WO2006117985A1 - コンデンサ用電極箔 - Google Patents

コンデンサ用電極箔 Download PDF

Info

Publication number
WO2006117985A1
WO2006117985A1 PCT/JP2006/307683 JP2006307683W WO2006117985A1 WO 2006117985 A1 WO2006117985 A1 WO 2006117985A1 JP 2006307683 W JP2006307683 W JP 2006307683W WO 2006117985 A1 WO2006117985 A1 WO 2006117985A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
titanium oxide
film
foil
titanium
Prior art date
Application number
PCT/JP2006/307683
Other languages
English (en)
French (fr)
Inventor
Koki Tanaka
Tomohito Tanaka
Youichi Matsuzaki
Hiromasa Shoji
Toyoshi Ogura
Masao Kimura
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005130457A external-priority patent/JP2006310494A/ja
Priority claimed from JP2005130455A external-priority patent/JP2006310493A/ja
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Publication of WO2006117985A1 publication Critical patent/WO2006117985A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • H01G9/045Electrodes or formation of dielectric layers thereon characterised by the material based on aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material

Definitions

  • the present invention relates to an electrode foil for a capacitor, and more particularly to an electrode foil having excellent capacitance and leakage current characteristics.
  • the written aluminum electrode foil constituting an electrolytic capacitor is subjected to electrolytic etching by applying a direct current or an alternating current to the aluminum foil in an acid water solution to form a large number of pits on the foil surface to increase the surface area. After that, it is anodized in a chemical conversion solution to form an aluminum oxide film on the foil surface and used as an electrode material. In order to increase the capacitance, it is possible to increase the surface area of the foil or thin the oxide film as a dielectric.
  • increasing the dielectric constant of the oxide film is a method for increasing the capacitance, and high capacity is being studied by forming a titanium oxide film with a high dielectric constant and a composite oxide film of titanium oxide and aluminum oxide.
  • the current capacity has not been increased sufficiently.
  • Japanese Patent Laid-Open No. 2003-224036 discusses CVD method, sputtering method, sol-gel method, sol-gel electrophoretic electrodeposition method for the formation of titanium oxide film. Since sputtering is extremely difficult to form on an etched aluminum foil, sufficient electrostatic capacity cannot be obtained and leakage current increases. In addition, both of these CVD methods and sputtering methods require a large-scale vacuum apparatus, resulting in low productivity and high manufacturing costs. Has a point. In addition, it is difficult to form a dense oxide film by the sol-gel method or the sol-gel electrophoresis electrodeposition method, so that a sufficient capacitance cannot be obtained and a leakage current is increased.
  • Japanese Patent Application Laid-Open No. 2003-257796 has examined the inclusion of a high-degree-of-polymerization valve metal oxide polymer-aromatic compound solvent complex by improving the sol-gel method. Therefore, heat treatment is indispensable. In addition, sufficient electrostatic capacity cannot be obtained due to the reduction in the density due to volatile components, and the leakage current is not sufficiently improved.
  • the substrate is immersed in a treatment liquid prepared by adding boric acid to titanium fluoride or a titanium hydrofluoric acid aqueous solution, and titanium oxide is formed on the substrate surface.
  • a treatment liquid prepared by adding boric acid to titanium fluoride or a titanium hydrofluoric acid aqueous solution
  • titanium oxide is formed on the substrate surface.
  • Methods for depositing a thin film are known in JP-A-10-158014 and JP-A-2001-294408. In these liquid phase deposition methods, since the substrate has any concave or convex type, it is expected that a titanium oxide film can be uniformly formed on the surface of the etched aluminum foil having a complicated shape. Capacity can be expected.
  • a titanium oxide film deposited on the surface of an aluminum foil using a treatment liquid obtained by adding boric acid to ammonium titanium fluoride has a problem that leakage current is large. Admitted.
  • the capacitance of the capacitor increases as the electrode area increases and the dielectric film thickness decreases. If the thickness of the dielectric film is reduced by the liquid phase deposition method for the purpose of increasing the capacitance of the capacitor, the resulting titanium oxide film will have a large variation in film thickness, resulting in a certain desired film. There was a problem that it was difficult to control the thickness and that there were many defects such as pinholes. Disclosure of the invention
  • the present invention has been made in consideration of the above problems.
  • a film having a small number of defects, a small leakage current, and a high-capacity titanium oxide is used for a capacitor electrode foil and a capacitor using the same. It is intended to be provided by.
  • the present inventors used an aluminum foil having a titanium oxide film having a crystal size of 2.5 nm or less or an amorphous structure as a capacitor electrode foil. We found that the capacitance was large and the leakage current characteristics were excellent.
  • the present inventors have found that the electrostatic capacity can be further increased by containing 0.1 atomic% or more and 25 atomic% or less of aluminum in the titanium oxide film.
  • the present invention has been made based on these findings, and the gist thereof is as follows.
  • An electrode foil for a capacitor characterized by comprising an aluminum foil having a titanium oxide film having a crystal size of 2.5 nm or less or an amorphous structure.
  • An electrode foil for a capacitor comprising an aluminum foil having a film made of aluminum oxide and a film of titanium oxide having a crystal size of 2.5 nm or less or having an amorphous structure.
  • Capacitor electrode foil characterized by containing 0.1 to 25 atomic% of aluminum in the coating comprising the titanium oxide according to any one of (1) to (4) .
  • the coating film comprising titanium oxide according to any one of (1) to (4) contains aluminum, and the aluminum concentration is 0.1 atomic% or more and 25 atomic% or less.
  • the coating comprising the titanium oxide according to any one of (1) to (4) contains 0.1 atomic% to 25 atomic% of aluminum.
  • a capacitor comprising the capacitor electrode foil according to any one of (1) to (7).
  • the capacitor electrode foil of the present invention is an aluminum foil having at least a film having a crystal size of 2.5 M or less or amorphous titanium oxide. Titanium oxide has a higher dielectric constant than aluminum oxide used for the dielectric of conventional aluminum electrolytic capacitors, so the aluminum foil coated with titanium oxide is expected to increase in capacitance compared to aluminum electrolytic capacitors .
  • the film having titanium oxide referred to here is a film having a titanium content of 10 atomic% to 35 atomic% and the remaining components containing oxygen atoms.
  • hydrogen may be contained in an amount of 0.1 atomic% to 5 atomic% and fluorine may be contained in an amount of 0.1 atomic% to 5 atomic%.
  • a liquid phase deposition method can be used.
  • the reaction for precipitating titanium oxide on aluminum foil by the liquid phase precipitation method is carried out by the hydrolysis equilibrium reaction shown in the following formula (I). That is, titanium fluoride reacts with water molecules to form titanium oxide, H + ions, and F ions.
  • titanium oxide having a crystal size of 2.5 nm or less or an amorphous structure it is only necessary to coat titanium oxide having a crystal size of 2.5 nm or less or an amorphous structure, and if titanium oxide having such a structure can be produced.
  • the film forming method is not limited to the liquid phase deposition method.
  • the inventors of the present invention prepared an aqueous solution of ammonium titanium fluoride having a concentration of 0.01 to 1.2 mol / l at 10 to 90 ° C. It was found that titanium oxide having the above-described structure can be obtained by immersing the aluminum foil of the base material on the substrate and precipitating titanium oxide on the surface of the base material.
  • the treatment liquid in the present invention is a liquid in which aluminum ions are dissolved in an aqueous titanium fluoride fluoride solution.
  • a crystal particle size of 2.5 nm or less or amorphous titanium oxide is deposited on the surface of the substrate.
  • the pH of the treatment liquid is preferably 4-7, more preferably 5-6.
  • the reason is that, when the pH of the processing solution is less than 4, a healthy film can be formed, but the obtained capacitor may not be able to obtain the desired capacity, and when the pH of the processing solution is higher than 7, This is because it tends to be unstable, and the aggregate of titanium oxide in the treatment solution is precipitated, which makes it difficult to form a uniform film on the substrate surface.
  • the treatment solution pH may be adjusted by a well-known method, and other conditions for the precipitation reaction of the present invention are not particularly limited.
  • the temperature of the processing solution and the concentration of ammonium fluoride fluoride increase, the film formation rate of titanium oxide increases. To coat titanium oxide to the desired thickness, the reaction temperature and reaction time can be set appropriately. Good.
  • Another aspect of the electrode foil for capacitors of the present invention is an aluminum foil having at least a film having aluminum oxide and a titanium oxide having a crystal size of 2.5 nm or less or amorphous.
  • the film having aluminum oxide referred to here is a film having an aluminum content of 10 atomic% to 45 atomic% and the remaining components containing oxygen atoms.
  • hydrogen may be contained in an amount of 0.1 atom% to 5 atom% and fluorine may be contained in an amount of 0.1 atom% to 5 atom%.
  • it was found that a film excellent in leakage current characteristics can be obtained by combining a titanium oxide film and an aluminum oxide film.
  • the above-mentioned titanium oxide coating formation method and a known aluminum foil anode What is necessary is just to combine an oxidation process.
  • the vertical relationship between the titanium oxide film and the aluminum oxide film is not particularly limited.
  • aluminum oxide is grown on the surface of an aluminum foil using an anodic oxidation method, and then a titanium oxide film is formed on the aluminum oxide using a liquid phase deposition method, followed by heat treatment.
  • the coating structure was as follows: from the aluminum foil base material side: aluminum Z aluminum oxide / titanium oxide.
  • the preferred film thickness of each layer is determined by the balance between leakage current characteristics and capacitance, so it can be set appropriately.
