WO2006118108A1 - 露光方法、露光装置、デバイス製造方法、及び膜の評価方法 - Google Patents

露光方法、露光装置、デバイス製造方法、及び膜の評価方法 Download PDF

Info

Publication number
WO2006118108A1
WO2006118108A1 PCT/JP2006/308648 JP2006308648W WO2006118108A1 WO 2006118108 A1 WO2006118108 A1 WO 2006118108A1 JP 2006308648 W JP2006308648 W JP 2006308648W WO 2006118108 A1 WO2006118108 A1 WO 2006118108A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
liquid
exposure
contact angle
immersion
Prior art date
Application number
PCT/JP2006/308648
Other languages
English (en)
French (fr)
Inventor
Hiroyuki Nagasaka
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to CN2006800109135A priority Critical patent/CN101156226B/zh
Priority to EP06745676A priority patent/EP1879219A4/en
Priority to US11/919,351 priority patent/US20080246937A1/en
Priority to JP2006521748A priority patent/JP4918858B2/ja
Publication of WO2006118108A1 publication Critical patent/WO2006118108A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • G03F7/70725Stages control
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2041Exposure; Apparatus therefor in the presence of a fluid, e.g. immersion; using fluid cooling means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply

Definitions

  • Exposure method Exposure method, exposure apparatus, device manufacturing method, and film evaluation method
  • the present invention relates to an exposure method, an exposure apparatus, and a device manufacturing method for exposing a substrate through a liquid
  • an exposure apparatus that projects and exposes a pattern formed on a mask onto a photosensitive substrate is used.
  • This exposure apparatus has a mask stage for holding a mask and a substrate stage for holding a substrate, and projects the mask pattern onto the substrate via a projection optical system while sequentially moving the mask stage and the substrate stage. It is.
  • miniaturization of patterns formed on a substrate is required in order to increase the density of devices.
  • an on-substrate as disclosed in Patent Document 1 below.
  • An immersion exposure apparatus has been devised in which a liquid immersion region is formed in the substrate and the substrate is exposed through the liquid in the immersion region.
  • Patent Document 1 Pamphlet of International Publication No. 99Z49504
  • the present invention has been made in view of such circumstances, and an exposure method and an exposure apparatus that can satisfactorily perform immersion exposure on each of substrates provided with different types of films. It is an object to provide a device and a device manufacturing method.
  • the present invention employs the following configurations corresponding to the respective drawings shown in the embodiments.
  • the reference numerals in parentheses attached to each element are merely examples of the element and do not limit each element.
  • the liquid immersion region (LR) of the liquid (LQ) is formed on the substrate (P), and the substrate is interposed via the liquid (LQ) of the liquid immersion region (LR).
  • the exposure method that exposes the substrate (P) by irradiating the exposure light (EL) onto the (P), depending on the adhesion force acting between the substrate (P) surface and the liquid (LQ)
  • An exposure method for determining an exposure condition when exposing the substrate (P) is provided.
  • the exposure conditions for exposing the substrate are determined according to the adhesion force acting between the substrate surface and the liquid, and therefore, regardless of the type of film on the surface. It is possible to satisfactorily perform immersion exposure on the substrate.
  • a liquid (LQ) immersion region (LR) is formed on the substrate (P), and the substrate is interposed via the liquid immersion region (LR) liquid (LQ).
  • the exposure method in which the substrate (P) is exposed by irradiating exposure light (EL) onto (P), the static contact angle of the liquid (LQ) on the surface of the substrate (P) and the substrate (P)
  • An exposure method is provided that determines exposure conditions for exposing the substrate (P) based on the sliding angle of the liquid (LQ) on the surface.
  • the exposure conditions for exposing the substrate are determined based on the static contact angle and sliding angle of the liquid on the substrate surface. Nevertheless, immersion exposure can be satisfactorily performed on the substrate.
  • the liquid (LQ) immersion region (LR) is formed on the substrate (P), and the substrate is interposed via the liquid immersion region (LR) liquid (LQ).
  • the exposure method of exposing the substrate (P) by irradiating the exposure light (EL) on the (P) the liquid on the surface of the substrate (P) when the substrate (P) surface is tilted (
  • An exposure method is provided that determines the exposure conditions when exposing the substrate (P) based on the receding contact angle of LQ).
  • the liquid on the substrate surface when the substrate surface is tilted since the exposure conditions for exposing the substrate are determined based on the receding contact angle of the body, immersion exposure can be satisfactorily performed on the substrate regardless of the type of film on the surface.
  • the substrate can be satisfactorily exposed to liquid immersion regardless of the type of film on the surface, and a device having desired performance can be manufactured.
  • the liquid (LQ) immersion region (LR) is formed on the substrate (P), and the substrate is interposed via the liquid immersion region (LR) liquid (LQ).
  • Measurement that measures the adhesion force acting between the surface of the substrate (P) and the liquid (LQ) in an exposure device that exposes the substrate (P) by irradiating the exposure light (EL) on the (P).
  • An exposure apparatus (EX) comprising the apparatus (60) is provided.
  • the adhesive force acting between the substrate surface and the liquid is measured, and based on the measurement result, the substrate is applied regardless of the type of the film on the surface. In contrast, immersion exposure can be performed satisfactorily.
  • a liquid (LQ) immersion region (LR) is formed on the substrate (P), and the substrate is interposed via the liquid immersion region (LR) liquid (LQ).
  • the liquid (LQ on the surface of the substrate (P) when the surface of the substrate (P) is tilted with an exposure apparatus that exposes the substrate (P) by irradiating the exposure light (EL) onto the (P).
  • An exposure apparatus (EX) provided with a measuring device (60) for measuring the receding contact angle is provided.
  • the surface film type is determined based on the measurement result. Nevertheless, immersion exposure can be satisfactorily performed on the substrate.
  • a liquid (LQ) immersion region (LR) is formed on a substrate (P), and the substrate is interposed via the liquid immersion region (LR) liquid (LQ).
  • the exposure apparatus that exposes the substrate (P) by irradiating the exposure light (EL) onto the (P) !, the first to measure the static contact angle of the liquid (LQ) on the surface of the substrate (P)
  • the exposure apparatus (EX) is provided with a control device (CONT) that determines the exposure conditions for exposing the substrate (P) based on the measurement results of (1).
  • CONT control device
  • the substrate is exposed based on the static contact angle and sliding angle of the liquid on the substrate surface measured by the first and second measuring devices! Since the exposure conditions are determined, the immersion exposure can be satisfactorily performed on the substrate regardless of the type of film on the surface.
  • the liquid (LQ) immersion region (LR) is formed on the substrate (P), and the substrate is interposed via the liquid immersion region (LR) liquid (LQ).
  • an exposure apparatus that exposes the substrate (P) by irradiating exposure light (EL) onto the (P) !, and information on the static contact angle of the liquid (LQ) on the surface of the substrate (P) and the substrate (P) Based on the input device (INP) for inputting the sliding angle information of the liquid (LQ) on the surface, and the contact angle information and sliding angle information input from the input device (INP).
  • An exposure apparatus (EX) provided with a controller (CONT) that determines the exposure conditions when exposing the substrate (P) is provided.
  • the exposure when exposing the substrate based on the information on the static contact angle of the liquid on the surface of the substrate and the information on the sliding angle input by the input device Since the conditions are determined, immersion exposure can be satisfactorily performed on each of the substrates regardless of the type of film on the surface.
  • the liquid (LQ) immersion region (LR) is formed on the substrate (P), and the substrate is interposed via the liquid immersion region (LR) liquid (LQ).
  • the liquid (LQ on the surface of the substrate (P) when the surface of the substrate (P) is tilted with an exposure apparatus that exposes the substrate (P) by irradiating the exposure light (EL) onto the (P).
  • the receding contact angle information is input to the input device (INP) and the receding contact angle information input from the input device (INP).
  • An exposure apparatus (EX) having a control device (CONT) for determining is provided.
  • the exposure condition for exposing the substrate based on the information on the receding contact angle of the liquid on the substrate surface when the substrate surface input by the input device is tilted. Therefore, it is possible to satisfactorily perform immersion exposure on each of the substrates regardless of the type of film on the surface.
  • FIG. 1 is a schematic block diagram that shows one embodiment of an exposure apparatus.
  • FIG. 2 is a diagram for explaining the positional relationship between the immersion area and the substrate when the substrate is exposed.
  • FIG. 3A is a cross-sectional view showing an example of a substrate.
  • FIG. 3B is a cross-sectional view showing an example of a substrate.
  • FIG. 4 is a diagram showing an embodiment of a measuring device.
  • FIG. 5 is a diagram for explaining adhesion force.
  • FIG. 6 is a flowchart for explaining an embodiment of an exposure method.
  • FIG. 7 is a diagram showing the results of experiments conducted to derive the relationship between static contact angle, sliding angle, and allowable speed.
  • FIG. 8 is a diagram showing the relationship among static contact angle, sliding angle and allowable speed.
  • FIG. 9 is a diagram for explaining a receding contact angle.
  • FIG. 10 is a diagram showing the results of experiments conducted to derive the relationship between the receding contact angle and the allowable speed.
  • FIG. 11 is a diagram showing the relationship among the receding contact angle, sliding angle, and allowable speed.
  • FIG. 12 is a flowchart for explaining an example of a manufacturing process of a micro device.
  • FIG. 1 is a schematic block diagram that shows an exposure apparatus EX according to the first embodiment.
  • the exposure apparatus EX has a mask stage MST that can move while holding the mask M, and a substrate holder PH that holds the substrate P, and a substrate that can move the substrate holder PH that holds the substrate P.
  • Stage PST, illumination optical system IL that illuminates mask M held by mask stage MST with exposure light EL, and projection optical system that projects pattern image of mask M illuminated by exposure light EL onto substrate P PL and a control device CONT that controls the overall operation of the exposure apparatus EX are provided.
  • a storage device MRY that stores information related to exposure processing
  • an input device INP that inputs information related to exposure processing
  • a display device DY that displays information related to exposure processing.
  • Input device INP includes, for example, a keyboard or a touch panel.
  • the display device DY includes a display device such as a liquid crystal display.
  • the exposure apparatus EX includes a transfer apparatus H that transfers the substrate P to the substrate stage PST.
  • the exposure apparatus EX of the present embodiment is an immersion exposure apparatus to which an immersion method is applied in order to substantially shorten the exposure wavelength to improve the resolution and substantially increase the depth of focus.
  • an immersion mechanism 1 is provided for filling the optical path space K1 of the exposure light EL near the image plane of the projection optical system PL with the liquid LQ.
  • the liquid immersion mechanism 1 is provided in the vicinity of the optical path space K1, and is provided in the nozzle member 70 having the supply port 12 for supplying the liquid LQ and the recovery port 22 for recovering the liquid LQ, the supply pipe 13, and the nozzle member 70.
  • the nozzle member 70 surrounds the final optical element LSI closest to the image plane of the projection optical system PL among the plurality of optical elements constituting the projection optical system PL above the substrate P (substrate stage PST). It is formed in an annular shape.
  • the exposure apparatus EX of the present embodiment includes a substrate P that includes the projection area AR of the projection optical system PL.
  • a local liquid immersion method is adopted in which an immersion area LR of the liquid LQ that is larger than the projection area AR and smaller than the substrate P is locally formed.
  • the exposure apparatus EX uses the immersion mechanism 1 while projecting at least the pattern image of the mask M onto the substrate P, and uses the liquid immersion mechanism 1 to place the final optical element LS 1 closest to the image plane of the projection optical system PL and the final image.
  • the liquid LQ immersion region LR is formed on the substrate P by filling the optical path space K1 of the exposure light EL between the optical element LS 1 and the substrate P disposed at a position facing the optical element LS 1 with the liquid LQ.
  • the pattern image of the mask M is projected onto the substrate P by irradiating the substrate P with the exposure light EL that has passed through the mask M via the projection optical system PL and the liquid LQ in the immersion region LR.
  • the control device CONT supplies a predetermined amount of liquid LQ using the liquid supply device 11 of the liquid immersion mechanism 1 and collects a predetermined amount of liquid LQ using the liquid recovery device 21.
  • the liquid LQ immersion region LR is locally formed in a partial region on the substrate P.
  • the liquid immersion region LR may be described as being formed on the substrate P in the present embodiment, the final optical element LSI is formed on the image plane side of the projection optical system PL. It can also be formed on an object arranged at a position facing the substrate, for example, on the upper surface of the substrate stage PST including the substrate P.
  • the exposure apparatus EX includes a measuring device 60 that measures an adhesion force (adhesion energy) acting between the surface of the substrate P and the liquid LQ.
  • the measuring device 60 is provided on the transport path of the transport device H.
  • the exposure apparatus EX is a scanning exposure apparatus (so-called scanning stepper) that exposes the substrate P with a pattern formed on the mask M while moving the mask M and the substrate P synchronously in the scanning direction.
  • scanning direction the synchronous movement direction (scanning direction) of the mask M and the substrate P in the horizontal plane
  • the direction orthogonal to the Y axis direction is the X axis direction (non-scanning).
  • Direction the direction perpendicular to the X-axis and Y-axis directions and coincident with the optical axis
  • AX of the projection optical system PL is defined as the Z-axis direction.
  • the rotation (tilt) directions around the X, Y, and Z axes are defined as 0 X, ⁇ Y, and ⁇ Z directions, respectively.
  • substrate includes a substrate in which a photosensitive material (resist) is coated on a base material such as a semiconductor wafer
  • mask includes a reticle on which a device pattern to be projected on the substrate is formed.
  • the illumination optical system IL includes an exposure light source, an optical integrator that equalizes the illuminance of the light beam emitted from the exposure light source, a condenser lens that collects the exposure light EL from the optical integrator, a relay lens system, and an exposure.
  • Illumination optical system IL force Dew light emitted EL, such as bright lines (g-line, h-line, i-line) and KrF excimer laser light (wavelength 248nm) emitted from mercury lamps, etc. Light), vacuum ultraviolet light (VUV light) such as ArF excimer laser light (wavelength 193 nm) and F laser light (wavelength 157 nm).
  • ArF excimer laser light is used.
  • pure water is used as the liquid LQ.
  • Pure water is not only ArF excimer laser light, but also far ultraviolet light (DUV light) such as emission lines (g-line, h-line, i-line) emitted from mercury lamp force and KrF excimer laser light (wavelength 248nm). Can also be transmitted.
  • DUV light far ultraviolet light
  • emission lines g-line, h-line, i-line
  • KrF excimer laser light wavelength 248nm
  • Mask stage MST is movable while holding mask M.
  • the mask stage MST holds the mask M using a vacuum suction (or electrostatic suction) mechanism.
  • the mask stage MST is in a plane perpendicular to the optical axis AX of the projection optical system PL with the mask M held by the drive of the mask stage drive device MSTD including a linear motor controlled by the control device CONT, that is, It can move two-dimensionally in the XY plane and can rotate slightly in the ⁇ Z direction.
  • a movable mirror 91 is provided on the mask stage MST.
  • a laser interferometer 92 is provided at a predetermined position.
  • the position of the mask M on the mask stage MST in the two-dimensional direction and the rotation angle in the ⁇ Z direction are measured by the laser interferometer 92 using the moving mirror 91. Measured in real time.
  • the measurement result of the laser interferometer 92 is output to the control device CONT.
  • the control device CONT drives the mask stage drive device MSTD based on the measurement result of the laser interferometer 92, and controls the position of the mask M held in the mask stage MST.
  • the projection optical system PL projects and exposes the pattern of the mask M onto the substrate P at a predetermined projection magnification of 13, and is composed of a plurality of optical elements, which hold the lens barrel PI C.
  • the projection optical system PL has a projection magnification j8 of, for example, 1 Z4, 1/5, or 1Z8 reduction system.
  • the projection optical system PL may be a unity magnification system or an enlargement system.
  • the projection optical system PL may be any of a refractive system that does not include a reflective optical element, a reflective system that does not include a refractive optical element, and a catadioptric system that includes a reflective optical element and a refractive optical element.
  • the plurality of optical elements constituting the projection optical system PL are held by the lens barrel PK so that only the final optical element LSI closest to the image plane of the projection optical system PL is in contact with the liquid LQ. It has been.
  • the substrate stage PST has a substrate holder PH for holding the substrate P, and is movable on the base member BP on the image plane side of the projection optical system PL.
  • the substrate holder PH holds the substrate P using, for example, a vacuum suction mechanism.
  • a concave portion 96 is provided on the substrate stage PST, and a substrate holder PH for holding the substrate P is disposed in the concave portion 96.
  • the upper surface 97 of the substrate stage PST other than the recess 96 is a flat surface that is substantially the same height (level) as the surface of the substrate P held by the substrate holder PH. If the optical path space K1 can be continuously filled with the liquid LQ, there may be a step between the upper surface 97 of the substrate stage PST and the surface of the substrate P held by the substrate holder PH.
  • the substrate stage PST is XY on the base member BP in a state where the substrate P is held via the substrate holder PH by driving the substrate stage driving device PSTD including a linear motor controlled by the control device CONT. It can move two-dimensionally in the plane and can rotate in the ⁇ Z direction. Furthermore, the substrate stage PST can also be moved in the Z-axis direction, the 0 X direction, and the ⁇ Y direction. Therefore, the surface of the substrate P held on the substrate stage PST can move in the directions of six degrees of freedom of the X axis, Y axis, Z axis, 0 X, 0 Y, and 0 Z directions.
  • a movable mirror 93 is provided on the side surface of the substrate stage PST. Further, a laser interferometer 94 is provided at a predetermined position. The position and rotation angle of the substrate P on the substrate stage PST in the two-dimensional direction are measured in real time by the laser interferometer 94 using the moving mirror 93.
  • the exposure apparatus EX includes a focus leveling detection system that detects surface position information of the surface of the substrate P held by the substrate stage PST. The focus / leveling detection system detects surface position information (position information in the Z-axis direction and inclination information in the ⁇ X and ⁇ Y directions) of the surface of the substrate P.
  • the measurement result of the laser interferometer 94 is output to the control device CONT.
  • the detection result of the focus' leveling detection system is also controlled. Is output to the CONT.
  • the control device CONT drives the substrate stage drive device PSTD based on the detection result of the focus leveling detection system, and controls the focus position (Z position) and tilt angle ( ⁇ X, 0 Y) of the substrate P. Adjusting the positional relationship between the surface of the substrate P and the image plane via the projection optical system PL and the liquid LQ, and based on the measurement result of the laser interferometer 94, the X-axis direction, Y-axis direction, and Perform position control in ⁇ Z direction.
  • the liquid supply device 11 of the liquid immersion mechanism 1 includes a tank that stores the liquid LQ, a pressure pump, a temperature adjustment device that adjusts the temperature of the supplied liquid LQ, a deaeration device that reduces the gas components of the supplied liquid LQ, and It has a filter unit that removes foreign substances in the liquid LQ.
  • One end of a supply pipe 13 is connected to the liquid supply apparatus 11, and the other end of the supply pipe 13 is connected to a nozzle member 70.
  • the liquid supply operation of the liquid supply device 11 is controlled by the control device CONT.
  • the control device CONT can adjust the liquid supply amount per unit time from the supply port 12 by controlling the liquid supply device 11.
  • the tank, pressurization pump, temperature control device, deaeration device, filter unit, etc. of the liquid supply device 11 are not necessarily equipped with the exposure device EX. Equipment such as a factory where the exposure device EX is installed May be substituted.
  • the liquid recovery device 21 of the liquid immersion mechanism 1 includes a vacuum system such as a vacuum pump, a gas-liquid separator that separates the recovered liquid LQ and gas, and a tank that stores the recovered liquid LQ. ⁇ .
  • a vacuum system such as a vacuum pump
  • a gas-liquid separator that separates the recovered liquid LQ and gas
  • a tank that stores the recovered liquid LQ. ⁇ .
  • One end of a recovery pipe 23 is connected to the liquid recovery apparatus 21, and the other end of the recovery pipe 23 is connected to a nozzle member 70.
  • the liquid recovery operation of the liquid recovery device 21 is controlled by the control device CONT.
  • the control device CONT can adjust the liquid recovery amount per unit time via the recovery rod 22 by controlling the liquid recovery device 21.
  • the vacuum system, gas-liquid separator, tank, etc. of the liquid recovery device 21 may be replaced with facilities such as a factory where the exposure device EX is installed, which is not necessarily provided with the exposure device EX.
  • the supply port 12 for supplying the liquid LQ and the recovery port 22 for recovering the liquid LQ are formed on the lower surface 70A of the nozzle member 70.
  • the lower surface 70A of the nozzle member 70 is provided at a position facing the surface of the substrate P and the upper surface 97 of the substrate stage PST.
  • the nozzle member 70 is an annular member provided so as to surround the side surface of the final optical element LSI
  • the supply port 12 is provided on the lower surface 70A of the nozzle member 70 on the final optical element LSI (projection optics) of the projection optical system PL. system A plurality are provided so as to surround the PL optical axis AX).
  • the recovery port 22 is provided on the lower surface 70A of the nozzle member 70 on the outer side of the supply port 12 (away from the supply port 12) with respect to the final optical element LS1. It is provided so as to surround the element LSI and the supply port 12.
  • the control device CONT supplies a predetermined amount of the liquid LQ to the optical path space K1 using the liquid supply device 11, and collects a predetermined amount of the liquid LQ in the optical path space K1 using the liquid recovery device 21.
  • the optical path space K1 of the exposure light EL between the projection optical system PL and the substrate P is filled with the liquid LQ, and the liquid LQ immersion region LR is locally formed on the substrate P.
  • the control device CONT drives each of the liquid supply device 11 and the liquid recovery device 21.
  • the liquid LQ delivered from the liquid supply device 11 flows through the supply pipe 13 and then the supply flow of the nozzle member 70. It is supplied to the image plane side of the projection optical system PL from the supply port 12 through the path. Further, when the liquid recovery device 21 is driven under the control device CONT, the liquid LQ on the image plane side of the projection optical system PL flows into the recovery flow path of the nozzle member 70 via the recovery port 22, and the recovery pipe After flowing through 23, the liquid is recovered by the liquid recovery device 21.
  • FIG. 2 is a diagram for explaining an example of the positional relationship between the immersion region LR and the substrate stage PST holding the substrate P when the substrate P is exposed.
  • a plurality of shot regions S1 to S21 are set on the substrate P in a matrix shape.
  • the exposure apparatus EX of the present embodiment projects and exposes the pattern of the mask M onto the substrate P while moving the mask M and the substrate P in the Y-axis direction (scanning direction).
  • the control device CONT projects the projection area AR of the projection optical system PL and the liquid immersion area LR and the substrate P covering it.
  • the control device CONT controls the operation of the substrate stage PST so that the projection area AR (exposure light EL) of the projection optical system PL moves along the arrow yl on the substrate P. After the exposure of one shot area is completed, the controller CONT steps the substrate P (substrate stage PST) and moves the next shot area to the scanning start position. While moving P, each of the shot areas S1 to S21 is sequentially scanned and exposed.
  • Control device CO The NT controls the operation of the liquid immersion mechanism 1 to form the liquid immersion region LR in a desired state, and performs the liquid LQ supply operation and the recovery operation in parallel.
  • FIGS. 3A and 3B are cross-sectional views for explaining an example of the substrate P.
  • FIG. A substrate P shown in FIG. 3A has a base material W and a first lHRg formed on the upper surface of the base material W.
  • the substrate W includes a silicon wafer.
  • the first film Rg is formed of a photoresist (photosensitive material), and covers a region that occupies most of the central portion of the upper surface of the substrate W with a predetermined thickness.
  • the substrate P shown in FIG. 3B has a second film Tc that covers the surface of the lHRg.
  • the second film Tc is, for example, a protective film or antireflection film called a top coat film.
  • the second film Tc such as the first HRg having the same force as the photoresist or the top coat film provided on the upper layer of the first HRg is formed. Therefore, the film provided on the uppermost layer (the surface of the substrate P) on the substrate P forms a liquid contact surface that comes into contact with the liquid L Q during the immersion exposure.
  • the measuring device 60 includes a holding member 61 that holds the substrate P, a dropping member 62 that can drop liquid LQ droplets on the surface of the substrate P held by the holding member 61, and a substrate.
  • An observation device 63 that can observe the state of the liquid LQ (droplet) on the surface of P, and an illumination device 64 that illuminates the liquid LQ (droplet) on the surface of the substrate P are provided.
  • the substrate P is loaded (carried in) onto the holding member 61 by the transport device H, and the holding member 61 holds the substrate P transported by the transport device H.
  • the transport device H transports the substrate P before the exposure process to the holding member 61.
