TWI375971B - Electrode structure body, capacitor and method for manufacturing electrode structure body - Google Patents

Electrode structure body, capacitor and method for manufacturing electrode structure body Download PDF

Info

Publication number
TWI375971B
TWI375971B TW095141293A TW95141293A TWI375971B TW I375971 B TWI375971 B TW I375971B TW 095141293 A TW095141293 A TW 095141293A TW 95141293 A TW95141293 A TW 95141293A TW I375971 B TWI375971 B TW I375971B
Authority
TW
Taiwan
Prior art keywords
electrode structure
aluminum
dielectric
substance
dielectric layer
Prior art date
Application number
TW095141293A
Other languages
Chinese (zh)
Other versions
TW200807466A (en
Inventor
Inoue Hidetoshi
Ashitaka Zenya
Original Assignee
Toyo Aluminium Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Aluminium Kk filed Critical Toyo Aluminium Kk
Publication of TW200807466A publication Critical patent/TW200807466A/en
Application granted granted Critical
Publication of TWI375971B publication Critical patent/TWI375971B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0032Processes of manufacture formation of the dielectric layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • H01G9/045Electrodes or formation of dielectric layers thereon characterised by the material based on aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/055Etched foil electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/07Dielectric layers

Description

1375971 九、發明說明: 【發明所屬之技術領域】 本發明係關於一般的電極構造體、電容 之萝洪古土 « ^ 电今态及電極構造體 之衣w方法,特定而言,係關於使用作為電容器等 材料用之電極構造體、具有該電極構造 極構造體之製造方法。 ^[及電 【先前技術】 •例如日本專利特開昭62_22託12號公報所記載,具 介電係數的介電質材料,係廣泛使用為諸如電容器= 體元件、發光元件等的電子材料。 電今器係具有二個電極,即陽極與陰極。電解電容器的 陽極材料係使用表面可生成絕緣氧化被膜的銘、组等間金 f (即valve metal)。此處所謂「閥金屬」係指利用陽極 氧化而由氧化被膜覆蓋的金屬,諸如:鋁、鈕、鈮、鈦、 铪、錯、辞:鶴、鉍、銻等。陰極材料則係使用諸如電解 _液、無機半導體、有機導電性物質或金屬薄膜中任一者。 當陰極材料係使用電解液的情況,陰極端子大多係使用擴 大表面積的銘f|。 自習知起便有數種方法被 為能增加電容器的靜電電容, 提案。 例如在日本專利特開2〇〇4_259932號公報中便記載有 擴大陽極與陰極端子表面積的方&,其係在㈣表面上依 使含Pb的結晶性氧化物形成均勾分佈狀態,且抑制钱刻 時發生表面溶解狀況’藉此便可獲得經㈣後擴大之表面 312XP/發明說明書(補件)/96·〇3/95⑷293 5 積的方法。 ^者’例如日本專利㈣⑽ 形成高隸性且厚纽的方法,錢結 己鱗 鈦-磷系複合氧化物皮膜的方法。,土 上附者 :者’例如曰本專利特開平1〇_182221號公報中 小ΐΐί容性元件用的物品,其係介電係數的溫度係數較 Μ列如日本專利特開平u_3m31號公報記載有姆 i解電W之金屬箱電極表面積的方法,其係包括有· 具有約1〇-3托爾(t〇rr)i 10-2托爾廢力的惰性環境内 配置=基材的步驟;以及為對基材賦予表面構造體,而在 〜性被境下於基材上蒸錢閥金屬的步驟。然、而,利用蒸鑛 形成含有閥金屬的介電質層之方法,不僅需要保持高、: 空,且頗難工業性形成均勻厚度的介電質層。 另外,若採取溶膠凝膠(sol_gel)法,相較於蒸鍍法, 籲I較容易形成含閥金屬的介電質層,且可工業性形成均勻 厚度的介電質層。然而,依照溶膠凝膠法所獲得之介電質 層在對介電質先質物質施行加熱而形成介電質層的步驟 中將谷易發生龜裂專缺陷,因而與基材的|呂之間的密接 性較弱’而出現無法獲得所需耐電壓等的問題。 解決上述問題的方法,係有如在國際公開第02/062569 號公報中所記載之在基體上具有氧化物層的構造體之製 造方法。該方法係包括有:調製氧化物層用塗佈液的塗佈 液调製步驟;對塗佈液調製步驟的另一基體表面施行前處 312XP/發明說明書(補件)/96-〇3/95141293 6 ^/5971 j,而獲得完成前處理基體的基體表面 塗佈氧化物層用塗佈液,而獲步= 及將塗佈基體施行锻燒,而在基體上形1375971 IX. Description of the Invention: [Technical Field of the Invention] The present invention relates to a general electrode structure, a capacitor of the Luohong ancient soil « ^ electric state and an electrode structure of the electrode structure, in particular, regarding the use An electrode structure for a material such as a capacitor, and a method for producing the electrode structure electrode structure. [[Electricity] A dielectric material having a dielectric constant is widely used as an electronic material such as a capacitor = a body element or a light-emitting element, as described in Japanese Laid-Open Patent Publication No. 62-22. The electric current system has two electrodes, an anode and a cathode. The anode material of the electrolytic capacitor uses the surface, group, etc., which is an insulating oxide film. The term "valve metal" as used herein refers to a metal which is covered with an oxidized film by anodic oxidation, such as aluminum, button, bismuth, titanium, bismuth, erroneous, and sputum: crane, samarium, samarium, and the like. The cathode material is any one of, for example, an electrolytic solution, an inorganic semiconductor, an organic conductive material or a metal thin film. When the cathode material is an electrolyte, the cathode terminal is mostly made of an enlarged surface area. There are several ways to increase the electrostatic capacitance of capacitors. For example, Japanese Patent Laid-Open No. Hei. No. 2-259932 discloses a method of expanding the surface area of the anode and the cathode terminal, and forming a uniform distribution of the Pb-containing crystalline oxide on the surface of (4), and suppressing it. The surface dissolution condition occurs when the money is engraved, thereby obtaining the method of the surface 312XP/invention specification (supplement)/96·〇3/95(4)293 5 product expanded by (4). For example, Japanese Patent (4) (10) forms a method of high-strength and thick-junction, and a method of depositing a titanium-phosphorus composite oxide film. In the case of the article, the temperature coefficient of the dielectric constant of the article is as described in Japanese Patent Laid-Open No. U_3m31, as described in Japanese Patent Application Laid-Open No. Hei No. Hei. The method for decompressing the surface area of the metal box electrode of the W, comprising the step of configuring the substrate in an inert environment having a waste force of about 1 〇 -3 Torr (10 Torr); And a step of imparting a surface structure to the substrate and evaporating the valve metal on the substrate. However, the method of forming a dielectric layer containing a valve metal by using a molten metal requires not only maintaining a high, empty, but also industrially difficult to form a dielectric layer of uniform thickness. Further, when the sol-gel method is employed, it is easier to form a dielectric layer containing a valve metal than the vapor deposition method, and a dielectric layer having a uniform thickness can be industrially formed. However, the dielectric layer obtained by the sol-gel method in the step of heating the dielectric precursor to form a dielectric layer is susceptible to cracking defects, and thus the substrate The adhesion between the two is weak, and there is a problem that the required withstand voltage cannot be obtained. A method for producing the structure having an oxide layer on a substrate as described in International Publication No. 02/062569 is disclosed. The method includes: a coating liquid modulating step of preparing a coating liquid for an oxide layer; and a front surface of the other substrate surface of the coating liquid modulating step 312XP/invention specification (supplement)/96-〇3/ 95141293 6 ^/5971 j, and obtaining a coating liquid for coating an oxide layer on the surface of the substrate before the completion of the processing, and obtaining the step = and subjecting the coated substrate to calcination, and forming on the substrate

