WO2006120747A1 - 酸素含有型還元性水性飲料の製造方法及び製造装置 - Google Patents

酸素含有型還元性水性飲料の製造方法及び製造装置 Download PDF

Info

Publication number
WO2006120747A1
WO2006120747A1 PCT/JP2005/008749 JP2005008749W WO2006120747A1 WO 2006120747 A1 WO2006120747 A1 WO 2006120747A1 JP 2005008749 W JP2005008749 W JP 2005008749W WO 2006120747 A1 WO2006120747 A1 WO 2006120747A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
aqueous beverage
pressurized
ejector
beverage
Prior art date
Application number
PCT/JP2005/008749
Other languages
English (en)
French (fr)
Inventor
Wataru Murota
Original Assignee
Wataru Murota
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wataru Murota filed Critical Wataru Murota
Priority to PCT/JP2005/008749 priority Critical patent/WO2006120747A1/ja
Priority to CNA2005800497742A priority patent/CN101175418A/zh
Priority to US11/920,277 priority patent/US20090130278A1/en
Priority to JP2007526748A priority patent/JPWO2006120761A1/ja
Priority to CA002608335A priority patent/CA2608335A1/en
Priority to PCT/JP2005/010817 priority patent/WO2006120761A1/ja
Priority to EP05748613A priority patent/EP1880618A4/en
Priority to KR1020077026273A priority patent/KR101004850B1/ko
Publication of WO2006120747A1 publication Critical patent/WO2006120747A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/52Adding ingredients
    • A23L2/54Mixing with gases
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/52Adding ingredients
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23FCOFFEE; TEA; THEIR SUBSTITUTES; MANUFACTURE, PREPARATION, OR INFUSION THEREOF
    • A23F3/00Tea; Tea substitutes; Preparations thereof
    • A23F3/16Tea extraction; Tea extracts; Treating tea extract; Making instant tea
    • A23F3/163Liquid or semi-liquid tea extract preparations, e.g. gels, liquid extracts in solid capsules
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23FCOFFEE; TEA; THEIR SUBSTITUTES; MANUFACTURE, PREPARATION, OR INFUSION THEREOF
    • A23F5/00Coffee; Coffee substitutes; Preparations thereof
    • A23F5/24Extraction of coffee; Coffee extracts; Making instant coffee
    • A23F5/243Liquid, semi-liquid or non-dried semi-solid coffee extract preparations; Coffee gels; Liquid coffee in solid capsules