  • the measuring device 60 measures the substrate P before exposure processing.
  • the observation device 63 includes an optical element, an image sensor configured by a CCD, and the like.
  • the image sensor can acquire an image (optical image) of the liquid LQ via the optical system.
  • the observation device 63 is disposed on the + X side (one side) of the substrate P held by the holding member 61, and is located on the substrate P from a position away from the substrate P and the holding member 61. Observe the state of the liquid LQ droplet.
  • the illumination device 64 is provided at a position facing the observation device 63 with the substrate P (holding member 61) interposed therebetween. That is, the illuminating device 64 has the ⁇ X side of the substrate P held by the holding member 61 ( It is arranged on the other side, and illuminates the droplet of the liquid LQ on the substrate P from a position away from the substrate P and the holding member 61. Therefore, the observation device 63 acquires an image of the liquid LQ droplet illuminated by the illumination device 64.
  • the observation device 63 and the control device CONT are connected, and the observation device 63 converts the acquired liquid LQ droplet image into an electrical signal and outputs the signal (image information) to the control device CONT. To do.
  • the control device CONT can display the image information from the observation device 63 on the display device DY. Therefore, an image of the liquid LQ droplet on the surface of the substrate P is displayed on the display device DY.
  • the measuring device 60 includes a drive system 65 that rotates (tilts) the holding member 61 that holds the substrate P.
  • the operation of the drive system 65 is controlled by the control device CONT, and the holding member 61 can rotate (tilt) while holding the substrate P.
  • the holding member 61 holding the substrate P is rotated (inclined) in the ⁇ X direction by the drive of the drive system 65.
  • the measuring device 60 includes an adhesion force (adhesion energy 1) E acting between the surface of the substrate P and the liquid LQ, a static contact angle ⁇ of the liquid LQ on the surface of the substrate P, and the surface of the substrate P. It is possible to measure the sliding angle oc of liquid LQ.
  • Adhesion force (adhesion energy) E is a force required to move the liquid on the surface of the object (here, the surface of the substrate P).
  • the adhesion force E will be described with reference to FIG.
  • R The radius of the liquid LQ droplet on the substrate P.
  • the sliding angle is a state in which liquid droplets are attached to the surface of the object (here, the surface of the substrate P). In this state, when the surface of the object is tilted with respect to the horizontal plane, the angle at which the liquid droplet adhering to the surface of the object slides downward (starts moving) due to the action of gravity.
  • the sliding angle a is a critical angle at which the liquid droplet slides down when the surface of the object to which the liquid droplet adheres is tilted.
  • represents the static contact angle of the liquid LQ on the surface of the substrate P.
  • the contact angle ⁇ is the angle between the surface of the object and the surface of the object when the liquid droplet is attached to the surface of the object (here, the surface of the substrate P) (the angle inside the liquid).
  • the outer shape of the droplet is assumed to be a part of a circle.
  • the contact angle of the liquid LQ on the inclined surface is shown as 0, but the contact angle ⁇ Is the contact angle in a plane parallel to the horizontal plane.
  • the dropping member 62 can adjust the mass (or volume) m of the dropped droplet. If the mass (or volume) m is known, the dropping member 62 measures the contact angle ⁇ , Based on the contact angle ⁇ , the radius R can be derived geometrically. Furthermore, if the contact angle ⁇ is known, the radius r of the contact surface where the droplet contacts the surface of the substrate P (hereinafter referred to as “the landing radius !:” as appropriate) can also be derived geometrically. .
  • the height h of the droplet relative to the surface of the substrate P can be derived. That is, the radius R of the liquid LQ droplet on the surface of the substrate P is a value corresponding to the contact angle ⁇ of the liquid LQ, and by calculating the contact angle ⁇ of the liquid LQ, the radius R of the above equation (1) is obtained. It is possible to ask for.
  • the films (first film Rg, second film Tc) provided on the uppermost layer on the substrate P are in contact with the liquid LQ during the immersion exposure. Force that forms a liquid contact surface
  • the contact angle ⁇ and sliding angle oc described above vary depending on the type (physical properties) of the film.
  • the measuring device 60 measures the contact angle ⁇ and the sliding angle ⁇ , and obtains the adhesion force ⁇ for each substrate ⁇ .
  • the control device CONT starts a measuring operation using the measuring device 60.
  • measurement The apparatus 60 measures the static contact angle ⁇ of the liquid LQ on the surface of the substrate P (step S Al).
  • the measuring device 60 is configured so that the surface of the substrate P held by the holding member 61 is substantially parallel to the horizontal plane (XY plane).
  • the position (posture) of the holding member 61 is adjusted via the drive system 65.
  • the measuring device 60 drops the liquid LQ droplet from the dropping member 62 onto the surface of the substrate P that is substantially parallel to the horizontal plane.
  • the dropping member 62 can adjust the mass (or volume) m of the droplet to be dropped, and drops a droplet of mass m on the surface of the substrate P.
  • the measuring device 60 illuminates the droplet placed on the surface of the substrate P with the illumination device 64 and uses the observation device 63 to image the droplet. To get.
  • the observation device 63 outputs image information regarding the acquired image to the control device CONT. Based on the signal (image information) output from the observation device 63, the control device CONT displays a droplet image on the surface of the substrate P on the display device DY.
  • control device CONT performs arithmetic processing (image processing) on the signal output from the observation device 63, and obtains the contact angle ⁇ of the liquid LQ droplet on the surface of the substrate P based on the processing result.
  • the measurement is performed by the measuring device 60 including the static contact angle ⁇ force control device CONT of the liquid LQ on the surface of the substrate P.
  • the measuring device 60 including the control device CONT derives the radius R of the liquid LQ droplet on the substrate P (step SA2). As described above, since the dropping member 62 can adjust the mass m of the dropped droplet, and the radius R can be derived geometrically, the measuring device 60 including the control device CON T has a known value. Based on the mass m of the liquid droplet and the contact angle ⁇ which is the measurement result, the predetermined radius of the liquid LQ droplet R on the substrate P can be obtained by performing a predetermined calculation process.
  • the drip member 62 is described as being capable of adjusting the mass m of the dropped droplet.
  • the measuring device 60 measures the sliding angle oc of the liquid LQ on the surface of the substrate P (step SA3).
  • the measuring device 60 Shows the holding member 61 holding the substrate P in a state where a droplet of mass m is placed on the surface of the substrate P using the drive system 65 as shown by the arrow K1 in FIG. Rotate (tilt).
  • the holding member 61 rotates (tilts)
  • the surface of the substrate P also rotates (tilts).
  • the observation device 63 continues to observe the droplets disposed on the surface of the substrate P.
  • the substrate P is rotated, as indicated by an arrow K2 in FIG.
  • the observation device 63 can observe that the liquid droplet has started to slide, and outputs image information relating to the acquired image to the control device CONT. That is, the control device CONT can obtain the time point when the droplet on the surface of the substrate P starts to move (the time point when it starts to slide) based on the signal (image information) output from the observation device 63. Further, the control device CONT determines the angle (namely, the sliding angle) ⁇ of the surface of the substrate P when the droplet on the surface of the substrate P starts to move as the drive amount (tilt amount) of the holding member 61 by the drive system 65 It can be obtained more.
  • control device CONT slides the droplet of the liquid LQ on the surface of the substrate P based on the signal (image information) output from the observation device 63 and the driving amount of the holding member 61 by the driving system 65.
  • the angle ⁇ can be determined. In this way, the sliding angle ⁇ of the liquid LQ on the surface of the substrate is measured by the measuring device 60 including the control device CONT.
  • the state of the droplet is displayed on the display device DY, and the angle (that is, the sliding angle) ⁇ of the surface of the substrate P when the droplet on the surface of the substrate P starts moving is visually measured. Also good.
  • the measuring device 60 obtains an adhesion force ⁇ acting between the substrate ⁇ and the liquid LQ (step SA4). Since the above-described steps SA1 to SA3 determine the mass m of the liquid LQ droplet on the substrate P, the radius R of the liquid LQ droplet on the substrate P, and the sliding angle ⁇ . By substituting the value into the above equation (1), the adhesion force (adhesion energy) ⁇ acting between the surface of the substrate ⁇ and the liquid LQ can be obtained.
  • the adhesion force ⁇ is the liquid LQ on the surface of the substrate Q. This is a value determined according to the contact angle ⁇ of the liquid and the sliding angle a of the liquid LQ on the surface of the base plate ⁇ .
  • steps SA1 to SA3 the contact angle ⁇ and the sliding angle ⁇ are measured.
  • the contact angle ⁇ and sliding angle ⁇ were measured several times while changing the mass (or volume) m of the droplet, and the average values of the contact angle ⁇ and radius sliding angle ⁇ obtained by each measurement operation were calculated. It may be used to derive the adhesion force ⁇ .
  • the control device CONT determines the exposure conditions for exposing the substrate surface based on the measurement result of the measurement device 60 (step SA5). That is, the control device CONT determines the exposure conditions for exposing the substrate P in accordance with the adhesion force E acting between the surface of the substrate P and the liquid LQ derived in step SA4. As described above, the adhesion force E is determined according to the static contact angle ⁇ of the liquid LQ on the surface of the substrate P and the sliding angle ⁇ of the liquid LQ on the surface of the substrate P.
  • the exposure conditions for exposing the substrate ⁇ are determined.
  • the exposure condition includes at least one of a moving condition when moving the substrate and a liquid immersion condition when forming the liquid immersion region LR.
  • the movement conditions of the substrate ridge include at least a part of the movement speed, acceleration, deceleration, movement direction, and continuous movement distance in one direction of the substrate ridge.
  • the immersion condition is at least one of a supply condition when supplying the liquid LQ to form the immersion region LR and a recovery condition when recovering the liquid LQ forming the immersion region LR.
  • the supply condition includes the amount of liquid supplied from the supply port 12 to the optical path space K1 per unit time.
  • the recovery conditions include the amount of liquid recovered from the recovery port 22 per unit time.
  • the exposure conditions include not only during exposure in which each shot area on the substrate is irradiated with the exposure light EL, but also before and after exposure of each shot area.
  • the pressure of the liquid LQ changes according to the static contact angle ⁇ between the film on the surface of the substrate and the liquid LQ, and the projection caused by fluctuations in the projection optical system PL (final optical element LSI). If there is a possibility that the optical characteristics of the optical system PL may vary, the adjustment conditions of the projection optical system PL for compensating for the variation of the optical characteristics may be stored as exposure conditions in the storage device MRY.
  • the storage device MRY information on the optimum exposure condition corresponding to the adhesive force E is stored in advance.
  • the storage device MRY has an adhesion force E that acts between the liquid LQ and the film formed on the liquid contact surface that contacts the liquid LQ on the substrate P during immersion exposure, and the adhesion force.
  • the relationship with the optimum exposure condition corresponding to E is stored as multiple map data.
  • Information (map data) relating to the optimum exposure condition corresponding to the adhesion force E can be obtained in advance by experiments or simulations and stored in the storage device MRY.
  • the storage device MRY has information on the optimum moving speed of the substrate P corresponding to the adhesion force E as the optimum exposure condition corresponding to the adhesion force E. And information on the optimum liquid supply amount per unit time corresponding to the adhesion force E is stored.
  • Control device CONT determines an exposure condition for exposing substrate P based on the measurement result of measurement device 60 and the storage information of storage device MRY. That is, the control device CON T determines the optimum exposure condition corresponding to the adhesion force E stored in advance in the storage device MRY and the adhesion force E acting between the surface of the substrate P obtained in step SA4 and the liquid LQ. Based on the information (map data) related to the !, the optimum exposure condition for the substrate P to be exposed is selected and determined from the storage information (map data) of the storage device MRY.
  • control device CONT determines the moving speed of the substrate P and the liquid supply amount per unit time for the optical path space K1 by the liquid immersion mechanism 1 according to the adhesion force E.
  • control device CONT loads the substrate P, which has been measured by the measuring device 60, onto the substrate stage PST by using the transfer device H, and removes the substrate P from the liquid based on the exposure conditions determined in step SA5. Immersion exposure (step SA6).
  • control device CONT supplies the liquid per unit time to the optical path space K1 by the immersion mechanism 1 and the moving speed of the substrate P based on the exposure conditions determined in step SA5. Each shot area of the substrate P is exposed while adjusting the amount.
  • the moving speed of the substrate P includes the moving speed in the X-axis direction (stepping direction) as well as the moving speed in the Y-axis direction (scanning direction).
  • control device CONT controls the operation of the liquid immersion mechanism 1 based on the determined exposure condition, and adjusts the liquid supply amount per unit time to the optical path space K1. For example, when the adhesion force E acting between the surface of the substrate P to be exposed and the liquid LQ is small, bubbles may easily be generated in the liquid LQ. Therefore, when the adhesion force E is small, the controller CONT increases the amount of liquid supplied per unit time to the optical path space K1 in accordance with the adhesion force E, and the liquid deaerated from the supply port 12. A large amount of LQ should be supplied to the optical path space K1.
  • the substrate P can be exposed in a state where the optical path space K1 is filled with the desired liquid LQ.
  • the bubbles can be immediately retreated from the optical path space K1 by the liquid LQ supplied in large quantities.
  • the adhesive force E is large, the amount of liquid supplied per unit time to the optical path space K1 can be reduced, and the amount of liquid LQ to be used can be suppressed.
  • the exposure conditions for exposing the substrate P are determined according to the adhesive force E acting between the surface of the substrate P and the liquid LQ, different types of films are used. Liquid immersion exposure can be satisfactorily performed on each of the plurality of substrates P on which the is formed. Therefore, the versatility of the immersion exposure apparatus EX can be improved.
  • the movement conditions of the substrate P can include the acceleration / deceleration rate when moving the substrate P, the movement direction (movement locus) with respect to the optical path space K1, and the like.
  • the control device CONT determines the acceleration / deceleration and movement direction (movement trajectory) based on the adhesion force E, and controls the operation of the substrate stage PST based on the determined acceleration / deceleration and movement direction (movement trajectory).
  • the substrate P can be subjected to immersion exposure while being controlled.
  • the storage device MRY has information on the optimum acceleration corresponding to the adhesive force E, the movement direction (movement locus), etc.
  • the control device CONT can determine the optimum acceleration and movement direction (movement locus) when exposing the substrate P based on the adhesive force E and the storage information of the storage device MRY. .
  • the adhesion force E is large, if the acceleration of the substrate P is increased, it may be difficult to satisfactorily fill the optical path space K1 with the liquid LQ. Therefore, the acceleration of the substrate P is reduced.
  • the adhesive force E is small, the acceleration of the substrate P can be increased.
  • the above-described supply conditions may include the liquid supply position (distance) with respect to the optical path space K1, the supply direction, and the like. That is, the supply conditions can include the position, distance, number, and the like of the supply port 12 with respect to the optical path space K1.
  • the control device CONT can determine these supply conditions based on the adhesive force E, and can perform immersion exposure of the substrate P while controlling the operation of the liquid immersion mechanism 1 based on the determined supply conditions.
  • the storage device MRY stores in advance information on the optimal supply position (distance), supply direction, etc. corresponding to the adhesion force E, and the control device CONT stores the adhesion force E and the storage device MRY.
  • the optimum supply condition for exposing the substrate P can be determined.
  • the control device CONT adjusts the supply conditions when supplying the liquid LQ according to the adhesive force E, so that the liquid LQ can be supplied satisfactorily and the immersion region LR in a desired state can be formed.
  • the liquid immersion conditions include the recovery conditions for recovering the liquid LQ in the optical path space K1.
  • the recovery conditions include not only the amount of liquid recovered per unit time from the optical path space K1, but also the liquid recovery position (distance) with respect to the optical path space K1, the recovery direction, and the like. That is, the recovery conditions can include the recovery force (suction force) of the liquid recovery device 21, the position, distance, number, etc. of the recovery port 22 with respect to the optical path space K1.
  • the control device CONT determines the recovery conditions based on the adhesive force E, and controls the operation of the liquid immersion mechanism 1 based on the determined recovery conditions while performing immersion exposure on the substrate P. it can.
  • the storage device MRY stores in advance information on the optimal liquid recovery amount per unit time corresponding to the adhesive force E, the recovery position (distance), the recovery direction, and the like. Can determine the optimum recovery conditions for exposing the substrate P based on the adhesive force E and the storage information of the storage device MRY.
  • the controller CONT adjusts the recovery conditions when recovering the liquid LQ according to the adhesive force E As a result, the liquid LQ can be recovered satisfactorily and the immersion region LR in a desired state can be formed.
  • the conditions stored in the storage device MRY are optimized for the conditions for moving the substrate P and the liquid immersion conditions.
  • the liquid supply amount per unit time is increased, and the liquid LQ is recovered with a liquid recovery amount corresponding to the liquid supply amount. Is well filled with liquid LQ.
  • the moving speed of the substrate P is relatively low, the liquid supply amount per unit time can be reduced.
  • the single measurement device 60 measures the static contact angle ⁇ of the liquid LQ on the surface of the substrate P and the sliding angle ⁇ of the liquid LQ on the surface of the substrate P.
  • the first measurement device that measures the static contact angle ⁇ of the liquid LQ on the surface of the substrate ⁇ and the second measurement device that measures the sliding angle ⁇ of the liquid LQ on the surface of the substrate ⁇ may be provided separately.
  • the measuring device 60 is installed on the transport path of the transport device ⁇ , but the installation position of the measurement device 60 is a position other than the transport route of the transport device ⁇ . But you can.
  • the measurement is performed by the measuring device 60 for each substrate ridge, and the film formed on the surface is the same as the previously measured substrate ridge.
  • the measurement by the measuring device 60 may be omitted.
  • the measuring device 60 may be used to measure only the first substrate in a lot consisting of a plurality of substrates.
  • the exposure condition for the substrate substrate after the measurement is determined based on the measurement result of the measurement device 60. Different exposure conditions may be set for each shot area on the substrate.
  • the adhesion force ⁇ of the substrate ⁇ to the liquid LQ is obtained, and exposure is performed when the substrate ⁇ is exposed according to the adhesion force ⁇ .
  • Forces that determine the conditions Liquid LQ type for example, fluorinated oil
  • the adhesive force E may be set to a desired value by changing the physical properties. Further, the exposure conditions may be determined according to the adhesion force E.
  • the physical properties of the liquid (pure water) LQ may be changed by adding a predetermined material (additive) to the liquid (pure water) LQ.
  • a liquid LQ droplet is disposed on the surface of the substrate P that is actually exposed to manufacture a device, and the droplet is obtained when the substrate P is tilted.
  • a droplet is placed on an object (for example, a test substrate) having a surface substantially similar to the surface of the substrate P to be actually exposed. Even if you measure the state of the droplet when the surface of the object is tilted.
  • the exposure conditions for exposing the substrate P are determined (adjusted) according to the adhesive force E between the substrate P to be exposed and the liquid (pure water) LQ.
  • the memory device MRY stores an index value (allowable value) for determining whether or not the adhesion force E is appropriate for the immersion exposure process, and the immersion exposure process is performed according to the index value.
  • the adhesion force E is appropriate. This index value can be obtained in advance by, for example, experiments or simulations. Based on the above determination result, the substrate P having an inappropriate film can be prevented from being exposed. For example, when the adhesion force E to the liquid (pure water) LQ of the substrate P transported to the measurement device 60 by the transport device H is measured, and the measured adhesion force E falls outside the predetermined allowable range, Do not load substrate P onto substrate stage PST. This eliminates the need to expose the substrate P having a film inappropriate for the immersion exposure process, prevents the liquid LQ from leaking out, and contributes to the improvement in the operating rate of the exposure apparatus EX. .
  • the type (physical properties) of the liquid LQ may be changed so that the adhesion force E acting between the surface of the substrate P and the liquid LQ falls within an allowable range.
  • the adhesion force E acting between the surface of the substrate P and the liquid LQ may be allowed.
  • the static contact angle ⁇ of the liquid LQ on the surface of the substrate P and the sliding angle ⁇ of the liquid LQ on the surface of the substrate P are measured by the measuring device 60 in the exposure apparatus EX. Measured force Exposure device Without the measurement device 60 in the cage, the static contact angle ⁇ and sliding angle ⁇ can be measured by a device separate from the exposure device ⁇ .
  • information on the static contact angle ⁇ of the liquid LQ on the surface of the substrate ⁇ and the sliding angle ⁇ of the liquid LQ on the surface of the substrate ⁇ Is input to the control device CONT via the input device ⁇ .
  • the control device CONT determines the exposure conditions for exposing the substrate surface based on the information on the contact angle ⁇ and the information on the sliding angle ⁇ input from the input device INP. That is, the control device CONT derives the adhesion force ⁇ based on the information on the contact angle ⁇ and the information on the sliding angle ⁇ input from the input device ⁇ , and the derived adhesion force.
  • the optimum exposure condition for the substrate ⁇ ⁇ ⁇ to be exposed is determined based on the ⁇ and information (map data) relating to the optimum exposure condition corresponding to the adhesive force ⁇ stored in advance in the storage device MRY.
  • the data input to the input device ⁇ may be an adhesion force ⁇ calculated based on the measured static contact angle ⁇ and sliding angle ⁇ .
  • physical property value data static contact angle ⁇ and sliding angle ⁇ , or adhesion force ⁇ ⁇ ⁇
  • adhesion force ⁇ ⁇ ⁇ may be used without performing measurement.
  • the relationship between the adhesive force (static contact angle and sliding angle) and the optimum exposure condition is stored in the storage device MRY.
  • the function determined based on the result of the process may be stored in the storage device MRY, and the optimum exposure condition for the adhesion force ⁇ may be obtained using that function.
  • the adhesion force E is derived based on the static contact angle ⁇ of the liquid LQ on the surface of the substrate P and the sliding angle oc of the liquid LQ on the surface of the substrate P.
  • the exposure conditions for exposing the substrate P are determined according to the adhesion force E.
  • the characteristic part of the present embodiment is that the exposure conditions for exposing the substrate P are expressed by the formula ( ⁇ — t X ⁇ ).
  • control device CONT has a value U defined by the following equation (2):
  • the exposure conditions for exposing the substrate P are determined based on (2).
  • the present inventor has set exposure conditions that can maintain the immersion region LR on the substrate surface in a desired state (substrate P movement conditions, immersion conditions, etc.). ) was found to change. That is, when the optical path space K1 between the final optical element LS I of the exposure apparatus EX and the film of the substrate P is filled with the liquid LQ and the liquid immersion area LR of the liquid LQ is formed on the substrate P, the liquid immersion area LR It has been found that the exposure conditions that can maintain the desired state change according to the value U corresponding to the film of the substrate P and the liquid LQ. Therefore, by setting optimal exposure conditions according to the value U, the substrate P can be exposed without causing problems such as outflow of liquid LQ and generation of bubbles in liquid LQ.
  • the above-described exposure conditions include the movement conditions of the substrate P. That is, the substrate P (film) in a state where the optical path space K1 between the final optical element LS 1 of the exposure apparatus EX and the film of the substrate P is filled with the liquid LQ and the liquid LQ immersion region LR is formed on the film.
  • the maximum speed at which the immersion region LR can be maintained in a desired state when moving (hereinafter referred to as allowable speed) varies depending on the value U corresponding to the film on the substrate P and the liquid LQ. To do. Therefore, if the substrate P is moved at an allowable speed corresponding to the value U or less, the substrate P can be exposed while suppressing the occurrence of problems such as outflow of liquid LQ and generation of bubbles in the liquid LQ. .
  • control device CONT transfers the substrate P based on the value U described above.
  • the moving conditions (moving speed of the substrate P) when moving are determined.
  • Fig. 7 shows an example of the results of experiments conducted to derive the relationship between the value U and the permissible speed.
  • the type of film provided on the uppermost layer on the substrate P (the surface of the substrate P) was changed, and the liquid LQ static contact angle ⁇ and the sliding angle ⁇ of the liquid LQ in each of these multiple types of films