  • Examples of the electrolytic solution for anodizing treatment include ammonium borate, phosphoric acid, adipic acid, oxalic acid, sulfuric acid, sebacic acid, or a solution containing one or more of these ammonium salts.
  • the anodizing conditions may be any known conditions and are not particularly limited.
  • an adipic acid aqueous solution may be used as the electrolyte, and the anodic oxidation voltage may be set so that the oxide film grows to a thickness of about 10 nm.
  • the film having one or both of a composite oxide or mixed oxide of aluminum and titanium as used herein has a titanium content of 10 atomic% to 35 atomic% and an aluminum content of 0. 1 atom% or more and 25 atom% or less, and the rest is a film containing oxygen atoms.
  • hydrogen may be contained in an amount of 0.1 atomic% to 5 atomic% and fluorine may be contained in an amount of 0.1 atomic% to 5 atomic%.
  • a film having a low leakage current is formed by combining a titanium oxide film and an aluminum-titanium composite oxide or mixed oxide.
  • liquid phase Titanium oxide was deposited on the surface of the aluminum foil by the deposition method, then anodized at a positive oxidation voltage of 3 V, followed by heat treatment to form an aluminum-titanium composite oxide layer.
  • the coating structure was aluminum aluminum-titanium composite oxide Z titanium oxide from the aluminum foil base material side.
  • the preferable film thickness of each layer is determined by the balance between the leakage current characteristics and the capacitance, and may be set as appropriate.
  • the vertical relationship between the layers is not particularly limited.
  • Another aspect of the electrode foil for a capacitor of the present invention is a film having aluminum oxide, a film having one or both of a composite oxide or mixed oxide of aluminum and titanium, and a crystal size of 2. It is an aluminum foil with at least 5 nm or less and a film containing amorphous titanium oxide.
  • the three-layer structure of titanium oxide coating, aluminum-titanium composite or mixed oxide coating, and aluminum oxide coating proved to be a coating with excellent leakage current characteristics. For example, after depositing titanium oxide on the surface of the aluminum foil by a liquid phase deposition method, anodization was performed at an anodic oxidation voltage of 60 V, followed by heat treatment.
  • the coating structure was formed from the aluminum foil base material side: aluminum Z aluminum oxide / aluminum monotitanium composite oxide Z titanium oxide.
  • the preferable film thickness of each layer is determined in consideration of the leakage current characteristics and the capacitance, and may be set as appropriate. In addition, the vertical relationship between each layer is not particularly limited.
  • a film having one or both of the composite oxide or mixed oxide of aluminum and titanium can be obtained by anodizing and heat-treating the aluminum foil coated with the titanium oxide. Depending on the anodic oxidation conditions and heat treatment conditions, it can be divided into a two-layer structure of titanium oxide film and composite or mixed oxide film, and a three-layer structure of titanium oxide film, composite or mixed oxide film, and 'aluminum oxide film'.
  • the heat treatment temperature is preferably 650 ° C or less, more preferably 250 to 600 ° C. If the temperature is below 200 ° C, the effect of heat treatment may not be fully confirmed, and if it exceeds 650 ° C, a decrease in capacitance is confirmed.
  • the atmosphere during the heat treatment is preferably in a vacuum or in an inert gas such as nitrogen or argon. In making the vacuum, the pressure may be reduced from the atmosphere, or may be reduced after the atmosphere is replaced with an inert gas.
  • the aluminum foil to be used is not particularly limited, and examples thereof include high-purity aluminum foil such as 1 N 99 having an aluminum purity of 99.99 or higher, 1 N 90 having an aluminum purity of 99.90 or higher (aluminum These high-purity aluminum foils are used in capacitors. Furthermore, an aluminum sintered body may be used. Etching does not depend on the level of roughening treatment.
  • the thickness of the foil to be used is not particularly limited, but a preferable thickness is about 20 to 150 m. This is because if the foil thickness is too thin, the productivity will decrease, and if it is too thick, the capacitance per unit mass will decrease.
  • the present invention provides an electrode foil for a capacitor, characterized in that it is an aluminum foil having at least a film having titanium oxide containing 0.1 atomic% or more and 25 atomic% or less of aluminum as an additive element. is there.
  • a film having titanium oxide is a film having a titanium content of 10 atomic% to 35 atomic% and the remaining components containing oxygen atoms. Hydrogen may be contained as an impurity in an amount of 0.1 atomic% to 5 atomic%.
  • Titanium oxide is a high dielectric constant material, so when a titanium oxide film is formed on the surface of the capacitor electrode, it acts as a high dielectric and a high-capacitance capacitor can be obtained.
  • the preferred thickness is not less than 0.1 lm and not more than 0.5 m, and more preferably not less than 0.3 mm and not more than 0.3 / m.
  • a film having a higher dielectric constant can be obtained by including 0.1 atomic% to 25 atomic% of A1 in the titanium oxide film.
  • the inventors of the present invention have found from the molecular orbital calculation described below that the dielectric constant is increased when A1 is contained in the titanium oxide film, and have reached the present invention.
  • the electronic polarizabilities and vibration polarizabilities of the model molecules shown in Table 1 were calculated using the Hart free-Fock method of the Gaussian 98 program. did.
  • the basis functions used are those of the split valence plus polarizat ion level described in "gaussian basis sets for molecular calculations, S. Huj inaga (eds.), Else demo (1984). Calculation results shown in Table 1.
  • the dielectric constant derived from electronic polarization is almost constant regardless of the type of additive element studied here, while the dielectric constant derived from vibrational polarization is that Al atom is -Al (0H)
  • the network structure in which oxygen atoms and titanium atoms are formed in the titanium oxide is A1 atom -.
  • A1 (0H) 2 When incorporated in the form, the vibrational polarizability increases compared to when other elements are incorporated, which is considered to be the reason for the effect of improving the dielectric constant by adding A1 to the titanium oxide film. It is done.
  • titanium oxide film on the surface of the A1 foil by using a liquid phase deposition method.
  • the reaction for precipitating titanium oxide on aluminum foil by the liquid phase precipitation method is carried out by the hydrolysis equilibrium reaction shown in the following formula (I).
  • titanium fluoride reacts with water molecules to form titanium oxide, H + ions, and F ions.
  • titanium oxide is precipitated by adding A1 ions as a driving agent for advancing the equilibrium reaction of formula (I) to the right side.
  • the aqueous titanium fluoride solution is preferably O. Olmol 1 or more and 0.5 mol / 1 or less. Even when the concentration of the aqueous titanium fluoride solution is less than 0. Olmol / 1, it is possible to form a titanium oxide film, but the film formation rate is slow and the productivity is low. On the other hand, when the concentration of the aqueous titanium fluoride solution exceeds 0.1 ⁇ 1, the titanium oxide particles tend to precipitate in powder form in the aqueous solution, and a titanium oxide film having a uniform thickness can be obtained on the A1 foil substrate. It can be difficult.
  • the amount of the treatment liquid is preferably 3 to 8, and more preferably 5 to 6.
  • the reason is that when the treatment liquid ⁇ is less than 3, sound film formation can be achieved, but the obtained capacitor is difficult to obtain the desired capacity, and when the treatment liquid ⁇ is greater than 8 to 0, the liquid is unstable. Titanium oxide in the process night This is because the agglomerated material is precipitated and it is difficult to form a uniform film on the substrate surface.
  • the pH of the treatment solution may be adjusted by a known method, and other conditions for the precipitation reaction of the present invention are not particularly limited.
  • the A1 foil base material is immersed in the above aqueous titanium fluoride solution, and the titanium oxide film is deposited on the surface of the base material at a thickness of 0.05 / x m to 0.5 ⁇ m.
  • the aluminum foil base material used is, for example, high purity aluminum foil such as 1 N 99 with aluminum purity 99.99 or higher, 1 N 90 with aluminum purity 99.90 or higher (Alloy Association's alloy number) These high-purity aluminum foils are used for capacitors.
  • an aluminum sintered body may be used. Etching A1 foil does not depend on the degree of roughening.
  • the temperature of the treatment solution for immersing the A1 foil and the immersion time may be set as appropriate, but the temperature of the treatment solution is preferably from room temperature to 50 ° C, and the immersion time is preferably from 10 minutes to 120 minutes.
  • the method for adding A1 to the formed titanium oxide film is not particularly specified.
  • A1 may be added to the titanium oxide film by a method in which A1 ions are implanted from the surface of the titanium oxide film by ion implantation or the like. According to the ion implantation method, A1 can be added at a desired concentration in the titanium oxide film depending on the amount of implanted A1 ions, and the depth distribution of the A1 concentration in the titanium oxide film can be controlled by controlling the implantation energy. It can be controlled to achieve a desired distribution state.
  • A1 may be added to the titanium coating by diffusing A1 atoms from the A1 foil of the base material to the titanium oxide coating by anodizing. That is, the surface of the aluminum foil on which the titanium oxide film is formed by using the liquid phase deposition method is anodized by the method described below.
  • Examples of the electrolytic solution for anodizing treatment include HO m ammonium, Examples thereof include, but are not limited to, phosphoric acid, adipic acid, oxalic acid, sulfuric acid, sebacic acid, or a solution containing one or more of these ammonium salts.
  • an aluminum oxide layer is formed between the A1 foil substrate and the titanium oxide film by applying a voltage to the A1 foil substrate in the electrolytic solution for anodization.
  • the set temperature and applied voltage in the anodizing treatment are not particularly specified, and the treatment may be performed under known conditions.
  • the temperature of the anode oxidation treatment solution is set to 50 ° C to 80 ° C, and a voltage in the range of 10 V to 400 V is applied to the A 1 foil.
  • An electric current is applied so that the current density flowing through the A 1 foil is constant at a value of 0.1 lmAZ cni 2 to 30 mA to cm 2 , and an anodized film is grown between the A1 foil substrate and the titanium oxide film.
