • a solution containing the same lithium ion as the solution used in the first step is limited. It is preferable to use it. This is because side reactions are unlikely to occur.
  • the specific surface area is 14.5 to 16.5 m 2 / g. This is because the self-discharge characteristics are minimized in this case. Specific evaluation results will be described later in the second embodiment.
  • FIG. 2 shows the evaluation results of high rate discharge characteristics of proton-containing nickel-based transition metal oxide with x of about 0.7.
  • the manufacturing method includes the following first and second steps.
  • the value of y in the chemical formula was calculated from the molar ratio of Li / (Ni + M) after Li, Ni and M were quantified by inductively coupled plasma (ICP) analysis.
  • the value of X in the chemical formula was calculated from the molar ratio of H / (Ni + M) after quantification of H, Ni and M by Rutherford backscattering analysis (RBS) —hydrogen forward scattering analysis (HFS). .
  • composition analyzes are shown in the column of the composition formula of the produced proton-containing Nikkenole transition metal oxide in Table 1.
  • values of X and y in the chemical formula of the produced proton-containing nickel-based transition metal oxide are respectively set to the X-axis and Y-axis of the graph, and the proton-containing nickel-based transition metal oxide as an example and a comparative example is used.
  • the product is shown in FIG. In this method, a proton-containing nickel-based transition metal oxide having a y value greater than 1 in the chemical formula could not be obtained.
  • the positive electrode is manufactured by the following method.
  • the proton-containing nickel-based transition metal oxide produced by the method of (89 wt%), acetylene black (4 wt%), and polyvinylidene fluoride (7 mass 0/0), N- methyl _ 2 _Pyrrolidone (hereinafter abbreviated as NMP)
  • NMP N- methyl _ 2 _Pyrrolidone
  • the positive electrode paste was manufactured by mixing in. This positive electrode paste was applied onto an aluminum foil having a thickness of 20 zm. Thereafter, NMP was removed by drying under reduced pressure at 70 ° C. The coating weight after removing NMP was 1.00 g / l 00 cm 2 .
  • the obtained positive electrode was pressed with a roller and then cut into a size of 30 mmWX 40 mmL X 50 ⁇ mT by a slitter to produce a plate-shaped positive electrode.
  • Electrodes positive electrodes of Examples and Comparative Examples shown in Table 1 were used.
  • a metallic lithium plate was used as a reference electrode and a counter electrode.
  • As an electrolyte LiCIO was dissolved in a solvent in which ethylene carbonate (EC) and ethylmethyl carbonate (EMC) were mixed at a volume ratio of 1: 1 so that the concentration force was Slmol / dm 3 . Things were used.
  • EC ethylene carbonate
  • EMC ethylmethyl carbonate
  • a three-pole glass cell was manufactured.
  • the electrochemical potential behavior is evaluated by the following method. After charging to 4.2 V (vs. Li / Li + ) so that the current density is 0.25 mA / cm 2 with respect to the plate-shaped positive electrode at 25 ° C, 1.5 V (vs. Li / Li Low-rate discharge (current density: 0.25 mA / cm 2 ) was performed until + ). Then, after charging again as described above, high-rate discharge (current density: 5. OmAZcm 2 ) was performed up to 1.5 V (vs. Li / Li + ).
  • Fig. 3 the evaluation results of the high rate discharge characteristics of the proton-containing nickel-based transition metal oxide with y of about 0.8 are shown.
  • the method for producing the negative electrode is as follows. Scaly graphite was used as the negative electrode active material.
  • a negative electrode paste was produced by mixing flake graphite (80% by mass) having an average particle size of 10 / m and polyvinylidene fluoride (20% by mass) into NMP. This negative electrode paste was applied onto a copper foil having a thickness of 15 ⁇ . The copper foil coated with the negative electrode paste was dried at 150 ° C to remove NMP. This was compression-molded with a roll press and cut into a size of 30 mmW ⁇ 40 mmL ⁇ 35 ⁇ mT with a slitter to produce a plate-like negative electrode.
  • the obtained positive electrode and negative electrode were superposed via a polyethylene separator (a continuous porous body having a thickness of 20 ⁇ m and a porosity of 40%), whereby a power generation element was formed.
  • This power generation element was inserted into a container 70 mm high, 34 mm wide and 1 mm thick.
  • a nonaqueous electrolyte secondary battery was manufactured by injecting a nonaqueous electrolyte into the container.
  • LiPF of ImolZdm 3 was dissolved in a mixed solvent of 1: 1 volume ratio of ethylene carbonate (EC) and ethylmethyl carbonate (EMC) in the electrolyte as the non-aqueous electrolyte.
  • the nominal capacity (1C) of the manufactured non-aqueous electrolyte secondary battery is 12mAh.
  • the high rate discharge characteristics of the nonaqueous electrolyte secondary battery were evaluated.
  • the evaluation method is as follows. 2 At 5 ° C, the battery was charged to 4.2 V at a current of 2.4 mA and then discharged to 2.75 V at 2.8 mA corresponding to a low rate discharge. After that, the battery was charged again to 4.2 V at a current of 2.4 mA, and then discharged to 2.75 V at 36 mA corresponding to a high rate discharge. Discharge capacity is also shown in Table 1. did.
  • the non-aqueous electrolyte secondary battery When a positive electrode is manufactured using a proton-containing nickel-based transition metal oxide that is ⁇ x + y ⁇ l. 92), the non-aqueous electrolyte secondary battery also has a particularly good high rate discharge characteristic. It became clear to show sex. That is, the high-rate discharge characteristics of the nonaqueous electrolyte secondary batteries A01 to A15 were superior to those of R01 to R14. Such a result is not anticipated by one skilled in the art.
  • the direct of a is 0 ⁇ a ⁇
  • the inventors of the present application have confirmed that if 0.5, the effect of the present invention, which is an effect of the present invention, can be obtained that is excellent in high-rate discharge characteristics that cannot be expected by those skilled in the art.
  • the nickel force is substituted with at least one selected from the group consisting of S, Ti, V, Cr, Mn, Fe, Al, Cu and Zn.
  • the high-rate discharge characteristics of the positive electrode produced using the proton-containing nickel-based transition metal oxide are high. This inventor confirmed that it was excellent.
  • a positive electrode active material was produced.
  • the manufacturing method includes the following first and second steps.
  • the concentration of the aqueous solution and the temperature during the reaction are as shown in Table 2 and Table 3, respectively.
  • Tables 2 and 3 are listed in two parts for the convenience of the page, which should be structured vertically as a single table.
  • Drying was performed at 0 ° C for 1 hour.
  • 0 (50 ° C.) shown in the column of the second step in Table 2 and Table 3 means that the solution was passed with deionized water at 50 degrees Celsius.
  • the temperature of the aqueous lithium lithium hydroxide solution in the second step is 25 ° C unless otherwise specified.
  • scaly graphite amorphous carbon, oxide, or nitride can be used. These may be used alone or in admixture of two or more.
  • polytetrafluoroethylene ethylene propylene terpolymer, attarilonitriletriol butadiene rubber, fluororubber, poly Vinyl acetate, polymethylmethacrylate, polyethylene, nitrocellulose, polyvinylidene fluoride, polyethylene, polypropylene, tetrafluoroethylene hexafluoropropylene copolymer, polyvinylidene fluoride monochlorotrifluoroethylene
  • SBR styrene-butadiene rubber
  • CMC carboxymethyl cellulose
  • Solvents used when mixing the binder include N-methyl-2-pyrrolidone (NMP), dimethylformamide, dimethylacetamide, methylethylketone, cyclohexanone, methyl acetate, methyl acrylate Getiltriamine, N—N dimethylaminopropylamine, ethylene oxide, tetrahydrofuran or the like may be used.
  • NMP N-methyl-2-pyrrolidone
  • dimethylformamide dimethylacetamide
  • methylethylketone cyclohexanone
  • methyl acetate methyl acrylate
  • Getiltriamine N—N dimethylaminopropylamine, ethylene oxide, tetrahydrofuran or the like may be used.
  • the current collector of the electrode iron, copper, stainless steel, nickel, or aluminum can be used.
  • the form may be a sheet, foam, mesh, porous, or expanded lattice.
  • a current collector having a hole in an arbitrary shape can also be used.
  • an electrolytic solution may be used.
  • the organic solvent constituting the electrolytic solution include ethylene carbonate, propylene carbonate, butylene carbonate, trifluoropropylene carbonate, y-butylate rataton, sulfolane, 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, and 2-methyltetrahydrofuran.
  • Vinylene carbonate or Carbonate such as butylene carbonate, benzene such as biphenylene or cyclohexylenobenzene, or sulfur based compound such as propane sultone may be mixed in an organic solvent.
  • the supporting salts that compose the electrolyte include LiPF, LiCIO, LiBF, Li
  • LiN (COCF CF), LiC BO, etc. can be used. These can be used alone or in combination
  • electrolyte a combination of an electrolytic solution and a solid electrolyte can be used.
  • solid electrolyte a crystalline inorganic solid electrolyte or an amorphous inorganic solid electrolyte can be used.
  • CHI LISICON can be used.
  • the latter includes Lil-Li O—B 0 series, Li O—Si 0 series,
  • Lil-Li S—B S Lil Li S—SiS, or Li S—SiS —Li PO
  • a polyolefin microporous membrane represented by polyethylene, nylon, cellulose acetate, nitrocellulose, polysulfone, polyacrylonitrile, polyvinylidene fluoride, or the like can be used.
  • the shape of the nonaqueous electrolyte secondary battery is not particularly limited.
  • the shape may be a square, an ellipse, a coin, a button, or a sheet.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