  • the value U for each film and the permissible speed of the substrate P for each film were determined.
  • the allowable speed of the substrate P shown in the experimental example of FIG. 7 is that the optical path space K1 is filled with the liquid LQ and the liquid LQ does not flow out (leaves the liquid LQ droplet and film on the substrate P). This is the speed at which the substrate P can be moved.
  • 26 types of films were prepared, and data for each of the plurality of films was acquired.
  • the measurement device 60 can measure the static contact angle ⁇ of the liquid LQ on the surface of the substrate P and the sliding angle ⁇ of the liquid LQ on the surface of the substrate P.
  • a predetermined amount for example, 50 microliters
  • the measuring device 60 uses the measuring device 60 to calculate the static contact angle ⁇ and sliding angle ⁇ of the liquid LQ on each membrane.
  • the predetermined constant t is a value determined according to, for example, the structure and capability (liquid supply capability, liquid recovery capability, etc.) of the nozzle member 70, and can be derived by experiment or simulation.
  • the controller CONT uses the measuring device 60 before exposing the substrate P, and the static contact angle of the liquid LQ on the surface (film) of the substrate P ⁇ Measure.
  • the storage device MRY stores a function (for example, a function corresponding to the approximate curve in FIG. 8) for deriving an allowable speed of the substrate ⁇ ⁇ corresponding to the value U using the value U as a parameter. .
  • a function for example, a function corresponding to the approximate curve in FIG. 8
  • information on the allowable speed of the substrate ridge corresponding to this value U can be obtained in advance by experiments or simulations and stored in the storage device MRY.
  • the control device CONT determines an exposure condition (moving speed of the substrate P) for exposing the substrate P based on the measurement result of the measuring device 60 and the stored information of the storage device MRY. In other words, the control device CONT determines that the obtained value U (information on the static contact angle ⁇ and sliding angle ⁇ ) and the tolerance of the substrate ⁇ ⁇ corresponding to the value U stored in the storage device MRY in advance. Based on the information on the speed, the moving speed of the substrate ⁇ to be exposed is determined so as not to exceed the allowable speed.
  • the control device CONT performs the immersion exposure of the substrate P based on the determined exposure condition (movement speed of the substrate P)! For example, if the value U corresponding to the surface of the substrate P to be exposed and the liquid LQ is small, increasing the moving speed of the substrate P makes it difficult to satisfactorily fill the optical path space K1 with the liquid LQ. Since there is a possibility, the control device CONT slows down the movement speed of the substrate P according to the value U. Thus, the substrate P can be exposed in a state where the optical path space K1 is well filled with the liquid LQ. On the other hand, when the value U is large, the moving speed of the substrate P can be increased and the throughput can be improved.
  • the moving speed of the substrate P is set to an allowable speed corresponding to the value U.
  • the movement speed of the substrate P is determined by the movement speed (stepping speed) during the stepping performed between shots, which is just the movement speed (scanning speed) during exposure in which the exposure light EL is irradiated onto the substrate P. ) Is also included.
  • the acceleration, deceleration, movement direction (movement locus) of the force substrate P that determines the moving speed of the substrate P based on the value U, and continuous in one direction. At least part of the correct travel distance. That is, the relationship between at least a part of the maximum acceleration, maximum deceleration, and maximum movement distance that can maintain the immersion region LR in a desired state on the substrate P and the value U is obtained in advance. And the value U corresponding to the liquid LQ, at least part of the acceleration, deceleration, and travel distance may be determined so that the permissible value U force is not exceeded. If the value U is small, the immersion area LR may not be maintained in the desired state depending on the movement direction of the substrate P. Therefore, depending on the value U, the movement direction of the substrate P may be limited, The speed when moving in the specified direction may be zJ less than the speed when moving in other directions.
  • the supply condition when supplying the liquid LQ to form the immersion region LR and the recovery condition when recovering the liquid LQ forming the immersion region LR It is possible to determine the immersion conditions when forming the immersion region LR including. For example, if the relationship between the maximum liquid supply amount that can maintain the immersion area LR in the desired state on the substrate P and the value U is obtained in advance, the liquid LQ should not exceed the allowable value obtained from the value U. The amount of supply may be determined.
  • a film in which the substrate P has the allowable range value U with respect to the liquid (pure water) LQ is formed. It may be determined whether or not the substrate P has a film suitable for the immersion exposure process.
  • the static contact angle ⁇ of the liquid LQ on the surface of the substrate P is set as follows.
  • a first measuring device for measuring and a second measuring device for measuring the sliding angle ⁇ of the liquid LQ on the surface of the substrate P may be provided separately.
  • liquid LQ droplets are arranged on the surface of the substrate ridge that is actually exposed to manufacture the device, and the droplets are obtained when the substrate ridge is tilted.
  • a droplet is placed on an object (for example, a test substrate) having a surface substantially the same as the surface of the substrate to be actually exposed. Even if you measure the state of the droplet when the surface of the object is tilted.
  • the static contact angle ⁇ and the sliding angle ⁇ can be measured by an apparatus different from the exposure apparatus ⁇ without mounting the measurement device 60 in the exposure apparatus ⁇ . Then, in order to determine the exposure condition when exposing the substrate ⁇ , information on the static contact angle ⁇ of the liquid LQ on the surface of the substrate ⁇ and information on the sliding angle ⁇ of the liquid LQ on the surface of the substrate ⁇ Input to control device CONT via force input device ⁇ . The control device CONT determines the exposure conditions for exposing the substrate surface based on the information on the contact angle ⁇ and the information on the sliding angle ⁇ input from the input device INP.
  • the control device CONT derives the value U based on the information on the contact angle ⁇ and the information on the sliding angle ⁇ input from the input device I NP, as in the above-described embodiment, and the derived value U and
  • the optimum exposure condition for the substrate ⁇ ⁇ to be exposed is determined based on the information stored in advance in the storage device MRY and the information for deriving the condition for maintaining the immersion area LR in the desired state from the value U. .
  • the optimum exposure condition may be determined by inputting the value U from the input device I.
  • the characteristic part of this embodiment is that the exposure condition for exposing the substrate ⁇ is determined based on the receding contact angle of the liquid LQ on the surface of the substrate ⁇ ⁇ when the surface of the substrate ⁇ is inclined. It is in.
  • control device CONT performs the exposure for exposing the substrate P based on the receding contact angle ⁇ of the liquid LQ on the surface of the substrate P when the surface of the substrate P is inclined.
  • the receding contact angle ⁇ will be described with reference to the schematic diagram of FIG. Receding contact angle ⁇ and
  • the liquid LQ droplet is attached to the surface of the object (here, the surface of the substrate P) and the surface of the object is inclined with respect to the horizontal plane, it adheres to the surface of the object.
  • the receding contact angle ⁇ is the thing with liquid LQ droplets attached
  • the present inventor also responds to the receding contact angle ⁇ of the liquid LQ on the surface of the substrate ⁇ .
  • the exposure conditions (such as the movement conditions of the substrate and the immersion conditions) that can maintain the immersion area LR in the desired state change. That is, when the present optical element LS 1 of the exposure apparatus ⁇ and the film on the substrate ⁇ ⁇ are filled with the liquid LQ to form the liquid LQ immersion region LR on the substrate ⁇ , It has been found that the exposure conditions that can maintain the region LR in a desired state change according to the receding contact angle ⁇ corresponding to the film on the substrate and the liquid LQ. Therefore,
  • the exposure conditions include the moving speed of the substrate surface. That is, when the space between the final optical element LSI of the exposure apparatus ⁇ and the substrate ⁇ film is filled with liquid LQ, and the liquid LQ immersion area LR is formed on the substrate P, the immersion area LR is in the desired state.
  • the maximum speed (allowable speed) that can be maintained at a temperature varies depending on the receding contact angle ⁇ corresponding to the film of the substrate P and the liquid LQ. Shi
  • the substrate P can be exposed while suppressing problems such as the outflow of Q and the generation of bubbles in the liquid LQ.
  • the receding contact angle 0 can be measured using the measuring device 60 described above.
  • substrate P On the surface of substrate P
  • the drive sys- tem is such that the surface of the substrate P held in 1 is almost parallel to the horizontal plane (XY plane).
  • the position (posture) of the holding member 61 is adjusted via the system 65.
  • the measuring device 60 drops the liquid LQ droplet from the dropping member 62 onto the surface of the substrate P which is substantially parallel to the horizontal plane. Similar to the procedure described with reference to FIG. 4, the measuring device 60 uses the drive system 65 to attach the holding member 61 holding the substrate P to the ⁇ while the droplet is placed on the surface of the substrate P.
  • the measuring device 60 illuminates the droplets arranged on the surface of the substrate P with the illumination device 64 and acquires an image of the droplets using the observation device 63.
  • the observation device 63 can observe that the liquid droplet has started to slide, and outputs image information regarding the acquired image to the control device CONT. Based on the signal (image information) output from the observation device 63, the control device CONT can obtain the time point when the droplet on the surface of the substrate P starts moving (the time point when it starts to slide).
  • control device CONT performs arithmetic processing (image processing) on the signal output from the observation device 63, and obtains the backward contact angle ⁇ of the liquid LQ droplet on the surface of the substrate P based on the processing result. be able to.
  • image processing image processing
  • the control device CONT determines the angle (that is, the sliding angle) ⁇ of the surface of the substrate P at the time when the droplet on the surface of the substrate P starts to move, by the drive amount of the holding member 61 ( (Inclination amount). That is, the control device CONT slides the droplet of the liquid LQ on the surface of the substrate P based on the signal (image information) output from the observation device 63 and the drive amount of the holding member 61 by the drive system 65. You can ask for horns. Thus, the sliding angle oc force of the liquid LQ on the surface of the substrate P is measured by the measuring device 60 including the control device CONT.
  • control device CONT can display an image of the droplet on the surface of the substrate P on the display device DY based on the signal (image information) output from the observation device 63. Therefore, the state of the droplet is displayed on the display device DY, and the receding contact angle ⁇ of the liquid LQ on the surface of the substrate P when the droplet on the surface of the substrate P starts moving is visually measured. Also,
  • Figure 10 shows the results of experiments conducted to derive the relationship between the receding contact angle ⁇ and the allowable speed.
  • the permissible speed of the substrate P for each film was determined.
  • the permissible speed of the substrate P shown in the experimental example of FIG. 10 means that the liquid LQ does not flow out while the optical path space K1 is filled with the liquid LQ (drops and films of the liquid LQ are placed on the substrate P). This is the speed at which the board P can be moved without leaving).
  • 24 types of films were prepared, and data for each of the plurality of films was acquired.
  • the measuring device 60 calculates the receding contact angle 0 of the liquid LQ on the surface of the substrate P.
  • FIG. 11 is a graph showing the relationship between the receding contact angle 0 and the allowable speed, that is, the experimental results of FIG.
  • the substrate P can be exposed while moving the substrate P at a high speed in a state where the space between the final optical element LSI and the substrate P (film) is filled with the liquid LQ.
  • the controller CONT measures the receding contact angle ⁇ of the liquid LQ on the surface (film) of the substrate P using the measuring device 60 before the substrate P is exposed. To do.
  • the control device CONT then measures the measurement device 60.
  • the exposure conditions for exposing the substrate P are determined.
  • control device CONT determines a moving condition (moving speed of the substrate P) when moving the substrate P as one of the exposure conditions.
  • the storage device MRY has an allowable substrate P corresponding to the receding contact angle ⁇ of the liquid LQ.
  • Information (function, map data, etc.) for deriving the speed is stored in advance.
  • the storage device MRY uses the receding contact angle ⁇ of the liquid LQ as a parameter, and then
  • a function for deriving the allowable speed of substrate P corresponding to the receding contact angle ⁇ (for example,
  • Information on the allowable speed of the substrate P corresponding to R can be obtained in advance by experiments or simulations, and is stored in the storage device MRY.
  • the control device CONT determines an exposure condition (moving speed of the substrate P) when exposing the substrate P based on the measurement result of the measuring device 60 and the stored information of the storage device MRY. In other words, the control device CONT predicts the receding contact angle ⁇ of the obtained liquid LQ and the storage device MRY.
  • the optimum moving speed of the substrate P to be exposed is determined so as not to exceed the allowable speed.
  • control device CONT performs immersion exposure on the substrate P based on the determined exposure condition (moving speed of the substrate P)! For example, liquid LQ receding contact angle ⁇
  • the controller CONT will adjust the receding contact angle ⁇ of the liquid LQ.
  • the moving speed of the substrate P corresponds to the receding contact angle ⁇ .
  • the moving speed of the substrate P is determined by the moving speed (stepping speed) during the stepping performed between shots, which is only the moving speed (scanning speed) during exposure in which the exposure light EL is irradiated on the substrate P. ) Is also included.
  • the exposure conditions for exposing the substrate P are determined, it is possible to satisfactorily perform immersion exposure on each of the plurality of substrates P on which different types of films are formed. did As a result, the versatility of the immersion exposure apparatus EX can be improved.
  • the moving speed of the substrate P is based on the receding contact angle ⁇ of the liquid LQ.
  • At least a part of the degree, the deceleration, and the moving distance may be determined.
  • the immersion area LR may not be maintained in the desired state depending on the movement direction of the substrate P. Therefore, depending on the receding contact angle ⁇ , the movement direction of the substrate P may be limited, P
  • the immersion conditions for forming the immersion region LR can be determined, including the supply conditions and the recovery conditions for recovering the liquid LQ that forms the immersion region LR. For example, the relationship between the maximum liquid supply amount that can maintain the immersion region LR in the desired state on the substrate P and the receding contact angle ⁇ .
  • an allowable range of the receding contact angle ⁇ of the liquid LQ is set
  • liquid LQ droplets are arranged on the surface of the substrate P that is actually exposed to manufacture a device, and the substrate P is tilted.
  • a droplet is placed on an object (for example, a test substrate) having a surface substantially similar to the surface of the substrate P to be actually exposed. Even if you measure the state of the droplet when the surface of the object is tilted.
  • the receding contact angle ⁇ of the liquid LQ on the surface of the substrate P is measured by a device different from the exposure device EX without mounting the measurement device 60 in the exposure device EX.
  • control device CONT determines the exposure condition for exposing the substrate P based on the information of the backward contact angle ⁇ input from the input device INP. sand
  • control device CONT has information of the receding contact angle ⁇ input from the input device INP,
  • the liquid immersion area LR is in the desired state from the receding contact angle ⁇ stored in advance in the storage device MRY.
  • the optimum exposure condition for the substrate P to be exposed is determined based on the information for deriving the condition that can be maintained in step (b).
  • the storage information of the storage device MRY may be updated as needed. For example, when exposing a substrate P having a different type of film that is not stored in the memory MRY, an experiment or simulation is performed on the new film to obtain an adhesion force (static contact angle and sliding angle). The corresponding exposure conditions are obtained, and the stored information stored in the storage device MRY may be updated. Similarly, an experiment or simulation may be performed on a new film to obtain an exposure condition corresponding to the receding contact angle, and the stored information stored in the storage device MRY may be updated. The stored information can be updated from a remote location with respect to the exposure apparatus EX (storage apparatus MRY) via a communication apparatus including the Internet, for example.
  • EX storage apparatus MRY
  • the control device CONT determines the light amount (intensity) of the exposure light EL, the pulse oscillation period of the laser light, and the width in the scanning direction of the projection area AR irradiated with the exposure light EL based on the determined movement condition of the substrate P.
  • the dose amount for each shot area on the substrate P is optimized by adjusting at least one of the above.
  • the adhesion force E of the film on the substrate P surface, the static contact angle ⁇ , the sliding angle ⁇ , the receding contact angle ⁇ are the exposure light EL irradiation, the contact time with the liquid LQ, the film on the substrate ⁇ surface
  • the exposure conditions such as the movement condition of the substrate and the immersion condition in consideration of at least one.
  • the adhesion force ⁇ (static contact angle ⁇ and sliding angle)
  • the exposure condition may be determined in consideration.
  • the adhesion force E (static contact angle ⁇ and sliding angle)
  • the exposure conditions are determined, but the sliding state at the interface between the film formed on the surface of the substrate P and the liquid (for example, a liquid immersion region is formed on the substrate P).
  • the exposure condition is determined based on the relative speed of the film and liquid at the interface between the film and liquid that occurs when the substrate P is moved at a predetermined speed almost parallel to the surface of the substrate P.
  • the movement condition and immersion condition of the substrate P are determined according to the film on the surface of the substrate P.
  • the movement conditions of the substrate stage PST and the immersion conditions on the substrate stage PST are determined according to the film on the object surface. desirable.
  • the liquid LQ in the present embodiment is pure water.
  • Pure water has the advantage that it can be easily obtained in large quantities at semiconductor manufacturing factories and the like, and has no adverse effect on the photoresist on the substrate P and / or optical elements (lenses).
  • pure water has no harmful effect on the environment and has an extremely low impurity content, so that it cleans the surface of the substrate P and the surface of the optical element provided on the front end surface of the projection optical system PL. Can also be expected.
  • the refractive index n of pure water (water) for exposure light EL with a wavelength of about 193 nm is approximately 1.4.
  • ArF excimer laser light wavelength 193 nm
  • lZn on the substrate P that is, about 134 nm
  • high resolution can be obtained.
  • the depth of focus is expanded to about n times, or about 1.44 times that in air, so if it is sufficient to ensure the same depth of focus as in air, the projection optical system
  • the numerical aperture of the PL can be further increased, and the resolution is also improved in this respect.
  • an optical element LSI is attached to the tip of the projection optical system PL, and the optical characteristics of the projection optical system PL, such as aberration (spherical aberration, coma aberration, etc.) are adjusted by this optical element. It can be carried out.
  • the optical element attached to the tip of the projection optical system PL may be an optical plate used for adjusting the optical characteristics of the projection optical system PL. Alternatively, it may be a plane parallel plate that can transmit the exposure light EL.
  • the space between the projection optical system PL and the surface of the substrate P is filled with the liquid LQ.
  • a cover glass having parallel plane plate force is attached to the surface of the substrate P. It may be configured to fill liquid LQ in a wet state.
  • the optical path space on the image plane side of the optical element at the tip is filled with liquid, but as disclosed in International Publication No. 2004Z019128, It is possible to adopt a projection optical system that fills the optical path space on the object plane side of the optical element with liquid.
  • the liquid LQ of the present embodiment may be a force that is water as described above.
  • the light source of the exposure light EL is an F laser
  • the F laser light is water.
  • PFPE! / which may be a fluorinated fluid such as fluorinated oil.
  • the portion that comes into contact with the liquid LQ is lyophilicized by, for example, forming a thin film with a substance having a small polarity and molecular structure including fluorine.
  • the liquid LQ there are other projection optical systems PL and Z or Z that are transmissive to the exposure light EL and have a refractive index as high as possible. It is also possible to use a material that is stable to the photoresist applied to the surface of the substrate P (for example, cedar oil).
  • the liquid LQ may have a refractive index of about 1.6 to 1.8.
  • the optical element LSI may be formed of a material having a refractive index higher than that of quartz and fluorite (eg, 1.6 or more).
  • the substrate P in each of the above embodiments is used not only for semiconductor wafers for manufacturing semiconductor devices but also for glass substrates for display devices, ceramic wafers for thin film magnetic heads, or exposure apparatuses. Mask or reticle master (synthetic quartz, silicon wafer), etc. are applied.
  • an exposure apparatus EX in addition to a step-and-scan type scanning exposure apparatus (scanning stepper) that performs mask exposure by scanning the mask M and the substrate P in synchronization with each other, a mask is used.
  • the present invention can also be applied to a step-and-repeat projection exposure apparatus (steno) in which the pattern of the mask M is collectively exposed while the M and the substrate P are stationary, and the substrate P is sequentially moved stepwise.
  • a reduced image of the first pattern is projected in a state where the first pattern and the substrate P are almost stationary (for example, a refractive type that does not include a reflective element at a 1Z8 reduction magnification). It can also be applied to an exposure apparatus that uses a projection optical system) to perform batch exposure on the substrate P. In this case, after that, with the second pattern and the substrate P almost stationary, a reduced image of the second pattern is collectively exposed on the substrate P by partially overlapping the first pattern using the projection optical system. It can also be applied to a stitch type batch exposure apparatus. In addition, the stitch type exposure apparatus can also be applied to a step 'and' stitch type exposure apparatus in which at least two patterns are partially overlapped and transferred on the substrate P, and the substrate P is sequentially moved.
  • the present invention provides a shine stage having a plurality of substrate stages as disclosed in Japanese Patent Laid-Open Nos. 10-163099, 10-214783, 2000-505958, etc. It can also be applied to a type exposure apparatus.
  • a substrate stage for holding a substrate, a reference member on which a reference mark is formed, and various photoelectric sensors are provided.
  • the present invention is also applied to an exposure apparatus equipped with a mounted measurement stage. It can be done.
  • an exposure apparatus that locally fills the liquid between the projection optical system PL and the substrate P is employed.
  • the present invention is disclosed in JP-A-6-124873, Liquid immersion in which exposure is performed with the entire surface of the substrate to be exposed immersed in the liquid as disclosed in JP-A-10-303114 and US Pat. No. 5,825,043. It is also applicable to exposure equipment.
  • the type of the exposure apparatus EX is not limited to an exposure apparatus for manufacturing a semiconductor element that exposes a semiconductor element pattern onto a substrate P.
  • An exposure apparatus for manufacturing a liquid crystal display element or a display, a thin film magnetic head, an imaging It can be widely applied to an exposure apparatus for manufacturing a device (CCD) or a reticle or mask.
  • force using a light-transmitting mask in which a predetermined light-shielding pattern (or phase pattern 'dimming pattern) is formed on a light-transmitting substrate is used instead of this mask.
  • a predetermined light-shielding pattern or phase pattern 'dimming pattern
  • an electronic mask that forms a transmission pattern, a reflection pattern, or a light emission pattern based on the electronic data of the pattern to be exposed may be used. Oh ,.
  • an exposure apparatus (lithography system) that exposes a line 'and' space pattern on the substrate P by forming interference fringes on the substrate P. ) Can also be applied to the present invention.
  • the exposure apparatus EX of the present embodiment assembles various subsystems including the respective constituent elements recited in the claims of the present application so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy. It is manufactured by. In order to ensure these various accuracies, before and after this assembly, various optical systems are adjusted to achieve optical accuracy, various mechanical systems are adjusted to achieve mechanical accuracy, For electrical systems, adjustments are made to achieve electrical accuracy.
  • Various subsystem powers The assembly process to the exposure equipment includes mechanical connections, electrical circuit wiring connections, and pneumatic circuit piping connections between the various subsystems. Needless to say, there is an assembly process for each subsystem prior to the assembly process to the exposure apparatus. After the assembly process of the various subsystems to the exposure equipment is completed, comprehensive adjustments are made and the exposure equipment Various accuracy as a body is secured. It is desirable to manufacture the exposure apparatus in a clean room where the temperature and cleanliness are controlled.
  • a microdevice such as a semiconductor device is composed of a step 201 for designing the function and performance of the microdevice, a step 202 for producing a mask (reticle) based on the design step, and a substrate of the device.
  • Step 203 for manufacturing a substrate Step 204 including processing for exposing the mask pattern onto the substrate by the exposure apparatus EX of the above-described embodiment, Device assembly step (including dicing process, bonding process, and packaging process) 205, inspection Manufactured through step 206 and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

