WO2006115041A1 - 傾斜センサおよびこれを用いた方位計測装置 - Google Patents

傾斜センサおよびこれを用いた方位計測装置 Download PDF

Info

Publication number
WO2006115041A1
WO2006115041A1 PCT/JP2006/307642 JP2006307642W WO2006115041A1 WO 2006115041 A1 WO2006115041 A1 WO 2006115041A1 JP 2006307642 W JP2006307642 W JP 2006307642W WO 2006115041 A1 WO2006115041 A1 WO 2006115041A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
angle
magnetic
magnetic data
ellipse
Prior art date
Application number
PCT/JP2006/307642
Other languages
English (en)
French (fr)
Inventor
Yukimitsu Yamada
Original Assignee
Alps Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co., Ltd. filed Critical Alps Electric Co., Ltd.
Priority to EP06731589A priority Critical patent/EP1876417A4/en
Publication of WO2006115041A1 publication Critical patent/WO2006115041A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/07Hall effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C17/00Compasses; Devices for ascertaining true or magnetic north for navigation or surveying purposes
    • G01C17/02Magnetic compasses
    • G01C17/28Electromagnetic compasses

Definitions

  • the present invention relates to a tilt sensor using a three-axis magnetic sensor and an azimuth measuring apparatus using the tilt sensor.
  • a magnetic sensor 100 that detects a biaxial component of a magnetic vector defined on a plane parallel to the substrate and a component perpendicular to the substrate of the magnetic vector are detected.
  • a Hall element 24 and a tilt sensor 22 that detects the tilt angle of the substrate are integrally configured. Based on the tilt angle (roll angle and pitch angle) of the substrate detected by the tilt sensor 22, the magnetic sensor 100 is provided.
  • the correct azimuth angle is detected by correcting the two-axis component of the magnetic vector detected from the vertical axis and the vertical component detected from the hall element 24.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-196055
  • Patent Document 1 what is described in Patent Document 1 above is a configuration that requires a tilt sensor for performing tilt correction in addition to the three-axis magnetic sensor for calculating the earth magnetic pole direction. For this reason, there is a problem that the compass itself becomes large-scale and weight-intensive, and as a result, downsizing of a portable device or the like equipped with the compass is hindered by light weight.
  • the present invention has been made to solve the above-described conventional problems, and an object of the present invention is to provide a tilt sensor that can determine the tilt angle from the magnetic data acquired by the magnetic sensor. [0006] Another object of the present invention is to provide a direction measuring device capable of detecting an azimuth angle without using a dedicated tilt sensor.
  • the present invention is an inclination sensor comprising a magnetic sensor that detects magnetic components in three axial directions orthogonal to each other, and a calculation means that acquires and calculates the output of the magnetic sensor, wherein the calculation means Includes a first arithmetic processing unit that generates at least three magnetic data by converting magnetic components in the three-axis directions, a second arithmetic processing unit that calculates the magnetic data force predetermined access code, and an inclination A memory unit that stores a plurality of data related to the corners, and a control unit that controls the operation of each unit;
  • the control unit calls an inclination angle corresponding to the access code when accessing the memory unit.
  • the second arithmetic processing unit generates an elliptical Lissajous waveform when the magnetic sensor is rotated about any one axis and generates an elliptical Lissajous waveform.
  • the length dimension of the major axis or minor axis is calculated, and one of the major axis or minor axis that changes with the rotation is used as the access code.
  • the second arithmetic processing unit generates an elliptical Lissajous waveform with respect to the remaining two axes when the magnetic sensor is rotated around one arbitrary axis, and the ellipse has a major axis.
  • the length dimension of the minor axis is calculated, and the ratio of the length dimension of the major axis to the length dimension of the minor axis is used as the access code.
  • the rotation about the one axis is one rotation or more.
  • the access cord can be either the length of the minor axis of the ellipse determined from the above or the ratio of the length of the major axis to the length of the minor axis.
  • the azimuth angle is calculated from the magnetic data obtained by converting the magnetic components in the three-axis directions and the tilt angle calculated by any of the tilt sensors described above. It is characterized by that.
  • the dip angle and declination acquisition means are provided, and the dip angle and declination acquisition means calculates the measurement position from the radio wave received by the satellite force for GPS, and the dip angle corresponding to the measurement position
  • the data regarding the declination is called from the memory unit.
  • a dip angle and declination obtaining unit is provided, and the dip angle and declination obtaining unit calculates a communication force measurement position with the relay station of the mobile phone system and corresponds to the measurement position at this time. It is preferable that the data memory part force relating to the dip angle and the declination angle is obtained via the relay station.
  • the tilt sensor can be configured by a three-axis magnetic sensor. This eliminates the need for a dedicated tilt sensor, and makes it possible to reduce the size and weight of an azimuth measuring device equipped with such a three-axis magnetic sensor.
  • Fig. 1 is a two-dimensional plan view showing the relationship between a mobile terminal equipped with a three-axis electronic compass as an azimuth measuring device and the azimuth angle
  • Fig. 2 is a block diagram showing the configuration of the three-axis electronic compass
  • Fig. 3 is an azimuth analysis diagram for explaining the principle of tilt correction in a three-dimensional manner
  • Fig. 4A is a side view of a mobile terminal that two-dimensionally shows a state tilted by a pitch angle ⁇ around the X axis. Is a bottom view of a mobile terminal that two-dimensionally shows a state where the pitch angle ⁇ is inclined about the y-axis.
  • FIG. 1 is a mobile phone shown as a typical example of the mobile terminal 1.
  • the mobile terminal 1 is equipped with a three-axis electronic electronic compass (azimuth measuring device) 2.
  • the three-axis electronic compass 2 is equipped with three magnetic sensors 3, 4, and 5 that function as magnetic detection means for detecting the strength of the magnetic field in the axial direction.
  • the magnetic sensors 3, 4, and 5 are arranged in directions orthogonal to each other.
  • the width direction of the mobile terminal 1 is the ⁇ ′ axis
  • the longitudinal direction of the mobile terminal 1 is the y ′ axis.
  • the magnetic sensor 3 is in the x ′ axis direction
  • the magnetic sensor 4 is in the y ′ axis direction
  • the magnetic sensor 5 is in the z ′ axis direction. It is possible to detect this. Therefore, in the three-axis electronic compass 2, the x'y'z 'Cartesian coordinate system is formed by the three magnetic sensors 3, 4, and 5. It is possible to detect the geomagnetic vector H generated around the earth as a component in three axes.