括有將A =㈣步驟;Μ,基體表面前處理步驟係包 =有將基體表面形成具Μ維或2維規則構造面的第U ::二:使依照該方法,仍頗難在維持所需耐電壓的情 4又仔雄接性優越且高靜電電容的電極構造體。 【發明内容】 (發明所欲解決之問題) 叙C明之目的在於解決上述問題,將提供基材的 一 在接性優越、可維持所需耐電壓,且 :獲仟两靜電電容的電極構造體及其製 電極構造體的電容器。 一/^ π (解決問題之手段) •本發明者為解決f知技術問題,經深人鑽研結果發現, 將具=含闕金屬^介電質先質物質的銘材,依特定條件施 便可獲得能達成上述目的之電極構造體。根據此 種赉明者的發現,遂完成本發明。 =本發明的電極構造體,係具備有:銘材;形成於該 ==且2金屬的介電質層;以及形成於紹材與介 電質層之間,且含有鋁與碳的介存層。 依照本發日㈣電極構造體中,^屬最好係從鈦、纽、 銓、鍅及鈮所構成群組中選擇之任一種以上。 312XP/發明說明書(補件)/96-03/95丨41293 7 ^/^971 ,照本發_電極構造體中’介電質層亦可含有石夕氧化 物(二氧化矽)。 曰再者,依照本發明的電極構造體中,介存層最好含有結 日日化链的碳化物。 产再者’依照本發明的電極構造體中,介存層最好紹 氣化物。 依照本發明的電極構造體之製造方法,係包括有.將含 •有閥金屬的介電質先質物質形成於銘材表面上的步驟;在 含有含烴物質的空間中’配置已形成有介電質先質物質之 鋁材的步驟;以及在含有含煙物質的空間中,於配置著形 成有介電質先質物質之紹材的狀態下,施行加熱的步驟二 依照本發明的電極構造體之製造方法中,在含有含庐物 質的空間中,於配置著已形成介電質先質物質之在呂材㈣ 態下施行加熱的步驟,最好在45{rc以上、未滿66 溫度範圍内實施。 的 #再者,依照本發明的電極構造體之製造方法,在含有含 烴物質的空間t,於配置著已形成介電質先質物質之鋁材 的狀態下施行加熱步驟之後,最好更包括有將鋁材施行 極氧化的步驟。 依照本發明的電容器係至少具備有上述特徵中之一 項。 一 (發明效果) 依照本發明,電容器等所使用的電極構造體中,基材的 鋁材與介電質層間之密接性優越,並在維持所需耐電壓的 312辦發明說明書(補件)/96-03/95141293 g ^0971 前提下,可獲得高靜電電容。 【實施方式】 (is 材) 本發明之一實施形態令’形成含有闊金屬之介電質層的 ?之紹材,並無特別的限制,可使用諸如純銘或叙合金 的泊片。此種紹材最好結純度根據「JIS H 2⑴」所記 f法測量的數值在98質量%以上。本發明所使用的叙材之 ^ g)、鉻(cr)、辞(Zn)、鈦(Ti)、叙(v).、鎵(Ga)、鎳 人^及删(B)之至少!種合金元素在必要範圍内添加的紹 二,或者經限定上述不可避免雜質元素含有量的紹。銘 :度並無特別的限制’一般最好設定在5"田以上且 ZUO/z m以下的範圍内。 ^述銘材係可使用周知方法進行製造的材料。例如調製 2述既定組成的鋁或鋁合金之熔液’將其經鑄造而獲 1 于的鑄塊施行適當均質化處理。然後,藉由對該鑄塊施行 =與冷軋,便可獲得構成基材㈣材。另外,在上述冷 ^驟^中’亦可於15代以上且雛c以下的溫度範圍 内知仃中間退火處理。 行^前=成介電^物質的步驟之前,亦可對紹施 (介電質層) 閥金屬並無特別的限制,可使用諸如:鎂、鉦、 锡、鐵、銀、石夕,、欽、給,、錯及銳等,特=: 312XP/發明說明書(補件)/96.03/95141293 9 1375971 钽、姶、鍅或鈮為佳。 在基材的IS材表面上形成含閥金屬之介電質層 法’並無特別的限制,最好採取溶膠凝膠法。例如利用人 闕金屬的烧氧化物之有機化合物或金屬鹽的水解盘^ 合’調製由含氧化物先質粒子的溶液(料)經凝膠化的塗 佈液’亚塗佈於鋁表面上便可。或者調製使閥金屬氧化物 在溶液中乳化而成的塗佈液,並塗佈於链表面上便可。塗 佈方法並無特別的限制’可適當採取諸如:旋塗法、棒塗 法、淋塗法、或浸塗法。經塗佈所形成的介電質先質物 膜厚,可^錄錢、㈣液組成及濃度而進行控制。 、f者右在各液(溶膠)或塗佈液中含有碳纖維、碳粒子 或碳先質等碳成分,便可更加提升作為基材的㉟材 質層間之密接性。 一电 若在溶液(溶膠)或塗佈液中含有矽氧化物(二氧化矽) 粒子,便可提升介電質層的耐電壓,可在未施行陽極氧化 鲁步驟的情況下,對介電質層賦予耐電壓。 依此所獲得之表面形成有介電質先質物質的鋁材,視需 要經乾燥,然後在含有含烴物質的環境中施行熱處理。 (含有鋁與碳的介存層) 本發明的電極構造體係更具備有:形成於基材鋁材與介 電質層之間,且含有鋁與碳的介存層。 含有鋁與碳的介存層,係將表面形成有介電質先質物質 的鋁材,在含有含經物質的環境中施行熱處理而獲得。 含有鋁與碳的介存層,將提高基材鋁材與介電質層間之 312XP/發明說明書(補件)/96__5⑷293 1375971 在接丨生,且抑制在基材紹材與介電質層間所# 士、 氧的介存芦之决杰*诸,丨、t 門所^成之含銘與 a生成,並減^基材與介電質層間之電阻值, 將可提供具有高靜電電容的電極構造體。 再含有is與碳的介存層最好含有結晶化之銘的碳化 勿二晶化之链的碳化物將具有更加提高密接性的效果。 者,含有銘與碳的介存層亦可含有銘氧化物。 2將填補介電質層所發生的龜裂等缺陷部,具有防止 =加的效果。但是’過度形成氧化物將導致基材與介電 貝a間之電阻值增加,因而恐將導致電容降低。 (電極構造體之製造方法) 本發明的電極構造體之製造方法係包括有:將含闕 的介電質先質物質形成於銘材表面上的步驟;然後奇在含 有含烴物質的空間内配置鋁材的步驟;以及,在含有含炉 物質的空間中,於配置著紹材的狀態下施行加熱的步驟: 再者’在介電質先質物質上或介電質先質物質間,形成 含有諸如碳纖維、碳粒子或碳先質等碳成分的組成物層之 後,再於含有含烴物質的空間中配置著叙材,經加熱:便 可更加提升作為基材的鋁材與介電質層間之密接性與電 極之靜電電容。 〃 "在介電質先質物質上或介電質先質物質間,形成含有矽 氧化物(二氧化矽)粒子的組成物層之後,若在含烴物質的 空間t配置轉’經加熱’便可更加提升電極構造體的财 電壓。 本發明電極構造體之製造方法的一實施形態中,在表面 312XP/發明說明書(補件)/96·03/95141293 11 1375971 形成有介電質先質物質的紹材施行熱處理時所使用的八 口 =並,的限制。含煙物質的種類係二 3乙烯丙嫌正丁烧、異丁烧及戊烧等院煙(一n) 糸经,乙烯、丙埽、丁烯及丁二烯等烯烴系烴; 炔糸烴等,或該等烴的衍生物。該等煙中最好 、 二烷、丙烷等烷烴系烴,因為在表面形成有介電質先質兀物 質的銘材施行加熱的步驟中,將成為氣體狀。尤佳 烧、乙烧及丙院中任—種的煙。最佳的烴為甲烧。 "再者,含烴物質係在本發明之製造方法中可依液離、 氣態等任何狀態使用。含烴物質只要存在於具介電質被-膜 預備層的!呂所存在空間中便可,可依任何方法導入於表面 形成有介電質先質物質的紹材所配置的空間中。例如當含 烴物質係屬於氣態狀的情況(甲炫、乙烧、丙烧等),^ 面形成有介電質先質物f的紹材施行加熱處理的密閉办 質單獨、或與·隋性氣體一起、或者與氫: 生氣體-起進行填充便可。此外,當含烴物質係液 態:的情況’便依在該密閉空間中氣化的狀態,將含烴物質 早獨、或與惰性氣體一起、或與氫氣等還原性氣體 行填充便可。 在對表面形成有介電質先質物質的紹材施行加轨的步 :中,加熱環境的屢力並無特別的限制,可在常壓、減屋 ^加屢下實施。此外’愿力的調整係可在經保持某一定加 …溫度的期間、或升溫至某一定加熱溫度的升溫中、或從 某疋加熱溫度進行降溫中之任何時間點實施均可。 312ΧΡ/__β (補件)/96-03/95141293 ]2 1375971 對表面形成有介電質先質物質的鋁材所配置之空間中 •導入之含烴物質的重量比率並無特別的限制,通常係相對 於鋁箔100重量份,依碳換算值計,最好設定在〇·丨重量 份以上、且50重量份以下的範圍内,尤以〇 5重量份= 上、且30重量份以下的範圍内為佳。 在對表面形成有介電質先質物質的鋁材施行加熱之步 驟中,加熱溫度係配合加熱對象物的鋁箔之組成等而適當 _設定便可,通常最好設定在45(rc以上、且未滿66〇充二 摩巳圍内,尤以530°C以上、且620Ϊ以下的範圍内為佳。 藉由將加熱溫度設定在450°C以上,便可使含鋁與碳的介 存層中’含有結晶化之鋁的碳化物。但是,本發明之製造 方法中,並非排除在未滿45(TC的溫度下對表面形成有介 電質先質物質的铭材施行加熱,只要在至少超過的 溫度下對表面形成有介電質先質物質的鋁材施行加熱便 •5Γ ° ' Φ 加熱時間係因加熱溫度等而異,一般設定在1小時以 上、且1 〇〇小時以下的範圍内。 §加熱溫度達4 〇 〇 C以上的情況時,最好將加熱環境中 的氧濃度設定在1.0體積%以下。若在加熱溫度達 以上的加熱環境中,氧濃度超過1. 0體積%,則鋁材表面 的熱氧化被膜將肥大,導致鋁材表面的界面電阻增加,恐 將增加電極構造體的内部電阻值。 再者’本發明的電極構造體亦可在對含有含烴物質的空 間中’於配置著I呂材的狀態下施行加熱步驟後,再施行陽 312XP/發明說明書(補件)/96-03/95141293 13 1375971 $氧化步驟。藉由該步驟,便可使含有鋁與碳的介存層中 含有is氧化物。陽極氧化步驟並無特別的限制,例如可在 己二酸錄或賴錢等溶液中,依2V以上、且刪V以下 的電壓實施。 另外,本發明的電極構造體不僅適用於陽極材料,陰極 材料亦可適用。 β (實施例) φ依照以下的實施例卜22與比較例卜7製造電極構造體。 (實施例1〜5、比較例1〜2) 一將厚度30#m的鋁硬質箔(JIS Α1〇7〇_Η18)浸潰於鈦烷 氧化合物溶液中,而在雙面形成厚度0.15/ζπι的介電質先 質物質。 然後,將表面形成有介電質先質物質的鋁材,依照表i 所示環境與溫度的條件施行12小時加熱,而獲得電極構 造體。 •鈦烷氧化合物溶液的組成係設定為Ti(n-OC4H9)4:0.15 莫耳、CH3COCH2COCH3:0.45 莫耳、C2H5〇H:18 莫耳、H2〇:0 3 莫耳。在濕度40%以下的環境下,將上述紹材於上述欽烧 氧化合物溶液令浸潰3秒鐘後,於空氣中,在溫度1〇〇。〇 下施行10分鐘加熱乾燥。重複實施上述浸潰處理與加熱 處理各3次,而形成介電質先質物質。 依實施例5所獲得電極構造體中,使用溴_甲基混合溶 液將鋁材溶解並使用作為試料,利用掃描型電子顯微鏡 (SEM)從背面觀察試料。在鋁材與介電質層之間,將如圖 312XP/發明說明書(補件)/96-03/95141293 14 1375971 、所示,確涊到板狀結晶化物。此外,利用χ射線電子微 探分析儀(ΕΡΜΑ)及X射線繞射,確認上述板狀結晶化物係 屬於碳化鋁。 (實施例6〜8、比較例3〜4) 將厚度50//Π1之鋁硬質箔(JIS Α1〇3〇_Η18)浸潰於氧化 鈦刀政水溶液令,便於雙面上形成表2所示厚度的介 先質物質。 、 然後,將表面形成有介電質先質物質的鋁材,在實施你 6 8中係於甲烷氧體環境中,在比較例3中係於空氣中, 在比較例4中係於氬氣環境中,分別於溫度55(TC下施朽 12小時加熱而獲得電極構造體。 氧鈦77政水/谷液係在將硫酸鈦施行水解而所獲得之 氫氧化鈦於氧環境中施行加熱而獲得氧化鈦中,添加少量 ㈣而進行調整1外’該氧化鈦係利用X射線繞射確認 到具有銳鈦礦型結晶構造。在濕度40%以下的環境下,將 ^述鋁材浸潰於上述氧化鈦分散水溶液_ 3秒鐘後,於空 度1GG°C施行1G分鐘加熱乾燥。重複實施上述 二二與加熱處理各卜3次’而形成介電質先質物質。 (實施例9〜13 ) 將=度8〇㈣的紹硬質落,浸潰於含有鈦、组、給、錯 n 化合物溶液或轉溶液中,便在雙面形成厚度 0.4/zm的介電質先質物質。 將表面形成有介電質先質物質的紹材,在乙炔氣 體衣兄中’於溫度潰下施行12小時加熱,而獲得電 3_囑明書(補件)/9嶋51侧 15 1375971 極構造體。 鋁箔的標稱純度係99. 9質量%,組成的質量分析值係矽 75ppm、鐵 72ppm。 只施例9所使用紐烧氧化合物溶液的組成,係設定 為:Ta(OC2H5)5:0.15 莫耳、CH3COCH2COCH3:0.45 莫耳、 C2H5OH:18 莫耳、H20:0.3 莫耳。 只施例10所使用鈦烧氧化合物溶液的組成,係如同實 擊施例1〜5所使用,設定為:Ti(n_〇C4H9)4:〇15莫耳、 CH3COCH2COCH3:0· 45 莫耳、C2H5OH: 18 莫耳、H2〇: 〇. 3 莫耳。 實施例11所使用銳院氧化合物溶液的組成係設定 為:Nb(OC2H5)5:〇.i5 莫耳、CH3C〇CH2C〇CH3:〇.45 莫耳、 C2H5OH: 18 莫耳、H20: 0. 3 莫耳。 實施例12所使用鍅烷氧北合物溶液的組成,係設定 為:Zr(C4H9〇)4:〇.i5 莫耳、CH3C〇CH2C〇CH3:〇 45 莫耳、 C2H5〇H:18 莫耳、h2〇:〇. 3 莫耳。 •實施例13所使用铪溶膠溶液係將2 〇g的溶解於 99.5%乙醇溶液151111中之後,再於該溶液中添加〇.51忌的 與3.32g的6〇%鳳,再於溫度5〇t下施行加熱而製 得。 在濕度4G%以下的環境下,將上述|g材於上述各烧氧化 合物溶液中浸潰3秒鐘後,於空氣中在溫度·〇下 1〇分鐘加熱乾燥。重複實施上述浸潰處理與加熱處理各6 次’而形成介電質先質物質。 (實施例14〜19) 312XP/發明說明書(補件)/96-03/95141293 16 1375971 將依實施例9〜11所獲得電極構造體,分別依5V及1〇v 施打陽極氧化’便獲得新的電極構造體(實施例14〜16與 實施例1 7〜1 9)。對所獲得電極構造體表面利用EpMA施行 分析,在介電質層的龜裂部中確認到鋁氧化物。 陽極氧化條件係在⑽它的15質量%己二酸銨溶液中, 流通50mA/cm2的直流電流,電壓到達1〇v之後,再保持 10分鐘。此外,將保持1〇分鐘後的電流值視為漏電流。 (實施例20〜22) 將厚度80//m的鋁硬質箔浸潰於依如下所製得二氧化 石夕溶谬溶液中,便在雙面上形成厚度G 4㈣的介電質先 質物質。 在乙炔氣 而獲得電 然後,將表面形成有介電質先質物質的鋁材 體環境中,於溫度550Ϊ下施行12小時加熱 極構造體。 ‘' ㈣的標稱純度係99.9質量%,組成的質量分析值係 碎:75ppm、鐵:72ppm 二氧化矽溶膠溶液係在使用矽烷氧化合物(suoceoo 水解而所獲得之:氧切(siG2)溶膠中,添加預先調整為 =石:之鈦氧化物(Ti02)粒子而製得。此時,實施例 中,T1〇2粒子與Si〇2溶膠的調配比率(重量幻係如 表5所示進行變化。 (比較例5〜7) 將厚度80_銘硬質荡施行交流钱刻而獲得電造 體(比較例5)。此外,如同實施例14]9,利用5v與ι〇ν 312XP/發明說明書(補件)/96.03/95141293 1 7 1375971 施行陽極氧化,而獲得新的電極構造體(比較例6與比較 例7)。 鋁箔的標稱純度係99.9質量%,組成的質量分析值係 石夕:75ppm、鐵:72ppm。· 交流蝕刻方法係依序施行如下條件的一次電解蝕刻、化 學姓刻及二次電解餘刻。 < 一次電解蝕刻>Included is the step of A = (four); Μ, the substrate surface pretreatment step package = there is a U: or two-dimensional regular construction surface of the base surface to form a U::2: according to this method, it is still quite difficult to maintain An electrode structure that is resistant to voltage and has a superior electrical connection and high electrostatic capacitance. SUMMARY OF THE INVENTION (Problems to be Solved by the Invention) The purpose of the invention is to solve the above problems, and to provide an electrode structure which is superior in the connection property, can maintain a required withstand voltage, and obtains two electrostatic capacitances. And a capacitor of the electrode structure. A / ^ π (means to solve the problem) • The inventors of the present invention have solved the problem of knowing the technical problems, and found that the material containing the metal-containing precursor substance of the ruthenium metal is applied according to specific conditions. An electrode structure capable of achieving the above object can be obtained. Based on the findings of such a clarifier, the present invention has been completed. The electrode structure of the present invention includes: a material; a dielectric layer formed of the metal of the == and 2; and a dielectric layer formed between the material and the dielectric layer and containing aluminum and carbon Floor. In the electrode structure according to the fourth aspect of the present invention, it is preferable that any one or more selected from the group consisting of titanium, New Zealand, lanthanum, cerium, and lanthanum. 