 露光方法は、基板(P)上に液体(LQ)の液浸領域(LR)を形成する工程と、基板(P)の表面と液体(LQ)との間に作用する付着力に応じて露光条件を決定する工程と、露光条件に基づいて液浸領域(LR)の液体(LQ)を介して基板(P)を露光する工程と、を有する。

Description

明 細 書
露光方法、露光装置、デバイス製造方法、及び膜の評価方法
技術分野
[0001] 本発明は、液体を介して基板を露光する露光方法、露光装置、デバイス製造方法
、及び膜の評価方法に関するものである。
本願は、 2005年 4月 27曰に出願された特願 2005— 129517号、及び 2005年 7 月 21日に出願された特願 2005— 211319号に基づき優先権を主張し、その内容を ここに援用する。
背景技術
[0002] 半導体デバイス、液晶表示デバイス等のマイクロデバイスの製造工程の一つである フォトリソグラフイエ程では、マスク上に形成されたパターンを感光性の基板上に投影 露光する露光装置が用いられる。この露光装置は、マスクを保持するマスクステージ と基板を保持する基板ステージとを有し、マスクステージ及び基板ステージを逐次移 動しながらマスクのパターンを投影光学系を介して基板に投影露光するものである。 マイクロデバイスの製造においては、デバイスの高密度化のために、基板上に形成さ れるパターンの微細化が要求されている。この要求に応えるために露光装置の更な る高解像度化が望まれており、その高解像度化を実現するための手段の一つとして 、下記特許文献 1に開示されているような、基板上に液体の液浸領域を形成し、この 液浸領域の液体を介して基板を露光する液浸露光装置が案出されている。
特許文献 1:国際公開第 99Z49504号パンフレット
発明の開示
発明が解決しょうとする課題
[0003] ところで、露光対象である基板の表面に設けられるフォトレジスト膜、あるいはその 上層に設けられるトップコート膜などには種々の材料が用いられることが通常である 力 液浸領域の液体との接触面となる膜の種類が変更された場合、膜の種類によつ ては、露光光の光路上の液体を所望状態に維持できなくなる可能性がある。この場 合、液浸露光装置の汎用性が著しく低下すると 、つた問題が生じる。 [0004] 本発明はこのような事情に鑑みてなされたものであって、異なる種類の膜が設けら れた基板のそれぞれに対して液浸露光を良好に行うことができる露光方法、露光装 置、及びデバイス製造方法を提供することを目的とする。
課題を解決するための手段
[0005] 上記の課題を解決するため、本発明は実施の形態に示す各図に対応付けした以 下の構成を採用している。但し、各要素に付した括弧付き符号はその要素の例示に 過ぎず、各要素を限定するものではない。
[0006] 本発明の第 1の態様に従えば、基板 (P)上に液体 (LQ)の液浸領域 (LR)を形成し 、液浸領域 (LR)の液体 (LQ)を介して基板 (P)上に露光光 (EL)を照射して基板 (P )を露光する露光方法にお!、て、基板 (P)表面と液体 (LQ)との間に作用する付着力 に応じて、基板 (P)を露光するときの露光条件を決定する露光方法が提供される。
[0007] 本発明の第 1の態様によれば、基板表面と液体との間に作用する付着力に応じて、 基板を露光するときの露光条件を決定するので、表面の膜の種類にかかわらず基板 に対して液浸露光を良好に行うことができる。
[0008] 本発明の第 2の態様に従えば、基板 (P)上に液体 (LQ)の液浸領域 (LR)を形成し 、液浸領域 (LR)の液体 (LQ)を介して基板 (P)上に露光光 (EL)を照射して基板 (P )を露光する露光方法にぉ 、て、基板 (P)表面における液体 (LQ)の静的な接触角 と、基板 (P)表面における液体 (LQ)の滑落角とに基づいて、基板 (P)を露光すると きの露光条件を決定する露光方法が提供される。
[0009] 本発明の第 2の態様によれば、基板表面における液体の静的な接触角と滑落角と に基づいて、基板を露光するときの露光条件を決定するので、表面の膜の種類にか かわらず基板に対して液浸露光を良好に行うことができる。
[0010] 本発明の第 3の態様に従えば、基板 (P)上に液体 (LQ)の液浸領域 (LR)を形成し 、液浸領域 (LR)の液体 (LQ)を介して基板 (P)上に露光光 (EL)を照射して基板 (P )を露光する露光方法にお!ヽて、基板 (P)表面を傾斜させたときの基板 (P)表面にお ける液体 (LQ)の後退接触角に基づ!/ヽて、基板 (P)を露光するときの露光条件を決 定する露光方法が提供される。
[0011] 本発明の第 3の態様によれば、基板表面を傾斜させたときの基板表面における液 体の後退接触角に基づいて、基板を露光するときの露光条件を決定するので、表面 の膜の種類にかかわらず基板に対して液浸露光を良好に行うことができる。
[0012] 本発明の第 4の態様に従えば、上記態様の露光方法を用いるデバイス製造方法が 提供される。
[0013] 本発明の第 4の態様によれば、表面の膜の種類にかかわらず基板を良好に液浸露 光することができ、所望の性能を有するデバイスを製造することができる。
[0014] 本発明の第 5の態様に従えば、基板 (P)上に液体 (LQ)の液浸領域 (LR)を形成し 、液浸領域 (LR)の液体 (LQ)を介して基板 (P)上に露光光 (EL)を照射して基板 (P )を露光する露光装置にお 、て、基板 (P)表面と液体 (LQ)との間に作用する付着力 を計測する計測装置 (60)を備えた露光装置 (EX)が提供される。
[0015] 本発明の第 5の態様によれば、基板表面と液体との間に作用する付着力を計測す ることで、その計測結果に基づいて、表面の膜の種類にかかわらず基板に対して液 浸露光を良好に行うことができる。
[0016] 本発明の第 6の態様に従えば、基板 (P)上に液体 (LQ)の液浸領域 (LR)を形成し 、液浸領域 (LR)の液体 (LQ)を介して基板 (P)上に露光光 (EL)を照射して基板 (P )を露光する露光装置にぉ 、て、基板 (P)表面を傾斜させたときの基板 (P)表面にお ける液体 (LQ)の後退接触角を計測する計測装置 (60)を備えた露光装置 (EX)が 提供される。
[0017] 本発明の第 6の態様によれば、基板表面を傾斜させたときの基板表面における液 体の後退接触角を計測することで、その計測結果に基づいて、表面の膜の種類にか かわらず基板に対して液浸露光を良好に行うことができる。
[0018] 本発明の第 7の態様に従えば、基板 (P)上に液体 (LQ)の液浸領域 (LR)を形成し 、液浸領域 (LR)の液体 (LQ)を介して基板 (P)上に露光光 (EL)を照射して基板 (P )を露光する露光装置にお!、て、基板 (P)表面における液体 (LQ)の静的な接触角 を計測する第 1計測装置 (60)と、基板 (P)表面における液体 (LQ)の滑落角を計測 する第 2計測装置 (60)と、第 1計測装置 (60)の計測結果と、第 2計測装置 (60)の 計測結果とに基づ!、て、基板 (P)を露光するときの露光条件を決定する制御装置 (C ONT)とを備えた露光装置 (EX)が提供される。 [0019] 本発明の第 7の態様によれば、第 1、第 2計測装置によって計測された基板表面に おける液体の静的な接触角と滑落角とに基づ!、て、基板を露光するときの露光条件 を決定するので、表面の膜の種類にかかわらず基板に対して液浸露光を良好に行う ことができる。
[0020] 本発明の第 8の態様に従えば、基板 (P)上に液体 (LQ)の液浸領域 (LR)を形成し 、液浸領域 (LR)の液体 (LQ)を介して基板 (P)上に露光光 (EL)を照射して基板 (P )を露光する露光装置にお!、て、基板 (P)表面における液体 (LQ)の静的な接触角 の情報と、基板 (P)表面における液体 (LQ)の滑落角の情報とを入力するための入 力装置 (INP)と、入力装置 (INP)から入力された接触角の情報と滑落角の情報とに 基づ!/ヽて、基板 (P)を露光するときの露光条件を決定する制御装置 (CONT)とを備 えた露光装置 (EX)が提供される。
[0021] 本発明の第 8の態様によれば、入力装置によって入力された基板表面における液 体の静的な接触角の情報と滑落角の情報とに基づいて、基板を露光するときの露光 条件を決定するので、表面の膜の種類にかかわらず基板のそれぞれに対して液浸 露光を良好に行うことができる。
[0022] 本発明の第 9の態様に従えば、基板 (P)上に液体 (LQ)の液浸領域 (LR)を形成し 、液浸領域 (LR)の液体 (LQ)を介して基板 (P)上に露光光 (EL)を照射して基板 (P )を露光する露光装置にぉ 、て、基板 (P)表面を傾斜させたときの基板 (P)表面にお ける液体 (LQ)の後退接触角の情報を入力するための入力装置 (INP)と、入力装置 (INP)から入力された後退接触角の情報に基づいて、基板 (P)を露光するときの露 光条件を決定する制御装置 (CONT)とを備えた露光装置 (EX)が提供される。
[0023] 本発明の第 9の態様によれば、入力装置によって入力された基板表面を傾斜させ たときの基板表面における液体の後退接触角の情報に基づいて、基板を露光すると きの露光条件を決定するので、表面の膜の種類にかかわらず基板のそれぞれに対し て液浸露光を良好に行うことができる。
[0024] 本発明の第 10の態様に従えば、上記態様の露光装置 (EX)を用いるデバイス製造 方法が提供される。
[0025] 本発明の第 10の態様によれば、異なる種類の膜が設けられた複数の基板のそれ ぞれを良好に液浸露光することができ、所望の性能を有するデバイスを製造すること ができる。
発明の効果
[0026] 本発明によれば、異なる種類の膜が設けられた基板のそれぞれに対して液浸露光 を良好に行うことができる。
図面の簡単な説明
[0027] [図 1]露光装置の一実施形態を示す概略構成図である。
[図 2]基板を露光するときの液浸領域と基板との位置関係を説明するための図である
[図 3A]基板の一例を示す断面図である。
[図 3B]基板の一例を示す断面図である。
[図 4]計測装置の一実施形態を示す図である。
[図 5]付着力を説明するための図である。
[図 6]露光方法の一実施形態を説明するためのフローチャート図である。
[図 7]静的な接触角と滑落角と許容速度との関係を導出するために行った実験結果 を示す図である。
[図 8]静的な接触角と滑落角と許容速度との関係を示す図である。
[図 9]後退接触角を説明するための図である。
[図 10]後退接触角と許容速度との関係を導出するために行った実験結果を示す図 である。
[図 11]後退接触角と滑落角と許容速度との関係を示す図である。
[図 12]マイクロデバイスの製造工程の一例を説明するためのフローチャート図である 符号の説明
[0028] 1…液浸機構、 60· ··計測装置、 CONT…制御装置、 EL…露光光、 EX…露光装 置、 ΙΝΡ· ··入力装置、 LQ…液体、 LR…液浸領域、 MRY…記憶装置、 P…基板、 P ST…基板ステージ 発明を実施するための最良の形態
[0029] 以下、本発明の実施形態について図面を参照しながら説明するが、本発明はこれ に限定されない。
[0030] <第 1実施形態 >
第 1実施形態について説明する。図 1は第 1実施形態に係る露光装置 EXを示す概 略構成図である。図 1において、露光装置 EXは、マスク Mを保持して移動可能なマ スクステージ MSTと、基板 Pを保持する基板ホルダ PHを有し、基板 Pを保持した基 板ホルダ PHを移動可能な基板ステージ PSTと、マスクステージ MSTに保持されて いるマスク Mを露光光 ELで照明する照明光学系 ILと、露光光 ELで照明されたマス ク Mのパターン像を基板 P上に投影する投影光学系 PLと、露光装置 EX全体の動作 を制御する制御装置 CONTとを備えている。制御装置 CONTには、露光処理に関 する情報を記憶した記憶装置 MRYと、露光処理に関する情報を入力する入力装置 I NPと、露光処理に関する情報を表示する表示装置 DYとが接続されている。入力装 置 INPは、例えばキーボードあるいはタツチパネル等を含む。表示装置 DYは、例え ば液晶ディスプレイ等のディスプレイ装置を含む。また、露光装置 EXは、基板ステー ジ PSTに対して基板 Pを搬送する搬送装置 Hを備えて 、る。
[0031] 本実施形態の露光装置 EXは、露光波長を実質的に短くして解像度を向上するとと もに焦点深度を実質的に広くするために液浸法を適用した液浸露光装置であって、 投影光学系 PLの像面近傍における露光光 ELの光路空間 K1を液体 LQで満たすた めの液浸機構 1を備えている。液浸機構 1は、光路空間 K1の近傍に設けられ、液体 LQを供給する供給口 12及び液体 LQを回収する回収口 22を有するノズル部材 70 と、供給管 13、及びノズル部材 70に設けられた供給口 12を介して液体 LQを供給す る液体供給装置 11と、ノズル部材 70に設けられた回収口 22、及び回収管 23を介し て液体 LQを回収する液体回収装置 21とを備えている。ノズル部材 70は、基板 P (基 板ステージ PST)の上方において、投影光学系 PLを構成する複数の光学素子のう ち、投影光学系 PLの像面に最も近い最終光学素子 LSIを囲むように環状に形成さ れている。
[0032] また、本実施形態の露光装置 EXは、投影光学系 PLの投影領域 ARを含む基板 P 上の一部の領域に、投影領域 ARよりも大きく且つ基板 Pよりも小さ 、液体 LQの液浸 領域 LRを局所的に形成する局所液浸方式を採用している。露光装置 EXは、少なく ともマスク Mのパターン像を基板 Pに投影している間、液浸機構 1を使って、投影光 学系 PLの像面に最も近 ヽ最終光学素子 LS 1と、最終光学素子 LS 1と対向する位置 に配置された基板 Pとの間の露光光 ELの光路空間 K1を液体 LQで満たすことによつ て、基板 P上に液体 LQの液浸領域 LRを形成し、投影光学系 PLと液浸領域 LRの液 体 LQとを介してマスク Mを通過した露光光 ELを基板 P上に照射することによって、 マスク Mのパターン像を基板 Pに投影する。制御装置 CONTは、液浸機構 1の液体 供給装置 11を使って液体 LQを所定量供給するとともに、液体回収装置 21を使って 液体 LQを所定量回収することで、光路空間 K1を液体 LQで満たし、基板 P上の一部 の領域に液体 LQの液浸領域 LRを局所的に形成する。
[0033] なお、本実施形態にぉ 、ては、液浸領域 LRは基板 P上に形成されるものとして説 明する場合があるが、投影光学系 PLの像面側において、最終光学素子 LSIと対向 する位置に配置された物体上、例えば基板 Pを含む基板ステージ PSTの上面などに も形成可能である。
[0034] また、露光装置 EXは、基板 Pの表面と液体 LQとの間に作用する付着力(付着エネ ルギ一)を計測する計測装置 60を備えている。本実施形態においては、計測装置 6 0は、搬送装置 Hの搬送経路上に設けられている。
[0035] 本実施形態では、露光装置 EXとしてマスク Mと基板 Pとを走査方向に同期移動し つつマスク Mに形成されたパターンで基板 Pを露光する走査型露光装置 (所謂スキ ヤニングステツパ)を使用する場合を例にして説明する。以下の説明において、水平 面内においてマスク Mと基板 Pとの同期移動方向(走査方向)を Y軸方向、水平面内 にお!/ヽて Y軸方向と直交する方向を X軸方向(非走査方向)、 X軸及び Y軸方向に垂 直で投影光学系 PLの光軸 AXと一致する方向を Z軸方向とする。また、 X軸、 Y軸、 及び Z軸まわりの回転 (傾斜)方向をそれぞれ、 0 X、 Θ Y,及び Θ Z方向とする。なお 、ここで 、う「基板」は半導体ウェハ等の基材上に感光材 (レジスト)を塗布したものを 含み、「マスク」は基板上に縮小投影されるデバイスパターンを形成されたレチクルを 含む。 [0036] 照明光学系 ILは、露光用光源、露光用光源から射出された光束の照度を均一化 するオプティカルインテグレータ、オプティカルインテグレータからの露光光 ELを集 光するコンデンサレンズ、リレーレンズ系、及び露光光 ELによるマスク M上の照明領 域を設定する視野絞り等を有している。マスク M上の所定の照明領域は照明光学系 I Lにより均一な照度分布の露光光 ELで照明される。照明光学系 IL力 射出される露 光光 ELとしては、例えば水銀ランプカゝら射出される輝線 (g線、 h線、 i線)及び KrFェ キシマレーザ光(波長 248nm)等の遠紫外光(DUV光)、 ArFエキシマレーザ光(波 長 193nm)及び Fレーザ光 (波長 157nm)等の真空紫外光 (VUV光)などが用いら
2
れる。本実施形態にぉ ヽては ArFエキシマレーザ光が用いられる。
[0037] 本実施形態においては、液体 LQとして純水が用いられている。純水は、 ArFェキ シマレーザ光のみならず、例えば、水銀ランプ力 射出される輝線 (g線、 h線、 i線) 及び KrFエキシマレーザ光 (波長 248nm)等の遠紫外光 (DUV光)も透過可能であ る。
[0038] マスクステージ MSTは、マスク Mを保持して移動可能である。マスクステージ MST は、マスク Mを真空吸着 (又は静電吸着)機構などを使って保持する。マスクステージ MSTは、制御装置 CONTにより制御されるリニアモータ等を含むマスクステージ駆 動装置 MSTDの駆動により、マスク Mを保持した状態で、投影光学系 PLの光軸 AX に垂直な平面内、すなわち XY平面内で 2次元移動可能及び θ Z方向に微少回転可 能である。マスクステージ MST上には移動鏡 91が設けられている。また、所定位置 にはレーザ干渉計 92が設けられて!/、る。マスクステージ MST上のマスク Mの 2次元 方向の位置、及び Θ Z方向の回転角(場合によっては Θ X、 Θ Y方向の回転角も含 む)は移動鏡 91を用いてレーザ干渉計 92によりリアルタイムで計測される。レーザ干 渉計 92の計測結果は制御装置 CONTに出力される。制御装置 CONTは、レーザ 干渉計 92の計測結果に基づ 、てマスクステージ駆動装置 MSTDを駆動し、マスクス テージ MSTに保持されているマスク Mの位置制御を行う。
[0039] 投影光学系 PLは、マスク Mのパターンを所定の投影倍率 13で基板 Pに投影露光 するものであって、複数の光学素子で構成されており、それら光学素子は鏡筒 PI C 保持されている。本実施形態において、投影光学系 PLは、投影倍率 j8が例えば 1 Z4、 1/5,あるいは 1Z8の縮小系である。なお、投影光学系 PLは等倍系及び拡 大系のいずれでもよい。また、投影光学系 PLは、反射光学素子を含まない屈折系、 屈折光学素子を含まない反射系、反射光学素子と屈折光学素子とを含む反射屈折 系のいずれであってもよい。また、本実施形態において、投影光学系 PLを構成する 複数の光学素子は、投影光学系 PLの像面に最も近い最終光学素子 LSIのみが液 体 LQと接触するように、鏡筒 PKによって保持されて 、る。
[0040] 基板ステージ PSTは、基板 Pを保持する基板ホルダ PHを有し、投影光学系 PLの 像面側において、ベース部材 BP上で移動可能である。基板ホルダ PHは、例えば真 空吸着機構などを使って基板 Pを保持する。基板ステージ PST上には凹部 96が設 けられており、基板 Pを保持するための基板ホルダ PHは凹部 96に配置されている。 そして、基板ステージ PSTのうち凹部 96以外の上面 97は、基板ホルダ PHに保持さ れた基板 Pの表面とほぼ同じ高さ(面一)になるような平坦面となっている。なお、光路 空間 K1に液体 LQを満たし続けることができるならば、基板ステージ PSTの上面 97 と基板ホルダ PHに保持された基板 Pの表面とに段差があってもよい。
[0041] 基板ステージ PSTは、制御装置 CONTにより制御されるリニアモータ等を含む基 板ステージ駆動装置 PSTDの駆動により、基板 Pを基板ホルダ PHを介して保持した 状態で、ベース部材 BP上で XY平面内で 2次元移動可能及び θ Z方向に微小回転 可能である。更に基板ステージ PSTは、 Z軸方向、 0 X方向、及び Θ Y方向にも移動 可能である。したがって、基板ステージ PSTに保持された基板 Pの表面は、 X軸、 Y 軸、 Z軸、 0 X、 0 Y、及び 0 Z方向の 6自由度の方向に移動可能である。
[0042] 基板ステージ PSTの側面には移動鏡 93が設けられている。また、所定位置にはレ 一ザ干渉計 94が設けられて 、る。基板ステージ PST上の基板 Pの 2次元方向の位 置、及び回転角は移動鏡 93を用いてレーザ干渉計 94によりリアルタイムで計測され る。また、図示はされていないが、露光装置 EXは、基板ステージ PSTに保持されて いる基板 Pの表面の面位置情報を検出するフォーカス'レべリング検出系を備えてい る。フォーカス'レべリング検出系は、基板 Pの表面の面位置情報 (Z軸方向の位置情 報、及び θ X及び θ Y方向の傾斜情報)を検出する。レーザ干渉計 94の計測結果は 制御装置 CONTに出力される。フォーカス'レべリング検出系の検出結果も制御装 置 CONTに出力される。制御装置 CONTは、フォーカス'レべリング検出系の検出 結果に基づいて、基板ステージ駆動装置 PSTDを駆動し、基板 Pのフォーカス位置( Z位置)及び傾斜角( Θ X、 0 Y)を制御して基板 Pの表面と投影光学系 PL及び液体 LQを介した像面との位置関係を調整するとともに、レーザ干渉計 94の計測結果に 基づいて、基板 Pの X軸方向、 Y軸方向、及び Θ Z方向における位置制御を行う。
[0043] 次に、液浸機構 1につ 、て説明する。液浸機構 1の液体供給装置 11は、液体 LQ を収容するタンク、加圧ポンプ、供給する液体 LQの温度を調整する温度調整装置、 供給する液体 LQの気体成分を低減する脱気装置、及び液体 LQ中の異物を取り除 くフィルタユニット等を備えている。液体供給装置 11には供給管 13の一端部が接続 されており、供給管 13の他端部はノズル部材 70に接続されている。液体供給装置 1 1の液体供給動作は制御装置 CONTにより制御される。制御装置 CONTは、液体 供給装置 11を制御することで、供給口 12からの単位時間当たりの液体供給量を調 整可能である。なお、液体供給装置 11のタンク、加圧ポンプ、温度調整装置、脱気 装置、フィルタユニット等は、その全てを露光装置 EXが備えている必要はなぐ露光 装置 EXが設置される工場等の設備を代用してもよい。
[0044] 液浸機構 1の液体回収装置 21は、真空ポンプ等の真空系、回収された液体 LQと 気体とを分離する気液分離器、及び回収した液体 LQを収容するタンク等を備えて ヽ る。液体回収装置 21には回収管 23の一端部が接続されており、回収管 23の他端部 はノズル部材 70に接続されて 、る。液体回収装置 21の液体回収動作は制御装置 C ONTにより制御される。制御装置 CONTは、液体回収装置 21を制御することで、回 収ロ 22を介した単位時間当たりの液体回収量を調整可能である。なお、液体回収 装置 21の真空系、気液分離器、タンク等は、その全てを露光装置 EXが備えている 必要はなぐ露光装置 EXが設置される工場等の設備を代用してもよい。