明 細 書
プロトン含有型ニッケル系遷移金属酸化物を使用して正極を製造する方 法
技術分野
[0001] 本発明は、プロトン含有型ニッケル系遷移金属酸化物を使用して非水電解質二次 電池用の正極を製造する方法に関する。
背景技術
[0002] 非水電解質二次電池の正極に備えられる正極活物質には、コバルト酸リチウム、マ ンガン酸リチウム、又はニッケル酸リチウムなどの遷移金属酸化物が用いられる。これ らの中でも、その遷移金属酸化物の中の金属が主としてニッケルであるものは、一般 に高い放電容量を示すことから、期待が高い。以下、これを「ニッケル系遷移金属酸 化物」と呼ぶ。
[0003] 一般的なニッケノレ系遷移金属酸化物は、熱処理工程を経ることにより製造される。
例えば、ニッケル酸リチウム(LiNiO )は、ニッケル源としての Ni (NO ) , Ni (OH)
2 3 2 2
, NiCO又は Ni〇等と、リチウム源としての LiOH, LiNO , Li CO ,又は Li O等と
3 3 2 3 2 が混合されて、酸素気流中で約 600〜900°Cの熱処理されることによって、製造され る。
[0004] し力し、熱処理工程を経て製造されたニッケル酸リチウムにおいては、ニッケノレとリ チウムイオンとが容易に置換されて不斉構造を生じるため、放電容量が低下するとい う問題があった。
[0005] そこで、ニッケル系遷移金属酸化物を別の方法で製造することが試みられている。
たとえば、 日本国特許公開公報である特開平 09— 219193号公報には、ォキシ水 酸化ニッケルをリチウムイオン含有溶液と反応させてニッケル酸リチウムを合成する方 法が開示されている。また、 日本国特許公開公報である特開平 6— 349494号公報 には、イオン交換による一般式 A B MO (但し、 0≤x≤2, 0≤y≤2, 1. 5≤z≤3、 x y z
M = Mn, Fe, Ni, Co, V, Cr, Scから選ばれる少なくとも一種、 Aおよび Bは H, Li , Na, K, Cs, Ca, Mgおよび Rbならびにこれらの混合物よりなる元素)で表される活 物質の合成法が開示されている。
[0006] 日本国特許公開公報である特開平 09— 320588号公報には、化学式 H Li MO
x y 2
(0≤x≤2, 0≤y≤2, 1 < (x + y)≤2、 Mは Co, Niの中力も選択される 1種または 2 種の遷移金属)で表される化合物を、リチウムイオンを含有する溶液中で化学的に酸 化する LiM〇の製造方法が開示されている。
2
[0007] 日本国特許公開公報である特開 2000— 123836号公報には、 10モル%のコバル トを含むォキシ水酸化ニッケルに水酸化リチウムの水溶液を通液し、プロトンとリチウ ムイオンとのイオン交換反応を行う、正極活物質の製造方法が開示されている。
[0008] 以上の製造方法では、正極活物質が水溶液中で製造されるから、熱処理工程を経 ることがない。したがって、この製造方法によるニッケル系遷移金属酸化物は不斉構 造を生じることが少ないので、熱処理工程を経て製造されたそれにくらべて優れてい る。し力も、製造が容易という利点もある。
発明の開示
発明が解決しょうとする課題
[0009] (1)ところ力 上記のような「水溶液中で製造されたニッケノレ系遷移金属酸化物」が非 水電解質二次電池の正極活物質として使用された場合、良好な高率放電特性が得 られないという問題があった。その原因は明らかにされていない。製造が水溶液中で おこなわれるためにニッケル系遷移金属酸化物の中にプロトンが含まれ、このこと力 S 、高率放電特性に影響しているのではないかと考えられている。なお、「水溶液中で 製造されたニッケル系遷移金属酸化物」にはプロトンが含まれていることから、以後、 これを「プロトン含有型ニッケル系遷移金属酸化物」と呼ぶこととする。
[0010] そこで、本願発明は、プロトン含有型ニッケル系遷移金属酸化物を使用した非水電 解質二次電池用の正極であって、極めて良好な高率放電特性が得られるものを提 供することを目的とする。さらに、その正極を非水電解質二次電池に使用することに よって、極めて良好な高率放電特性を示す非水電解質二次電池を提供することを目 的とする。
[0011] (2)さらに、従来、プロトン含有型ニッケル系遷移金属酸化物の BET比表面積は、常 に小さ力 た。具体的には、その BET比表面積が 6m2Zg未満であった。そのため、 BET比表面積が 6m2/g以上のプロトン含有型ニッケノレ系遷移金属酸化物がどのよ うな特性を示すのかに興味が持たれていた。しかし、それが製造されていなかったた め、その特生が未知のままとなっていた。
[0012] そこで、本願発明は、プロトン含有型ニッケル系遷移金属酸化物の BET比表面積 を制御するための新たな製造方法を提供することを目的とする。
[0013] (3)そして、本願発明は、従来、製造されていなかった、 BET比表面積が大きなプロ トン含有型ニッケル系遷移金属酸化物(その化学式は、 H Li Ni M Oで表される x y 1— a a 2
。ここで、 0<x≤l , 0<y≤l, l≤x + y≤2, 0< a≤0. 5、 Mは Co, Ti, V, Cr, Mn, Fe, Al, Cu及び Zn力 なる群力 選ばれる少なくとも一種である。)を正極活 物質として使用することによって、特性の優れた非水電解質二次電池を提供すること を目的とする。具体的には、当業者に予測できないほどの自己放電特性が優れた非 水電解質二次電池を提供することを目的とする。
課題を解決するための手段
[0014] 本願発明は、正極活物質としてプロトン含有型ニッケル系遷移金属酸化物を使用 して正極を製造する方法において、前記プロトン含有型ニッケル系遷移金属酸化物 の化学式が、 H Li Ni M O (0. 3≤x≤0. 92, 0. 38≤y≤l, 1. 3≤x + y≤
x y 1—a a 2
1. 92, 0< a≤0. 5、 Mは Co, Ti, V, Cr, Mn, Fe, Al, Cu及び Zn力らなる群力ら 選ばれる少なくとも一種)で表されることを特徴とする。
[0015] 本願発明は、そのプロトン含有型ニッケノレ系遷移金属酸化物の BET法による比表 面積が 6m2Zg以上であることを特徴とする。本願発明は、正極及び負極を備えた非 水電解質二次電池を製造する方法において、前記正極を製造する方法が、上に述 ベた製造方法であることを特徴とする。
[0016] 本願発明は、化学式が H Li Ni M O (0<x≤l , 0<y≤l, l≤x+y≤2, 0<
x y 1—a a 2
a≤0. 5、 Mは Co, Ti, V, Cr, Mn, Fe, Al, Cu及び Znからなる群から選ばれる少 なくとも一種)で表されるプロトン含有型ニッケル系遷移金属酸化物において、前記 プロトン含有型ニッケル系遷移金属酸化物の BET法による比表面積が 6m2/g以上 であることを特徴とする。
[0017] また、本願発明は、前記プロトン含有型ニッケル系遷移金属酸化物を備えた非水 電解質二次電池であることを特徴とする。
[0018] 本願発明は、プロトン含有型ニッケル系遷移金属酸化物を製造方法であって、その 製造方法が、化学式が Ni M (OH) (0< a≤0. 5, Mは Co, Ti, V, Cr, Mn, Fe
1 a a 2
, Al, Cuおよび Znから選ばれる少なくとも一種)で表される水酸化物を、酸化剤とリ チウムイオンとを含む溶液に接触させる第 1工程、並びに、前記第 1工程によって得 られる生成物にリチウムイオンを含む溶液を通液させて乾燥させる第 2工程、を備え ることを特徴とする。
発明の効果