  • the current density By controlling the current density to be energized, the amount of A1 ions eluted from the substrate is adjusted, and the concentration of A1 taken into the titanium oxide film is adjusted.
  • the voltage increases with the energization time.
  • the desired anodic oxide film thickness can be obtained by monitoring the voltage. I understand that.
  • the value of the applied voltage is the thickness of the anodic oxide film.
  • the voltage is controlled to be constant and held for a certain period of time. With this holding time, the distribution of A 1 concentration in the titanium oxide film increases from the surface of the titanium oxide film to the titanium oxide film so that the concentration is high on the anodic oxide film side and low on the titanium oxide film surface side.
  • a film with a gradient in the concentration distribution of A1 is obtained from the interface of the anodized layer.
  • the holding time may be set so that the A 1 concentration distribution in the titanium coating becomes a desired distribution, and is not particularly defined, but may be held for 10 minutes to 60 minutes, for example.
  • the titanium oxide layer The film structure is composed of two titanium oxide layers with different aluminum concentrations. By making the distribution such that the A1 concentration in titanium oxide increases as it approaches the substrate side, the adhesion between the titanium oxide coating and the substrate can be increased.
  • the current density of anodic oxidation to 1 mAZ cm 2 to 10 niAZ cni 2 , a high A 1 concentration with an A 1 concentration of 10 atomic% to 25 atomic% in the vicinity of the substrate side interface of the titanium oxide film Layer, and then setting the anodic oxidation current density to 10 mAZ cm 2 to 30 mA / cni 2 , so that the A 1 concentration is 0.1 atomic% to 10% in the region up to the remaining titanium oxide film surface.
  • a low A 1 concentration layer with a few percent of atoms is formed.
  • the thickness of the high A 1 concentration layer is ⁇ ⁇ ! ⁇ 50nm, more preferably ⁇ ⁇ ! ⁇ 30nm.
  • the titanium oxide-attached aluminum foil subjected to the above anodic oxidation is heat-treated to obtain an electrode foil.
  • the heat treatment temperature after anodization is preferably 400 ° C or lower, more preferably 200 to 400 ° C. If the temperature is below 200 ° C, the effect of heat treatment may not be fully confirmed. If the temperature exceeds 400 ° C, a decrease in electrostatic capacity has been confirmed.
  • the atmosphere during the heat treatment is preferably in a vacuum or in an inert gas such as nitrogen or argon. In order to make the atmosphere vacuum, the pressure may be reduced directly from the atmosphere, or after the atmosphere is replaced with an inert gas, the pressure may be reduced. This heat treatment does not change the A1 concentration and its distribution in the titanium oxide film.
  • the aluminum foil having a titanium oxide film containing A1 as an additive as described above may be used as an anode to form a capacitor.
  • the electrolyte and the cathode are not limited and may be appropriately selected and used.
  • the capacitance, leakage current, and crystal size were evaluated after film formation using various processing solutions.
  • Tables 1 to 3 show processing ⁇ , processing conditions and results. 'Base material is etched Unformed Al foil (1 N99) that had not been subjected to the processing was used.
  • Two types of treatment solutions for the titanium oxide film formation reaction were prepared: (1) when boric acid was not added to the aqueous titanium fluoride solution, and (2) when added.
  • the treatment solution was adjusted to pH 3, 4, 5, 6, 7, 8 by adding ammonia water to 0, 1M (mol / l) titanium fluoride ammonium aqueous solution.
  • (2) 0.1 M titanium fluoride aqueous solution is used as the treatment solution.
  • the pH is adjusted to 3, 4, 5, 6, 7, 8 by adding ammonia water. And made.
  • the substrate was immersed for 5 minutes at room temperature in the processing solution prepared under the conditions of (1) and (2).
  • a 12% ammonium adipate aqueous solution was used and a predetermined voltage was applied for 60 minutes at a temperature of 80 ° C.
  • heat treatment was performed in vacuum at 90 ° C, 300 ° C, and 650 ° C for 3 hours.
  • Capacitance was measured at 120 Hz using an LCR method using a 12% ammonium adipate aqueous solution. The leakage current was measured with 5 V applied. Evaluation was performed according to the following criteria in comparison with Experiment No. 91, which is a comparative example below.
  • Capacitance X Same as or lower than No.91
  • the crystal size of the thin film was obtained by substituting the half width of the peak obtained from the X-ray diffraction measurement into the Sierra equation.
  • the cross-sectional structure of the thin film was observed with an electron microscope.
  • the treatment solution was 0.1M ammonium hexatitanate aqueous solution, and the pH was adjusted to 3, 4, 5, 6, 7, 8 with aqueous ammonia.
  • the film formation was performed by immersing the substrate in a treatment solution at room temperature for 5 minutes, and after the film formation, it was washed with water and air-dried. Subsequently, heat treatment was performed in vacuum at 90 ° C, 300 ° C, and 650 ° C for 3 hours.
  • the substrate was anodized at an anodization voltage of 60V. Subsequently, a titanium oxide film was formed using a 0.1 M aqueous solution of ammonium hexafluoroacetate adjusted to pH 3, 4, 5, 6, 7, 8 with aqueous ammonia as the treatment solution. Film formation was performed by immersing the anodized substrate in the treatment solution at room temperature for 5 minutes, washing with water after film formation, and air drying. Subsequently, heat treatment was performed in vacuum at 90 ° (300 ° C, 650 ° C for 3 hours. The results are shown in Table 2.
  • the treatment solution was 0.1M ammonium hexatitanate aqueous solution, and the pH was adjusted to 3, 4, 5, 6, 7, and 8 with aqueous ammonia.
  • the film formation was performed by immersing the substrate in a treatment solution at room temperature for 5 minutes, and after the film formation, it was washed with water and air-dried. After anodizing at an anodic oxidation voltage of 3 V, heat treatment was performed in vacuum at 90 ° C, 300 ° C, and 650 ° C for 3 hours. The results are shown in Table 2.
  • the treatment solution was 0.1M ammonium hexatitanate aqueous solution, and the pH was adjusted to 3, 4, 5, 6, 7, and 8 with aqueous ammonia.
  • the film formation was performed by immersing the substrate in a treatment solution at room temperature for 5 minutes, and after the film formation, it was washed with water and air-dried. After anodizing at an anodic oxidation voltage of 60V, heat treatment was performed in vacuum at 90 ° C, 300 ° (, 650 ° C for 3 hours. The results are shown in Table 3.
  • the treatment solution was 0.1 M ammonium hexatitanate aqueous solution, and 0.1 M boric acid was added as a titanium oxide precipitation driving agent.
  • Film formation was performed by immersing the substrate in the treatment solution at room temperature for 5 minutes, and after film formation, the substrate was washed with water and air-dried. After anodizing at an anodic oxidation voltage of 60 V, heat treatment was performed in vacuum at 90 ° C, 300 ° C, and 650 ° C for 3 hours. The results are shown in Table 4.
  • the substrate was anodized at an anodic oxidation voltage of 60 V and then heat-treated in a vacuum at 300 ° C for 3 hours.
  • the results are shown in Table 4.
  • the electrode foils of the present invention shown in Table 2 and Table 3 have superior properties compared to the comparative materials, and the effects were confirmed. On the other hand, it was confirmed that the leakage current characteristics of the aluminum foil formed by adding boric acid to the treatment solution shown in Table 4 deteriorated compared to the comparative material.
  • a 1 foil base material unformed A 1 foil (1 N 99) that was not etched was used.
  • the concentration of ammonium fluoride in the liquid phase precipitation treatment solution was 0.05 mol Z 1, and aqueous ammonia was added to the aqueous solution to adjust the pH to 5.5.
  • the temperature of the treatment solution was set to room temperature, and the A1 foil base material was immersed in the above-mentioned aqueous solution of titanium fluoride fluoride for 20 minutes to deposit a titanium oxide film on the surface of the base material with a thickness of about 200 nm.
  • a 1 was added to the titanium coating by a method of diffusing A 1 atoms from the A 1 foil of the base material to the titanium oxide coating by anodic oxidation.
  • the anodizing treatment a 10% ammonium adipate aqueous solution was used, the liquid temperature was set to 70 ° C., and the current density was set to 0.1 lmAZ cm 2 to 50 mA / cm 2 .
  • the A 1 foil base material was energized so that the current density was constant, an anodic oxide film grew between the A 1 foil base material and the titanium oxide film.
  • the concentration of A 1 incorporated into the titanium oxide film was adjusted.
  • the voltage increases with the energization time, but since there is a proportional relationship between the anodic oxide film thickness and the voltage, the desired anodic oxide film thickness can be obtained by monitoring the voltage. You can see that. Electric
  • the pressure reached the value corresponding to the anodic oxide film thickness of 50 nm
  • the voltage was controlled to be constant and held for a certain time.
  • the titanium oxide film and the anodic oxide layer from the surface of the titanium oxide film so that the distribution of A1 concentration in the titanium oxide film becomes high on the anodic oxidation side and low on the titanium oxide film surface side by this holding time.
  • a film with a gradient in the concentration distribution was obtained so that the concentration of A1 increased linearly across the interface.
  • the holding time is 60 minutes or more, the A1 concentration in the titanium oxide film becomes uniform and 7%.
  • the anodic oxidation current density during formation of the high A1 concentration layer and the anodic oxidation current density during formation of the low A1 concentration layer Anodization was performed with the voltage holding time set to the conditions shown in Table 6.
  • the electrostatic capacity was measured by heating to 250 ° C in vacuum and measured at 120Hz using a 12% ammonium adipate aqueous solution and an LCR meter.
  • Capacitance X 2.0 / AF / CIII 2 or less
  • the electrode foil of the present invention showed excellent capacity characteristics compared to the comparative example, and the effect could be confirmed.
  • the present invention it is possible to provide a high-capacitance electrode foil with excellent leakage current characteristics at a low cost.
  • the electrode foil of the present invention it is possible to reduce the size and increase the capacity of the condenser, and thus to reduce the size of a mobile device or the like using the capacitor.