Definitions

  • the present invention relates to a method for producing an oxygen-containing reducible aqueous beverage having a high reducibility while containing a large amount of oxygen, and a production apparatus therefor.
  • the reducible aqueous beverage contains almost no oxygen necessary for the human body.
  • the oxygen content of the reducing water in which hydrogen was dissolved under pressure was 0.04 mg Z liter (measured with an oxygen concentration meter manufactured by Toa DKK).
  • the oxygen contained in the first water-based beverage was partially expelled by hydrogen, so that it was not possible to obtain a reducing water-based beverage with a low oxygen content.
  • oxygen gas and hydrogen gas can coexist in water, but in order to obtain a reducible water-based beverage with a high oxygen concentration, simply use water, mineral water, tea, coffee, juice, and other water-based beverages. It is not possible to adopt a method of increasing the reducibility of aqueous beverages by pressurizing and dissolving hydrogen.
  • hydrogen gas when hydrogen gas is published in an aqueous beverage, the partial pressure is only hydrogen gas, so other gases such as oxygen cannot coexist, and gases other than hydrogen gas are completely degassed. It becomes. In other words, oxygen necessary for humans is lost from aqueous beverages.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2001-145880 (paragraphs [0043] to [0049])
  • Patent Document 2 Japanese Patent Laid-Open No. 2001-137852 (paragraphs [0041] to [0042], [0045] to [00 53])
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2002-254078 (Claims, paragraphs [0072] to [0073], [0077 to [0086])
  • Patent Document 4 Japanese Unexamined Patent Application Publication No. 2004-230370 (Claims)
  • oxygen is pressurized and dissolved in an aqueous beverage at 1 to 1000 atmospheres, and hydrogen is added to 1 to 1000 atmospheres in an aqueous beverage obtained under pressure or at normal pressure.
  • Oxygen-containing reductive aqueous solution containing a step of obtaining an aqueous beverage by returning to normal pressure to obtain an aqueous beverage, containing substantially 0.1 mg / L or more of oxygen and a hydrogen concentration of 0.1 / ppm or more. I'm getting a drink.
  • This oxygen-containing reducible water-based beverage contains a large amount of oxygen gas, and even if the pH is acidic, the acid reduction potential is -50 mV or less, and the pH is close to neutral. In addition, it has a low reductive potential and strong reductivity, and is a beverage.
  • an oxygen-containing reducible aqueous beverage is obtained using a known gas-liquid contact device.
  • This known gas-liquid contact device is a force that dissolves a gas by applying a gas to be dissolved to an aqueous beverage dropped in the form of droplets.
  • the inventor of the present application has conducted various experiments to solve the problems of the prior invention, and as a result, by using an ejector, it is suitable for mass production with a high gas dissolution rate while being small. As a result, the present inventors have found that a method and apparatus for producing an oxygen-containing reducible aqueous beverage can be obtained.
  • the first object of the present invention is to contain oxygen and hydrogen at the same time in an aqueous beverage, so that the oxygen-reduction potential is very low while containing a large amount of oxygen and having a very high hydrogen concentration. It is providing the manufacturing method of a reducing water-based drink.
  • the second object of the present invention is to provide an oxygen-containing reduction potential with a very high hydrogen concentration while containing a large amount of oxygen by simultaneously containing oxygen and hydrogen in an aqueous beverage.
  • An object of the present invention is to provide an apparatus for producing a low-reducing aqueous beverage.
  • the first object of the present invention can be achieved by the following production method, that is, according to the first aspect of the present invention, an oxygen-containing type comprising the following steps (1) to (4): A method for producing a reducing aqueous beverage is provided.
  • the pressurizing pressure is preferably 1 atm to 1000 atm (gauge pressure; the same shall apply hereinafter).
  • gauge pressure the same shall apply hereinafter.
  • the higher the pressure the more efficiently the oxygen gas or hydrogen gas can be dissolved in the aqueous beverage.
  • the obtained oxygen-containing reducible aqueous beverage is not much, because it can return to normal pressure. Even if the pressure is high, part of the dissolved oxygen and hydrogen gas will be vaporized, so it is better to stop at 10 atm. Therefore, the pressurizing pressure is more preferably 1 atm to 10 atm.
  • the aqueous beverage is one selected from water, mineral water, tea, coffee, and juice power.
  • the first object of the present invention can also be achieved by the following production method. That is, according to the second aspect of the present invention, there is provided a method for producing an oxygen-containing reducing aqueous beverage comprising the following steps (1) to (3).
  • a step of obtaining a pressurized oxygen-containing aqueous beverage by simultaneously supplying a pressurized aqueous beverage and pressurized oxygen gas to the first ejector
  • the pressurizing pressure is preferably 1 atm to 1000 atm.
  • a more preferred pressure is 1 to 10 atmospheres.
  • the aqueous beverage may be water, mineral water, tea, coffee. Hey, juice power is preferred to be one selected.
  • the second object of the present invention can be achieved by the following configuration. That is, according to the third aspect of the present invention,
  • An aqueous beverage supply pipe connected to the liquid introduction passage of the first ejector and supplying an aqueous beverage pressurized by a pump;
  • An oxygen gas supply pipe connected to the gas introduction path of the first ejector for supplying pressurized oxygen gas from a pressurized oxygen supply source;
  • a receptacle for an oxygen-containing aqueous beverage connected to the outlet pipe of the first ejector and maintained at normal pressure;
  • An oxygen-containing aqueous beverage supply pipe connected to a liquid introduction passage of the second ejector and supplying the oxygen-containing aqueous beverage of the above-mentioned receiver force by pressurizing with a pump;
  • a hydrogen gas supply pipe connected to the gas introduction path of the second ejector and supplying pressurized hydrogen gas from a pressurized hydrogen supply source;
  • An outlet pipe for the oxygen-containing reducible aqueous beverage connected to the outlet pipe of the second ejector and maintained at normal pressure;
  • An apparatus for producing an oxygen-containing reducible aqueous beverage is provided.
  • both the pressurized oxygen supply source and the pressurized hydrogen supply source are in a gas cylinder.
  • the aqueous beverage supply source is water, mineral water, tea.
  • At least one selected source of coffee and juice is also selected.
  • the second object of the present invention can also be achieved by the following configuration. That is, according to the fourth aspect of the present invention,
  • An aqueous beverage supply pipe connected to the liquid introduction passage of the first ejector and supplying an aqueous beverage pressurized by a pump;
  • a second pipe connected to the gas introduction path of the first ejector and supplying pressurized oxygen gas from a pressurized oxygen supply source;
  • An outlet pipe of the first ejector connected to the liquid introduction passage of the second ejector, and a pressurized hydrogen from a pressurized hydrogen supply source connected to the gas introduction passage of the second ejector.
  • An outlet pipe for the oxygen-containing reducible aqueous beverage connected to the outlet pipe of the second ejector and maintained at normal pressure;
  • An apparatus for producing an oxygen-containing reducible aqueous beverage is provided.
  • the pressurized oxygen supply source and the pressurized hydrogen supply source are both in a gas cylinder.
  • the aqueous beverage supply source is water, mineral water, tea.
  • At least one selected source of coffee and juice is also selected.
  • the reducing aqueous beverage simply absorbed with hydrogen as in the conventional example has an oxygen content. Because it is extremely dilute, it is impossible to provide the amount of oxygen required by the human body, whereas the present invention allows the cell membrane to permeate while having the amount of oxygen necessary for the body.
  • An oxygen-containing reducible aqueous beverage with seemingly conflicting properties with a very low acid reduction potential with hydrogen is possible.
  • FIG. 1 is a schematic view of an apparatus for producing an oxygen-containing reducing aqueous beverage of Example 1.
  • FIG. 2 is a schematic view of an apparatus for producing an oxygen-containing reducing aqueous beverage of Example 2.
  • FIG. 3 is a cross-sectional view of an ejector used in the present invention.
  • the ejector 50 includes a liquid introduction path 51, a nozzle part 52 extending from the liquid introduction path 51 with a tapered inner diameter, a diffusion chamber 53, a diffuser part 54 with a tapered inner diameter extending, and the diffuser part 54.
  • An outlet channel 55 having a uniform inner diameter communicating with the fuser portion 54 and a gas introduction channel 56 communicating with the diffusion chamber 53 are provided.
  • the inside of the diffusion chamber 53 becomes negative pressure, so that the gas is sucked from the gas introduction path 56. Since the gas is sufficiently mixed in the diffuser section 54, the sucked gas can be efficiently absorbed into the liquid.
  • the liquid flow rate can be increased, a large amount of gas can be absorbed in a large amount of liquid while being small in size.
  • This oxygen-containing reductive aqueous beverage production apparatus 10 includes a first ejector 50A and a second ejector 50B. And water, mineral water, tea, coffee, juice power.
  • An aqueous beverage supply pipe 14 is connected to the liquid introduction path 51 A of the Kuta 50A through a pressurizing pump 13.