312XP/Invention Manual (supplement)/96-03/95丨41293 7 ^/^971, according to the present invention, the dielectric layer may also contain a cerium oxide (cerium oxide). Further, in the electrode structure according to the present invention, the carrier layer preferably contains a carbide which is a day-to-day chain. Further, in the electrode structure according to the present invention, the storage layer is preferably a vapor. The method for producing an electrode structure according to the present invention includes the step of forming a dielectric precursor containing a valve metal on the surface of the name material; in the space containing the hydrocarbon-containing substance, the arrangement is formed a step of heat-treating the aluminum material in accordance with the present invention in a state in which a dielectric material is formed in a space containing a substance containing a dielectric substance in a space containing a substance containing a substance; In the method for producing a structure, in the space containing the ruthenium-containing substance, the step of heating in the state of the Lu (4) state in which the dielectric precursor is formed is preferably 45{rc or more, less than 66. Implemented within the temperature range. Further, according to the method for producing an electrode structure of the present invention, after the heating step is performed in a state in which the hydrocarbon-containing substance-containing space t is disposed in the state in which the dielectric precursor is formed, it is preferable to further It includes a step of performing extreme oxidation of the aluminum material. The capacitor according to the present invention is provided with at least one of the above features. (Effect of the Invention) According to the present invention, in the electrode structure used for a capacitor or the like, the adhesion between the aluminum material of the substrate and the dielectric layer is excellent, and the invention specification (supplement) is maintained while maintaining the required withstand voltage. /96-03/95141293 g ^0971 A high electrostatic capacitance can be obtained. [Embodiment] (is material) An embodiment of the present invention is not particularly limited as long as the material for forming a dielectric layer containing a broad metal is used, and a magnetic sheet such as a pure or quartz alloy can be used. The purity of the finished material is preferably 98% by mass or more based on the value measured by the f method described in "JIS H 2(1)". At least the materials used in the present invention are g), chromium (cr), lex (Zn), titanium (Ti), ruthenium (v), gallium (Ga), nickel and ^ (B). The alloying elements are added within the necessary range, or the content of the above-mentioned unavoidable impurity elements is limited. Ming: There is no special restriction on the degree. Generally, it is best to set it within the range of 5" above and below ZUO/z m. ^ The inscription material is a material that can be manufactured using a well-known method. For example, a molten metal of aluminum or aluminum alloy having a predetermined composition is prepared, and an ingot obtained by casting it is subjected to appropriate homogenization treatment. Then, by performing = and cold rolling on the ingot, the constituent base material (four) can be obtained. Further, in the above-mentioned cooling process, the intermediate annealing treatment may be performed in a temperature range of 15 generations or more and c-c or lower. Before the step of ^^=dielectric substance, there is no particular limitation on the valve metal of the Shaoxing (dielectric layer), such as: magnesium, barium, tin, iron, silver, shixi, Chin, give, wrong and sharp, etc., special =: 312XP / invention manual (supplement) / 96.03/95141293 9 1375971 钽, 姶, 鍅 or 铌 is better. The method of forming a dielectric layer containing a valve metal on the surface of the IS material of the substrate is not particularly limited, and a sol-gel method is preferred. For example, a hydrolyzed disk of an organic compound or a metal salt of a burnt oxide of a human ruthenium metal is used to prepare a coating solution which is gelled by a solution of an oxide-containing precursor (substrate) onto a surface of an aluminum. Yes. Alternatively, a coating liquid obtained by emulsifying a valve metal oxide in a solution may be prepared and applied to the surface of the chain. The coating method is not particularly limited, and may be suitably employed, for example, by spin coating, bar coating, shower coating, or dip coating. The film thickness of the dielectric precursor formed by the coating can be controlled by recording the liquid and the composition and concentration of the liquid. In the case where the liquid (sol) or the coating liquid contains carbon components such as carbon fibers, carbon particles or carbon precursors, the adhesion between the 35 material layers as the substrate can be further enhanced. If a solution contains cerium oxide (cerium oxide) particles in a solution (sol) or coating solution, the withstand voltage of the dielectric layer can be increased, and the dielectric can be applied without performing an anodizing step. The layer imparts withstand voltage. The surface obtained by this is formed of an aluminum material having a dielectric precursor, which is dried as needed, and then subjected to heat treatment in an environment containing a hydrocarbon-containing substance. (Intermediate layer containing aluminum and carbon) The electrode structure system of the present invention further includes a storage layer formed between the aluminum material of the substrate and the dielectric layer and containing aluminum and carbon. A storage layer containing aluminum and carbon is obtained by heat-treating an aluminum material having a dielectric precursor in its surface containing a substance. A storage layer containing aluminum and carbon will increase the 312XP/invention specification (supplement)/96__5(4)293 1375971 between the aluminum substrate and the dielectric layer, and inhibit the substrate between the substrate and the dielectric layer. #士, Oxygen Storage Aloe's Jade* *, 丨, t 门^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Electrode structure. The storage layer containing is and carbon preferably contains a carbide which is crystallized, and the carbide of the chain which is not crystallized will have an effect of further improving the adhesion. The donor layer containing the ingot and carbon may also contain the oxide. 2 The defect portion such as cracks generated in the dielectric layer will be filled, and the effect of preventing = adding will be obtained. However, the excessive formation of oxides will result in an increase in the resistance between the substrate and the dielectric a, which may result in a decrease in capacitance. (Manufacturing Method of Electrode Structure) The method for producing an electrode structure of the present invention includes a step of forming a ruthenium-containing dielectric precursor on a surface of a name material; and then singularly in a space containing a hydrocarbon-containing substance a step of disposing the aluminum material; and, in the space containing the furnace-containing substance, performing the heating step in a state in which the material is disposed: Further, 'on the dielectric precursor substance or between the dielectric precursor substances, After forming a composition layer containing a carbon component such as carbon fiber, carbon particles or carbon precursor, and then arranging a material in a space containing a hydrocarbon-containing substance, heating can further enhance the aluminum material and dielectric as a substrate. The adhesion between the layers and the electrostatic capacitance of the electrodes. 〃 " After forming a composition layer containing cerium oxide (cerium oxide) particles on a dielectric precursor or a dielectric precursor, if it is placed in a space t of a hydrocarbon-containing substance, it is heated 'The fuel voltage of the electrode structure can be further increased. In one embodiment of the method for producing an electrode structure of the present invention, the surface used in the heat treatment of the surface material 312XP/invention specification (supplement)/96·03/95141293 11 1375971 Port = and, the limit. The types of smoke-containing substances are benzene, butyl, butyl, butyl, butyl, and pentene, etc., acetylene hydrocarbons such as ethylene, propylene, butene, and butadiene; Etc., or derivatives of such hydrocarbons. Among these, alkane-based hydrocarbons such as dioxane and propane are preferred, and in the step of heating the crystal material having a dielectric precursor on the surface thereof, it is gaseous. You Jia burned, burned and burned in the hospital. The best hydrocarbon is formazan. " Further, the hydrocarbon-containing substance may be used in any state such as liquid separation or gaseous state in the production method of the present invention. The hydrocarbon-containing material is present in the dielectric layer-membrane preparation layer as long as it exists! Lu can exist in the space and can be introduced into the space where the surface of the material is formed by any method. For example, when the hydrocarbon-containing substance is in a gaseous state (A-Hyun, E-Bai, C-B, etc.), the sealing material in which the dielectric precursor f is formed on the surface is subjected to heat treatment, or the sealing property alone or The gas may be filled together or with hydrogen: biogas. Further, in the case where the hydrocarbon-containing substance is in a liquid state, the hydrocarbon-containing substance may be separately or separately filled with an inert gas or a reducing gas such as hydrogen. In the step of applying a rail to a material having a dielectric precursor on the surface, there is no particular limitation on the heating environment, and it can be carried out under normal pressure and reduced housing. Further, the adjustment of the force may be performed at any time during which the temperature is maintained at a certain temperature, or when the temperature is raised to a certain heating temperature, or when the temperature is lowered from a certain heating temperature. 