  • the magnetic sensor constituting the magnetic detection means for example, a known MR (Magneto Resistive) sensor, Hall element, flux gate type magnetic sensor (Japanese Patent Laid-Open No. 9-43332 and Japanese Patent Laid-Open No. 11 118892)
  • a sensor using a GIG (Granulau in Gap) element can be used.
  • the triaxial electronic compass 2 is provided with computing means 10.
  • the calculation means 10 includes a first calculation processing unit 11, a second calculation processing unit 12, a third calculation processing unit 13, and a fourth calculation processing unit 14. The functions of the first to fourth arithmetic processing units 11, 12, 13, and 14 will be described later.
  • the three-axis electronic compass 2 is provided with a control unit 16 for controlling operations such as the magnetic detection unit, the calculation unit 10 and a memory unit 17 described later.
  • the coordinate system when facing is the xyz Cartesian coordinate system.
  • the xyz rectangular coordinate system forms a fixed reference coordinate system, and is different from the coordinate system that changes according to the tilt posture of the mobile terminal 1 like the x'y'z 'orthogonal coordinate system. It is.
  • Hx, Hy, and Hz denote the X-axis component and the y-axis in the xyz orthogonal coordinate system of the geomagnetic vector H detected by the three-axis magnetic sensors 3, 4, and 5 mounted on the mobile terminal 1. This means the magnitude of the component and z-axis component (magnetic field strength).
  • Hxy represents the horizontal component when the geomagnetic vector H is projected onto the ground plane (xy plane) and the direction of magnetic north (see Fig. 1).
  • Hyz shows the component when the geomagnetic vector H is projected onto the vertical yz plane (see Fig. 4A).
  • the azimuth angle ⁇ shown in FIGS. 1 and 3 is an angle formed by the reference y ′ axis and magnetic north (horizontal component Hxy of the geomagnetic vector H). Further, the azimuth angle ⁇ ′ is an angle formed by the reference y ′ axis and true north, and is an angle finally obtained by the three-axis electronic compass of the present invention.
  • symbol ⁇ shown in FIG. 4A indicates that the mobile terminal 1 is rotated when the mobile terminal 1 is rotated about the ⁇ ′ axis ( ⁇ axis).
  • 4B indicates that when the mobile terminal 1 is rotated around the y ′ axis (y axis), the X axis (or the ground plane (xy plane)) and the rotated x ′ axis (or x ′ y ′)
  • An inclination angle (hereinafter referred to as a roll angle) formed by a plane.
  • reference numeral 7? Shown in FIG. 3 is an angle formed by the ground plane (xy plane) and the geomagnetic vector H that cuts through the ground plane, and means a depression angle (downward is a plus). .
  • the above-mentioned dip angle r? Varies depending on the location, and in the northern hemisphere, it tends to increase as the latitude increases.
  • the declination (angle difference between magnetic north and true north) D is also a different value at each measurement point. Japan's accurate declination data is owned by the Geographical Survey Institute, and the data is updated once every three months. ing.
  • the triaxial electronic electronic compass 2 has a dip angle and deflection angle acquisition means 20 as shown in FIG. .
  • the dip angle r? And declination angle D corresponding to each point can be converted into data and stored in the memory unit 17.
  • the current measurement position is obtained via an artificial satellite that constructs a GPS (Global Positioning System) provided by one portable terminal, and the corresponding depression angle ⁇ and declination angle D are recorded in the memo. It is possible to call from the re-part 17 and update the data.
  • the mobile terminal 1 is a mobile phone
  • the same as described above is obtained by determining the area (current measurement point) where the mobile phone is used from the position of the relay station connected during a call or mail. It is possible to call the data related to the depression angle 7? And the deflection angle D from the memory unit 17, or to directly obtain the data related to the depression angle ⁇ and the deflection angle D from the outside via the relay station. .
  • the magnetic component in the heel axis direction is calculated from the two horizontal sensors (X-axis sensor and heel axis sensor) and the dip angle 7? Because there is an advantage that you can eliminate the saddle axis sensor.
  • x 'y' z of the geomagnetic vector H detected by the electronic conos and each component of the orthogonal coordinate system are the same as each component of the xyz orthogonal coordinate system.
  • the components are Hx, Hy, and Hz, respectively, the components Hx, Hy, and Hz can be expressed as the following Equation 1 by using the azimuth angle Q and the dip angle r ?.
  • the azimuth angle ⁇ is an angle formed by the y 'axis (in this case, the y axis) and the horizontal component Hxy of the geomagnetic vector.
  • a geomagnetic vector (detected by magnetic sensors 3, 4, and 5) detected in the x 'y' z 'orthogonal coordinate system when the portable terminal 1 (electronic compass 2) is rotated around the X axis.
  • the relationship between the magnetic data X, ⁇ , Z and the components Hx, Hy, Hz can be expressed by the following equation 3 using a matrix transformation formula around the x axis.
  • the first arithmetic processing unit 11 converts the components Hx ′, Hy ′, and Hz ′ of the geomagnetic vector H into magnetic data X, ,, and Z.
  • the azimuth angle ⁇ when the pitch angle ⁇ is generated in the mobile terminal 1 can be expressed by the following equation 5 from the equations 2 and 3.
  • Equation 5 From Equation 5, it is clear that the pitch angle ⁇ must be known in order to obtain the azimuth angle ⁇ . At the same time, it can be understood that the azimuth angle ⁇ is not required when the azimuth angle 7? And the declination angle D are required. As shown in Fig. 4 (b), the pitch angle ⁇ is determined by the mobile terminal 1 (x Since the inclination angle of the 'y' plane) is obtained, the azimuth angle ⁇ can be obtained by obtaining the inclination angle of the mobile terminal 1 (x'y 'plane) using an inclination sensor. However, in the case of a configuration that does not have a dedicated tilt sensor as in the present invention, the pitch angle OC can be obtained by using the method described below.
  • a shown in FIGS. 5 to 8 is the rotation angle ⁇ z and the magnetic data X, ⁇ , Z detected at this time when the mobile terminal 1 is rotated once around the z axis (360 °).
  • B is a Lissajous waveform formed by taking magnetic data Y on the horizontal axis and magnetic data X on the vertical axis
  • C shows magnetic data Y on the horizontal axis and magnetic data Z on the vertical axis
  • the Lissajous waveform formed by taking the above is shown.