Abstract

本発明は、漏れ電流特性に優れた、高容量のコンデンサ用電極箔及びこれを用いたコンデンサを提供する。 結晶サイズが2.5nm以下もしくはアモルファスの酸化チタンを有する被膜を少なくとも有するアルミニウム箔であることを特徴とするコンデンサ用電極箔及びこれを用いたコンデンサである。また、本発明は、添加元素としてアルミニウムを0.1原子数%以上25原子数%以下含有する酸化チタンを有する被膜を少なくとも有するアルミニウム箔であることを特徴とするコンデンサ用電極箔及びこれを用いたコンデンサである。

Description

コンデンサ用電極箔
技術分野
本発明は、 コンデンサ用電極箔に関するもので、 特に静電容量と 漏れ電流特性に優れた電極箔に関するものである。
明 背景技術
一般に、 電解コンデンサを構成する書アルミニウム電極箔は、 酸水 溶液中でアルミニウム箔に直流電流または交流電流を印加して電解 エッチングし、 箔表面に多数のピッ トを形成させて表面積を拡大さ せた後、 化成液中で陽極酸化して箔表面に酸化アルミニウム被膜を 形成させて電極材料として使用する。 静電容量を増大させるには、 箔の表面積の増大や誘電体である酸化被膜を薄くすることが挙げら れ、 これらについては従来より種々検討されている。
更に、 酸化被膜の誘電率の増大も静電容量を増大させる方法であ り、 誘電率の高い酸化チタン被膜、 酸化チタンと酸化アルミニウム の複合酸化被膜の形成による高容量化についても検討されているが 、 十分な容量増大がなされていないのが現状である。
静電容量を増大に関し、 特開 2003— 224036号公報では、 酸化チタ ン被膜の形成に CVD法、 スパッタリング法、 ゾルゲル法、 ゾルゲル 電気泳動電着法を挙げて検討しているが、 CVD法やスパッ夕リング 法ではエッチングさせたアルミニウム箔への成膜が極めて困難であ るため、 十分な静電容量が得られない上に、 漏れ電流も大きくなる 。 また、 これら CVD法やスパッタリング法は何れも大規模な真空装 置が必要であり、 生産性が低く、 製造コス トが高くなるという問題 点を有している。 また、 ゾルゲル法ゃゾルゲル電気泳動電着法では 緻密な酸化物被膜の形成が困難であるため、 十分な静電容量が得ら れない上に、 漏れ電流も大きくなる。
そこで、 特開 2003— 257796号公報では、 ゾルゲル法を改善して高 重合度のバルブ金属酸化物高分子一芳香族化合物溶媒錯体の含有に ついて検討しているが、 この場合も酸化被膜形成のために熱処理が 必須であり、 その際の揮発分による緻密さの低減により十分な静電 容量が得られない上に、 漏れ電流の改善も不十分である。
一方、 低コス トで酸化チタン被膜を形成する方法として、 チタン フッ化アンモニゥム、 或いはチタンフッ化水素酸水溶液にホウ酸を 添加して調整した処理液に基材を浸漬し、 基材表面に酸化チタン薄 膜を析出させる方法が、 特開平 10— 158014号公報、 特開 2001— 2944 08号公報などで知られている。 これらの液相析出法では、 基材の凹 凸ゃ種類を問わないため、 複雑な形状を有するエッチングしたアル ミニゥム箔表面上にも均一に酸化チタン被膜を形成できることが予 想され、 十分な高容量化が期待できる。
しかしながら、 本発明者らが調べたところ、 チタンフッ化アンモ 二ゥムにホウ酸を添加した処理液を用いて、 アルミニウム箔表面上 に析出した酸化チタン被膜では、 漏れ電流が大きいと言う問題点が 認められた。
コンデンサの静電容量は、 電極面積が大きく、 誘電体膜厚が薄い ほど、 大きい容量が得られる。 コンデンサの静電容量を大きくする 目的で、 液相析出法によって誘電体膜の厚さを薄く成膜すると、 得 られる酸化チタン膜は、 膜の厚さのばらつきが大きくなり、 一定の 所望の膜厚に制御することが困難となり、 ピンホール等の欠陥が多 くなると言う問題があった。 発明の開示
本発明は、 上記問題点に考慮してなされたもので、 欠陥が少なく 、 漏れ電流が小さく、 高容量の酸化チタンを有する被膜をコンデン サ用電極箔ぉよびこれを用いたコンデンサを低コス トで提供するこ とを目的とする。 本発明者らは、 上記課題を解決する手段を鋭意検 討した結果、 結晶サイズが 2. 5 nm以下もしくはアモルファス構造を 有する酸化チタンの被膜を有するアルミニウム箔をコンデンサ用電 極箔に用いると、 静電容量が大きく、 漏れ電流特性が優れているこ とを見い出した。 また、 本発明者らは、 こめ酸化チタンの被膜中に 0. 1原子数%以上 2 5原子数%以下のアルミニウムを含有させること で、 更に静電容量を大きく しうることを見い出した。 本発明はこれ らの知見に基づいてなされたもので、 その要旨は次のとおりである
( 1 ) 結晶サイズが 2. 5 nm以下もしくはアモルファス構造を有す る酸化チタンの被膜を有するアルミニウム箔からなることを特徴と するコンデンサ用電極箔。
( 2 ) 酸化アルミニウムからなる被膜と、 結晶サイズが 2. 5nm以 下もしくはアモルファス構造を有する酸化チタンの被膜とを有する アルミニウム箔からなることを特徴とするコンデンサ用電極箔。
( 3 ) 結晶サイズが 2. 5 nm以下もしくはアモルファス構造を有す る酸化チタンの被膜と、 アルミニウムおよびチタンの複合酸化物ま たは混合酸化物の一方または両方を有する被膜を有するアルミニゥ ム箔からなることを特徴とするコンデンサ用電極箔。
( 4 ) 酸化アルミニウムからなる被膜と、 アルミニウムおよびチ タンの複合酸化物または混合酸化物の一方または両方を有する被膜 と、 結晶サイズが 2. 5 nm以下もしくはアモルファス構造を有する酸 化チタン'の被膜とを有するアルミニウム箔からな ¾ことを特徴とす るコンデンサ用電極箔。
( 5 ) ( 1 ) 〜 ( 4 ) の何れかの項に記載の酸化チタンからなる 被膜中に 0.1原子数%以上 25原子数%以下のアルミニウムを含有す ることを特徴とするコンデンサ用電極箔。
( 6 ) ( 1 ) 〜 ( 4 ) の何れかの項に記載の酸化チタンからなる 被膜中にアルミニウムを含有し、 かつ前記アルミニウム濃度が 0. 1 原子数%以上 25原子数%以下で、 被膜表面から被膜内部にかけて深 さ方向に前記濃度が増加していることを特徴とするコンデンサ用電 極箔。
( 7 ) ( 1 ) 〜 ( 4 ) の何れかの項に記載の酸化チタンからなる 被膜中に 0.1原子数%以上 25原子数%以下のアルミニウムを含有し
、 かつ前記被膜中にアルミニウム濃度が異なる 2層の酸化チタン層 を有することを特徴とするコンデンサ用電極箔。
( 8 ) ( 1 ) 〜 ( 7 ) の何れかの項に記載のコンデンサ用電極箔 を用いたことを特徴とするコンデンサ。 発明を実施するための最良の形態
本発明のコンデンサ用電極箔は、 結晶サイズが 2.5M以下もしく はアモルファスの酸化チタンを有する被膜を少なく とも有するアル ミニゥム箔である。 酸化チタンは、 従来のアルミ電解コンデンサの 誘電体に使用される酸化アルミニウムに比べ誘電率が大きいため、 酸化チタンで被覆されたアルミニウム箔は、 アルミ電解コンデンサ に比べて静電容量の増大が見込まれる。 ここで言う酸化チタンを有 する被膜とは、 チタンの含有量が 10原子数%以上 35原子数%以下で あり、 残りの成分が酸素原子を含む被膜である。 不純物として水素 を 0.1原子数%以上 5原子数%以下、 フッ素を 0.1原子数%以上 5原 子%以卞含有しても良い。 ' このような酸化チタンを成膜するために、 例えば液相析出法を用 いることができる。 液相析出法によりアルミニウム箔上に酸化チタ ンを析出させる反応は、 下記 ( I ) 式に示す加水分解平衡反応によ り行う。 即ち、 チタンフッ化アンモニゥムが水分子と反応し、 酸化 チタンと H +イオン及び F イオンになる反応である。
T i F6 2— + 2 H2 0 T i 02 + 4 H+ + 6 F— ··■ ( I ) ここで、 式 ( I ) の平衡反応を右辺側に進めるための駆動剤を添 加することによって、 酸化チタンを析出させるのである。
特開 2003— 224036号公報および特開 2003— 257796号公報に開示さ れているように、 式 ( I ) の加水分解平衡反応を右辺側へ進めるた めの駆動剤にホウ酸を用いる方法もある。 しかし、 駆動剤にホウ酸 を用いると、 前述したように、 得られた酸化チタン被膜の漏れ電流 が大きく、 実用に耐えないものとなる。 そこで、 この被膜を解析し たところ、 処理条件によらず、 形成される酸化チタンは、 結晶サイ ズが 2..5nm超に成長していた。 理由は明確ではないが、 酸化チタン の結晶サイズが 2. 5nm超になると、 漏れ電流特性が著しく劣化する ことが明らかとなった。 したがって、 漏れ電流特性の優れた電極箔 を作製するためには、 結晶サイズが 2. 5nm以下あるいはァモルファ ス構造を有する酸化チタンを被覆すればよく、 このような構造を有 する酸化チタンが作製できれば、 その成膜手法は液相析出法に限定 されない。