  • the oxygen cylinder 15 as a pressurized oxygen supply source and the gas introduction path 56A of the first ejector 50A are connected to an oxygen gas supply pipe 18 via a pressure reducing valve 16, a pressure gauge 17, and a flow meter (not shown). Is connected.
  • the outlet channel 55A of the first ejector 50A is communicated with the upper portion of the oxygen-containing aqueous beverage receiver 21 maintained at normal pressure via the oxygen-containing aqueous beverage supply pipe 19 and the stop valve 20.
  • the oxygen-containing aqueous beverage receiver 21 and the liquid introduction passage 51B of the second ejector 50B are connected to an oxygen-containing aqueous beverage supply pipe 24 via a pressurizing pump 23.
  • the hydrogen cylinder 25 which is a pressurized hydrogen supply source and the gas introduction path 56B of the second ejector 50B are connected to a hydrogen gas supply pipe 28 via a pressure reducing valve 26, a pressure gauge 27 and a flow meter (not shown). Is connected.
  • the outlet channel 55B of the second ejector 50B is provided at the upper part of the oxygen-containing reducible aqueous beverage receiver 31 maintained at normal pressure via the oxygen-containing reducible aqueous beverage supply pipe 29 and the stop valve 30. It is arranged in
  • This oxygen-containing reducible aqueous beverage production apparatus 10 is operated as follows to produce a predetermined oxygen-containing reducible aqueous beverage 32. That is, the aqueous beverage 11 in the container 12 is pressurized to a predetermined pressure, for example, 1 to: LO atmospheric pressure by the pressurizing pump 13, and supplied to the liquid introduction passage 51A of the first generator 50A. The oxygen gas in 15 is reduced to a predetermined pressure, for example, 1 to 10 atm by the pressure reducing valve 16, and is supplied to the gas introduction path 56A of the ejector 50A through the oxygen gas supply pipe 18.
  • a predetermined pressure for example, 1 to: LO atmospheric pressure by the pressurizing pump 13, and supplied to the liquid introduction passage 51A of the first generator 50A.
  • the oxygen gas in 15 is reduced to a predetermined pressure, for example, 1 to 10 atm by the pressure reducing valve 16, and is supplied to the gas introduction path 56A of the ejector 50A through the oxygen gas supply pipe 18.
  • a pressurized oxygen-containing aqueous beverage is obtained from the outlet channel 55A of the ejector 50A, and this pressurized oxygen-containing aqueous beverage passes through the oxygen-containing aqueous beverage supply pipe 19 and the stop valve 20 and is normally discharged. Guided to the top of the receiver 21 maintained at pressure. In this receiver 21, a part of the oxygen gas is evaporated in the obtained oxygen-containing aqueous beverage 22, but a large amount of oxygen gas remains in the oxygen-containing aqueous beverage 22 in a supersaturated state. The vaporized oxygen gas is released into the atmosphere.
  • the obtained oxygen-containing aqueous beverage 22 in the receiver 21 is again pressurized to a predetermined pressure, for example, 1 to 10 atm by the pressurizing pump 23, and then supplied through the oxygen-containing aqueous beverage supply pipe 24.
  • a predetermined pressure for example, 1 to 10 atm by the pressurizing pump 23, and then supplied through the oxygen-containing aqueous beverage supply pipe 24.
  • 2 is supplied to the liquid introduction passage 51B of the ejector 50B, and the hydrogen in the hydrogen gas cylinder 25
  • the gas is reduced to a predetermined pressure, for example, 1 to: L0 atmospheric pressure by the pressure reducing valve 26 and supplied to the gas introduction path 56B of the ejector 50B through the hydrogen gas supply pipe 28.
  • a pressurized oxygen-containing reducible aqueous beverage is obtained from the outlet channel 55B of the ejector 50B, and this pressurized oxygen-containing reducible aqueous beverage is supplied as an oxygen-containing reducible aqueous beverage.
  • the hydrogen gas and a part of the oxygen gas dissolved in the obtained oxygen-containing reducible aqueous beverage 32 are capable of evaporating.
  • a large amount of hydrogen gas is supersaturated in the oxygen-containing reducible aqueous beverage 32.
  • a large amount of oxygen gas remains in the oxygen-containing reducible aqueous beverage 32 as well.
  • the vaporized hydrogen gas and oxygen gas are released into the atmosphere.
  • the vaporized gas mixture of hydrogen and oxygen should be promptly discharged outside the room to prevent danger. In this way, an oxygen-containing reductive aqueous beverage 32 having a strong reducibility with a very low redox potential while containing a large amount of oxygen is obtained.
  • the water-based beverage 11 has been described as being one selected from water, mineral water, tea, coffee, and juice power, but these water-based beverages were added.
  • a plurality of containers may be provided so that any aqueous beverage can be selected by switching the flow path.
  • the pressurizing pressure is 1 to: the pressure set to LO atmospheric pressure, the higher the pressure, the more efficiently oxygen gas and hydrogen gas can be dissolved in the aqueous beverage, but the obtained oxygen-containing reducing aqueous beverage Since a part of the dissolved oxygen and hydrogen gas will be vaporized even if the pressure is too high, it is better to stop at 10 atm at the highest.
  • the oxygen-containing reductive aqueous beverage production apparatus 10 of Example 1 uses the first ejector 50A to obtain a pressurized oxygen-containing aqueous beverage once, then return to normal pressure and return to normal pressure oxygen-containing water A beverage is obtained, and the normal-pressure oxygen-containing aqueous beverage is pressurized again and supplied to the second ejector 50B.
  • the steps of depressurization and pressurization in this portion can be omitted.
  • Example 2 A modified example in which the steps of pressure reduction and pressurization are omitted will be described as Example 2 with reference to FIG.
  • FIG. 2 the production of the oxygen-containing reducing aqueous beverage of Example 1 shown in FIG.
  • the same reference numerals are given to the same components as those of the manufacturing apparatus 10, and the detailed description thereof is omitted.
  • the oxygen-containing reductive aqueous beverage production apparatus 10 'of Example 2 shown in FIG. 2 is different from the oxygen-containing reductive aqueous beverage production apparatus 10 of Example 1 in that the configuration is different.
  • the outlet 50A of the first ejector 50A and the liquid inlet 51B of the second ejector 50B are connected by the flow control valve 33 and the oxygen-containing aqueous beverage supply pipe 34, and the first ejector 5 OA It is only the point that the obtained oxygen-containing aqueous beverage in a pressurized state is directly connected to the liquid introduction passage 51B of the second ejector 50B through the flow rate adjustment valve 33 by the oxygen gas supply pipe 34.
  • the flow rate adjusting valve 33 may not be provided, but the pressure-containing oxygen-containing aqueous beverage is supplied to the liquid introduction passage 51B of the second ejector 50B with a slight pressure loss at this portion. This is preferable because the flow rate is stabilized and control is facilitated.
  • the oxygen-containing reductive aqueous beverage production apparatus 10 ′ of Example 2 the oxygen-containing reductive aqueous beverage receiver 31 under normal pressure contains a larger amount of oxygen gas than in the case of Example 1. Since the mixed gas of hydrogen gas and oxygen gas is vaporized, it must be promptly released outside the room.
  • Example 3 the oxygen-containing reducible aqueous beverage production apparatus 10 of Example 1 was used to produce an oxygen-containing reducible tea beverage using a commercially available tea beverage as the aqueous beverage.
  • the redox potential, dissolved oxygen content, and pH of the tea beverage were measured.
  • the redox potential was +6 OmV
  • the dissolved oxygen content was 1.55 mgZ liter
  • the pH was 6.1.
  • the redox potential, oxygen content, and pH were measured at room temperature using an OPR measuring instrument manufactured by Toa DKK, an oxygen measuring instrument, and a rho meter (the same applies to the following).
  • This tea beverage is supplied to the first ejector 50A at a rate of 500 ml / min at a pressure of 8 atm and oxygen gas at a rate of 150 ml / min at a pressure of 8 atm to dissolve oxygen. Then, the amount of dissolved oxygen in the oxygen-containing tea beverage obtained in the receiver 21 was measured by returning to normal pressure and found to be 31.OOmgZ liters.
  • the oxygen-containing tea beverage was charged at a pressure of 8 atm.
  • the gas was supplied to the second ejector 50B again at a rate of 150 milliliters under a pressure of 8 atmospheres and hydrogen was dissolved to return to normal pressure, the dissolved oxygen amount was 4. 50 mgZ liters and the PH was 6.
  • Example 1 An oxygen-containing reducing tea beverage having a redox potential of 599 mV was obtained.
  • Example 4 a commercially available coffee drink was used, and an oxygen-containing reducing coffee drink was produced in the same manner as in Example 3.
  • This coffee beverage had an acid-reduction potential of +85 mV, a dissolved oxygen content of 1.22 mgZ liters, and a ⁇ of 5.0.
  • This coffee beverage is supplied to the first ejector 50A at a rate of 500 ml / min at a pressure of 8 atm and oxygen gas at a rate of 150 ml / min at a pressure of 8 atm to dissolve oxygen. Then, when the amount of dissolved oxygen in the oxygen-containing coffee drink obtained in the receiver 21 was measured by returning to normal pressure, an oxygen-containing coffee drink having a dissolved oxygen content of 32.70 mgZ liter was obtained.
  • the oxygen-containing coffee beverage was supplied again at a rate of 500 ml / min under a pressure of 8 atm, and hydrogen gas at a rate of 150 ml under a pressure of 8 atm, and again simultaneously supplied to the second ejector 5 OB.
  • hydrogen was dissolved and returned to normal pressure, an oxygen-containing reducing coffee drink with a pH of 5.0, a dissolved oxygen content of 6.51 mg / liter, and a redox potential of 428 mV was obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Dispersion Chemistry (AREA)
  • Tea And Coffee (AREA)
  • Non-Alcoholic Beverages (AREA)