  • the pitch angle ⁇ is an inclination angle around the X axis (see FIG. 4A).
  • 9 is a graph showing the relationship between the pitch angle ⁇ and the gains Gx and Gz
  • FIG. 10 is a graph showing the relationship between the pitch angle ⁇ and the ratios GxZGy and GzZGy.
  • a plurality of magnetic data Z ( The converted value of z′-axis geomagnetic vector component Hz detected by magnetic sensor 5 shows a constant value, but magnetic data X (x′-axis geomagnetic vector component Hx ′ detected by magnetic sensor 3) (Converted value) shows a cosine wave shape, and magnetic data Y (converted value of the geomagnetic vector component Hy in the y′-axis direction detected by the magnetic sensor 4) shows a sine wave shape. Therefore, as shown in FIG.
  • the Lissajous waveform E1 formed from the plurality of magnetic data X and magnetic data Y is circular.
  • the Lissajous waveform E1 formed from the plurality of magnetic data Y and magnetic data X is deformed into an elliptical shape that is slightly crushed in the vertical axis direction.
  • the Lissajous waveform E2 formed from the magnetic data Y and the magnetic data X is deformed into an ellipse having a minor axis in the vertical direction and a major axis in the horizontal direction.
  • a circle is a special case where the minor axis of the ellipse has the same length as the major axis, and is included in the concept of the ellipse.
  • the pitch angle ⁇ and the X gain Gx of the magnetic data X, and the pitch angle ⁇ and the gain Gz of the magnetic data ⁇ have a correlation (one-to-one relationship) as shown in FIG.
  • the correlation between the X gain Gx and the pitch angle ⁇ of the magnetic data X shown in FIG. 9 and the correlation between the gain Gz and the pitch angle ⁇ of the magnetic data ⁇ ⁇ ⁇ ⁇ are shown in a table. And can be recorded in the memory unit 17.
  • the control unit 16 obtains the X gain Gx or the Z gain Gz calculated by the second calculation processing unit 12 when the mobile terminal 1 is rotated once around the z axis
  • the access code ⁇ is generated from the X gain Gx or the access code ⁇ from the Z gain Gz, and the memory unit 17 is accessed using the access code ⁇ or ⁇ .
  • the medium force of the plurality of stored pitch angles ⁇ also calls the pitch angle ⁇ 0 corresponding to the access code X 0 or ⁇ and outputs it to the third arithmetic processing unit 13.
  • the third arithmetic processing unit 13 calculates the azimuth angle ⁇ of the mobile terminal 1 by substituting the pitch angle a 0 and the magnetic data X into the above formula 5. Further, the fourth arithmetic processing unit 14 obtains the azimuth angle ⁇ ′ with respect to the true north by subtracting the azimuth force thus obtained and the deviation angle D at the measurement point.
  • the magnetic angle X, ⁇ , Z is calculated by using the three magnetic sensors 3, 4, 5, and the pitch angle ⁇ stored in advance in the memory unit 17 is stored. Since it is configured to call 0, a dedicated tilt sensor can be dispensed with. That is, the magnetic sensors 3, 4, 5 that detect the magnetic data X, ⁇ , ⁇ , the first arithmetic processing unit 11, the second arithmetic processing unit 12, the control unit 16, and the memory unit 17 have a pitch angle (inclination angle). ) It functions as a tilt sensor that calculates ⁇ .
  • the value of the magnetic data Y when the rotation angle is 0 z 90 ° or 270 °, that is, the ellipse when the magnetic data Y is the maximum voltage value as shown in FIGS.
  • the length dimension in the horizontal axis direction forming the major axis or minor axis is calculated as Y gain Gy, and the ratio of this Y gain Gy to the above X gain Gx (ratio of major axis to minor axis) GxZGy, or the above Ratio of Y gain Gy and Z gain Gz (ratio of major axis to minor axis) Gz / Gy is obtained.
  • the pitch angle ex and the ratio GxZGy, and the pitch angle oc and the ratio GzZGy have a predetermined correlation (one-to-one relationship) as shown in FIG. Is confirmed. Therefore, the correlation between the pitch angle ⁇ and the ratio GxZGy shown in FIG. It is possible to record the correlation between the pitch angle ⁇ and the ratio GzZGy in the memory unit 17 in a table.
  • the control unit 16 generates an access code corresponding to the ratio GxZGy or the ratio GzZGy calculated by the second arithmetic processing unit 12 when the portable terminal 1 is rotated about the z-axis.
  • the pitch angle ⁇ ⁇ corresponding to the access code can be obtained from the memory unit 17 as described above.
  • the pitch angle ⁇ ⁇ obtained in this way is output to the third arithmetic processing unit 13 as described above.
  • the pitch angle ⁇ is also obtained for the specific force between the major axis and the minor axis of the ellipse. For example, even when the offset is superimposed on each magnetic data X, ⁇ , ⁇ , the offset is calculated. Since it can be canceled and its influence can be kept low, only the X gain Gx or the ⁇ gain Gz can improve the accuracy compared to the method for obtaining the force pitch angle a.
  • FIG. 11 is a diagram for explaining a first method for obtaining a gain using a plotting method.
  • FIG. 11 shows a Lissajous waveform (ellipse) corresponding to FIG. 5B, FIG. 8B or FIG. 6C, and FIG. 8C.
  • the Y gain Gy corresponds to the half length a of the long axis AB on the horizontal axis side
  • the X gain Gx or Z gain Gz corresponds to the half length dimension b of the short axis CD on the vertical axis side.
  • the Y gain Gy of the magnetic data Y is a length dimension a on the horizontal axis side, which is a known value that always takes a constant value. Value.
  • the minor axis length (minor axis) of the ellipse is known.
  • b can be obtained, that is, the Z gain Gz and Y gain Gy corresponding to the minor axis length (minor axis) of the ellipse can be obtained.
  • the X gain Gx and the Z gain Gz are easily obtained without rotating the mobile terminal 1 once, that is, by obtaining the magnetic data X, ⁇ , and Z corresponding to the one point P. Can do. For this reason, the average value of the minor axis length (minor axis) of the ellipse from each magnetic data X, Y, Z indicating the multiple points on the ellipse obtained when the mobile terminal 1 is slightly rotated, that is, X gain The average value of Gx and Z gain Gz can be obtained easily.