[0019] 正極を製造する際に用いる出発材料としての正極活物質に、特定の Xおよび yの値 を持つプロトン含有型ニッケル系遷移金属酸化物(化学式は、 H Li Ni M Oで x y 1— a a 2 表される。ここで、 0< a≤0. 5、 Mは Co, Ti, V, Cr, Mn, Fe, Al, Cu及び Zn力ら なる群から選ばれる少なくとも一種である。)を使用した場合に、高率放電特性の点 で極めて優れた正極となることが明らかとなった。
[0020] すなわち、本願発明は、正極活物質としてプロトン含有型ニッケル系遷移金属酸化 物を使用して正極を製造する方法において、前記プロトン含有型ニッケル系遷移金 属酸ィ匕物のィ匕学式力 H Li Ni M O (0. 3≤x≤0. 92, 0. 38≤y≤l , 1. 3≤ x y 1—a a 2
x + y≤l . 92, 0< a≤0. 5、 Mは Co, Ti, V, Cr, Mn, Fe, Al, Cu及び Zn力らなる 群から選ばれる少なくとも一種)で表されることを特徴とする。
[0021] ここで示した化学式である H Li Ni M O (0. 3≤x≤0. 92, 0. 38≤y≤l , x y 1 a a 2
1. 3≤x + y≤l . 92, 0< a≤0. 5、 Mfま Co, Ti, V, Cr, Mn, Fe, Al, Cu及び Zn 力 なる群から選ばれる少なくとも一種)は、正極を製造する時点における化学式で ある。
[0022] すなわち、これは、仕込み時の組成である。この化学式で示されるプロトン含有型二 ッケノレ系遷移金属酸化物が充電される過程では、リチウムイオンがプロトン含有型二 ッケル系遷移金属酸化物から脱離して、電子の移動を生じる。たとえば、リチウムィォ ンの脱離とともに、電子数として zの移動が生じた場合には、化学式が H Li Ni x y— z 1— a
M Oとなる。このとき、 Niと Mとの平均価数は、「4ー ( + )」から「4ー ( + ー2)」 a 2
に変化する。 [0023] 上記の化学式のように、 Xおよび yの値が前記所定の範囲となっているプロトン含有 型ニッケル系遷移金属酸化物(H Li Ni M O )を正極活物質として使用して正極
1—a a 2
を製造した場合、その正極の高率放電特性は、常に優れる。さらには、その正極を使 用した非水電解質二次電池の高率放電特性は、常に優れる。この効果の顕著性は、 当業者にとって予測されない。具体的な評価の結果は、実施の形態 1で説明する。
[0024] さらに、本願発明は、化学式が H Li Ni M Oで表されるプロトン含有型ニッケル
1 -a a 2
系遷移金属酸化物(0<x≤l , 0<y≤l, l≤x + y≤2, 0< a≤0. 5、 Mは Co, Ti, V, Cr, Mn, Fe, Al, Cu及び Znからなる群力 選ばれる少なくとも一種)において、 その BET法による比表面積が 6m2/g以上であることを特徴とする。
[0025] 従来のプロトン含有型ニッケル系遷移金属酸化物の BET比表面積を分析した結果 、 BET比表面積はいずれも小さぐ 6m2/g未満であった。つまり、従来は、 BET比 表面積が 6m2/g以上となるプロトン含有型ニッケノレ系遷移金属酸化物は存在しな かった。
[0026] ところが、本願発明者は、後述するように、プロトン含有型ニッケル系遷移金属酸化 物の製造方法の工程のうち当業者がまったく着目してレ、なかった工程を変更すること により、 BET比表面積を制御することを可能とした。
[0027] さらに、本願発明者らによって、プロトン含有型ニッケル系遷移金属酸化物に関し て、その BET比表面積とその自己放電特性との相関関係が調査された結果、ある特 定の BET比表面積を備えた場合に、従来の知見とは相違する効果が得られることが 判明した。
[0028] なお、 BET法は、周知のように、 Brunauer、 Emmett、及び Tellerらの 3名が単分 子層吸着説である Langmuir理論(分子は積み重なって無限に吸着し得るものとし、 吸着層間に相互作用がなく各層に対して Langmuir式が成立すると仮定)を多分子 層に拡張した理論に基づき、表面積を求める方法である。具体的には、大きさの分か つている分子を粉粒子の表面に吸着させて、その吸着量から試料の表面積が求めら れる。
[0029] 従来、非水電解質二次電池に使用されるニッケノレ酸リチウムにおいては、その BE T比表面積が大きいと自己放電特性が悪くなるという問題がある (参考特許文献とし て、 日本国の特許公開公報である特開平 09— 298062を挙げる。)。ところ力 本願 のプロトン含有型ニッケノレ系遷移金属酸化物においては、これと逆の傾向、すなわち
、 BET比表面積が大きい場合に自己放電特性が良好となる傾向を示すことが判明し た。さらにある特定の BET比表面積を有する場合には、 自己放電が極小となることが わかった。このような現象は、当業者にとって予測されない。
[0030] ここで、その新たなプロトン含有型ニッケル系遷移金属酸化物の製造方法とは、つ ぎのとおりである。
本願発明の製造方法は、化学式が Ni M (OH) (0< a≤0. 5, Mは Co, Ti, V
1 a a 2
, Cr, Mn, Fe, Al, Cuおよび Zn力も選ばれる少なくとも一種)で表される水酸化物 を、酸化剤とリチウムイオンとを含む溶液に接触させる第 1工程、並びに、前記第 1ェ 程によって得られる生成物にリチウムイオンを含む溶液を通液させて乾燥させる第 2 工程、を備えることを特徴とする。
[0031] この製造方法によって、 BET比表面積として 6m2/g以上のプロトン含有型エッケ ル系遷移金属酸化物を得ることができた。従来技術との相違点は、第 2工程にある。 すなわち、従来は、第 1工程によって得られる生成物を脱イオン水により洗浄してい た。脱イオン水で洗浄するのは、無機化合物の合成手法として、当業者にとって常識 というべきものである。そのため、この脱イオン水で洗浄する工程を変更することは、 通常採用されない。ところ力 本願発明者らは、脱イオン水で洗浄するのではなぐリ チウムイオンを含む溶液を通液させ、そのまま乾燥させることにした。
[0032] 本願発明の第 1工程における「リチウムイオンを含む溶液」としては、水酸化リチウム 、水酸化リチウム 1水和物、炭酸リチウム、酸化リチウム、硝酸リチウム、硫酸リチウム、 塩化リチウム、しゅう酸リチウム、酢酸リチウム、及びクェン酸リチウムからなる群から選 ばれる少なくとも 1種を水などの溶媒に溶解させた溶液が用いられ得る。これらのリチ ゥム塩が飽和状態に達していない溶液であってもよレ、。しかし、リチウム塩が飽和した 溶液である方が好ましい。
[0033] 第 1工程における「酸化剤」は、酸素、オゾン、ペルォキソ二硫酸塩、次亜塩素酸塩 、過マンガン酸塩、ニクロム酸塩、臭素、及び塩素からなる群から選ばれる少なくとも 1種が用いられ得る。また、酸化剤を用いるような化学的な酸化手法だけでなぐ電気 化学的な手法も用いられうる。酸化剤のモル数は、反応速度の観点から、水酸化ニッ ケル 1モルに対して過剰に存在することが好ましい。
[0034] また、第 2の工程に用いられる「溶液」の溶媒として、水又は有機溶媒が用いられう る。溶液の中には、陽イオンとしてリチウムイオン(およびプロトン)のみが含まれてい ることが好ましい。しかし、これに限定される必要はなぐたとえばナトリウムイオンや力 リウムイオンなどが含まれていてもよい。リチウムイオンの濃度についていえば、反応 速度の観点から、水酸化物の中に含まれている金属のモル数に対して、リチウムィォ ンのモル数が過剰であることが好ましい。具体的には、水酸化リチウムの飽和水溶液 などが好ましい。