Abstract

 容器12内の水性飲料11を加圧ポンプ13により所定の圧力に加圧して第1のエジェクタ50Aの液体導入路51Aへ供給し、酸素ガスボンベ15からの酸素ガスを所定の圧力に低下してエジェクタ50Aの気体導入路56Aに供給し、エジェクタ50Aの出口流路55Aから得られた加圧状態の酸素含有水性飲料を常圧に維持された受器21の上部に導く。次いで、受器21内の酸素含有水性飲料22を再度加圧ポンプ23により所定の圧力に加圧して第2のエジェクタ50Bの液体導入路51Bへ供給し、水素ガスボンベ25からの水素ガスを所定の圧力でエジェクタ50Bの気体導入路56Bに供給し、エジェクタ50Bの出口流路55Bを常圧に維持された受器31の上部に導入する。その結果、酸素を多量に含みながらも、酸化還元電位が非常に低く、還元性が強い酸素含有型還元性水性飲料32が得られる。

Description

明 細 書
酸素含有型還元性水性飲料の製造方法及び製造装置
技術分野
[0001] 本発明は、酸素を多く含有しながら還元性の高い酸素含有型還元性水性飲料の 製造方法及びその製造装置に関するものである。
背景技術
[0002] 従来から、酸化還元電位の低い水は、電気分解により(下記特許文献 1〜3参照) あるいは加圧下において水素を溶解させること(下記特許文献 4参照)により作成さ れていた。したがって、酸ィ匕還元電位が低い還元性水性飲料は、水、ミネラルウォー ター、お茶、コーヒー、ジュース等の水性飲料に水素を加圧して溶解せしめるという 一方向からのみの考え方で製造が可能と推測されていた。
[0003] このような従来力 知られて 、る製造方法によって還元性の水性飲料を作成しても 、還元性の水性飲料中には人体が必要とする酸素がほとんど含まれていない。ちな みに水素を加圧下にお 、て溶解させた還元性水の酸素含有量は 0. 04mgZリット ル (東亜 DKK製含有酸素濃度計で計測)であった。当然のことながら最初力 水性 飲料に含まれていた酸素は部分的に水素が追い出してしまうので、酸素含有量の少 ない還元性の水性飲料し力得られなかったわけである。
[0004] 一応、水中で酸素ガスと水素ガスとは共存し得るが、酸素濃度が高い還元性水性 飲料を得るためには、単純に水、ミネラルウォーター、お茶、コーヒー、ジュース等の 水性飲料に水素を加圧して溶解せしめ、水性飲料の還元性を高めるという手法を採 用することはできない。特に、水性飲料中に水素ガスをパブリングした場合には、水 素ガスだけの分圧となるため、酸素等の他のガスは共存できず、水素ガス以外のガス は完全に脱気された状態となる。つまり水性飲料から人間に必要な酸素が失われて しまうのである。
[0005] また、電気分解法によって酸化還元電位の低!ヽ水性飲料をつくる場合は、 OH—ィ オンによりアルカリ性を示すだけであり、飽和濃度以上に水素ガスを含んでいるわけ ではない。アルカリ性であれば OH—イオンによって還元力が生じるので見かけ上還 元性を示す力 中性に戻すと酸ィ匕還元電位は高くなつてしまう。つまり見せかけの還 元性を示すだけのものである。また、アルカリ性溶液を多量に引用すると、健康上の 問題が生じる。特に腎臓の負担が大きくなるので、腎障害のある人にとっては有害で ある。一方、胃酸過多の人にとっては適量であれば少しは効果が認められる力 この 効果はアルカリ性溶液による胃酸の中和による効果であって、水素ガスな 、しは還元 力による効果ではない。
[0006] また、金属マグネシウムを水性飲料の中に混入することによって還元性水を得る方 法も知られている力 この場合においては、水素ガスと同時にマグネシウムイオン及 び OH—イオンが発生されるため、アルカリ性となる。マグネシウムイオンは、便秘薬な どに取り入れられて 1ヽるから、適量であれば人体に対する健康維持効果を期待でき る力 既に上述したように、アルカリ性の水性飲料を多量に摂取することは身体が絶 えず中性であろうとする機能を阻害する方向に働くため、危険である。水素ガスを単 に溶解させる方がアルカリ性を示さないだけまだましと考えられる。
[0007] 特許文献 1:特開 2001— 145880号公報(段落 [0043]〜 [0049] )
特許文献 2:特開 2001— 137852号公報(段落 [0041]〜 [0042]、 [0045]〜 [00 53])
特許文献 3:特開 2002— 254078号公報 (特許請求の範囲、段落 [0072]〜 [0073 ]、 [0077ト [0086])
特許文献 4:特開 2004— 230370号公報 (特許請求の範囲)
発明の開示
発明が解決しょうとする課題
[0008] そこで、発明者は、人体が必要としている酸素を多く含有しながら、かつ水素濃度 が非常に高ぐ酸ィヒ還元電位の非常に低い酸素含有型還元性水性飲料を得るべく 種々実験を重ねた結果、加圧下において水性飲料に酸素を含有させた後に水素を 含有させることにより、あるいは水性飲料に酸素と水素を同時に含有させることにより 、酸素を多く含有しながらも水素濃度が非常に高ぐ酸化還元電位の非常に低い還 元性水性飲料が得られることを見出し、既に特許出願 (特願 2005— 92554。以下「 先願」という。)している。 [0009] この先願の発明は、水性飲料に酸素を 1気圧〜 1000気圧で加圧して溶解せしめ、 加圧下において、または常圧に戻して得られた水性飲料に、水素を 1気圧〜 1000 気圧で加圧して溶解せしめ、常圧に戻して水性飲料を得る工程を含み、実質的に酸 素を 0. lmgZリットル以上含有し、かつ水素濃度が 0. lppm以上である酸素含有 型還元性水性飲料を得ている。この酸素含有型還元性水性飲料は、酸素ガスを多 量に含みながら、 pHが酸性領域でも酸ィ匕還元電位が— 50mV以下、 pHが中性に 近 、場合は― 500mV以下と 、う非常に酸ィ匕還元電位が低ぐ還元性が強!、飲料で ある。
[0010] この先願発明では周知の気液接触装置を使用して酸素含有型還元性水性飲料を 得ている。この周知の気液接触装置は、液滴の形で落下させた水性飲料に溶解させ るべき気体を当てて気体を溶解させるものである力 気体の溶解効率があまり高くな
V、こと及び気液接触装置が大型となってしまうと!、う問題点が存在して!/、る。
[0011] 本願の発明者は、上記先願発明の問題点を解決すべく種々実験を重ねた結果、 ェジェクタを使用することにより、小型でありながら気体の溶解速度が大きぐ大量生 産に向いた酸素含有型還元性水性飲料の製造方法及び製造装置を得られることを 見出し、本発明を完成するに至ったのである。
[0012] すなわち、本発明の第 1の目的は、水性飲料に酸素と水素を同時に含有させること により、酸素を多く含有しながら、かつ水素濃度が非常に高い酸ィ匕還元電位が非常 に低い還元性水性飲料の製造方法を提供することにある。
[0013] また、本発明の第 2の目的は、水性飲料に酸素と水素を同時に含有させることによ り酸素を多く含有しながら、かつ水素濃度が非常に高い酸ィ匕還元電位の非常に低い 還元性水性飲料の製造装置を提供することにある。
課題を解決するための手段
[0014] 本発明の上記第 1の目的は以下の製造方法により達成し得る、すなわち、本発明 の第 1の態様によれば、以下の(1)〜 (4)の工程を含む酸素含有型還元性水性飲料 の製造方法が提供される。
( 1 )加圧した水性飲料と加圧酸素ガスとを同時に第 1のェジヱクタに供給することに より加圧状態の酸素含有水性飲料を得る工程、 (2)前記加圧状態の酸素含有水性飲料を常圧に戻して未溶解の酸素ガスを放出 した常圧の酸素含有水性飲料を得る工程、
(3)加圧水素と加圧した前記酸素含有水性飲料とを同時に第 2のェジ クタに供給 して加圧状態の酸素含有型還元性水性飲料を得る工程、
(4)前記加圧状態の酸素含有型還元性水性飲料を常圧に戻すことにより未溶解の 酸素ガス及び水素ガスを放出させて常圧の酸素含有型還元性水性飲料を得る工程
