WO2006117837A1 - 鋳鉄鋳物の引け巣の予測及び防止方法 - Google Patents

鋳鉄鋳物の引け巣の予測及び防止方法 Download PDF

Info

Publication number
WO2006117837A1
WO2006117837A1 PCT/JP2005/007886 JP2005007886W WO2006117837A1 WO 2006117837 A1 WO2006117837 A1 WO 2006117837A1 JP 2005007886 W JP2005007886 W JP 2005007886W WO 2006117837 A1 WO2006117837 A1 WO 2006117837A1
Authority
WO
WIPO (PCT)
Prior art keywords
shape factor
shrinkage
solidification
shape
nest
Prior art date
Application number
PCT/JP2005/007886
Other languages
English (en)
French (fr)
Inventor
Toshitake Kanno
Ilgoo Kang
Toshihiko Murakami
Kimio Kubo
Original Assignee
Kimura Chuzosho Co., Ltd.
Qualica Inc.
Ekk Japan Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37307644&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2006117837(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kimura Chuzosho Co., Ltd., Qualica Inc., Ekk Japan Inc. filed Critical Kimura Chuzosho Co., Ltd.
Priority to EP05737318A priority Critical patent/EP1878520A4/en
Priority to JP2007514408A priority patent/JP4516987B2/ja
Priority to US11/912,861 priority patent/US20090165982A1/en
Priority to PCT/JP2005/007886 priority patent/WO2006117837A1/ja
Priority to KR1020077026766A priority patent/KR100999258B1/ko
Priority to CN2005800495978A priority patent/CN101166595B/zh
Publication of WO2006117837A1 publication Critical patent/WO2006117837A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D46/00Controlling, supervising, not restricted to casting covered by a single main group, e.g. for safety reasons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/08Features with respect to supply of molten metal, e.g. ingates, circular gates, skim gates
    • B22C9/088Feeder heads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions

Definitions

  • the present invention relates to a method for predicting and preventing shrinkage nests of pig iron ware.
  • shrinkage nest prediction methods have become effective means for pig steel and non-ferrous metals that do not cause expansion due to the formation of graphite. Then, it is not necessarily an effective means.
  • Patent Document 1 As a method of determining the occurrence of shrinkage nest of spheroidal graphite pig iron. This method measures the eutectic solidification time between the inside and the surface of the porcelain and determines the degree of overlap between the eutectic solidification times, that is, the presence or absence of shrinkage nests.
  • Patent Document 2 proposes a method in which the number of graphite grains and the graphite radial force are also used to determine the solid phase ratio and used to determine shrinkage nests.
  • a "hot spot method” based on solidification simulation has been used.
  • This method consists of a molten metal island that has been cut off from the others during the solidification process, that is, a temperature isotherm or a closed loop of solidification line (on an unsolidified metal island surrounded by solidified metal. This is called “hot spot”), and it is not possible to supply molten metal to the unsolidified metal part. is there.
  • hot spot a temperature isotherm or a closed loop of solidification line (on an unsolidified metal island surrounded by solidified metal.
  • the probability of shrinkage cavities occurring in this ⁇ hot spot '' area is very high! Therefore, the accuracy is high! Law "is widely used.
  • pig iron with expansion due to graphite crystallization just because a “hot spot” has been formed, this part does not necessarily become a shrinkage nest.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-296385
  • Patent Document 2 JP-A-5-96343
  • the present invention accurately predicts the occurrence of shrinkage nests for each part of various shapes of foods and objects, and each of the objects or parts of the objects predicted to cause shrinkage nests
  • it is intended to provide a means for enabling an appropriate manufacturing method and product shape change so that a healthy product can be obtained.
  • the present inventors have drawn various kinds of articles with different sizes, materials or shapes.
  • Various experiments such as the presence or absence of nests, solidification simulation, and temperature measurement were conducted, and the force to generate nests in any shape of the product was identified.
  • a certain numerical value here is found to be about 8 in ordinary spheroidal graphite pig iron, which contains elements such as Cr and Mo that promote shrinkage nests. We have also found that this value changes as Cr and Mo increase.
  • the shape in the case of a non-cubic block shaped product, the shape may be approximately regarded as a rectangular parallelepiped.
  • a rectangular parallelepiped in the case of a spherical product, it can be regarded as a cube whose one side inscribed by the sphere is equal to the diameter of the sphere, and in the case of a cylindrical product, if the two sides are equal to the diameter of the circle, U, a rectangular parallelepiped.
  • a hollow with a hole inside, or a donut-shaped cylinder it can be regarded as a rectangular parallelepiped with a circular cylinder.
  • the presence or absence of shrinkage can be determined only from the product shape, but the solidification analysis or the like is performed, and the temperature distribution or solidification time distribution force during solidification of the solid product is obtained.
  • a shrinkage nest is generated in an island of molten metal that is disconnected from the others during the solidification process, that is, a temperature isotherm or a "hot spot" that is a closed loop of the solidification line. It is possible to determine whether or not to do so.
  • the shape factor may be obtained as a force elliptic sphere!
  • the shape factor may be obtained by approximating a closed rugby ball-like elliptic sphere to a rectangular parallelepiped.
  • One method is to measure the shape factor by measuring the size of an arbitrary elliptical loop on the screen using a mouse or the like on the screen using the solidification distribution map obtained by the solidification simulation. There is a way to ask.
  • Another method is a method of obtaining a shape factor by designating an arbitrary elliptical pool. For example, the total coagulation time is divided into several parts, and an elliptical loop at any time is specified. This elliptical loop is composed of the elements when mesh cutting is performed. Find the number of elements in the X, Y, and Z directions of this mesh and obtain the shape factor of the elliptical loop.
  • shrinkage nest can be predicted, but in addition, a method for preventing the shrinkage nest has been proposed. In other words, it was discovered that shrinkage cavities do not occur by dividing the product so that the shape factor is 8 or less using chillers or hot water or both.
  • the cooling metal at this time may be a method of applying the cooling metal that is in direct contact with the molten metal, but it only has to be divided into one closed solidification loop force, so that it is not directly in contact with the molten metal.
  • the hot water should be installed at the four power points of the aforementioned plate so that it is divided into closed solidification loop forces.
  • the shape factor of whether a shrinkage nest is generated is a matter of course, but depending on elements such as Cr and Mo that promote the shrinkage nest, or the amount of C that prevents the shrinkage nest, etc. Change. It also changes depending on the strength of the saddle (more precisely, the strength of the saddle at high temperature) and the rigidity of the saddle frame.
  • the shape factor value for shrinkage nest determination can be determined taking these conditions into account. preferable. However, in the case of the organic self-hardening cocoon type that is generally used, it has been divided by the inventors' experiments that approximately 8 should be used. Even in flake graphite pig iron, it is possible to determine whether or not there is a shrinkage nest by the shape factor, and to take measures to prevent the shrinkage nest from occurring.
  • a shape factor which is a value obtained by dividing the sum of the two longer sides by the remaining short side, is obtained from the shape of the product, and this value is obtained.
  • the shape factor of each closed elliptical loop is obtained, and this value is obtained.
  • a shrinkage nest prediction method for pig iron sword is provided, which is characterized by predicting the occurrence of shrinkage nests in each closed elliptical loop.
  • the size of the elliptical loop is displayed on the screen using the solidification distribution diagram obtained by the temperature distribution or the solidification time distribution force by the solidification simulation.
  • a shrinkage nest prediction method is provided, which is characterized by the above measurement and calculation of the shape factor.
  • an ellipse divided by mesh cutting using a solidification distribution diagram in which a temperature distribution or solidification time distribution force is also obtained by a solidification simulation is also obtained by a solidification simulation.
  • a shrinkage nest prediction method is provided which calculates a shape factor from the number of elements constituting a loop in the XYZ directions.
  • the shape factor when the shape factor exceeds 8, the shape factor is reduced to 8 or less by dividing the product using a chiller, a hot water, or a combination of both.
  • a method for preventing shrinkage nest of pig iron sword is provided.
  • the shape factor for determining whether or not shrinkage occurs is determined by the ingredients of the porridge, the properties of the bowl, and the forging posture.
  • a method of predicting and preventing shrinkage nests is provided.
  • the invention's effect [0029]
  • a new concept of shape factor was created, and by using this shape factor, the occurrence of shrinkage defects can be predicted with high accuracy and ease. It is possible to predict the occurrence of shrinkage nests by the shape factor even in the case of different ingredients, types of molds, and forging postures. Furthermore, if shrinkage nests are expected to occur, it is possible to logically prevent the formation of shrinkage nests by effectively using cooling metal or hot water. Therefore, it has the effects of reducing the defective rate, improving the yield, shortening the delivery time, etc. in the forging production, and it has become possible to efficiently produce spheroidal graphite pig iron at a low cost.
  • FIG. L (a), (b), (c), (d), (e), (f), (g) are diagrams for explaining the approximation of the shape of the porcelain product.
  • FIG. 2 is a graph showing the relationship between the rectangular shape factor and shrinkage nest.
  • FIG. 3 is a graph showing the relationship between the shape factor of a disk-shaped body and the shrinkage nest.
  • FIG. 4 is a graph showing the relationship between the shape factor of the cylindrical body and the shrinkage nest.
  • FIG. 5 is a graph showing the relationship between shape factor and shrinkage nest in different forging positions of a rectangular parallelepiped.
  • FIG. 6 is a graph showing the relationship between the shape factor of a cuboid of different molten metal components and shrinkage nests.
  • FIG. 7 is a graph showing the relationship between the shape factor of a rectangular parallelepiped and the shrinkage nest when different saddle types are used.
  • FIG. 8 is a diagram showing an example of shrinkage nest prediction by computer simulation.
  • FIG. 9 is a diagram showing an example of a cross section in which an elliptical loop exists.
  • FIG. 11 is a diagram showing an example of a cross section in which an elliptical loop exists.