312ΧΡ/__β (supplement)/96-03/95141293 ]2 1375971 There is no particular limitation on the weight ratio of the hydrocarbon-containing substance to be introduced into the space in which the aluminum material having the dielectric precursor is formed on the surface. With respect to 100 parts by weight of the aluminum foil, it is preferably set in a range of not less than 〇·丨 by weight and not more than 50 parts by weight, particularly in the range of 〇5 parts by weight = 30 parts by weight or less. It is better inside. In the step of heating the aluminum material having the dielectric precursor material formed on the surface, the heating temperature is appropriately set in accordance with the composition of the aluminum foil to be heated, etc., and is usually set at 45 (rc or more). Within the range of less than 66 〇 二 二 ,, especially in the range of 530 ° C or more and 620 Ϊ or less. By setting the heating temperature above 450 ° C, the storage layer containing aluminum and carbon can be made. The medium containing the crystallized aluminum. However, in the manufacturing method of the present invention, it is not excluded to heat the crystal material having a dielectric precursor formed on the surface at a temperature of less than 45 (at a temperature of TC, as long as at least When the temperature exceeds the temperature, the aluminum material with the dielectric precursor is formed on the surface. 5 Γ ° ' Φ The heating time varies depending on the heating temperature, and is generally set to a range of 1 hour or more and 1 hour or less. 0体积%。 In the case of a heating temperature of more than 1.0% by volume. , the thermal oxygen on the surface of the aluminum The chemical film will be enlarged, resulting in an increase in the interface resistance of the surface of the aluminum material, which may increase the internal resistance value of the electrode structure. Further, the electrode structure of the present invention may be disposed in a space containing a hydrocarbon-containing substance. After the heating step is carried out in the state of Lv, the 312XP/invention specification (supplement)/96-03/95141293 13 1375971 can be applied to the oxidation step. By this step, the storage layer containing aluminum and carbon can be used. The anodization step is not particularly limited, and may be carried out, for example, in a solution such as adipic acid or ruthenium, at a voltage of 2 V or more and a voltage of V or less. Further, the electrode structure of the present invention is not only applicable. The anode material may be used as the cathode material. β (Example) φ An electrode structure was produced in accordance with the following Example 22 and Comparative Example 7. (Examples 1 to 5, Comparative Examples 1 to 2) #m's aluminum hard foil (JIS Α1〇7〇_Η18) was impregnated into the titanium alkoxide solution to form a dielectric precursor of 0.15/μm thickness on both sides. Then, the surface was formed with a dielectric. Aluminum material of precursor material, according to Table i The environment and temperature conditions were applied for 12 hours to obtain an electrode structure. • The composition of the titanium alkoxide solution was set to Ti(n-OC4H9)4: 0.15 mole, CH3COCH2COCH3: 0.45 mole, C2H5〇H: 18 Mo Er, H2〇: 0 3 Mohr. Under the environment of humidity below 40%, the above-mentioned materials were dipped in the above-mentioned oxygen-burning compound solution for 3 seconds, and then exposed to air at a temperature of 1 Torr. The underarm was heated and dried for 10 minutes, and the above-mentioned impregnation treatment and heat treatment were repeated three times to form a dielectric precursor. In the electrode structure obtained in Example 5, aluminum was mixed using a bromine-methyl mixed solution. The material was dissolved and used as a sample, and the sample was observed from the back side by a scanning electron microscope (SEM). Between the aluminum material and the dielectric layer, as shown in Fig. 312XP/Invention Manual (Supplement)/96-03/95141293 14 1375971, the plate crystallized material is confirmed. Further, it was confirmed by the X-ray electron micro-analyzer (ΕΡΜΑ) and X-ray diffraction that the above-mentioned plate crystallized crystals belonged to aluminum carbide. (Examples 6 to 8 and Comparative Examples 3 to 4) An aluminum hard foil (JIS Α1〇3〇_Η18) having a thickness of 50//1 was impregnated into a titanium oxide knife aqueous solution to facilitate the formation of Table 2 on both sides. A thickness of the precursor material. Then, an aluminum material having a dielectric precursor formed on the surface is used in the methane oxygen environment in the implementation of the method, in the air in Comparative Example 3, and in the argon gas in Comparative Example 4. In the environment, the electrode structure was obtained by heating at a temperature of 55 (TC for 12 hours). The oxytitanium 77 water/glutle solution was heated in an oxygen atmosphere by hydrolyzing titanium hydroxide obtained by hydrolyzing titanium sulfate. In the obtained titanium oxide, a small amount (four) was added and the adjustment was performed. The titanium oxide was confirmed to have an anatase crystal structure by X-ray diffraction. In an environment having a humidity of 40% or less, the aluminum material was immersed in After the titanium oxide dispersion aqueous solution was _ 3 seconds, it was dried by heating at 1 Gg C for 1 G minutes, and the above-mentioned two and two heat treatments were repeated three times to form a dielectric precursor substance. (Example 9~ 13) The hard material falling at a degree of 8 〇 (4) is immersed in a solution containing titanium, group, a given, or a wrong compound or a transfer solution to form a dielectric precursor having a thickness of 0.4/zm on both sides. The surface is formed with a dielectric precursor material, in the acetylene gas brother' The temperature is collapsed for 12 hours and the heat is obtained, and the electric 3_嘱明(补件)/9嶋51 side 15 1375971 polar structure is obtained. The nominal purity of the aluminum foil is 99.9 mass%, and the mass analysis value of the composition is 矽75 ppm, iron 72 ppm. The composition of the neo-oxygenated compound solution used in Example 9 was: Ta(OC2H5)5: 0.15 Mohr, CH3COCH2COCH3: 0.45 Moh, C2H5OH: 18 Mohr, H20: 0.3 Mohr Only the composition of the titanium aerobic compound solution used in Example 10 is used as in the actual application examples 1 to 5, and is set as follows: Ti(n_〇C4H9)4: 〇15mol, CH3COCH2COCH3:0·45 Ear, C2H5OH: 18 Mo, H2〇: 〇. 3 Mo. The composition of the oxy-compound solution used in Example 11 was set to: Nb(OC2H5)5: 〇.i5 Mo, CH3C〇CH2C〇CH3 : 〇.45 Molar, C2H5OH: 18 Mohr, H20: 0.3 mol. The composition of the decane oxygen bead solution used in Example 12 was set to: Zr(C4H9〇)4: 〇.i5 Mohr, CH3C〇CH2C〇CH3: 〇45 Mo, C2H5〇H: 18 Mo, h2〇: 〇. 3 Mo. • The sol solution used in Example 13 dissolves 2 〇g in 99.5%. Ethanol After the liquid 151111 is added to the solution, 〇.51 bogey and 3.32g of 6〇% phoenix are added, and then heated at a temperature of 5 〇t. In the environment of humidity below 4 G%, the above| The g material was immersed in each of the above oxygen-burning compound solutions for 3 seconds, and then dried by heating in air at a temperature of 1 minute. The above impregnation treatment and heat treatment were repeated 6 times to form a dielectric precursor. (Examples 14 to 19) 312XP/Invention Manual (Supplement)/96-03/95141293 16 1375971 The electrode structures obtained in Examples 9 to 11 were subjected to anodization by 5 V and 1 〇v, respectively. New electrode structures (Examples 14 to 16 and Examples 17 to 19). The surface of the obtained electrode structure was analyzed by EpMA, and aluminum oxide was confirmed in the crack portion of the dielectric layer. The anodizing condition was carried out in (10) its 15% by mass ammonium adipate solution, and a direct current of 50 mA/cm2 was passed, and after the voltage reached 1 〇v, it was kept for another 10 minutes. In addition, the current value after one minute is maintained as a leakage current. (Examples 20 to 22) An aluminum hard foil having a thickness of 80/m was immersed in a solution of a cerium oxide solution prepared as follows, and a dielectric precursor having a thickness of G 4 (d) was formed on both surfaces. . The electricity was obtained by acetylene gas. Then, in the aluminum material environment in which the dielectric precursor was formed on the surface, the heating structure was applied at a temperature of 550 Torr for 12 hours. The nominal purity of ''(4) is 99.9% by mass, and the mass analysis value of the composition is: 75 ppm, iron: 72 ppm. The cerium oxide sol solution is obtained by using a decane oxygen compound (sulceoo hydrolysis: oxygen cut (siG2) sol In this case, the titanium oxide (Ti02) particles which were previously adjusted to = stone: were added. At this time, in the examples, the blending ratio of the T1〇2 particles to the Si〇2 sol (weight illusion is as shown in Table 5). (Comparative Examples 5 to 7) An electroformed body (Comparative Example 5) was obtained by hardening the thickness of 80 Å. In addition, as in Example 14], 5v and ι〇ν 312XP/invention specification were used. (Supplement)/96.03/95141293 1 7 1375971 Anode oxidation was performed to obtain a new electrode structure (Comparative Example 6 and Comparative Example 7). The nominal purity of the aluminum foil was 99.9% by mass, and the mass analysis value of the composition was Shi Xi : 75 ppm, iron: 72 ppm. · The AC etching method is performed by one-time electrolytic etching, chemical surrogate, and secondary electrolysis in the following conditions. <One-time electrolytic etching>