本発明者らは、 各種条件で形成した酸化チタン膜を調査した結果 、 10〜90°Cで、 0. 0 1〜 1. 2mo l / 1 のチタンフッ化アンモニゥム水溶 液を作製し、 この水溶液中に基材のアルミニウム箔を浸漬させて、 酸化チタンを基材表面上に析出させることで、 上記構造を有する酸 化チタンが得られることを見出した。 本発明では、 式 ( I ) を酸化 チタン析出側に進める駆動剤として、 基材のアル 二ゥム箔から溶 出したアルミニウムイオンを用いることを特徴としているものであ る。 即ち、 本発明における処理液は、 チタンフッ化アンモニゥム水 溶液にアルミニウムイオンを溶解した液である。 該処理液中のアル ミニゥムイオンの作用によって、 結晶粒子サイズが 2. 5 nm以下もし くはアモルファスの酸化チタンが基材表面に析出する。
上記処理液の pHは 4〜 7が好ましく、 より好ましくは 5〜 6であ る。 その理由は、 処理液 pHが 4未満では、 健全な成膜ができるもの の、 得られるコンデンサは、 所望の容量が得られ難い場合があり、 処理液の pHが 7より大きい場合は、 液が不安定となり易く、 処理液 中で酸化チタンが凝集したものが析出し、 基材表面に均一な膜がで き難くなり易いと言う問題があるためである。 処理液 p Hの調整は周 知の方法で良く、 本発明の析出反応のその他の条件は、 特に限定さ れない。 また、 処理液の温度やチタンフッ化アンモニゥム濃度の増 加に伴い、 酸化チタン成膜速度が増加するため、 酸化チタンを所望 の厚みに被覆するためには、 反応温度や反応時間は適宜設定すれば よい。
また、 本発明のコンデンサ用電極箔の他の態様は、 酸化アルミ二 ゥムを有する被膜と、 結晶サイズが 2. 5 nm以下もしくはァモルファ スの酸化チタンとを少なく とも有するアルミニウム箔である。 ここ で言う酸化アルミニウムを有する被膜とは、 アルミニウムの含有量 が 1 0原子数%以上 45原子数%以下であり、 残りの成分が酸素原子を 含む被膜である。 不純物として水素を 0. 1原子数%以上 5原子数% 以下、 フッ素を 0. 1原子数%以上 5原子数%以下含有しても良い。 本発明において、 酸化チタン被膜と酸化アルミニウム被膜を組み合 わせることにより、 漏れ電流特性に優れた被膜が得られることが分 かった。 このような被膜構造をアルミニウム箔上に形成するために は、 前述'の酸化チタン被膜形成方法と公知のアル 二ゥム箔の陽極 酸化処理を組み合わせれば良い。 酸化チタン膜と酸化アルミニウム 膜の上下関係は特に問わない。 例えば、 陽極酸化法を用いて酸化ァ ルミ二ゥムをアルミニウム箔表面上に成長させた後、 液相析出法を 用いて酸化チタンを酸化アルミニウム上に成膜し、 続いて加熱処理 を行う。 この場合、 被膜構造はアルミニウム箔基材側から、 アルミ ニゥム Z酸化アルミニウム/酸化チタン、 となった。 各層の好まし い膜厚は、 漏れ電流特性と静電容量との兼ね合いで決まるため、 適 宜設定すればよい。
陽極酸化処理用電解液としては、 例えば、 ホウ酸アンモニゥム、 リン酸、 アジピン酸、 シユウ酸、 硫酸、 セバシン酸、 又は、 これら のアンモニゥム塩から一つ又は二つ以上を含有する溶液を挙げるこ とができるが、 これに限定されるものではない。 陽極酸化処理条件 については、 公知の条件で行えばよく、 特に限定されるものではな い。 例えば、 アジピン酸水溶液を電解液とし、 酸化膜の厚みが 10nm 程度に成長するように陽極酸化電圧を設定すればよい。
また、 本発明のコンデンサ用電極箔の他の態様は、 結晶サイズが 2. 5nm以下もしくはァモルファスの酸化チタンを有する被膜と、 ァ ルミ二ゥムとチタンの複合酸化物又は混合酸化物の一方又は両方を 有する被膜とを少なくとも有するアルミニウム箔である。 ここで言 うアルミニウムとチタンの複合酸化物又は混合酸化物の一方又は両 方を有する被膜とは、 チタンの含有量が 10原子数%以上 35原子数% 以下であり、 アルミニウムの含有量が 0. 1原子数%以上 25原子数% 以下であり、 残りが酸素原子を含む被膜である。 不純物として水素 を 0. 1原子数%以上 5原子数%以下、 フッ素を 0. 1原子数%以上 5原 子数%以下含有しても良い。 酸化チタン被膜とアルミニウム一チタ ン複合酸化物又は混合酸化物とを組み合わせることにより、 漏れ電 流の少¾い被膜が形成されることが明らかとなつ こ。 例えば、 液相 析出法により酸化チタンをアルミニウム箔表面上に成膜した後、 陽 極酸化電圧 3 Vで陽極酸化処理、 続いて加熱処理を施すことにより 、 アルミニウム—チタン複合酸化物層を形成した。 被膜構造は、 ァ ルミニゥム箔基材側から、 アルミニウム アルミニウム—チタン複 合酸化物 Z酸化チタン、 であった。 各層の好ましい膜厚は、 漏れ電 流特性と静電容量との兼ね合いで決まるため、 適宜設定すればよい 。 また、 各層間の上下関係も特に問わない。
また、 本発明のコンデンサ用電極箔の他の態様は、 酸化アルミ二 ゥムを有する被膜と、 アルミニウムとチタンの複合酸化物又は混合 酸化物の一方又は両方を有する被膜と、 結晶サイズが 2. 5 nm以下も しくはアモルファスの酸化チタンを有する被膜とを少なく とも有す るアルミニウム箔である。 酸化チタン被膜、 アルミニウム—チタン 複合又は混合酸化被膜、 酸化アルミニウム被膜の 3層構造により、 漏れ電流特性に優れた被膜となることが分かった。 例えば、 液相析 出法により酸化チタンをアルミニウム箔表面上に成膜した後、 60 V の陽極酸化電圧で陽極酸化処理を行い、 続いて加熱処理を施した。 被膜構造はアルミニウム箔基材側から、 アルミニウム Z酸化アルミ ニゥム /アルミニウム一チタン複合酸化物 Z酸化チタン、 が形成さ れた。 各層の好ましい膜厚は、 漏れ電流特性と静電容量との兼ね合 いで決まるため、 適宜設定すればよい。 また、 各層間の上下関係も 特に問わない。
これらのアルミニウムとチタンの複合酸化物又は混合酸化物の一 方又は両方を有する被膜は、 前記の酸化チタンを被覆したアルミ二 ゥム箔を陽極酸化及び熱処理することによって得ることができる。 陽極酸化条件や熱処理条件によって、 酸化チタン被膜と複合又は混 合酸化物被膜の 2層構造及び、 酸化チタン被膜、 複合又は混合酸化 物被膜、 '酸化アルミニウム被膜の 3層構造に作り分けることができ る。
熱処理温度は 650°C以下が好ましく、 より好ましくは 250〜 600°C である。 200°C未満では熱処理の効果が十分に確認されない場合が あり、 650°Cを超えると静電容量低下が確認された。 熱処理時の雰 囲気は、 真空中、 又は、 窒素やアルゴン等の不活性ガス中が好まし い。 真空するにあたり、 大気から減圧しても良いし、 不活性ガスで 雰囲気置換した後に減圧しても良い。
なお、 用いるアルミニウム箔は、 特に限定されるものではなく、 例えば、 アルミニウム純度 99. 99以上の 1 N 99、 アルミニウム純度 9 9. 90以上の 1 N 90等の高純度アルミニウム箔が挙げられ (アルミ二 ゥム協会の合金番号) 、 これら高純度アルミニウム箔はコンデンサ に使われる。 さらに、 アルミニウム焼結体でも構わない。 エツチン グに関しては、 粗化処理の程度に依らない。 また、 用いる箔の厚み は特に問わないが、 好ましい厚さは 20〜150 m程度である。 これ は、 箔厚が薄過ぎると生産性が低下し、 厚過ぎると単位質量当りの 静電容量が低下してしまうためである。
更に、 本発明は、 添加元素としてアルミニウムを 0. 1原子数%以 上 25原子数%以下含有する酸化チタンを有する被膜を少なく とも有 するアルミニウム箔であることを特徴とするコンデンサ用電極箔で ある。 ここで言う酸化チタンを有する被膜とは、 チタンの含有量が 10原子数%以上 35原子数%以下であり、 残りの成分が酸素原子を含 む被膜である。 不純物として水素を 0. 1原子数%以上 5原子数%以 下含有しても良い。
酸化チタンは、 高誘電率物質であるので、 コンデンサ電極表面に 酸化チタンの膜を成膜すると、 高誘電体として作用し、 高容量のコ ンデンサが得られる。 成膜する酸化チタンの厚さは、 薄いほど高容 量のコ デンサが得られるが、 ピンホール等の欠^が増加するので 、 好ましい厚さは 0. l m以上 0.5 m以下であり、 より好ましくは 、 0. Ι ΠΙ以上 0. 3/ m以下である。 また、 酸化チタン被膜中に 0. 1 原子%〜 25原子%の A1を含有させることによって、 さらに誘電率の 高い被膜が得られる。 酸化チタン被膜中に A1が含有されることで誘 電率が高くなることを、 本発明者らは、 以下に述べる分子軌道計算 により知見し、 本発明に至った。 本発明では、 酸化チタン被膜の誘 電率に対する各種添加元素の影響を調べるため、 表 1 に示すモデル 分子の電子分極率と振動分極率を Gaussian 98プログラムの Hart re e- Fock法を用いて算出した。 用いた基底関数は、 "gaussian basis sets for molecular calculations , S. Huj inaga (eds. ) , Else vier (1984) に記載の split valence plus polarizat ionレべ レの ものである。 表 1 に示す計算結果から、 電子分極に由来する誘電率 は、 ここで検討した添加元素の種類によらず、 ほぼ一定であること が判る。 一方、 振動分極に由来する誘電率は、 A1原子が- Al (0H)2の 形態で酸化チタン被膜中に存在すると、 大幅に増大することが判明 した。 即ち、 酸化チタン中に酸素原子とチタン原子が形成するネッ トワーク構造に、 A1原子が- A1 (0H)2の形態で取り込まれると、 他の 元素が取り込まれた場合と比較して、 振動分極率が大きくなる。 こ のことが、 酸化チタン被膜に A1を添加することによる誘電率向上効 果の理由と考えられる。