[0035] 第 2工程における「リチウムイオンを含む溶液を通液させる」とは、たとえば、(i)第 1 工程を終えて濾過された生成物から第 1工程で使用した酸化剤を除去するときに、 脱イオン水ではなくリチウムイオンを含む溶液を徐々に加えて洗浄することや、(ii)第 1工程を終えて濾過された生成物を、再度、リチウムイオンを含む溶液中に分散させ 、その後、たとえば 0. 5時間程度の間攪拌して、再度濾過により生成物を採取するこ と等をいう。
[0036] そして、第 2工程においては、その採取された生成物をそのまま乾燥させる。つまり 、リチウムイオンを含む溶液を通液させた後であって乾燥をおこなう前におレ、ては、 脱イオン水で洗浄することがおこなわれなレ、。ここで、第 2工程においてリチウムィォ ンを含む溶液に通液させる際には、第 1工程で用いた溶液と同じリチウムイオンを含 む溶液 (ただし、酸化剤が含まれないものに限る。)を用いることが好ましい。副反応 を生じにくいからである。
[0037] 以上のような第 2工程を経ることによって、 BET比表面積が 6m2/g以上となるプロ トン含有型ニッケル系遷移金属酸化物が得られる。なお、従来は、脱イオン水で洗浄 したために、 BET比表面積が 6m2/g以下となってレ、たと考えられる。
[0038] この製造方法の第 2工程において「リチウムイオンを含む溶液を通液させた後乾燥 前には、脱イオン水で洗浄することがおこなわれなレ、」という特別な技術的特徴によ つて、その製造物であるプロトン含有型ニッケノレ系遷移金属酸化物において「BET 比表面積が 6m2/g以上となる」という特別な技術的特徴への変化が、必然的にもた らされている。したがって、本願の製造方法の発明とその結果物の発明とは、対応す る特別な技術的特徴を有していることになる。
[0039] BET比表面積は、第 2工程中の反応条件を種々変更させることによって調整され 得ることがわかった。これらの種々の反応条件と BET比表面積との関係は、実施の 形態 2において、後述する。
[0040] 以上のような方法で、 BET比表面積が 6m2Zg以上という大きな比表面積を有する プロトン含有型ニッケル系遷移金属酸化物が得られた。
し力も、 BET比表面積が 6m2/g以上であれば、常に、従来よりも自己放電の小さ いプロトン含有型ニッケル酸リチウムを得ることができた。
[0041] さらに、遷移金属酸化物(H Li Ni M O )の Mが Coである場合には、 BET法に
1 -a a 2
よる比表面積を 14. 5〜16· 5m2/gとすることが、より好ましい。この場合には、 自己 放電特性が極小となったからである。具体的な評価結果は、実施の形態 2において 後述する。
[0042] なお、 Xおよび yの値として、 0. 3≤x≤0. 92, 0. 38≤y≤l, 1. 3≤x + y≤l . 92 の値をとる場合には、さらに自己放電特性が優れることがわかっている。その理由は 明らかにされていなレ、。具体的な評価結果は、実施の形態 2において、後述する。し た力 Sつて、 Xおよび yのィ直カ 0. 3≤x≤0. 92, 0. 38≤y≤l, 1. 3≤x + y≤l . 92 という条件を満たすプロトン含有型ニッケル系遷移金属酸化物を使用して正極を製 造した場合には、高率放電特性及び自己放電特性のいずれもが極めて優れる。
[0043] 本出願は、 2005年 4月 28日に日本国特許庁に出願された特許出願(特願 2005
_ 132069)、及び 2006年 1月 19日に日本国特許庁に出願された特許出願(特願 2 006 -010554)に基づくものであり、それらの内容はここに参照として取り込まれる。 図面の簡単な説明
[0044] [図 1]本願において製造されたプロトン含有型ニッケル系遷移金属酸化物 (H Li
Ni M O )における x及び yの値の分布を示す。
0. 76 0. 24 2
[図 2]xが約 0. 7であるプロトン含有型ニッケル系遷移金属酸化物の高率放電特性の 評価結果を示す。
[図 3]yが約 0. 8であるプロトン含有型ニッケル系遷移金属酸化物の高率放電特性の 評価結果を示す。
発明を実施するための最良の形態
[0045] 本願発明を、以下の実施の形態において具体的に説明する。しかし、本願発明の 技術的範囲は、以下の実施の形態によって限定して解釈されない。
[0046] [実施の形態 1]
(1)プロトン含有型ニッケル酸リチウムが製造された。その製造方法は、つぎの第 1ェ 程及び第 2工程を備える。
[0047] (第 1工程)化学式が Ni Co (OH) で表される水酸化物(平均粒子径: 10 μ m
0. 76 0. 24 2
) 2. Ogが、リチウム塩の水溶液 50mlに分散された。この分散水溶液に、酸化剤とし て機能する 12%の次亜塩素酸 (NaCIO)が加えられた。第 1工程の反応時における 反応溶液の種類及びその濃度、酸化剤の添加量、反応温度、並びに反応時間は、 それぞれ表 1の第 1工程の列に示されたとおりである。反応時には、継続的に攪拌さ れた。
[0048] (第 2工程)第 1工程の反応が終了した後、濾過が行われた。濾過して得られた生成 物が、所定の濃度に調整された水酸化リチウム水溶液 50mlに分散され、さらに 0. 5 時間攪拌された。これを再び濾過して、生成物から溶液が除去された後、そのまま 6 5°Cで 12時間の乾燥がおこなわれた。第 2工程における水酸化リチウム濃度の所定 の濃度は、表 1の第 2工程の列に示されたとおりである。
[0049] (2)製造された種々のプロトン含有型ニッケル系遷移金属酸化物の組成分析がおこ なわれた。
化学式中の yの値は、誘導結合プラズマ(ICP)分析によって Li, Niおよび Mの定 量がおこなわれ、 Li/(Ni+M)のモル比より計算された。化学式中の Xの値は、ラザ フォード後方散乱分析 (RBS)—水素前方散乱分析 (HFS)による H, Niおよび Mの 定量がおこなわれ、 H/(Ni + M)のモル比より計算された。
[0050] これらの組成分析の結果は、表 1の製造されたプロトン含有型ニッケノレ系遷移金属 酸化物の組成式の列に示されている。また、製造されたプロトン含有型ニッケル系遷 移金属酸化物の化学式中の X及び yの値をそれぞれグラフの X軸及び Y軸にとって、 実施例及び比較例となるプロトン含有型ニッケル系遷移金属酸化物を図 1に示した。 なお、この方法では、化学式中の yの値が 1より大きくなるプロトン含有型ニッケル系 遷移金属酸化物は得られなかった。酸化反応、及びプロトンをリチウムイオンに交換 する反応 (イオン交換反応)が平行して起きているため、酸化反応されるより多い量の イオン交換をすることができないためと考えられる。また、 Xの値が 1より大きい材料は 、水酸化ニッケルからの酸化が充分でなレ、ものに過ぎなレ、。
[表 1]
Figure imgf000012_0001
(3)製造されたプロトン含有型ニッケル系遷移金属酸化物を正極活物質として使用 して、正極が製造された。
正極の製造は、つぎの方法による。前記の製造方法により製造されたプロトン含有 型ニッケル系遷移金属酸化物(89質量%)、アセチレンブラック(4質量%)、及びポリ フッ化ビニリデン(7質量0 /0)が、 N—メチル _ 2_ピロリドン(以下、 NMPと略する。) 中で混合されることにより、正極用ペーストが製造された。この正極用ペーストが、厚 さ 20 z mのアルミニウム箔上に塗布された。その後、 70°Cで減圧乾燥がおこなわれ ることによって、 NMPが除去された。 NMPを除去した後の塗布重量は、 1. 00g/l 00cm2であった。得られた正極はローラーで加圧されたのち、スリツターによって 30 mmWX 40mmL X 50 μ mTの大きさに切断され、板状の正極が製造された。
[0053] (4)正極の高率放電特性が評価された。