電解液組成:12wt%鹽酸+ lwt°/。硫酸+ 100g氯化鋁/公升 •溫度:5(TC 電流波形:正弦波交流 頻率:60Hz 電流密度:20OmA/cm2 時間:60秒 <化學蝕刻> 電解液組成:20wt%鹽酸+3wt%硫酸+ 100g氯化鋁/公升 •溫度:6 0 °C 時間:120秒 <二次電解蝕刻>Electrolyte composition: 12wt% hydrochloric acid + lwt ° /. Sulfuric acid + 100g aluminum chloride / liter • Temperature: 5 (TC current waveform: sine wave AC frequency: 60Hz Current density: 20OmA / cm2 Time: 60 seconds < chemical etching) Electrolyte composition: 20wt% hydrochloric acid + 3wt% sulfuric acid + 100g aluminum chloride / liter • Temperature: 60 °C Time: 120 seconds <Secondary electrolytic etching>

電解液組成:12wt%鹽酸+ lwt%硫酸+ 100g氯化鋁/公升 溫度:30°C 電流波形:正弦波交流 頻率:60Hz 電流密度:160mA/cm2 時間:300秒 312XP/發明說明書(補件)/96-03/95141293 18 靜施例1〜22與比較例卜6所獲得電極構造體的 .體=谷:依實施例Η3與比較例卜5所獲得電極構造 • 〜7 3 Γ碳之介存層形成量、依實施例14〜19與比較例 所獲得電極構造體的漏電流、以及依實施例20〜22與 t較例6〜7所獲得電極構造體的耐電壓等施行評估。 條件係如下所示。評估結果如表丨〜5所示。 [靜電電容] 各5式料的靜電電容係在己二酸銨水溶液中,將測定頻率 設為120Hz而進行測定。 [含鋁與碳的介存層形成量] 針對介存層形成量利用鋁碳化物的定量分析施行評 =。將利用使電極構造體試料總量溶解於2〇%氫氧化鈉水 f液中而所發生的氣體捕捉,使用具火焰離子化偵測器的 间感度氣相色層分析儀,對捕捉氣體施行定量分析,並換 异成鋁碳化物(AhCO含有量。將鋁碳化物含有量相對於溶 鲁解鋁質罝的質量比,視為介存層形成量評估基準而施行評 估。藉此,確涊電極構造體中是否形成有含鋁與碳的介存 層。 [耐電壓] 將在15重量%己一酸錄水溶液中流通imA/cm2定電流5 分鐘後的電壓視為耐電壓而施行評估。另外,在該電壓測 疋中’電極構造體的反電極係使用|呂箱。 312XP/發明說明書(補件)/96-03/95141293 19 1375971 [表1 ] 加 熱 環 境 加熱溫度 C°C ) 靜電電容 (β F/cni2) 介存層與铭羯 之重量比(%) 實 施例 1 甲 烧 氣 體 400 132 0· 01 實 施例 2 甲 氣 體 450 528 0. 07 實 施例 3 甲 烧 氣 體 500 655 0. 14 實 施例 4 甲 烧 氣 體 550 688 0. 28 實 施例 5 甲 烧 氣 體 600 681 0. 60 比 較例 1 空 氣 500 25 < 0 .01 比 較例 2 氬 氣 500 48 < 0 .01 [表2 ] 浸潰次數 (次) 介電質被膜 預備層厚度 (β m) 靜電電容 (β f/cm2) 介存層與鋁箔之重量比 (%) 實施例6 1 0. 19 779 0. 32 實施例7 2 0. 45 805 0.38 實施例8 3 0. 64 856 0.35 比較例3 1 0. 20 21 <0.01 比較例4 1 0.21 37 <0.01Composition of electrolyte: 12wt% hydrochloric acid + lwt% sulfuric acid + 100g aluminum chloride / liter temperature: 30 °C Current waveform: sine wave AC frequency: 60Hz Current density: 160mA/cm2 Time: 300 seconds 312XP / invention manual (supplement) /96-03/95141293 18 Electrode structure obtained by static application examples 1 to 22 and comparative example 6 body = valley: electrode structure obtained according to Example 3 and Comparative Example 5 • ~7 3 The amount of deposited layer formation, the leakage current of the electrode structures obtained in Examples 14 to 19 and the comparative examples, and the withstand voltages of the electrode structures obtained in Examples 20 to 22 and Comparative Examples 6 to 7 were evaluated. The conditions are as follows. The evaluation results are shown in Table 55. [Electrostatic capacitance] The electrostatic capacitance of each of the five types of materials was measured by measuring the measurement frequency to 120 Hz in an aqueous solution of ammonium adipate. [Formation amount of intercalation layer containing aluminum and carbon] Quantitative analysis using aluminum carbide for the amount of formation layer was evaluated. The gas trapping occurs by dissolving the total amount of the electrode structure sample in 2% sodium hydroxide water, and performing the trapping gas using an inter-sensing gas chromatograph with a flame ionization detector Quantitative analysis, and exchange of aluminum carbide (AhCO content. The mass ratio of aluminum carbide content to dissolved aluminum enthalpy is considered as the basis for evaluation of the formation of the formation layer. Whether a storage layer containing aluminum and carbon is formed in the ruthenium electrode structure. [Torque resistance] The voltage after a constant current of 5 minutes in a flow rate of imA/cm2 in a 15% by weight aqueous solution of hexanoic acid is regarded as a withstand voltage and evaluated. In addition, in the voltage measurement, the counter electrode of the electrode structure is used. The box is used. 312XP/Invention Manual (supplement)/96-03/95141293 19 1375971 [Table 1] Heating environment heating temperature C°C) Electrostatic capacitance (β F / cni2) The ratio of the weight of the memory layer to the inscription (%) Example 1 Methane gas 400 132 0· 01 Example 2 M gas 450 528 0. 07 Example 3 Methane gas 500 655 0 14 Example A Aerated gas 550 688 0. 2 8 Example 5 Methane gas 600 681 0. 60 Comparative Example 1 Air 500 25 < 0 . 01 Comparative Example 2 Argon gas 500 48 < 0 .01 [Table 2] Dip times (times) Dielectric film preparation Layer thickness (β m) Electrostatic capacitance (β f/cm 2 ) Weight ratio of carrier layer to aluminum foil (%) Example 6 1 0. 19 779 0. 32 Example 7 2 0. 45 805 0.38 Example 8 3 0 64 856 0.35 Comparative Example 3 1 0. 20 21 <0.01 Comparative Example 4 1 0.21 37 <0.01