[0015] 係る態様においては、前記加圧圧力が 1気圧〜 1000気圧 (ゲージ圧。以下同じ) が好ましい。この場合、圧力は高ければ高いほど効率よく酸素ガスや水素ガスを水性 飲料に溶解させることができるが、得られた酸素含有型還元性水性飲料は常圧に戻 されるのである力ら、あまり圧力が高くても溶解した酸素及び水素ガスの一部が気化 してしまうために、高くても 10気圧に止める方がよい。したがって、前記加圧圧力は 1 気圧〜 10気圧がより好ましい。
[0016] また、係る態様にぉ 、ては、前記水性飲料が、水、ミネラルウォーター、お茶、コー ヒー、ジュース力 選択された 1種であることが好まし 、。
[0017] また、本発明の上記第 1の目的は以下の製造方法によっても達成し得る。すなわち 、本発明の第 2の態様によれば、以下の(1)〜(3)の工程を含む酸素含有型還元性 水性飲料の製造方法が提供される。
( 1 )加圧した水性飲料と加圧酸素ガスとを同時に第 1のェジヱクタに供給することに より加圧状態の酸素含有水性飲料を得る工程、
(2)加圧水素と前記加圧状態の酸素含有水性飲料とを同時に第 2のェジ クタに 供給して加圧状態の酸素含有型還元性水性飲料を得る工程、
(3)前記加圧状態の酸素含有型還元性水性飲料を常圧に戻すことにより未溶解の 酸素ガス及び水素ガスを放出させて常圧の酸素含有型還元性水性飲料を得る工程
[0018] 係る態様においては、前記加圧圧力が 1気圧〜 1000気圧であることが好ましい。
より好ましい加圧圧力は 1〜 10気圧である。
[0019] また、係る態様にぉ 、ては、前記水性飲料が、水、ミネラルウォーター、お茶、コー ヒー、ジュース力 選択された 1種であることが好まし 、。
[0020] さらに、本発明の上記第 2の目的は以下の構成により達成し得る。すなわち、本発 明の第 3の態様によれば、
第 1のェジヱクタの液体導入路に接続され、水性飲料をポンプにより加圧して供給 する水性飲料供給配管と、
前記第 1のェジェクタの気体導入路に接続され、加圧酸素供給源からの加圧酸素 ガスを供給する酸素ガス供給配管と、
前記第 1ェジェクタの出口配管が接続され、常圧に維持された酸素含有水性飲料 の受器と、
第 2のェジヱクタの液体導入路に接続され、前記受器力 の酸素含有水性飲料を ポンプにより加圧して供給する酸素含有水性飲料供給配管と、
前記第 2のェジェクタの気体導入路に接続され、加圧水素供給源からの加圧水素 ガスを供給する水素ガス供給配管と、
前記第 2ェジェクタの出口配管が接続され、常圧に維持された酸素含有型還元性 水性飲料の受器と、
からなる酸素含有型還元性水性飲料の製造装置が提供される。
[0021] 係る態様においては、前記加圧酸素供給源及び加圧水素供給源は、ともにガスボ ンべ入りのものであることが好まし 、。
[0022] また、係る態様にぉ 、ては、前記水性飲料供給源が、水、ミネラルウォーター、お茶
、コーヒー、ジュースの供給源力も選択された少なくとも 1種であることが好ましい。
[0023] さらに、本発明の上記第 2の目的は以下の構成によっても達成し得る。すなわち、 本発明の第 4の態様によれば、
第 1のェジヱクタの液体導入路に接続され、水性飲料をポンプにより加圧して供給 する水性飲料供給配管と、
前記第 1のェジェクタの気体導入路に接続され、加圧酸素供給源からの加圧酸素 ガスを供給する第 2の配管と、
第 2のェジヱクタの液体導入路に接続された前記第 1ェジヱクタの出口配管と、 前記第 2のェジェクタの気体導入路に接続され、加圧水素供給源からの加圧水素 ガスを供給する水素ガス供給配管と、
前記第 2ェジェクタの出口配管が接続され、常圧に維持された酸素含有型還元性 水性飲料の受器と、
からなる酸素含有型還元性水性飲料の製造装置が提供される。
[0024] 係る態様にお ヽては、前記加圧酸素供給源及び加圧水素供給源は、ともにガスボ ンべ入りのものであることが好まし 、。
[0025] また、係る態様にぉ 、ては、前記水性飲料供給源が、水、ミネラルウォーター、お茶
、コーヒー、ジュースの供給源力も選択された少なくとも 1種であることが好ましい。 発明の効果
[0026] 本発明によれば、上記の構成を備えることにより以下の実施例によって詳細に説明 するように、従来例のように単に水素を吸収させた還元性水性飲料は、酸素の含有 量が非常に希薄であるため、人体が必要とする酸素量を提供することが不可能であ るのに対し、本発明により身体に必要な酸素量を有しながらも、細胞膜を透過するこ とが可能である水素による非常に低い酸ィヒ還元電位を有する一見相反する性質を 有する酸素含有型還元性水性飲料が得られる。
図面の簡単な説明
[0027] [図 1]実施例 1の酸素含有型還元性水性飲料の製造装置の概略図である。
[図 2]実施例 2の酸素含有型還元性水性飲料の製造装置の概略図である。
[図 3]本発明で使用したェジ クタの横断面図である。
符号の説明
[0028] 10、 10' 酸素含有型還元性水性飲料の製造装置
11 水性飲料
13、 23 カロ圧ポンプ
14 水性飲料供給配管
15 酸素ボンべ
18 酸素ガス供給配管
21、 31 受器
20、 30 ストップノ レブ 24、 34 酸素含有水性飲料供給配管
25 水素ボンべ
28 水素ガス供給配管
32 酸素含有型還元性水性飲料
50、 50Aゝ 50B ェジェクタ
51、 51A、 51B 液体導入路
55, 55A, 55B 出口流路
56、 56A、 56B 気体導入路
発明を実施するための最良の形態
[0029] 以下、本発明の具体例を実施例を用いて詳細に説明するが、以下の実施例は本 発明をこれに限定することを意図するものではなぐ本発明は特許請求の範囲に示し た技術思想を逸脱することなく種々の変更を行ったものにも均しく適用し得るもので ある。
[0030] まず、本発明で使用したェジェクタについて図 3を用いて簡単に説明する。このェ ジェクタ 50は、液体導入路 51、液体導入路 51から内径が先細になって伸びているノ ズル部 52、拡散室 53、内径が先太になって伸びているディフューザ部 54、このディ フューザ部 54に連通する均一な内径の出口流路 55及び拡散室 53に連なる気体導 入路 56を備えている。このェジェクタ 50においては、液体が液体導入路 51から導入 されてノズル 52からディフューザ部 54へ噴射されると、拡散室 53内が負圧となるた め、気体導入路 56から気体が吸引され、ディフューザ部 54で十分に混合されるため 、吸引された気体を液体中に効率よく吸収させることができる。また、液体の流量を大 きくすることができるために、小型でありながら大量の液体中に多量の気体を吸収さ せることができるものである。
実施例 1
[0031] 次に、実施例 1に係る酸素含有型還元性水性飲料の製造装置を図 1を用いて説明 する。この酸素含有型還元性水性飲料の製造装置 10は、第 1のェジヱクタ 50A及び 第 2のェジェクタ 50Bを備えている。そして、水、ミネラルウォーター、お茶、コーヒー、 ジュース力 選択された 1種力もなる水性飲料 11が入れられた容器 12と第 1のェジェ クタ 50Aの液体導入路 51 Aとは、加圧ポンプ 13を介して水性飲料供給配管 14が接 続されている。また、加圧酸素供給源である酸素ボンべ 15と第 1のェジェクタ 50Aの 気体導入路 56Aとは、減圧バルブ 16、圧力計 17及び流量計(図示せず)を介して 酸素ガス供給配管 18が接続されている。さらに、第 1のェジェクタ 50Aの出口流路 5 5Aは、酸素含有水性飲料供給配管 19及びストップバルブ 20を介して常圧に維持さ れた酸素含有水性飲料の受器 21の上部に連通させられて 、る。