表 1に示される実施例および比較例の正極の高率放電特性が評価された。評価は 次の方法による。
作用極として、表 1に示されている実施例および比較例の正極が使用された。参照 極および対極として金属リチウム板が使用された。電解液として、エチレンカーボネ ート(EC)とェチルメチルカーボネート (EMC)とが 1: 1の体積比で混合された溶媒に 、濃度力 Slmol/dm3となるように LiCIOを溶解させたものが用いられた。以上により
4
、 3極式のガラスセルが製作された。
[0054] 電気化学的な電位挙動の評価は、つぎの方法による。 25°Cにおいて、板状の正極 に対して電流密度が 0. 25mA/ cm2となるように 4. 2V (vs. Li/Li+)まで充電した のち、 1. 5V (vs. Li/Li+)まで低率放電(電流密度: 0. 25mA/cm2)をおこなった 。その後、再度、前記と同様の充電をおこなったのち、 1. 5V (vs. Li/Li+)まで高率 放電(電流密度: 5. OmAZcm2)をおこなった。
[0055] 低率放電時の放電容量及び高率放電時の放電容量、並びにそれらの比率を、評 価結果として、それぞれ表 1に併せて示した。また、図 2において、 X力約 0. 7である プロトン含有型ニッケル系遷移金属酸化物の高率放電特性の評価結果を示した。図
3において、 yが約 0. 8となるプロトン含有型ニッケル系遷移金属酸化物の高率放電 特性の評価結果を示した。
[0056] 表 1力ら、ィ匕学式力 Li Ni Co O (0. 3≤x≤0. 92, 0. 38≤y≤l, 1. 3 x y 0. 76 0. 24 2
≤x + y≤l . 92)であるプロトン含有型ニッケル系遷移金属酸化物を使用して正極を 製造した場合には、その正極が特異的に良好な高率放電特性を示すことが明らかと なった。すなわち、 A01〜A15の正極の高率放電特性は、 R01〜R14のそれと比べ て優れていた。図 2及び図 3を見れば、効果の顕著な様子がわ力りやすレ、。このよう な結果は、当業者に予測されない。このように特異的に良好な高率放電特性が得ら れるメカニズムは、現在正確に把握されていなレ、。おそらぐホスト層となるプロトン含 有型ニッケル系遷移金属酸化物が特異的な H及び Liのサイトを有するためであると 思われる。
[0057] (5)前記正極を使用して非水電解質二次電池が製造された場合における、その非水 電解質二次電池の特性が評価された。
表 1に示された正極を使用して、非水電解質二次電池が製造された。その製造方 法は次のとおりである。
正極として、前記の実施例および比較例に示されたものがそれぞれ使用された。
[0058] 負極の製造方法はつぎのとおりである。負極活物質として鱗片状黒鉛が使用され た。平均粒径 10 / mである鱗片状黒鉛(80質量%)、及びポリフッ化ビニリデン(20 質量%)が、 NMPに混合されることによって、負極用ペーストが製造された。この負 極用ペーストが、厚さが 15 μ ΐηである銅箔上に塗布された。負極用ペーストが塗布さ れた銅箔が 150°Cで乾燥されることによって、 NMPが除去された。これが、ロールプ レスで圧縮成型され、スリツターで 30mmW X 40mmL X 35 μ mTの大きさに切断さ れることによって、板状の負極が製造された。
[0059] 得られた正極および負極が、ポリエチレンセパレータ(厚さ 20 μ m、多孔度 40%の 連通多孔体)を介して重ね合わせられることにより、発電要素が形成された。この発 電要素が、高さ 70mm、幅 34mm、厚さ lmmの容器中に挿入された。容器の内部に 非水電解液が注入されることによって、非水電解質二次電池が製造された。この場 合における非水電解質としての電解液には、エチレンカーボネート(EC)とェチルメ チルカーボネート(EMC)との体積比 1: 1の混合溶媒に ImolZdm3の LiPFを溶解
6 したものが用いられた。製造された非水電解質二次電池の公称容量(1C)は 12mA hである。
[0060] 非水電解質二次電池の高率放電特性が評価された。その評価方法は次による。 2 5°Cにおいて、電流 2. 4mAで 4. 2Vまで充電したのち、低率放電に相当する 2. 8m Aで 2. 75Vまで放電させた。その後、再び電流 2. 4mAで 4. 2Vまで充電したのち、 高率放電に相当する 36mAで 2. 75Vまで放電させた。放電容量を表 1に併せて示 した。
[0061] その結果、ィ匕学式力 Li Ni Co O (0. 3≤x≤0. 92, 0. 38≤y≤l, 1. 3 x 0. 76 0. 24 2
≤x + y≤l . 92)であるプロトン含有型ニッケル系遷移金属酸化物を使用して正極を 製造した場合には、非水電解質二次電池においても、特異的に良好な高率放電特 性を示すことが明らかとなった。すなわち、 A01〜A15の非水電解質二次電池の高 率放電特性は、 R01〜R14のそれと比べて優れていた。このような結果は、当業者 に予測されない。
[0062] (6)なお、化学式が H Li Ni Co Oで表されるプロトン含有型ニッケル系遷移金
1— a a 2
属酸ィ匕物(0. 3≤x≤0. 92, 0. 38≤y≤l, 1. 3≤x+y≤l . 92)におレヽて、 aのィ直 が 0< a≤0. 5であれば、本願発明の効果である当業者が予期できないほどの高率 放電特性が優れる効果が得られることを、本願発明者は確認した。
[0063] プロトン含有型ニッケル系遷移金属酸化物の中のニッケル力 S、 Ti, V, Cr, Mn, Fe , Al, Cu及び Znからなる群から選ばれる少なくとも一種で置換された場合であっても 、 Coで置換された場合と同様に、 X及び yが前記所定の範囲にあるときは、そのプロト ン含有型ニッケル系遷移金属酸化物を使用して製造された正極の高率放電特性が 優れることを、本願発明者は確認した。
[0064] [実施の形態 2]
(1)正極活物質が製造された。その製造方法は、つぎの第 1工程及び第 2工程を備 んる。
[0065] (第 1工程)化学式が Ni Co (OH) で表される水酸化物(平均粒子径: 10 x m)
1 -a a 2
2. Ogが、所定の濃度に調整された水酸化リチウム水溶液 50mlに分散された。この 分散溶液に、酸化剤として機能するペルォキソ二硫酸ナトリウム(Na S O ) 7. 7gが
2 2 8 加えられた。そして、 12時間の反応が、所定の温度で行われた。反応時には、継続 的に攪拌された。ここで、 Ni Co (OH) で表される水酸化物の aの値、水酸化リチ
1 -a a 2
ゥム水溶液の濃度、及び反応時の温度は、それぞれ表 2及び表 3に示されたとおりで ある。なお、表 2及び表 3は、本来は一つの表として縦に連ねて構成されるべきもので ある力 紙面の都合上、二つにわけて記載された。
[0066] (第 2工程)第 1工程の反応が終了した後、濾過が行われた。濾過して得られた生成 物(第 1工程を経ることによって得られた生成物)は、表 2及び表 3に示された所定の 濃度の水酸化リチウム水溶液 50mlによって通液がおこなわれた。その後そのまま、 8
0°Cで 1時間の乾燥がおこなわれた。
[0067] ここで、表 2及び表 3の第 2工程の列に示されている「0 (50°C)」は摂氏 50度の脱ィ オン水で通液されたことを意味する。特記されていない場合における第 2工程の水酸 ィ匕リチウム水溶液の温度は、 25°Cである。
[0068] [表 2]
第 1工程 第 2工程 生成物
Nii-a 反 放電容 CoB(0 酸化剤 水酸化 水酸化
BET比 量保持
(Na2S208) リチウム 反応
リチウム HxLiyNi -aC0a02
H)2の 温 時間 表 率 の濃度 の濃度 ft積
aの値 濃度
