WO2006123453A1 - メタル軸受 - Google Patents
メタル軸受 Download PDFInfo
- Publication number
- WO2006123453A1 WO2006123453A1 PCT/JP2006/300847 JP2006300847W WO2006123453A1 WO 2006123453 A1 WO2006123453 A1 WO 2006123453A1 JP 2006300847 W JP2006300847 W JP 2006300847W WO 2006123453 A1 WO2006123453 A1 WO 2006123453A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bearing
- particles
- ferromagnetic particles
- dispersion solvent
- shaft member
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/06—Sliding surface mainly made of metal
- F16C33/14—Special methods of manufacture; Running-in
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/11—Making porous workpieces or articles
- B22F3/1146—After-treatment maintaining the porosity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/002—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature
- B22F7/004—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature comprising at least one non-porous part
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2220/00—Shaping
- F16C2220/20—Shaping by sintering pulverised material, e.g. powder metallurgy
Definitions
- the present invention relates to a metal bearing having a sintered body strength that includes a bearing surface that can slide with respect to a shaft member, and that has a metal or alloy as a main component and has pores on the surface and inside.
- an oil-impregnated bearing in which lubricating oil is impregnated in a sintered body is known as a metal bearing formed of a sintered metal body as a main component (see, for example, Patent Document 1).
- a metal bearing formed of a sintered metal body as a main component
- the lubrication oil impregnated in the sintered body oozes out to the bearing surface due to heat generated by sliding contact with the rotating shaft. 1 ⁇ 2 can be kept.
- Patent Document 1 JP 2002-39183 A
- Patent Document 2 Japanese Patent Laid-Open No. 2002-180162
- the conventional oil-impregnated bearing in which the sintered body is impregnated with the lubricating oil has a low vapor pressure (low surface tension) in the low temperature region or the lubricating oil in the low temperature region. Due to factors such as heat shrinkage of the volume, the lubricating oil impregnated in the sintered body is difficult to ooze out to the bearing surface and the self-lubricating property is lost. As a result, problems such as seizure on the sliding contact surface between the bearing and the shaft member or clogging of pores due to contact with each other occur. In general, the self-lubricating properties of oil-impregnated bearings are extremely reduced when the operating temperature is below 30 ° C.
- the lubricating oil impregnated in the sintered body easily oozes out due to factors such as high vapor pressure (high surface tension) or high thermal expansion. If it becomes longer, it may wither. As a result, as with low temperatures, problems such as seizure on the sliding contact surface between the bearing and the shaft member or clogging of the pores due to contact with each other occur due to a decrease in the lubricating action of the lubricating oil. . In general, when the operating temperature exceeds 100 ° C, the continuous operation time of impregnated bearings is limited.
- the volume ratio of the pores provided on the surface and inside of the sintered body of metal or alloy used for the bearing is generally about 17 to 23 vol%, and the volume of lubricating oil that can be impregnated in the pores is limited. There is.
- the temperature of a motor for an automobile also varies depending on the position where the motor having a wide operating environmental temperature range is arranged.
- the range of operating environment temperature is about -40 to 120 ° C, and the bearing surface of the bearing is less than the operating environment temperature of the motor by sliding with the shaft member. Then, raise the temperature to about 30-50 ° C.
- the temperature of a motor for an automobile there is a demand for those capable of ensuring lubricity on the bearing surface over a wide temperature range.
- the present invention has been devised in view of the above problems, and an object of the present invention is to provide a metal bearing having a long service life that is not affected by the service temperature.
- a first characteristic configuration of a metal bearing according to the present invention for achieving the above object includes a bearing surface that is slidable with respect to a shaft member.
- a dispersion solvent is provided in the pores, and the ferromagnetic particles have at least one of a gas and a liquid having a boiling point lower than the boiling point of the dispersion solvent. Along with this, it is present in the dispersion solvent.
- the temperature in the pores is also increased.
- the ferromagnetic particles are accompanied by a liquid in the dispersion solvent
- the liquid is vaporized to form a balloon and surround the ferromagnetic particles. Since the balloon surrounding the ferromagnetic particles is present in the pores using the dispersion solvent as a medium, the thermal expansion is suppressed by the dispersion solvent surrounding it even if the bearing surface is heated, and the pressure inside the balloon rises. To do. After the internal pressure reaches atmospheric pressure, the balloon moves from the pores to the bearing surface with the ferromagnetic particles.
- the ferromagnetic fine particles that have moved to the bearing surface are stressed by the sliding contact between the bearing and the shaft member, and the coupling due to the magnetic aggregation between the ferromagnetic particles is released, resulting in finer particles that are magnetically applied to the bearing surface. Adsorb.
- the ferromagnetic fine particles can form a film-like structure (hereinafter referred to as “film”) composed of a group of ferromagnetic fine particles on the bearing surface, and can be used as a bearing effect medium. .
- a coating mainly composed of a ferromagnetic material can be formed on the bearing surface.
- other parts of the metal bearing or the shaft member side Supply of lubricating oil or the like for ensuring lubricity to the oil becomes unnecessary.
- the metal bearing there is no seizure on the sliding contact surface between the shaft member and the shaft member, and slidability can be ensured over a long period of time.
- a metal bearing having a long service life that is not affected by the service temperature can be provided by the above configuration. Since the coating can prevent the bearing and the shaft member from directly interfering with each other, it is not necessary to increase the processing accuracy, and the cost can be reduced.
- a second characteristic configuration of the metal bearing according to the present invention is that the ferromagnetic particles have a surface modifier on the surface.
- the surface of the hydrophilic ferromagnetic particles is modified to be hydrophobic by the surface modifier, thereby improving the dispersibility of the ferromagnetic particles in the hydrophobic dispersion solvent.
- the gas surrounding the ferromagnetic particles can be prevented from being released from the ferromagnetic particles.
- the surface modifier has a thermal decomposition rate of 5% or less with respect to a temperature rise of the bearing surface due to sliding with the shaft member. In the point.
- the surface modifier can be used as a lubricant after moving to the bearing surface.
- a fourth characteristic configuration of the metal bearing according to the present invention is that the ferromagnetic particles are magnetite particles.
- a suitable embodiment of a metal bearing having a long service life that is not affected by the service temperature is provided by using magnetite particles as the ferromagnetic particles.
- the average particle size of the magnetite particles is 0.
- the point is below 15 m.
- the saturation magnetization of a single particle becomes small, and it becomes easy to cancel the magnetic aggregation of the magnetite particles.
- a sixth characteristic configuration of the metal bearing according to the present invention is that the BET value of the magnetite particles is 10 m 2 Zg or more.
- a seventh characteristic configuration of the metal bearing according to the present invention is that the dispersion solvent is at least one synthetic oil selected from polyalphaolefin, polyol diester, and polyalkylene glycol.
- the dispersion solvent is polyalphaolefin, and the polyalphaolefin has a polymerization degree of at least one of those having a polymerization degree of 2 and 3. It is that it has as a main component what is a degree.
- the ninth characteristic configuration of the metal bearing according to the present invention is the metal according to claim 2, wherein the surface modifier is at least one compound selected from the group consisting of a titanium coupling agent and a silane coupling agent. bearing.
- the liquid is at least one liquid selected from alcohols having a boiling point in a temperature range of 60 ° C to 130 ° C and hydraulic power.
- a preferred embodiment of a metal bearing having a long service life that is not affected by the service temperature is provided by using the liquid.
- An eleventh characteristic configuration of the metal bearing according to the present invention is that the ferromagnetic particles move to the bearing surface when the temperature of the bearing surface rises due to sliding with the shaft member, and the bearing surface This is in that a film composed mainly of ferromagnetic particles is formed.
- the metal bearing according to the present invention is a metal bearing having a sintered body force having a bearing surface slidable with respect to a shaft member, the main component of which is a metal or an alloy, and pores on the surface and inside.
- a dispersion solvent is provided, and the ferromagnetic particles are present in the dispersion solvent with at least one of a gas and a liquid having a boiling point lower than the boiling point of the dispersion solvent.
- the liquid is vaporized and forms a balloon to surround the ferromagnetic particles. Since the balloon surrounding the ferromagnetic particles exists in the pores using the dispersion solvent as a medium, even if it is about to thermally expand due to the temperature rise of the bearing surface, it is suppressed by the dispersion solvent surrounding it and the pressure inside the balloon rises. After the internal pressure reaches atmospheric pressure, the balloon moves from the pores to the bearing surface with the ferromagnetic particles.
- the temperature inside the pores reaches a constant temperature sooner as it is closer to the bearing surface, so the internal pressure increases in order of the gas force surrounding the ferromagnetic particles close to the bearing surface, and only those that reach a certain pressure move to the bearing surface.
- a self-lubricating mechanism can be realized.
- the ferromagnetic particles that have moved to the bearing surface are stressed by the sliding contact between the bearing and the shaft member, and the coupling due to the magnetic aggregation between the ferromagnetic particles is released to form finer particles on the bearing surface. Magnetic adsorption.
- the ferromagnetic fine particles can form a coating on the bearing surface and can be used as a bearing effect medium.
- the dispersion solvent moves together with the ferromagnetic particles to the bearing surface, when the dispersion solvent receives a load from the shaft member, a gap deviation between the bearing and the shaft member is formed. An oil film pressure distribution is formed. As a result, the dispersion solvent forms a fluid lubrication layer, thereby enabling self-lubricating action. Further, the dispersion solvent moves in the rotation direction of the shaft member due to the oil film pressure distribution generated by the load of the shaft member and the rotation of the shaft member. Under the stress, the ferromagnetic particles attached to the bearing and the shaft member are moved in the rotation direction of the shaft member. Therefore, the dispersion solvent can be used as a lubricant that lubricates the gap between the bearing and the shaft member together with the ferromagnetic particles.
- the coating containing the ferromagnetic material as a main component can be formed on the bearing surface based on the magnetic adsorption force, the thermal expansion of the impregnated oil can be performed as in the conventional oil-impregnated bearing. Based on the self-lubricating property, the supply of lubricating oil or the like to secure lubricity from the metal bearing side to other parts of the metal bearing or the shaft member side is not necessary. Furthermore, segregation occurs due to the ferromagnetic particles slipping on the sliding contact surface between the metal bearing and the shaft member by interposing the ferromagnetic particles in the gap between the metal bearing and the shaft member by magnetic adsorption. Therefore, it is possible to ensure slidability for a long time. And since it can prevent that a bearing and a shaft member interfere directly with the said film, it becomes unnecessary to make a processing precision high and can suppress cost.
- the ferromagnetic particles are fine particles and the magnetic cohesion force between the fine particles is larger than the gravity of the fine particles, it is difficult to release the aggregation of the ferromagnetic fine particles.
- stress is applied according to the gap based on the unevenness of the sliding contact surface between the bearing and the shaft member and the dimensional accuracy of both. This stress acts on a group of particles aggregated repeatedly so as to cancel the aggregation of the ferromagnetic fine particles.
- the stress acting on the ferromagnetic fine particles is transmitted to the bearing and the shaft member, but most of them are converted into a force that dissolves the aggregation of the particles, so that the ferromagnetic fine particles damage the bearing and the shaft member. Aggregation can be released without any problems.
- the particle group After the coating film that also has the group force of the ferromagnetic fine particles is formed in the gap between the bearing and the shaft member, the particle group receives stress from the bearing and the shaft member, so that the particles constituting the particle group move.
- the shape of the particle group can be freely deformed.
- the group of ferromagnetic fine particles can convert much of the stress from the outside into its own shape deformation, and therefore can exhibit a lubricating action as a solid.
- the sliding friction coefficient as a metal bearing can be made smaller than the rolling friction coefficient of a ball when a rigid ball bearing is used.
- the group of ferromagnetic fine particles has a solid lubricating action, it is possible to prevent the generation of abnormal noise caused by friction. Furthermore, the sliding contact surface between the bearing and the shaft member However, the phenomenon of force-tearing can be prevented by the solid lubricating action of the ferromagnetic particles.
- the group of ferromagnetic particles existing in the gap between the bearing and the shaft member gradually approaches a single particle while releasing the aggregation due to the sliding of the particles.
- the group of ferromagnetic fine particles present in the gap between the bearing and the shaft member is always deformed and moved by the magnetic attraction between the bearing and the shaft member. It is held in the gap. For this reason, once the ferromagnetic fine particles, whose magnetic cohesion between particles is larger than the gravity of a single particle, are magnetically adsorbed to the bearing surface or the outer peripheral surface of the shaft member, the ferromagnetic fine particles do not fall off due to gravity. Can be.
- the metal bearing according to the present invention can form a coating mainly composed of a ferromagnetic material on the sliding contact surfaces of the bearing and the shaft member, and has a service life that is not affected by the service temperature. Long metal bearings can be provided. And since the ferromagnetic particles are used as a lubricant, it is possible to prevent the lubricating oil from oozing out to the bearing surface depending on the operating temperature as in the conventional oil-impregnated bearing, or the lubricating oil to dry out. . The ferromagnetic particles are dispersed throughout the bearing surface as the gas is released over the entire bearing surface, and the aggregation of the group of ferromagnetic particles is gradually released. It can be evenly adsorbed on the sliding contact surface with the shaft member.
- such ferromagnetic particles preferably have, for example, the following characteristics.
- the ferromagnetic particles preferably have a large ratio of saturation magnetic flux density to coercive force and magnetic properties. Since such ferromagnetic particles have a large magnetic attraction force, it is difficult for the gap force between the shaft member and the bearing to fall off.
- Ferromagnetic particles preferably have a higher acid start temperature and magnetic Curie point.
- the temperature of the bearing surface rises due to sliding with the shaft member, if the ferromagnetic particles are oxidized or exposed to a temperature exceeding one magnetic queuing point, the magnetic attractive force of the ferromagnetic particles weakens and becomes ferromagnetic. There is a risk that the particles will fall off the pore force. For this reason, the ferromagnetic particles have an oxidation start temperature and a magnetic Curie point that are higher than the highest temperature reached on the bearing surface that is heated by sliding with the shaft member. Are particularly preferred. Incidentally, the average temperature of the bearing surface of a metal bearing in an automobile motor rises to near 170 ° C.
- both the oxidation start temperature and the magnetic Curie point are 170 ° C or higher. Furthermore, according to the experiment by the present inventor, it was found that the bearing surface of the motor for an automobile reaches 200 ° C locally. For this reason, both the oxidation start temperature and the magnetic Curie point are particularly preferably 200 ° C or higher.