[0032] また、酸素含有水性飲料の受器 21と第 2のェジヱクタ 50Bの液体導入路 51Bとは、 加圧ポンプ 23を介して酸素含有水性飲料供給配管 24が接続されている。さらに、加 圧水素供給源である水素ボンべ 25と第 2のェジェクタ 50Bの気体導入路 56Bとは、 減圧バルブ 26、圧力計 27及び流量計(図示せず)を介して水素ガス供給配管 28が 接続されている。さらに、第 2のェジェクタ 50Bの出口流路 55Bは、酸素含有型還元 性水性飲料供給配管 29及びストップバルブ 30を介して常圧に維持された酸素含有 型還元性水性飲料の受器 31の上部に配置されて 、る。
[0033] この酸素含有型還元性水性飲料の製造装置 10は、次のように操作されて所定の 酸素含有型還元性水性飲料 32が製造される。すなわち、容器 12内の水性飲料 11 は加圧ポンプ 13により所定の圧力、たとえば 1〜: LO気圧に加圧されて第 1のェジエタ タ 50Aの液体導入路 51 Aへ供給され、また、酸素ガスボンベ 15内の酸素ガスは、減 圧弁 16で所定の圧力、たとえば 1〜10気圧に低下されて酸素ガス供給配管 18によ りェジェクタ 50Aの気体導入路 56Aに供給される。
[0034] そうすると、ェジェクタ 50Aの出口流路 55Aから加圧状態の酸素含有水性飲料が 得られ、この加圧状態の酸素含有水性飲料は酸素含有水性飲料供給配管 19及び ストップバルブ 20を経て、常圧に維持された受器 21の上部に導かれる。この受器 21 にお 、ては、得られた酸素含有水性飲料 22中に溶けて 、た酸素ガスの一部は気化 するが、多量の酸素ガスが過飽和状態で酸素含有水性飲料 22中に残存しており、 気化した酸素ガスは大気中に放出される。
[0035] 得られた受器 21内の酸素含有水性飲料 22は、再度加圧ポンプ 23により所定の圧 力、たとえば 1〜10気圧に加圧されて酸素含有水性飲料供給配管 24を介して第 2 のェジェクタ 50Bの液体導入路 51Bへ供給され、また、水素ガスボンベ 25内の水素 ガスは、減圧バルブ 26で所定の圧力、たとえば 1〜: L0気圧に低下されて水素ガス供 給配管 28によりェジェクタ 50Bの気体導入路 56Bに供給される。
[0036] そうすると、ェジヱクタ 50Bの出口流路 55Bから加圧状態の酸素含有型還元性水 性飲料が得られ、この加圧状態の酸素含有型還元性水性飲料は酸素含有型還元 性水性飲料供給配管 29及びストップバルブ 30を経て、常圧に維持された酸素含有 型還元性水性飲料の受器 31の上部に導入される。このとき、得られた酸素含有型還 元性水性飲料 32中に溶けていた水素ガス及び酸素ガスの一部は気化する力 多量 の水素ガスが過飽和状態で酸素含有型還元性水性飲料 32中に残存して 、るととも に多量の酸素ガスも酸素含有型還元性水性飲料 32中に残存している。そして、気化 した水素ガス及び酸素ガスは大気中に放出される。このとき、気化した水素及び酸素 の混合ガスは、危険防止のため速やかに室外に放出されるようにする。このようにし て、酸素を多量に含みながらも、酸化還元電位が非常に低ぐ還元性が強い酸素含 有型還元性水性飲料 32が得られる。
[0037] なお、本実施例 1では、水性飲料 11としては、水、ミネラルウォーター、お茶、コーヒ 一、ジュース力も選択された 1種を用いるものとして説明したが、これらの水性飲料が 入れられた容器を複数個設けて、流路を切り換えて任意の水性飲料を選択できるよ うにしてもよい。また、加圧圧力は 1〜: LO気圧とした力 圧力は高ければ高いほど効 率よく酸素ガスや水素ガスを水性飲料に溶解させることができるが、得られた酸素含 有型還元性水性飲料は常圧に戻されるのであるから、あまり圧力が高くても溶解した 酸素及び水素ガスの一部が気化してしまうために、高くても 10気圧に止める方がよい 実施例 2
[0038] 実施例 1の酸素含有型還元性水性飲料の製造装置 10は、第 1のェジヱクタ 50Aで 一旦加圧状態の酸素含有水性飲料を得た後に常圧に戻して常圧の酸素含有水性 飲料を得、この常圧の酸素含有水性飲料を再度加圧して第 2のェジェクタ 50Bに供 給しているが、この部分での減圧及び加圧という工程は省略することも可能である。こ の減圧及び加圧という工程を省略した変形例を実施例 2として図 2を用いて説明する 。なお、図 2においては、図 1に示した実施例 1の酸素含有型還元性水性飲料の製 造装置 10の構成と同一の構成部分には同一の参照符号を付与することとしてその 詳細な説明は省略する。
[0039] 図 2に示した実施例 2の酸素含有型還元性水性飲料の製造装置 10'が実施例 1の 酸素含有型還元性水性飲料の製造装置 10と構成が相違している点は、第 1のェジ ヱクタ 50Aの出口流路 55Aと第 2のェジヱクタ 50Bの液体導入路 51Bとの間を流量 調節バルブ 33及び酸素含有水性飲料供給配管 34により接続し、第 1のェジェクタ 5 OAで得られた加圧状態の酸素含有水性飲料を流量調節バルブ 33を介して酸素ガ ス供給配管 34により直接第 2のェジヱクタ 50Bの液体導入路 51Bへ直接している点 のみであり、その他の構成は実質的に同一である。
[0040] この場合、流量調節バルブ 33はなくてもよいが、この部分で僅かに圧力損失を与 えて加圧状態の酸素含有水性飲料を第 2のェジヱクタ 50Bの液体導入路 51Bに供 給するようにすると、流量が安定ィ匕するために制御を行い易くなるので好ましい。この 実施例 2の酸素含有型還元性水性飲料の製造装置 10'では、常圧下にある酸素含 有型還元性水性飲料の受器 31において酸素ガスを実施例 1の場合よりも多量に含 む水素ガスと酸素ガスとの混合ガスが気化するため、速やかに室外へ放出できるよう にする必要がある。
実施例 3
[0041] 実施例 3としては、実施例 1の酸素含有型還元性水性飲料の製造装置 10を使用し 、水性飲料として市販の茶飲料を用いて酸素含有型還元性茶飲料を製造した。まず 、茶飲料の酸化還元電位、溶存酸素量、 pHを測定したところ、酸化還元電位は + 6 OmV、溶存酸素量は 1. 55mgZリットル、 pHは 6. 1であった。なお、酸化還元電位 、酸素含有量及び pHの測定は、東亜 DKK製 OPR計測器、酸素量計測器、及び ρ Η計を用い、測定はすべて室温で行った(以下においても同様である)。この茶飲料 を 8気圧の加圧下に 500mリットル Ζ分の割合で、また酸素ガスを 8気圧の加圧下に 150mリットル Z分の割合で、同時に第 1のェジヱクタ 50Aに供給して酸素を溶解さ せた後、常圧に戻して受器 21内に得られた酸素含有茶飲料の溶存酸素量を測定し たところ、 31. OOmgZリツ卜ルであった。
[0042] この酸素含有茶飲料を 8気圧の加圧下に 500mリットル Z分の割合で、また水素ガ スを 8気圧の加圧下に 150mリットルの割合で、再度同時に第 2のェジェクタ 50Bに 供給して水素を溶解させて常圧に戻したところ、溶存酸素量が 4. 50mgZリットル、 P Hが 6. 1であり、酸化還元電位が 599mVの酸素含有型還元性茶飲料が得られた 実施例 4
[0043] 実施例 4としては、市販のコーヒー飲料を用い、実施例 3と同様にして酸素含有型 還元性コーヒー飲料を製造した。このコーヒー飲料の酸ィ匕還元電位は + 85mV、溶 存酸素量は 1. 22mgZリットル、 ρΗは 5. 0であった。このコーヒー飲料を 8気圧の加 圧下に 500mリットル Ζ分の割合で、また酸素ガスを 8気圧の加圧下に 150mリットル Z分の割合で、同時に第 1のェジヱクタ 50Aに供給して酸素を溶解させた後、常圧 に戻して受器 21内に得られた酸素含有コーヒー飲料の溶存酸素量を測定したところ 、溶存酸素量が 32. 70mgZリットルの酸素含有コーヒー飲料が得られた。
[0044] この酸素含有コーヒー飲料を 8気圧の加圧下に 500mリットル/分の割合で、また 水素ガスを 8気圧の加圧下に 150mリットルの割合で、再度同時に第 2のェジェクタ 5 OBに供給して水素を溶解させて常圧に戻したところ、 pHが 5. 0であり、溶存酸素量 が 6. 51mg/リットル、酸化還元電位が 428mVの酸素含有型還元性コーヒー飲 料が得られた。