[0045] 液体 LQを供給する供給口 12及び液体 LQを回収する回収口 22はノズル部材 70 の下面 70Aに形成されている。ノズル部材 70の下面 70Aは、基板 Pの表面、及び基 板ステージ PSTの上面 97と対向する位置に設けられている。ノズル部材 70は、最終 光学素子 LSIの側面を囲むように設けられた環状部材であって、供給口 12は、ノズ ル部材 70の下面 70Aにおいて、投影光学系 PLの最終光学素子 LSI (投影光学系 PLの光軸 AX)を囲むように複数設けられている。また、回収口 22は、ノズル部材 70 の下面 70Aにお 、て、最終光学素子 LS 1に対して供給口 12よりも外側に (供給口 1 2よりも離れて)設けられており、最終光学素子 LSI及び供給口 12を囲むように設け られている。
[0046] そして、制御装置 CONTは、液体供給装置 11を使って光路空間 K1に液体 LQを 所定量供給するとともに、液体回収装置 21を使って光路空間 K1の液体 LQを所定 量回収することで、投影光学系 PLと基板 Pとの間の露光光 ELの光路空間 K1を液体 LQで満たし、基板 P上に液体 LQの液浸領域 LRを局所的に形成する。液体 LQの 液浸領域 LRを形成する際、制御装置 CONTは、液体供給装置 11及び液体回収装 置 21のそれぞれを駆動する。制御装置 CONTの制御のもとで液体供給装置 11から 液体 LQが送出されると、その液体供給装置 11から送出された液体 LQは、供給管 1 3を流れた後、ノズル部材 70の供給流路を介して、供給口 12より投影光学系 PLの 像面側に供給される。また、制御装置 CONTのもとで液体回収装置 21が駆動される と、投影光学系 PLの像面側の液体 LQは回収口 22を介してノズル部材 70の回収流 路に流入し、回収管 23を流れた後、液体回収装置 21に回収される。
[0047] 図 2は基板 Pを露光するときの液浸領域 LRと基板 Pを保持した基板ステージ PSTと の位置関係の一例を説明するための図である。図 2に示すように、基板 P上にはマトリ タス状に複数のショット領域 S1〜S21が設定されている。上述のように、本実施形態 の露光装置 EXは、マスク Mと基板 Pとを Y軸方向(走査方向)に移動しながらマスク Mのパターンを基板 Pに投影露光するものであり、基板 Pのショット領域 S1〜S21の それぞれを露光するとき、制御装置 CONTは、図 2中、例えば矢印 ylで示すように、 投影光学系 PLの投影領域 AR及びそれを覆う液浸領域 LRと基板 Pとを相対的に移 動しつつ、液浸領域 LRの液体 LQを介して基板 P上に露光光 ELを照射する。制御 装置 CONTは、投影光学系 PLの投影領域 AR (露光光 EL)が基板 Pで矢印 ylに沿 つて移動するように、基板ステージ PSTの動作を制御する。制御装置 CONTは、 1つ のショット領域の露光終了後に、基板 P (基板ステージ PST)をステッピング移動して 次のショット領域を走査開始位置に移動し、以下、ステップ ·アンド'スキャン方式で基 板 Pを移動しながら各ショット領域 S1〜S21を順次走査露光する。また制御装置 CO NTは、所望状態の液浸領域 LRを形成するために、液浸機構 1の動作を制御し、液 体 LQの供給動作と回収動作とを並行して行う。
[0048] 図 3A及び 3Bは基板 Pの一例を説明するための断面図である。図 3Aに示す基板 P は、基材 Wと、その基材 Wの上面に形成された第 lHRgとを有している。基材 Wはシ リコンウェハを含むものである。第 1膜 Rgはフォトレジスト (感光材)によって形成され ており、基材 Wの上面の中央部の殆どを占める領域に所定の厚みで被覆されている 。また、図 3Bに示す基板 Pは、第 lHRgの表面を覆う第 2膜 Tcを有している。第 2膜 Tcは、例えばトップコート膜と呼ばれる保護膜又は反射防止膜である。
[0049] このように、基板 Pの表面には、フォトレジスト等力 なる第 lHRg、あるいはこの第 1 HRgの上層に設けられるトップコート膜等の第 2膜 Tcが形成されている。したがって 、基板 P上の最上層(基板 Pの表面)に設けられた膜が、液浸露光時において液体 L Qに接触する液体接触面を形成する。
[0050] 次に、図 4を参照しながら計測装置 60について説明する。図 4において、計測装置 60は、基板 Pを保持する保持部材 61と、保持部材 61に保持されている基板 Pの表 面に対して液体 LQの液滴を滴下可能な滴下部材 62と、基板 Pの表面における液体 LQ (液滴)の状態を観察可能な観察装置 63と、基板 Pの表面の液体 LQ (液滴)を照 明する照明装置 64とを備えている。
[0051] 基板 Pは搬送装置 Hによって保持部材 61にロード (搬入)されるようになっており、 保持部材 61は搬送装置 Hによって搬送された基板 Pを保持する。搬送装置 Hは、露 光処理前の基板 Pを保持部材 61に搬送する。計測装置 60は、露光処理前の基板 P を計測する。
[0052] 観察装置 63は、光学系、及び CCD等によって構成されている撮像素子等を備え ている。撮像素子は、液体 LQの画像 (光学像)を光学系を介して取得可能である。 本実施形態においては、観察装置 63は、保持部材 61に保持された基板 Pの +X側 (一方側)に配置されており、基板 P及び保持部材 61と離れた位置から、基板 P上の 液体 LQの液滴の状態を観察する。
[0053] 照明装置 64は、基板 P (保持部材 61)を挟んで観察装置 63と対向する位置に設け られている。すなわち、照明装置 64は、保持部材 61に保持された基板 Pの— X側( 他方側)に配置されており、基板 P及び保持部材 61と離れた位置から、基板 P上の液 体 LQの液滴を照明する。したがって、観察装置 63は、照明装置 64によって照明さ れた液体 LQの液滴の画像を取得する。
[0054] 観察装置 63と制御装置 CONTとは接続されており、観察装置 63は、取得した液体 LQの液滴の画像を電気信号に変換し、その信号 (画像情報)を制御装置 CONTに 出力する。制御装置 CONTは、観察装置 63からの画像情報を表示装置 DYに表示 可能である。したがって、表示装置 DYには、基板 Pの表面における液体 LQの液滴 の画像が表示される。
[0055] 計測装置 60は、基板 Pを保持した保持部材 61を回転 (傾斜)させる駆動システム 6 5を備えている。駆動システム 65の動作は制御装置 CONTに制御され、保持部材 6 1は、基板 Pを保持した状態で回転 (傾斜)可能となっている。本実施形態においては 、基板 Pを保持した保持部材 61は、駆動システム 65の駆動により、 θ X方向に回転( 傾斜)するようになつている。
[0056] 計測装置 60は、基板 Pの表面と液体 LQとの間に作用する付着力(付着エネルギ 一) E、基板 Pの表面における液体 LQの静的な接触角 Θ、及び基板 Pの表面におけ る液体 LQの滑落角 ocを計測可能である。付着力(付着エネルギー) Eとは、物体の 表面 (ここでは基板 Pの表面)で液体を移動させるのに必要な力である。ここで、図 5 を参照しながら、付着力 Eについて説明する。
[0057] 図 5において、基板 P上での液滴の外形を円の一部と仮定した場合、すなわち、図 5における基板 P上での液滴の表面が理想的な球面であると仮定した場合、付着力 Eは、
E = (m X g X sin a ) / (2 X π X R) …(1)と定義される。
但し、
m:基板 P上での液体 LQの液滴の質量、
g :重力加速度、
:水平面に対する滑落角、
R :基板 P上での液体 LQの液滴の半径、である。
[0058] 滑落角 とは、物体の表面 (ここでは基板 Pの表面)に液体の液滴を付着させた状 態で、その物体の表面を水平面に対して傾斜させたとき、物体の表面に付着してい た液体の液滴が、重力作用によって下方に滑り出す (移動を開始する)ときの角度を 言う。換言すれば、滑落角 aとは、液体の液滴が付着した物体の表面を傾けたとき、 その液滴が滑り落ちる臨界角度を言う。
また、図 5中、 Θは、基板 Pの表面における液体 LQの静的な接触角を示している。 接触角 Θは、物体の表面 (ここでは基板 Pの表面)に液体の液滴を付着させ、静止し た状態での液滴の表面と物体の表面とがなす角度 (液体の内部にある角度をとる)を
[0060] ここで上述のように、液滴の外形は円の一部と仮定されており、図 5では、傾斜面に おける液体 LQの接触角を 0として図示しているが、接触角 Θは水平面と平行な面に おける接触角である。また、滴下部材 62は、滴下する液滴の質量 (又は体積) mを調 整可能であり、その質量 (又は体積) mが既知である場合には、接触角 Θを計測する ことにより、その接触角 Θに基づいて、幾何学的に半径 Rを導出することができる。更 に、接触角 Θが分かれば、液滴と基板 Pの表面とが接触する接触面の半径 r (以下、 適宜「着液半径!:」と称する)も幾何学的に導出することができる。同様に、接触角 Θ が分かれば、基板 Pの表面に対する液滴の高さ hも導出することができる。すなわち、 基板 Pの表面における液体 LQの液滴の半径 Rは、液体 LQの接触角 Θに応じた値 であり、液体 LQの接触角 Θを求めることによって、上述の(1)式の半径 Rを求めるこ とがでさる。
[0061] 図 3A及び 3Bを参照して説明したように、基板 P上の最上層に設けられた膜 (第 1膜 Rg、第 2膜 Tc)が、液浸露光時において液体 LQに接触する液体接触面を形成する 力 その膜の種類 (物性)によって、上述の接触角 Θ、及び滑落角 ocが変化する。計 測装置 60は、接触角 Θ、及び滑落角 αを計測して、付着力 Εを基板 Ρ毎に求めるこ とがでさる。
[0062] 次に、図 6のフローチャート図を参照しながら、計測装置 60を使った計測手順及び 基板 Ρを露光するときの露光手順の一例について説明する。
[0063] 搬送装置 Ηによって露光処理前の基板 Ρが計測装置 60の保持部材 61にロードさ れると、制御装置 CONTは、計測装置 60を使った計測動作を開始する。まず、計測 装置 60は、基板 Pの表面における液体 LQの静的な接触角 Θを計測する (ステップ S Al)。基板 Pの表面における液体 LQの静的な接触角 Θを計測するとき、計測装置 6 0は、保持部材 61に保持された基板 Pの表面が水平面 (XY平面)とほぼ平行となる ように、駆動システム 65を介して保持部材 61の位置 (姿勢)を調整する。そして、計 測装置 60は、水平面とほぼ平行となっている基板 Pの表面に対して、滴下部材 62よ り液体 LQの液滴を滴下する。滴下部材 62は、滴下する液滴の質量 (又は体積) mを 調整可能であり、基板 Pの表面に質量 mの液滴を滴下する。基板 Pの表面に質量 m の液滴が配置された後、計測装置 60は、照明装置 64で基板 Pの表面に配置された 液滴を照明するとともに、観察装置 63を使って液滴の画像を取得する。観察装置 63 は、取得した画像に関する画像情報を制御装置 CONTに出力する。制御装置 CON Tは、観察装置 63から出力された信号 (画像情報)に基づいて、基板 Pの表面におけ る液滴の画像を表示装置 DYで表示する。また、制御装置 CONTは、観察装置 63か ら出力された信号を演算処理 (画像処理)し、その処理結果に基づいて、基板 Pの表 面における液体 LQの液滴の接触角 Θを求める。こうして、基板 Pの表面における液 体 LQの静的な接触角 Θ力 制御装置 CONTを含む計測装置 60によって計測され る。
[0064] また、制御装置 CONTを含む計測装置 60は、基板 P上での液体 LQの液滴の半径 Rを導出する (ステップ SA2)。上述のように、滴下部材 62は滴下する液滴の質量 m を調整可能であり、半径 Rは幾何学的に導出することができるため、制御装置 CON Tを含む計測装置 60は、既知の値である液滴の質量 mと、計測結果である接触角 Θ とに基づいて、所定の演算処理を行うことにより、基板 P上での液体 LQの液滴の半 径 Rを求めることができる。
[0065] なおここでは、滴下部材 62は滴下する液滴の質量 mを調整可能として説明してい る力 液体 LQの密度 (比重) pが既知であり、滴下部材 62が滴下する液滴の体積 V を調整可能であるならば、密度 pと体積 Vとに基づいて、質量 mを導出することがで きる(m= p X V) o
[0066] 次に、計測装置 60は、基板 Pの表面における液体 LQの滑落角 ocを計測する (ステ ップ SA3)。基板 Pの表面における液体 LQの滑落角ひを計測するとき、計測装置 60 は、基板 Pの表面に質量 mの液滴を配置した状態で、その基板 Pを保持した保持部 材 61を、図 4中の矢印 K1で示すように、駆動システム 65を用いて θ X方向に回転( 傾斜)する。保持部材 61の回転 (傾斜)に伴って、基板 Pの表面も回転 (傾斜)する。 基板 Pを回転している間においても、観察装置 63は基板 Pの表面に配置されている 液滴を観察し続けている。基板 Pを回転するにしたがって、図 4中の矢印 K2で示すよ うに、基板 Pの表面に付着していた液滴は、重力作用によって下方に滑り出す (移動 を開始する)。観察装置 63は、液滴が滑り出したことを観察可能であり、取得した画 像に関する画像情報を制御装置 CONTに出力する。すなわち、制御装置 CONTは 、観察装置 63から出力された信号 (画像情報)に基づいて、基板 Pの表面の液滴が 移動を開始した時点(滑り出した時点)を求めることができる。また、制御装置 CONT は、基板 Pの表面の液滴が移動を開始した時点での基板 Pの表面の角度 (すなわち 滑落角) αを、駆動システム 65による保持部材 61の駆動量 (傾斜量)より求めること ができる。すなわち、制御装置 CONTは、観察装置 63から出力された信号 (画像情 報)と、駆動システム 65による保持部材 61の駆動量とに基づいて、基板 Pの表面に おける液体 LQの液滴の滑落角 αを求めることができる。このように、基板 Ρの表面に おける液体 LQの滑落角 αが、制御装置 CONTを含む計測装置 60によって計測さ れる。
[0067] なお、液滴の状態を表示装置 DYに表示し、目視によって、基板 Pの表面の液滴が 移動を開始したときの基板 Pの表面の角度 (すなわち滑落角) αを計測してもよい。
[0068] 次に、計測装置 60は、基板 Ρと液体 LQとの間に作用する付着力 Εを求める (ステツ プ SA4)。上述のステップ SA1〜SA3により、基板 P上での液体 LQの液滴の質量 m 、基板 P上での液体 LQの液滴の半径 R、及び滑落角 αが求められているため、これ らの値を上述の(1)式に代入することによって、基板 Ρの表面と液体 LQとの間に作用 する付着力(付着エネルギー) Εを求めることができる。
[0069] 上述のように、基板 Ρ上での液体 LQの液滴の半径 Rは、液体 LQの接触角 0に応 じた値であるため、付着力 Εは、基板 Ρの表面における液体 LQの接触角 Θ、及び基 板 Ρの表面における液体 LQの滑落角 aに応じて定められる値である。
[0070] なお、上述のステップ SA1〜SA3にお 、て、接触角 Θ及び滑落角 αを計測する場 合に、液滴の質量 (又は体積) mを変えつつ接触角 Θ及び滑落角 αの計測動作を 複数回行い、これら各計測動作で得られた接触角 Θ、半径 滑落角 αの平均値を 用いて、付着力 Εを導出するようにしてもよい。
[0071] 次に、制御装置 CONTは、計測装置 60の計測結果に基づ 、て、基板 Ρを露光す るときの露光条件を決定する (ステップ SA5)。すなわち、制御装置 CONTは、ステツ プ SA4で導出した、基板 Pの表面と液体 LQとの間に作用する付着力 Eに応じて、基 板 Pを露光するときの露光条件を決定する。上述のように、付着力 Eは、基板 Pの表 面における液体 LQの静的な接触角 Θ、及び基板 Pの表面における液体 LQの滑落 角 αに応じて定められるため、制御装置 CONTは、ステップ SA1で計測した計測結 果である基板 Pの表面における液体 LQの静的な接触角 Θと、ステップ SA3で計測し た計測結果である基板 Pの表面における液体 LQの滑落角 αとに基づいて、基板 Ρ を露光するときの露光条件を決定することとなる。
[0072] ここで、露光条件は、基板 Ρを移動するときの移動条件、及び液浸領域 LRを形成 するときの液浸条件の少なくとも一方を含む。
[0073] 基板 Ρの移動条件は、基板 Ρの移動速度、加速度、減速度、移動方向、及び一方 向への連続的な移動距離の少なくとも一部を含む。
[0074] また、液浸条件は、液浸領域 LRを形成するために液体 LQを供給するときの供給 条件と、液浸領域 LRを形成する液体 LQを回収するときの回収条件との少なくとも一 方を含む。供給条件は、供給口 12から光路空間 K1に対する単位時間当たりの液体 供給量を含む。回収条件は、回収口 22からの単位時間当たりの液体回収量を含む
[0075] なお、露光条件とは、基板 Ρ上の各ショット領域に露光光 ELを照射している露光中 のみならず、各ショット領域の露光前、及び Ζ又は露光後を含む。
[0076] また、基板 Ρ表面の膜と液体 LQとの静的な接触角 Θなどに応じて、液体 LQの圧力 が変化し、投影光学系 PL (最終光学素子 LSI)の変動に起因する投影光学系 PLの 光学特性の変動が生じる可能性がある場合には、光学特性の変動を補償するため の投影光学系 PLの調整条件を露光条件として、記憶装置 MRYに記憶してもよ ヽ。
[0077] 記憶装置 MRYには、付着力 Eに対応した最適露光条件に関する情報が予め記憶 されている。具体的には、記憶装置 MRYは、液浸露光時において基板 P上の液体 L Qに接触する液体接触面に形成されている膜と液体 LQとの間に作用する付着力 Eと 、その付着力 Eに対応する最適露光条件との関係が複数マップデータとして記憶さ れている。この付着力 Eに対応した最適露光条件に関する情報 (マップデータ)は、 予め実験又はシミュレーションによって求めることができ、記憶装置 MRYに記憶され る。
[0078] 本実施形態においては、説明を簡単にするために、記憶装置 MRYには、付着力 Eに対応する最適露光条件として、付着力 Eに対応する基板 Pの最適な移動速度に 関する情報と、付着力 Eに対応する単位時間当たりの最適な液体供給量に関する情 報とが記憶されている。
[0079] 制御装置 CONTは、計測装置 60の計測結果と、記憶装置 MRYの記憶情報とに 基づいて、基板 Pを露光するときの露光条件を決定する。すなわち、制御装置 CON Tは、ステップ SA4で求めた基板 Pの表面と液体 LQとの間に作用する付着力 Eと、 記憶装置 MRYに予め記憶されている、付着力 Eに対応した最適露光条件に関する 情報 (マップデータ)とに基づ!、て、記憶装置 MRYの記憶情報 (マップデータ)の中 から、露光処理されるべき基板 Pに対する最適露光条件を選択し、決定する。
[0080] 本実施形態では、制御装置 CONTは、付着力 Eに応じて、基板 Pの移動速度と、 液浸機構 1による光路空間 K1に対する単位時間当たりの液体供給量とを決定する。
[0081] そして、制御装置 CONTは、計測装置 60で計測を終えた基板 Pを搬送装置 Hを使 つて基板ステージ PSTにロードし、ステップ SA5で決定した露光条件に基づいて、基 板 Pを液浸露光する (ステップ SA6)。
[0082] 本実施形態では、制御装置 CONTは、ステップ SA5で決定された露光条件に基 づいて、基板 Pの移動速度と、液浸機構 1による光路空間 K1に対する単位時間当た りの液体供給量とを調整しつつ、基板 Pの各ショット領域を露光する。
[0083] 例えば、露光処理されるべき基板 Pの表面と液体 LQとの間に作用する付着力 Eが 大きい場合、基板 Pの移動速度を高速化すると、光路空間 K1を液体 LQで良好に満 たすことが困難となる可能性があるため、制御装置 CONTは、付着力 Eに応じて、基 板 Pの移動速度を遅くする。こうすることにより、光路空間 K1を液体 LQで良好に満た した状態で、基板 Pを露光することができる。一方、付着力 Eが小さい場合には、基板 Pの移動速度を高速ィ匕することができ、スループットを向上することができる。
[0084] ここで、基板 Pの移動速度には、 Y軸方向(走査方向)に関する移動速度はもちろん 、 X軸方向(ステッピング方向)に関する移動速度も含まれる。
[0085] また、制御装置 CONTは、決定された露光条件に基づ!/、て、液浸機構 1の動作を 制御し、光路空間 K1に対する単位時間当たりの液体供給量を調整する。例えば、 露光処理されるべき基板 Pの表面と液体 LQとの間に作用する付着力 Eが小さい場合 、液体 LQ中に気泡が生成し易くなる可能性がある。したがって、付着力 Eが小さい場 合には、制御装置 CONTは、付着力 Eに応じて、光路空間 K1に対する単位時間当 たりの液体供給量を多くして、供給口 12より脱気された液体 LQを光路空間 K1に多 量に供給するようにする。こうすることにより、光路空間 K1の液体 LQ中に気泡が存 在する場合でも、その気泡を脱気された液体 LQに溶カゝし込んで、低減又は消失さ せることができる。したがって、光路空間 K1を所望状態の液体 LQで満たした状態で 、基板 Pを露光することができる。
また、仮に光路空間 K1に気泡が生成されても、多量に供給された液体 LQによって 、その気泡を光路空間 K1から直ちに退かすことができる。一方、付着力 Eが大きい 場合には、光路空間 K1に対する単位時間当たりの液体供給量を少なくすることがで き、使用する液体 LQの量を抑えることができる。
[0086] 以上説明したように、基板 Pの表面と液体 LQとの間に作用する付着力 Eに応じて、 基板 Pを露光するときの露光条件を決定するようにしたので、異なる種類の膜が形成 された複数の基板 Pのそれぞれに対して液浸露光を良好に行うことができる。したが つて、液浸露光装置 EXの汎用性を向上することができる。
[0087] なお、上述したように、基板 Pの移動条件としては、基板 Pを移動するときの加減速 度、及び光路空間 K1に対する移動方向(移動軌跡)なども含めることができる。制御 装置 CONTは、付着力 Eに基づいて、加減速度、移動方向(移動軌跡)を決定し、そ の決定された加減速度、移動方向(移動軌跡)に基づいて、基板ステージ PSTの動 作を制御しつつ、基板 Pを液浸露光することができる。この場合も、記憶装置 MRYに は、付着力 Eに対応した最適な加速度、移動方向 (移動軌跡)などに関する情報が 予め記憶されており、制御装置 CONTは、付着力 Eと記憶装置 MRYの記憶情報と に基づいて、基板 Pを露光するときの最適な加速度、移動方向(移動軌跡)を決定す ることができる。一例として、付着力 Eが大きい場合、基板 Pの加速度を高速化すると 、光路空間 K1を液体 LQで良好に満たすことが困難となる可能性があるため、基板 P の加速度を小さくする。一方、付着力 Eが小さい場合には、基板 Pの加速度を大きく することができる。