  • the average value of the ratio Gx / Gy of the known Y gain Gy and the X gain Gx or the average value of the ratio GzZGy of the Y gain Gy and the Z gain Gz can be easily obtained. Therefore, it is possible to obtain a highly accurate pitch angle (inclination angle) ⁇ without rotating the mobile terminal 1 once.
  • FIG. 12 is a diagram for explaining a second method for obtaining a gain by showing a resurge waveform. 12 is an ellipse corresponding to FIGS. 5B to 8B or FIGS. 6C to 8C.
  • a Lissajous waveform E1 formed from a plurality of magnetic data Y and magnetic data X is a kind of arcuate locus. This is performed assuming that an elliptical trajectory is obtained.
  • a function F (X, y) based on the elliptic equation shown in Equation 6 below is a coordinate corresponding to, for example, magnetic data (X, Y) and a plurality of the Lissajous waveform E1 that forms the Lissajous waveform E1.
  • the coordinates PO (x (0), y (0)), Pl (x (l), y (l)), P2 (x (2), y (2)), ... are substituted, the function F ( x, y)
  • coefficients a, ⁇ and coefficients b, yO satisfying 0 compare the error between the ellipse logical solution and the actual magnetic data group (X, y), and repeat the calculation until the results converge .
  • one of the coefficients a and b represents the major axis of the ellipse and the other represents the minor axis
  • the coefficients xO and yO represent the center coordinates (center point) of the ellipse.
  • the nonlinear least squares method can be obtained by forming an orthonormal matrix from a Jacobian matrix and converging the coefficients a, ⁇ or the coefficients b, yO by the Gaussian Newton method. is there.
  • the X gain Gx and the Y gain Gy are obtained by using the center coordinates (xO, yO) obtained by such a method and the coefficients a and b.
  • the Y gain Gy and the Z gain Gz can also be obtained from the Lissajous waveform E 2 formed from a plurality of magnetic data Y and magnetic data Z as described above.
  • the mobile phone can be portable as described above. It is possible to obtain a highly accurate pitch angle (tilt angle) ⁇ without rotating the terminal 1 once, that is, by rotating it slightly.
  • the power described using the calculation means 10 that is configured by dividing the first to fourth calculation processing units 11, 12, 13, and 14 is not limited to this.
  • the calculation means 10 is not necessarily one, that is, the single calculation means 10 may serve as the first to fourth calculation processing units 11, 12, 13, and 14.
  • the pitch angle obtained by rotating the mobile terminal 1 around the X axis has been described as an example of the inclination angle ex.
  • the present invention is not limited to this, and the pitch angle is around the y axis.
  • a rotated roll angle may also be used.
  • rotating around the z-axis it may be the case of rotating around the other X-axis or y-axis, or the case of rotating around the three axes simultaneously.
  • FIG. 1 A plan view showing two-dimensionally the relationship between a mobile terminal equipped with a three-axis electronic compass as an azimuth measuring device and the azimuth angle.
  • FIG. 2 Block diagram showing the configuration of a 3-axis electronic compass.
  • FIG. 4A A side view of a mobile terminal that two-dimensionally shows a state where the pitch angle ⁇ is tilted around the x-axis.
  • FIG. 4B Bottom view of mobile terminal showing two-dimensionally tilted by a pitch angle ⁇ around the y-axis
  • is the magnetic data ⁇ and the magnetic data X Lissajous waveform formed by
  • C is Lissajous waveform formed by magnetic data ⁇ and magnetic data ⁇ ,
  • is the magnetic data ⁇ and the magnetic data X
  • c is Lissajous waveform formed by magnetic data Y and magnetic data z,
  • FIG. 11 A diagram for explaining how to calculate the gain using the drawing method.
  • FIG. 12 Diagram showing Lissajous waveform and explaining the second method for obtaining gain, explanation of symbols

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Measuring Magnetic Variables (AREA)
  • Navigation (AREA)

Description

明 細 書
傾斜センサおよびこれを用いた方位計測装置
技術分野
[0001] 本発明は、 3軸型の磁気センサを利用した傾斜センサおよびこれを用いた方位計 測装置に関する。
背景技術
[0002] 地平面に対してコンパス自体が傾斜姿勢に設定されたときの傾斜角度 (地平面に 対する姿勢角度)に起因して発生する誤差を考慮して、方位角の検出を行う方法が 記載された先行技術としては、例えば以下に示すような特許文献 1などが存在して 、 る。
[0003] 特許文献 1に記載されたものでは、基板と平行な平面に規定される磁気ベクトルの 2軸成分を検出する磁気センサ 100と、磁気ベクトルの基板とは垂直な方向の成分を 検出するホール素子 24と、基板の傾斜角度を検出する傾斜センサ 22とが一体に構 成されており、前記傾斜センサ 22が検出した基板の傾斜角度(ロール角やピッチ角) を基づき、前記磁気センサ 100から検出される磁気ベクトルの 2軸成分、およびホー ル素子 24から検出される垂直成分を補正することにより、適正な方位角の検出を行う というものである。
特許文献 1 :特開 2002— 196055号公報
発明の開示
発明が解決しょうとする課題
[0004] しかし、上記特許文献 1に記載されたものは、地球磁極方位を算出するための 3軸 磁気センサに加えて傾斜補正を行うための傾斜センサを必要とする構成である。この ため、コンパス自体を大規模化'重量化させる要因となり、結果として前記コンパスを 搭載する携帯機器等の小型化'軽量ィ匕の妨げになるという問題がある。
[0005] 本発明は上記従来の課題を解決するためのものであり、磁気センサが取得した磁 気データから傾斜角を求めることを可能とした傾斜センサを提供することを目的として いる。 [0006] また本発明は、専用の傾斜センサを用いることなく方位角を検出することができる方 位計測装置を提供することを目的として ヽる。
課題を解決するための手段
[0007] 本発明は、互いに直交する 3軸方向の磁気成分を検出する磁気センサと、前記磁 気センサの出力を取得して演算する演算手段とを備えた傾斜センサであって、 前記演算手段は、少なくとも前記 3軸方向の磁気成分を換算して 3つの磁気データ を生成する第 1の演算処理部と、前記磁気データ力 所定のアクセスコードを算出す る第 2の演算処理部と、傾斜角に関する複数のデータが記憶されたメモリ部と、前記 各部の動作を制御する制御部とを有しており、
前記制御部が、前記メモリ部にアクセスしたときに、前記アクセスコードに対応する 傾斜角を呼び出すようにしたことを特徴とするものである。
[0008] 例えば、前記第 2の演算処理部は、前記磁気センサを任意の 1軸回りに回転させた ときに、残りの 2軸に関する磁気データ力 楕円状のリサージュ波形を生成するととも に前記楕円の長径または短径の長さ寸法を算出し、前記長径または短径のうち前記 回転とともに変化する一方の長さ寸法を前記アクセスコードとすることを特徴とするも のである。
[0009] または前記第 2の演算処理部は、前記磁気センサを任意の 1軸回りに回転させたと きに、残りの 2軸に関する磁気データ力 楕円状のリサージュ波形を生成するとともに 前記楕円の長径または短径の長さ寸法を算出し、前記長径の長さ寸法と前記短径 の長さ寸法との比を前記アクセスコードとすることを特徴とするものである。
[0010] 上記において、前記 1軸回りの回転が 1回転以上であることが好ましい。
ただし、前記 1軸回りの回転が 1回転以内であるときには、既知の値として前記メモ リ部に記憶されている楕円の長径の長さ寸法と前記楕円上の任意と一点として入力 される磁気データとから求めた前記楕円の短径の長さ寸法、または前記長径の長さ 寸法と前記短径の長さ寸法との比のいずれか一方を前記アクセスコードとすることが 可能である。
[0011] また本発明の方位計測装置は、前記 3軸方向の磁気成分を換算した磁気データと 、前記いずれかに記載された傾斜センサが算出した傾斜角とから方位角が算出され ることを特徴とするちのである。
[0012] 上記において、伏角及び偏角取得手段が設けられており、前記伏角及び偏角取得 手段が GPS用の人工衛星力 受信した電波から前記測定位置を割り出すとともに、 前記測定位置に対応する伏角及び偏角に関するデータがメモリ部から呼び出される ものが好ましい。
[0013] あるいは伏角及び偏角取得手段が設けられており、前記伏角及び偏角取得手段 が携帯電話システムの中継局との間における通信力 測定位置を割り出すとともに、 このときの測定位置に対応する前記伏角及び偏角に関するデータカ モリ部力 又 は前記中継局を介して取得されるものが好ましい。
発明の効果
[0014] 本発明では、 3軸型の磁気センサで傾斜センサを構成することができる。このため、 専用の傾斜センサを不要とすることができ、このような 3軸型の磁気センサを搭載した 方位計測装置の小型化および軽量化を図ることが可能となる。
発明を実施するための最良の形態
[0015] 図 1は方位計測装置としての 3軸型電子コンパスを搭載した携帯端末と方位角との 関係を 2次元的に示す平面図、図 2は 3軸型電子コンパスの構成を示すブロック図、 図 3は傾斜補正の原理を 3次元的に説明するための方位解析図、図 4Aは X軸回りに ピッチ角 αだけ傾斜させた状態を 2次元的に示す携帯端末の側面図、図 4Βは y軸 回りにピッチ角 βだけ傾斜させた状態を 2次元的に示す携帯端末の底面図である。
[0016] 図 1は携帯端末 1の代表例として示す携帯電話機である。この携帯端末 1には 3軸 型電子電子コンパス (方位計測装置) 2が搭載されている。図 2に示すように、前記 3 軸型電子コンパス 2は軸方向の磁界の強さを検出する磁気検出手段として機能する 3ケの磁気センサ 3, 4, 5が搭載されている。前記磁気センサ 3, 4, 5は互いに直交 する方向に配置されており、前記図 1に示すように携帯端末 1の幅方向を χ'軸、前記 携帯端末 1の長手方向を y'軸、携帯端末 1の板厚方向を z'軸とすると、前記磁気セ ンサ 3は x'軸方向、前記磁気センサ 4は y'軸方向、前記磁気センサ 5は z'軸方向に それぞれ発生した磁界の強さを検出することが可能とされている。したがって、前記 3 軸型電子コンパス 2では 3ケの磁気センサ 3, 4, 5により x'y' z'直交座標系が形成さ れており、地球の回りに発生する地磁気ベクトル Hを 3軸方向の成分として検出する ことが可能とされている。
[0017] なお、前記磁気検出手段を構成する磁気センサとしては、例えば公知の MR(Magn eto Resistive)センサ、ホール素子、フラックスゲート型磁気センサ(特開平 9—4332 2号および特開平 11 118892号公報参照)、 GIG (Granulau in Gap)素子を用い たセンサなどを用いることができる。
[0018] 図 2に示すように、前記 3軸型電子コンパス 2は演算手段 10が設けられて 、る。前 記演算手段 10は、第 1の演算処理部 11、第 2の演算処理部 12、第 3の演算処理部 13、第 4の演算処理部 14を有している。なお、第 1ないし第 4の演算処理部 11, 12, 13, 14の機能については後述する。
[0019] また 3軸型電子コンパス 2は、前記磁気検出手段、前記演算手段 10および後述す るメモリ部 17など動作を制御する制御部 16が設けられて 、る。
[0020] 以下の説明においては、携帯端末 1の傾き姿勢に応じて変化する前記 x'y' z'直 交座標系の x'軸と y'軸とが地面に対して平行となる水平面 (x'y'平面 (地平面) )を 形成しており、 y軸'が真北を向き且つ前記 x'軸と y軸'の双方に直交する z'軸が鉛 直方向(重力方向)を向いた場合の座標系を xyz直交座標系とする。なお、前記 xyz 直交座標系は固定された基準座標系を形成しており、前記 x'y' z'直交座標系のよう に携帯端末 1の傾き姿勢に応じて変化する座標系とは異なるものである。
[0021] また符号 Hx、 Hy、 Hzは、携帯端末 1に搭載されたの前記 3軸型磁気センサ 3, 4, 5が検知する地磁気ベクトル Hの前記 xyz直交座標系における X軸成分, y軸成分お よび z軸成分の大きさ(磁界の強さ)を意味している。また符号 Hxyは前記地磁気べク トル Hを前記地平面 (xy平面)に投影したときの水平成分を示すとともに、磁北の向き を示している(図 1参照)。また Hyzは前記地磁気ベクトル Hを垂直な yz平面に投影し たときの成分を示している(図 4A参照)。
[0022] 図 1および図 3に示す方位角 Θは、基準とする y'軸と磁北 (地磁気ベクトル Hの水 平成分 Hxy)とが成す角である。また方位角 Θ 'は、基準とする y'軸と真北とが成す 角であり、本発明の 3軸型電子コンパスが最終的に求めようとする角度である。
[0023] さらに図 4Aに示す符号 αは、携帯端末 1を χ'軸 (χ軸)回りに回転させたときに前記 y軸 (または地平面 (xy平面) )と回転後の y'軸 (または x y '平面)とが成す傾斜角( 以下ピッチ角という。)を意味する。また図 4Bに示す符号 は携帯端末 1を y'軸 (y軸 )回りに回転させたときに前記 X軸 (または地平面 (xy平面) )と回転後の x'軸 (または x' y'平面)とが成す傾斜角(以下ロール角という。)を意味している。
[0024] ここで、図 3に示す符号 7?は前記地平面 (xy平面)と前記地平面を突っ切る地磁気 ベクトル Hとが成す角であり、伏角(下向きをプラスとする)を意味している。ただし、前 記伏角 r?は場所によって異なる値であり、北半球では緯度が高くなるほど大きな値と なる傾向がある。
[0025] 伏角 7?の値は、地球上の地点 (緯度および経度)ごとに決まった値であり、例えば 東京の場合には r? =49° である。また偏角(磁北と真北の角度差) Dも測定地点ごと に異なる値であり、日本の正確な偏角のデータは国土地理院が所有しており、その データは 3ヶ月に一度更新されている。
[0026] このため、本発明の傾斜センサでは必須の要件ではないが、 3軸型電子電子コン パス 2としては図 2に示すような伏角及び偏角取得手段 20を有する構成とするものが 好ましい。この場合には各地点ごとに対応する伏角 r?や偏角 Dをデータ化してメモリ 部 17に記憶させておくことが可能となる。
[0027] 例えば、携帯端末 1〖こ設けられた GPS (汎地球測位システム)を構築する人工衛星 を介して現在の測定位置を入手し、これに対応する前記伏角 ηや偏角 Dを前記メモ リ部 17から呼び出したりデータを更新したりすることが可能である。あるいは前記携帯 端末 1が携帯電話機の場合には、通話やメールの際に接続される中継局の位置から 携帯電話機が使用されている地域 (現在の測定地点)を割り出すことにより、前記同 様に前記メモリ部 17から前記伏角 7?や偏角 Dに関するデータを呼び出したり、あるい は前記中継局を介して前記伏角 ηや偏角 Dに関するデータを外部から直接入手し たりすることが可能である。
[0028] 特に、前記伏角 7?が判明している場合には、水平方向の 2つのセンサ (X軸センサ と Υ軸センサ)と前記伏角 7?とから、 Ζ軸方向の磁気成分を算出することができるため 、 Ζ軸センサを不要にすることができるという利点がある。
[0029] 以下、本発明である傾斜センサ及びこれを用いた方位計測装置の動作にっ 、て説 明する。
[0030] まず、最も簡単な場合、すなわち xyz直交座標系の中心に携帯端末 1が置かれ、且 つ前記ピッチ角 exとロール角 βが共に α = j8 =0° の場合における磁北に対する方 位角 Θの検出方法について説明する。なお、ピッチ角 αおよびロール角 βは共に 0 ° のときには、 xyz直交座標系と x' y' z'直交座標系とは一致する状態にある。
[0031] このとき、前記電子コンノスが検出した地磁気ベクトル Hの x' y' z,直交座標系の各 成分は xyz直交座標系の各成分と同じであるから、この場合の地磁気ベクトル Hの各 成分をそれぞれ Hx、 Hy、 Hzとすると、前記各成分 Hx、 Hy、 Hzは方位角 Qと伏角 r?を用いることにより、以下の数 1のように表すことができる。
[0032] [数 1]
Figure imgf000008_0002
[0033] 前記方位角 Θは、図 1および図 3に示すように y'軸 (この場合は y軸と一致する)と 地磁気ベクトルの水平成分 Hxyとの成す角であるから、以下の数 2として表すことが できる。
[0034] [数 2]
Figure imgf000008_0001
[0035] 次に、図 4Aに示すように、携帯端末 1にピッチ角 aが発生した場合 (なお、ロール 角 j8 =0° とする)の方位角 Θの算出方法について説明する。
[0036] 前記携帯端末 1 (電子コンパス 2)を X軸回りに回転させたときに前記 x' y' z'直交座 標系において検出される地磁気ベクトル (磁気センサ 3, 4, 5が検知した地磁気べク トル) Hの各成分を Ηχ' , Hy' , Hz'を所定の換算係数 k (≠0)を用いて電圧量に換 算した値を磁気データ X( = k'Hx' ), Y ( = k-Hy' ) , Z ( = k'Hz' )とする。また前記 地磁気ベクトル Hを前記 xyz直交座標系で表したときの成分を Hx, Hy, Hzとすると 、前記磁気データ X, Υ, Zと前記成分 Hx, Hy, Hzとの関係は x軸回りの行列変換 式を用いることにより、以下の数 3で表すことができる。なお、前記地磁気ベクトル Hの 成分 Hx' , Hy' , Hz'から磁気データ X, Υ, Zへの換算は前記第 1の演算処理部 11 が行う。
[0037] [数 3]
Figure imgf000009_0003
Figure imgf000009_0001
Figure imgf000009_0004
[0038] 因みに、ピッチ角ひ =0° (ロール角 /3ち β = 0。 とする)の場合には、数 3にひ =0 ° を代入することによって以下の数 4が成立する。これは xyz直交座標系と x'y' z'直 交座標系とが完全に一致して 、ることを意味して 、る。
[0039] [数 4]
Figure imgf000009_0005
[0040] 携帯端末 1にピッチ角 αが発生した場合の方位角 Θは、前記数 2と数 3とから以下 の数 5として表すことができる。
[0041] [数 5]
Figure imgf000009_0002
上記数 5より、方位角 Θを求めるにはピッチ角 αを知る必要があることがわかる。同 時に、方位角 Θを求めるに際しては、伏角 7?および偏角 Dは不要であることもわ力る 図 4Αに示すように、前記ピッチ角 αは水平面 (xy平面)に対する携帯端末 1 (x'y' 平面)の傾斜角であるため、傾斜センサを用いて前記携帯端末 1 (x'y'平面)の傾き 角度を求めることにより、前記方位角 Θを求めることが可能である。 [0044] しかし、本願発明のように専用の傾斜センサを有しない構成の場合には、以下に説 明する手法を用いることにより前記ピッチ角 OCを求めることが可能である。
[0045] 図 5ないし図 8に示す Aは携帯端末 1を z軸回りに 1回転(360° )させた場合におけ る回転角度 Θ zとこのとき検出される磁気データ X, Υ, Zとの関係を示すグラフ、 Bは 磁気データ Yを横軸にとり且つ磁気データ Xを縦軸にとることにより形成されるリサ一 ジュ波形、 Cは磁気データ Yを横軸にとり且つ磁気データ Zを縦軸にとることにより形 成されるリサージュ波形を示している。また図 5はピッチ角(傾斜角) a =0° の場合、 図 6はピッチ角(傾斜角) α = 15° の場合、図 5はピッチ角(傾斜角) a =45° の場 合、図 5はピッチ角(傾斜角) a = 60° の場合をそれぞれ示している。なお、ピッチ角 αは X軸回りの傾斜角度である(図 4A参照)。また図 9はピッチ角 αとゲイン Gx, Gzと の関係を示すグラフ、図 10はピッチ角 αと比 GxZGy, GzZGyとの関係を示すダラ フである。
[0046] 図 5に示すように、ピッチ角《=0° の場合には、携帯端末 1を z軸回りに 1回転(36 0° )させたときに、検出される複数の磁気データ Z (磁気センサ 5が検知した z'軸方 向の地磁気ベクトル成分 Hz,の換算値)は一定値を示すが、磁気データ X (磁気セン サ 3が検知した x'軸方向の地磁気ベクトル成分 Hx'の換算値)は余弦波状を示し、 磁気データ Y (磁気センサ 4が検知した y'軸方向の地磁気ベクトル成分 Hy,の換算 値)は正弦波状を示す。このため、図 5Bに示すように、複数の前記磁気データ Xと磁 気データ Yから形成されるリサージュ波形 E1は円形になる。また図 5Cに示すように、 複数の前記磁気データ Yと磁気データ Zから形成されるリサージュ波形 E2は Z=m ( mは 0以外の任意の定数)の直線となる。
[0047] 次に、図 6Aに示すように、前記ピッチ角 aが α = 15° となるように携帯端末 1を傾 けた状態で ζ軸回りに 1回転(360° )させにすると、このとき検出される複数の磁気デ ータ Ζは余弦波を示すようになり、磁気データ Xは余弦波状に変化するものの前記図 5Αに比較してその振幅が小さくなることがわかる。なお、前記磁気データ Υはピッチ 角 a =0° のときと同じ状態の正弦波である。この結果、図 6Bに示すように、複数の 前記磁気データ Yと磁気データ Xから形成されるリサージュ波形 E1は縦軸方向に少 し押し潰した格好の楕円に変形させられる。一方、図 6Cに示すように、複数の前記 磁気データ Yと磁気データ Xから形成されるリサージュ波形 E2は縦方向に短径を有 し、横方向に長径を有する楕円に変形させられる。
[0048] 図 7Α,図 8Αに示すように、以下同様に前記携帯端末 1のピッチ角 αを α = 45° 、 60° と徐々に大きくすると、磁気データ Xの振幅が減少させられる代わりに、前記 磁気データ Ζの振幅が増大させられて行くことがわかる。また前記磁気データ Υはピ ツチ角 α = 0° 、 15° のときと変わらず、ほぼ一定の振幅の正弦波を維持することが ゎカゝる。
[0049] この結果、図 5Β、図 6Β、図 7Βおよび図 8Βに示すように、前記ピッチ角 αが増大し ていくと、横軸が示す磁気データ Υの大きさは変わらないものの縦軸が示す磁気デ ータ Xが徐々に小さくなつていくため、複数の磁気データ Υと磁気データ Xとから形成 されるリサージュ波形 E 1は円形の状態力ゝら徐々に縦方向に押し潰された楕円に変 形させられて行くことがわかる。
[0050] 同時に、図 5C、図 6C、図 7Cおよび図 8Cに示すように、前記ピッチ角 aが増大し ていくと、横軸が示す磁気データ Yの大きさは変わらないが、縦軸が示す磁気データ Zは徐々に大きくなるため、複数の磁気データ Yと磁気データ Zとから形成されるリサ ージュ波形 E2は、直線の状態力も徐々に円形に近づき、さらには縦長状の楕円に 変形させられることがわかる。
[0051] そこで、前記第 2の演算処理部 12は、前記第 1の演算処理部 1 1から与えられる回 転角度 0 z = 0° のときの磁気データ Xの値、すなわち磁気データ Xの最大電圧値で あり前記楕円の短軸 (縦軸)の長さ寸法 (短径)を算出しこれを Xゲイン Gxとする演算 と、同様に回転角度 θ z = 0° のときの磁気データ Zの値、すなわち磁気データ Zの 最大電圧値であり前記楕円の長軸 (横軸)の長さ寸法 (長径)を算出しこれを Zゲイン Gzとする演算を行う。なお、円は楕円の短径と長径の長さ寸法が等しい特殊な場合 であり、前記楕円の概念に含まれる。
[0052] ここで、前記ピッチ角 αと前記磁気データ Xの Xゲイン Gx、および前記ピッチ角 αと 前記磁気データ Ζの Ζゲイン Gzとは図 9に示すような相関関係(一対一の関係)を有 する。このため、前記図 9に示す前記磁気データ Xの Xゲイン Gxとピッチ角 αとの相 関関係、および前記磁気データ Ζの Ζゲイン Gzとピッチ角 αとの相関関係をテーブル 化して前記メモリ部 17に記録しておくことが可能である。