- the ferromagnetic particles are preferably spherical or granular. With such ferromagnetic particles, the magnetically agglomerated ferromagnetic particles themselves can easily relieve stress when subjected to bearing and shaft member force stress. That is, in spherical and granular particles, the particles are magnetically aggregated with each other in a state close to point contact. For this reason, the ferromagnetic particles on the bearing surface are subjected to various stresses such as compression, shearing, and tension from the bearing and the shaft member, so that the aggregation of the particles is released, and the group of ferromagnetic fine particles. It is possible to easily form a coating with high force in the gap between the bearing and the shaft member.
- the spherical and granular particles have a small area in contact with the sliding contact surface between the bearing and the shaft member, when the stress is applied to the particles, the particles are slid in a magnetically adsorbed state.
- the ferromagnetic particles are hard particles, the ferromagnetic particles present in the gap between the shaft member and the bearing may attack the shaft member and the bearing. For this reason, it is preferable that the ferromagnetic particles are deagglomerated to a state close to a single particle.
- the ferromagnetic particles that are magnetically adsorbed on the sliding contact surfaces of the shaft member and the bearing become slippery and can exhibit a solid lubricating action of relaxing the stress received by the shaft member and the bearing force.
- the ferromagnetic particles preferably have a large specific surface area.
- the BET value is preferably 10 m 2 / g or more.
- the ferromagnetic particles are accompanied by adsorption or impregnation with a liquid having a boiling point lower than that of the gas or the dispersion solvent.
- the liquid can be accompanied by the surface of the ferromagnetic particles, and self-lubricating property can be obtained for a longer period of time.
- examples of inexpensive gas or liquid having a boiling point below the temperature range of the bearing surface that is heated by sliding with the shaft member include water and various alcohols. Because of this, water and various types of In the case of a magnetic layer, it is preferable that the ferromagnetic particles have a large specific surface area and high hydrophilicity.
- the size of the ferromagnetic particles is preferably such that the particle size is: L m or less.
- the pore opening of the sintered metal used for the metal bearing has various shapes and sizes, and varies depending on the material and use of the sintered metal. For example, the pore opening of a copper-based sintered body is narrower than that of an iron-based sintered body.
- the pore opening of the sintered metal body is narrowed.
- the pore opening of such a sintered metal body has a size of about 1 to 50 / ⁇ ⁇ . For this reason, the ferromagnetic particles dispersed in the dispersion solvent are required to have a size capable of entering the pores of the metal bearing pores and moving from the pores to the bearing surface.
- the ferromagnetic particles preferably have a narrow particle size distribution.
- the density of ferromagnetic particles is larger than that of the dispersion solvent.
- the ferromagnetic particles can be stably dispersed in the dispersion solvent by using ferromagnetic particles having a narrow particle size distribution. Can do.
- Ferromagnetic particles preferably have a small saturation magnetization of a single particle. Thereby, the magnetic aggregation at the time of kneading is easily released. In addition, the magnetic aggregation can be easily released by increasing the kneading time.
- the ferromagnetic particles can be produced, for example, by a dry method or a wet method.
- the dry method is a method in which powder produced by a powder or gold method is physically broken into particles
- the wet method is a method in which particles are generated in a liquid.
- the ferromagnetic particles produced by the dry method have a wide particle size distribution. From the viewpoint of dispersion stability described above, filtering according to the particle size distribution in order to narrow the particle size distribution of the ferromagnetic particles results in less than 10% of the produced particles and expensive particles. Therefore, ferromagnetic particles are produced by a wet method. Is preferred.
- Examples of the granular ferromagnetic particles that can be produced by a wet method include magnetite, Ni—Zn ferrite, Mn—Zn freight, and iron.
- the attractive force of the ferromagnetic particles that are magnetically adsorbed in the gap between the shaft member and the bearing largely depends on the ratio of the saturation magnetic flux density to the coercive force of the ferromagnetic particles.
- Magnetite particles are preferred because the ratio of the saturation magnetic flux density to the coercive force is as large as 0.8 to 0.9 Am 2 ZkgZOe, depending on the size of the particles.
- Magnetite particles obtained by the wet method have a polyhedral shape close to a sphere, and are preferable from the viewpoint of releasing magnetic aggregation.
- the oxidation start temperature depends on the particle size, for example, the oxidation start temperature of magnetite particles having an average particle size of 0.15 ⁇ m is around 250 ° C.
- the magnetic Curie point of magnetite particles is 620 ° C.
- magnetite particles are preferable from the viewpoint of thermal stability.
- the average particle size is preferably 0.3 m or less, more preferably 0.15 m or less, and even more preferably 0.08 m or less. That is, the average particle size of the magnetite particles is small, and the saturation magnetization of a single particle becomes small, so that it is easy to release the magnetic aggregation of the particles.
- the ferromagnetic particles can be deagglomerated to a single particle or close to a single particle, so that the ferromagnetic particles present in the gap between the shaft member and the bearing attack the shaft member and the bearing. It can prevent the solid lubrication action.
- the standard deviation of the particle size with respect to the average particle size is 0.2 and the particle size distribution is narrow. Check it.
- magnetite particles can be preferably applied as ferromagnetic particles.
- a higher BET value allows more gas or liquid to accompany the surface.
- the BET value of is preferably 10 m 2 / g or more, more preferably 21.5 m 2 / g or more.
- the adsorption amount of water can be increased to 2.8 wt% by leaving the magnetite particles in a supersaturated steam atmosphere. .
- the metal or alloy forming the sintered body of the metal bearing according to the present invention can be the same as the conventional metal bearing, and is not particularly limited.
- conventional metal bearing sintered bodies are iron-based, iron-carbon-based, iron-copper-based from the viewpoints of load resistance, impact resistance, crushing strength, crimpability, durability, manufacturing cost, etc.
- Iron-copper-carbon, iron-copper-tin, etc. are applied depending on the application. Since these metals and alloys are both ferromagnetic, they can be preferably applied to metal bearings using ferromagnetic particles.
- the dispersion solvent used in the metal bearing according to the present invention is not particularly limited, but for example, those having the following characteristics are preferable.
- the dispersion solvent preferably disperses the ferromagnetic particles well in the pores, and after moving to the bearing surface, preferably exerts a liquid lubricating action on the sliding surface between the bearing surface and the shaft member. Thereby, it is possible to prevent the sliding contact surface between the bearing surface and the shaft member from being damaged.
- the dispersion solvent has a smaller viscosity change due to temperature. This allows a wide range Since lubricity can be ensured in the temperature range, the dispersed solvent can smoothly move in the gap between the bearing surface and the shaft member regardless of the temperature of the dispersed solvent. Accordingly, it is possible to prevent the generation of abnormal noise, suppress sudden heat generation on the sliding contact surface, and make it difficult for hydrolysis and thermal decomposition of the dispersion solvent.
- the dispersion solvent is preferably one having thermal stability. That is, the dispersion solvent is preferably a solvent that does not chemically change even at high temperatures, such as thermal decomposition and hydrolysis. Thereby, lubricity can be maintained in the sliding contact surface between the bearing surface and the shaft member.
- the dispersion solvent is preferably one that is difficult to thermally decompose and hydrolyze at 150 ° C., and one that is difficult to thermally decompose and hydrolyze to 190 ° C. is more preferred 200 More preferred are those that are difficult to pyrolyze or dissociate with water at a temperature above ° C. Such a dispersion solvent can be applied to automobile applications that are used even in a high-temperature atmosphere.
- the dispersion solvent is preferably lipophilic (or hydrophobic) or nonpolar.
- the dispersion solvent improves the dispersibility as the lipophilicity increases, and contributes to the stable dispersion as the polarity decreases. .
- the dispersion solvent has less hygroscopicity when the hygroscopic property is lower.
- Moisture dissolved in the dispersion solvent becomes a steam balun near the bearing surface due to the temperature rise of the bearing surface, and moves along with the dispersion solvent to the bearing surface.
- the dispersion solvent is wasted and the self-oiling property of the ferromagnetic particles is hindered.
- Moisture also accelerates the hydrolysis reaction of the dispersion solvent on the bearing surface. For this reason, it is preferable that the proportion of water present in the dispersion solvent is low.
- the dispersion solvent for example, (1) polyoxyethylene glycerin fatty acid ester obtained by addition polymerization of ethylene acid to mono fatty acid glycerin, and (2) sorbitan fatty acid ester using an alkaline catalyst is used. Polyoxyethylene fatty acid ester obtained by addition polymerization of ethylene, (3) Ether ester type nonionic field such as polyoxyethylene sorbitol fatty acid ester, which is obtained by adding acid to ethylene to sorbitol and then esterifying with fatty acid. Surfactant, (4) Polyethylene glycol and fatty acid esterified!
- ester-type nonionic surfactants such as polyglycerin fatty acid esters obtained by esterifying fatty acids using an alkali catalyst, and synthetic oils such as polyolefins, polyalkylene glycols, and polyol diesters can be used. Since these are non-polar solvents with high lipophilicity, it is possible to stably disperse ferromagnetic particles accompanied by alcohol or the like as a liquid.
- synthetic oils such as polyalphaolefin, polyol diester, and polyalkylene glycol are more preferable because they have excellent properties such as lubricity in addition to the dispersibility of the ferromagnetic particles.
- polyalphaolefin is preferable because the viscosity index can be easily increased and the change in kinematic viscosity is small in a wide temperature range.
- Polyalphaolefin can also suppress an increase in kinematic viscosity at low temperatures with a low pour point, and it is not hygroscopic, making it difficult for hydrolysis to occur.
- Polyalphaolefin has excellent viscosity index and pour point a olefin CH (CH) CH
- Polyalphaolefin is a force that changes properties such as viscosity, boiling point, and thermal decomposability depending on its degree of polymerization.For example, it has a molecular weight of about 500 and a degree of polymerization of at least one of those having a degree of polymerization of 2 and 3. It is particularly preferable to have a material as a main component because it exhibits the following characteristics.
- the thermal decomposition temperature of this polyalphaolefin is around 230 ° C, and the temperature at which thermal decomposition begins is around 200 ° C. For this reason, it is difficult to thermally decompose even after oozing into the gap between the bearing and the shaft member as a dispersion solvent.
- the boiling point exceeds 200 ° C even at 0.1 atm and hardly evaporates at atmospheric pressure. For this reason, it can exist as a liquid even after oozing into the gap between the shaft and the bearing. Since the viscosity index is as large as 138, lubricity can be maintained over a wide temperature range.
- the ferromagnetic particles preferably have a surface modifier on the surface.
- the dispersibility of the ferromagnetic particles in the hydrophobic dispersion solvent can be improved and strong.
- the gas that should surround the magnetic particles can be prevented from being released from the ferromagnetic particles.
- the surface modifier has thermal decomposition resistance. Specifically, the thermal decomposition rate is 5% or less with respect to the temperature rise of the bearing surface due to sliding with the shaft member. Those are preferred.
- the surface modifier is adsorbed on the surface of the ferromagnetic particles even after moving to the bearing surface. In other words, if the surface modifier is not thermally decomposed after moving to the bearing surface, it can maintain its properties as a surface modifier. It can be adsorbed on the surface of the ferromagnetic particles and combined with the dispersion solvent. Therefore, when such a surface modifier is applied, as shown schematically in FIG.
- the surface modifier 6 is also ferromagnetic on the sliding contact surface 3 between the bearing 1 and the shaft member 2. It is chemisorbed on the surface of the particles 4 and the dispersion solvent 5.
- the dispersion solvent 4 is adsorbed on the surfaces of the ferromagnetic particles 4 through the surface modifier 6, the ferromagnetic particles 4 are liquids by the adsorbed dispersion solvent 4 in addition to the solid lubricating action. This also has a lubricating action.
- a conventionally known surface modifier such as a surfactant or a coupling agent or a magnetic ion liquid
- a surfactant for example, a fatty acid ester, a derivative of a fatty acid ester, a non-ionic cation surfactant of a phosphate ester, or the like can be used. Since these have a hydrophilic group and a hydrophobic group, the hydrophilic group hydrogen bonds with the surface of the ferromagnetic particle, and the hydrophobic group interacts with the molecular chain of the dispersion solvent.
- phosphate esters include phosphate monoester and phosphate diester produced by reacting polyoxyethylene isotridecyl alcohol obtained by adding ethylene oxide to isotridecyl alcohol with anhydrous phosphoric acid. A mixture of esters consisting of can be applied. From the viewpoint of thermal decomposition resistance, for example, a carboxylic acid ester having an isopropoxy group as a hydrophilic group and the following formula (1) as a hydrophobic group has a thermal decomposition rate of 2% at 180 ° C.
- the thermal decomposition rate at 200 ° C is 4%.
- a phosphoric acid ester having the same hydrophilic group and the following formula (2) as a hydrophobic group has a thermal decomposition rate of 2% at 180 ° C and a thermal decomposition rate of 5% at 200 ° C. is there.
- Such a surfactant can be preferably applied because of its excellent thermal decomposition resistance.
- Such higher fatty acid esters have a thermal decomposability of 2 to 5 wt% or less even at a temperature of 200 ° C or higher.
- the maximum temperature of the bearing surface of various motors for automobiles is between 120 ° C and 150 ° C, and there is almost no change in the composition of the surfactant even if it rises to such a temperature. Therefore, the ferromagnetic particles do not lose the lubricating action of the liquid on the bearing surface.
- these surfactants form an adsorption film on the surface of iron-based, iron-copper-based, iron-copper-tin-based metals and alloys, and thus have a function as an oil-based agent, and the bearing surface is a shaft. Adhesive wear due to direct contact with the member does not occur.
- a coupling agent is used as the surface modifier, the same effect as that obtained when a surfactant is used can be obtained.
- a titanium-based coupling agent can be preferably applied. Since the titanium coupling agent has a hydrolyzable hydrophilic functional group and a hydrophobic functional group, the hydrophilic group hydrolyzes with the hydroxyl group adsorbed on the ferromagnetic particles, and becomes a ferromagnetic particle. Hydrophobic groups are formed. Thereby, the ferromagnetic particles can be stably dispersed in the hydrophobic dispersion solvent.
- the titanium-based coupling agent is not particularly limited, but for example, those represented by the following formulas (3) to (5) can be preferably applied.