[表3 ] 閥金屬 靜電電容 ("F/cm2) 介存層與鋁箔之重量比 (%) 實施例9 钮 1068 0. 43 實施例1 0 鈦 1648 0.31 實施例11 鈮 1404 0. 39 實施例12 鍅 821 0. 35 實施例13 給 979 0. 34 比較例5 — 590 <0.01 312XP/發明說明書(補件)/96·03/95141293 20 1375971 [表4] 閥金屬 5V陽極氧化 靜電電容 (β F/cm2) 1 ον陽極氧化 靜電電容 (β F/cm2) 漏電流 (mA/cm2) 實施例1 $ 鈕 688 _ 1 50 實施例15 欽 1252 一 1 ~βΊ~~' 實施例1 6_ 鈮 832 —一 1 R ^ 比較例6 — 186 — 丄· 0 0 1 go~~~ 實施例17 组 488 2. 02 實施例18 鈦 613 2. 01 實施例15 鈮 — 502 9 1 Q 比較例7 — — 1 39 2. 23 「圭 r η -----1 調配比率 靜電電容 (β F/cm2) Ti〇2 Si〇2 實施例20 g 1 1327 實施例21 Γ 5 5 985 實施例22 3 7 554 比較例6 一 186 比較例7」 — 132 耐電壓 (V) 比較例W所獲得電極構造相較於依 靜電電容。 體之下,侍知可顯示出較高的 視施形態與實施例均僅止於例示而已,不可 :::侷限於此:本發明範圍並非僅侷限於以上的實施形 範圍具均等涵義及二舉凡與申請專利 的所有修正與變化,均涵蓋在 (產業上之可利用性) 藉由將依照本發明的電 面,便可使基材鋁材與介電 極構造體使用於電容器等方 質層間之密接性優越,且在維 312ΧΡ/發明說明書(補件)/96-03/95141293 21 1375971 持所需耐電壓的前提下,可獲得高靜電電容。 【圖式簡單說明】 圖1為實施例5所獲得電極構造體試料的掃描型電子顯 微鏡照片。[Table 3] Valve metal electrostatic capacitance ("F/cm2) Weight ratio of filler layer to aluminum foil (%) Example 9 Button 1068 0. 43 Example 1 0 Titanium 1648 0.31 Example 11 铌1404 0. 39 Implementation Example 12 鍅821 0. 35 Example 13 to 979 0. 34 Comparative Example 5 - 590 <0.01 312XP/Invention Manual (supplement)/96·03/95141293 20 1375971 [Table 4] Valve metal 5V anodized electrostatic capacitor (β F/cm2) 1 ον anodized electrostatic capacitance (β F/cm 2 ) leakage current (mA/cm 2 ) Example 1 $ button 688 _ 1 50 Example 15 Qin 1252 A 1 ~ βΊ~~' Example 1 6_铌 832 —1 1 R ^ Comparative Example 6 — 186 — 丄· 0 0 1 go~~~ Example 17 Group 488 2. 02 Example 18 Titanium 613 2. 01 Example 15 铌—502 9 1 Q Comparative Example 7 — — 1 39 2. 23 “Guy r η−-1 ratio ratio electrostatic capacitance (β F/cm2) Ti〇2 Si〇2 Example 20 g 1 1327 Example 21 Γ 5 5 985 Example 22 3 7 554 Comparative Example 6 - 186 Comparative Example 7" - 132 Withstand voltage (V) The electrode structure obtained in Comparative Example W is compared with the electrostatic capacitance. Under the circumstance, the syllabus can show that the higher the embodiment and the embodiment are only for the sake of illustration, and cannot be::: limited to this: the scope of the present invention is not limited to the above embodiment, and has the same meaning and All the modifications and changes to the patent application are covered (industrial availability). By using the electric surface according to the present invention, the substrate aluminum material and the dielectric electrode structure can be used between the square layers such as capacitors. The adhesion is excellent, and the high electrostatic capacitance can be obtained under the premise that the required withstand voltage is maintained in the dimension 312ΧΡ/invention specification (supplement)/96-03/95141293 21 1375971. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a scanning electron micrograph of a sample of an electrode structure obtained in Example 5.

312XP/發明說明書(補件)/96-03/95141293 22312XP/Invention Manual (supplement)/96-03/95141293 22

Claims (1)

十、申請專利範圍: 1. 一種電極構造體,係具備有: 鋁材; 介電質層 屬;以及 其係形成於上述鋁材表面上,且含有閥金 存層’其係形成於上述㈣與上述介電質層之間,且 含有紹與碳。 2·如申請專利範圍第j項之電極構造體其中,上 金屬係從鈦、组、給、結及銳所構成群組中選擇之任一種 •如申請專利範圍f 1項之電極構造體,其中,上述介 電質層係含有矽氧化物。 4. 如申請專利範圍第1項之電極構造體,其中,上述介 存層係含有結晶化之鋁的碳化物。 5. 如申請專利範圍第1項之電極構造體,其中,上述介 鲁存層係含有鋁氧化物。 6. —種電極構造體之製造方法,係包括有: 將含有閥金屬的介電質先質物質形成於鋁材表面上的 步驟; 在含有含烴物質的空間中,配置已形成有上述介電質先 質物質之上述Is材的步驟;以及 在含有含烴物質的空間中,於配置著已形成有上述介電 質先質物質之上述鋁材的狀態下施行加熱的步驟。 7. 如申請專利範圍第6項之電極構造體之製造方法,其 312XP/發明說明書(補件)/96-03/95141293 23 1375971 中’在上述含有含烴物質的空間中’於配置著已形成上述 •介電質先質物質之上述鋁材的狀態下施行加熱的步驟,係 、 在450C以上且未滿660C的溫度範圍内實施。 ’ 8.如申請專利範圍第6項之電極構造體之製造方法,其 中,在上述含有含烴物質的空間中,於配置著已形成上述 介電質if物質之上述鋁材的I態下崎加熱步驟之 後,係進一步具備將上述鋁材施行陽極氧化的步驟。 9 · 一種電容器,係具備有申靖直妥丨γ R 鲁、 另T 〇月寻利範圍弟1項之電極構X. Patent application scope: 1. An electrode structure comprising: an aluminum material; a dielectric layer; and a system formed on the surface of the aluminum material and containing a valve gold layer formed in the above (4) Between the above dielectric layer and containing carbon. 2. The electrode structure of the jth item of the patent application range, wherein the upper metal system is selected from the group consisting of titanium, group, feed, knot and sharp. Wherein, the dielectric layer contains cerium oxide. 4. The electrode structure according to claim 1, wherein the dielectric layer contains carbides of crystallized aluminum. 5. The electrode structure according to claim 1, wherein the dielectric layer contains aluminum oxide. 6. A method for producing an electrode structure, comprising: a step of forming a dielectric precursor material containing a valve metal on a surface of an aluminum material; and in a space containing a hydrocarbon-containing substance, the arrangement has been formed a step of the above-mentioned Is material of the electroless precursor material; and a step of performing heating in a state in which the aluminum material in which the dielectric precursor substance has been formed is disposed in a space containing the hydrocarbon-containing substance. 7. In the method of manufacturing the electrode structure of claim 6, the 312XP/invention specification (supplement)/96-03/95141293 23 1375971 is disposed in the space containing the hydrocarbon-containing substance described above. The step of heating in the state in which the aluminum material of the dielectric precursor is formed is performed in a temperature range of 450 C or more and less than 660 C. 8. The method for producing an electrode structure according to claim 6, wherein in the space containing the hydrocarbon-containing substance, the I-state heating of the aluminum material in which the dielectric substance is formed is disposed. After the step, the step of subjecting the aluminum material to anodization is further provided. 9 · A capacitor with an electrode structure of Shen Jingzhi 丨γ R Lu and another T 〇月 312ΧΡ/發明說明書(補件)/96-03/95141293 24312ΧΡ/Invention Manual (supplement)/96-03/95141293 24
TW095141293A 2005-11-10 2006-11-08 Electrode structure body, capacitor and method for manufacturing electrode structure body TWI375971B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005326556 2005-11-10

Publications (2)

Publication Number Publication Date
TW200807466A TW200807466A (en) 2008-02-01
TWI375971B true TWI375971B (en) 2012-11-01

Family

ID=38023126

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095141293A TWI375971B (en) 2005-11-10 2006-11-08 Electrode structure body, capacitor and method for manufacturing electrode structure body

Country Status (5)

Country Link
JP (1) JP4965455B2 (en)
KR (1) KR101224064B1 (en)
CN (1) CN101292309B (en)
TW (1) TWI375971B (en)
WO (1) WO2007055121A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010109783A1 (en) * 2009-03-23 2010-09-30 東洋アルミニウム株式会社 Electrode structure, capacitor, battery, and method for producing electrode structure
CN102597286B (en) * 2009-10-30 2014-10-15 松下电器产业株式会社 Electrode foil and capacitor using same
KR20130076793A (en) * 2010-04-07 2013-07-08 도요 알루미늄 가부시키가이샤 Method of manufacturing electrode structure, electrode structure, and capacitor
JP5877362B2 (en) * 2011-06-09 2016-03-08 パナソニックIpマネジメント株式会社 Solid electrolytic capacitor and solid electrolytic capacitor manufacturing method
JP2013077676A (en) * 2011-09-30 2013-04-25 Toyo Aluminium Kk Manufacturing method of electrode structure, electrode structure and capacitor
WO2013191162A1 (en) * 2012-06-20 2013-12-27 東洋アルミニウム株式会社 Photocatalyst coating material, article, and photocatalyst coating material production method
CN103280327A (en) * 2013-05-16 2013-09-04 陶荣燕 Method for preparing high dielectric constant electrode foil
CN107316745B (en) * 2017-07-18 2019-05-07 丰宾电子(深圳)有限公司 Electrode structural body and aluminium electrolutic capacitor for aluminium electrolutic capacitor
CN107354498B (en) * 2017-07-18 2019-04-30 丰宾电子(深圳)有限公司 A kind of manufacturing method of the electrode foil for aluminum electrolytic capacitors of high pressure high capacity
CN111009419B (en) * 2019-09-26 2022-05-10 宇启材料科技南通有限公司 Coated electrode foil, manufacturing method thereof and electrolytic capacitor
CN114551105B (en) * 2020-11-25 2023-10-20 丰宾电子科技股份有限公司 Manufacturing method of negative foil for aluminum electrolytic capacitor
CN114267542B (en) * 2021-12-31 2023-11-14 丰宾电子科技股份有限公司 Method for manufacturing positive electrode structure of high-capacity aluminum electrolytic capacitor

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5921950B2 (en) * 1976-05-14 1984-05-23 松下電器産業株式会社 Manufacturing method of aluminum composite material
JP2618281B2 (en) * 1990-07-12 1997-06-11 日本ケミコン株式会社 Aluminum electrode for electrolytic capacitor and method of manufacturing the same
JPH04196208A (en) * 1990-11-27 1992-07-16 Toray Ind Inc Electrode foil for electrolytic capacitor
JPH05315197A (en) * 1992-05-14 1993-11-26 Matsushita Electric Ind Co Ltd Method of manufacturing aluminum electrode for electrolytic capacitor
JP2000012400A (en) * 1998-06-19 2000-01-14 Nichicon Corp Electrode foil for aluminum electrolytic capacitor
JP3515702B2 (en) * 1999-03-31 2004-04-05 エルナー株式会社 Electrode foil for electrolytic capacitor, method for producing the same, and electrolytic capacitor
JP4125521B2 (en) * 2002-02-04 2008-07-30 東洋アルミニウム株式会社 Aluminum foil for electrolytic capacitors
FR2844810B1 (en) * 2002-09-24 2004-11-05 Pechiney Rhenalu REFINED ALUMINUM SHEET OR STRIP FOR ELECTROLYTIC CAPACITORS
JP4081683B2 (en) * 2003-03-07 2008-04-30 東洋アルミニウム株式会社 Method for producing aluminum foil for electrolytic capacitor
KR100873426B1 (en) * 2003-03-31 2008-12-11 도요 알루미늄 가부시키가이샤 Foil for negative electrode of capacitor and process for producing the same

Also Published As

Publication number Publication date
KR101224064B1 (en) 2013-01-18
TW200807466A (en) 2008-02-01
CN101292309A (en) 2008-10-22
KR20080072629A (en) 2008-08-06
JPWO2007055121A1 (en) 2009-04-30
WO2007055121A1 (en) 2007-05-18
CN101292309B (en) 2011-03-16
JP4965455B2 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
TWI375971B (en) Electrode structure body, capacitor and method for manufacturing electrode structure body
JP5762501B2 (en) Electrode structure, capacitor and battery
TW201135770A (en) Electrode material for aluminum electrolytic capacitor and production method therefor
TWI301626B (en) Capacitor use electrode foil
TW200945388A (en) Electrode material for aluminum electrolytic capacitor, and its manufacturing method
KR20120048538A (en) Electrode for electrolytic applications
Zhang et al. Preparation and characterization of α-Al2O3 film by low temperature thermal oxidation of Al8Cr5 coating
TW201140627A (en) Method for producing aluminum foil electrode of carbon nano-tube
WO2018120601A1 (en) Preparation method for self-supporting thin film of graphene-enhanced three-dimensional porous carbon
TWI310572B (en)
TW201212073A (en) Method for manufacturing electrode structure body, electrode structure body and capacitor
Nakayama et al. Anodic formation of titania nanotubes with ultrahigh aspect ratio
JP2006310493A (en) Electrode foil for capacitor
Frade et al. Annealed Zn–TiO2 nanocomposites electrodeposited: Effect of the substrate
TWM356760U (en) Vacuum thermal insulator film
JPH0762595A (en) Laminated film of aluminum oxide formed by anodization of aluminum and its production
Shen et al. Characterization of ordered Cu2O nanowire arrays prepared by heat treated Cu/PAM composite
TW200934893A (en) A novel method of fabrication large-scale thermal insulating film by using nanochannels of anodic aluminum oxide
JP2007305776A (en) Capacitor and electrode foil therefor
WO2019216206A1 (en) Evaporation raw material container
JP2005319443A (en) Electrode for electrolysis and manufacturing method therefor
JP2005320613A (en) Electrode for electrolysis
JP2006310494A (en) Electrode foil for capacitor
JP2013077676A (en) Manufacturing method of electrode structure, electrode structure and capacitor