[0088] また、上述の供給条件としては、光路空間 K1に対する液体供給位置 (距離)、供給 方向なども含めることができる。すなわち、供給条件としては、光路空間 K1に対する 供給口 12の位置、距離、数なども含めることができる。制御装置 CONTは、付着力 E に基づいて、これら供給条件を決定し、その決定された供給条件に基づいて、液浸 機構 1の動作を制御しつつ、基板 Pを液浸露光することができる。この場合も、記憶装 置 MRYには、付着力 Eに対応した最適な供給位置 (距離)、供給方向などに関する 情報が予め記憶されており、制御装置 CONTは、付着力 Eと記憶装置 MRYの記憶 情報とに基づいて、基板 Pを露光するときの最適な供給条件を決定することができる 。制御装置 CONTは、付着力 Eに応じて、液体 LQを供給するときの供給条件を調整 することで、液体 LQを良好に供給し、所望状態の液浸領域 LRを形成することができ る。
[0089] また、上述したように、液浸条件としては、光路空間 K1の液体 LQを回収するときの 回収条件も含まれる。回収条件としては、光路空間 K1からの単位時間当たりの液体 回収量のみならず、光路空間 K1に対する液体回収位置 (距離)、回収方向なども含 めることができる。すなわち、回収条件としては、液体回収装置 21の回収力(吸引力 )、光路空間 K1に対する回収口 22の位置、距離、数などを含めることができる。制御 装置 CONTは、付着力 Eに基づいて、これら回収条件を決定し、その決定された回 収条件に基づいて、液浸機構 1の動作を制御しつつ、基板 Pを液浸露光することが できる。この場合も、記憶装置 MRYには、付着力 Eに対応した最適な単位時間当た りの液体回収量、回収位置 (距離)、回収方向などに関する情報が予め記憶されてお り、制御装置 CONTは、付着力 Eと記憶装置 MRYの記憶情報とに基づいて、基板 P を露光するときの最適な回収条件を決定することができる。付着力 Eに応じて、液体し Qを回収するときの液浸機構 1による回収性(回収能力)が変動する可能性があるが 、制御装置 CONTは、付着力 Eに応じて、液体 LQを回収するときの回収条件を調整 することで、液体 LQを良好に回収し、所望状態の液浸領域 LRを形成することができ る。
[0090] なお、本実施形態にお!、て、記憶装置 MRYに記憶されて 、る条件は、基板 Pの移 動条件と液浸条件とが最適化されていることは言うまでもない。例えば、基板 Pの移 動速度が高速の場合には、単位時間当たりの液体供給量を多くするとともに、その液 体供給量に応じた液体回収量で液体 LQを回収することで、光路空間 K1を液体 LQ で良好に満たすようにする。一方、基板 Pの移動速度が比較的低速である場合には 、単位時間当たりの液体供給量を少なくすることができる。
[0091] なお、上述の実施形態においては、 1つの計測装置 60によって、基板 Pの表面に おける液体 LQの静的な接触角 Θと、基板 Pの表面における液体 LQの滑落角 αとを 計測しているが、基板 Ρの表面における液体 LQの静的な接触角 Θを計測する第 1の 計測装置と、基板 Ρの表面における液体 LQの滑落角 αを計測する第 2の計測装置 とを別々に設けてもよい。
[0092] また、上述の実施形態においては、計測装置 60は搬送装置 Ηの搬送経路上に設 けられているが、計測装置 60の設置位置としては、搬送装置 Ηの搬送経路上以外の 位置でもよい。
[0093] また、上述の実施形態にお!、ては、基板 Ρ毎に計測装置 60での計測を行って 、る 力 表面に形成されている膜が、先に計測された基板 Ρと同じ場合には、計測装置 6 0での計測を省略してもよい。例えば、複数枚の基板 Ρで構成される一つのロットの先 頭の基板 Ρのみを計測装置 60で計測するようにしてもょ 、。
[0094] また、上述の実施形態にお!、ては、計測装置 60での計測結果に基づ 、て、その計 測後の基板 Ρに対する露光条件を決定しているが、その計測後の基板 Ρ上のショット 領域毎に異なる露光条件を設定してもよい。
[0095] なお、上述の実施形態においては、液体 LQとして純水を用い、その液体 LQに対 する基板 Ρの付着力 Εを求め、その付着力 Εに応じて基板 Ρを露光するときの露光条 件を決定している力 液体 LQを例えばフッ素系オイルにするなど、液体 LQの種類( 物性)を変えることによって、付着力 Eを所望値にするようにしてもよい。また、その付 着力 Eに応じて、露光条件を決定するようにしてもよい。あるいは、液体 (純水) LQに 所定の材料 (添加物)を添加することによって、その液体 (純水) LQの物性を変えるよ うにしてもよい。
[0096] なお、上述の第 1実施形態においては、デバイスを製造するために実際に露光され る基板 Pの表面に液体 LQの液滴を配置し、その基板 Pを傾斜させたときの液滴の状 態を計測装置 60で計測するように説明したが、例えば実際に露光される基板 Pの表 面とほぼ同様の表面を有する物体 (例えばテスト基板等)上に液滴を配置し、その物 体の表面を傾斜させたときの液滴の状態を計測するようにしてもょ 、。
[0097] <第 2実施形態 >
次に、第 2実施形態について説明する。以下の説明において、上述の実施形態と 同一又は同等の構成部分については同一の符号を付し、その説明を簡略若しくは 省略する。
[0098] 上述の実施形態にお!ヽては、露光処理されるべき基板 Pと液体 (純水) LQとの付着 力 Eに応じて、基板 Pを露光するときの露光条件を決定 (調整)しているが、付着力 E の許容範囲を設定し、基板 Pを露光する前に、その基板 Pが液体 (純水) LQに対して 許容範囲の付着力 Eとなる膜を有するか否か、すなわち液浸露光処理するのに適当 な膜を有する基板 Pか否かを判断するようにしてもよい。例えば、記憶装置 MRYに、 液浸露光処理するのに適当な付着力 Eか否かを判断するための指標値 (許容値)を 記憶しておき、この指標値に応じて、液浸露光処理するのに適当な付着力 Eか否か を判断することができる。この指標値は、例えば実験あるいはシミュレーションによつ て予め求めることができる。そして、上述の判断結果に基づいて、不適当な膜を有す る基板 Pは露光処理しないようにすることができる。例えば、搬送装置 Hによって計測 装置 60に搬送された基板 Pの液体 (純水) LQに対する付着力 Eを計測し、計測され た付着力 Eが予め定められた許容範囲以外となったとき、その基板 Pを基板ステージ PSTにはロードしないようにする。こうすることにより、液浸露光処理するのに不適当 な膜を有する基板 Pを露光しなくてすみ、液体 LQの漏出などが防止され、露光装置 EXの稼動率の向上に寄与することができる。 [0099] また、本実施形態においても、基板 Pの表面と液体 LQとの間に作用する付着力 E が許容範囲となるように、液体 LQの種類 (物性)を変えるようにしてもよい。あるいは、 液体 (純水) LQに所定の材料 (添加物)を添加することによって、基板 Pの表面と液 体 LQとの間に作用する付着力 Eを許容範囲にするようにしてもよい。
[0100] <第 3実施形態 >
次に第 3実施形態について説明する。上述の第 1及び第 2実施形態においては、 露光装置 EX内の計測装置 60で基板 Pの表面における液体 LQの静的な接触角 Θと 、基板 Pの表面における液体 LQの滑落角 αとを計測している力 露光装置 ΕΧ内に 計測装置 60を搭載せずに、静的な接触角 Θと滑落角 αとを露光装置 ΕΧとは別の装 置で計測することができる。本実施形態では、基板 Ρを露光するときの露光条件を決 定するために、基板 Ρの表面における液体 LQの静的な接触角 Θの情報と、基板 Ρの 表面における液体 LQの滑落角 αの情報とが、入力装置 ΙΝΡを介して制御装置 CO NTに入力される。制御装置 CONTは、入力装置 INPから入力された接触角 Θの情 報と、滑落角 αの情報とに基づいて、基板 Ρを露光するときの露光条件を決定する。 すなわち、制御装置 CONTは、入力装置 ΙΝΡから入力された接触角 Θの情報と滑 落角 αの情報とに基づいて、上述の実施形態同様、付着力 Εを導出し、その導出し た付着力 Εと、記憶装置 MRYに予め記憶されている、付着力 Εに対応した最適露光 条件に関する情報 (マップデータ)とに基づいて、露光処理されるべき基板 Ρに対す る最適露光条件を決定する。
[0101] なお、入力装置 ΙΝΡに入力されるデータとしては、計測された静的な接触角 Θと滑 落角 αとに基づいて計算された付着力 Εであってもよい。あるいは、計測を行わずに 、予め分力 ている物性値データ (静的な接触角 Θと滑落角 α、あるいは付着力 Ε) であってもよい。
[0102] また、上述の第 1〜第 3実施形態において、記憶装置 MRYに付着力(静的な接触 角及び滑落角)と最適露光条件との関係を記憶しているが、実験又はシミュレーショ ンの結果に基づいて決定された関数を記憶装置 MRYに記憶しておき、その関数を 使って、付着力 Εに対する最適な露光条件を求めるようにしてもょ 、。
[0103] <第 4実施形態 > 次に第 4実施形態について説明する。上述の第 1〜第 3実施形態においては、基 板 Pの表面における液体 LQの静的な接触角 Θと、基板 Pの表面における液体 LQの 滑落角 ocとに基づいて、付着力 Eを導出し、その付着力 Eに応じて、基板 Pを露光す るときの露光条件を決定しているが、本実施形態の特徴的な部分は、基板 Pを露光 するときの露光条件を、式( Θ — t X α )に基づいて決定する点にある。
[0104] 本実施形態にぉ 、ては、制御装置 CONTは、次の(2)式で定義される値 U
U = ( 0 -t X a ) …(2)に基づいて、基板 Pを露光するときの露光条件を決 定する。
但し、
Θ 基板 Pの表面における液体 LQの静的な接触角、
:基板 Pの表面における液体 LQの滑落角、
t :所定の定数、である。
[0105] 本発明者は、値 U ( = Θ -t X α )に応じて、基板 Ρ上で液浸領域 LRを所望状態に 維持可能な露光条件 (基板 Pの移動条件、液浸条件等)が変化することを見出した。 すなわち、露光装置 EXの最終光学素子 LS Iと基板 Pの膜との間の光路空間 K1を 液体 LQで満たして基板 P上に液体 LQの液浸領域 LRを形成したときに、液浸領域 L Rを所望状態に維持することができる露光条件が、基板 Pの膜と液体 LQとに対応す る値 Uに応じて変化することを見出した。したがって、値 Uに応じて最適な露光条件 を設定することによって、液体 LQの流出、及び液体 LQ中での気泡の生成等の不具 合を生じることなぐ基板 Pを露光することができる。
[0106] 例えば、上述の露光条件には、基板 Pの移動条件が含まれる。すなわち、露光装 置 EXの最終光学素子 LS 1と基板 Pの膜との間の光路空間 K1を液体 LQで満たして 膜上に液体 LQの液浸領域 LRを形成した状態で基板 P (膜)を移動したときに、液浸 領域 LRを所望状態に維持することができる最大の速度 (以下、許容速度、と称する) は、基板 Pの膜と液体 LQとに対応する値 Uに応じて変化する。したがって、値 Uに対 応する許容速度以下で基板 Pを移動すれば、液体 LQの流出、及び液体 LQ中での 気泡の生成等の不具合の発生を抑えつつ、基板 Pを露光することができる。
[0107] 本実施形態にぉ 、ては、制御装置 CONTは、上述の値 Uに基づ 、て、基板 Pを移 動するときの移動条件 (基板 Pの移動速度)を決定することとする。
[0108] 図 7は値 Uと許容速度との関係を導出するために行った実験結果の一例を示すも のである。実験は、基板 P上の最上層(基板 Pの表面)に設けられる膜の種類を変え、 それら複数の種類の膜のそれぞれにおける液体 LQの静的な接触角 Θ、及び液体 L Qの滑落角 αを計測するとともに、各膜のそれぞれについての値 U、及び各膜のそ れぞれについての基板 Pの許容速度を求めた。なお、図 7の実験例に示されている 基板 Pの許容速度とは、光路空間 K1を液体 LQで満たしつつ、液体 LQを流出させる ことなく(基板 P上に液体 LQの滴及び膜を残すことなく)、基板 Pを移動させることが できる速度である。また、図 7に示すように、本実験例では、 26種類の膜を用意し、そ れら複数の膜のそれぞれについての各データを取得した。
[0109] 上述のように、計測装置 60は、基板 Pの表面における液体 LQの静的な接触角 Θ、 及び基板 Pの表面における液体 LQの滑落角 αを計測可能であり、本実験例では、 各膜の表面に所定量 (例えば、 50マイクロリットル)の液体 LQの滴をたらし、計測装 置 60を用いて、各膜における液体 LQの静的な接触角 Θ、及び滑落角 αを求めた。 また、所定の定数 tは、例えばノズル部材 70の構造、能力(液体供給能力、液体回収 能力など)等に応じて定められる値であり、実験又はシミュレーションによって導出可 能である。
[0110] そして、本実験例では、所定の定数 t= 1とし、計測装置 60の計測結果に基づいて 、各膜のそれぞれについての値 U (すなわち Θ—ひ)を導出するとともに、各膜のそ れぞれについての許容速度を求めた。上述のように、基板 P上の膜は液浸露光時に おいて液体 LQと接触する液体接触面を形成するため、図 7に示すように、膜の種類 (物性)に応じて、すなわち値 Uに応じて許容速度が変化する。
[0111] 図 8は値 U (但し、 t= l)と許容速度との関係を示す図、すなわち図 7の実験結果を グラフ化したものである。図 8では、上述の実験結果に対応する点と、それら実験結 果をフィッティングした近似曲線とが示されている。図 8に示すように、値 U= ( Θ— t X α )に応じて、許容速度が変化することが分かる。具体的には、値 Uが大きくなるほ ど、許容速度が大きくなることが分かる。したがって、基板 Ρ上に値 Uが大きい膜を設 けることにより、最終光学素子 LS 1と基板 Ρ (膜)との間を液体 LQで満たした状態で、 基板 Pを高速に移動しつつ、その基板 Pを露光することができる。
[0112] 次に、計測装置 60を使った計測手順及び基板 Pを露光するときの露光手順の一例 について説明する。所定の膜を有する基板 Pを露光するとき、制御装置 CONTは、 その基板 Pを露光する前に、計測装置 60を用いて、基板 Pの表面 (膜)における液体 LQの静的な接触角 Θを計測する。また、制御装置 CONTは、計測装置 60を用いて 、基板 Pの表面 (膜)における液体 LQの滑落角 αを計測する。そして、制御装置 CO NTは、計測装置 60の計測結果に基づいて、値 U ( = 0 — t X α )を求める。記憶装 置 MRYには、値 U (静的な接触角 Θと滑落角 exと)に対応する基板 Ρの許容速度を 導き出すための情報(関数、マップデータ等)が予め記憶されている。本実施形態で は、記憶装置 MRYは、値 Uをパラメータとして、その値 Uに対応する基板 Ρの許容速 度を導き出す関数 (例えば、図 8の近似曲線に対応する関数)が記憶されている。上 述したように、この値 Uに対応した基板 Ρの許容速度に関する情報は、予め実験又は シミュレーションによって求めることができ、記憶装置 MRYに記憶される。
[0113] 制御装置 CONTは、計測装置 60の計測結果と、記憶装置 MRYの記憶情報とに 基づいて、基板 Pを露光するときの露光条件 (基板 Pの移動速度)を決定する。すな わち、制御装置 CONTは、求めた値 U (静的な接触角 Θ及び滑落角 αの情報)と、 記憶装置 MRYに予め記憶されて 、る、値 Uに対応した基板 Ρの許容速度に関する 情報とに基づいて、露光処理されるべき基板 Ρの移動速度を、許容速度を超えない ように、決定する。
[0114] そして、制御装置 CONTは、決定した露光条件 (基板 Pの移動速度)に基づ!/、て、 基板 Pを液浸露光する。例えば、露光処理されるべき基板 Pの表面と液体 LQとに応 じた値 Uが小さい場合、基板 Pの移動速度を高速化すると、光路空間 K1を液体 LQ で良好に満たすことが困難となる可能性があるため、制御装置 CONTは、値 Uに応 じて、基板 Pの移動速度を遅くする。こうすること〖こより、光路空間 K1を液体 LQで良 好に満たした状態で、基板 Pを露光することができる。一方、値 Uが大きい場合には、 基板 Pの移動速度を高速ィ匕することができ、スループットを向上することができる。
[0115] なお、スループットを考慮すれば、基板 Pの移動速度は、値 Uに対応する許容速度 に設定されることが望ましい。 [0116] また、基板 Pの移動速度は、基板 P上に露光光 ELが照射されている露光中の移動 速度 (スキャン速度)だけでなぐショット間に行われるステッピング中の移動速度 (ス テツビング速度)も含む。
[0117] 以上説明したように、式( 0 — t X a )に基づいて、基板 Pを露光するときの露光条 件を決定するようにしたので、異なる種類の膜が形成された複数の基板 Pのそれぞれ に対して液浸露光を良好に行うことができる。したがって、液浸露光装置 EXの汎用 性を向上することができる。
[0118] なお、本実施形態では、値 Uに基づいて、基板 Pの移動速度を決定している力 基 板 Pの加速度、減速度、移動方向(移動軌跡)、及び一方向への連続的な移動距離 の少なくとも一部を決定することができる。すなわち、基板 P上で液浸領域 LRを所望 状態に維持可能な最大の加速度、最大の減速度、最大の移動距離の少なくとも一 部と値 Uとの関係を予め求めておき、基板 Pの膜と液体 LQとに対応する値 U力も求 められる許容値を超えないように、加速度、減速度、移動距離の少なくとも一部を決 定してもよい。また、値 Uが小さい場合、基板 Pの移動方向によっては、液浸領域 LR を所望状態に維持できない可能性もあるので、値 Uに応じて、基板 Pの移動方向を 制限したり、基板 Pを所定方向へ移動するときの速度をその他の方向へ移動するとき の速度よりも zJ、さくするようにしてもょ ヽ。
[0119] また、値 Uに基づ ヽて、液浸領域 LRを形成するために液体 LQを供給するときの供 給条件、及び液浸領域 LRを形成する液体 LQを回収するときの回収条件を含む、液 浸領域 LRを形成するときの液浸条件を決定することができる。例えば、基板 P上で液 浸領域 LRを所望状態に維持可能な最大の液体供給量と値 Uとの関係を予め求めて おけば、値 Uから求められる許容値を超えな ヽように液体 LQの供給量を決定しても よい。
[0120] また、第 4実施形態において、値 Uの許容範囲を設定し、基板 Pを露光する前に、 その基板 Pが液体 (純水) LQに対して許容範囲の値 Uとなる膜を有する力否か、すな わち液浸露光処理するのに適当な膜を有する基板 Pか否かを判断するようにしてもよ い。
[0121] また、第 4実施形態にぉ 、て、基板 Pの表面における液体 LQの静的な接触角 Θを 計測する第 1の計測装置と、基板 Pの表面における液体 LQの滑落角 αを計測する 第 2の計測装置とを別々に設けてもよい。
[0122] なお、上述の第 4実施形態においては、デバイスを製造するために実際に露光され る基板 Ρの表面に液体 LQの液滴を配置し、その基板 Ρを傾斜させたときの液滴の状 態を計測装置 60で計測するように説明したが、例えば実際に露光される基板 Ρの表 面とほぼ同様の表面を有する物体 (例えばテスト基板等)上に液滴を配置し、その物 体の表面を傾斜させたときの液滴の状態を計測するようにしてもょ 、。
[0123] <第 5実施形態 >
上述の第 4実施形態において、露光装置 ΕΧ内に計測装置 60を搭載せずに、静的 な接触角 Θと滑落角 αとを露光装置 ΕΧとは別の装置で計測することができる。そし て、基板 Ρを露光するときの露光条件を決定するために、基板 Ρの表面における液体 LQの静的な接触角 Θの情報と、基板 Ρの表面における液体 LQの滑落角 αの情報 と力 入力装置 ΙΝΡを介して制御装置 CONTに入力される。制御装置 CONTは、入 力装置 INPから入力された接触角 Θの情報と、滑落角 αの情報とに基づいて、基板 Ρを露光するときの露光条件を決定する。すなわち、制御装置 CONTは、入力装置 I NPから入力された接触角 Θの情報と滑落角 αの情報とに基づいて、上述の実施形 態同様、値 Uを導出し、その導出した値 Uと、記憶装置 MRYに予め記憶されている 、値 Uから液浸領域 LRを所望状態に維持できる条件を導出する情報とに基づ ヽて、 露光処理されるべき基板 Ρに対する最適露光条件を決定する。もちろん、入力装置 I ΝΡから値 Uを入力して、最適露光条件を決定してもよい。
[0124] <第 6実施形態 >
次に第 6実施形態について説明する。本実施形態の特徴的な部分は、基板 Ρの表 面を傾斜させたときの基板 Ρの表面における液体 LQの後退接触角に基づいて、基 板 Ρを露光するときの露光条件を決定する点にある。
[0125] 本実施形態においては、制御装置 CONTは、基板 Pの表面を傾斜させたときの基 板 Pの表面における液体 LQの後退接触角 Θ に基づいて、基板 Pを露光するときの
R
露光条件を決定する。
[0126] 図 9の模式図を参照しながら後退接触角 Θ について説明する。後退接触角 Θ と は、物体の表面 (ここでは基板 Pの表面)に液体 LQの液滴を付着させた状態で、そ の物体の表面を水平面に対して傾斜させたとき、物体の表面に付着して 、た液体 L Qの液滴が、重力作用によって下方に滑り出す (移動を開始する)ときの、液滴の後 側の接触角を言う。換言すれば、後退接触角 Θ とは、液体 LQの液滴が付着した物
R
体の表面を傾けたとき、その液滴が滑り落ちる滑落角 αの臨界角度における、液滴 の後側の接触角を言う。なお、物体の表面に付着していた液体 LQの液滴力 重力 作用によって下方に滑り出す (移動を開始する)ときとは、液滴が移動を開始する瞬 間を意味するが、移動を開始する直前、及び移動を開始する直後の少なくとも一部 の状態であってもよい。
[0127] 本発明者は、基板 Ρの表面における液体 LQの後退接触角 Θ に応じても、基板 Ρ
R
上で液浸領域 LRを所望状態に維持可能な露光条件 (基板 Ρの移動条件、液浸条件 等)が変化することを見出した。すなわち、本発明者は、露光装置 ΕΧの最終光学素 子 LS 1と基板 Ρの膜との間を液体 LQで満たして基板 Ρ上に液体 LQの液浸領域 LR を形成したときに、液浸領域 LRを所望状態に維持できる露光条件が、基板 Ρの膜と 液体 LQとに対応する後退接触角 Θ に応じて変化することを見出した。したがって、
R
後退接触角 Θ
Rに応じて最適な露光条件を設定することによって、液体 LQの流出、 及び液体 LQ中での気泡の発生等の不具合を生じることなぐ基板 Ρを露光すること ができる。
[0128] 例えば、露光条件には基板 Ρの移動速度が含まれる。すなわち、露光装置 ΕΧの最 終光学素子 LSIと基板 Ρの膜との間を液体 LQで満たして、基板 P上に液体 LQの液 浸領域 LRを形成したときに、液浸領域 LRを所望状態に維持できる最大の速度 (許 容速度)が、基板 Pの膜と液体 LQとに対応する後退接触角 Θ に応じて変化する。し
R
たがって、後退接触角 Θ に対応する許容速度以下で基板 Pを移動すれば、液体 L
R
Qの流出、及び液体 LQ中での気泡の生成等の不具合の発生を抑えつつ、基板 Pを 露光することができる。