- the carbon number of the alkyl chain is not particularly limited.
- the titanium coupling agent represented by the above formula (3) since the SP value is 8.1, a fatty acid ester having an SP value of 8 to 9 should be used as the dispersion solvent. Is preferred. Further, the titanium coupling agent shown in the above formula (4) has an SP value of 9.2, and the titanium coupling agent shown in the above formula (5) has an SP value of .6. When a titanium coupling agent is used, it is preferable to use a fatty acid ester having an SP value of 9 to 10 as the dispersion solvent.
- a silane coupling agent may also be used as the coupling agent.
- the silane-based coupling agent is not particularly limited, but decyltrimethoxysilane, hexyltrimethoxysilane represented by the following formulas (6) to (8), which preferably have a long-chain alkyl having a high affinity for the dispersion solvent, Examples include phenyltriethoxysilane.
- These silane-based coupling agents do not evaporate on bearing surfaces that are as high as 132 ° C / 10mmHg, 202 ° C / 10mmHg, and 236 ° C / 10mmHg, respectively.
- the carbon number of the alkyl chain and the carbon number of the alkoxy group of these silane coupling agents can be arbitrarily changed.
- the silane coupling agent is an aqueous solution or an alcohol solution, and the moisture absorption is added to the ferromagnetic particles accompanied with the alcohol, followed by stirring for about 60 minutes. To do. After that, it is left at a temperature lower than the boiling points of water and alcohol to adsorb the silane coupling agent on the surface of the ferromagnetic particles and disperse the ferromagnetic particles in the dispersion solvent. Since phenyltriethoxysilane has high hydrophobicity, for example, it is dissolved in an acetic acid / alcohol solvent.
- a fatty acid may be used as a coupling agent.
- the ferromagnetic particles are stably dispersed in the dispersion solvent by adsorbing the fatty acid to the ferromagnetic particles and reacting with the hydroxyl group, and using a fatty acid having a HLB value close to that of the fatty acid as the dispersion solvent. It can be done.
- the magnetic ionic liquid is not particularly limited, but [Fe M N CI
- the alkyl group at the 1-position is not particularly limited, but is preferred because the hydrophobicity with a large number of carbon atoms increases.
- the alkyl group at the 1-position preferably has 6 to 20 carbon atoms. ! /
- the thermal decomposition temperature of the magnetic ionic liquid is 280 ° C
- the magnetic ionic liquid is magnetically adsorbed to the ferromagnetic particles without deteriorating its properties even after moving to the bearing surface.
- magnetic ionic liquid has almost no vapor pressure, it does not evaporate even after moving to the bearing surface. Therefore, the lubricating action of the ferromagnetic particles can be increased by the lubricating action of the liquid by the magnetic ionic liquid on the sliding contact surface between the bearing surface and the shaft member.
- the surface modifier when the surface modifier does not chemically change even in the environment of the gap between the bearing surface and the shaft member, the ferromagnetic fine particle group is discharged into the gap between the bearing surface and the shaft member. After that, again, the surface modifier surrounds the periphery of the ferromagnetic fine particle group and combines with the dispersion solvent to disperse the ferromagnetic fine particle group.
- the surface modifier surrounds the periphery of the ferromagnetic fine particle group and combines with the dispersion solvent to disperse the ferromagnetic fine particle group.
- the presence of the dispersion solvent surrounding the ferromagnetic fine particles causes a lubricating phenomenon that the ferromagnetic fine particles slide more easily, and in the gap between the bearing and the shaft member.
- the lubricating action of the ferromagnetic particles can be increased.
- the liquid accompanied by the ferromagnetic particles present in the dispersion solvent has a boiling point lower than the boiling point of the main component of the dispersion solvent, and can be vaporized in the dispersion solvent.
- the gas and liquid accompanied by the ferromagnetic particles are not particularly limited, but it is preferable to select the gas and liquid according to the operating environment temperature of the bearing and the temperature rise of the bearing surface due to sliding with respect to the shaft member. In this case, those having a boiling point lower than the maximum temperature of the bearing surface are preferred.
- vaporization is possible even when the temperature of the bearing surface is lower than the boiling point of the liquid, but if a liquid whose boiling point is lower than the highest temperature of the bearing surface is selected, sliding with the shaft member is possible.
- the liquid can be reliably vaporized by the temperature rise of the bearing surface due to the movement.
- a liquid whose boiling point is higher than the temperature of the bearing surface is used, a similar effect can be obtained by separately providing a device for heating the bearing surface.
- the operating environment temperature has a wide temperature range on the bearing surface
- a plurality of types of gas or liquid mixtures having different boiling points can be selected.
- a plurality of types of gases or liquids are mixed in accordance with their vapor pressures so that they can correspond to each other in the temperature range, and further, the gases or liquids are mixed into the ferromagnetic particles at a ratio according to the temperature frequency of the bearing surface. Accordingly, even if the temperature of the bearing surface changes due to sliding contact, the ferromagnetic particles can be efficiently moved to the bearing surface according to the temperature range and the frequency of the bearing surface. Also, both gas and liquid can be accompanied by ferromagnetic particles.
- the maximum average temperature at the bearing surface of a bearing of an automobile motor is 150 ° C.
- the ferromagnetic particles are surely discharged to the bearing surface of the sintered body.
- the temperature range from room temperature to 130 ° C is divided into 5 to 6 regions every 20 ° C, and a liquid having a boiling point in each temperature region is caused to accompany the ferromagnetic particles. Accordingly, if the motor operates within a temperature range of -30 ° C to 120 ° C, the ferromagnetic particles can be discharged to the bearing surface of the sintered body. If the temperature range from room temperature to 130 ° C. is further subdivided, the liquid accompanying the ferromagnetic particles can efficiently move the ferromagnetic particles to the bearing surface.
- the operating temperature of the bearing is an extremely low temperature of 30 ° C or lower, it is difficult to discharge ferromagnetic particles to the bearing surface even with a liquid having a boiling point close to room temperature. . Therefore, when a product incorporating a bearing starts under such extremely low temperature conditions, there should be no ferromagnetic particles or dispersed solvent on the bearing surface until the temperature exceeds a certain temperature due to sliding with the shaft member. become. For this reason, it is preferable to leave the bearing at a temperature equal to or higher than room temperature for a certain period of time before use and to allow the ferromagnetic particles to exude to the bearing surface in advance.
- the same effect can be obtained by bringing gas into the ferromagnetic particles. That is, for example, by adding a liquid that becomes a gas at a temperature lower than the use start temperature, During the movement, the balloon surrounds the ferromagnetic particles, and the pressure of the balloon increases immediately after starting, so that the ferromagnetic particles can be moved to the bearing surface.
- the plurality of types of gases and liquids adsorbed by the ferromagnetic particles are accompanied by one type of gas or liquid different from each other even if a plurality of gases and liquids are accompanied by one ferromagnetic particle. It can be arbitrarily selected according to the compatibility of the gas and liquid to be mixed.
- the ferromagnetic particles be present in an impregnated or adsorbed state. This allows the liquid to evaporate and move to the bearing surface with the ferromagnetic particles that do not separate from the ferromagnetic particles even if the gas is thermally expanded.
- magnetite since magnetite has a hydroxyl group on its surface, it adsorbs many organic solvents such as water, alcohols, ethers and ketones.
- organic solvents such as water, alcohols, ethers and ketones.
- organic solvents are selected in the temperature range from room temperature to 130 ° C and adsorbed on magnetite and considering the difference in boiling point, for example, acetoaldehyde (boiling point: 20.2 ° C), jetyl ether ( Boiling point: 34.5 ° C), Dichloromethane (Boiling point: 40.2 ° C), Ethyl formate (Boiling point: 54.5 ° C), Methanol (64.7 ° C), Ethyl acetate (76.8 ° C), Ethanol (78.5 ° C), Cyclohexane (81.4 ° C), 1 propanol (boiling point: 97.4 ° C), water (boiling point: 100 ° C), 1-but
- magnetite which is a ferromagnetic particle
- magnetite particles are prepared. This magnetite is a fine particle of submicron or less, and magnetically aggregates at the stage of use as a particle! /. Then, magnetite is impregnated or adsorbed with at least one of gas and liquid.
- the coupling agent when adding magnetite to the dispersion solvent, the coupling agent is mixed in a proportion of 2 wt%, preferably 3% or more with respect to the magnetite. Then, stir well. As a result, the hydroxyl groups adsorbed on the surface of the magnetite particles hydrogen bond with the hydrophilic groups of the coupling agent and the hydrophobicity of the coupling agent. The group interacts with the long chain of the dispersion solvent, so that the magnetite can be stably dispersed in the dispersion solvent.
- a surfactant is used as the surface modifier.
- the magnetic ionic liquid is diluted with a liquid that accompanies the ferromagnetic particles.
- a liquid that accompanies the ferromagnetic particles for example, alcohol is dissolved in a magnetic ionic liquid at a rate of 10 wt%.
- alcohol having a boiling point of 60 ° C. to 130 ° C. may be used according to the temperature of the bearing surface.
- a plurality of types of alcohols can be used, for example, a mixed solution of 6% methanol and 4 wt% 1-butanol can be used.
- the magnetic ionic liquid solution is added to the magnetically agglomerated magnetite and stirred well to magnetically adsorb the magnetic ionic liquid on the magnetite.
- the magnetite thus obtained is dispersed in a dispersion solvent.
- a dispersion solvent In order to reduce the degree of aggregation of magnetically agglomerated magnetite, it is necessary to generate shearing force, compressive force, and tensile force at the agglomerated portion of magnetite when mixing magnetite with a dispersion solvent. For this reason, it is preferable that the mixing ratio of magnetite and the dispersion solvent is higher than the mixing ratio of the original magnetite and the dispersion solvent. That is, by mixing and kneading a high concentration of magnetite and a dispersion solvent using a surface modifier such as a surfactant, the dispersion solvent is adsorbed on the magnetite.
- the magnetite and the dispersion solvent having a high viscosity are adsorbed. A mixture with is formed.
- a stirring apparatus such as a pressure type mixer and kneaded
- the dispersion solvent is further adsorbed on the magnetite together with the kneading, and the viscosity increases.
- the dispersion solvent adsorbs on the magnetite and the increase in viscosity has subsided, further rotation of the plate leads to the various parts of the shearing force, compressive force, and tensile force efficiently in the magnetite agglomeration part.
- the agglomeration of magnetite is released, and a magnetite having a low agglomeration degree with a magnetite particle size of 200 nm or less can be obtained.
- the mixed solution in which magnetite having a low degree of aggregation is dispersed is diluted with a dispersion solvent as necessary, and is impregnated into the pores of the sintered body of metal or alloy at a low pressure.
- magnetite can be confined in the pores with at least one of gas and liquid.
- the agglomerated magnetite is formed in a slight gap formed between the convex parts of the two. It is sandwiched by magnetic adsorption and receives stress from the shaft member side. As a result, the agglomerated particles become a group of particles having a lower degree of aggregation. At this time, a lot of stress acts as a force to solve the magnetic aggregation.
- the conventional solid lubrication action for example, the solid lubrication action in graphite particles is due to its own slip fracture, but the solid lubrication action in the present invention is a group of aggregated particles by direct stress acting on the contact portion of the aggregated group of particles. Therefore, it is a solid lubricating action by the aggregation of particles by the sliding of the particle group.
- the aggregated particles discharged to the bearing and the shaft member are subjected to various stresses, and gradually reduce the degree of aggregation of the particles, thereby forming a film having a magnetite fine particle group force.
- magnetite particles having an average particle size of 0.08 ⁇ m, a standard deviation of the particle size distribution of 0.05 m, and a BET value of 34 m 2 / g were used.
- polyalphaolefin having a viscosity index of 138, a kinematic viscosity at 40 ° C of 31 cSt, a kinematic viscosity of 100 ° C of 5.8 cSt, a pour point of 57 ° C, and a molecular weight of about 500 was used. .
- a Ti-based coupling agent represented by the above formula (3) was used as the surface modifier.
- the magnetite particles were left in an atmosphere of supersaturated water vapor at 121 ° C and 2 atm for 30 minutes to absorb moisture.
- Ti magnet coupling agent was added to Ti coupling agent at 3.5 wt%, and polyalphaolefin was softened over a period of 24 hours while increasing the amount of polyalphaolefin to 10 wt%. . Thereafter, polyalphaolefin was added while being mixed until the total weight became 65 wt% to prepare an impregnated material.
- Example 2 The same ferromagnetic particles, dispersion solvent and surface modifier as those used in Example 1 were used.
- a solution was prepared by mixing methanol (boiling point 64.5 ° C), 1-butanol (boiling point 117.4 ° C) and water in a weight ratio of 1: 2.5: 2. .
- the solution was cooled to 10 ° C., and magnetite particles were immersed in this solution and left for 30 minutes. Add magnetite particles adsorbed with alcohol in a temperature environment of 10 ° C to 3.5 wt% Ti coupling agent and spend 24 hours while increasing the amount of polyolefins up to 10 wt%. I was relieved. After that, polyalphaolefin refractory was added at 10 ° C with mixing until the total weight became 65 wt% to prepare an impregnated material.
- Impregnated material 1 Impregnated material 2
- Bubble generation started. Bubbles were generated continuously.
- impregnated materials 1 and 2 are low-pressure impregnated into a sintered metal body to form bearing parts, each of which is attached to a motor, and a continuous operation test is performed by changing the operating temperature and operating time of the motor. went.
- Motor operating conditions are 72 ° C at 20 ° C, 144 minutes at 40 ° C, 360 minutes at 55 ° C, 504 minutes at 75 ° C, 288 minutes at 90 ° C, 72 minutes at 120 ° C This was set as 1 cycle, and repeated operation was repeated.
- Example 2 As a result, in all cases, even if 50 cycles were repeated, no noise or odor was generated from the sliding surface.
- Example 1 abnormal noise was generated at the stage of entering 55 cycles, followed by abnormal odor.
- Example 2 an abnormal noise was generated at the stage of entering 75 cycles, followed by an abnormal odor.
- the conventional metal bearing has an operating environment temperature of 30 ° C to a little over 100 ° C, whereas the metal bearing according to the present invention has a temperature of 40 ° C to 120 ° C. It can be used as a bearing part in a range. Furthermore, in a temperature cycle environment where the temperature continuously changes in the temperature range from 20 ° C to 120 ° C, it has become a component that it has an operating life that is more than 10 times that of conventional bearings.