Claims

請求の範囲 [1] 以下の(1)〜 (4)の工程を含むことを特徴とする酸素含有型還元性水性飲料の製 造方法。
( 1 )加圧した水性飲料と加圧酸素ガスとを同時に第 1のェジヱクタに供給することに より加圧状態の酸素含有水性飲料を得る工程、
(2)前記加圧状態の酸素含有水性飲料を常圧に戻して未溶解の酸素ガスを放出 した常圧の酸素含有水性飲料を得る工程、
(3)加圧水素と加圧した前記酸素含有水性飲料とを同時に第 2のェジ クタに供給 して加圧状態の酸素含有型還元性水性飲料を得る工程、
(4)前記加圧状態の酸素含有型還元性水性飲料を常圧に戻すことにより未溶解の 酸素ガス及び水素ガスを放出させて常圧の酸素含有型還元性水性飲料を得る工程
[2] 前記加圧圧力が 1気圧〜 1000気圧であることを特徴とする請求項 1に記載の酸素 含有型還元性水性飲料の製造方法。
[3] 前記水性飲料が、水、ミネラルウォーター、お茶、コーヒー、ジュース力 選択された
1種であることを特徴とする請求項 1又は 2に記載の酸素含有型還元性水性飲料の 製造方法。
[4] 以下の(1)〜(3)の工程を含むことを特徴とする酸素含有型還元性水性飲料の製 造方法。
( 1 )加圧した水性飲料と加圧酸素ガスとを同時に第 1のェジヱクタに供給することに より加圧状態の酸素含有水性飲料を得る工程、
(2)加圧水素と前記加圧状態の酸素含有水性飲料とを同時に第 2のェジ クタに 供給して加圧状態の酸素含有型還元性水性飲料を得る工程、
(3)前記加圧状態の酸素含有型還元性水性飲料を常圧に戻すことにより未溶解の 酸素ガス及び水素ガスを放出させて常圧の酸素含有水性飲料を得る工程。
[5] 前記加圧圧力が 1気圧〜 1000気圧であることを特徴とする請求項 4に記載の酸素 含有型還元性水性飲料の製造方法。
[6] 前記水性飲料が、水、ミネラルウォーター、お茶、コーヒー、ジュース力 選択された 1種であることを特徴とする請求項 4又は 5に記載の酸素含有型還元性水性飲料の 製造方法。
[7] 第 1のェジヱクタの液体導入路に接続され、水性飲料をポンプにより加圧して供給 する水性飲料供給配管と、
前記第 1のェジェクタの気体導入路に接続され、加圧酸素供給源からの加圧酸素 ガスを供給する酸素ガス供給配管と、
前記第 1ェジェクタの出口配管が接続され、常圧に維持された酸素含有水性飲料 の受器と、
第 2のェジヱクタの液体導入路に接続され、前記受器力 の酸素含有水性飲料を ポンプにより加圧して供給する酸素含有水性飲料供給配管と、
前記第 2のェジェクタの気体導入路に接続され、加圧水素供給源からの加圧水素 ガスを供給する水素ガス供給配管と、
前記第 2ェジェクタの出口配管が接続され、常圧に維持された酸素含有型還元性 水性飲料の受器と、
からなることを特徴とする酸素含有型還元性水性飲料の製造装置。
[8] 前記加圧酸素供給源及び加圧水素供給源は、ともにガスボンベ入りのものであるこ とを特徴とする請求項 7に記載の酸素含有型還元性水性飲料の製造装置。
[9] 前記水性飲料供給源が、水、ミネラルウォーター、お茶、コーヒー、ジュースの供給 源力 選択された少なくとも 1種であることを特徴とする請求項 7又は 8に記載の酸素 含有型還元性水性飲料の製造装置。
[10] 第 1のェジヱクタの液体導入路に接続され、水性飲料をポンプにより加圧して供給 する水性飲料供給配管と、
前記第 1のェジェクタの気体導入路に接続され、加圧酸素供給源からの加圧酸素 ガスを供給する第 2の配管と、
第 2のェジヱクタの液体導入路に接続された前記第 1ェジヱクタの出口配管と、 前記第 2のェジェクタの気体導入路に接続され、加圧水素供給源からの加圧水素 ガスを供給する水素ガス供給配管と、
前記第 2ェジェクタの出口配管が接続され、常圧に維持された酸素含有型還元性 水性飲料の受器と、
からなることを特徴とする酸素含有型還元性水性飲料の製造装置。
[11] 前記加圧酸素供給源及び加圧水素供給源は、ともにガスボンベ入りのものであるこ とを特徴とする請求項 10に記載の酸素含有型還元性水性飲料の製造装置。
[12] 前記水性飲料供給源が、水、ミネラルウォーター、お茶、コーヒー、ジュースの供給 源力も選択された少なくとも 1種であることを特徴とする請求項 10又は 11に記載の酸 素含有型還元性水性飲料の製造装置。
PCT/JP2005/008749 2005-05-13 2005-05-13 酸素含有型還元性水性飲料の製造方法及び製造装置 WO2006120747A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
PCT/JP2005/008749 WO2006120747A1 (ja) 2005-05-13 2005-05-13 酸素含有型還元性水性飲料の製造方法及び製造装置
CNA2005800497742A CN101175418A (zh) 2005-05-13 2005-06-13 含氧还原性水饮料的生产方法及生产装置
US11/920,277 US20090130278A1 (en) 2005-05-13 2005-06-13 Method and Apparatus for Producing Oxygen-Containing Reducing Aqueous Beverage
JP2007526748A JPWO2006120761A1 (ja) 2005-05-13 2005-06-13 酸素含有型還元性水性飲料の製造方法及び製造装置
CA002608335A CA2608335A1 (en) 2005-05-13 2005-06-13 Method and apparatus for producing oxygen-containing reducing aqueous beverage
PCT/JP2005/010817 WO2006120761A1 (ja) 2005-05-13 2005-06-13 酸素含有型還元性水性飲料の製造方法及び製造装置
EP05748613A EP1880618A4 (en) 2005-05-13 2005-06-13 PROCESS AND APPARATUS FOR PRODUCING AQUEOUS REDUCTIVE BEVERAGE CONTAINING OXYGEN
KR1020077026273A KR101004850B1 (ko) 2005-05-13 2005-06-13 산소함유형 환원성 수성음료의 제조방법 및 제조장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/008749 WO2006120747A1 (ja) 2005-05-13 2005-05-13 酸素含有型還元性水性飲料の製造方法及び製造装置

Publications (1)

Publication Number Publication Date
WO2006120747A1 true WO2006120747A1 (ja) 2006-11-16

Family

ID=37396269

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2005/008749 WO2006120747A1 (ja) 2005-05-13 2005-05-13 酸素含有型還元性水性飲料の製造方法及び製造装置
PCT/JP2005/010817 WO2006120761A1 (ja) 2005-05-13 2005-06-13 酸素含有型還元性水性飲料の製造方法及び製造装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/010817 WO2006120761A1 (ja) 2005-05-13 2005-06-13 酸素含有型還元性水性飲料の製造方法及び製造装置

Country Status (7)