  • FIG. 12 is a diagram showing an example of an elliptic loop of a coagulation distribution diagram.
  • FIG. 13 is a diagram showing an example of a cube circumscribing an elliptical loop.
  • FIG. 19 is a flowchart of shrinkage nest prediction and prevention method for pig iron products.
  • the shape factor (F) obtained as a value obtained by dividing the sum of two longer sides by the remaining one short side is used.
  • the sum of the block width (W) and length (L) is the wall thickness (T: the shortest side of 3 sides).
  • the value divided by is the shape factor.
  • the shape may be approximately regarded as a rectangular parallelepiped.
  • FIG. 1 shows an example in which the shape factor is determined for various shaped articles.
  • Figure 1 (a) is a cube, and the width (W), length (L), and height (T) are all the length of one side of the cube.
  • Fig. 1 (b) shows a case where a rectangular parallelepiped plate is placed horizontally
  • Fig. 1 (c) shows a case where a rectangular parallelepiped plate is placed vertically, and shows the width (W), length (L), and height (T). Take it like so.
  • Figure 1 (d) shows that the height is not diameter.
  • the shape factor is calculated by regarding the disk diameter as width (W) and length (L) and the height (wall thickness) as T.
  • the cylinder diameter is regarded as the width (W) and height (T), and the cylinder height is the length (L).
  • FIG. 1 (g) in which a cylinder, a rectangular parallelepiped plate, and a cylinder are combined, the column portion is a column, the rectangular parallelepiped plate portion is a plate, and the cylindrical portion is a cylinder. Then, the shape factor is obtained individually, and it is sufficient to determine whether or not the shrinkage nest is generated for each part. Also, countermeasures for preventing shrinkage, which will be described later, may be performed for each portion. [0037] FIG. 2, FIG. 3, and FIG. 4 show the shape factor (
  • Fig. 2 is a rectangular parallelepiped plate test piece
  • Fig. 3 is a disk-shaped test piece
  • Fig. 4 is a cylindrical test piece, both of which have a shape factor ((L + W) / T) of 8. If it exceeds, shrinkage will occur
  • the determination coefficient 8 in FIGS. 2, 3, and 4.
  • the present inventors also investigated whether or not there is a difference in the shape factor, that is, the determination coefficient, at which the shrinkage nest does not occur depending on the forging posture, that is, how the forged object is placed.
  • Figure 5 shows the shape factor ((L + W) / T) for the same case (rectangular plate as a test piece) placed vertically and horizontally.
  • the experimental result of the relationship between MS and shrinkage area ratio is shown.
  • the test specimen is a general ductile iron slab (FCD600).
  • the reason for the difference in the determination coefficient depending on the forging posture is considered to be due to the influence of gravity.
  • the shape factor (decision factor) at which shrinkage cavities do not occur changes even with the same component and size. Therefore, it is preferable that the shape factor value for shrinkage nest determination is determined taking these conditions into consideration.
  • Fig. 6 shows the experimental results showing the relationship between the shape factor and the shrinkage area ratio for three test pieces (table numbers El, E2, and E3) with different Mo contents.
  • FIG. 7 shows the relationship between the shape factor and shrinkage nest area ratio when the types of bowls are different (table numbers Fl, F2, F3, F4).
  • a rectangular parallelepiped plate is used as a test piece.
  • shrinkage cavities do not occur when the shape factor is 2 or less. Then 6 below shape factor at low raw type ⁇ high temperature strength, and in the 8 or less shape factor cold furan type ⁇ sand strength 10 kgf / cm 2, further cold sand strength 30 kgf / cm 2 In the furan type saddle type, the shape factor is 10 or less, and no shrinkage occurs. In other words, it can be seen that the shape factor (decision factor) at which shrinkage cavities do not occur differs depending on the type of saddle type. It is preferable that the shape factor value for shrinkage nest determination is determined based on these conditions.
  • FIG. 8 shows an example of shrinkage nest prediction using a solidification simulation by a computer.
  • the shape factor (£) can be obtained by measuring each dimension of the MS. It is preferable that the elliptical loop is a loop from the second half of the solidification to the final solidification where it is not necessary to use the innermost loop. It is assumed to point to a loop over.
  • the shape factor (F) obtained for the shape force of the test piece is
  • shrinkage nests can be predicted from the solidification distribution map based on the shape factor by computer solidification simulation. In particular, when the product shape is complex, shrinkage nest prediction by such solidification simulation is effective.
  • the shape factor (£) is obtained for the elliptic loop generated for each shape, and the shrinkage nest is predicted from the shape factor (f) thus obtained. I understand!
  • Width required to calculate shape factor by solidification simulation in the present invention (W)
  • a temperature distribution or solidification time distribution force solidification distribution diagram is obtained.
  • To measure a closed elliptical loop from the distribution map first display the cross section where the elliptical loop exists, as shown in Fig. 9. Next, the size of the elliptical loop is measured.
  • the U, V, and W dialogs shown in Fig. 10 are used for the measurement.
  • “Measurement in U direction” of this dialog is pressed on the screen, for example, the loop of the XY section viewed from the X direction is displayed.
  • When “Measurement in V direction” is pressed for example, the loop of YZ section viewed from the Y direction is displayed.
  • MS measurement specify the measurement start and end positions on the screen using a mouse.
  • the thickness of the displayed cross section is measured by changing the displayed cross section using the dialog shown in Fig. 10.
  • measurement in three directions is necessary, but it is unknown which direction is width (w), length (1), and thickness (t).
  • the measured force in the direction is automatically taken by the system as the shortest length is the thickness t, and the other is the width (W).
  • a temperature distribution or solidification time distribution force solidification distribution diagram is obtained.
  • MS is calculated and shape factor is automatically calculated.
  • the shape factor of each island is obtained by clicking the calculation button shown in FIG. For example, it is possible to determine whether or not a shrinkage nest is generated by coloring the shape factor with red and blue power so that the shape factor is high or low.
  • the present invention has made it possible to predict shrinkage nests, but also proposes a method for preventing shrinkage nests, an example of which is shown below.
  • Figure 15 shows one example of cooling metal construction that prevents the formation of shrinkage nests.
  • the test piece is a general ductile pig iron (FCD600), and it has a horizontal posture and the judgment coefficient is 8.
  • FCD600 general ductile pig iron
  • the shape factor of the specimen is
  • Fig. 16 shows one example of the construction of the hot water that prevents the formation of shrinkage nests.
  • the shape factor of the test piece is 15, which is a shape in which a shrinkage nest is originally generated.
  • Four feeders with a diameter of 150 mm and a height of 225 mm were constructed on this specimen, and a solidification distribution map was obtained by solidification simulation.
  • a solidification distribution map was obtained by solidification simulation.
  • A— cross section of Fig. 16 it can be seen that it is divided into closed elliptical loop forces. That is, in this case as well, there are four rectangular parallelepipeds divided by the hot water. Each may be considered to solidify independently.
  • the shape factor (F) of the divided rectangular parallelepiped is 7.5, which can prevent shrinkage.
  • the closed elliptical loop which is the final solidified part, must be confined within the feeder. Therefore, it is often the case that a larger hot water is used than the product.
  • the closed elliptical loop of the solidification distribution map obtained by the solidification simulation is divided, and the shape factor of each part divided by the feeder or It can be seen that it is sufficient that the shape factor of the divided elliptical loop does not exceed the decision factor.
  • FIG. 17 shows an example of incorrect use of cooling metal.
  • the method of trying to stop the shrinkage nest by constructing the cooling metal 10a, 10b is adopted, and the shrinkage nest may increase.
  • FIG. 18 shows the correct usage of the cooling metal.
  • FIG. 19 shows a flowchart of the shrinkage nest prediction and prevention method according to the present invention.
  • the shrinkage nest prediction and prevention method of the present invention includes the following steps (1) to (6): [0068] (1) The longer two pieces (W, L) of the porridge and the remaining short Measure the size of one piece (T). if
  • a new concept called a shape factor was created, and by using this shape factor, the occurrence of shrinkage defect can be predicted very accurately and easily. It is possible to predict the occurrence of shrinkage nests by the shape factor even in the case of different ingredients, types of molds, and forging postures. Furthermore, if shrinkage nests are expected to occur, it is possible to logically prevent the formation of shrinkage nests by effectively using cooling metal or hot water. Therefore, it has the effects of reducing the defective rate, improving the yield, shortening the delivery time, etc. in the forging production, and it has become possible to efficiently produce spheroidal graphite pig iron at a low cost. Industrial applicability