- the metal bearing according to the present invention can be applied to various bearing parts such as a vehicle electromagnetic valve and a motor bearing part.
- FIG. 1 is a schematic diagram showing the state of ferromagnetic particles on the sliding contact surface between a metal bearing and a shaft member according to the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Sliding-Contact Bearings (AREA)
- Lubricants (AREA)
Abstract
軸部材に対して摺動可能な軸受面を備え、金属または合金を主成分とし、表面及び内部に気孔を有する焼結体からなるメタル軸受において、気孔の内に分散溶媒を備え、強磁性粒子が、気体及び分散溶媒の沸点より低い沸点を有する液体のうち少なくとも一方を伴って分散溶媒の中に存在している。
Description
明 細 書
メタル軸受
技術分野
[0001] 本発明は、軸部材に対して摺動可能な軸受面を備え、金属または合金を主成分と し、表面及び内部に気孔を有する焼結体力 なるメタル軸受に関する。
背景技術
[0002] 従来、金属の焼結体を主成分として形成されるメタル軸受として、焼結体の内部に 潤滑油を含浸させた含油軸受が知られている (例えば、特許文献 1参照)。このような メタル軸受によれば、回転軸との摺接による発熱等により、焼結体内に含浸させた潤 滑油が軸受面に滲み出される、所謂自己給油性によって、軸受面における潤滑性を ½保することができる。
[0003] また、その他のメタル軸受としては、銅—ニッケル系の合金粉末に対して、黒鉛粒 子をボールミルなどの手段で混合して加圧成形した後に焼結を行う黒鉛分散型 Cu 基焼結合金製の軸受が提案されている (例えば、特許文献 2参照)。このようなメタル 軸受では、潤滑性の高い遊離黒鉛と優れた強度及び耐食性を有する銅 ニッケル 系合金とにより、優れた耐摩耗性を発揮することができる。
特許文献 1 :特開 2002— 39183号公報
特許文献 2 :特開 2002— 180162号公報
発明の開示
発明が解決しょうとする課題
[0004] しかし、前記従来の焼結体の内部に潤滑油を含浸させた含油軸受は、低温領域に おいては、蒸気圧が小さい (表面張力が小さい)、あるいは低温領域での潤滑油の体 積が熱収縮する等の要因によって焼結体内に含浸させた潤滑油が充分に軸受面に 滲み出難くなり、自己給油性がなくなってしまう。その結果、軸受と軸部材との摺接面 での焼付き、あるいは片あたりによって気孔の目をつぶしてしまう等の問題が発生す る。一般的に、使用温度が 30°C以下となると含油軸受の自己潤滑性が極端に低 下するものである。
[0005] 一方、高温度領域においては、蒸気圧が大きい (表面張力が大きい)、あるいは熱 膨張が大きくなる等の要因によって焼結体内に含浸させた潤滑油が滲み出易くなり、 使用時間が長くなると枯渴してしまう場合がある。この結果、低温時と同様に、潤滑油 の潤滑作用が低下することによって軸受と軸部材との摺接面での焼付き、あるいは片 あたりによって気孔の目をつぶしてしまう等の問題が発生する。一般的には、使用温 度が 100°C以上になると含浸軸受の連続動作時間に制約を受けるようになる。
なお、軸受に使用される金属または合金の焼結体が表面及び内部に備える気孔の 体積割合は、一般的に 17〜23vol%程度であり、気孔内に含浸できる潤滑油の容 量には制限がある。
[0006] また、含油軸受と軸受に軸支された軸部材とが干渉する場合には、軸受面におけ る焼結体の気孔が潰され、潤滑油が滲み出ることを阻害することがある。このため、軸 受の内径寸法と軸部材の外形寸法とについて高い加工精度が必要となり、コストが 高くなるという問題がある。
[0007] また、前記黒鉛分散型 Cu基焼結合金製の軸受では、銅 ニッケル系の合金粉末 に対して単にボールミルにて黒鉛粉末を混合するものであるため、黒鉛が塊となって 分散してしまう。このため、軸受面に黒鉛が均一に付かない場合がある。
[0008] 金属粒子の表面に黒鉛粒子が固着したものを焼結する場合には、金属と黒鉛との 融点が大きく異なるため、金属粒子同士の接触面での溶融が黒鉛の存在で阻害さ れる。このため、焼結体の機械的強度が大きく低下するという問題も発生する。
[0009] 一方、自動車用のモータは、その動作環境温度の範囲が広ぐモータが配置される 位置によってもその温度は変化する。具体的には、自動車用モータの場合、その動 作環境温度の範囲は—40〜120°C程度になり、軸受の軸受面においては、軸部材 との摺動によってモータの動作環境温度に対して、さらに 30〜50°C程度まで昇温す る。このため特に自動車用モータの軸受においては、幅広い温度範囲で軸受面にお ける潤滑性を確保できるものが求められて 、る。
なお、自動車用モータの軸受は、メンテナンスフリーで 10年以上使用される。
[0010] 一般的に、使用温度範囲が広い場合や使用時間が長い場合、また軸部材と軸受と の干渉が避けられない場合などにおいては、含油軸受(または、すべり軸受という)に
変えてボール軸受(または、ころがり軸受という)を使用することも想定されるが、ボー ル軸受を使用すると、コストが高くなる。また、軸受の実装スペースを大きくとる必要が あるため、軸受を使用するユニット、例えばモータが大きくなり、モータの実装性を損 なう。
[0011] 本発明は上記の問題に鑑みて案出されたものであり、使用温度に影響を受けること なぐ使用寿命の長いメタル軸受を提供することを目的とするものである。
課題を解決するための手段
[0012] 上記目的を達成するための本発明に係るメタル軸受の第 1特徴構成は、軸部材に 対して摺動可能な軸受面を備え、金属または合金を主成分とし、表面及び内部に気 孔を有する焼結体力 なるメタル軸受にお 、て、前記気孔の内に分散溶媒を備え、 強磁性粒子が、気体及び前記分散溶媒の沸点より低 ヽ沸点を有する液体のうち少な くとも一方を伴って前記分散溶媒の中に存在する点にある。
[0013] つまり、この構成によれば、メタル軸受は、軸部材との摺接等によって軸受面が昇 温されると、その気孔内も昇温される。そして、一定の温度以上になった気孔内では 、分散溶媒中において強磁性粒子が液体を伴う場合には、その液体は気化し、バル ーンを形成して強磁性粒子を取り囲むようになる。強磁性粒子を取り囲むバルーンは 、分散溶媒を媒体として気孔内に存在するため、軸受面の昇温によって熱膨張しょう としてもその周りを取り囲む分散溶媒によって熱膨張が抑制され、その内部の圧力が 上昇する。そして、その内圧が大気圧に達した後は、バルーンは強磁性粒子を伴つ て気孔内から軸受面に移動する。そして、軸受面に移動した強磁性粒子は、軸受と 軸部材との摺接により応力を受け、強磁性粒子同士の磁気凝集による結合が解除さ れ、より微細な粒子となって軸受面に磁気吸着する。これにより強磁性の微粒子は、 軸受面に強磁性の微粒子群からなる被膜状の構造体 (以下「被膜」と称する)を形成 することができ、ベアリング効果の媒体として使用することが可能となる。
[0014] このように軸受面に強磁性体を主成分とする被膜を形成することができるため、従 来の含油軸受等のように、メタル軸受側力 メタル軸受の他の部位または軸部材側 への潤滑性を確保するための潤滑油等の供給は必要なくなる。さらには、メタル軸受 と軸部材との間隙に、強磁性粒子を磁気吸着によって介在させることで、メタル軸受
と軸部材との摺接面での焼付きが発生せず、摺動性を長期にわたって確保すること が可能となる。
[0015] したがって、上記構成により使用温度に影響を受けることなぐ使用寿命の長いメタ ル軸受を提供することができる。そして、被膜によって軸受と軸部材とが直接干渉す ることを防ぐことができるため、加工精度を高くする必要が無くなり、コストを抑えること ができる。
[0016] 本発明に係るメタル軸受の第 2特徴構成は、前記強磁性粒子は、表面改質剤を表 面に有する点にある。
[0017] つまり、この構成によれば、表面改質剤によって、親水性である強磁性粒子の表面 を疎水性に改質することにより、疎水性の分散溶媒中における強磁性粒子の分散性 を向上させることができると共に、強磁性粒子を取り囲むべき気体が、強磁性粒子か ら遊離することを防ぐことができる。
[0018] 本発明に係るメタル軸受の第 3特徴構成は、前記表面改質剤は、前記軸部材との 摺動による前記軸受面の昇温に対して、熱分解率が 5%以下である点にある。
[0019] つまり、この構成によれば、表面改質剤は、軸受面に移動した後には潤滑剤として 活用することができる。
[0020] 本発明に係るメタル軸受の第 4特徴構成は、前記強磁性粒子は、マグネタイト粒子 である点にある。
[0021] つまり、この構成によれば、強磁性粒子として、マグネタイト粒子を用いることにより、 使用温度に影響を受けることなぐ使用寿命の長いメタル軸受の好適な実施形態が 提供される。
[0022] 本発明に係るメタル軸受の第 5特徴構成は、前記マグネタイト粒子の平均粒径が 0
. 15 m以下である点にある。
[0023] つまり、この構成によれば、単一粒子の飽和磁化が小さくなるため、マグネタイト粒 子の磁気凝集を解除し易くなる。
[0024] 本発明に係るメタル軸受の第 6特徴構成は、前記マグネタイト粒子の BET値が 10 m2Zg以上である点にある。
[0025] つまり、この構成によれば、より多くの気体や液体をマグネタイト粒子の表面に伴わ
せることができる。
[0026] 本発明に係るメタル軸受の第 7特徴構成は、前記分散溶媒は、ポリアルファオレフィ ン、ポリオールジエステル、ポリアルキレングリコール力 選ばれる少なくとも一種の合 成油である点にある。
[0027] つまり、この構成によれば、分散溶媒として、上記合成油を用いることにより、使用 温度に影響を受けることなぐ使用寿命の長いメタル軸受の好適な実施形態が提供 される。
[0028] 本発明に係るメタル軸受の第 8特徴構成は、前記分散溶媒は、ポリアルファオレフィ ンであって、当該ポリアルファオレフインは、重合度が 2及び 3であるもののうち少なく とも一方の重合度であるものを主成分として有する点にある。
[0029] つまり、この構成によれば、分散溶媒として、上記ポリアルファオレフインを用いるこ とにより、使用温度に影響を受けることなぐ使用寿命の長いメタル軸受の好適な実 施形態が提供される。
[0030] 本発明に係るメタル軸受の第 9特徴構成は、前記表面改質剤は、チタン系カツプリ ング剤及びシラン系カップリング剤力 選ばれる少なくとも一種の化合物である請求 項 2に記載のメタル軸受。
[0031] つまり、この構成によれば、表面改質剤として、上記カップリング剤を用いることによ り、使用温度に影響を受けることなぐ使用寿命の長いメタル軸受の好適な実施形態 が提供される。
[0032] 本発明に係るメタル軸受の第 10特徴構成は、前記液体は、 60°C〜130°Cの温度 範囲に沸点を有するアルコール類及び水力 選ばれる少なくとも一種の液体である にめる。
[0033] つまり、この構成によれば、上記液体を用いることにより、使用温度に影響を受ける ことなぐ使用寿命の長いメタル軸受の好適な実施形態が提供される。
[0034] 本発明に係るメタル軸受の第 11特徴構成は、前記軸部材との摺動により前記軸受 面が昇温した際に、前記軸受面に前記強磁性粒子が移動し、前記軸受面に強磁性 粒子を主成分とする被膜を形成した点にある。
[0035] つまり、この構成によれば、被膜によって、軸受と軸部材との滑らかな摺動性が可能
となる。また、軸受面での焼付きが発生せず、摺動性を長期にわたって確保すること が可能となる。さらには、軸受と軸部材との摺接は、摺接面において力じりなどの現象 を防止することができる。
発明を実施するための最良の形態
[0036] 本発明に係るメタル軸受は、軸部材に対して摺動可能な軸受面を備え、金属また は合金を主成分とし、表面及び内部に気孔を有する焼結体力 なるメタル軸受にお いて、前記気孔の内に分散溶媒を備え、強磁性粒子が、気体及び前記分散溶媒の 沸点より低 、沸点を有する液体のうち少なくとも一方を伴って前記分散溶媒の中に 存在するものである。すなわち、メタル軸受は、軸部材との摺接等によって軸受面が 昇温されると、その気孔内も昇温される。そして、一定の温度以上になった気孔内で は、分散溶媒中において強磁性粒子が液体を伴う場合には、その液体は気化し、バ ルーンを形成して強磁性粒子を取り囲むようになる。強磁性粒子を取り囲むバルーン は、分散溶媒を媒体として気孔内に存在するため、軸受面の昇温によって熱膨張し ようとしてもその周りを取り囲む分散溶媒によって抑制され、その内部の圧力が上昇 する。そして、その内圧が大気圧に達した後は、バルーンは強磁性粒子を伴って気 孔内から軸受面に移動する。なお、気孔内の温度は、軸受面に近いほど早く一定温 度に達するため、軸受面に近い強磁性粒子を取り囲む気体力 順に内部圧力が高 まり、一定圧力に達したもののみ軸受面に移動するようになるという自己給油機構を 実現することができる。
[0037] 軸受面に移動した強磁性粒子は、軸受と軸部材との摺接により応力を受け、強磁 性粒子同士の磁気凝集による結合が解除され、より微細な粒子となって軸受面に磁 気吸着する。これにより強磁性の微粒子は、軸受面に被膜を形成することができ、ベ ァリング効果の媒体として使用することが可能となる。
[0038] また、強磁性粒子と共に分散溶媒が軸受面に移動する場合には、分散溶媒は軸部 材からの荷重を受けると、軸受と軸部材との間隙偏差が形成され、これに応じて油膜 の圧力分布が形成される。この結果、分散溶媒は流体潤滑層を形成し、これにより自 己潤滑作用を発揮することが可能となる。さらに、分散溶媒は、軸部材の荷重によつ て発生する油膜の圧力分布と軸部材の回転とにより、軸部材の回転方向に移動する
応力を受け、軸受及び軸部材に付着した強磁性粒子を軸部材の回転方向に移動さ せる。このため分散溶媒は、強磁性粒子と共に軸受と軸部材との間隙を潤滑する潤 滑剤とすることができる。