[0129] 後退接触角 0 は、上述の計測装置 60を用いて計測可能である。基板 Pの表面に
R
おける液体 LQの後退接触角 Θ を計測するとき、まず、計測装置 60は、保持部材 6
R
1に保持された基板 Pの表面が水平面 (XY平面)とほぼ平行となるように、駆動シス テム 65を介して保持部材 61の位置 (姿勢)を調整する。そして、計測装置 60は、水 平面とほぼ平行となって 、る基板 Pの表面に対して、滴下部材 62より液体 LQの液滴 を滴下する。そして、図 4を参照して説明した手順と同様、計測装置 60は、基板 Pの 表面に液滴を配置した状態で、その基板 Pを保持した保持部材 61を、駆動システム 65を用いて θ X方向に回転 (傾斜)する。保持部材 61の回転 (傾斜)に伴って、基板 Pの表面も回転 (傾斜)する。基板 Pの表面を回転 (傾斜)するにしたがって、基板 Pの 表面に付着して 、た液滴は、重力作用によって下方に滑り出す (移動を開始する)。 このとき、計測装置 60は、照明装置 64で基板 Pの表面に配置された液滴を照明する とともに、観察装置 63を使って液滴の画像を取得する。観察装置 63は、液滴が滑り 出したことを観察可能であり、取得した画像に関する画像情報を制御装置 CONTに 出力する。制御装置 CONTは、観察装置 63から出力された信号 (画像情報)に基づ V、て、基板 Pの表面の液滴が移動を開始した時点(滑り出した時点)を求めることがで きる。そして、制御装置 CONTは、観察装置 63から出力された信号を演算処理 (画 像処理)し、その処理結果に基づいて、基板 Pの表面における液体 LQの液滴の後 退接触角 Θ を求めることができる。こうして、基板 Pの表面における液体 LQの後退
R
接触角 Θ 1S 制御装置 CONTを含む計測装置 60によって計測される。
R
[0130] また、制御装置 CONTは、基板 Pの表面の液滴が移動を開始した時点での基板 P の表面の角度 (すなわち滑落角) αを、駆動システム 65による保持部材 61の駆動量 (傾斜量)より求めることができる。すなわち、制御装置 CONTは、観察装置 63から出 力された信号 (画像情報)と、駆動システム 65による保持部材 61の駆動量とに基づ いて、基板 Pの表面における液体 LQの液滴の滑落角ひを求めることができる。このよ うに、基板 Pの表面における液体 LQの滑落角 oc力 制御装置 CONTを含む計測装 置 60によって計測される。
[0131] また、制御装置 CONTは、観察装置 63から出力された信号 (画像情報)に基づい て、基板 Pの表面における液滴の画像を表示装置 DYで表示することができる。した がって、液滴の状態を表示装置 DYに表示し、目視によって、基板 Pの表面の液滴が 移動を開始したときの基板 Pの表面における液体 LQの後退接触角 Θ を計測しても
R
よい。 [0132] 図 10は後退接触角 Θ と許容速度との関係を導出するために行った実験結果を示
R
すものである。実験は、基板 P上の最上層(基板 Pの表面)に設けられる膜の種類を 変え、それら複数の種類の膜のそれぞれにおける液体 LQの後退接触角 Θ を計測
R
するとともに、各膜のそれぞれについての基板 Pの許容速度を求めた。なお、図 10の 実験例に示されて ヽる基板 Pの許容速度とは、光路空間 K1を液体 LQで満たしつつ 、液体 LQを流出させることなく(基板 P上に液体 LQの滴及び膜を残すことなく)、基 板 Pを移動させることができる速度である。また、図 10に示すように、本実験例では、 24種類の膜を用意し、それら複数の膜のそれぞれについての各データを取得した。
[0133] 上述のように、計測装置 60は、基板 Pの表面における液体 LQの後退接触角 0 を
R
計測可能であり、本実験例では、各膜の表面に数十マイクロリットル (例えば、 50マイ クロリットル)の液体 LQの滴をたらし、計測装置 60を用いて、各膜における液体 LQ の後退接触角 0
Rを求めた。
[0134] 図 11は後退接触角 0 と許容速度との関係を示す図、すなわち図 10の実験結果
R
をグラフ化したものである。図 11では、上述の実験結果に対応する点と、それら実験 結果をフィッティングした近似曲線とが示されている。図 11に示すように、基板 Pの表 面における液体 LQの後退接触角 Θ に応じて、許容速度が変化することが分かる。
R
具体的には、後退接触角 Θ
Rが大きくなるほど、許容速度が大きくなることが分力る。 したがって、基板 P上に、液体 LQに対する後退接触角 Θ が大きい膜を設けることに
R
より、最終光学素子 LSIと基板 P (膜)との間を液体 LQで満たした状態で、基板 Pを 高速に移動しつつ、その基板 Pを露光することができる。
[0135] 次に、計測装置 60を使った計測手順及び基板 Pを露光するときの露光手順の一例 について説明する。所定の膜を有する基板 Pを露光するとき、制御装置 CONTは、 その基板 Pを露光する前に、計測装置 60を用いて、基板 Pの表面 (膜)における液体 LQの後退接触角 Θ を計測する。そして、制御装置 CONTは、計測装置 60の計測
R
結果、すなわち後退接触角 Θ に基づいて、基板 Pを露光するときの露光条件を決定
R
する。本実施形態では、制御装置 CONTは、露光条件の一つとして、基板 Pを移動 するときの移動条件 (基板 Pの移動速度)を決定する。
[0136] ここで、記憶装置 MRYには、液体 LQの後退接触角 Θ に対応する基板 Pの許容 速度を導き出すための情報(関数、マップデータ等)が予め記憶されている。本実施 形態では、記憶装置 MRYは、液体 LQの後退接触角 Θ をパラメータとして、その後
R
退接触角 Θ に対応する基板 Pの許容速度を導出するための関数 (例えば、図 11の
R
近似曲線に対応する関数)が記憶されている。この後退接触角 Θ
Rに対応した基板 P の許容速度に関する情報は、予め実験又はシミュレーションによって求めることがで き、記憶装置 MRYに記憶される。
[0137] 制御装置 CONTは、計測装置 60の計測結果と、記憶装置 MRYの記憶情報とに 基づいて、基板 Pを露光するときの露光条件 (基板 Pの移動速度)を決定する。すな わち、制御装置 CONTは、求めた液体 LQの後退接触角 Θ と、記憶装置 MRYに予
R
め記憶されている、液体 LQの後退接触角 Θ に対応した基板 Pの許容速度に関する
R
情報とに基づいて、露光処理されるべき基板 Pの最適移動速度を、許容速度を超え ないように、決定する。
[0138] そして、制御装置 CONTは、決定した露光条件 (基板 Pの移動速度)に基づ!/、て、 基板 Pを液浸露光する。例えば、液体 LQの後退接触角 Θ
R力 、さい場合、基板 Pの 移動速度を高速化すると、光路空間 K1を液体 LQで良好に満たすことが困難となる 可能性があるため、制御装置 CONTは、液体 LQの後退接触角 Θ に応じて、基板 P
R
の移動速度を遅くする。こうすることにより、光路空間 K1を液体 LQで良好に満たした 状態で、基板 Pを露光することができる。一方、液体 LQの後退接触角 Θ
Rが大きい場 合には、基板 Pの移動速度を高速ィ匕することができ、スループットを向上することがで きる。
[0139] なお、スループットを考慮すれば、基板 Pの移動速度は、後退接触角 Θ に対応す
R
る許容速度に設定されることが望まし ヽ。
[0140] また、基板 Pの移動速度は、基板 P上に露光光 ELが照射されている露光中の移動 速度 (スキャン速度)だけでなぐショット間に行われるステッピング中の移動速度 (ス テツビング速度)も含む。
[0141] 以上説明したように、基板 Pの表面における液体 LQの後退接触角 0 に基づいて
R
、基板 Pを露光するときの露光条件を決定するようにしたので、異なる種類の膜が形 成された複数の基板 Pのそれぞれに対して液浸露光を良好に行うことができる。した 力 て、液浸露光装置 EXの汎用性を向上することができる。
[0142] なお、本実施形態では、液体 LQの後退接触角 Θ に基づいて、基板 Pの移動速度
R
を決定しているが、基板 Pの加速度、減速度、移動方向(移動軌跡)、及び一方向へ の連続的な移動距離の少なくとも一部を決定することができる。すなわち、基板 P上 で液浸領域 LRを所望状態に維持可能な最大の加速度、最大の減速度、最大の移 動距離の少なくとも一部と後退接触角 Θ との関係を予め求めておき、基板 Pの膜と
R
液体 LQとに対応する後退接触角 Θ から求められる許容値を超えないように、加速
R
度、減速度、移動距離の少なくとも一部を決定してもよい。また、後退接触角 Θ
Rが小 さい場合、基板 Pの移動方向によっては、液浸領域 LRを所望状態に維持できない可 能性もあるので、後退接触角 Θ に応じて、基板 Pの移動方向を制限したり、基板 Pを
R
所定方向へ移動するときの速度をその他の方向へ移動するときの速度よりも小さくす るようにしてちょい。
[0143] また、値 Θ に基づ!/、て、液浸領域 LRを形成するために液体 LQを供給するときの
R
供給条件、及び液浸領域 LRを形成する液体 LQを回収するときの回収条件を含む、 液浸領域 LRを形成するときの液浸条件を決定することができる。例えば、基板 P上で 液浸領域 LRを所望状態に維持可能な最大の液体供給量と後退接触角 Θ との関係
R
を予め求めておけば、後退接触角 Θ カゝら求められる許容値を超えないように液体 L
R
Qの供給量を決定してもよ 、。
[0144] また、第 6実施形態において、液体 LQの後退接触角 Θ の許容範囲を設定し、基
R
板 Pを露光する前に、その基板 Pが液体 (純水) LQに対して許容範囲の後退接触角 Θ となる膜を有するか否か、すなわち液浸露光処理するのに適当な膜を有する基
R
板 Pか否かを判断するようにしてもよい。
[0145] なお、上述の第 6実施形態においては、デバイスを製造するために実際に露光され る基板 Pの表面に液体 LQの液滴を配置し、その基板 Pを傾斜させたときの液滴の状 態を計測装置 60で計測するように説明したが、例えば実際に露光される基板 Pの表 面とほぼ同様の表面を有する物体 (例えばテスト基板等)上に液滴を配置し、その物 体の表面を傾斜させたときの液滴の状態を計測するようにしてもょ 、。
[0146] <第 7実施形態 > また、上述の第 6実施形態において、露光装置 EX内に計測装置 60を搭載せずに 、基板 Pの表面における液体 LQの後退接触角 Θ を露光装置 EXとは別の装置で計
R
測することができる。そして、基板 Pを露光するときの露光条件を決定するために、基 板 Pの表面における液体 LQの後退接触角 Θ の情報が、入力装置 INPを介して制
R
御装置 CONTに入力される。制御装置 CONTは、入力装置 INPから入力された後 退接触角 Θ の情報に基づいて、基板 Pを露光するときの露光条件を決定する。すな
R
わち、制御装置 CONTは、入力装置 INPから入力された後退接触角 Θ の情報と、
R
記憶装置 MRYに予め記憶されている、後退接触角 Θ から液浸領域 LRを所望状態
R
に維持可能な条件を導出するための情報とに基づいて、露光処理されるべき基板 P に対する最適露光条件を決定する。
[0147] なお、上述の第 1〜第 7実施形態において、記憶装置 MRYの記憶情報を随時更 新するよう〖こしてもよい。例えば、記憶装置 MRYに記憶されてない更に異なる種類 の膜を有する基板 Pを露光するときには、この新たな膜について実験又はシミュレ一 シヨンを行って付着力 (静的な接触角及び滑落角)に対応した露光条件を求め、記 憶装置 MRYに記憶されている記憶情報を更新すればよい。同様に、新たな膜につ いて実験又はシミュレーションを行って後退接触角に対応した露光条件を求め、記 憶装置 MRYに記憶されている記憶情報を更新すればよい。また、記憶情報の更新 には、例えばインターネットを含む通信装置を介して、露光装置 EX (記憶装置 MRY )に対して遠隔地より行うことも可能である。
[0148] また、上述の第 1〜第 7実施形態において、付着力 E (静的な接触角及び滑落角) 、又は後退接触角に基づいて基板 Pの移動条件を決定した場合、その移動条件に 基づいて、ドーズ制御パラメータが調整される。すなわち、制御装置 CONTは、決定 された基板 Pの移動条件に基づいて、露光光 ELの光量 (強度)、レーザ光のパルス 発振周期、露光光 ELが照射される投影領域 ARの走査方向の幅の少なくとも一つを 調整して、基板 P上の各ショット領域に対するドーズ量を最適化する。
[0149] また、上述の第 1〜第 7実施形態において、基板 P表面の膜の付着力 E、静的な接 触角 Θ、滑落角 o、後退接触角 Θ などが、露光光 ELの照射の前後で変化する場
R
合には、露光光 ELの照射の前後で基板 Pの移動条件及び液浸条件などを変更する ようにしてもよい。基板 P表面の膜の付着力 E、静的な接触角 Θ、滑落角 α、後退接 触角 Θ などが露光光 ELの照射の有無、液体 LQとの接触時間、基板 Ρ表面の膜が
R
形成されてからの経過時間の少なくとも一つに応じて変化する場合には、露光光 EL の照射の有無、液体 LQとの接触時間、基板 Ρ表面の膜が形成されてからの経過時 間の少なくとも一つを考慮して、基板 Ρの移動条件及び液浸条件などの露光条件を 決定するのが望ましい。
[0150] また、上述の第 1〜第 7実施形態において、付着力 Ε (静的な接触角 Θ及び滑落角
a )、又は後退接触角 Θ に基づ!/ヽて露光条件を決定するようにして ヽるが、液体 LQ
R
の他の物性 (粘性、揮発性、耐液性、表面張力、屈折率の温度依存性 (dnZdT)、 雰囲気の溶存性 (液体 LQと接触する気体の液体 LQ中への溶けやすさなど)も考慮 して、露光条件を決定するようにしてもよい。
[0151] また、上述の第 1〜第 7実施形態において、付着力 E (静的な接触角 Θ及び滑落角
a )、又は後退接触角 Θ
Rに基づ!/ヽて露光条件を決定するようにして ヽるが、基板 P 表面に形成される膜と液体との界面におけるすべり状態 (例えば、基板 P上に液浸領 域が形成されて ヽる状態で、基板 P表面とほぼ平行に基板 Pを所定速度で移動した ときに生じる、膜と液体との界面における膜と液体との相対速度)に基づいて露光条 件を決定するようにしてもょ ヽ。
[0152] また、上述の第 1〜第 7実施形態において、基板 P表面の膜に応じて基板 Pの移動 条件及び液浸条件などを決定しているが、基板ステージ PSTの上面 97など、基板 P 以外の他の物体上に液浸領域を形成する場合には、その物体表面の膜に応じて、 基板ステージ PSTの移動条件及び基板ステージ PST上での液浸条件などを決定す るのが望ましい。
[0153] 上述したように、本実施形態における液体 LQは純水である。純水は、半導体製造 工場等で容易に大量に入手できるとともに、基板 P上のフォトレジスト及び ·又は光学 素子 (レンズ)等に対する悪影響がない利点がある。また、純水は環境に対する悪影 響がないとともに、不純物の含有量が極めて低いため、基板 Pの表面、及び投影光 学系 PLの先端面に設けられている光学素子の表面を洗浄する作用も期待できる。
[0154] そして、波長が 193nm程度の露光光 ELに対する純水(水)の屈折率 nはほぼ 1. 4 4程度と言われており、露光光 ELの光源として ArFエキシマレーザ光(波長 193nm) を用いた場合、基板 P上では lZn、すなわち約 134nmに短波長化されて高い解像 度が得られる。更に、焦点深度は空気中に比べて約 n倍、すなわち約 1. 44倍に拡 大されるため、空気中で使用する場合と同程度の焦点深度が確保できればよい場合 には、投影光学系 PLの開口数をより増加させることができ、この点でも解像度が向上 する。
[0155] 本実施形態では、投影光学系 PLの先端に光学素子 LSIが取り付けられており、こ の光学素子により投影光学系 PLの光学特性、例えば収差 (球面収差、コマ収差等) の調整を行うことができる。なお、投影光学系 PLの先端に取り付ける光学素子として は、投影光学系 PLの光学特性の調整に用いる光学プレートであってもよい。あるい は露光光 ELを透過可能な平行平面板であってもよい。
[0156] なお、液体 LQの流れによって生じる投影光学系 PLの先端の光学素子と基板 Pと の間の圧力が大きい場合には、その光学素子を交換可能とするのではなぐその圧 力によって光学素子が動かな 、ように堅固に固定してもよ 、。
[0157] なお、本実施形態では、投影光学系 PLと基板 P表面との間は液体 LQで満たされ ている構成であるが、例えば基板 Pの表面に平行平面板力もなるカバーガラスを取り 付けた状態で液体 LQを満たす構成であってもよ ヽ。
[0158] また、上述の実施形態の投影光学系は、先端の光学素子の像面側の光路空間を 液体で満たしているが、国際公開第 2004Z019128号パンフレットに開示されてい るように、先端の光学素子の物体面側の光路空間も液体で満たす投影光学系を採 用することちでさる。
[0159] なお、本実施形態の液体 LQは水である力 上述したように水以外の液体であって もよい、例えば、露光光 ELの光源が Fレーザである場合、この Fレーザ光は水を透
2 2
過しないので、液体 LQとしては Fレーザ光を透過可能な例えば、過フッ化ポリエー
2
テル(PFPE)ある!/、はフッ素系オイル等のフッ素系流体であってもよ 、。この場合、 液体 LQと接触する部分には、例えばフッ素を含む極性の小さ!/、分子構造の物質で 薄膜を形成することで親液化処理する。また、液体 LQとしては、その他にも、露光光 ELに対する透過性があってできるだけ屈折率が高ぐ投影光学系 PL、及び Z又は 基板 P表面に塗布されているフォトレジストに対して安定なもの(例えばセダー油)を 用いることも可能である。
[0160] また、液体 LQとしては、屈折率が 1. 6〜1. 8程度のものを使用してもよい。更に、 石英及び蛍石よりも屈折率が高い(例えば 1. 6以上)材料で光学素子 LSIを形成し てもよい。
[0161] なお、上記各実施形態の基板 Pとしては、半導体デバイス製造用の半導体ウェハ のみならず、ディスプレイデバイス用のガラス基板、薄膜磁気ヘッド用のセラミックゥェ ノ、、あるいは露光装置で用いられるマスクまたはレチクルの原版 (合成石英、シリコン ウェハ)等が適用される。
[0162] 露光装置 EXとしては、マスク Mと基板 Pとを同期移動してマスク Mのパターンを走 查露光するステップ ·アンド'スキャン方式の走査型露光装置 (スキャニングステツパ) の他に、マスク Mと基板 Pとを静止した状態でマスク Mのパターンを一括露光し、基 板 Pを順次ステップ移動させるステップ ·アンド ·リピート方式の投影露光装置 (ステツ ノ )にも適用することができる。
[0163] また、露光装置 EXとしては、第 1パターンと基板 Pとをほぼ静止した状態で第 1バタ ーンの縮小像を投影光学系 (例えば 1Z8縮小倍率で反射素子を含まな 、屈折型投 影光学系)を用 、て基板 P上に一括露光する方式の露光装置にも適用できる。この 場合、更にその後に、第 2パターンと基板 Pとをほぼ静止した状態で第 2パターンの 縮小像をその投影光学系を用いて、第 1パターンと部分的に重ねて基板 P上に一括 露光するスティツチ方式の一括露光装置にも適用できる。また、ステイッチ方式の露 光装置としては、基板 P上で少なくとも 2つのパターンを部分的に重ねて転写し、基 板 Pを順次移動させるステップ 'アンド'ステイッチ方式の露光装置にも適用できる。
[0164] また、本発明は、特開平 10— 163099号公報、特開平 10— 214783号公報、特表 2000— 505958号公報などに開示されているような複数の基板ステージを備えたッ インステージ型の露光装置にも適用できる。
[0165] 更に、特開平 11— 135400号公報及び特開 2000— 164504号公報に開示され て ヽるように、基板を保持する基板ステージと基準マークが形成された基準部材及び 各種の光電センサを搭載した計測ステージとを備えた露光装置にも本発明を適用す ることがでさる。
[0166] また、上述の実施形態においては、投影光学系 PLと基板 Pとの間に局所的に液体 を満たす露光装置を採用しているが、本発明は、特開平 6— 124873号公報、特開 平 10— 303114号公報、米国特許第 5, 825, 043号などに開示されているような露 光対象の基板の表面全体が液体中に浸力つて 、る状態で露光を行う液浸露光装置 にも適用可能である。
[0167] 露光装置 EXの種類としては、基板 Pに半導体素子パターンを露光する半導体素 子製造用の露光装置に限られず、液晶表示素子製造用又はディスプレイ製造用の 露光装置、薄膜磁気ヘッド、撮像素子 (CCD)あるいはレチクル又はマスクなどを製 造するための露光装置などにも広く適用できる。
[0168] なお、上述の実施形態においては、光透過性の基板上に所定の遮光パターン (又 は位相パターン '減光パターン)を形成した光透過型マスクを用いた力 このマスクに 代えて、例えば米国特許第 6, 778, 257号公報に開示されているように、露光すベ きパターンの電子データに基づ 、て透過パターン又は反射パターン、あるいは発光 パターンを形成する電子マスクを用いてもょ 、。
[0169] また、国際公開第 2001Z035168号パンフレットに開示されているように、干渉縞 を基板 P上に形成することによって、基板 P上にライン 'アンド'スペースパターンを露 光する露光装置 (リソグラフィシステム)にも本発明を適用することができる。
[0170] 本願実施形態の露光装置 EXは、本願特許請求の範囲に挙げられた各構成要素 を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精度を保つよ うに、組み立てることで製造される。これら各種精度を確保するために、この組み立て の前後には、各種光学系については光学的精度を達成するための調整、各種機械 系につ 、ては機械的精度を達成するための調整、各種電気系につ 、ては電気的精 度を達成するための調整が行われる。各種サブシステム力 露光装置への組み立て 工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、気圧回路の 配管接続等が含まれる。この各種サブシステム力 露光装置への組み立て工程の前 に、各サブシステム個々の組み立て工程があることはいうまでもない。各種サブシス テムの露光装置への組み立て工程が終了したら、総合調整が行われ、露光装置全 体としての各種精度が確保される。なお、露光装置の製造は温度およびクリーン度等 が管理されたクリーンルームで行うことが望ましい。
半導体デバイス等のマイクロデバイスは、図 12に示すように、マイクロデバイスの機 能 ·性能設計を行うステップ 201、この設計ステップに基づいたマスク(レチクル)を製 作するステップ 202、デバイスの基材である基板を製造するステップ 203、前述した 実施形態の露光装置 EXによりマスクのパターンを基板に露光する処理を含むステツ プ 204、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ 工程を含む) 205、検査ステップ 206等を経て製造される。