Country Link
US (1) US20090130278A1 (ja)
EP (1) EP1880618A4 (ja)
JP (1) JPWO2006120761A1 (ja)
KR (1) KR101004850B1 (ja)
CN (1) CN101175418A (ja)
CA (1) CA2608335A1 (ja)
WO (2) WO2006120747A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008026785A1 (fr) * 2006-08-31 2008-03-06 Shigeo Ohta Agent améliorant le métabolisme lipidique contenant une molécule d'hydrogène
JP2017079606A (ja) * 2015-10-23 2017-05-18 光騰光電股▲ふん▼有限公司 抗酸化機能性飲料、及び抗酸化機能性飲料の製造方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120093990A1 (en) * 2008-02-15 2012-04-19 Shrader James P Espresso Maker and Method
JP5710206B2 (ja) * 2010-10-22 2015-04-30 株式会社環境技研 水素溶解水製造装置
AR082603A1 (es) 2011-08-09 2012-12-19 Lavaque Oscar Un dispositivo solubilizador de dioxido de carbono en una bebida, de presion variable
DE102012100844A1 (de) * 2012-02-01 2013-08-01 Apollo Produkt- und Vertriebsgesellschaft mbH Karbonisiervorrichtung für Wein und weinhaltige Getränke
CN103408121B (zh) * 2013-07-26 2015-07-15 徐礼鲜 一种微泡置换折混式制备溶氢溶氧水的装置
CN103408122B (zh) * 2013-07-26 2014-11-26 徐礼鲜 一种高氧富氢水及其的制备方法和应用
US10961488B2 (en) * 2015-04-15 2021-03-30 Board Of Trustees Of The University Of Arkansas Method for controlling the concentration of single and multiple dissolved gases in beverages
CN106261352A (zh) * 2015-05-18 2017-01-04 光腾光电股份有限公司 瓶装富氢水饮料及其制备方法与制备系统
DE102017011752A1 (de) * 2017-12-19 2019-06-19 Messer Industriegase Gmbh Verfahren zum inaktivieren von Mikroorganismen in Lebensmitteln
CN113845199A (zh) * 2021-11-10 2021-12-28 漯河市缘动力饮品有限公司 一种富氢水生产设备及方法
KR102568125B1 (ko) * 2022-09-14 2023-08-17 이창용 액상커피제조방법 및 이에 의해 제조된 액상커피

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0856632A (ja) * 1994-08-23 1996-03-05 Kumamoto Pref Gov 食品等の還元性水素水とその製造方法並びに製造装置
JPH10118653A (ja) * 1996-08-27 1998-05-12 Nippon Torimu:Kk 電解水素溶存水およびその製造方法ならびにその製造装置
JPH11265870A (ja) * 1998-03-17 1999-09-28 Kurita Water Ind Ltd 電子材料の洗浄方法
JP2000336351A (ja) * 1999-03-19 2000-12-05 Japan Organo Co Ltd 熱交換用水及びその供給装置
JP2001079504A (ja) * 1999-09-17 2001-03-27 Nomura Micro Sci Co Ltd 洗浄方法及び洗浄装置
JP2001079376A (ja) * 1999-09-10 2001-03-27 Kurita Water Ind Ltd ガス溶解水の調製方法
JP2003088736A (ja) * 2001-09-17 2003-03-25 Kiyoshi Sato 溶存気体濃度増加装置及び溶存気体濃度増加方法
JP2005021146A (ja) * 2003-07-03 2005-01-27 Hiroshima Kasei Ltd 酸化還元電位が−400mV以下の野菜ジュースおよびその製法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH025841A (ja) * 1988-06-27 1990-01-10 Toyo Seikan Kaisha Ltd 炭酸ガスを小量含有した飲料およびその製造法
FR2762232B1 (fr) * 1997-04-17 1999-05-28 Degremont Procede et dispositif pour la mise en contact de l'ozone dans des fluides a traiter, notamment de l'eau
JP3829170B2 (ja) * 2001-05-01 2006-10-04 有限会社情報科学研究所 ガス溶存液状媒体の生産システム
JP2003306407A (ja) * 2002-04-18 2003-10-28 Hiromaito Co Ltd 還元性水性組成物、化粧料及びその使用法
US20030232114A1 (en) * 2002-06-13 2003-12-18 Nikola Dekleva Method for liquid enrichment with oxygen and applications of enriched liquids
JP2005013833A (ja) * 2003-06-25 2005-01-20 Eko Japan Kk 還元性水素水、還元性水素水の製造装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0856632A (ja) * 1994-08-23 1996-03-05 Kumamoto Pref Gov 食品等の還元性水素水とその製造方法並びに製造装置
JPH10118653A (ja) * 1996-08-27 1998-05-12 Nippon Torimu:Kk 電解水素溶存水およびその製造方法ならびにその製造装置
JPH11265870A (ja) * 1998-03-17 1999-09-28 Kurita Water Ind Ltd 電子材料の洗浄方法
JP2000336351A (ja) * 1999-03-19 2000-12-05 Japan Organo Co Ltd 熱交換用水及びその供給装置
JP2001079376A (ja) * 1999-09-10 2001-03-27 Kurita Water Ind Ltd ガス溶解水の調製方法
JP2001079504A (ja) * 1999-09-17 2001-03-27 Nomura Micro Sci Co Ltd 洗浄方法及び洗浄装置
JP2003088736A (ja) * 2001-09-17 2003-03-25 Kiyoshi Sato 溶存気体濃度増加装置及び溶存気体濃度増加方法
JP2005021146A (ja) * 2003-07-03 2005-01-27 Hiroshima Kasei Ltd 酸化還元電位が−400mV以下の野菜ジュースおよびその製法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008026785A1 (fr) * 2006-08-31 2008-03-06 Shigeo Ohta Agent améliorant le métabolisme lipidique contenant une molécule d'hydrogène
JP2017079606A (ja) * 2015-10-23 2017-05-18 光騰光電股▲ふん▼有限公司 抗酸化機能性飲料、及び抗酸化機能性飲料の製造方法

Also Published As

Publication number Publication date
EP1880618A4 (en) 2009-08-19
CA2608335A1 (en) 2006-11-16
KR20080015405A (ko) 2008-02-19
EP1880618A1 (en) 2008-01-23
CN101175418A (zh) 2008-05-07
US20090130278A1 (en) 2009-05-21
JPWO2006120761A1 (ja) 2008-12-18
WO2006120761A1 (ja) 2006-11-16
KR101004850B1 (ko) 2010-12-28

Similar Documents

Publication Publication Date Title
WO2006120747A1 (ja) 酸素含有型還元性水性飲料の製造方法及び製造装置
US11007496B2 (en) Method for manufacturing ultra-fine bubbles having oxidizing radical or reducing radical by resonance foaming and vacuum cavitation, and ultra-fine bubble water manufacturing device
JP3139460U (ja) 連続加圧流通式による気体溶解液体の大量製造装置
RU2530122C1 (ru) Устройство для избирательного добавления водорода в жидкость, применяемую для живых организмов
RU2492146C2 (ru) Способ обогащения воды кислородом посредством электролитического процесса, вода или напиток, обогащенные кислородом, и их применение
AU2011277514B2 (en) Device for selectively hydrogenating biocompatible solution
US7104531B2 (en) Apparatus for the preparation of liquids for the dispense of beverages
US20140027388A1 (en) Water purification system
CN102596380B (zh) 利用超声波的高浓度溶氧装置
WO2017084605A1 (zh) 超饱和氢气溶液的制备装置及其制备方法
WO2002060822A1 (en) Pressurized solution feed system for introducing hypochlorous acid to a fluid stream
JP2010274181A (ja) 飲料用水素含有水の製造方法
WO2006103789A1 (ja) 酸素含有還元性水性飲料及びその製造方法
WO2014093049A1 (en) Water stabilization, revitalization, filtration and treatment systems and methods
KR101006869B1 (ko) 기체 분리막을 이용한 탄산수 최적화 추출 시스템을 갖는 탄산수 제조장치
CN101549900B (zh) 用臭氧消毒的瓶装水生产过程和消毒的瓶装水
CN109562967B (zh) 水离子化系统和方法
JP5746411B1 (ja) 気体分散液の製造方法
JP6837351B2 (ja) 混合水溶液の製造装置及び製造方法
WO2018127986A1 (ja) リアルタイム大容量水素水生成器
KR101788228B1 (ko) 난용해성 가스 용존 가스수 제조장치 및 이를 이용한 용존 가스수 제조방법
JP2007038052A (ja) 地下水等の水処理装置
JP2006043681A (ja) 機能水、並びにその製造方法及び製造装置
EP2524900A1 (en) Device for carbonating drinking water with carbon dioxide
RU2471723C2 (ru) Способ получения бутилированной воды, обеззараженной озоном, и обеззараженная бутилированная вода

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 05739185

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP