TW201140627A - Method for producing aluminum foil electrode of carbon nano-tube - Google Patents

Method for producing aluminum foil electrode of carbon nano-tube Download PDF

Info

Publication number
TW201140627A
TW201140627A TW099114332A TW99114332A TW201140627A TW 201140627 A TW201140627 A TW 201140627A TW 099114332 A TW099114332 A TW 099114332A TW 99114332 A TW99114332 A TW 99114332A TW 201140627 A TW201140627 A TW 201140627A
Authority
TW
Taiwan
Prior art keywords
aluminum foil
aluminum
carbon nanotube
fabricating
electrode according
Prior art date
Application number
TW099114332A
Other languages
Chinese (zh)
Inventor
chun-qiang Lin
Original Assignee
Univ Nat Yunlin Sci & Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Yunlin Sci & Tech filed Critical Univ Nat Yunlin Sci & Tech
Priority to TW099114332A priority Critical patent/TW201140627A/en
Priority to US12/884,971 priority patent/US20110272288A1/en
Publication of TW201140627A publication Critical patent/TW201140627A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/12Anodising more than once, e.g. in different baths
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/16Pretreatment, e.g. desmutting
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/20Electrolytic after-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

A method for producing aluminum foil electrode of carbon nano-tube is provided to grow high conductive carbon nano-tubes respectively over an aluminum foil piece and an anode oxidized aluminum template that has been treated with anode treatment through a step of growing carbon nano-tubes, so as to increase the surface area of electrodes, thereby greatly improving static capacitance of the aluminum electrolysis capacitor. From the experiment result, the static capacitance and withstand voltage of growing the carbon nano-tubes over the anode oxidized aluminum template in using the production method are 2158.8<mu>F/cm<2> and 55.10V, respectively. The static capacitance and withstand voltage of directly growing the carbon nano-tubes over the aluminum foil are 3425.78<mu>F/cm<2> and 38.44V, respectively. As a result, it is known that the invention can effectively increase the static capacitance of the aluminum electrolysis capacitor and select different manners for production in accordance with different demands of withstand voltages and static capacitance.

Description

201140627 六、發明說明: 【發明所屬之技術領域】 [醒] 本發明係有關一種電容器電極的製作方法,尤指一 種奈米碳管鋁箔電極的製作方法。 [先前技術] [0002] 為了使鋁電解電容器之體積小型化,提高電解電容 器之靜電容量是生產中不斷要求改進之重要任務;欲增 加IS電解電容器之靜電容量有三種方法:(1)減少電極 0 間之距離(2 )使用介電常數高之材料作為電極間絕緣材 料(3)增加電極之表面積’其申,由於氧化鋁膜在所 需電壓之下化成,依其每伏特成長出厚度13⑽之特性 ’電極間之距離乃為-固定值’又氧化域之介電常數 為-定值’因此增加電極表面積是目前所採取最經濟實 惠的作法;不論提高陽極㈣表面積或是提高陰極㈣ 表面積均能提高銘電解電容器之靜電容量,其中陽極銘 猪尚需經過化成處理而形成缴密且厚之氧化链皮膜;又 〇 因雜極糾讀觀量遠大於陽極㈣之靜電容量, 所以提升陽極鋁箔之靜電容量是提高鋁電解電容器之靜 電容量最有效的作法。 [0003] 〜刊站坷腐蚀性 的酸性溶液而餘絲面產生凹凸的孔洞,以增加的 的表面觸GkKang,YunhQShin* 叫201140627 VI. Description of the invention: [Technical field to which the invention pertains] [Wake] The present invention relates to a method for fabricating a capacitor electrode, and more particularly to a method for fabricating a carbon nanotube aluminum foil electrode. [Prior Art] [0002] In order to miniaturize the volume of an aluminum electrolytic capacitor, increasing the electrostatic capacity of an electrolytic capacitor is an important task that is constantly required to be improved in production; there are three methods for increasing the electrostatic capacity of an IS electrolytic capacitor: (1) reducing the electrode Distance between 0 (2) Use a material with a high dielectric constant as the insulating material between the electrodes (3) Increase the surface area of the electrode. Since the aluminum oxide film is formed under the required voltage, it grows to a thickness of 13 (10) per volt. The characteristic 'the distance between the electrodes is - fixed value' and the dielectric constant of the oxidation domain is - fixed value'. Therefore increasing the surface area of the electrode is the most economical way to do it; whether to increase the surface area of the anode (4) or increase the surface area of the cathode (4) Both can improve the electrostatic capacity of Ming electrolytic capacitors, in which the anode Ming pig still needs to be chemically processed to form a dense and thick oxidized chain film; and because the impurity reading is much larger than the electrostatic capacity of the anode (4), the anode is raised. The electrostatic capacity of aluminum foil is the most effective way to increase the electrostatic capacity of aluminum electrolytic capacitors. [0003] ~ Publications 坷 corrosive acidic solution and the outer surface of the silk surface produces concave and convex holes, with increased surface touch GkKang, YunhQShin*

Tak於Electr〇chimiCa Acta’ v〇lum ,^ ssue 5’ 10 N〇Vember 2005, Pages 1〇12,16所揭露之 099114332 表單編號A0101 第3頁/共19頁 201140627 electrochemical etching of aluminum」,其係於 電化學電蝕(1 M HC1 + 3 M H2S〇4為電蝕液與電流密 度為0.03 A/cm2)過程中,採用不同超音波震盪頻率來 改善氣化鋁抑制鋁箔表面餘刻,再利用硼酸溶液進行化 成’其較佳之靜電容量(於化成電壓為5〇伏特)約為2以 F/cm2 。 [0004] [0005]Tak in Electror〇chimiCa Acta' v〇lum , ^ ssue 5' 10 N〇Vember 2005, Pages 1〇12,16 Revised 099114332 Form No. A0101 Page 3 of 19 201140627 electrochemical etching of aluminum" In the process of electrochemical erosion (1 M HC1 + 3 M H2S〇4 is electro-etching solution and current density is 0.03 A/cm2), different ultrasonic oscillation frequencies are used to improve the surface of aluminum foil to suppress the residual surface of aluminum foil. The boric acid solution is turned into 'the preferred electrostatic capacity (at a formation voltage of 5 volts) is about 2 in F/cm2. [0004] [0005]

Du及其共同作者於Thin Solid Films, Volume 516, Issue 23, 1 October 2008, Pages 8436-8440所揭露之「Formation....: of A1 0 - 2 3Du and his co-authors, "Formation....: of A1 0 - 2 3", Thin Solid Films, Volume 516, Issue 23, 1 October 2008, Pages 8436-8440

BaTiO^composite thin film to increase the specific capacitance of aluminum electrolyt-ic capacitor」’其係以溶膠凝膠法製備BaTiO。,並 3 將其披覆於蝕刻之鋁箔,接著將其於不同溫度下進行熱 處理,最後利用己二酸胺溶液進行化成’提高其靜電容 量’其較佳之靜電容量(於熱處理溫度為6〇〇它)約為 95.66 β F/cm2 ° 另外Nogami及其共同作者於j.〇Urnal of Power Sources, Volume 166, Issue 2, 15 April 2007, Pages 584-589所揭露之「The effects of hyper-branched poly(siloxysilane)s on conductive polymer aluminum solid electrolytic capacit-〇rs」,其為了改善氧化鋁與對應電極 [poly-(3,4-ethylenedioxythiophene)]之介面性質 ’而於其間加入含有大量乙烯基之hyperbranched ?〇1丫(3丨1〇乂丫3丨18116)3,其靜電容量可提昇至215.79 099114332 表單編號A0101 第4頁/共19頁 0992025339-0 201140627 [0006] ❹ [0007] [0008] [0009] Q [0010] [0011] [0012] [0013] // F/cm2。 再如中華民國專利公開第200828368所揭露之「電 解電容器之電極」,其將金屬氧化物藉由化學鍵結而形 成於鋁基材表面,再將金屬氧化物經高溫(100~500 °C) 熱處理,披覆有金屬氡化物的電極基材表面能有效提高 電極的電容量,且其金屬氧化物係由前驅物與鋁基材表 面之氫氧化鋁官能基進行化學反應產生,具有不易剝離 之優點,然而其靜電容量僅約252〜263 //F/cm2。 【發明内容】 本發明之主要目的,在於提升鋁箔電極的表面積, 藉此有效加大鋁電解電容器的靜電容量。 為達上述目的,本發明提供一種奈米碳管鋁箔電極 的製作方法,其包含有以下步驟: 51 :對一鋁箔片進行前處理,去除該鋁箔片之表面 油脂及氧化層; 52 :進行電鍍觸媒,以電鍍方式將一觸媒材料沈積 於該鋁箔片上; 53 :成長一奈米碳管,以該觸媒材料為媒介,將該 奈米碳管成長於沈積有該觸媒材料的該鋁箔片上; 54 :濺鍍鋁於成長該奈米碳管後之該鋁箔片上,利 用鋁靶材及射頻電源將鋁濺鍍於成長奈米碳管後之該鋁 箔片上,濺鍍鋁之功率為50〜95 W與時間為2~4小時;及 55 :對該鋁箔片進行化成處理,將完成步驟S4後之 099114332 表單編號A0101 第5頁/共19頁 0992025339-0 201140627 該鋁箔片放置於一化成液中進行化成,以生成一氧化鋁 層,其化成溫度介於83〜90 °C,化成時間為10分鐘,完 成該奈米碳管鋁箔電極之製備。 [0014] [0015] 由上述說明可知,本發明藉由成長奈米碳管的步驟 ,將高導電奈米碳管成長於鋁箔片上,藉此增加電極表 面積,進而大大的提升鋁電解電容器的靜電容量,由實 驗結果得知,利用本發明之製作方法所做成的鋁電解電 容器的靜電容量及耐電壓分別為為3425. 78 #F/cm2及 38.44 V,遠大於習知技術的靜電容量,由此可知,本發 明有效的增加了鋁電解電容器的靜電容量。 【實施方式】 有關本發明之詳細說明及技術内容,現就配合圖式說 明如下: 請參閱圖1所示,係本發明一較佳實施例之步驟流程 示意圖,如圖所示:本發明係為一種奈米碳管鋁箔電極 的製作方法,其包含有以下步驟: 51 :對一鋁箔片進行前處理,以去除該鋁箔片之表面 油脂及氧化層,在本實施例中,其係將該鋁箔片浸泡於 丙酮中以去除該鋁箔片之表面油脂,接著再將該鋁箔片 浸泡於1 Μ的氫氧化納溶液中兩分鐘以去除表面氧化層, 再使用去離子水清洗該鋁箔片,並以酒精超音波震盪15 分鐘,請配合參閱圖2Α,其係為該鋁箔片在經過前處理 後之表面在顯微鏡下之樣態; 52 :進行電鍍觸媒,以電鍍方式將一觸媒材料沈積於 該鋁箔片上,其中該觸媒材料為鈷,並以重量百分濃度 099114332 表單編號Α0101 第6頁/共19頁 0992025339-0 為5 wt.%的硫酸鈷(CoS〇4. 7H2〇)混合2 wt.%的蝴酸 (H3B〇3)為電鍍液,且在交流電壓為13. 6 V、頻率為 60 Hz及時間為40秒的條件下進行電鍍,請配合參閱圖 2B,其係為該鋁箔片在電鍍鈷後之樣態; S3 .成長一奈米故管,以該觸媒材料為媒介,將該奈 米碳管成長於沈積有該觸媒材料的該鋁箔片上,其係利 用化學氣相沈積法’並且以氬氣為載氣體,乙炔為碳源 成長奈米碳管,其成長溫度介於575〜610 °c之間,成長 時間介於15〜90分鐘之間,而.氬氣之流量為100 seem, 乙炔之流量為50 seem,在此需特別說明的是,seem為 一種氣體流量單位,代表意義為在標準狀態(溫度273 K 及壓力760 Torr)下,每分鐘所流過的氣體流量公升數; 54 :濺鍍鋁於成長該奈米碳管後之該銘箔片上,利用 鋁靶材及射頻電源且在氬氣流量為25 seem、濺鍍壓力為 20 mTorr、減鑛銘之功率為5〇〜95 W及時間為2~4小時 的條件下,將鋁濺鍍於成長奈米碳管後之該鋁箔片上; 及 55 :對該銘箔片進行化成處理’將完成步驟S4後之該 鋁箔片放置於一化成液中進行化成,以生成一氧化鋁層 ,其化成溫度介於83〜90 °C ’化成時間為分鐘’完成 該奈米碳管鋁箔電極之製備。而在本實施例中,該化成 液係為150 g的己二酸胺混合一公升的去離子水而成。 以上所述為將該奈米碳管生長於該鋁箔片上之步驟, 除此之外,更可於步驟51後進行如下步驟以在該鋁箔片 上生成一陽極氧化鋁層: S1A :對該銘箔片進行電拋光處理,將該銘箔片放置 0992025339-0 表單編號A0101 第7頁/共19頁 201140627 於一拋光水溶液中並且在電壓為30 V、溫度為25 °C及時 間為15分鐘的情況下對該鋁箔表面進行電拋光處理,該 搬光水溶液係由硫酸、填酸及去離子水混合而成,且疏 酸、磷酸及去離子水之重量百分濃度之比為2 : 2 : 3 ; S1B :對該鋁箔片進行第一次陽極處理,將經過電拋 光處理後之該鋁箔片放置於一草酸溶液中進行陽極處理 ,使該銘箔片表面形成一陽極氧化銘(Anodic Aluminum Oxide, AAO )層,而第一次陽極處理之處理電厪介 於30〜40伏特之間,處理時間為12分鐘,處理溫度為5〜 15 °C之間,該草酸溶液之濃度為0. 3 Μ ; SIC :對該鋁箔片進行第二次陽極處理,為了使該陽 極氧化鋁層形成較規則的排列,在本發明中先以去氧化 物溶液去除第一次陽極處理生成之該陽極氧化鋁,其中 ,該去氧化物溶液係為重量百分濃度為1. 8 wt. %的鉻酸 及6 wt. %的磷酸混合而成。請配合參閱圖3A所示,接著 進行第二次陽極處理,將該鋁落片放置於該草酸溶液中 進行陽極處理,使該鋁箔片表面依照第一次陽極處理後 所留下之烙印而再次形成一新的陽極氧化鋁層10,完成 第二次陽極處理後之該陽極氧化鋁層10具有複數孔洞11 ,第二次陽極處理的處理條件與第一次陽極處理的條件 相同,其處理電壓介於30〜40伏特之間,處理時間為12 分鐘,處理溫度為5〜15 °C之間,該草酸溶液之濃度為 0. 3 Μ ; S1D :去除一阻障層,請配合參閱圖3Β,其為本發明 一較佳實施例之陽極氧化鋁層剖面示意圖,將完成第二 次陽極處理之鋁箔片浸泡在一磷酸溶液中,該磷酸溶液 099114332 表單編號Α0101 第8頁/共19頁 0992025339-0 201140627 之重量百分濃度為5 wt. %,溫度為30 »c,浸泡時間為 4 0刀鐘,藉此去除複數該孔洞11底部的一阻障層,使複 數該孔洞11連通該㈣片,藉錢樣的方式,才能於步 驟S2中,將該觸媒材料20順利的電鍍在該孔洞u的底部 與該紹箱片接觸。接下來的步驟便接著上述步驟幻,將 該奈米碳管藉由該觸媒材料20而生長於該孔洞U,雖然 該觸媒材料2G之面積因為該陽極氧化銘層1()的關係而無 法達到大面積的沈積在該銘落片上,但藉由該孔洞i β 使該奈米碳管不易脫落,因此,具有該陽極氧化_ΐ() 之奈来碳管鋁箔電極具有較佳之耐電壓值。 不論是該奈米碳管銘落電極或者是具有該陽極氧化銘 層10的奈米碳管㈣電極,該奈料管之較佳的成長溫 度均為600 °c,較佳之製備時間均為60分鐘。較高之成 長溫度具有較佳成長之奈米碳管,但因為紹的熔點約為 620 °C ’因此’接近620 時,該奈糸碳管的成長反而 因為該鋁箔片可能熔化而不穩定而在製▲時間上由 _ 實驗上的結果顯示60分鐘的成長時間為較佳之成長時間 ,因為其所生長之奈米碳管的平均表面積密度較大故 其靜電容量較大。而步驟54濺鍍鋁中,濺鍍功率及濺鍍 時間的增加會沈積較厚的鋁,進一步化成後所得之氧化 鋁的厚度較厚,依據電容計算公式,氧化鋁的厚度越厚 反而會造成其靜電容量的降低,但是較厚的氧化鋁其會 有較好的耐電壓值,因此在取其平衡下,濺鍍功率為65w 及濺鍍時間為4小時為較佳的濺鍍條件。 於此條件下,本發明之製作方法中具有該陽極氧化鋁 層10的奈米碳管鋁箔電極的靜電容量及耐電壓分別為 0992025339-0 099114332 表單編號A0101 第9頁/共19頁 201140627 2158. 8 #F/cm及5 5· l〇 v ;而該奈米碳管鋁箔電極的 靜電容量及耐電壓分別為3425 ?844 ν 因為該陽極氧化紹層1〇減小了該觸媒材料的電鑛面積 :進而影響了該奈米碳管的生長面積大小,而使得具有 销極氧德層10的奈米碳管㈣電極的靜電容量較差 ,但相對的具有較佳的耐電㈣。而不論是奈米碳管銘 箱電極或者是具有該陽極氧化料1G的奈米碳管㈣電 極,兩者之靜電容量皆遠大於習知技術,因此,本發明 符合申請發明專利之要件,爰依法提出申請,#鈞局早 曰賜准專利,實感德便。 以上已將本發明做一詳細說明,惟以上所述者僅爲 t發明之-較佳實施例而已,當不能限定本發明實施之 範圍。即凡依本發”請所作之均化與修飾等 ,皆應仍屬本發明之專利涵蓋範圍内。 【圖式簡單說明】 [0016] [0017] [0018] [0019] [0020] [0021] [0022] 圖1,係本發明一較佳實施例之步碱流程示意圖。 ,&gt; :..... 圖2A,係本發明一較佳實施例多鋁箔表面示意圖。 圖2B,係本發明-較佳實施例之觸媒材料電鑛示意圖。 圖3A ’係本發明-較佳實施例之陽極氧化⑽示意圖。 圖3B,係本發明-較㈣_之陽極氧化銘層剖面示意 圖。 【主要元件符號說明】 S1〜S5 :步驟 1〇 :陽極氧化鋁層 099114332 表單編號A0101 第1〇頁/共19頁 0992025339-0 201140627 [0023] 11 [0024] 20 孔洞 觸媒材料BaTiO^composite thin film to increase the specific capacitance of aluminum electrolyt-ic capacitor" was prepared by a sol-gel method. And 3 coating it on the etched aluminum foil, then heat-treating it at different temperatures, and finally using the adipic acid amine solution to form 'improve its electrostatic capacity', its preferred electrostatic capacity (at a heat treatment temperature of 6〇〇) It) is about 95.66 β F/cm 2 °. The "The effects of hyper-branched poly" is also disclosed by Nogami and co-authors in j. 〇Urnal of Power Sources, Volume 166, Issue 2, 15 April 2007, Pages 584-589. (siloxysilane)s on conductive polymer aluminum solid electrolytic capacit-〇rs", in order to improve the interface properties of alumina and the corresponding electrode [poly-(3,4-ethylenedioxythiophene)], a hyperbranched containing a large amount of vinyl is added therebetween. 〇1丫(3丨1〇乂丫3丨18116)3, its electrostatic capacity can be increased to 215.79 099114332 Form No. A0101 Page 4 / Total 19 Page 0992025339-0 201140627 [0006] ❹ [0007] [0008] [0009 Q [0011] [0013] [0013] // F/cm2. The "electrode of an electrolytic capacitor" disclosed in the Republic of China Patent Publication No. 200828368, which is formed by chemical bonding of a metal oxide on the surface of an aluminum substrate, and then heat-treating the metal oxide at a high temperature (100 to 500 ° C). The surface of the electrode substrate coated with the metal telluride can effectively increase the capacitance of the electrode, and the metal oxide is produced by chemically reacting the precursor with the aluminum hydroxide functional group on the surface of the aluminum substrate, and has the advantage of being difficult to peel off. However, its electrostatic capacity is only about 252~263 //F/cm2. SUMMARY OF THE INVENTION The main object of the present invention is to increase the surface area of an aluminum foil electrode, thereby effectively increasing the electrostatic capacity of the aluminum electrolytic capacitor. In order to achieve the above object, the present invention provides a method for fabricating a carbon nanotube aluminum foil electrode, comprising the following steps: 51: pretreating an aluminum foil sheet to remove surface grease and an oxide layer of the aluminum foil sheet; 52: performing electroplating Catalyst, depositing a catalyst material on the aluminum foil by electroplating; 53: growing a carbon nanotube, and growing the carbon nanotube on the catalyst material by using the catalyst material as a medium Aluminum foil; 54: Sputtered aluminum on the aluminum foil after growing the carbon nanotube, using aluminum target and RF power source to sputter aluminum on the aluminum foil after the growth of the carbon nanotube, the power of sputtering aluminum is 50~95 W and time is 2~4 hours; and 55: The aluminum foil is processed into a process, which will complete 099114332 after step S4. Form No. A0101 Page 5 / 19 pages 0992025339-0 201140627 The aluminum foil is placed in one The formation was carried out to form an aluminum oxide layer having a formation temperature of 83 to 90 ° C and a formation time of 10 minutes to complete the preparation of the carbon nanotube aluminum foil electrode. [0015] As can be seen from the above description, the present invention grows a high-conductivity carbon nanotube on an aluminum foil by a step of growing a carbon nanotube, thereby increasing the surface area of the electrode, thereby greatly increasing the static electricity of the aluminum electrolytic capacitor. The capacity and the experimental results show that the electrostatic capacity and withstand voltage of the aluminum electrolytic capacitor formed by the manufacturing method of the present invention are 3425.78 #F/cm2 and 38.44 V, respectively, which is much larger than the electrostatic capacity of the prior art. From this, it is understood that the present invention effectively increases the electrostatic capacity of the aluminum electrolytic capacitor. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The detailed description and technical contents of the present invention will now be described with reference to the following drawings: Referring to FIG. 1 , which is a schematic flow chart of a preferred embodiment of the present invention, as shown in the drawings: The method for manufacturing a carbon nanotube aluminum foil electrode comprises the following steps: 51: pretreating an aluminum foil sheet to remove surface grease and an oxide layer of the aluminum foil sheet, in this embodiment, The aluminum foil is immersed in acetone to remove the surface grease of the aluminum foil, and then the aluminum foil is immersed in a 1 Torr sodium hydroxide solution for two minutes to remove the surface oxide layer, and then the aluminum foil is washed with deionized water, and Shock with alcohol for 15 minutes, please refer to Figure 2Α, which is the surface of the aluminum foil under the microscope after pretreatment; 52: Electroplating catalyst is used to deposit a catalyst material by electroplating On the aluminum foil, wherein the catalyst material is cobalt, and the weight percentage is 099114332 Form No. Α0101 Page 6 / 19 pages 0992025339-0 is 5 wt.% of cobalt sulfate (CoS 〇 4. 7H2 Mixing 2 wt.% of the acid (H3B〇3) as a plating solution, and plating under the conditions of an AC voltage of 13.6 V, a frequency of 60 Hz, and a time of 40 seconds, please refer to FIG. 2B. Is a state in which the aluminum foil is plated with cobalt; S3. growing a nanometer tube, and using the catalyst material as a medium, growing the carbon nanotube on the aluminum foil sheet on which the catalyst material is deposited, The chemical vapor deposition method is used, and argon gas is used as a carrier gas, and acetylene is used as a carbon source to grow a carbon nanotube. The growth temperature is between 575 and 610 ° C, and the growth time is between 15 and 90 minutes. The flow rate of argon gas is 100 seem, and the flow rate of acetylene is 50 seem. It should be specially noted that seem is a gas flow unit, which means that in the standard state (temperature 273 K and pressure 760 Torr), each The liters of gas flowed in minutes; 54: Sputtered aluminum on the foil after the growth of the carbon nanotubes, using an aluminum target and RF power supply with an argon flow rate of 25 seem and a sputtering pressure of 20 mTorr, mine power is 5 〇 ~ 95 W and time is 2 ~ 4 hours, aluminum splash Plated on the aluminum foil after the growth of the carbon nanotubes; and 55: chemically forming the mold foil. The aluminum foil after the completion of the step S4 is placed in a chemical solution to form an aluminum oxide layer. The formation temperature of the carbon nanotube aluminum foil electrode is completed at a temperature of 83 to 90 ° C. In the present embodiment, the chemical conversion system is formed by mixing 150 g of adipate amine with one liter of deionized water. The above steps are the steps of growing the carbon nanotubes on the aluminum foil, and in addition, after step 51, the following steps are performed to form an anodized aluminum layer on the aluminum foil: S1A: the foil The sheet is subjected to electropolishing, and the foil is placed 0992025339-0 Form No. A0101 Page 7 of 19 201140627 in a polishing aqueous solution at a voltage of 30 V, a temperature of 25 ° C and a time of 15 minutes. The surface of the aluminum foil is electropolished, and the aqueous solution is made of sulfuric acid, acid and deionized water, and the ratio of weight percent concentration of acid, phosphoric acid and deionized water is 2 : 2 : 3 S1B: The aluminum foil is subjected to a first anodizing treatment, and the aluminum foil after electropolishing is placed in an oxalic acid solution for anodizing to form an anodized aluminum Oxide on the surface of the foil. Μ Μ 层 该 该 第一 草 草 草 草 Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ ; SIC : The aluminum foil sheet In the second anodizing treatment, in order to form a relatively regular arrangement of the anodized aluminum layer, in the present invention, the anodized aluminum formed by the first anodizing treatment is first removed by a deoxidizing solution, wherein the deoxidizing solution It is a mixture of chromic acid and 6 wt.% phosphoric acid in a concentration of 1. 8 wt.% by weight. Please refer to FIG. 3A, followed by a second anodizing treatment, placing the aluminum falling piece in the oxalic acid solution for anodizing, so that the surface of the aluminum foil piece is again in accordance with the branding left after the first anodizing treatment. A new anodized aluminum oxide layer 10 is formed. After the second anodizing treatment, the anodized aluminum oxide layer 10 has a plurality of pores 11 , and the processing conditions of the second anodizing treatment are the same as those of the first anodizing treatment, and the processing voltage thereof is the same. Between 30 and 40 volts, the treatment time is 12 minutes, the treatment temperature is between 5 and 15 ° C, the concentration of the oxalic acid solution is 0.3 Μ; S1D: remove a barrier layer, please refer to Figure 3 , which is a schematic cross-sectional view of an anodized aluminum layer according to a preferred embodiment of the present invention, immersing the second anodized aluminum foil in a phosphoric acid solution, the phosphoric acid solution 099114332 Form No. 1010101 Page 8 / 19 pages 0992025339 -0 201140627 The weight percentage concentration is 5 wt.%, the temperature is 30 »c, and the soaking time is 40 knives, thereby removing a barrier layer at the bottom of the plurality of holes 11 so that the plurality of holes 11 are connected to the (4) , Borrow-like manner, in order in step S2, the catalytic material 20 smooth plating of the hole in contact with the bottom of the u Shao tank sheet. The next step is followed by the above steps, and the carbon nanotube is grown in the hole U by the catalyst material 20, although the area of the catalyst material 2G is due to the relationship of the anodized layer 1(). It is impossible to achieve a large area of deposition on the ingot, but the carbon nanotubes are not easily peeled off by the hole i β , and therefore, the carbon nanotube aluminum foil electrode having the anodizing ΐ() has a better withstand voltage. value. Whether it is the carbon nanotube electrode or the carbon nanotube (four) electrode having the anodized layer 10, the preferred growth temperature of the tube is 600 ° C, and the preferred preparation time is 60. minute. The higher growth temperature has a better growth of the carbon nanotubes, but because the melting point is about 620 ° C 'so that 'close to 620, the growth of the carbon nanotubes is rather unstable because the aluminum foil may melt. The experimental results show that the 60-minute growth time is a preferred growth time because the average surface area density of the carbon nanotubes grown is large, so that the electrostatic capacity is large. In step 54 of sputtering aluminum, the increase of sputtering power and sputtering time will deposit thicker aluminum, and the thickness of the alumina obtained after further formation is thicker. According to the calculation formula of capacitance, the thicker the thickness of alumina may cause The electrostatic capacity is reduced, but the thicker alumina has a better withstand voltage value, so under the equilibrium, the sputtering power is 65w and the sputtering time is 4 hours as the preferred sputtering condition. Under these conditions, the electrostatic capacity and withstand voltage of the carbon nanotube aluminum foil electrode having the anodized aluminum layer 10 in the manufacturing method of the present invention are 0992025339-0 099114332, Form No. A0101, Page 9 / 19 pages 201140627 2158. 8 #F/cm and 5 5· l〇v ; and the electrostatic capacity and withstand voltage of the carbon nanotube aluminum foil electrode are respectively 3425 844 ν ν because the anodizing layer 1 〇 reduces the electricity of the catalyst material The area of the mine: which in turn affects the growth area of the carbon nanotubes, makes the carbon nanotubes having the pin-oxygen layer 10 have a lower electrostatic capacitance, but relatively better resistance to electricity (4). Regardless of whether it is a carbon nanotube name box electrode or a carbon nanotube (four) electrode having the anodized material 1G, the electrostatic capacitance of both is much larger than the conventional technology, and therefore, the present invention conforms to the requirements of the invention patent application, Applying in accordance with the law, #钧局 has given the patent as soon as possible, and it is really sensible. The invention has been described in detail above, but the foregoing is only a preferred embodiment of the invention, and is not intended to limit the scope of the invention. That is to say, the homogenization and modification of the invention should be within the scope of the patent of the present invention. [Simplified description of the drawing] [0016] [0019] [0020] [0021 BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view showing the flow of a step of a base according to a preferred embodiment of the present invention. FIG. 2A is a schematic view showing the surface of a multi-aluminum foil according to a preferred embodiment of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS - Figure 3A is a schematic view of an anodized (10) embodiment of the present invention - a preferred embodiment. [Description of main component symbols] S1~S5: Step 1〇: Anodized aluminum oxide layer 099114332 Form No. A0101 Page 1 of 19 Page 0992025339-0 201140627 [0023] 11 [0024] 20 Hole Catalyst Material

099114332 表單編號A0101 第11頁/共19頁 0992025339-0099114332 Form No. A0101 Page 11 of 19 0992025339-0

Claims (1)

201140627 七、申請專利範圍: 1 . 一種奈米碳管鋁箔電極的製作方法,其包含有以下步驟: 51 :對一鋁箔片進行前處理,去除該鋁箔片之表面油脂及 氧化層; 52 :進行電鍍觸媒,以電鍍方式將一觸媒材料沈積於該鋁 箔片上; 53 :成長一奈米碳管,以該觸媒材料為媒介,將該奈米碳 管成長於沈積有該觸媒材料的 該銘1¾片上, 54 :濺鍍鋁於成長奈米碳管後之該鋁箔片上,利用鋁靶材 及射頻電源將鋁濺鍍於成長該奈米碳管後之該鋁箔片上, 濺鍍鋁之功率為50〜95 W與時間為2〜4小時;及 55 :對該鋁箔片進行化成處理,將完成步驟S4後之該鋁 箔片放置於一化成液中進行化成,以生成一氧化鋁層,其 化成溫度介於83〜90°C,化成時間為10分鐘,完成該奈 米碳管鋁箔電極之製備。 2 .如申請專利範圍第1項所述之奈米碳管鋁箔電極的製作方 法,其中具有一步驟S1A插入在步驟S1後,S1A :對該鋁 箔片進行電拋光處理,將該鋁箔片放置於一拋光水溶液中 進行電拋光處理,該拋光水溶液係由硫酸、磷酸及去離子 水混合而成,且硫酸、磷酸及去離子水之重量百分濃度之 比為2 : 2 : 3。 3 .如申請專利範圍第2項所述之奈米碳管鋁箔電極的製作方 法,其中具有一步驟S1B在步驟S1A之後,S1B :對該鋁箔 片進行第一次陽極處理,將電拋光處理後之該鋁箔片放置 099114332 表單編號A0101 第12頁/共19頁 0992025339-0 201140627 於一草酸溶液中進行陽極處理,使該鋁箔片表面形成一陽 極氧化銘層。 4 .如申請專利範圍第3項所述之奈米碳管鋁箔電極的製作方 法,其中具有一步驟S1C在步驟S1B之後,S1C :對該鋁 箔片進行第二次陽極處理,先以一去氧化物溶液去除第一 次陽極處理生成之該陽極氧化鋁層,再進行第二次陽極處 理,將該鋁羯片放置於該草酸溶液中進行陽極處理,使該 鋁箔片表面依照第一次陽極處理後所留下之烙印而再次形 成一新的陽極氧化IS層,且該新的陽極氧化铭層具有複數 孔洞。 5 .如申請專利範圍第4項所述之奈米碳管鋁箔電極的製作方 法,其中該去氧化物溶液係為重量百分濃度為1. 8 wt.% 的鉻酸及6 wt. %的磷酸混合而成。 6 .如申請專利範圍第4項所述之奈米碳管鋁箔電極的製作方 法,其中第一次及第二次陽極處理之處理電壓介於30〜 40伏特之間,處理時間為12分鐘,處理溫皮為5〜15 °C 之間,該草酸溶液之濃度為0. 3 Μ 。 7 .如申請專利範圍第4項所述之奈米碳管鋁箔電極的製作方 法,其中更具有一步驟S1D在步驟S1C之後,S1D :去除 一阻障層,將完成第二次陽極處理之鋁箔片浸泡在一磷酸 溶液中,該磷酸溶液之重量百分濃度為5 wt.%,溫度為 30 °C,浸泡時間為40分鐘,藉此去除複數該孔洞底部與 該鋁箔片接觸的一阻障層。 8 .如申請專利範圍第1項所述之奈米碳管鋁箔電極的製作方 法,其中該觸媒材料為鈷,並以重量百分濃度為5 wt.% 的硫酸鈷混合2 wt. %的硼酸為電鍍液,且在交流電壓為 099114332 表單編號A0101 第13頁/共19頁 0992025339-0 201140627 U.6 V、頻率為6〇 Hz及時間為4〇秒的條件下進行電鍍 9 .如申請專利範圍第!項所述之奈米碳管紹箱電極的製作方 =其中在步驟S3巾,其仙用化學氣相沈積法,並且以 氩氣為載氣體,乙炔為碳源成長奈米碳管,其成長溫度介 於575〜610 t:之間,製備時間介於15〜9〇分鐘之間, 而虱氣之流量為loo sccm,乙炔之流量為5〇 sccm 。 .如申明專利範圍第1項所述之奈米碳管紹箱電極的製作方 法,其中該化成液係為己二酸胺混合去離子水而成。 099114332 表單編號A0101 第14頁/共19 頁 0992025339-0201140627 VII. Patent application scope: 1. A method for manufacturing a carbon nanotube aluminum foil electrode, comprising the following steps: 51: pre-treating an aluminum foil sheet to remove surface grease and oxide layer of the aluminum foil sheet; 52: proceeding Electroplating catalyst, electroplating a catalyst material on the aluminum foil; 53: growing a carbon nanotube, using the catalyst material as a medium, growing the carbon nanotube on the deposited catalyst material On the piece, 54: Sputtered aluminum on the aluminum foil after the growth of the carbon nanotubes, using aluminum target and RF power source to sputter the aluminum on the aluminum foil after growing the carbon nanotube, splashing aluminum The power is 50 to 95 W and the time is 2 to 4 hours; and 55: the aluminum foil is subjected to a chemical conversion treatment, and the aluminum foil after the completion of the step S4 is placed in a chemical solution to form an aluminum oxide layer. The formation temperature was between 83 and 90 ° C, and the formation time was 10 minutes, and the preparation of the carbon nanotube aluminum foil electrode was completed. 2. The method for fabricating a carbon nanotube aluminum foil electrode according to claim 1, wherein a step S1A is inserted after step S1, and S1A: the aluminum foil is subjected to electropolishing, and the aluminum foil is placed on the aluminum foil. An electropolishing treatment is carried out in a polishing aqueous solution which is prepared by mixing sulfuric acid, phosphoric acid and deionized water, and the ratio by weight concentration of sulfuric acid, phosphoric acid and deionized water is 2:2:3. 3. The method for fabricating a carbon nanotube aluminum foil electrode according to claim 2, wherein there is a step S1B after step S1A, S1B: the aluminum foil is subjected to a first anodizing treatment, and after electropolishing The aluminum foil is placed 099114332 Form No. A0101 Page 12/19 pages 0992025339-0 201140627 Anodizing is performed in an oxalic acid solution to form an anodized layer on the surface of the aluminum foil. 4. The method for fabricating a carbon nanotube aluminum foil electrode according to claim 3, wherein there is a step S1C after step S1B, S1C: the aluminum foil is subjected to a second anodization, first deoxidation The solution is removed from the anodized aluminum layer formed by the first anodizing treatment, and then subjected to a second anodizing treatment, and the aluminum crucible sheet is placed in the oxalic acid solution for anodizing, so that the surface of the aluminum foil sheet is treated according to the first anodizing treatment. After the imprinting left, a new anodized IS layer is formed again, and the new anodized layer has a plurality of holes. 5重量。 The sulphuric acid and 6 wt.% by weight of the concentration of 1. 8 wt.% of chromic acid and 6 wt.% of the carbon nanotubes of the aluminum alloy Phosphoric acid is mixed. 6. The method for manufacturing a carbon nanotube aluminum foil electrode according to claim 4, wherein the first and second anodizing treatment voltages are between 30 and 40 volts, and the processing time is 12 minutes. 3 Μ。 The temperature of the skin is between 5 and 15 ° C, the concentration of the oxalic acid solution is 0. 3 Μ. 7. The method for fabricating a carbon nanotube aluminum foil electrode according to claim 4, wherein there is a step S1D after step S1C, S1D: removing a barrier layer, and completing the second anodized aluminum foil The sheet is immersed in a phosphoric acid solution having a weight concentration of 5 wt.%, a temperature of 30 ° C, and a soaking time of 40 minutes, thereby removing a barrier of contact with the aluminum foil at the bottom of the hole. Floor. 8. The method for fabricating a carbon nanotube aluminum foil electrode according to claim 1, wherein the catalyst material is cobalt and mixed with 2 wt.% of cobalt sulfate at a concentration of 5 wt.% by weight. Boric acid is a plating solution, and is electroplated under the conditions of AC voltage 099114332 Form No. A0101 Page 13 / 19 pages 0992025339-0 201140627 U.6 V, frequency 6 Hz and time 4 sec. Patent scope! The preparation method of the carbon nanotubes of the carbon nanotubes mentioned in the section = wherein in the step S3, the chemical vapor deposition method is used, and the argon gas is used as the carrier gas, and the acetylene is used as the carbon source to grow the carbon nanotubes, and the growth thereof The temperature is between 575 and 610 t:, the preparation time is between 15 and 9 minutes, and the flow rate of helium is loo sccm, and the flow rate of acetylene is 5 〇 sccm. The method for fabricating a carbon nanotube casing electrode according to claim 1, wherein the chemical conversion liquid is a mixture of deionized water of adipate amine. 099114332 Form number A0101 Page 14 of 19 0992025339-0
TW099114332A 2010-05-05 2010-05-05 Method for producing aluminum foil electrode of carbon nano-tube TW201140627A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW099114332A TW201140627A (en) 2010-05-05 2010-05-05 Method for producing aluminum foil electrode of carbon nano-tube
US12/884,971 US20110272288A1 (en) 2010-05-05 2010-09-17 Method for fabricating carbon nanotube aluminum foil electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099114332A TW201140627A (en) 2010-05-05 2010-05-05 Method for producing aluminum foil electrode of carbon nano-tube

Publications (1)

Publication Number Publication Date
TW201140627A true TW201140627A (en) 2011-11-16

Family

ID=44901223

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099114332A TW201140627A (en) 2010-05-05 2010-05-05 Method for producing aluminum foil electrode of carbon nano-tube

Country Status (2)

Country Link
US (1) US20110272288A1 (en)
TW (1) TW201140627A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111403173A (en) * 2020-03-17 2020-07-10 宁波市江北九方和荣电气有限公司 High-voltage dry capacitor

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9190656B2 (en) * 2011-10-20 2015-11-17 Hyundai Motor Company Cathode current collector for electrical energy storage device and method for manufacturing the same
CN103065807A (en) * 2013-01-11 2013-04-24 天津理工大学 High-energy density super capacitor based on nanometer dielectric material layer
WO2016210249A1 (en) * 2015-06-25 2016-12-29 Vladimir Mancevski Apparatus and methods for high volume production of graphene and carbon nanotubes on large-sized thin foils
CN106252071B (en) * 2016-08-05 2018-04-03 南京理工大学 A kind of height ratio capacity nanometer dielectric capacitor and preparation method thereof
US10109410B2 (en) 2017-01-17 2018-10-23 Palo Alto Research Center Incorporated Out of plane structures and methods for making out of plane structures
CN107164795B (en) * 2017-05-09 2019-02-15 电子科技大学 A kind of bilateral AAO template and its preparation method and application
CN108642492B (en) * 2018-05-22 2019-06-21 中南大学 A method of the enhancing anti-oxidant corrosion resistance of anode steel claw
CN109741954B (en) * 2019-03-04 2020-11-06 益阳艾华富贤电子有限公司 Solid-state aluminum electrolytic capacitor preparation process adopting efficient formation method
CN113178332B (en) * 2021-04-19 2022-10-25 西安交通大学 High-electrostatic-capacity electrode foil prepared based on vapor deposition and preparation method
CN113380550A (en) * 2021-04-28 2021-09-10 西安交通大学 Method for preparing conductive polymer cathode in solid-state aluminum electrolytic capacitor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05271993A (en) * 1992-03-30 1993-10-19 Sanyo Electric Co Ltd Production of insulating film
WO1997013885A1 (en) * 1995-10-12 1997-04-17 Kabushiki Kaisha Toshiba Wiring film, sputter target for forming the wiring film and electronic component using the same
US20050276743A1 (en) * 2004-01-13 2005-12-15 Jeff Lacombe Method for fabrication of porous metal templates and growth of carbon nanotubes and utilization thereof
CN101603197A (en) * 2008-06-10 2009-12-16 深圳市域鑫实业有限公司 Electropolishing is with electrolyte prescription and electrolysis process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111403173A (en) * 2020-03-17 2020-07-10 宁波市江北九方和荣电气有限公司 High-voltage dry capacitor

Also Published As

Publication number Publication date
US20110272288A1 (en) 2011-11-10

Similar Documents

Publication Publication Date Title
TW201140627A (en) Method for producing aluminum foil electrode of carbon nano-tube
JP6061202B2 (en) Non-metal coating and production method thereof
CN101962792B (en) Method for preparing pore diameter controllable through hole anodized aluminum oxide film
TWI441948B (en) Porous metal foil and its manufacturing method
TW201435939A (en) Super capacitor and method for manufacturing the same
CN100432301C (en) Process for preparing porous anode aluminium oxide mould of height ordered by mixed acid electrolyzing liquid
JP5250700B2 (en) High electric field anodizing equipment
EP2074243A1 (en) Method for the preparation of nanostructures and nanowires
KR102176791B1 (en) Method for manufacturing aluminum anodic oxide film having pillar-on-pore structure using phosphoric acid
TW200938663A (en) Method for producing a protective film
Ban et al. Effect of chemical plating Zn on DC-etching behavior of Al foil in HCl–H2SO4
JP3899413B2 (en) Nanomaterial fabrication method
CN101603193A (en) A kind of method of peeling anodic aluminum oxide film
JP5370188B2 (en) Method for producing anodized film
Sankar et al. Synthesis and characterization of cadmium selenide nanostructures on porous aluminum oxide templates by high frequency alternating current electrolysis
CN107893232A (en) A kind of surface etching method before titanium plate anodic coating
CN109811313B (en) Preparation method of porous alumina template on high-resistivity substrate
JP2007084892A (en) Diamond-coated substrate, filter and electrode
JP2006310493A (en) Electrode foil for capacitor
TWI443696B (en) A method for fabricating an aluminum electrode, an aluminum electrode prepared by the method and an aluminum capacitor including the aluminum electrode
JP4788880B2 (en) Method for producing valve metal oxide nanostructure
JP3245837B2 (en) Method for producing porous metal foil
CN108796574A (en) Metal material anode oxidation method and device
CN117702216A (en) Porous alumina template with through and ultra-long nano pore canal and preparation method and application thereof
JP2012001798A (en) Method for manufacturing electrode for electrolytic device