Claims

請求の範囲
[1] 基板上に液体の液浸領域を形成する工程と、
前記基板の表面と前記液体との間に作用する付着力に応じて露光条件を決定す る工程と、
前記露光条件に基づいて前記液浸領域の前記液体を介して前記基板を露光する 工程と、を有する露光方法。
[2] 前記付着力は、前記基板表面における前記液体の静的な接触角、及び前記基板 表面における前記液体の滑落角に応じて定められる請求項 1記載の露光方法。
[3] 前記付着力 Eは、
E= (m X g X sin a ) / (2 X π X R)である請求項 1又は 2記載の露光方法。 但し、
m:基板上での液体の液滴の質量、
g :重力加速度、
:水平面に対する滑落角、
R:基板上での液体の液滴の半径、である。
[4] 基板上に液体の液浸領域を形成する工程と、
前記基板の表面における前記液体の静的な接触角と、前記基板表面における前 記液体の滑落角とに基づ!、て露光条件を決定する工程と、
前記露光条件に基づいて前記液浸領域の前記液体を介して前記基板を露光する 工程と、を有する露光方法。
[5] 前記露光条件を、式( Θ — t X α )に基づ 、て決定する請求項 4記載の露光方法。
但し、
Θ:前記基板表面における前記液体の静的な接触角、
a:前記基板表面における前記液体の滑落角、
t :所定の定数、である。
[6] 前記露光条件の前記決定は、
前記基板表面における前記液体の静的な接触角を計測する工程と、
前記基板表面における前記液体の滑落角を計測する工程とを有する請求項 2〜5 の!、ずれか一項記載の露光方法。
[7] 基板上に液体の液浸領域を形成する工程と、
前記基板が傾斜したときの前記基板の表面における前記液体の後退接触角に基 づいて露光条件を決定する工程と、
前記露光条件に基づいて前記液浸領域の前記液体を介して前記基板を露光する 工程と、を有する露光方法。
[8] 前記基板の前記露光は、前記基板を移動しながら前記液体を介して前記基板に 露光光を照射する工程を有し、
前記露光条件は、前記基板を移動するときの移動条件を含む請求項 1〜7のいず れか一項記載の露光方法。
[9] 前記移動条件は、前記基板の移動速度、及び加速度の少なくとも一方を含む請求 項 8記載の露光方法。
[10] 前記露光条件は、前記液浸領域を形成するときの液浸条件を含む請求項 1〜9の
V、ずれか一項記載の露光方法。
[11] 前記液浸条件は、前記液浸領域への前記液体の供給条件を含む請求項 10記載 の露光方法。
[12] 前記供給条件は、単位時間当たりの液体供給量を含む請求項 11記載の露光方法
[13] 請求項 1〜請求項 12のいずれか一項記載の露光方法を用いるデバイス製造方法
[14] 基板上に形成された液浸領域の液体を介して前記基板を露光する露光装置にお いて、
前記基板の表面と前記液体との間に作用する付着力を計測する計測装置を備え た露光装置。
[15] 前記計測装置は、前記基板表面における前記液体の静的な接触角を計測する第 1計測器と、前記基板表面における前記液体の滑落角を計測する第 2計測器とを有 する請求項 14記載の露光装置。
[16] 基板上に形成された液浸領域の液体を介して前記基板を露光する露光装置にお いて、
前記基板が傾斜したときの前記基板の表面における前記液体の後退接触角を計 測する計測装置を備えた露光装置。
[17] 前記付着力に対応した情報を予め記憶した記憶装置と、
前記計測装置の計測結果と、前記記憶装置の記憶情報とに基づいて、露光条件を 決定する制御装置とをさらに備えた請求項 14又は 15記載の露光装置。
[18] 前記計測装置の計測結果に基づいて、露光条件を決定する制御装置をさらに備え た請求項 14又は 15記載の露光装置。
[19] 前記後退接触角に対応した情報を予め記憶した記憶装置と、
前記計測装置の計測結果と、前記記憶装置の記憶情報とに基づいて、露光条件を 決定する制御装置とをさらに備えた請求項 16記載の露光装置。
[20] 前記計測装置の計測結果に基づいて、露光条件を決定する制御装置をさらに備え た請求項 16記載の露光装置。
[21] 基板上に形成された液浸領域の液体を介して前記基板を露光する露光装置にお いて、
前記基板の表面における前記液体の静的な接触角を計測する第 1計測装置と、 前記基板表面における前記液体の滑落角を計測する第 2計測装置と、 前記第 1計測装置の計測結果と、前記第 2計測装置の計測結果とに基づいて、露 光条件を決定する制御装置とを備えた露光装置。
[22] 基板上に形成された液浸領域の液体を介して前記基板を露光する露光装置にお いて、
前記基板の表面における前記液体の静的な接触角の情報と、前記基板表面にお ける前記液体の滑落角の情報とを入力するための入力装置と、
前記入力装置から入力された前記接触角の情報と前記滑落角の情報とに基づい て、露光条件を決定する制御装置とを備えた露光装置。
[23] 前記静的な接触角と前記滑落角とに対応した情報を記憶する記憶装置をさらに備 え、
前記制御装置は、前記静的な接触角及び前記滑落角の情報と、前記記憶装置の 記憶情報とに基づいて、前記露光条件を決定する請求項 21又は 22記載の露光装 置。
[24] 前記制御装置は、式( Θ— t X α )に基づ 、て前記露光条件を決定する請求項 21 〜23の 、ずれか一項記載の露光装置。
但し、
Θ:前記基板表面における前記液体の静的な接触角、
a:前記基板表面における前記液体の滑落角、
t :所定の定数、である。
[25] 基板上に形成された液浸領域の液体を介して前記基板を露光する露光装置にお いて、
前記基板表面が傾斜したときの前記基板の表面における前記液体の後退接触角 の情報を入力するための入力装置と、
前記入力装置から入力された前記後退接触角の情報に基づいて、露光条件を決 定する制御装置とを備えた露光装置。
[26] 前記後退接触角に対応した情報を記憶する記憶装置をさらに備え、
前記制御装置は、前記入力装置から入力された後退接触角の情報と、前記記憶 装置の記憶情報とに基づいて、前記露光条件を決定する請求項 25記載の露光装置
[27] 前記基板を保持して移動可能な可動部材をさらに備え、
前記制御装置は、前記露光条件に基づいて、前記可動部材の動作を制御する請 求項 17〜26のいずれか一項記載の露光装置。
[28] 前記液浸領域を形成可能な液浸機構をさらに備え、
前記制御装置は、前記露光条件に基づいて、前記液浸機構の動作を制御する請 求項 17〜27のいずれか一項記載の露光装置。
[29] 請求項 14〜請求項 28の 、ずれか一項記載の露光装置を用いるデバイス製造方 法。
[30] 液体を介して露光される基板に形成されて!ヽる膜の評価方法であって、
前記膜と前記液体との間に作用する付着力を測定する工程と、 測定された前記付着力の値と、露光条件に基づいて定められた前記付着力の許 容範囲との比較に基づいて、前記露光条件に対する前記膜の適性を判定する工程 と、を有する膜の評価方法。
[31] 前記付着力は、前記膜の表面における前記液体の静的な接触角、及び前記膜表 面における前記液体の滑落角に応じて定められる請求項 30に記載の評価方法。
[32] 液体を介して露光される基板に形成されて!ヽる膜の評価方法であって、
前記基板が傾斜したときの前記膜の表面における前記液体の後退接触角を測定 する工程と、
測定された前記後退接触角の値と、露光条件に基づいて定められた前記後退接 触角の許容範囲との比較に基づいて、前記露光条件に対する前記膜の適性を判定 する工程と、を有する膜の評価方法。
PCT/JP2006/308648 2005-04-27 2006-04-25 露光方法、露光装置、デバイス製造方法、及び膜の評価方法 WO2006118108A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2006800109135A CN101156226B (zh) 2005-04-27 2006-04-25 曝光方法、曝光装置、组件制造方法、以及膜的评估方法
EP06745676A EP1879219A4 (en) 2005-04-27 2006-04-25 EXPOSURE METHOD, EXPOSURE DEVICE, METHOD FOR MANUFACTURING COMPONENTS AND FILM EVALUATION METHOD
US11/919,351 US20080246937A1 (en) 2005-04-27 2006-04-25 Exposing Method, Exposure Apparatus, Device Fabricating Method, and Film Evaluating Method
JP2006521748A JP4918858B2 (ja) 2005-04-27 2006-04-25 露光方法、露光装置、デバイス製造方法、及び膜の評価方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005129517 2005-04-27
JP2005-129517 2005-04-27
JP2005-211319 2005-07-21
JP2005211319 2005-07-21

Publications (1)

Publication Number Publication Date
WO2006118108A1 true WO2006118108A1 (ja) 2006-11-09

Family

ID=37307908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/308648 WO2006118108A1 (ja) 2005-04-27 2006-04-25 露光方法、露光装置、デバイス製造方法、及び膜の評価方法

Country Status (7)

Country Link
US (1) US20080246937A1 (ja)
EP (1) EP1879219A4 (ja)
JP (2) JP4918858B2 (ja)
KR (1) KR20080005362A (ja)
CN (2) CN102520592A (ja)
TW (1) TW200705113A (ja)
WO (1) WO2006118108A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008124194A (ja) * 2006-11-10 2008-05-29 Canon Inc 液浸露光方法および液浸露光装置
JP2008130597A (ja) * 2006-11-16 2008-06-05 Nikon Corp 表面処理方法及び表面処理装置、露光方法及び露光装置、並びにデバイス製造方法
JP2008258612A (ja) * 2007-04-05 2008-10-23 Asml Netherlands Bv 座標変換を伴う駆動システムを有するリソグラフィ装置、およびデバイス製造方法
JP2008300771A (ja) * 2007-06-04 2008-12-11 Nikon Corp 液浸露光装置、デバイス製造方法、及び露光条件の決定方法
JP2008300772A (ja) * 2007-06-04 2008-12-11 Nikon Corp 液浸露光装置、デバイス製造方法、及び評価方法
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
WO2013085055A1 (ja) * 2011-12-08 2013-06-13 株式会社ニコン 露光装置及び露光方法
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US8675177B2 (en) 2003-04-09 2014-03-18 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in first and second pairs of areas
US8854601B2 (en) 2005-05-12 2014-10-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9057963B2 (en) 2007-09-14 2015-06-16 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US9097981B2 (en) 2007-10-12 2015-08-04 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9140992B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9164209B2 (en) 2003-11-20 2015-10-20 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thicknesses to rotate linear polarization direction

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2221669A3 (en) * 2009-02-19 2011-02-09 ASML Netherlands B.V. A lithographic apparatus, a method of controlling the apparatus and a device manufacturing method
EP2264529A3 (en) * 2009-06-16 2011-02-09 ASML Netherlands B.V. A lithographic apparatus, a method of controlling the apparatus and a method of manufacturing a device using a lithographic apparatus
US9268231B2 (en) * 2012-04-10 2016-02-23 Nikon Corporation Liquid immersion member, exposure apparatus, exposing method, method for manufacturing device, program, and recording medium
WO2018192710A1 (en) 2017-04-20 2018-10-25 Asml Netherlands B.V. Method of performance testing a fluid handling structure
CN111693406A (zh) * 2020-05-11 2020-09-22 江苏大学 一种材料表面润湿性接触角及滚动角的测量装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003270117A (ja) * 2002-03-12 2003-09-25 Seiko Epson Corp 動的接触角の測定方法および測定装置
JP2004207711A (ja) * 2002-12-10 2004-07-22 Nikon Corp 露光装置及び露光方法、デバイス製造方法
JP2005012195A (ja) * 2003-05-23 2005-01-13 Nikon Corp 露光装置、並びにデバイス製造方法
WO2005076321A1 (ja) * 2004-02-03 2005-08-18 Nikon Corporation 露光装置及びデバイス製造方法
JP2005223315A (ja) * 2004-01-05 2005-08-18 Nikon Corp 露光装置、露光方法及びデバイス製造方法
JP2005252246A (ja) * 2004-02-04 2005-09-15 Nikon Corp 露光装置及び方法、位置制御方法、並びにデバイス製造方法
JP2005286286A (ja) * 2004-03-04 2005-10-13 Nikon Corp 露光方法及び露光装置、デバイス製造方法
WO2005124833A1 (ja) * 2004-06-21 2005-12-29 Nikon Corporation 露光装置及びその部材の洗浄方法、露光装置のメンテナンス方法、メンテナンス機器、並びにデバイス製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4346164A (en) * 1980-10-06 1982-08-24 Werner Tabarelli Photolithographic method for the manufacture of integrated circuits
JPS57153433A (en) * 1981-03-18 1982-09-22 Hitachi Ltd Manufacturing device for semiconductor
JP2753930B2 (ja) * 1992-11-27 1998-05-20 キヤノン株式会社 液浸式投影露光装置
JPH08316124A (ja) * 1995-05-19 1996-11-29 Hitachi Ltd 投影露光方法及び露光装置
US5825043A (en) * 1996-10-07 1998-10-20 Nikon Precision Inc. Focusing and tilting adjustment system for lithography aligner, manufacturing apparatus or inspection apparatus
DE69735016T2 (de) * 1996-12-24 2006-08-17 Asml Netherlands B.V. Lithographisches Gerät mit zwei Objekthaltern
US6500553B1 (en) * 1999-11-16 2002-12-31 Asahi Glass Company, Limited Substrate having treated surface layers and process for producing it
TW529172B (en) * 2001-07-24 2003-04-21 Asml Netherlands Bv Imaging apparatus
CN101470360B (zh) * 2002-11-12 2013-07-24 Asml荷兰有限公司 光刻装置和器件制造方法
KR101036114B1 (ko) * 2002-12-10 2011-05-23 가부시키가이샤 니콘 노광장치 및 노광방법, 디바이스 제조방법
TW201415536A (zh) * 2003-05-23 2014-04-16 尼康股份有限公司 曝光方法及曝光裝置以及元件製造方法
JP4385675B2 (ja) * 2003-07-31 2009-12-16 セイコーエプソン株式会社 インクジェットヘッドの製造方法
US20070058146A1 (en) * 2004-02-04 2007-03-15 Nikon Corporation Exposure apparatus, exposure method, position control method, and method for producing device
US7119035B2 (en) * 2004-11-22 2006-10-10 Taiwan Semiconductor Manufacturing Company, Ltd. Method using specific contact angle for immersion lithography
KR20070116610A (ko) * 2005-02-22 2007-12-10 프로메러스, 엘엘씨 노르보르넨-타입 폴리머, 이들의 조성물 및 그러한조성물을 사용하는 리소그라피 프로세스
JP2006270057A (ja) * 2005-02-28 2006-10-05 Canon Inc 露光装置
US8111374B2 (en) * 2005-09-09 2012-02-07 Nikon Corporation Analysis method, exposure method, and device manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003270117A (ja) * 2002-03-12 2003-09-25 Seiko Epson Corp 動的接触角の測定方法および測定装置
JP2004207711A (ja) * 2002-12-10 2004-07-22 Nikon Corp 露光装置及び露光方法、デバイス製造方法
JP2005012195A (ja) * 2003-05-23 2005-01-13 Nikon Corp 露光装置、並びにデバイス製造方法
JP2005223315A (ja) * 2004-01-05 2005-08-18 Nikon Corp 露光装置、露光方法及びデバイス製造方法
WO2005076321A1 (ja) * 2004-02-03 2005-08-18 Nikon Corporation 露光装置及びデバイス製造方法
JP2005252246A (ja) * 2004-02-04 2005-09-15 Nikon Corp 露光装置及び方法、位置制御方法、並びにデバイス製造方法
JP2005286286A (ja) * 2004-03-04 2005-10-13 Nikon Corp 露光方法及び露光装置、デバイス製造方法
WO2005124833A1 (ja) * 2004-06-21 2005-12-29 Nikon Corporation 露光装置及びその部材の洗浄方法、露光装置のメンテナンス方法、メンテナンス機器、並びにデバイス製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1879219A4 *

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US8675177B2 (en) 2003-04-09 2014-03-18 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in first and second pairs of areas
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9164393B2 (en) 2003-04-09 2015-10-20 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in four areas
US9146474B2 (en) 2003-04-09 2015-09-29 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger and different linear polarization states in an on-axis area and a plurality of off-axis areas
US9423697B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9140992B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9140993B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9244359B2 (en) 2003-10-28 2016-01-26 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9146476B2 (en) 2003-10-28 2015-09-29 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9164209B2 (en) 2003-11-20 2015-10-20 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thicknesses to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9140990B2 (en) 2004-02-06 2015-09-22 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9423694B2 (en) 2004-02-06 2016-08-23 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9429848B2 (en) 2004-02-06 2016-08-30 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9360763B2 (en) 2005-05-12 2016-06-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9310696B2 (en) 2005-05-12 2016-04-12 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US8854601B2 (en) 2005-05-12 2014-10-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9429851B2 (en) 2005-05-12 2016-08-30 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
JP2008124194A (ja) * 2006-11-10 2008-05-29 Canon Inc 液浸露光方法および液浸露光装置
JP2008130597A (ja) * 2006-11-16 2008-06-05 Nikon Corp 表面処理方法及び表面処理装置、露光方法及び露光装置、並びにデバイス製造方法
JP2008258612A (ja) * 2007-04-05 2008-10-23 Asml Netherlands Bv 座標変換を伴う駆動システムを有するリソグラフィ装置、およびデバイス製造方法
JP2008300771A (ja) * 2007-06-04 2008-12-11 Nikon Corp 液浸露光装置、デバイス製造方法、及び露光条件の決定方法
JP2008300772A (ja) * 2007-06-04 2008-12-11 Nikon Corp 液浸露光装置、デバイス製造方法、及び評価方法
US9057963B2 (en) 2007-09-14 2015-06-16 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US9366970B2 (en) 2007-09-14 2016-06-14 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US9097981B2 (en) 2007-10-12 2015-08-04 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9057877B2 (en) 2007-10-24 2015-06-16 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
JPWO2013085055A1 (ja) * 2011-12-08 2015-04-27 株式会社ニコン 露光装置及び露光方法
WO2013085055A1 (ja) * 2011-12-08 2013-06-13 株式会社ニコン 露光装置及び露光方法

Also Published As

Publication number Publication date
KR20080005362A (ko) 2008-01-11
EP1879219A4 (en) 2012-08-08
EP1879219A1 (en) 2008-01-16
CN101156226A (zh) 2008-04-02
JPWO2006118108A1 (ja) 2008-12-18
JP2012049572A (ja) 2012-03-08
JP4918858B2 (ja) 2012-04-18
TW200705113A (en) 2007-02-01
US20080246937A1 (en) 2008-10-09
CN102520592A (zh) 2012-06-27
CN101156226B (zh) 2012-03-14

Similar Documents

Publication Publication Date Title
JP4918858B2 (ja) 露光方法、露光装置、デバイス製造方法、及び膜の評価方法
JP4802604B2 (ja) 露光装置、露光方法、及びデバイス製造方法
JP4888388B2 (ja) 露光方法、露光装置、及びデバイス製造方法
US7705968B2 (en) Plate member, substrate holding device, exposure apparatus and method, and device manufacturing method
TWI421911B (zh) An exposure method, an exposure apparatus, and an element manufacturing method
JP4872916B2 (ja) 露光装置及び露光方法、並びにデバイス製造方法
WO2007129753A1 (ja) 露光装置及びデバイス製造方法
US20110019170A1 (en) Projection exposure apparatus and stage unit, and exposure method
JP2007335662A (ja) 露光装置
WO2006106832A1 (ja) 露光条件の決定方法、露光方法及び露光装置、並びにデバイス製造方法
JP4946109B2 (ja) 露光方法、露光装置、及びデバイス製造方法
JP4565271B2 (ja) 露光方法、露光装置、及びデバイス製造方法
WO2006106907A1 (ja) 露光装置、露光方法及びデバイス製造方法
WO2006137440A1 (ja) 計測装置及び露光装置、並びにデバイス製造方法
KR20170091789A (ko) 스테이지 장치, 노광 장치, 노광 방법, 및 디바이스 제조 방법
US8111374B2 (en) Analysis method, exposure method, and device manufacturing method
JP4858062B2 (ja) 露光方法、露光装置、デバイス製造方法、及び膜の評価方法
US20070081133A1 (en) Projection exposure apparatus and stage unit, and exposure method
JP4752374B2 (ja) 露光装置、液体保持方法、及びデバイス製造方法
JP5375843B2 (ja) 露光装置、露光方法、及びデバイス製造方法
WO2007029828A1 (ja) 解析方法、露光方法及びデバイス製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680010913.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006521748

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077022275

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11919351

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006745676

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006745676

Country of ref document: EP