[0039] このように摺接面に強磁性体を主成分とする被膜が軸受面に磁気吸着力に基づい て形成することができるため、従来の含油軸受等のように、含浸油の熱膨張による自 己給油性に基づく、メタル軸受側からメタル軸受の他の部位または軸部材側への潤 滑性を確保するための潤滑油等の供給は必要なくなる。さらには、メタル軸受と軸部 材との間隙に、強磁性粒子を磁気吸着によって介在させることで、メタル軸受と軸部 材との摺接面で強磁性粒子が滑ることによって、焼付きが発生せず、摺動性を長期 にわたつて確保することが可能となる。そして、前記の被膜によって軸受と軸部材とが 直接干渉することを防ぐことができるため、加工精度を高くする必要が無くなり、コスト を抑えることができる。
[0040] なお、一般的には、強磁性粒子が微粒子であり、かつ微粒子同士の磁気凝集力が 微粒子の重力より大きい場合は、強磁性微粒子同士の凝集を解除することは困難と なる。しかし、軸受と軸部材との間隙に存在する強磁性微粒子の場合は、軸受と軸部 材との摺接面の凹凸と両者の寸法精度に基づく間隙に応じた応力を受ける。この応 力は、強磁性微粒子の凝集を解除するように繰り返し凝集した粒子群に作用する。 すなわち、強磁性微粒子に作用した応力は、軸受及び軸部材に伝達されるが、その 多くが粒子同士の凝集を解く力に変換されるため、強磁性微粒子は軸受及び軸部 材に損傷を与えることなく凝集を解除することができる。
[0041] 強磁性微粒子の群力もなる被膜を軸受と軸部材との間隙に形成させた後は、この 粒子群は軸受と軸部材とから応力を受けることで、粒子群を構成する粒子が移動し、 粒子群の形状は自由に変形することができる。すなわち、強磁性微粒子の群は、外 部からの応力の多くを自身の形状変形に変換することができるため、固体としての潤 滑作用を奏することが可能となる。このため、メタル軸受としての滑り摩擦係数は、剛 体のボールベアリングを用いた場合でのボールの転がり摩擦係数より小さくすること ができる。また、強磁性微粒子の群が固体潤滑作用を有することにより、摩擦に伴つ て発生する異音の発生をも防止することができる。さらに、軸受と軸部材との摺接面
においても、強磁性粒子の固体の潤滑作用によって、力じりなどの現象の発生を防 止することができる。そして、軸受と軸部材との間隙に存在する強磁性粒子の群は、 粒子が滑ることで凝集を解除しながら、徐々に単一粒子に近づくようになる。
[0042] ここで、軸受と軸部材との間隙に存在する強磁性微粒子の群は、常に軸受と軸部 材との間で磁気的な吸引力によって、変形や移動が可能な状態で両者の間隙に保 持されるものである。このため、単一粒子の重力より粒子同士の磁気凝集力の方が大 きい強磁性微粒子が、いったん軸受面または軸部材の外周面に磁気吸着すると、強 磁性微粒子は重力では脱落しな 、ようにすることができる。
[0043] したがって、本発明に係るメタル軸受は、軸受及び軸部材の摺接面に強磁性体を 主成分とする被膜を形成することができ、使用温度に影響を受けることなぐ使用寿 命の長いメタル軸受を提供することができる。そして、強磁性粒子を潤滑材として用 いるため、従来の含油軸受のように使用温度によって潤滑油が軸受面に滲み出難く なったり、潤滑油が枯渴してしまうこと等をなくすことができる。なお、強磁性粒子は、 気体が軸受面の全体に放出されるのに伴って軸受面の全体に分散され、強磁性粒 子の群の凝集が徐々に解除されるものであるため、軸受と軸部材との摺接面に均一 に吸着させることができる。
[0044] このような強磁性粒子は、特に制限はされな ヽが、例えば、以下の特性を有するも のが好ましい。
1.磁気的性質
強磁性粒子は、抗磁力に対する飽和磁束密度の比率が大き ヽ磁気特性を有する ことが好ましい。このような強磁性粒子は、磁気吸着力が大きいため、軸部材と軸受と の間隙力 脱落し難くなる。
[0045] 2.熱的安定性
強磁性粒子は、酸ィ匕開始温度及び磁気キュリー点は高い方が好ましい。軸部材と の摺動により軸受面の温度が昇温した場合に、強磁性粒子が酸化されたり、磁気キ ユリ一点を越える温度に晒されたりすると、強磁性粒子の磁気吸引力が弱まり強磁性 粒子は間隙力 脱落する虞がある。このため、強磁性粒子は、酸化開始温度及び磁 気キュリー点が、軸部材との摺動によって昇温する軸受面の最高到達温度より高いこ
とが特に好ましい。因みに、自動車用モータにおけるメタル軸受の軸受面の平均温 度は 170°C近くまで昇温する。したがって、本発明に係るメタル軸受を自動車用モー タに適用する場合には、酸ィ匕開始温度及び磁気キュリー点が共に 170°C以上である ことが好ましい。さらに、本発明者の実験によれば、自動車用モータの軸受面は局所 的に 200°Cまで到達することが分力ゝつた。このため、酸化開始温度及び磁気キュリー 点の双方は 200°C以上であることが特に好ましい。
[0046] 3.固体潤滑性
強磁性粒子は、球状または粒状であることが好ましい。このような強磁性粒子であ れば、磁気凝集した強磁性粒子自身が軸受及び軸部材力 応力を受けた際に応力 を緩和し易い。すなわち、球状及び粒状の粒子では粒子同士は点接触に近い状態 で互いに磁気凝集している。このため、軸受面の強磁性粒子は、軸受及び軸部材か ら圧縮、剪断、引張り等の各種応力を受けることにより、粒子同士の凝集が解除され るように作用し、強磁性の微粒の群力もなる被膜を軸受と軸部材との間隙に容易に 形成できる。また、球状及び粒状の粒子は、軸受と軸部材との摺接面に接する面積 も小さいため、粒子に応力が加わった場合には磁気吸着された状態で粒子が滑るよ うに作用する。なお、強磁性粒子が硬い粒子の場合には、軸部材と軸受との間隙に 存在する強磁性粒子が軸部材と軸受を攻撃する虞がある。このため、強磁性粒子は 単一粒子に近い状態にまで凝集解除することが好ましい。これにより、軸部材および 軸受の摺接面に磁気吸着した強磁性粒子は滑りやすくなり、軸部材及び軸受力 受 ける応力を緩和させるという固体潤滑作用を発揮することができる。
[0047] 4. 自己給油'性
強磁性粒子は、比表面積が大きい方が好ましぐ具体的には、 BET値が 10m2/g 以上であることが好ましい。強磁性粒子を軸受面に移動させるためには、強磁性粒 子に気体または分散溶媒より沸点が低い液体を吸着、含浸等により伴わせるが、強 磁性粒子の比表面積が大き 、ほど、気体や液体を強磁性粒子の表面に伴わせるこ とができ、より長期に亘つて自己給油性を得ることができる。また、軸部材との摺動に よって昇温する軸受面の温度領域以下において沸点を有し、かつ安価な気体または 液体としては、例えば、水や各種のアルコールがある。このため、水や各種のアルコ
ール伴わせる場合には、強磁性粒子は比表面積が大きぐ親水性が高い方が好まし い。
[0048] 5.含浸性
強磁性粒子の大きさは、粒径が: L m以下であることが好ましい。一般に、メタル軸 受に使用する金属焼結体の気孔の開口部は、様々な形状や大きさを有し、金属焼 結体の材質や用途等によって変わるものである。例えば、銅系の焼結体の方が、鉄 系の焼結体よりも気孔の開口部は狭くなる。また、メタル軸受を高い静粛性が要求さ れるモータに適用する場合には、金属焼結体の気孔の開口部は狭くする。このような 金属焼結体の気孔の開口部は、 1〜50 /ζ πι程度の大きさを有する。このため、分散 溶媒中に分散された強磁性粒子は、メタル軸受の気孔の開口部力 気孔内に進入 できる大きさであり、かつ気孔内から軸受面に移動できる大きさであることが求められ る。
[0049] 6.分散安定性
強磁性粒子は、その粒径分布が狭い方が好ましい。通常、強磁性粒子の密度は、 分散溶媒の密度に比べて大きくなる。例えば、分散溶媒に比べて密度比が 8倍に近 い強磁性粒子であっても、粒径分布が狭い強磁性粒子を用いることによって、強磁 性粒子を分散溶媒中に安定に分散させることができる。
[0050] 7.凝集解除性
強磁性粒子は、単一粒子の飽和磁化が小さい方が好ましい。これにより、捏和時の 磁気凝集が解除され易くなる。また、捏和時間を長くすることによつても磁気凝集を解 除し易くなる。
[0051] 8.製法
強磁性粒子は、例えば、乾式法または湿式法によって作製することができる。乾式 法とは、粉末や金法で作られた粉体を物理的に破壊して粒子化する方法であり、湿 式法とは、液体中で粒子を生成する方法である。一般に、乾式法で作製された強磁 性粒子は粒径分布が広くなる。上記の分散安定性の観点からは、強磁性粒子の粒 径分布を狭くするために、粒径分布に応じたフィルタリングをすると、製造した粒子の 1割以下となり高価な粒子となる。したがって、強磁性粒子は湿式法によって作製す
る方が好ましい。
[0052] 9.材質
湿式法で作製できる粒状の強磁性粒子としては、マグネタイト、 Ni— Znフェライト、 Mn— Znフ ライト、鉄等が例示される。軸部材と軸受との間隙に磁気吸着される強 磁性粒子の吸着力は、強磁性粒子の抗磁力に対する飽和磁束密度の比率の大きさ に大きく依存する。マグネタイト粒子は、粒子の大きさに依存するが、抗磁力に対する 飽和磁束密度の比率が 0. 8〜0. 9Am2ZkgZOeと大きいため好ましい。湿式法に よるマグネタイト粒子は、球に近い多面体形状であり、磁気凝集の解除の観点からも 好ましい。湿式法では、硫酸鉄等の溶解溶液に酸素ガスを吹き付けながら粒子を析 出させるので、小さい粒子ほど短時間に析出し、析出される粒子の大きさは揃ってい る。また、酸ィ匕開始温度は、粒子の大きさに依存するが、例えば、平均粒径が 0. 15 μ mのマグネタイト粒子の酸ィ匕開始温度は 250°C付近である。また、マグネタイト粒 子の磁気キュリー点は 620°Cである。このようにマグネタイト粒子は、熱安定性の観点 からも好ましい。
[0053] 10.マグネタイト粒子の大きさ
マグネタイト粒子を使用する場合は、平均粒径は 0. 3 m以下であることが好ましく 、0. 15 m以下であることがより好ましぐ 0. 08 m以下であることがさらに好ましい 。すなわち、マグネタイト粒子の平均粒径は小さい方力 単一粒子の飽和磁化が小さ くなるため、粒子の磁気凝集を解除し易くなる。これにより、強磁性粒子を単一粒子、 もしくは単一粒子に近い状態にまで凝集解除することができるため、軸部材と軸受と の間隙に存在する強磁性粒子が軸部材と軸受を攻撃することを防止し、固体潤滑作 用を発揮することができる。さらには、例えば、平均粒径が 0. 15 /z mのマグネタイト 粒子の粒径分布を測定すると、平均粒子径に対する粒子径の標準偏差が 0. 2であ り、粒径分布も狭 、ことを確認して 、る。
[0054] 11.マグネタイト粒子の物性
このようなマグネタイト粒子の物性の一例を示すと、表 1に示す通りである。これらの マグネタイト粒子は、強磁性粒子として好ましく適用することができる。なお、 BET値 は大きい方が、より多くの気体や液体を表面に伴わせることができ、マグネタイト粒子
の BET値は、 10m2/g以上であることが好ましぐ 21. 5m2/g以上であることがより好 ましい。例えば、 BET値が 21. 5m2/gマグネタイト粒子を含浸材料に用いる際には、 マグネタイト粒子を過飽和水蒸気の雰囲気に放置することにより、 2. 8wt%まで水分 の吸着量を増大させることができる。
[0055] [表 1]
[0056] 本発明に係るメタル軸受の焼結体を形成する金属または合金は、従来のメタル軸 受と同様のものが適用でき、特に限定されるものではない。すなわち、従来のメタル 軸受の焼結体は、耐荷重性、耐衝撃性、圧環強度、カゝしめ性、耐久性、製造コスト等 の観点から、鉄系、鉄一炭素系、鉄一銅系、鉄一銅一炭素系、鉄一銅一錫系等が用 途に応じて適用されている。そして、これらの金属及び合金はいずれも強磁性である ため、強磁性粒子を用いたメタル軸受に好ましく適用することができる。
[0057] 本発明に係るメタル軸受に使用する分散溶媒は、特に限定されるものではないが、 例えば、以下の特性を有するものが好ましい。
[0058] 1.潤滑性
分散溶媒は、気孔内において強磁性粒子を良好に分散させると共に、軸受面に移 動した後は、軸受面と軸部材との摺接面において液体の潤滑作用を奏することが好 ましい。これにより、軸受面と軸部材との摺接面が損傷するのを防止することができる また、分散溶媒は、温度による粘度変化が小さい方が好ましい。これにより、幅広い
温度範囲において潤滑性を確保することができるため、分散溶媒の温度に関わらず 、軸受面と軸部材との間隙において分散溶媒は、スムースな移動を実現することがで きる。したがって、異音の発生を防止できると共に、摺接面における急な発熱を抑制 し、分散溶媒の加水分解や熱分解を起こり難くすることができる。
さらに、分散溶媒は、熱安定性を有するものが好ましい。すなわち、分散溶媒は、 高温時にも熱分解、加水分解等、化学変化しないものが好ましい。これにより、軸受 面と軸部材との摺接面において潤滑性を保持することができる。具体的には、分散 溶媒は 150°Cにお 、て熱分解及び加水分解し難 、ものが好ましく、 190°Cにお!/、て 熱分解及び加水分解し難いものがより好ましぐ 200°C以上において熱分解及びカロ 水分解し難いものがさらに好ましい。このような分散溶媒であれば、高温雰囲気下で も使用される自動車用途等にも適用ができる。
[0059] 2.強磁性粒子の分散性
分散溶媒は、親油性 (または、疎水性という)、または無極性であることが好ましい。 特に、有極性であるアルコール等を伴わせた親水性の強磁性粒子を分散させる場合 には、分散溶媒は、親油性が高いほど分散性が向上し、極性が低いほどの安定分散 に寄与する。
[0060] 3.吸湿性
分散溶媒は、吸湿性が低い方が好ましぐ吸湿性を有しない方がより好ましい。分 散溶媒に溶解する水分は、軸受面の昇温により、軸受面の付近で水蒸気のバル一 ンとなって軸受面に分散溶媒を伴って移動する。これにより、分散溶媒が無駄に消費 され、また強磁性粒子の自己給油性を阻害する。また、水分は、軸受面における分 散溶媒の加水分解反応を促進する。このため、分散溶媒中の存在する水分の割合 は低い方が好ましい。
[0061] 分散溶媒としては、例えば、(1)モノ脂肪酸グリセリンに酸ィ匕エチレンを付加重合し たポリオキシエチレングリセリン脂肪酸エステル、 (2)ソルビタン脂肪酸エステルにァ ルカリ触媒を使用して酸ィ匕エチレンを付加重合したポリオキシエチレン脂肪酸エステ ル、 (3)ソルビトールに酸ィ匕エチレンを付加し、この後脂肪酸でエステルイ匕するポリオ キシエチレンソルビトール脂肪酸エステル等のエーテルエステル型の非イオン性界
面活性剤、(4)ポリエチレングリコールと脂肪酸をエステルイ匕したある!/、は高級脂肪 酸に酸ィ匕エチレンを付加重合したポリエチレングリコール脂肪酸モノ (ジ)エステル、 ( 5)グリセリンを縮合したポリグリセリンにアルカリ触媒を使用して脂肪酸をエステルイ匕 したポリグリセリン脂肪酸エステル等のエステル型の非イオン性界面活性剤や、ポリア ルファオレフイン、ポリアルキレングリコール、ポリオールジエステル等の合成油を用 いることができる。これらは、親油性が高ぐ無極性の溶媒であるため、液体としてァ ルコール等を伴う強磁性粒子を安定に分散させることができる。
[0062] 中でも、ポリアルファオレフイン、ポリオールジエステル、ポリアルキレングリコール等 の合成油は、強磁性粒子の分散性に加え、潤滑性等の特性にも優れているためより 好ましい。例えば、ポリアルファオレフインは、粘度指数を高くすることが容易で、幅広 い温度範囲において動粘度の変化が小さいため好ましい。また、ポリアルファオレフ インは、流動点が低ぐ低温における動粘度の上昇も抑制できると共に、吸湿性を有 しな ヽため加水分解反応も起こり難 ヽ。
[0063] ポリアルファオレフインは、粘度指数と流動点に優れた aォレフィン CH (CH ) CH
3 2 7
=CHをエチレンによって重合した C H — (CHC H CH )n— Hの組成式を有す
2 10 21 8 17 2
る合成油である。ポリアルファオレフインは、その重合度によって粘度、沸点、熱分解 性等の特性が変わるものである力 例えば、分子量が約 500で、重合度が 2及び 3で あるもののうち少なくとも一方の重合度であるものを主成分として有する場合は、以下 の特性を示すため、特に好ましい。
[0064] このポリアルファオレフインの熱分解温度は 230°C付近であり、熱分解が始まる温 度は 200°C付近にある。このため、分散溶媒として軸受と軸部材との間隙に滲み出た 後においても熱分解し難い。沸点は 0. 1気圧においても 200°Cを越えており大気圧 では殆ど蒸発しない。このため、軸と軸受の間隙に滲み出た後においても液体として 存在させることができる。粘度指数は 138と大きいため、幅広い温度範囲で潤滑性を 保つことができる。 40°Cにおける動粘度は 31cStと低いため、例えば、強磁性粒子を 気孔内に低圧含浸する場合にも分散性を損なうことがない。流動点は— 57°Cであり 、—30°Cでの動粘度の上昇が抑制でき、—30°Cの極低温でも潤滑油として用いるこ とがでさる。
[0065] 本発明に係るメタル軸受は、強磁性粒子が表面改質剤を表面に有することが好ま しい。すなわち、表面改質剤によって、親水性である強磁性粒子の表面を疎水性に 改質することにより、疎水性の分散溶媒中における強磁性粒子の分散性を向上させ ることができると共に、強磁性粒子を取り囲むべき気体が、強磁性粒子から遊離する ことを防ぐことができる。
[0066] また、表面改質剤は耐熱分解性を有するものが好ましぐ具体的には、軸部材との 摺動による軸受面の昇温に対して、熱分解率が 5%以下であるものが好ましい。これ により、表面改質剤は、軸受面に移動した後においても、強磁性粒子の表面に吸着 している。すなわち、表面改質剤が軸受面に移動した後にも熱分解されなければ、 表面改質剤としての性質を維持できるため、表面改質剤は軸受面にお!ヽて強磁性 粒子の表面に吸着すると共に、分散溶媒と結合することできる。したがって、このよう な表面改質剤を適用する場合には、図 1に模式的に示すように、軸受 1と軸部材 2と の摺接面 3においても、表面改質剤 6は、強磁性粒子 4の表面と分散溶媒 5とに化学 吸着されている。このように、強磁性粒子 4の表面には、表面改質剤 6を介して分散 溶媒 4が吸着されているので、強磁性粒子 4は、固体潤滑作用に加え、吸着した分散 溶媒 4による液体の潤滑作用を併せて有することとなる。
[0067] 表面改質剤は、界面活性剤、カップリング剤等の従来公知の表面改質剤や磁性ィ オン液体を適用することもできる。界面活性剤としては、例えば、脂肪酸エステルや 脂肪酸エステルの誘導体、リン酸エステルの非イオン型ァ-オン界面活性剤等を用 いることができる。これらは、親水基と疎水基とを有するため、親水基が強磁性粒子の 表面と水素結合すると共に、疎水基が分散溶媒の分子鎖と相互作用する。そして、こ れにより強磁性粒子の分散性を向上させ、強磁性粒子に吸着した気体が熱膨張する 際には、分散溶媒と共に熱膨張を抑制するように働く。このようなリン酸エステルとし ては、例えば、イソトリデシルアルコールにエチレンオキサイドを付カ卩したポリオキシェ チレンイソトリデシルアルコールを無水リン酸と反応させて生成するリン酸モノエステ ルとリン酸ジエステルとからなるエステルの混合物を適用することができる。また、耐 熱分解性の観点からは、例えば、親水基としてイソプロポキシ基を備え、疎水基とし て下記式(1)を備えるカルボン酸エステルであれば、 180°Cにおける熱分解率は 2%
であり、 200°Cにおける熱分解率は 4%である。また、同様の親水基を備え、疎水基 として下記式(2)を備えるリン酸エステルであれば、 180°Cにおける熱分解率は 2% であり、 200°Cにおける熱分解率は 5%である。このような界面活性剤であれば、耐 熱分解性に優れるため好ましく適用することができる。
[0068] [化 1]
O II
-0-C-C1 7H35 ( 1 )
[化 2]
O O II II
-0- P-0- P- (0-C8H17 ) 2 ( 2 )
OH
[0069] このような高級脂肪酸エステル等は、 200°C以上の温度においても、熱分解性が 2 〜5wt%以下である。これに対し、自動車用の各種モータの軸受面の最高温度は 1 20°C〜150°Cの間にあり、このような温度に上昇しても界面活性剤の組成変化がほ とんどないため、強磁性粒子は、軸受面においても液体の潤滑作用を失うことはない 。また、これらの界面活性剤は、鉄系、鉄-銅系、鉄-銅-錫系の金属及び合金の 表面に吸着膜を形成するため、油性剤としての機能を有し、軸受面が軸部材と直接 接触することによる凝着磨耗が起こらない。
[0070] 表面改質剤として、カップリング剤を用いる場合にも界面活性剤を用いる場合と同 様の効果が得られ、例えばチタン系カップリング剤を好ましく適用することができる。 チタン系カップリング剤は、加水分解性を有する親水性の官能基と疎水性の官能基 とを有するため、親水基が強磁性粒子に吸着している水酸基と加水分解反応し、強 磁性粒子に疎水基が形成される。これにより、疎水性の分散溶媒中に強磁性粒子を 安定に分散させることができる。
[0071] チタン系カップリング剤としては、特に限定されないが、例えば、下記式(3)〜(5) に示すものが好ましく適用できる。なお、下記式(3)〜(5)において、例えば、アルキ ル鎖の炭素数は、特に限定されるものではない。
[0072] [化 3]
CH3-CH -0-Ti -0-C-C1 7H 35 ( 3 )
[化 4]
CH3 O O
II II
CH3-CH -0 -Ti 0- P-0- P- (0-C8H17 ) 2 ( 4 )
OH
[化 5]
[0073] なお、上記式(3)に示すチタン系カップリング剤を使用する場合には、 SP値が 8. 1 であるため、分散溶媒としては SP値が 8〜9の脂肪酸エステルを用いることが好まし い。また、上記式 (4)に示すチタン系カップリング剤は、 SP値が 9. 2であり、上記式( 5)に示すチタン系カップリング剤は、 SP値力 . 6であるため、これらのチタン系カツ プリング剤を使用する場合には、分散溶媒としては SP値が 9〜10の脂肪酸エステル を用いることが好ましい。
[0074] また、カップリング剤として、シラン系カップリング剤を用いることもできる。シラン系力 ップリング剤は、特に限定されないが、分散溶媒との親和性が高い長鎖アルキルを 持つものが好ましぐ下記式 (6)〜(8)に示すデシルトリメトキシシラン、へキシルトリメ トキシシラン、フエニルトリエトキシシラン等が例示される。これらのシラン系カップリン グ剤は、その沸点力それぞれ、 132°C/10mmHg, 202°C/10mmHg, 236°C/10 mmHgと高ぐ軸受面において蒸発することはない。もちろん、これらのシラン系カツ プリング剤のアルキル鎖の炭素数やアルコキシ基の炭素数は任意に変更可能である
[0075] [化 6]
OCH,
CHgO一 l― C-| Q H 2-| ( 6 )
OCH,
[化 7]
C2H5
[0076] なお、上記のシラン系カップリング剤を用いる場合には、シラン系カップリング剤を 水溶液あるいはアルコール溶液とし、吸湿な ヽしはアルコールを伴った強磁性粒子 に添加し、 60分程度攪拌する。その後、水およびアルコールの沸点より低い温度で 放置し、強磁性粒子の表面にシラン系カップリング剤を吸着させて、分散溶媒に強磁 性粒子を分散させる。なお、フエニルトリエトキシシランは、疎水性が高いため、例え ば、酢酸水—アルコール系の溶媒に溶解させて用いる。
[0077] さらに、カップリング剤として脂肪酸を用いることもできる。すなわち、脂肪酸を強磁 性粒子に吸着して 、る水酸基と反応させ、脂肪酸の HLB値と近 、HLB値を有する ものを分散溶媒として用いることにより、強磁性粒子を分散溶媒中に安定に分散させ ることがでさる。
[0078] 磁性イオン液体としては、特に限定はされな 、が、 [Fe M N CI
X Υ Ζ 4 Γ— (但し、 Μ, Νはそ れぞれ遷移金属原子であり、 x+y+z= l, nは X, y, zにより定まる数値である。)で 表される陰イオンカゝら選ばれる少なくとも 1種の陰イオンを備えるものを使用すること ができる。具体的には、陰イオンとして、 x= l, y=z = 0, 11= 1でぁる 6じ1 ]—を有し、
4 陽イオンとして 1 ェチル 3 メチルイミダゾリゥム、 1 ブチル 3 メチルイミダゾ リウム、 1ーォクチルー 3—メチルイミダゾリゥム、 1 デシルー 3—メチルイミダゾリゥム
を有する塩化鉄 (III)酸 1ーェチルー 3—メチルイミダゾリゥム、塩ィ匕鉄 (III)酸 1ーブ チル一 3—メチルイミダゾリゥム、塩ィ匕鉄 (III)酸 1—ォクチルー 3—メチルイミダゾリウ ム、塩ィ匕鉄 (III)酸 1—デシル— 3—メチルイミダゾリゥムが例示される。このような磁性 イオン液体は、強磁性粒子に磁気吸着し、被覆することができるため、分散溶媒中に 強磁性粒子を分散させることができる。なお、 1位のアルキル基は、特に限定されな いが、炭素数が多い方力 疎水性度が高まるため好ましぐ 1位のアルキル基は、炭 素数が 6〜20であることが好まし!/、。
[0079] また、上記磁性イオン液体の熱分解温度は 280°Cであるため、軸受面に移動した 後も性質を損なわず、強磁性粒子と磁気吸着している。さらに磁性イオン液体はほと んど蒸気圧を有しないため、軸受面に移動した後においても蒸発しない。このため、 軸受面と軸部材との摺接面にお!、て、磁性イオン液体による液体の潤滑作用によつ て強磁性粒子の潤滑作用を増大させることができる。
[0080] このように、表面改質剤は、軸受面と軸部材との間隙の環境下においても化学的に 変質しない場合には、強磁性微粒子群が軸受面と軸部材との間隙に吐き出された後 に再度、表面改質剤は、強磁性微粒子群の周囲を取り囲み、分散溶媒と結合して、 強磁性微粒子の群を分散させている。これによつて、間隙における潤滑状態が境界 潤滑になったとしても、表面改質剤と分散溶媒の存在によって、金属同士が直接摺 接することがなぐこれによつて発生する軸受面の凝集磨耗は起こらない。また、軸受 面が軸部材力 過大な応力を受けたとしても、強磁性微粒子を取り囲む分散溶媒の 存在によって、強磁性微粒子がよりょく滑るという潤滑現象をもたらし、軸受と軸部材 との間隙における強磁性粒子の潤滑作用を増大させることができる。
[0081] 分散溶媒中に存在する強磁性粒子が伴う液体は、分散溶媒の主成分の沸点より低 い沸点を有するものであり、これにより分散溶媒中において気化することが可能となる 。また、強磁性粒子が伴う気体及び液体としては、特に制限はないが、軸受の動作 環境温度と、軸部材に対する摺動による軸受面の昇温とに応じて選択することが好ま しぐ特に液体においては軸受面の最高到達温度より低い沸点を有するものが好ま しい。すなわち、軸受面の温度が液体の沸点より低い場合であっても気化は可能で あるが、沸点が軸受面の最高到達温度よりも低い液体を選択すれば、軸部材との摺
動による軸受面の昇温により確実に液体を気化させることができる。なお、沸点が軸 受面の温度より高い液体を用いる場合には、軸受面を加熱するための装置を別途設 けることにより、同様の効果を得ることができる。
[0082] 動作環境温度ゃ軸受面の温度の範囲が広!、場合は、沸点が異なる複数種類の気 体あるいは液体の混合物を選択することができる。そして、複数種類の気体または液 体は、温度領域内でそれぞれが対応できるようにそれぞれの蒸気圧に応じて混合し 、さらに気体または液体は軸受面の温度頻度に応じた割合で強磁性粒子に伴わせ ることで、摺接により軸受面の温度が変わったとしても、軸受面の温度範囲と温度頻 度に応じて効率よく強磁性粒子を軸受面に移動させることができる。また、気体と液 体との両方を強磁性粒子に伴わせてもよ 、。
[0083] 例えば、自動車用モータの軸受の軸受面における最高平均温度は 150°Cである。
したがって、強磁性粒子に液体を伴わせる場合には、その沸点が 130°Cに至る温度 範囲にあれば、確実に焼結体の軸受面に強磁性粒子が吐き出される。そして、常温 〜130°Cに至る温度範囲を、 20°Cごとに 5〜6の領域に分け、それぞれの温度領域 に沸点を持つ液体を強磁性粒子に伴わせる。これによつてモータの動作が— 30°C 〜120°Cの温度範囲であれば、焼結体の軸受面に強磁性粒子を吐き出させることが できる。なお、常温〜 130°Cに至る温度範囲を、さらに細分ィ匕すれば強磁性粒子に 伴わせる液体は効率よく強磁性粒子を軸受面に移動させることができる。
[0084] また、軸受の動作温度が 30°C以下の極低温である場合には、室温に近い沸点 を有する液体を伴わせても、軸受面に強磁性粒子を吐き出させることは困難である。 したがって、軸受を組み込んだ製品がこのような極低温の状況下で始動する場合に は、軸部材との摺動によって一定温度以上になるまで軸受面には強磁性粒子及び 分散溶媒が存在しないことになる。このため、使用前に軸受を常温以上の温度で一 定時間放置し、予め強磁性粒子を軸受面に滲み出させておくことが好ましい。例え ば、 60°Cで 30分放置し、強磁性粒子の一部を予め軸受面に滲み出させてから軸受 を製品に組み込み軸受を稼動させると、始動時力 良好な潤滑性を得ることができる 。さらには、強磁性粒子に気体を伴わせることによつても同様の効果を得ることができ る。すなわち、例えば、使用開始温度以下で気体となる液体を伴わせることにより、始
動時においてバルーンが強磁性粒子を取り囲む状態となり、始動後直ちにバルーン の圧力が高まるため、強磁性粒子を軸受面に移動させることができる。
[0085] 強磁性粒子に吸着させる複数種類の気体及び液体は、一つの強磁性粒子に複数 の気体及び液体を伴わせても、一つの強磁性粒子にそれぞれ異なる一種類の気体 または液体を伴わせてもよぐ混合する気体及び液体のそれぞれの相溶性に応じて 任意に選択することができる。
[0086] 気体または液体を強磁性粒子に伴わせる手段としては、強磁性粒子に含浸または 吸着した状態で存在させることが好ましい。これにより、液体が気化し、気体が熱膨張 しても強磁性粒子と分離することなぐ強磁性粒子を伴って軸受面に移動することが できる。
[0087] 例えばマグネタイトは表面に水酸基を備えるため、水やアルコール類、エーテル類 、ケトン類等の多くの有機溶剤を吸着する。常温〜 130°Cの温度範囲で、マグネタイ トに吸着し、かつ沸点の違いの温度差を考慮して有機溶剤を選択すると、例えば、ァ セトアルデヒド (沸点: 20.2°C)、ジェチルエーテル (沸点: 34.5°C)、ジクロロメタン (沸点: 40.2°C)、ギ酸ェチル (沸点: 54.5°C)、メタノール (64.7°C)、酢酸ェチル (76.8°C)、ェタノ ール (78.5°C)、シクロへキサン (81.4°C)、 1 プロパノール (沸点: 97.4°C)、水 (沸点: 10 0°C)、 1ーブタノール (沸点: 117.6°C)、 2-メトキシエタノール (沸点: 124.5°C)、酢酸イソ ブチル (沸点: 126.3°C)、イソペンチルアルコール (沸点: 130.8°C)等を挙げることがで きる。これらの液体を沸点の温度差を考慮して組み合わせることで、広い温度範囲で 強磁性粒子を軸受面に吐き出させることができる。
[0088] 本発明に係るメタル軸受の製造方法の一例は、強磁性粒子であるマグネタイトを例 にとつて説明すると、まずマグネタイトの粒子を用意する。このマグネタイトは、サブミ クロンあるいはそれ以下の微粒子であり、粒子として用いる段階で磁気凝集して!/、る 。そして、マグネタイトに気体及び液体の少なくとも一方を含浸または吸着させる。
[0089] 表面改質剤としてカップリング剤を使用する場合には、例えば、分散溶媒にマグネ タイトを加える際に、カップリング剤をマグネタイトに対し 2wt%、好ましくは 3 %以 上の割合で混合し、この後よく攪拌する。これにより、マグネタイトの粒子表面の吸着 された水酸基がカップリング剤の親水基と水素結合すると共にカップリング剤の疎水
基が分散溶媒の長鎖と相互作用し、マグネタイトを分散溶媒中に安定に分散させる ことができる。表面改質剤として界面活性剤を使用する場合も同様の方法によって行 うことができる。
[0090] また、表面改質剤として磁性イオン液体を使用する場合は、まず、強磁性粒子に伴 わせる液体で磁性イオン液体を希釈する。具体的には、磁性イオン液体に例えばァ ルコールを 10wt%の割合で溶解させる。この時、アルコールは軸受面の温度に応じ て、例えば沸点が 60°C〜130°Cにあるアルコールを用いるとよい。また、複数種類の アルコールを用いることもでき、例えば 6 %のメタノールと 4wt%の 1ーブタノール の混合液を用いることができる。次いで、磁気凝集したマグネタイトに磁性イオン液体 の溶液を添加してよく攪拌し、マグネタイトに磁気イオン液体を磁気吸着させる。
[0091] そして、このようにして得られたマグネタイトを分散溶媒に分散させる。磁気凝集した マグネタイトの凝集度を下げるためには、マグネタイトを分散溶媒と混合する際にマグ ネタイトの凝集部分に、剪断力、圧縮力、引張力を発生させることが必要になる。この ため、マグネタイトと分散溶媒との混合比率を本来のマグネタイトと分散溶媒との混合 比率より高めることが好ましい。すなわち、特に界面活性剤等の表面改質剤を用いて 高濃度のマグネタイトと分散溶媒とを混合し捏和することで、マグネタイトに分散溶媒 が吸着され、この結果、粘度の高いマグネタイトと分散溶媒との混合物が形成される 。このような高濃度のマグネタイトと分散溶媒とは、加圧式の-一ダーなどの攪拌装 置に充填し、捏和すると、捏和と共にさらに分散溶媒がマグネタイトに吸着し、粘度が 上昇する。そして、マグネタイトへの分散溶媒の吸着が収れんし、粘度の増大が収れ んした後、さらに-一ダーを回転させると、効率よくマグネタイトの凝集部に、剪断力、 圧縮力や引張力の各種の応力が作用するため、マグネタイトの凝集が解除され、マ グネタイトの粒子の大きさが 200nm以下の凝集度の低いマグネタイトを得ることがで きる。このようにして、凝集度の低いマグネタイトが分散した混合溶液は、必要に応じ て分散溶媒で希釈し、金属または合金の焼結体の気孔内に低圧含浸させる。このよ うな方法により、マグネタイトを気体及び液体のうち少なくとも一方を伴って気孔内に 閉じ込めることができる。
[0092] 加圧式の-一ダー装置で捏和してマグネタイトの凝集度が下がったとしても、凝集
度が下がると粒子の凝集部に応力が直接印加され難くなるため、捏和前の凝集度よ りは大きく低下している力 マグネタイトは依然として磁気凝集している。このようなマ グネタイトは、軸受面に吐き出されると、軸受面と軸部材との表面状態に応じた応力 を受ける。例えば、軸部材の凸部と軸受の凸部とが対畤し、軸部材側から荷重を軸 受側に伝える状態では、凝集したマグネタイトは、両者の凸部に形成された僅かな間 隙に磁気吸着によってはさまれ、軸部材側から応力を受ける。これによつて凝着した 粒子は、さらに凝集度合いが低い粒子群となる。またこの際に、多くの応力が磁気凝 集を解く力として作用する。従来の固体潤滑作用、例えば黒鉛粒子における固体潤 滑作用は、自身の滑り破壊によるが、本発明における固体潤滑作用は、凝集した粒 子群の接触部に直接応力が働くことによって凝集した粒子群を解くことになるため、 粒子群が滑ることで粒子の凝集が解かれることによる固体潤滑作用である。このよう に、軸受と軸部材とに吐き出された凝集粒子群は、各種の応力を受け、粒子の凝集 度合いを徐々に下げ、マグネタイトの微粒子群力もなる被膜を形成する。
なお、このような場合であっても、軸受面に吐き出されたマグネタイトの磁気凝集度 が大きいとマグネタイトが軸部材と軸受を攻撃する虞がある。このため、捏和時間を長 くして、マグネタイトを単一粒子、もしくは単一粒子に近い状態にまで凝集解除するこ とが好ましい。
[0093] 以下、実施例について説明する。
(含浸材料 1)
強磁性粒子として、平均粒径が 0. 08 μ m、粒径分布の標準偏差が 0. 05 m、 B ET値が 34m2/gのマグネタイト粒子を用いた。
分散溶媒として、粘度指数が 138、 40°Cの動粘度が 31cSt、 100°Cの動粘度が 5. 8cSt、流動点が 57°Cであり、分子量が約 500であるポリアルファオレフインを用い た。
表面改質剤として、上記式(3)に示す Ti系カップリング剤を用いた。
[0094] そして、マグネタイト粒子を 121°C、 2気圧の過飽和水蒸気の雰囲気に 30分間放置 し、吸湿させた。このマグネタイト粒子に Ti系カップリング剤を 3. 5wt%で添カ卩し、ポ リアルファオレフインを極少量ずつ 10wt%まで力卩えながら 24時間をかけて捏和した
。この後、ポリアルファオレフインを、全体の重量に対し 65wt%になるまで混合しなが ら添加し、含浸材料を作製した。
[0095] (含浸材料 2)
強磁性粒子、分散溶媒、表面改質剤は、実施例 1と同様のものを用いた。 そして、メタノール (沸点が 64. 5°C)と 1—ブタノール (沸点が 117. 4°C)と水とが、 重量比で 1 : 2. 5 : 2になるように混合した溶液を調製した。溶液を 10°Cに冷却し、こ の溶液にマグネタイト粒子を浸漬して 30分間放置した。 10°Cの温度環境でアルコー ルが吸着したマグネタイト粒子に、 Ti系カップリング剤を 3. 5wt%で添カ卩し、ポリアル ファオレフインを極少量ずつ 10wt%まで力卩えながら 24時間をかけて捏和した。この 後、 10°Cにおいてポリアルファオレフインカ、全体の重量に対し 65wt%になるまで 混合しながら添加し、含浸材料を作製した。
実施例 1
[0096] 作製した含浸材料 1及び 2の挙動を可視化して観察するため、これらの含浸材料を 金属焼結体の内部気孔に低圧含浸する代わりに、含浸材料 1及び 2をそれぞれのビ 一力に入れ、このビーカをオイルバス中に配置し、オイルバスの温度を変えて含浸材 料の挙動を観察した。その結果を表 2及び 3に示した。表 2は、オイルバスの温度上 昇および温度下降速度を 1°C/分に設定して実験した結果であり、表 3は、オイルバス の温度変化速度を 0. 1°C/分に設定して実験した結果である。また、表 2及び 3の結 果は、記載した温度に到達した瞬間の挙動を示して 、る。
[0097] [表 2]
温度(°c ) 含浸材料 1 含浸材料 2
6 0 気泡は発生 しない 気泡は発生 しない
7 0 気泡は発生 しない 気泡の発生が始まった
8 0 気泡は発生 しない 気泡の発生頻度が高まった
9 0 気泡は発生 しない さ らに気泡の頻度が髙まった
1 0 0 気泡の ¾生が始まった 連続的に気泡が発生した
1 1 0 気泡の発生頻度が高まった 連続的に気泡が発生した
1 2 0 さ らに気泡の頻度が高まった 連続的に気泡が発生した
1 3 0 連続的に気泡が発生 した 連続的に気泡が発生した
1 4 0 連続的に気泡が発生 した 連続的に気泡が発生した
1 5 0 連続的に気泡が発生 した 連続的に気泡が発生した
1 6 0 連続的に気泡が発生 した 連続的に気泡が発生した
1 7 0 連続的に気泡が発生 した 連続的に気泡が発生した
1 6 0 連続的に気泡が発生 した 連続的に気泡が発生した
1 5 0 連続的に気泡が発生 した 連続的に気泡が発生した
1 4 0 連続的に気泡が発生 した 連続的に気泡が発生した
1 3 0 連続的に気泡が発生 した 連続的に気泡が発生した
1 2 0 気泡発生頻度が低下 し始めた 連続的に気泡が発生した
さ らに気泡発生頻度が低下 し
1 1 0 連続的に気泡が発生した
た
1 0 0 気泡は発生 しない 連続的に気泡が発生した
9 0 °C 気泡は発生 しない 気泡発生頻度が低下し始めた
8 0 °C 気泡は発生 しない さ らに気泡発生頻度が低下した
7 0 °C 気泡は ¾生 しない 気泡は発生 しない
6 0 °C 気泡は発生 しない 気泡は発生 しない
3]
温度(°c) 含浸材料 1 含浸材料 2
6 0 気泡は発生しない 気泡は発生しない
7 0 気泡は発生しない 気泡の発生が始まった
8 0 気泡は発生しない 連続的に気泡が発生した
9 0 気泡は発生しない 連続的に気泡が発生した
1 0 0 気泡の発生が始まった 連続的に気泡が発生した
1 1 0 連続的に気泡が発生した 連続的に気泡が発生した
1 2 0 連続的に気泡が発生した 連続的に気泡が発生した
1 3 0 気泡は発生しない 連続的に気泡が発生した
1 4 0 気泡は ¾生しない 連続的に気泡が発生した
1 5 0 気泡は発生しない 連続的に気泡が発生した
1 6 0 気泡は発生しない 連続的に気泡が発生した
1 7 0 気泡は発生しない 連続的に気泡が発生した
1 6 0 気泡は発生しない 連続的に気泡が発生した
1 5 0 気泡は発生しない 連続的に気泡が発生した
1 4 0 気泡は発生しない 気泡は発生しない
1 3 0 気泡は発生しない 気泡は発生しない
1 2 0 気泡は発生しない 気泡は発生しない
1 1 0 気泡は発生しない 気泡は発生しない
1 0 0 気泡は発生しない 気泡は発生しない
9 0 °C 気泡は発生しない 気泡は発生しない
8 0 °C 気泡は発生しない 気泡は発生しない
7 0 °C 気泡は発生しない 気泡は発生しない
6 0 °C 気泡は発生しない 気泡は発生しない
[0099] 含浸材料 1では、 100°Cまで昇温した時点力も気泡が発生した。これは水蒸気圧が 大気圧近辺まで上昇したためである。表 2では、 170°Cから 130°Cまでの降温過程に おいて連続的に気泡が発生した。その後、気泡の発生頻度が低下し、 100°Cで気泡 の発生は停止した。表 3では、降温過程の 140°Cに至る過程で完全に水蒸気が消費 された。これらの結果は、マグネタイト粒子に吸着した水蒸気力 連続的に消費され、 降温過程においてで完全に消費されたためであると考えられる。温度変化速度によ つて異なるのは、気泡が発生する時間は、水の沸点以上の温度に晒された合計時間 に依存することを表して 、るためであると考えられる。
[0100] 含浸材料 2では、 70°C近辺まで昇温した時点力も気泡が発生した。これは、メタノ ールの蒸気圧が大気圧近辺まで上昇したためである。表 2では、 100°Cまでの降温 過程において、連続的に気泡が発生した。その後、気泡の発生頻度が低下し、 70°C に至って気泡の発生は停止した。表 3では、 150°Cの降温過程まで連続的に気泡が 発生していた。いずれの場合も含浸材料 1を用いた場合に比べて気泡の発生時間が 延びることが分かった。これは、メタノールと 1ーブタノールとを混合させ、 70°Cから 1 70°Cにおける気泡の発生頻度を、メタノールと水と 1—ブタノールとに分担させたこと によるちのと考免られる。
実施例 2
[0101] 次に、含浸材料 1及び 2を金属焼結体に低圧含浸して、軸受部品とし、それぞれを モータに取り付けて、モータの動作温度と動作時間とを変えてそれぞれ連続動作試 験を行った。モータの動作条件は、 20°Cで 72分間、 40°Cで 144分間、 55°Cで 360 分間、 75°Cで 504分間、 90°Cで 288分間、 120°Cで 72分間となるように設定し、こ れを 1サイクルとして、繰り返し連続動作させた。
その結果、いずれの場合も 50サイクルを繰り返しても、摺接面からは異音や異臭の 発生が見られな力つた。実施例 1では、 55サイクルに入った段階で異音が発生し、さ らにこれに続いて異臭も発生した。実施例 2では、 75サイクルに入った段階で異音が 発生し、さらにこれに続いて異臭も発生した。
[0102] 比較例として、従来の軸受を用いたモータを同様の条件で動作させると、 5サイクル に入った段階で異音が発生し、さらにこれに続いて異臭も発生した。
[0103] 以上のように、従来のメタル軸受では— 30°Cから 100°C強の動作環境温度であつ たのに対し、本発明に係るメタル軸受では— 40°Cから 120°Cの温度範囲で軸受部 品として用いることができる。さらに、 20°Cから 120°Cの温度範囲で連続的に温度が 変わる温度サイクルの環境では、従来の軸受に対し 10倍以上の動作寿命を有する ことが分力つた。
産業上の利用可能性
[0104] このため、本発明に係るメタル軸受は、車両用の電磁弁やモータの軸受部品等、 様々な軸受部品に適応することができる。
図面の簡単な説明
[0105] [図 1]本発明に係るメタル軸受と軸部材との摺接面における強磁性粒子の状態を示 す模式図
符号の説明
[0106] 1 軸受
2 軸部材
4 強磁性粒子
5 分散溶媒
Claims
請求の範囲
[I] 軸部材に対して摺動可能な軸受面を備え、金属または合金を主成分とし、表面及 び内部に気孔を有する焼結体力 なるメタル軸受にお 、て、
前記気孔の内に分散溶媒を備え、強磁性粒子が、気体及び前記分散溶媒の沸点 より低 、沸点を有する液体のうち少なくとも一方を伴って前記分散溶媒の中に存在 するメタル軸受。
[2] 前記強磁性粒子は、表面改質剤を表面に有する請求項 1に記載のメタル軸受。
[3] 前記表面改質剤は、前記軸部材との摺動による前記軸受面の昇温に対して、熱分 解率が 5%以下である請求項 2に記載のメタル軸受。
[4] 前記強磁性粒子は、マグネタイト粒子である請求項 1に記載のメタル軸受。
[5] 前記マグネタイト粒子の平均粒径が 0. 15 m以下である請求項 4に記載のメタル 軸受。
[6] 前記マグネタイト粒子の BET値が 10m2Zg以上である請求項 4または 5に記載のメ タル軸受。
[7] 前記分散溶媒は、ポリアルファオレフイン、ポリオールジエステル、ポリアルキレング リコール力 選ばれる少なくとも一種の合成油である請求項 1に記載のメタル軸受。
[8] 前記分散溶媒は、ポリアルファオレフインであって、当該ポリアルファオレフインは、 重合度が 2及び 3であるもののうち少なくとも一方の重合度であるものを主成分として 有する請求項 1に記載のメタル軸受。
[9] 前記表面改質剤は、チタン系カップリング剤及びシラン系カップリング剤力も選ばれ る少なくとも一種の化合物である請求項 2に記載のメタル軸受。
[10] 前記液体は、 60°C〜130°Cの温度範囲に沸点を有するアルコール類及び水から 選ばれる少なくとも一種の液体である請求項 1に記載のメタル軸受。
[II] 前記軸部材との摺動により前記軸受面が昇温した際に、前記軸受面に前記強磁性 粒子が移動し、前記軸受面に強磁性粒子を主成分とする被膜を形成する請求項 1〜 10の何れか一項に記載のメタル軸受。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007516204A JPWO2006123453A1 (ja) | 2005-05-20 | 2006-01-20 | メタル軸受 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005-147956 | 2005-05-20 | ||
JP2005147956 | 2005-05-20 | ||
JP2005-249886 | 2005-08-30 | ||
JP2005249886 | 2005-08-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006123453A1 true WO2006123453A1 (ja) | 2006-11-23 |
Family
ID=37431036
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/300847 WO2006123453A1 (ja) | 2005-05-20 | 2006-01-20 | メタル軸受 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2006123453A1 (ja) |
WO (1) | WO2006123453A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007123748A (ja) * | 2005-10-31 | 2007-05-17 | Aisin Seiki Co Ltd | 耐食性磁石及びその製造方法 |
JP2007150194A (ja) * | 2005-11-30 | 2007-06-14 | Aisin Seiki Co Ltd | 永久磁石の固定構造及び固定方法 |
JP2014062635A (ja) * | 2012-09-20 | 2014-04-10 | Hiroshi Kobayashi | 軸受装置 |
JP2015014356A (ja) * | 2013-07-04 | 2015-01-22 | 小林 博 | 転がり軸受装置 |
JP2016023091A (ja) * | 2014-07-16 | 2016-02-08 | トーヨー産業株式会社 | ガラス切断工具 |
JP2017008278A (ja) * | 2015-06-23 | 2017-01-12 | 小林 博 | 軸受装置に用いる潤滑剤 |
CN114178523A (zh) * | 2017-10-04 | 2022-03-15 | Jx金属株式会社 | 表面处理铜微粒子的制造方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019098240A1 (ja) * | 2017-11-15 | 2019-05-23 | 三菱マテリアル株式会社 | 焼結含油軸受及びその製造方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59126114A (ja) * | 1983-01-08 | 1984-07-20 | Nippon Telegr & Teleph Corp <Ntt> | 磁性流体含浸軸受 |
JPH0349416U (ja) * | 1989-09-20 | 1991-05-14 | ||
JPH05209623A (ja) * | 1992-01-31 | 1993-08-20 | Ntn Corp | 焼結含油軸受 |
JPH09125086A (ja) * | 1995-10-31 | 1997-05-13 | Idemitsu Kosan Co Ltd | 含油軸受油組成物 |
JPH10246231A (ja) * | 1997-03-06 | 1998-09-14 | Hitachi Constr Mach Co Ltd | すべり軸受組立体 |
JPH1113765A (ja) * | 1997-06-25 | 1999-01-22 | Hitachi Powdered Metals Co Ltd | 磁性流体含浸焼結滑り軸受及びその製造方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0744100B2 (ja) * | 1987-02-28 | 1995-05-15 | 日本精工株式会社 | 磁性流体組成物とその製造方法 |
JP2805374B2 (ja) * | 1990-04-04 | 1998-09-30 | 富士写真フイルム株式会社 | 磁気記録媒体およびその製造方法 |
-
2006
- 2006-01-20 WO PCT/JP2006/300847 patent/WO2006123453A1/ja active Application Filing
- 2006-01-20 JP JP2007516204A patent/JPWO2006123453A1/ja active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59126114A (ja) * | 1983-01-08 | 1984-07-20 | Nippon Telegr & Teleph Corp <Ntt> | 磁性流体含浸軸受 |
JPH0349416U (ja) * | 1989-09-20 | 1991-05-14 | ||
JPH05209623A (ja) * | 1992-01-31 | 1993-08-20 | Ntn Corp | 焼結含油軸受 |
JPH09125086A (ja) * | 1995-10-31 | 1997-05-13 | Idemitsu Kosan Co Ltd | 含油軸受油組成物 |
JPH10246231A (ja) * | 1997-03-06 | 1998-09-14 | Hitachi Constr Mach Co Ltd | すべり軸受組立体 |
JPH1113765A (ja) * | 1997-06-25 | 1999-01-22 | Hitachi Powdered Metals Co Ltd | 磁性流体含浸焼結滑り軸受及びその製造方法 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007123748A (ja) * | 2005-10-31 | 2007-05-17 | Aisin Seiki Co Ltd | 耐食性磁石及びその製造方法 |
JP2007150194A (ja) * | 2005-11-30 | 2007-06-14 | Aisin Seiki Co Ltd | 永久磁石の固定構造及び固定方法 |
JP2014062635A (ja) * | 2012-09-20 | 2014-04-10 | Hiroshi Kobayashi | 軸受装置 |
JP2015014356A (ja) * | 2013-07-04 | 2015-01-22 | 小林 博 | 転がり軸受装置 |
JP2016023091A (ja) * | 2014-07-16 | 2016-02-08 | トーヨー産業株式会社 | ガラス切断工具 |
JP2017008278A (ja) * | 2015-06-23 | 2017-01-12 | 小林 博 | 軸受装置に用いる潤滑剤 |
CN114178523A (zh) * | 2017-10-04 | 2022-03-15 | Jx金属株式会社 | 表面处理铜微粒子的制造方法 |
CN114178523B (zh) * | 2017-10-04 | 2024-03-01 | Jx金属株式会社 | 表面处理铜微粒子的制造方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2006123453A1 (ja) | 2008-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2006123453A1 (ja) | メタル軸受 | |
Zhao et al. | Nanolubricant additives: A review | |
DE60125147T2 (de) | Hohle fulleren-artige nanopartikel als feste schmiermittel in verbundmetallmatrizen | |
JP6399592B2 (ja) | 水系潤滑液組成物 | |
JP4936080B2 (ja) | メタル軸受 | |
CN108441312B (zh) | 一种水基2d/0d纳米复合材料润滑剂 | |
JP2005082867A (ja) | 鉄銅系焼結含油軸受用合金の製造方法 | |
Rapoport et al. | Modification of contact surfaces by fullerene-like solid lubricant nanoparticles | |
JP5113555B2 (ja) | 鉄基焼結合金およびその製造方法 | |
JP2006024869A (ja) | 圧粉磁心およびその製造方法 | |
JPH08100227A (ja) | 焼結摺動部材 | |
Gupta et al. | Tribological study on rapeseed oil with nano-additives in close contact sliding situation | |
CN102216633B (zh) | Ptfe系滑动材料、轴承和ptfe系滑动材料的制备方法 | |
CN103254971A (zh) | 一种含有片状磁性纳米Fe3O4颗粒的润滑油及其制备方法 | |
JP2009155696A (ja) | 摺動部材用鉄基焼結合金 | |
Qin et al. | Tribological performance of magnesium silicate hydroxide/Ni composite as an oil-based additive for steel–steel contact | |
JP4629102B2 (ja) | 粉末組成物、及び軟磁性部品の製造方法 | |
CN108822932A (zh) | 一种高速极压耐磨润滑油及其制备方法和应用 | |
CN106590817A (zh) | 一种含有油酸修饰的超顺磁性纳米空心微珠的润滑油及其制备方法 | |
JP2007049894A (ja) | 金属黒鉛質ブラシ | |
CN116004303A (zh) | 一种水溶性Fe3O4@PEG核壳结构纳米复合添加剂的制备方法及应用 | |
JP2005060830A (ja) | 軟磁性焼結部材の製造方法 | |
Duan et al. | Cobalt phosphate octahydrates nanoflowers as oil-base additives for enhanced tribological performance | |
JP2017014473A (ja) | 焼結金属からなる多孔質体に真空含浸する潤滑剤 | |
JP6594009B2 (ja) | 含油摺動部材、含油軸受および含油摺動部材の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2007516204 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: DE |
|
NENP | Non-entry into the national phase |
Ref country code: RU |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: RU |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06712072 Country of ref document: EP Kind code of ref document: A1 |