[g/50ml] [mol/dm3] [。c] [時間] [mol/dm3] [mVg] a X y χ+y [%]
B01 3.5 7.0 24.0 0.50 0.88 1.38 90
B02 3.5 6.5 20.2 0.50 0.82 1.32 91
B03 3.5 6.0 16.8 0.52 0.81 1.33 90 実 B04 3.5 5.0 16.5 0.58 0.80 1.38 97 施 B05 3.5 4.0 14.5 0.60 0.79 1.39 98 例 B06 0.01 7.7 3.5 70 12 5.0 14.1 0.01 0.61 0.80 1.41 89
B07 3.5 3.0 10.0 0.60 0.76 1.36 87
B08 3.5 1.0 7.9 0.70 0.61 1.31 84
B09 3.5 0.5 6.0 0.92 0.42 1.34 80
S01 3.5 0.0 4.2 0.93 0.23 1.16 64 比較例
S02 3.5 0(50Ό 3.0 0.95 0.21 1.16 60
B10 3.5 7.0 24.0 0.70 0.58 1.28 83
B11 3.5 6.5 20.0 0.50 0.55 1.05 84
B12 3.5 6.0 16.9 0.69 0.54 1.23 88 実 B13 3.5 5.0 16.5 0.58 0.50 1.08 90 施 B14 3.5 4.0 14.5 0.68 0.49 1.17 91 例 B15 0.01 7.7 3.5 30 12 5.0 14.2 0.01 0.61 0.45 1.06 87
B16 3.5 3.0 10.2 0.60 0.41 1.01 83
B17 3.5 1.0 8.1 0.70 0.35 1.05 80
B18 3.5 0.5 6.0 0.92 0.29 1.21 77
S03 3.5 0.0 4.2 0.98 0.15 1.13 58 比較例
S04 3.5 0(50°C) 2.9 0.99 0.12 1.11 55
B19 3.5 7.0 24.0 0.48 0.88 1.36 90
B20 3.5 6.5 19.8 0.49 0.82 1.31 91
B21 3.5 6.0 17.0 0.51 0.81 1.32 90 実 B22 3.5 5.0 16.5 0.56 0.80 1.36 96 施 B23 3.5 4.0 14.5 0.62 0.79 1.41 97 例 B24 0.10 7.7 3.5 70 12 5.0 14.1 0.10 0.60 0.80 1.40 89
B25 3.5 3.0 9.9 0.60 0.76 1.36 85
B26 3.5 1.0 8.2 0.69 0.61 1.30 83
B27 3.5 0.5 6.0 0.90 0.42 1.32 81
S05 3.5 0.0 4.3 0.93 0.24 1.17 64 比較例
S06 3.5 0(50°C) 3.1 0.95 0.21 1.16 60
B28 7.0 7.0 24.0 0.69 0.58 1.27 88
B29 7.0 6.5 20.1 0.49 0.55 1.04 87
B30 7.0 6.0 16.8 0.68 0.54 1.22 88 実 B31 7.0 5.0 16.5 0.57 0.50 1.07 91 施 B32 7.0 4.0 14.5 0.67 0.49 1.16 90 例 B33 0.10 7.7 7.0 30 12 5.0 14.1 0.10 0.60 0.45 1.05 85
B34 7.0 3.0 9.9 0.59 0.41 1.00 86
B35 7.0 1.0 8.2 0.68 0.35 1.03 82
B36 7.0 0.5 6.0 0.90 0.29 1.19 79
S07 3.5 0.0 4.0 0.98 0.15 1.13 59 比較例
S08 3.5 0(50°C) 2.9 0.99 0.12 1.11 55 3] 第 1工程 第 2工程 生成物
Ni1-a 反 放電容 Coa(0 酸化剤 水酸化 水酸化
(Na2S208) し、 反 J心 BET比 保持 リチウム リチウム HxLiyNi -aC0a02 量 H)2の 温 表面積 率 の濃度 の濃度 時間
濃度
aの値 度
[g/50ml] [mol/dm3] [°C] [時間] [mol/dm3] [m2/g] a X y x+y [%]
B37 3.5 7.0 24.0 0.50 0.88 1.38 89
B38 3.5 6.5 19.9 0.50 0.83 1.33 90
B39 3.5 6.0 16.6 0.52 0.82 1.34 91 実 B40 3.5 5.0 16.5 0.58 0.81 1.39 97 施 B41 3.5 4.0 14.5 0.60 0.80 1.40 96 例 B42 0.24 7.7 3.5 70 12 5.0 14.1 0.24 0.61 0.81 1.42 88
B43 3.5 3.0 10.2 0.60 0.77 1.37 86
B44 3.5 1.0 8.1 0.70 0.63 1.33 85
B45 3.5 0.5 6.0 0.92 0.44 1.36 84
S09 3.5 0.0 4.5 0.93 0.26 1.19 63 比較例
S10 3.5 0(50°C) 3.0 0.95 0.22 1.17 61
B46 7.0 7.0 24.0 0.70 0.59 1.29 86
B47 7.0 6.5 20.0 0.50 0.56 1.06 84
B48 7.0 6.0 16.7 0.69 0.55 1.24 85 実 B49 7.0 5.0 16.5 0.58 0.52 1.10 93 施 B50 7.0 4.0 14.5 0.68 0.50 1.18 94 例 B51 0.24 7.7 7.0 30 12 5.0 14.3 0.24 0.61 0.47 1.08 87
B52 7.0 3.0 10.1 0.60 0.42 1.02 83
B53 7.0 1.0 7.9 0.70 0.38 1.08 81
B54 7.0 0.5 6.0 0.92 0.31 1.23 80
S11 3.5 0.0 4.6 0.93 0.17 1.10 63 比較例
S12 3.5 0(50°C) 3.3 0.95 0.12 1.07 57
B55 3.5 7.0 24.0 0.50 0.87 1.37 87
B56 3.5 6.5 19.8 0.50 0.81 1.31 86
B57 3.5 6.0 17.0 0.51 0.81 1.32 89 実 B58 3.5 5.0 16.5 0.57 0.80 1.37 93 施 B59 3.5 4.0 14.5 0.60 0.78 1.38 92 例 B60 0.50 7.7 3.5 70 12 5.0 14.2 0.50 0.61 0.79 1.40 89
B61 3.5 3.0 10.3 0.58 0.76 1.34 85
B62 3.5 1.0 8.2 0.70 0.60 1.30 88
B63 3.5 0.5 6.1 0.92 0.40 1.32 82 比較例 S13 3.5 0.0 4.1 0.93 0.24 1.17 63
S14 3.5 0(50°C) 2.9 0.95 0.21 1.16 61
B64 7.0 7.0 24.0 0.70 0.56 1.26 85
B65 7.0 6.5 20.1 0.50 0.54 1.04 86
B66 7.0 6.0 16.8 0.69 0.53 1.22 85 実 B67 7.0 5.0 16.5 0.58 0.47 1.05 91 施 B68 7.0 4.0 14.5 0.68 0.45 1.13 90 例 B69 0.50 7.7 7.0 30 12 5.0 14.1 0.50 0.61 0.44 1.05 85
B70 7.0 3.0 10.2 0.60 0.40 1.00 84
B71 7.0 1.0 7.9 0.70 0.34 1.04 82