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Mold Materials And Core Materials (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

 さまざまな形状の鋳物や鋳物の各部分に対して、鋳造に先立ち引け巣発生の有無を精度よく予測し、防止する方法を提供する。  鋳物製品の形状を全体的または部分的に直方体または立方体に近似し、長い方の2辺の合計を残りの短い1辺で除した値である形状係数を求め、この値が所定値(判定係数)を超えるか否かにより引け巣の発生を予測する。

Description

明 細 書
铸鉄铸物の弓 Iけ巣の予測及び防止方法
技術分野
[0001] 本発明は铸鉄铸物の引け巣の予測及び防止方法に関する。
背景技術
[0002] 引け巣の予測に関しては、古くから各種の方法が提示されている。代表的なものと しては、ロシアのチボリノフが提案した铸物の体積を表面積で除した値であるモジュラ スにより評価する方法、新山が提案した温度勾配 Gを冷却速度の平方根 で除し た値で評価する方法などがある。
[0003] し力しながら、これらの引け巣予測方法は、黒鉛の生成による膨張を伴わない铸鋼 や非鉄金属などにぉ 、ては有効な手段となり得てきたが、黒鉛生成を伴う铸鉄では 必ずしも有効な手段とはなって 、な 、。
[0004] このため、吉田らは球状黒鉛铸鉄の引け巣発生の判定法として、特許文献 1を提案 している。この方法は、铸物内部と表面の共晶凝固時間を測定し、この共晶凝固時 間の重なり度合いすなわちマツシ一度より引け巣の有無を判断するものである。また 、特許文献 2においては、黒鉛の粒数と黒鉛半径力も固相率を求め、引け巣の判定 に利用する方法を提案して 、る。
[0005] これらの吉田らの判定方法は、球状黒鉛铸鉄の引け巣傾向を判定するにはある程 度有益ではあるが、これらの方法で引け巣の予測を行うことは難しい。なぜならば、こ れらの方法では、大きな铸物ほど引け巣が発生することになり、铸型強度が十分に高 V、場合には引け巣と製品の大きさに相関がな 、と 、う発明者らの発見した事実と相 反すること〖こなる力らである。
[0006] 通常、引け巣の予測方法としては、凝固シミュレーションによる「ホットスポット法」が 用いられてきた。この方法は、凝固過程で铸物内部に他とは断絶された溶湯の島す なわち温度等温線もしくは凝固線の閉じたループ (周囲を凝固した金属で囲まれた 未凝固金属の島で「ホットスポット」と呼ばれる。)ができると、未凝固金属部に溶湯が 補給できなくなるために、この部分に引け巣が発生しやすくなることに着目したもので ある。黒鉛の晶出による膨張を伴わない铸鋼ゃ非鉄金属においては、この「ホットス ポット」部に引け巣が発生する確率が非常に高!、ために、精度の高!、判定法として「 ホットスポット法」が広く用いられている。しかしながら、黒鉛の晶出による膨張を伴う 铸鉄においては、「ホットスポット」が出来たからと言って、この部分が必ずしも引け巣 になるわけではない。
[0007] 特許文献 1 :特開平 10— 296385号公報
特許文献 2:特開平 5 - 96343号公報
発明の開示
発明が解決しょうとする課題
[0008] 引け巣の防止方法としては、押し湯や冷やし金などがある。押し湯に関しては、製 品のモジュラスを計算して、製品のモジュラスより大きなモジュラスとなる押し湯を立て る方法が一般的である。このため、押し湯のサイズが製品のサイズと同じ程度になり、 歩留まりが極端に悪くなるという問題がある。また、铸鉄は铸鋼よりも引け巣が発生し づらいため、押し湯の量を少なくすると引け巣が発生してしまい、結局铸鋼と同じ押し 湯を立てなければ引け巣が発生してしまうことが多 、。冷やし金による弓 Iけ巣の防止 方法についても、冷やし金を施工することにより、引け巣の場所を移動させることは出 来るものの、引け巣をなくすことはできない。これは、铸鉄の引け巣の発生メカニズム が複雑であるため、十分に解明されて 、な 、ことにある。
[0009] 従来技術で述べたように、各種の引け巣予測方法が提案されてはいるものの、いま だに铸鉄の特性に見合った精度の高 、引け巣の予測方法は確立されて 、な 、のが 現状である。また、引け巣の予測が出来たとしても、引け巣を防止するための効率的 な铸鉄の特性に見合った防止方法は提案されて 、な 、。
[0010] 本発明は、さまざまな形状の铸物ゃ铸物の各部分に対して、精度良く引け巣発生 の有無を予測し、引け巣が発生すると予測される铸物もしくは铸物の各部分に対して 、健全な铸物が得られるように適切な铸造方案や製品形状の変更を行えるようにする 手段を提供することにある。
課題を解決するための手段
[0011] 本発明者らは、大きさや材質あるいは形状の異なる各種铸物の製品について、引 け巣の発生の有無や凝固シミュレーション及び温度測定など各種の実験を行 、、ど のような形状の铸物製品に引け巣が生じる力をつきとめた。直方体のブロックの例を 用いてその手段を解説すると、直方体の長 、二辺の合計を残りの短!、辺の長さで除 した値 (ここでは「形状係数」と呼ぶ)がある数値以下の場合は、铸物の大きさに無関 係に引け巣が発生しないことを発見した。ここで言うある数値は、 Crや Mo等の引け 巣を助長する元素が含まれて ヽな 、通常の球状黒鉛铸鉄では約 8であることを発見 した。 Crや Moが増すに従ってこの値が変化することも発見した。
[0012] また、直方体ブロックでない形状の铸物製品の場合は、形状を近似的に直方体と 見なしてもよいことを発見した。たとえば球形状の製品の場合は、球が内接する一辺 が球の直径と等しい立方体と見なせばよいし、円柱形状の製品の場合は 2辺が円の 直径と等 U、直方体と見なせばよ!、。中に穴の空!、たドーナツ状の円柱の場合は円 柱を展開した直方体と見なせばよい。各種の形状が組み合わさった製品については 、その製品の各部分を分割して考えればょ 、ことなどを発見した。
[0013] 上記のように、製品形状のみから引け巣の有無を判定することが出来るが、凝固解 析等を行い、铸物製品の凝固時における温度分布もしくは凝固時間分布力 得られ た凝固分布図において、閉塞した各楕円ループの形状係数を求め、この値が 8以下 になっているかどうかを確認することにより、閉塞した各楕円ループにおいて引け巣 の発生を予測することができることも発見した。
[0014] このような方法を用いることにより、凝固過程で铸物内部に他とは断絶された溶湯の 島すなわち温度等温線もしくは凝固線の閉じたループである「ホットスポット」に引け 巣が発生するかどうかの判定が可能となる。当然のことである力 楕円球として形状 係数を求めてもよ!、が、閉塞したラグビーボール状の楕円球を直方体に近似して形 状係数を求めてもよい。
[0015] コンピューターによる凝固シミュレーションでの閉塞した各楕円ループの形状係数 の求め方としては、以下のような方法がある。
[0016] ひとつの方法としては、凝固シミュレーションによる温度分布もしくは凝固時間分布 力 得られた凝固分布図を用いて任意の楕円ループの大きさを画面上でマウス等の 操作により測定して形状係数を求めるやり方がある。 [0017] もうひとつの方法としては、任意の楕円プールを指定して形状係数を求める方法で ある。例えば、全凝固時間を何分割かし、そのうちの任意の時間における楕円ルー プを指定する。この楕円ループはメッシュ切りをしたときの要素で構成されている。こ のメッシュの X方向、 Y方向、 Z方向に要素が何個あるかを求め、楕円ループの形状 係数を求める。
[0018] その他の方法としては、抽出した任意の楕円ループのデータを他の場所で処理し て形状を数値ィ匕し形状係数を求めることなどもある。
[0019] このように、コンピューターを使った楕円ループの形状係数を求める方法としては多 くの手段が考えられる。
[0020] 産業上における本発明の最大の価値は引け巣の予測を可能にしたことはもちろん であるが、それに加えて引け巣を防止する方法を提案したことである。すなわち、冷 やし金もしくは押し湯もしくは両者を用いて、形状係数が 8以下になるように製品を分 割することにより引け巣が発生しなくなることを発見したことである。
[0021] 直方体の例で解説すると、例えば 800 X 400 X 80mmの板を例に取ると、この形状 係数は(800 + 400) /80 = 15となり、 8以上で引け巣が発生する形状であることが わかる。この板を冷やし金で 4分割すると、形状係数は (400 + 200) 780 = 7. 5とな り、 8以下で引け巣が発生しなくなる。実際の製品試験においても、説明通りの現象 を確認することが出来た。このときの冷やし金は、溶湯と直接接する冷やし金の施工 方法でもよいが、 1つであった閉塞した凝固のループ力 つに分断されればよいだけ なので、直接溶湯と接しないような冷やし金の施工方法でも問題はない。また、冷や し金の施工面積が多くなりすぎて、閉塞した凝固のループ力 つに分断されない場 合は、当然引け巣が発生するので注意を要する。押し湯を用いる場合には、前述の 板の 4力所に押し湯を施工し、閉塞した凝固のループ力 つに分断されるようにすれ ばよい。
[0022] 引け巣が発生するかどうかの形状係数は当然のことであるが、引け巣を助長する Cr や Moなどの元素が入った場合や、逆に引け巣を防止する Cの量などによって変化 する。また、铸型の強度 (正確には铸型の高温での強度)、铸枠の剛性などによって も変化する。引け巣判定の形状係数の値は、これらの条件を加味して決定することが 好ましい。しかしながら、一般に用いられている有機自硬性铸型の場合では、概ね 8 を用いればよいことが、発明者らの実験で分力つている。なお、片状黒鉛铸鉄におい ても、形状係数により引け巣の有無を判定して、引け巣が発生しないような方策を施 ェすることが可能である。
[0023] 以上要約すると、本発明の第 1の態様によれば、铸物製品の形状から、長い方の 2 辺の合計を残りの短い一辺で除した値である形状係数を求め、この値が 8以下にな つているかどうかを確認することにより、引け巣の発生を予測することを特徴とする铸 鉄铸物における引け巣の予測方法が提供される。
[0024] 本発明の第 2の態様によれば、铸物製品の凝固時における温度分布もしくは凝固 時間分布力も得られた凝固分布図において、閉塞した各楕円ループの形状係数を 求め、この値が 8以下になっているかどうかを確認することにより、閉塞した各楕円ル ープにおいて引け巣の発生を予測することを特徴とする铸鉄铸物における引け巣の 予測方法が提供される。
[0025] 本発明の第 3の態様によれば、上記第 2の態様において、凝固シミュレーションによ る温度分布もしくは凝固時間分布力 得られた凝固分布図を用いて、楕円ループの 大きさを画面上で計測し、形状係数を算出することを特徴とする引け巣の予測方法 が提供される。
[0026] 本発明の第 4の態様によれば、上記第 2の態様において、凝固シミュレーションによ る温度分布もしくは凝固時間分布力も得られた凝固分布図を用いて、メッシュ切りで 分割された楕円ループを構成する要素の XYZ方向の数から、形状係数を算出するこ とを特徴とする引け巣の予測方法が提供される。
[0027] 本発明の第 5の態様によれば、形状係数が 8を越える場合に、冷やし金もしくは押 し湯もしくは両者を併用して製品を分割することにより、形状係数を 8以下にすること を特徴とする铸鉄铸物の引け巣の防止方法が提供される。
[0028] 本発明の第 6の態様によれば、上記第 1〜5の態様において、引け巣が発生するか 否かの形状係数を、铸物の成分、铸型の性質、铸造姿勢によって決定することを特 徴とする引け巣の予測及び防止方法が提供される。
発明の効果 [0029] 本発明では形状係数という新しい概念を創設し、この形状係数を用いることにより 非常に精度良くかつ簡単に引け巣欠陥の発生を予測することができるようにした。铸 物成分、铸型の種類、铸造姿勢などが異なる場合でも、形状係数によって引け巣の 発生を予測することを可能とした。さらに、引け巣が発生すると予測される場合は、冷 し金もしくは押し湯を有効に使用することにより、論理的に引け巣の発生を防止する ことを可能とした。よって、铸物铸造における不良率の低減、歩留まりの向上、納期短 縮等の効果があり、低コストで効率よく球状黒鉛铸鉄を製造することが可能となった。 図面の簡単な説明
[0030] [図 l] (a)、(b)、(c)、(d)、(e)、(f )、(g)は铸物製品の形状近似について説明する 図である。
[図 2]直方体の形状係数と引け巣の関係を示すグラフである。
[図 3]円盤形状体の形状係数と引け巣の関係を示すグラフである。
[図 4]円筒体の形状係数と引け巣の関係を示すグラフである。
[図 5]直方体の異なる铸造姿勢における形状係数と引け巣の関係を示すグラフであ る。
[図 6]異なる溶湯成分の直方体の形状係数と引け巣の関係を示すグラフである。
[図 7]異なる铸型を用いた場合の直方体の形状係数と引け巣の関係を示すグラフで ある。
[図 8]コンピューターシミュレーションによる引け巣予測の一例を示す図である。
[図 9]楕円ループが存在する断面の一例を示す図である。
[図 10]幅 (w),長さ (1) ·厚さ (t )
MSを計測するためのダイアログを示す図である。
[図 11]楕円ループが存在する断面の一例を示す図である。
[図 12]凝固分布図の楕円ループの一例を示す図である。
[図 13]楕円ループに外接する立方体の一例を示す図である。
[図 14]形状係数を自動算出するためのダイアログを示す。
[図 15]冷し金の施工による引け巣防止方法を示す。
[図 16]押し湯の施工による引け巣防止方法を示す。
[図 17]間違った冷し金使用の一例を示す。 [図 18]正 、冷し金使用の一例を示す。
[図 19]铸鉄铸物製品の引け巣予測及び防止方法のフローチャートである。
発明を実施するための最良の形態
[0031] 上記ならびに他の本発明の目的、態様および利点は、本発明の原理に合する好適 な具体例が実施例として示されている以下の詳細な説明および添付図面を参照する ことにより、当該技術の熟練者にとって明らかになるであろう。なお本発明は以下の 詳細な説明で記述され、かつ、添付の図面に示される実施例に限定されるものでは な!ヽことは言うまでもな!/ヽ。
[0032] 以下、本発明を具体的な実施例に基づいて詳細に説明する。
[0033] 本発明においては、基本的には長い方の 2辺の合計を残りの短い 1辺で除した値と して求めた形状係数 (F)を用いる。最も分力りやすい例として、铸物形状が直方体の ブロックについては、ブロックの幅 (W)と長さ (L)の合計を肉厚 (T : 3辺で最も短い辺)
MS
で除した値が形状係数になる。直方体以外の形状のブロックについては、その形状 を近似的に直方体と見なせばよい。
[0034] 図 1に、種々の形状の铸物についての形状係数を求める場合の例を示す。
[0035] 図 1 (a)は立方体で、幅 (W)、長さ(L)、高さ(T )のすべてが立方体の一辺の長さ
MS
になる。図 1 (b)は直方体の板を横置きした場合、図 1 (c)は直方体の板を縦置きした 場合で、幅 (W)、長さ(L)、高さ (T )を図示したようにとる。図 1 (d)は高さが直径未
MS
満の円盤で、このような円盤形状については円盤の直径を幅 (W)と長さ (L)とみなし、 高さ(肉厚)を T とみなして形状係数を求める。図 1 (e)に示す高さが直径以上の円
MS
柱の場合は、円柱の直径を幅 (W)および高さ (T )とみなし、円柱の高さを長さ(L)
MS
とみなす。図 1 (f)に示すドーナツ型の円筒の場合は、円筒を展開して直方体とし、円 筒の高さを幅 (W)とみなし、円周の長さ Lを長さ (L)とみなし、円筒の厚みを T とみなし
MS
て形状係数を求める。
[0036] 円柱と直方体の板と円筒が組み合わさった図 1 (g)のような場合には、円柱部分は 円柱として、直方体の板部分は板として、円筒部分は円筒として上述したような方法 で個々に形状係数を求め、各々の部分について引け巣が発生する力否かを判定す ればよい。また、後述する引け巣防止の対策も各々の部分について行なえばよい。 [0037] 図 2、図 3、図 4は形状および寸法がそれぞれ異なる試験片について形状係数(
(L+W)/ T )と引け巣面積率の関係を測定した実験結果を示す。試験片の材質は
MS 一 般的なダクタイル铸鉄铸物 (FCD600)とし、铸型はフラン自硬性铸型とした。実験は、 試験片の寸法 (幅、長さ、厚さ、直径)を各図中の表に示すように変えて番号 A、 B、 C で示すいくつ力の試験片を製作し、各試験片について形状係数と引け巣面積率との 関係を測定した。
[0038] 図 2は直方体の板試験片、図 3は円盤形状の試験片、図 4は円筒形状の試験片を 対象としており、いずれも形状係数 ((L+W)/ T )が 8を超えると引け巣が発生してお
MS
り、形状係数力 以下では引け巣が発生していないことが分かる。すなわち、形状に よらず形状係数で引け巣の発生を予測することが可能であることがわかる。ここで、引 け巣が発生しなくなる形状係数を判定係数と称することにすると、図 2、図 3、図 4にお いては、判定係数は 8であることがわ力る。
[0039] 本発明者らは、铸造姿勢つまり铸造铸物の置き方によって引け巣が発生しなくなる 形状係数つまり判定係数に差異があるかどうかについても調査した。図 5は同じ铸物 (試験片としての直方体の板)を縦置きにした場合と横置きにした場合の、形状係数 ((L+W)/ T )
MSと引け巣面積率の関係の実験結果を示す。試験片は一般的なダクタイ ル铸鉄铸物(FCD600)である。
[0040] 図 5から分力るように、横置きの試験片(表の番号 D1)にお 、ては、形状係数が 8以 下で引け巣が発生しなくなるが、縦置きの試験片 (表の番号 D2)においては、形状係 数が 6以下で引け巣が発生しなくなる。したがって、横置きでは判定係数が 8であり、 縦置きでは判定係数は 6になる。
[0041] このように铸造姿勢によって判定係数に差異が現れる理由は、重力の影響によるも のと考えられる。すなわち同じ成分で同じ寸法の铸物でも、引け巣が発生しなくなる 形状係数 (判定係数)が変化することが分かる。したがって引け巣判定の形状係数値 は、これらの条件をカ卩味して決定することが好ましい。
[0042] 次に本発明者らは、ダクタイル铸物に引け巣の発生を助長する元素を含有した場 合にっ 、て、弓 Iけ巣が発生しなくなる形状係数に差異があるかどうかにっ 、ても調査 した。 Moは引け巣の発生を助長する元素として周知である。 [0043] 図 6は Moの含有量が異なる 3つの試験片(表の番号 El、 E2、 E3)に対する形状係 数と引け巣面積率の関係を示す実験結果である。
[0044] 実験の結果、 Moを含有しな 、一般のダクタイル铸物では、形状係数が 8以下で引 け巣が発生しなくなるが、 Moを 0.3重量 %含有する場合は形状係数が 6以下で、また M oを 0.6重量 %含有する場合は形状係数が 3以下で引け巣が発生しなくなることが分か つた。すなわち、引け巣の発生を助長する元素を含有したことによって、引け巣が発 生しなくなる形状係数 (判定係数)が変化することが分かる。引け巣判定の形状係数 の値は、これらの条件も加味して決定することが好まし!/、。
[0045] 铸型の種類が異なる場合について、引け巣が発生しなくなる形状係数つまり判定 係数に差異があるかどうかについても調査した。铸型の種類が異なる(表の番号 Fl、 F2、 F3、 F4)場合の形状係数と引け巣面積率の関係を図 7に示す。
[0046] 図 7では直方体の板を試験片として用い、高温強度がないと言われている CO型の
2 铸型では、形状係数が 2以下で引け巣が発生しなくなる。次に高温強度が低い生型 の铸型では形状係数が 6以下で、また常温の砂強度 10kgf/cm2のフラン型铸型では 形状係数が 8以下で、さらに常温の砂強度 30kgf/cm2のフラン型铸型では形状係数が 10以下で、それぞれ引け巣が発生しなくなる。すなわち、铸型の種類によって引け巣 が発生しなくなる形状係数 (判定係数)が異なることが分かる。引け巣判定の形状係 数の値は、これらの条件をカ卩味して決定するのが好まし 、。
[0047] 図 8は、コンピュータによる凝固シミュレーションを利用した引け巣予測の一例を示 す。