分子軌道法による電子分極率と振動分極率の計算値
(原子数で規格化した値)
〇 電子分極率ノ 振動分極率 Z モデル分子 子数 原子数
(X 10-3nm3) (X 10- 3nm3)
OH 0H 1
1 1
HO-Ti- O -Ti-OH 0.71 5.9
1 1
OH OH
OH OH HO-Ti- O -Si-OH 0.60 4.1
1 1
OH OH
0.72 4.4
OH OH
1 /
HO-Ti- O― B 0.59 4.5
1 \
OH OH
OH OH
1 /
HO-Ti- O - Al 0.64 10.6
1 \
OH OH
OH F
1 /
HO-Ti- O— Al 0.66 4.8
1 \
OH F このように Alを添加することによって、 得られる酸化チタン被膜 の誘電率が大きくなるため、 被膜の厚さを薄く しなく とも所望のコ ンデンサ容量が得られる。 したがって、 液相析出法で酸化チタン被 膜を成膜する場合において、 被膜の厚さを薄くすると、 得られる酸 化チタン膜の厚さのばらつきが大きく、 ピンホール等の欠陥が多く なると言う問題を解決できる。
このような被膜を形成するためには、 液相析出法を用いて酸化チ タンを A1箔表面上に成膜すると良い。 液相析出法によりアルミニゥ ム箔上に酸化チタンを析出させる反応は、 下記 ( I ) 式に示す加水 分解平衡反応により行う。 即ち、 チタンフッ化アンモニゥムが水分 子と反応し、 酸化チタンと H +イオン及び F イオンになる反応であ る。
TiF6 2" + 2 H20 ^ Ti02 + 4 H+ + 6 Γ … ( I )
ここで、 式 ( I ) の平衡反応を右辺側に進めるための駆動剤とし て、 A1イオンを添加することによって、 酸化チタンを析出させる。 本発明において、 チタンフッ化アンモニゥム水溶液は、 O. Olmol ノ 1以上 0.5mol / 1以下であることが好ましい。 チタンフッ化アン モニゥム水溶液の濃度が 0. Olmol/ 1未満であっても、 酸化チタン 被膜の成膜は可能であるが、 被膜の成膜速度が遅く、 生産性が低い 。 一方、 チタンフッ化アンモニゥム水溶液の濃度が 0. δηιοΙΖ 1超で は、 酸化チタン粒子が水溶液中でパウダー状に析出し易くなり、 A1 箔基材上に均一な厚さの酸化チタン被膜を得ることが困難になるこ とがある。
上記処理液の ΡΗは 3〜 8が好ましく、 より好ましくは 5〜 6であ る。 その理由は、 処理液 ρΗが 3未満では、 健全な成膜ができるもの の、 得られるコンデンサは、 所望の容量が得られ難く、 処理液の ρΗ が 8よ 0大きい場合は、 液が不安定であり、 処理夜中で酸化チタン が凝集したものが析出し、 基材表面に均一な膜ができ難いと言う問 題があるからである。 処理液 pHの調整は周知の方法で良く、 本発明 の析出反応のその他の条件は、 特に限定されない。
上記のチタンフッ化アンモニゥム水溶液中に A1箔基材を浸漬させ て、 酸化チタン被膜を基材表面上に 0. 05 /x m〜0. 5 ^ mの厚さで析 出させる。 このとき.用いるアルミニウム箔基材は、 例えばアルミ二 ゥム純度 99. 99以上の 1 N 99、 アルミニウム純度 99. 90以上の 1 N 90 等高純度アルミニウム箔が挙げられ (アルミニウム協会の合金番号 ) 、 これら高純度アルミニウム箔はコンデンサに使われる。 さらに 、 アルミニウム焼結体でも構わない。 エッチング A1箔に関しては、 粗化処理の程度に依らない。 A1箔を浸漬する上記処理液の温度や、 浸漬時間は適宜設定すればよいが、 処理液の温度は、 常温〜 50°Cの 間が好ましく、 浸漬時間は 10分〜 120分が好ましい。
成膜した酸化チタン被膜中に A1を添加する方法については、 特に 規定するものではない。
イオン注入法等による A1イオンを酸化チタン被膜の表面から注入 する方法によって、 酸化チタン被膜に A1を添加しても良い。 イオン 注入法によれば、 注入する A1イオンのイオン注入量によって、 酸化 チタン被膜中に所望の濃度で A1を添加でき、 注入エネルギーの制御 によって、 酸化チタン被膜中の A1濃度の深さ方向分布を所望の分布 状態になるように制御できる。
低コス トで製造できる方法として、 陽極酸化処理によって基材の A1箔から酸化チタン被膜へ A1原子を拡散させる方法によって、 チタ ン被膜中に A1を添加しても良い。 即ち、 液相析出法を用いて酸化チ タンを成膜したアルミニウム箔表面に、 以下に述べる方法で陽極酸 化処理を施す。
陽極酸化処理用電解液としては、 例えば、 ホウ mアンモニゥム、 リン酸、 アジピン酸、 シユウ酸、 硫酸、 セバシン酸、 又は、 これら のアンモニゥム塩から一つ又は二つ以上を含有する溶液を挙げるこ とができるが、 限定されない。
陽極酸化では、 陽極酸化処理用電解液中で A 1箔基材に電圧を印加 することにより、 A 1箔基材と酸化チタン被膜の中間に酸化アルミ二 ゥム層を形成する。
陽極酸化処理における、 設定温度、 印加電圧については、 特に規 定するものではなく、 公知の条件で処理を行えばよい。 例えば、 陽 極酸化処理液の温度を 50°C〜80°Cに設定し、 A 1箔に 10 V〜400 Vの 範囲の電圧を印加する。 A 1箔に流れる電流密度が 0. lmAZ cni2〜30mA 〜 cm2の値で一定になるように通電し、 A1箔基材と上記酸化チタン 被膜の間に陽極酸化膜を成長させる。 通電する電流密度を制御する ことによって、 基材から溶出する A1イオン量を調整し、 酸化チタン 被膜に取り込まれる A 1の濃度を調整する。
陽極酸化膜の成長に伴って、 通電時間と共に電圧が増加するが、 陽極酸化膜厚と電圧の間には比例関係があるので、 電圧をモニタ一 することによって所望の陽極酸化膜厚が得られたことがわかる。 印 加電圧の値が、 陽極酸化膜の厚さで Ι Οηιι!〜 500nmに対応する値に達 した段階で、 電圧が一定になるように制御し、 一定時間保持する。 この保持時間によって、 酸化チタン被膜中の A 1濃度の分布が、 陽極 酸化膜側で高濃度になり、 酸化チタン被膜表面側で低濃度となるよ うに、 酸化チタン被膜の表面から酸化チタン被膜と陽極酸化層の界 面にかけて A1の濃度分布に傾斜があるような被膜が得られる。 上記 保持時間は、 チタン被膜中の A 1濃度分布が所望の分布となるように 設定すればよく、 特に規定するものではないが、 例えば、 10分間〜 60分間保持すればよい。
また、'陽極酸化中に電流密度を変えることで、 酸化チタン層が 、 含有アルミニウム濃度が異なる 2層の酸化チタン層からなる被膜 構造となる。 酸化チタン中の A1濃度が基材側に近いほど高くなるよ うな分布を持つようにすることで、 酸化チタン被膜と基材との密着 性を高くすることができる。 例えば、 陽極酸化の電流密度を 1 mAZ cm2〜10niAZ cni2に設定することによって、 酸化チタン被膜の基材側 界面近傍に A 1濃度が 10原子数%〜 25原子数%の高 A 1濃度層を作り、 続いて、 陽極酸化の電流密度を 10mAZ cm2〜30mA/ cni2に設定するこ とによって、 残りの酸化チタン被膜表面までの領域に A 1濃度が 0. 1 原子数%〜 10原子数%の低 A 1濃度層を形成する。 上記高 A 1濃度層の 厚さは Ι Οηπ!〜 50nmであり、 より好ましくは Ι Οηπ!〜 30nmである。
最後に、 上記の陽極酸化を施した酸化チタン付アルミニウム箔を 加熱処理し、 電極箔を得る。 陽極酸化後の熱処理温度は 400°C以下 が好ましく、 より好ましくは 200〜 400°Cである。 200°C未満では熱 処理の効果が十分に確認されない場合があり、 400°Cを超えると静 電容量低下が確認された。 熱処理時の雰囲気は、 真空中、 又は、 窒 素やアルゴン等の不活性ガス中が好ましい。 雰囲気を真空にするに は、 大気から直接減圧しても良いし、 不活性ガスで雰囲気置換した 後に減圧しても良い。 この加熱処理によって、 酸化チタン被膜中の A 1濃度及びその分布状態が変化することはない。
以上述べた A1を添加物として含有する酸化チタン被膜を有するァ ルミ二ゥム箔を陽極として用い、 コンデンサとすればよい。 なお、 電解質や陰極については限定されず、 適宜選択して用いれば良い。 実施例 1
以下の如く、 各種処理液を用いて成膜後、 静電容量、 漏れ電流及 び結晶サイズを評価した。