B72 7.0 0.5 6.0 0.92 0.28 1.20 83
3.5 0.0 4.2
比較例 S15 0.93 0.15 1.08 60 S16 3.5 0(50°C) 3.0 0.95 0.11 1.06 55
(2)第 2工程を経て製造された生成物の BET比表面積が測定された。 BET法による 比表面積の測定には、島津製作所製 micromeritics、 Gemini2375、 V4. 01が使 用された。
その結果は、表 2及び表 3に併せて示されたとおりである。本願の製造方法が実施 されて製造されたプロトン含有型ニッケル系遷移金属酸化物(H Li Ni M O )の BET比表面積は、常に 6m2/g以上であった。一方、第 2工程で使用される水酸化リ チウム溶液の濃度を小さくするにしたがって、プロトン含有型ニッケル系遷移金属酸 化物(H Li Ni M〇)の BET比表面積は、小さくなつた。従来のように、第 2工程
1— a a 2
の通液が脱イオン水で行われた場合には、 BET比表面積は、常に 6m2/g未満であ つた。
[0071] (3)プロトン含有型ニッケル系遷移金属酸化物の組成分析がおこなわれた。
組成分析の方法は、実施の形態 1と同様である。それらの結果は、表 2及び表 3の 中の生成物の列に示されたとおりである。
[0072] (4)これらの正極を使用して製造された非水電解質二次電池の自己放電特性が評 価された。
評価はつぎの方法による。製造された非水電解質二次電池について、充電及び放 電が 10サイクル繰り返された。この際の 10サイクル目に放電される放電容量を「P[m Ah]」とした。その後、非水電解質二次電池が充電され、 25°Cにおいて 30日間放置 された。そして、その後に放電することができた容量である「放電容量 Q [mAh]」を求 めた。 Pに対する Qの割合が放電容量保持率である。したがって、放電容量保持率が 高ければ高いほど自己放電特性が良好であることを意味する。放電容量保持率の結 果を、表 2及び表 3に示した。
[0073] 通常は、 BET比表面積が大きいほど自己放電特性が悪レ、。ところ力 表 2及び表 3 の結果のように、このプロトン含有型ニッケル系遷移金属酸化物においては、 BET比 表面積が大きい場合には、自己放電が小さい傾向があることが分かった。このような 現象は当業者に予測されない。
[0074] 今回の製造及び評価においては、 BET比表面積が 24m2Zg以下のプロトン含有 型ニッケル系遷移金属酸化物しか得られな力 た。少なくとも、 BET比表面積が 6m2 /g以上 24m2/g以下である場合には、放電容量保持率が良好であることは確かで ある。また、好ましくは、 BET比表面積が 14. 5m2/g以上 16. 5m2/g以下であるプ 口トン含有型ニッケル系遷移金属酸化物の自己放電特性は、特に良好である。
[0075] (5)なお、化学式が H Li Ni M Oで表されるプロトン含有型ニッケル系遷移金属
1 -a a 2
酸化物(0<x≤l、 0<y≤l、 l≤x + y≤2)において、 Mがコバルトではなぐ Ti, V , Cr, Mn, Fe, Al, Cu及び Zn力もなる群力も選択される 1以上のものである場合で あっても、 BET比表面積が 6m2/g以上であるときは自己放電特性が優れることを、 本願発明者は確認した。
[0076] [その他の実施の形態]
(1)負極活物質としては、鱗片状黒鉛、非晶質炭素、酸化物、又は窒化物などが使 用されうる。これらは、単独で又は二種以上を適宜混合して使用されうる。
[0077] (2)正極又は負極を作製するときに使用する結着剤としては、ポリテトラフルォロェチ レン、エチレン プロピレン ジェン三元共重合体、アタリロニトリノレーブタジエンゴム 、フッ素ゴム、ポリ酢酸ビニル、ポリメチルメタタリレート、ポリエチレン、ニトロセルロー ス、ポリフッ化ビニリデン、ポリエチレン、ポリプロピレン、テトラフルォロエチレン一へ キサフルォロプロピレン共重合体、ポリフッ化ビニリデン一クロ口トリフルォロエチレン 共重合体、スチレン—ブタジエンゴム(SBR)、又はカルボキシメチルセルロース(C MC)などが用いられうる。
[0078] (3)結着剤を混合するときに用いる溶媒としては、 N メチル 2 ピロリドン (NMP) 、ジメチルホルムアミド、ジメチルァセトアミド、メチルェチルケトン、シクロへキサノン、 酢酸メチル、アクリル酸メチル、ジェチルトリアミン、 N— N ジメチルァミノプロピルァ ミン、エチレンォキシド、又はテトラヒドロフランなどが使用されうる。
[0079] (4)電極の集電体としては、鉄、銅、ステンレス、ニッケル、又はアルミニウムが用いら れうる。その形態は、シート状、発泡体状、メッシュ状、多孔体状、又はエキスパンド 格子状などにされうる。さらに、任意の形状で穴を開けた集電体も、用いられうる。
[0080] (5)電解質としては、電解液が使用されうる。電解液を構成する有機溶媒としては、 エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、トリフルォロ プロピレンカーボネート、 y—ブチ口ラタトン、スルホラン、 1 , 2—ジメトキシェタン、 1 , 2—ジエトキシェタン、テトラヒドロフラン、 2 メチルテトラヒドロフラン、 3 メチノレ一 1 , 3 _ジォキソラン、酢酸メチル、酢酸ェチル、プロピオン酸メチル、プロピオン酸ェチ ノレ、ジメチルカーボネート、ジェチルカーボネート、ェチルメチルカーボネート、ジプ 口ピルカーボネート、メチルプロピルカーボネートなどが使用されうる。これらは、単独 で、又は二種以上を適宜混合して使用されうる。また、ビニレンカーボネート若しくは ブチレンカーボネートなどのカーボネート系、ビフエ二ノレ若しくはシクロへキシノレベン ゼンなどのベンゼン系、又はプロパンスルトンなどの硫黄系の化合物力 有機溶媒に 混合されうる。また、電解液を構成する支持塩としては、 LiPF、 LiCIO 、 LiBF、 Li
6 4 4
AsF、 LiPF (CF ) 、 LiPF (CF ) 、 LiPF (CF ) 、 LiPF (CF ) 、 LiPF (CF )、
6 3 5 2 3 4 3 3 3 4 3 2 5 3
LiPF (C F ) 、 LiCF SO 、 LiN (S〇 CF ) 、 LiN (S〇 CF CF ) 、 LiN (C〇CF
3 2 5 3 3 3 2 3 2 2 2 3 2 3
) 、 LiN (COCF CF ) 、 LiC BOなどが使用されうる。これらは、単独又は二種以
2 2 3 2 4 8
上を混合して使用されうる。
[0081] (6)電解質として、電解液と固体電解質が組み合わせたものも使用されうる。このとき の固体電解質として、結晶質の無機固体電解質又は非晶質の無機固体電解質が用 レヽられうる。前者には、 Lil、 Li N、 Li M Ti (PO ) (M=A1, Sc, Y, La)、
Li に代表される
Figure imgf000021_0001
チォ LISICONが用いられうる。後者には、 Lil-Li O— B〇系、 Li O— Si〇系、
2 2 5 2 2
Lil-Li S— B S系、 Lil Li S— SiS系、又は Li S— SiS —Li PO系などが用
2 2 3 2 2 2 2 3 4
いられうる。
[0082] (7)セパレータとしては、ポリエチレンに代表されるポリオレフインの微多孔膜、ナイ口 ン、セルロースアセテート、ニトロセルロース、ポリスルホン、ポリアクリロニトリル、ポリフ ッ化ビ二リデンなどが使用されうる。
[0083] (8)非水電解質二次電池の形状は特に限定されない。その形状は、角形、楕円形、 コイン形、ボタン形、又はシート形などにされうる。

Claims

請求の範囲
[1] 正極活物質としてプロトン含有型ニッケル系遷移金属酸化物を使用して正極を製 造する方法において、
前記プロトン含有型ニッケル系遷移金属酸化物の化学式が、 H Li Ni M O (0
x y 1— a a 2
. 3≤x≤0. 92, 0. 38≤y≤l, 1. 3≤x+y≤l . 92, 0 < a≤0. 5、 Mは Co, Ti. V
, Cr, Mn, Fe, Al, Cu及び Zn力 なる群力も選ばれる少なくとも一種)で表されるこ とを特徴とする。
[2] 請求項 1に記載された正極を製造する方法において、
前記プロトン含有型ニッケノレ系遷移金属酸化物の BET法による比表面積が 6m2/ g以上である。
[3] 正極及び負極を備えた非水電解質二次電池を製造する方法にぉレ、て、
前記正極を製造する方法が、請求項 1に記載された製造方法である。
[4] 正極及び負極を備えた非水電解質二次電池を製造する方法にぉレ、て、
前記正極を製造する方法が、請求項 2に記載された製造方法である。
[5] ィ匕学式力 Sfi Li Ni M O (0<x≤l, 0<y≤l , l≤x + y≤2, 0< a≤0. 5, M
x y 1 a a 2
は Co, Ti, V, Cr, Mn, Fe, Al, Cu及び Znからなる群力 選ばれる少なくとも一種) で表されるプロトン含有型ニッケル系遷移金属酸化物において、
前記プロトン含有型ニッケノレ系遷移金属酸化物の BET法による比表面積が 6m2Z g以上である。
[6] 請求項 5に記載されたプロトン含有型ニッケル系遷移金属酸化物を備えた非水電 解質二次電池。
[7] プロトン含有型ニッケル系遷移金属酸化物の製造方法であって、
その製造方法が、
ィ匕学式力 Ni M (OH) (0< a≤0. 5、 Mは Co, Ti, V, Cr, Mn, Fe, Al, Cu及
l -a a 2
び Znからなる群から選ばれる少なくとも一種)で表される水酸化物を、酸化剤とリチウ ムイオンとを含む溶液に接触させる第 1工程、並びに、
前記第 1工程によって得られる生成物にリチウムイオンを含む溶液を通液させて乾燥 させる第 2工程、を備える。
PCT/JP2006/308942 2005-04-28 2006-04-28 プロトン含有型ニッケル系遷移金属酸化物を使用して正極を製造する方法 WO2006123531A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006520475A JPWO2006123531A1 (ja) 2005-04-28 2006-04-28 プロトン含有型ニッケル系遷移金属酸化物を使用して正極を製造する方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-132069 2005-04-28
JP2005132069 2005-04-28
JP2006010554 2006-01-19
JP2006-010554 2006-01-19

Publications (1)

Publication Number Publication Date
WO2006123531A1 true WO2006123531A1 (ja) 2006-11-23

Family

ID=37431109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/308942 WO2006123531A1 (ja) 2005-04-28 2006-04-28 プロトン含有型ニッケル系遷移金属酸化物を使用して正極を製造する方法

Country Status (2)

Country Link
JP (1) JPWO2006123531A1 (ja)
WO (1) WO2006123531A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008226752A (ja) * 2007-03-15 2008-09-25 Gs Yuasa Corporation:Kk 非水電解質二次電池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0668878A (ja) * 1992-01-30 1994-03-11 Her Majesty The Queen In Right Of The Province Of British Columbia As Represented By The Minister 二酸化ニッケルカソード活物質の水素化物及び二次電池
JPH09320588A (ja) * 1996-05-24 1997-12-12 Japan Storage Battery Co Ltd リチウム電池用正極活物質の製造方法及びリチウム電池
JPH10188988A (ja) * 1996-11-08 1998-07-21 Japan Storage Battery Co Ltd リチウム電池
JPH10270025A (ja) * 1997-03-27 1998-10-09 Japan Storage Battery Co Ltd 非水電解質電池用正極活物質の製造方法およびその正極活物質を備えた電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0668878A (ja) * 1992-01-30 1994-03-11 Her Majesty The Queen In Right Of The Province Of British Columbia As Represented By The Minister 二酸化ニッケルカソード活物質の水素化物及び二次電池
JPH09320588A (ja) * 1996-05-24 1997-12-12 Japan Storage Battery Co Ltd リチウム電池用正極活物質の製造方法及びリチウム電池
JPH10188988A (ja) * 1996-11-08 1998-07-21 Japan Storage Battery Co Ltd リチウム電池
JPH10270025A (ja) * 1997-03-27 1998-10-09 Japan Storage Battery Co Ltd 非水電解質電池用正極活物質の製造方法およびその正極活物質を備えた電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008226752A (ja) * 2007-03-15 2008-09-25 Gs Yuasa Corporation:Kk 非水電解質二次電池

Also Published As

Publication number Publication date
JPWO2006123531A1 (ja) 2008-12-25

Similar Documents

Publication Publication Date Title
JP6324051B2 (ja) リチウム二次電池用正極活物質、並びにこれを含むリチウム二次電池用正極及びリチウム二次電池
JP5382343B2 (ja) 非水電解質二次電池用Li−Ni系複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
US9608265B2 (en) Precursor of cathode active material for a lithium secondary battery, method for manufacturing the precursor, cathode active material, and lithium secondary battery including the cathode active material
JP6062947B2 (ja) リチウム二次電池用正極活物質の前駆体、正極活物質、その製造方法及びこれを含むリチウム二次電池
TWI567027B (zh) 複合粒子,製造彼等之方法,及包含彼等之物件
JP5928445B2 (ja) リチウムイオン二次電池用の正極活物質およびその製造方法
KR102356903B1 (ko) 축전 디바이스용 전극 재료, 축전 디바이스용 전극 및 축전 디바이스
KR20080048442A (ko) 리튬 2 차 전지 양극용의 리튬 함유 복합 산화물의 제조방법
JP7345125B2 (ja) 非水電解質二次電池用正極活物質の製造方法
JP7241359B2 (ja) 正極活物質およびそれを備えた電池
JPH1145706A (ja) 非水電解質電池用電極の製造方法
KR101907240B1 (ko) 전극재료의 제조방법 및 상기 방법으로 제조된 전극재료
JP4447880B2 (ja) リチウム含有オキシ水酸化ニッケルの製造方法およびそれを含む電極を備えた非水電解質電気化学セル
JP2018067474A (ja) リチウム二次電池電極材料の製造方法、リチウム二次電池の製造方法、リチウム−ニオブ溶液
US20210143397A1 (en) Positive electrode active material and battery including the same
JP2013114809A (ja) 非水電解質二次電池およびその製造方法
US20140162128A1 (en) Positive active material for rechargeable lithium battery, and positive electrode for rechargeable lithium battery and rechargeable lithium battery including same
US20130209840A1 (en) Particles, process for production thereof and use thereof
WO2006123531A1 (ja) プロトン含有型ニッケル系遷移金属酸化物を使用して正極を製造する方法
Kim et al. Electrochemical properties of yolk-shell structured layered-layered composite cathode powders prepared by spray pyrolysis
JPH1145716A (ja) 非水電解質電池用電極の製造方法
JPH1145718A (ja) 非水電解質電池用電極
CA3147518A1 (en) Electrode active material and process for manufacturing said electrode active material
JP5003030B2 (ja) 非水電解質二次電池用正極活物質およびその製造方法、ならびにそれを備えた非水電解質二次電池
WO2005082783A1 (ja) リチウム含有オキシ水酸化鉄およびそれを含む非水電解質電気化学セルの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006520475

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06745823

Country of ref document: EP

Kind code of ref document: A1