[0048] 凝固シミュレーションでは温度分布もしくは凝固時間分布力 凝固分布図が得られ る。その閉塞した楕円ループから、幅 (w)、長さ (1)、厚さ (t )
MSのそれぞれの寸法を測定 することにより形状係数 (£)を求めることができる。楕円ループは必ずしも最も内側にあ るループを用いる必要はなぐ凝固後半部から最終凝固部にかけてのループをとる のが好ましい(以後の説明で楕円ループという場合は、この凝固後半部から最終凝 固部かけてのループを指すものとする。
[0049] 図 8に示した例においては、試験片の形状力も求めた形状係数 (F)は
(200+200)/100=4であり、凝固シミュレーションによる楕円ループから求めた形状係数 (f)も (60+60)/30=4になっている。この結果から、凝固シミュレーション力 得られる凝 固分布図の楕円ループ力 求めた形状係数 (f)は、試験片の形状力 求まる形状係 数 (F)と近似した値となることが分かる。すなわち、コンピューターによる凝固シミュレ ーシヨンによっても、凝固分布図から形状係数に基づいた引け巣予測が可能である。 特に、製品形状が複雑な場合は、このような凝固シミュレーションによる引け巣予測 が有効になる。また、複雑な形状が組み合わさったような場合においては、各形状ご とに発生する楕円ループについて形状係数 (£)を求め、こうして求めた形状係数 (f)か ら引け巣の予測をすればよ!、ことがわかる。
[0050] (1)凝固シミュレーションによる幅 (w) *長さ (1) ·厚さ (t )
MSの計測方法の一例
本発明における凝固シミュレーションによる形状係数を算出するために必要な幅 (W)
、長さ (1)、厚さ (t )
MSを計測する方法の一例を示す。
[0051] 凝固シミュレーションでは温度分布もしくは凝固時間分布力 凝固分布図が得られ る。得られた分布図から閉塞した楕円ループを計測するには、まず、図 9に示すよう に楕円ループが存在する断面を表示する。次に楕円ループの大きさを計測するので あるが、計測にあたって図 10に示した U、 V、 Wのダイアログを用いる。画面上でこの ダイアログの「U方向の計測」を押すと、例えば X方向から見た XY断面のループが表 示される。「V方向の計測」を押すと、例えば Y方向から見た YZ断面のループが表示さ れる。「w方向の計測」を押すと、例えば Z方向から見た ZX断面のループが表示され る。楕円ループの 1、 w、 t
MSの計測においては、マウス等を用いて画面上で計測開始 位置と終了位置を指定する。表示している断面の厚さ方向の計測は、図 11に示した ように、図 10のダイアログを用いて表示する断面を変えて行う。このとき 3方向の計測 が必要であるが、どの方向が幅 (w)、長さ (1)、厚さ (t )になるのかが不明であるため、 3
MS
方向の計測結果力もシステムが自動的に一番短い長さを厚さ t とみなし、他を幅 (W)
MS
、長さ (1)とみなして判断する。 3方向の計測が完了した時点で、「計算」ボタンをクリツ クすることにより形状係数が計算される。計算値は図 10の形状係数欄に表示される。
[0052] (2)凝固シミュレーションによる形状係数の自動計算の一例
ミュレーシヨンによる形状係数を自動算出する方法の一例を示す。
[0053] 凝固シミュレーションでは温度分布もしくは凝固時間分布力 凝固分布図が得られ る。この凝固分布図から任意の閉塞した楕円ループを得る (表示する)ために、全フ レーム数 (凝固開始から終了までの時間を何分割するかの値)および表示フレーム 数 (凝固開始から終了までの時間を分割したうち何番目の島 (ループ)を表示するか の数値)を指定する。これによつて図 12のような島がいくつ力得られる。これらの島は 等温度分布もしくは等凝固時間分布を意味している。これらの島は凝固シミュレーシ ヨンのためにメッシュ切りによって分割された要素力も成る。 XYZの各方向の要素数を 数えることにより、図 13に示すように、この島に外接する直方体を算出し、この直方体 力も幅 (w)、長さ (1)、厚さ (t )
MSを求め、形状係数を自動算出する。
[0054] 最後に図 14に示した計算ボタンをクリックすることで、各島の形状係数が求まる。例 えば、この形状係数に青力も赤の色付けを行ない、形状係数が高いか低いかを目視 できるようにすることにより引け巣が発生する部分であるか否かの判定が可能となる。
[0055] 本発明は引け巣の予測を可能にしたことはもちろんであるが、引け巣を防止する方 法も提案するものであり、その例を以下に示す。
[0056] 図 15は引け巣の発生を防止する冷し金の施工例の 1つを示す。
[0057] 試験片は一般的なダクタイル铸鉄 (FCD600)であり、横置きの铸造姿勢であること 力も判定係数は 8である。ところが図 15の例では、試験片の形状係数は
(400+800)/80=15となり、 8以上であることから引け巣が発生する形状である。この試験 片の上下に冷し金を十字で施工し、凝固シミュレーションにより凝固分布図を求めた 。図 15において A— 断面および B— 断面で示すように、閉塞した楕円ループ 力 つに分かれていることが分かる。すなわち、冷し金で分割された 4つの直方体が それぞれ独立に凝固すると考えてよい。よって、分割された直方体の形状係数は (400+200)/80=7.5となり、 8以下であるため弓 |け巣の発生を防止できる。
[0058] 図 16は引け巣の発生を防止する押し湯の施工例の 1つを示す。
[0059] 図 15の場合と同じ材質及び同じ寸法の試験片を用いていることから、試験片の形 状係数は 15であり、本来引け巣が発生する形状である。この試験片の上に直径が 150mm,高さが 225mmの押湯を 4個施工し、凝固シミュレーションにより凝固分布図 を求めた。図 16の A— 断面で示すように、閉塞した楕円ループ力 つに分かれて いることがわかる。すなわち、この場合も押し湯によって分割された 4つの直方体がそ れぞれ独立に凝固すると考えてよい。分割された直方体の形状係数 (F)は 7. 5となり 、引け巣の発生を防止できる。
[0060] 一般に押湯を施工する場合、最終凝固部である閉塞した楕円ループを押湯の内部 に閉じこめなければならないと言われている。したがって、製品より大きな押湯を立て ることが多い。し力しながら、形状係数の観点から見ると、小さい押湯でも、凝固シミュ レーシヨンにより得られる凝固分布図の閉塞した楕円ループを分断し、押湯で分割さ れたそれぞれの部分の形状係数若しくは分割された楕円ループの形状係数が判定 係数を超えない値になりさえすれば十分であることが分かる。
[0061] 引け巣防止のために冷し金の使用が一般的に行われているが、間違った使用法、 すなわち引け巣の発生を助長させるような使用法が多く見られる。本発明では形状 係数に着目することにより冷し金の正しい使用方法、すなわち引け巣の発生を論理 的に防止する方法を見出した。
[0062] 図 17に間違った冷し金使用の一例を示す。
[0063] 試験片の形状係数 (F)は (240+400)/80=8であるから、本来的には引け巣が発生し ない形状であるが、铸造現場ではよくこの試験片の上下に冷し金 10a、 10bを施工し 、引け巣を止めようとする方法が採用され、返って引け巣が増すことがある。上下に冷 し金 10a、 10bを当てた状態での凝固分布図を凝固シミュレーションにより求めると、 図 17の A— 断面および B— 断面で示すように、閉塞した楕円ループの形状 係数 (1)は (72+170)/13=19となり、冷し金を施工したにも係わらず引け巣が発生するこ とがわかる。
[0064] これに対して図 18に冷し金の正しい使用方法を示す。
[0065] 試験片の形状係数 (F)は (100+400)/50=10であり、引け巣が発生する形状である。こ の試験片の両側に冷し金 10c、 10dを取り付け、同じぐ凝固シミュレーションにより凝 固分布図を求めた。 A— A' 断面と B— B' 断面に示すように、閉塞した楕円ループ の形状係数 (Dは (17+60)/13=6となり、引け巣が発生しなくなる。よって、冷し金の施工 にお 、て、形状係数に基づ!/、た考え方により弓 Iけ巣を防止できることが分力る。
[0066] 以上まとめて、本発明における引け巣予測及び防止方法のフローチャートを図 19 に示す。 [0067] 本発明の引け巣予測及び防止方法は以下のステップ(1)〜(6)から成り立つている [0068] (1)铸物の長い方の 2片 (W、L)と残りの短い方の 1片 (T )の寸法を測定する。もし
MS
くは、コンピューターシミュレーションによって、閉塞した楕円ループの長い方の 2片( w、l)と残りの短い方の 1片 (t )を計算する。
MS
[0069] (2)W、レ T 力も形状係数 [ F=(W+L)/T ]を求める。もしくは、 w、 1、 t から形状係
MS MS MS
[ iKw+D/t ]を求める。
MS
[0070] (3)形状係数 (Fもしくは f )が判定係数 (E、一般的には 8)より小さ 、場合は引け巣「 なし」と判定する。
[0071] (4)形状係数 (Fもしくは f )が判定係数より大き!/、場合は、引け巣「あり」と判定する。
[0072] (5)引け巣「あり」の場合は、冷し金もしくは押湯により製品を分割する。
[0073] (6) (1)から(5)の工程を繰り返して、形状係数 (Fもしくは f )が判定係数より小さく なるようにする。
[0074] 本発明では形状係数という新しい概念を創設し、この形状係数を用いることにより 非常に精度良くかつ簡単に引け巣欠陥の発生を予測することができるようにした。铸 物成分、铸型の種類、铸造姿勢などが異なる場合でも、形状係数によって引け巣の 発生を予測することを可能とした。さらに、引け巣が発生すると予測される場合は、冷 し金もしくは押し湯を有効に使用することにより、論理的に引け巣の発生を防止する ことを可能とした。よって、铸物铸造における不良率の低減、歩留まりの向上、納期短 縮等の効果があり、低コストで効率よく球状黒鉛铸鉄を製造することが可能となった。 産業上の利用可能性
[0075] 本発明によれば、铸物铸造の際铸物の形状力 引け巣ができる力否かを铸造前に 予測でき、また事前に予防することができるので、铸物铸造技術において有用である