処理^、 処理条件及び結果等を表 1〜 3に示す。' 基材は、 エッチ ング加工を施していない未化成の Al箔 ( 1 N99) を用いた。 酸化チ タン成膜反応における処理液は、 チタンフッ化アンモニゥム水溶液 中にホウ酸を、 ( 1 ) 添加しない場合、 ( 2 ) 添加した場合、 の二 種類を用意した。 ( 1 ) について、 処理液は、 0, 1M (mol/ 1 ) チ タンフッ化アンモニゥム水溶液に、 アンモニア水を加えて pHを 3 , 4, 5, 6 , 7, 8に調整した。 ( 2 ) について、 処理液は、 0. 1 Mチタンフッ化アンモニゥム水溶液を用い、 0. 1 Mホウ酸を添加後 、 アンモニア水を加えて pHを 3, 4, 5, 6, 7, 8に調整し作製 した。 ( 1 ) , ( 2 ) の条件で作製した処理液中に、 常温において 5分間基材を浸漬した。 陽極酸化を行う場合は、 12%アジピン酸ァ ンモニゥム水溶液を用いて、 温度 80°C、 所定の電圧を 60分間印加し て行った。 陽極酸化後、 真空中で 90°C、 300°C、 650°Cに 3時間保持 する熱処理を行った。
静電容量は、 12%アジピン酸アンモニゥム水溶液を用いて、 LCR メ一夕を用いて 120Hzで測定した。 漏れ電流は 5 Vを印加して測定 した。 評価は、 下記の比較例である実験 No.91との比較で、 以下の 基準によって行つた。
• 静電容量 X : No.91と同等もしくは低下
〇 : No.91より 1倍超から 1.5倍以下増加
◎ : No.91より 1.5倍超増加
• 漏れ電流 X : No.91より増加
〇 : No.91と同等
◎ : No.91より低下
薄膜の結晶サイズについては、 X線回折測定から得られたピーク の半価幅をシエラーの式に代入し求めた。 また、 薄膜の断面構造は 電子顕微鏡で観察した。
〔実験 No. 1〜18〕 ' 処理液は、 0. 1Mへキサフルォロチタン酸アンモニゥム水溶液を 用い、 アンモニア水で pHを 3 , 4 , 5, 6 , 7, 8に調整した。 成 膜は、 常温で処理液中に基材を 5分間浸漬することで行い、 成膜後 水洗し、 風乾した。 続いて真空中で 90°C、 300°C、 650°Cに 3時間保 持する熱処理をした。
〔実験 No. 19〜36〕
基材を陽極酸化電圧 60Vで陽極酸化した。 続いて、 アンモニア水 で pHを 3, 4 , 5, 6, 7 , 8 に調整した 0. 1Mへキサフルォロチ 夕ン酸アンモニゥム水溶液を処理液として、 酸化チタンを成膜した 。 成膜は、 常温で処理液中に陽極酸化後の基材を 5分間浸漬するこ とで行い、 成膜後水洗し、 風乾した。 続いて真空中で 90° ( 、 300°C 、 650°Cに 3時間保持する熱処理をした。 その結果を表 2に示した
表 2
Figure imgf000019_0001
〔実験 No.37〜54〕
処理液は、 0. 1Mへキサフルォロチタン酸アンモニゥム水溶液を 用い、 アンモニア水で pHを 3 , 4 , 5 , 6, 7, 8 に調整した。 成 膜は、 常温で処理液中に基材を 5分間浸漬することで行い、 成膜後 水洗し、 風乾した。 陽極酸化電圧 3 Vで陽極酸化後、 真空中で 90°C 、 300°C、 650°Cに 3時間保持する熱処理をした。 その結果を表 2に 示した。
〔実験 No.55〜72〕
処理液は、 0. 1Mへキサフルォロチタン酸アンモニゥム水溶液を 用い、 アンモニア水で pHを 3, 4, 5 , 6, 7, 8 に調整した。 成 膜は、 常温で処理液中に基材を 5分間浸漬することで行い、 成膜後 水洗し、 風乾した。 陽極酸化電圧 60Vで陽極酸化後、 真空中で 90°C 、 300° ( 、 650°Cに 3時間保持する熱処理をした。 その結果を表 3に 示した。
表 3
実験 処理液条件 陽極酸化 熱処理 酸化チタン 被膜構造(アルミ二 基材
No. (NHJ , TiFK濃度 B0,濃度 液温 H 電圧 条件 結晶サイズ ゥム箔基材側から)
. 37 3 1. 2nm
38 4 >0. 5ηι
39 5 〉0. 5ηι
90-C
40 6 >0. 5nm
41 7 1. 9ηι
42 8 1. 5nm
43 3 1. 5nm
44 4 〉0. 5皿 アルミニウム/ア
45 一チタン
A1箔平坦 0. 1M 常 5 〉0. 5ηι ミニゥム
3V 300で
46 6 >0. 5ni 合酸化物 Z酸化チ
47 7 1. 5ni ン
48 8 1. 8ni
49 3 2. 5 ill
50 4 2. 4ni
51 5 2. 2nm
65(TC
52 6 2. 2nm
53 7 2. 2ni
54 8 2. 3ni
55 3 1. 2ni
56 4 >0. 5nm
57 5 9(TC >0. 5nm
58 6 >0. 5 iii
59 7 1. 9nm
60 8 1. 5nm
61 3 1. 5i
アルミニウム/酸
62 4 〉0. 5皿
アルミニウム ア
63 A1箔平坦 0. 1M 常 5 60V 300 >0. 5 ミニゥム一チタン
64 6 〉0. 5nm 合酸化物 酸化チ
65 7 1. 5ni ン
66 8 1. 8nm
67 3 2. 5nm
68 4 2. 4nm
69 5 2. 2iiii
70 6 2. 2ni
71 7 2. 2ni
72 8 2. 3nm
(比較例)
〔実験 No. 73〜90〕
処理液は、 0. 1 Mへキサフルォロチタン酸アンモニゥム水溶液を 用い、 酸化チタン析出駆動剤として 0. 1 Mホウ酸を添加した。 成膜 は、 常温で処理液中に基材を 5分間浸漬することで行い、 成膜後水 洗し、 風乾した。 陽極酸化電圧 60 Vで陽極酸化後、 真空中で 90°C、 300°C、 650°Cに 3時間保持する熱処理をした。 その結果を表 4に示 した。
表 4
Figure imgf000023_0001
〔実験 No. 91 ]
基材を陽極酸化電圧 60 Vで陽極酸化後、 真空中で 300°C、 3時間 保持の熱処理をした。 その結果を表 4に示した。
表 2及び表 3 に示される本発明の電極箔は、 比較材に比して優れ た特性を有し、 その効果が確認された。 一方、 表 4に示される処理 液中にホウ酸を添加して成膜したアルミニウム箔では、 比較材に比 して漏れ電流特性が劣化することが確認された。
実施例 2
A 1箔基材として、 エッチング加工を施していない未化成の A 1箔 ( 1 N 99) を用いた。
液相析出処理液中のチタンフッ化アンモニゥムの濃度を 0. 05mo l Z 1 とし、 水溶液にアンモニア水を加えて pHを 5. 5に調整した。 処 理液の温度を常温に設定し、 上記のチタンフッ化アンモニゥム水溶 液中に A1箔基材を 20分間浸漬させて、 酸化チタン被膜を基材表面上 に約 200nmの厚さで析出させた。 本実施例では、 低コス トで製造で きる方法として、 陽極酸化処理によって基材の A 1箔から酸化チタン 被膜へ A 1原子を拡散させる方法によって、 チタン被膜中に A 1を添加 した。
陽極酸化処理は、 10 %アジピン酸アンモニゥム水溶液を用いて、 液温を 70°Cに設定し、 電流密度を 0. lmAZ cm2〜50mA/ cm2とした。 A 1箔基材に、 電流密度が一定になるように通電すると、 A 1箔基材と 上記酸化チタン被膜の間に陽極酸化膜が成長した。 通電する電流密 度を制御することによって、 基材から溶出する A 1イオン量を調整し 、 酸化チタン被膜に取り込まれる A 1の濃度を調整した。
陽極酸化膜の成長に伴って、 通電時間と共に電圧が増加するが、 陽極酸化膜厚と電圧の間には比例関係があるので、 電圧をモニター するこどによって所望の陽極酸化膜厚が得られた とがわかる。 電 圧が、 陽極酸化膜厚が 50nmに対応する値に達した段階で、 電圧が一 定になるように制御し、 一定時間保持した。 この保持時間によって 酸化チタン被膜中の A1濃度の分布が陽極酸化側で高濃度になり、 酸 化チタン被膜表面側で低濃度になるように、 酸化チタン被膜の表面 から酸化チタン被膜と陽極酸化層の界面にかけて A1の濃度が直線的 に増加するような濃度分布に傾斜がある被膜が得られた。 また、 保 持時間を 60分以上にすると、 酸化チタン被膜中の A1濃度は均一にな つ 7こ
酸化チタン被膜を高 A1濃度層と低 A1濃度層の 2層構造とする場合 には、 高 A1濃度層形成時の陽極酸化電流密度と低 A1濃度層形成時の 陽極酸化電流密度、 及び、 定電圧保持時間を、 表 6に示す条件に設 定して、 陽極酸化を行った。
実施例の詳細を表 5及び表 6に示す。 成膜後、 静電容量、 漏れ電 流及び酸化チタン被膜中の A1濃度を評価した。 酸化チタン被膜中の A1濃度分布は、 X線光電子分光分析法によって定量評価した。
陽極酸化後に、 真空中において 250°Cに加熱して熱処理を行った 静電容量は、 12%アジピン酸アンモニゥム水溶液を用いて、 LCR メータを用いて 120Hzで測定した。
評価は、 以下の基準によって行った。
• 静電容量 X : 2.0/A F/CIII2以下
〇 : 2. O F/CHI2超、 IO F/CIII2以下
◎ : lO zF/cm2超 表 5
Figure imgf000026_0001
ND: 検出せず 表 6
Figure imgf000027_0001
いずれの条件でも、 本発明の電極箔は、 比較例に対して優れた容 量特性を示し、 その効果が確認できた。 産業上の利用可能性
本発明によると、 漏れ電流特性の優れた、 高容量のコンデンサ用 電極箔を低コス トで提供することが可能となる。 本発明の電極箔を 用いることにより、 コンデンザの小型化および高容量化が可能とな り、 ひいては該コンデンサを用いたモバイル機器等の小型化が可能 となる。

Claims

請 求 の 範 囲
1 . 結晶サイズが 2. 5 nm以下もしくはアモルファス構造を有する 酸化チタンの被膜を有するアルミニウム箱からなることを特徴とす るコンデンサ用電極箔。
2 . 酸化アルミニウムからなる被膜と、 結晶サイズが 2. 5 nm以下 もしくはアモルファス構造を有する酸化チタンの被膜とを有するァ ルミ二ゥム箔からなることを特徴とするコンデンサ用電極箔。
3 . 結晶サイズが 2. 5 nm以下もしくはアモルファス構造を有する 酸化チタンの被膜と、 アルミニウムおよびチタンの複合酸化物また は混合酸化物の一方または両方を有する被膜を有するアルミニウム 箔からなることを特徴とするコンデンサ用電極箔。
4 . 酸化アルミニウムからなる被膜と、 アルミニウムおよびチタ ンの複合酸化物または混合酸化物の一方または両方を有する被膜と 、 結晶サイズが 2. 5 nm以下もしくはアモルファス構造を有する酸化 チタンの被膜とを有するアルミニウム箔からなることを特徴とする コンデンサ用電極箔。
5 . 前記 1〜 4の何れかの項に記載の酸化チタンからなる被膜中 に 0. 1原子数%以上 25原子数%以下のアルミニウムを含有すること を特徴とするコンデンサ用電極箔。
6 . 前記 1〜 4の何れかの項に記載の酸化チタンからなる被膜中 にアルミニウムを含有し、 かつ前記アルミニウム濃度が 0. 1原子数 %以上 25原子数%以下で、 被膜表面から被膜内部にかけて深さ方向 に前記濃度が増加していることを特徴とするコンデンサ用電極箔。
7 . 前記 1〜 4の何れかの項に記載の酸化チタンからなる被膜中 に 0. 1原子数%以上 25原子数%以下のアルミニウムを含有し、 かつ 前記被 E中にアルミニウム濃度が異なる 2層の酸ィ チタン層を有す ることを特徴とするコンデンサ用電極箔。
8 . 請求項 1〜 7の何れかの項に記載のコンデンサ用電極箔を用 いたことを特徴とするコンデンサ。
PCT/JP2006/307683 2005-04-27 2006-04-05 コンデンサ用電極箔 WO2006117985A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-130457 2005-04-27
JP2005130457A JP2006310494A (ja) 2005-04-27 2005-04-27 コンデンサ用電極箔
JP2005130455A JP2006310493A (ja) 2005-04-27 2005-04-27 コンデンサ用電極箔
JP2005-130455 2005-04-27

Publications (1)

Publication Number Publication Date
WO2006117985A1 true WO2006117985A1 (ja) 2006-11-09

Family

ID=37307788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/307683 WO2006117985A1 (ja) 2005-04-27 2006-04-05 コンデンサ用電極箔

Country Status (2)

Country Link
TW (1) TWI301626B (ja)
WO (1) WO2006117985A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218865A (ja) * 2007-03-07 2008-09-18 Mitsubishi Electric Corp 半導体レーザ装置
WO2011099260A1 (ja) * 2010-02-15 2011-08-18 パナソニック株式会社 電極箔とその製造方法、電極箔を用いたコンデンサ
JP2011222689A (ja) * 2010-04-08 2011-11-04 Fujitsu Ltd 電解キャパシタ及びその製造方法
EP2202766A4 (en) * 2007-10-17 2016-07-20 Showa Denko Kk METHOD FOR PRODUCING A CONDENSER, CONDENSER, BOARD, ELECTRONIC DEVICE AND CHIP CARD
WO2017154461A1 (ja) * 2016-03-10 2017-09-14 パナソニックIpマネジメント株式会社 電極箔の製造方法および電解コンデンサの製造方法
CN114446667A (zh) * 2022-01-17 2022-05-06 南通海星电子股份有限公司 一种高介电常数电极箔的制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8159811B2 (en) * 2007-10-19 2012-04-17 Oh Young Joo Metal capacitor and manufacturing method thereof
TWI635521B (zh) * 2017-02-13 2018-09-11 鈺邦科技股份有限公司 電容器封裝結構及其抗氧化複合式電極箔
CN109183116B (zh) * 2018-09-06 2020-07-17 南通海星电子股份有限公司 一种制备含TiO2介质层电子铝箔的前处理工艺

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0265219A (ja) * 1988-07-05 1990-03-05 U S Philips Corp 陽極酸化したアルミニウム箔のキャパシタンスを増大する方法
JPH0442519A (ja) * 1990-06-08 1992-02-13 Toyo Alum Kk アルミニウム電解コンデンサの電極およびその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0265219A (ja) * 1988-07-05 1990-03-05 U S Philips Corp 陽極酸化したアルミニウム箔のキャパシタンスを増大する方法
JPH0442519A (ja) * 1990-06-08 1992-02-13 Toyo Alum Kk アルミニウム電解コンデンサの電極およびその製造方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218865A (ja) * 2007-03-07 2008-09-18 Mitsubishi Electric Corp 半導体レーザ装置
EP2202766A4 (en) * 2007-10-17 2016-07-20 Showa Denko Kk METHOD FOR PRODUCING A CONDENSER, CONDENSER, BOARD, ELECTRONIC DEVICE AND CHIP CARD
JPWO2011099260A1 (ja) * 2010-02-15 2013-06-13 パナソニック株式会社 電極箔とその製造方法、電極箔を用いたコンデンサ
US8654509B2 (en) 2010-02-15 2014-02-18 Panasonic Corporation Electrode foil, process for producing same, and capacitor using electrode foil
JP5816794B2 (ja) * 2010-02-15 2015-11-18 パナソニックIpマネジメント株式会社 電極箔の製造方法
WO2011099260A1 (ja) * 2010-02-15 2011-08-18 パナソニック株式会社 電極箔とその製造方法、電極箔を用いたコンデンサ
JP2011222689A (ja) * 2010-04-08 2011-11-04 Fujitsu Ltd 電解キャパシタ及びその製造方法
WO2017154461A1 (ja) * 2016-03-10 2017-09-14 パナソニックIpマネジメント株式会社 電極箔の製造方法および電解コンデンサの製造方法
JPWO2017154461A1 (ja) * 2016-03-10 2019-01-10 パナソニックIpマネジメント株式会社 電極箔の製造方法および電解コンデンサの製造方法
US10804039B2 (en) 2016-03-10 2020-10-13 Panasonic Intellectual Property Management Co., Ltd. Method for producing electrode foil and method for manufacturing electrolytic capacitor
JP2022020800A (ja) * 2016-03-10 2022-02-01 パナソニックIpマネジメント株式会社 電極箔の製造方法および電解コンデンサの製造方法
JP7029675B2 (ja) 2016-03-10 2022-03-04 パナソニックIpマネジメント株式会社 電極箔の製造方法および電解コンデンサの製造方法
JP7220438B2 (ja) 2016-03-10 2023-02-10 パナソニックIpマネジメント株式会社 電極箔の製造方法および電解コンデンサの製造方法
CN114446667A (zh) * 2022-01-17 2022-05-06 南通海星电子股份有限公司 一种高介电常数电极箔的制备方法
CN114446667B (zh) * 2022-01-17 2023-09-08 南通海星电子股份有限公司 一种高介电常数电极箔的制备方法

Also Published As

Publication number Publication date
TW200644012A (en) 2006-12-16
TWI301626B (en) 2008-10-01

Similar Documents

Publication Publication Date Title
WO2006117985A1 (ja) コンデンサ用電極箔
EP0953197B1 (en) High surface area metal oxynitrides for electrical energy storage
TWI375971B (en) Electrode structure body, capacitor and method for manufacturing electrode structure body
JP2007098563A (ja) ナノ構造体およびその製造方法
Zhang et al. A two-step anodic method to fabricate self-organised nanopore arrays on stainless steel
Shinde et al. High electrochemical performance of nanoflakes like CuO electrode by successive ionic layer adsorption and reaction (SILAR) method
WO2012002418A1 (ja) 負極集電体用銅箔の製造方法
Lei et al. Liquid phase deposition (LPD) of TiO2 thin films as photoanodes for cathodic protection of stainless steel
US20100290974A1 (en) Titanium dioxide coating method and the electrolyte used therein
Mukhtar et al. Appropriate deposition parameters for formation of fcc Co–Ni alloy nanowires during electrochemical deposition process
JP4834193B2 (ja) 電極構造体の製造方法、電極構造体およびコンデンサ
Roy et al. Titanium oxide nanoparticles precipitated from low‐temperature aqueous solutions: III. thin film properties
JP5339346B2 (ja) アルミニウム置換α型水酸化ニッケルの製造方法
US20100230287A1 (en) Porous gold materials and production methods
Li et al. The key factor determining the anodic deposition of vanadium oxides
JP4844973B2 (ja) 電極箔の製造方法
WO2006008970A1 (ja) コンデンサ用電極箔及びその製造方法
JP2006310493A (ja) コンデンサ用電極箔
JP2006310494A (ja) コンデンサ用電極箔
Yoshida et al. Synthesis of metallic zinc nanoparticles by electrolysis
KR100635300B1 (ko) 전착법을 이용한 결정성 몰리브덴-코발트 합금 박막의제조방법
Lee et al. Facile electrochemical synthesis of titanium dioxide dendrites and their electrochemical properties
JP2007305776A (ja) コンデンサ用電極箔及びコンデンサ
JP2010209405A (ja) 表面電気伝導性に優れたステンレス鋼材およびその製造方法
JPS63160322A (ja) 電解コンデンサ用アルミニウム電極材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06731630

Country of ref document: EP

Kind code of ref document: A1