Claims

請求の範囲
[1] 铸物製品の形状から、長い方の 2辺の合計を残りの短い 1辺で除した値である形状 係数を求め、この値が 8以下になっているかどうかを確認することにより、引け巣の発 生を予測することを特徴とする铸鉄铸物における引け巣の予測方法。
[2] 铸物製品の凝固時における温度分布もしくは凝固時間分布より得られた凝固分布図 において、閉塞した各楕円ループの形状係数を求め、この値が 8以下になっている 力どうかを確認することにより、閉塞した各楕円ループにおいて引け巣の発生を予測 することを特徴とする铸鉄铸物における引け巣の予測方法。
[3] 凝固シミュレーションによる温度分布もしくは凝固時間分布より得られた凝固分布図 を用いて、楕円ループの大きさを画面上で計測し、形状係数を算出することを特徴と する請求項 2に記載の弓 Iけ巣の予測方法。
[4] 凝固シミュレーションによる温度分布もしくは凝固時間分布より得られた凝固分布図 を用いて、メッシュ切りで分割された楕円ループを構成する要素の XYZ方向の数から 、形状係数を算出することを特徴とする請求項 2に記載の引け巣の予測方法。
[5] 形状係数が 8を越える場合に、冷やし金もしくは押し湯もしくは両者を併用して製品 を分割することにより、形状係数を 8以下にすることを特徴とする铸鉄铸物の引け巣 の防止方法。
[6] 引け巣が発生するか否かの形状係数を、铸物の成分、铸型の性質、铸造姿勢によつ て決定することを特徴とする請求項 1〜5に記載の引け巣の予測及び防止方法。
PCT/JP2005/007886 2005-04-26 2005-04-26 鋳鉄鋳物の引け巣の予測及び防止方法 WO2006117837A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP05737318A EP1878520A4 (en) 2005-04-26 2005-04-26 METHOD FOR PREDICTING AND PREVENTING SCRATCHING LOCKS OF IRON CASTORS
JP2007514408A JP4516987B2 (ja) 2005-04-26 2005-04-26 鋳鉄鋳物の引け巣の予測及び防止方法
US11/912,861 US20090165982A1 (en) 2005-04-26 2005-04-26 Method for Predicting and Preventing Shrinkage Cavity of Iron Casting
PCT/JP2005/007886 WO2006117837A1 (ja) 2005-04-26 2005-04-26 鋳鉄鋳物の引け巣の予測及び防止方法
KR1020077026766A KR100999258B1 (ko) 2005-04-26 2005-04-26 주철주물의 수축공의 예측 및 방지 방법
CN2005800495978A CN101166595B (zh) 2005-04-26 2005-04-26 铸铁铸件的缩孔的预测及防止方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/007886 WO2006117837A1 (ja) 2005-04-26 2005-04-26 鋳鉄鋳物の引け巣の予測及び防止方法

Publications (1)

Publication Number Publication Date
WO2006117837A1 true WO2006117837A1 (ja) 2006-11-09

Family

ID=37307644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/007886 WO2006117837A1 (ja) 2005-04-26 2005-04-26 鋳鉄鋳物の引け巣の予測及び防止方法

Country Status (6)

Country Link
US (1) US20090165982A1 (ja)
EP (1) EP1878520A4 (ja)
JP (1) JP4516987B2 (ja)
KR (1) KR100999258B1 (ja)
CN (1) CN101166595B (ja)
WO (1) WO2006117837A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102294466A (zh) * 2010-06-28 2011-12-28 比亚迪股份有限公司 一种金属液凝固过程中预测缩孔的方法
WO2012086382A1 (ja) * 2010-12-20 2012-06-28 アイシン・エィ・ダブリュ株式会社 鋳型及び鋳型を用いた鋳造方法、並びに鋳型の設計方法
JP2012200770A (ja) * 2011-03-25 2012-10-22 Aisin Aw Co Ltd 評価用鋳造型、評価用鋳造型を用いた評価方法
JP7480357B2 (ja) 2020-06-09 2024-05-09 ヘレウス アムロイ テクノロジーズ ゲーエムベーハー 少なくとも1つの製造パラメータを決定するための方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100999258B1 (ko) * 2005-04-26 2010-12-07 가부시키가이샤 기무라츠조쇼 주철주물의 수축공의 예측 및 방지 방법
KR100923965B1 (ko) * 2007-12-27 2009-10-29 한국생산기술연구원 금속응고 시뮬레이션시 수축공 계산 방법
CN102072914B (zh) * 2009-11-23 2012-11-21 比亚迪股份有限公司 金属液凝固过程中预测缩孔的方法
CN102974799B (zh) * 2012-11-19 2015-06-10 四川广安光前集团有限公司 用镶嵌法解决压铸件厚大部位内部气缩孔的方法
CN105179201B (zh) * 2015-07-09 2017-07-21 肇庆精通机械有限公司 一种压缩机用球墨铸铁轴承及其浇注系统
CN105598379B (zh) * 2016-03-23 2017-07-14 哈尔滨理工大学 一种基于缩松缺陷预测的回转体薄壁铸件砂型铸造过程中冒口设计方法
CN110976830B (zh) * 2019-12-06 2020-10-02 北京科技大学 一种铝合金换挡毂铸造缺陷的控制方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0596365A (ja) * 1991-10-04 1993-04-20 Hitachi Metals Ltd 金属溶湯の引け性の判定方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5227979A (en) * 1989-10-13 1993-07-13 Hitachi Metals, Ltd. Method of designing cavity shape of mold
JPH0596343A (ja) * 1991-10-04 1993-04-20 Hitachi Metals Ltd 凝固解析を利用した鋳鉄鋳物の方案作製方法
JP2698520B2 (ja) * 1992-08-31 1998-01-19 日立金属株式会社 通気性鋳型の鋳造方案の作成方法
JPH08257741A (ja) * 1995-03-24 1996-10-08 Hitachi Metals Ltd 数値解析を利用した鋳造欠陥の予測方法
JPH10296385A (ja) * 1997-04-23 1998-11-10 Hitachi Metals Ltd 球状黒鉛鋳鉄鋳物の製造方法
JP3449218B2 (ja) * 1998-05-01 2003-09-22 日産自動車株式会社 鋳造品の凝固解析方法
JP3674452B2 (ja) * 2000-04-10 2005-07-20 日産自動車株式会社 鋳造品の凝固解析方法
KR100999258B1 (ko) * 2005-04-26 2010-12-07 가부시키가이샤 기무라츠조쇼 주철주물의 수축공의 예측 및 방지 방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0596365A (ja) * 1991-10-04 1993-04-20 Hitachi Metals Ltd 金属溶湯の引け性の判定方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102294466A (zh) * 2010-06-28 2011-12-28 比亚迪股份有限公司 一种金属液凝固过程中预测缩孔的方法
WO2012086382A1 (ja) * 2010-12-20 2012-06-28 アイシン・エィ・ダブリュ株式会社 鋳型及び鋳型を用いた鋳造方法、並びに鋳型の設計方法
JP2012130926A (ja) * 2010-12-20 2012-07-12 Aisin Aw Co Ltd 鋳型及び鋳型を用いた鋳造方法、並びに鋳型の設計方法
US8276644B2 (en) 2010-12-20 2012-10-02 Aisin Aw Co., Ltd. Mold and casting method using the mold and design method of the mold
JP2012200770A (ja) * 2011-03-25 2012-10-22 Aisin Aw Co Ltd 評価用鋳造型、評価用鋳造型を用いた評価方法
JP7480357B2 (ja) 2020-06-09 2024-05-09 ヘレウス アムロイ テクノロジーズ ゲーエムベーハー 少なくとも1つの製造パラメータを決定するための方法

Also Published As

Publication number Publication date
KR20080009721A (ko) 2008-01-29
US20090165982A1 (en) 2009-07-02
CN101166595B (zh) 2010-05-12
KR100999258B1 (ko) 2010-12-07
CN101166595A (zh) 2008-04-23
EP1878520A1 (en) 2008-01-16
EP1878520A4 (en) 2008-07-02
JPWO2006117837A1 (ja) 2008-12-18
JP4516987B2 (ja) 2010-08-04

Similar Documents

Publication Publication Date Title
WO2006117837A1 (ja) 鋳鉄鋳物の引け巣の予測及び防止方法
Kavoosi et al. Influence of cooling rate on the solidification behavior and microstructure of IN738LC superalloy
CN107092754B (zh) 一种合金晶粒组织数值预测方法
Gao et al. Effects of micro-alloying elements and continuous casting parameters on reducing segregation in continuously cast slab
Kotas et al. A casting yield optimization case study: Forging ram
JP4914429B2 (ja) 合金溶湯の凝固解析方法およびその凝固解析プログラム
Zhu et al. Crack formation of camshaft castings: hot tearing susceptibility and root causes
JP2008155230A (ja) 鋳造方案設計方法
WO2009133602A1 (ja) 鋳鉄鋳物の引け巣の予測および防止方法
ALUMINIJA Progressive method of porosity prediction for aluminium castings
Gopinath et al. Effect of solidification parameters on the feeding efficiency of Lm6 aluminium alloy casting
CN107607573A (zh) 一种新的合金热裂倾向预测方法
JP7437024B2 (ja) 金属成型品の製造方法
Dai A Study of Solidification Structure Evolution during Investment Casting of Ni-based Superalloy for Aero-Engine Turbine Blades.
Li et al. Simulation of stray grain formation during unidirectional solidification of IN738LC superalloy
Patel et al. Mathematical modeling of microshrinkage formation during solidification of A356 castings
Norouzi et al. The temperature range in the simulation of residual stress and hot tearing during investment casting
Marlatt et al. Development in lost foam casting of magnesium
Zhao et al. Design and Verification of a New Test Bar Die for LPDC Process Based on Numerical Simulation
JP2005062108A (ja) 合金の凝固割れ感受性の予測方法および凝固割れ感受性の改善された合金の製造方法
Bala et al. Casting Simulation and Effect of Gating System of an Automotive Wheel Rim
Hartmann et al. Simulation of ingot casting processes at Deutsche Edelstahlwerke GmbH®
JP2011079053A (ja) 金型溶着判定方法及びその装置
JP2017166844A (ja) マグネシウム系合金の強度予測方法
Li et al. Application of numerical simulation during the development of ductile iron bearing seat

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007514408

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580049597.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077026766

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2005737318

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Ref document number: RU

WWP Wipo information: published in national office

Ref document number: 2005737318

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11912861

Country of ref document: US