[0053] そして、制御部 16は、前記携帯端末 1を z軸回り 1回転させたときに、前記第 2の演 算処理部 12が算出した前記 Xゲイン Gxまたは Zゲイン Gzを取得すると、図 9に示す ように前記 Xゲイン Gxからアクセスコード χθまたは Zゲイン Gzからアクセスコード ζθを 生成するとともに、前記アクセスコード χθまたは ζθを用 Vヽて前記メモリ部 17にアクセス し、前記メモリ部 17に記憶されている複数のピッチ角 αの中力も前記アクセスコード X 0または ζθに対応するピッチ角《0を呼び出し、これを第 3の演算処理部 13に出力す る。
[0054] そして、第 3の演算処理部 13は、前記ピッチ角 a 0と磁気データ Xを上記数 5に代 入することにより、携帯端末 1の方位角 Θを算出する。さらに第 4の演算処理部 14が 、このようにして求めた方位角力 その測定地点における偏角 Dを差し引くことにより 、真北に対する方位角 Θ 'を求める。
[0055] 上記のように、本願発明では 3ケの磁気センサ 3, 4, 5を用いて磁気データ X, Υ, Z を演算してメモリ部 17にあら力じめ記憶されているピッチ角 α 0を呼び出す構成とし たため、専用の傾斜センサを不要とすることができる。すなわち、前記磁気データ X, Υ, Ζを検出する磁気センサ 3, 4, 5、第 1の演算処理部 11、第 2の演算処理部 12、 制御部 16およびメモリ部 17はピッチ角(傾斜角) αを求める傾斜センサとして機能し ている。
[0056] またピッチ角 aを求める他の方法として、以下に示すような手法を用いるようにして ちょい。
[0057] この手法では回転角度 0 z = 90° または 270° のときの磁気データ Yの値、すな わち図 5ないし図 8に示すように磁気データ Yが最大電圧値のときにおける前記楕円 の長径または短径を形成する横軸方向の長さ寸法を算出しこれを Yゲイン Gyとして 、この Yゲイン Gyと上記 Xゲイン Gxとの比(長径と短径との比) GxZGy、または前記 Yゲイン Gyと上記 Zゲイン Gzとの比(長径と短径との比) Gz/Gyを求める。
[0058] ここで、前記ピッチ角 exと前記比 GxZGy、および前記ピッチ角 ocと前記比 GzZG yとの間には、図 10に示すような所定の相関関係(一対一の関係)を有することが確 認されている。このため、前記図 10に示す前記ピッチ角 αと比 GxZGyとの相関関 係、または前記ピッチ角 αと比 GzZGyとの相関関係をテーブルィ匕して前記メモリ部 17に記録しておくことが可能である。
[0059] そして、制御部 16は、前記携帯端末 1を z軸回り回転させたときに、前記第 2の演算 処理部 12が算出した前記比 GxZGyまたは比 GzZGyからこれに対応するアクセス コードを生成するとともに、前記アクセスコードを用 、て前記メモリ部 17にアクセスす ることにより、上記同様に前記メモリ部 17から前記アクセスコードに対応するピッチ角 α θを求めることができる。そして、このようにして求められたピッチ角 α θは、上記同 様に第 3の演算処理部 13に出力される。
[0060] この方法では、楕円の長径と短径との比力もピッチ角 αを求めるようにしたため、例 えば各磁気データ X, Υ, Ζにオフセットが重畳した場合であっても、前記オフセットを キャンセルすることができ、その影響を低く抑えることが可能となるため、上記 Xゲイン Gxまたは Ζゲイン Gzのみ力 ピッチ角 aを求める方法に比較して、精度を高めること が可能である。
[0061] ところで、上記にお!、て Xゲイン Gx、 Yゲイン Gyおよび Zゲイン Gzを高!、精度で求 めるためには、少なくとも携帯端末 1を 1回転(360° )させることが必要である。
[0062] しかし、携帯端末 1で方位検出を行うたびに、操作者に 360° 以上の回転を強いる ことは現実的ではない。また操作者に 1回転させた場合であっても正確な円または楕 円を得ることは期待できない。
[0063] そこで、以下には操作者にこのような煩雑な回転動作を強いることなく前記 Xゲイン
Gx、 Yゲイン Gyおよび Zゲイン Gzを取得することが可能となる方法にっ 、て説明す る。
[0064] 図 11は作図法を用いてゲインを求める第 1の方法を説明するための図である。な お、図 11は図 5Bな 、し図 8B又は図 6Cな 、し図 8Cに相当するリサージュ波形 (楕 円)である。
[0065] 図 11に示す楕円は、横軸側の AB= 2aの長軸と、縦軸側の CD = 2bの短軸を有し ている。ここで、前記 Yゲイン Gyは横軸側の長軸 ABの半分の長さ寸法 aに相当し、 前記 Xゲイン Gxまたは Zゲイン Gzは縦軸側の短軸 CDの半分の長さ寸法 bに相当す る。 [0066] 上記図 5Bないし図 8B又は図 5Cないし図 8Cに示すように、前記磁気データ Yの Y ゲイン Gyは横軸側の長さ寸法 aであり、これは常に一定の値をとる既知の値である。 よって、あら力じめ Yゲイン Gy (長さ寸法 a)は前記メモリ部 17に記憶しておくことが可 能である。このとき、前記磁気センサ 3, 4, 5からこの楕円上の一点 Pを通る磁気デー タ X, Y, Zが検出されたとする。
[0067] この状態力 楕円の短径を求めるには、まず既知の値である長さ寸法 aの 2倍に相 当する長軸 AB ( = 2a)を引く。次に、前記長軸 ABの垂直二等分線 CDを引く。次に 、前記一点 Pを中心に ABZ2 = aの長さ寸法力もなる円弧を形成し、このとき円弧と 前記垂直二等分線 CDとが交差する点を Qとする。最後に、線分 PQと長軸 ABとの交 点 Rを求める。すると、線分 PRが、楕円の縦軸方向の長さ寸法 (短軸長または短径と もいう) bとなる(PR = b)。
[0068] すなわち、上記の方法では、楕円の横軸側の長さ寸法 (長軸長又は長径ともいう) a と楕円上の一点が判明していれば、楕円の短軸長(短径) bを求めることが可能であり 、つまりは楕円の短軸長(短径)に相当する前記 Zゲイン Gzおよび Yゲイン Gyを求め ることがでさる。
[0069] 上記方法では、携帯端末 1を 1回転させなくとも、すなわち前記一点 Pに相当する磁 気データ X, Υ, Zを取得することにより、容易に Xゲイン Gxおよび Zゲイン Gzを求める ことができる。このため、携帯端末 1をわずかに回転させたときに得られる楕円上の複 数の点を示す各磁気データ X, Y, Zから楕円の短軸長 (短径)の平均値、すなわち X ゲイン Gxおよび Zゲイン Gzの平均値を容易に求めることができる。さらには、既知の Yゲイン Gyと前記 Xゲイン Gxとの比 Gx/Gyの平均値、または前記 Yゲイン Gyと上 記 Zゲイン Gzとの比 GzZGyの平均値を容易に求めることができる。よって、携帯端 末 1を 1回転させなくとも、精度の高いピッチ角(傾斜角) αを求めることが可能となる
[0070] また前記 Xゲイン Gx、 Yゲイン Gyおよび Zゲイン Gzを取得する第 2の方法としては、 以下に説明するような非線形最小二乗法を用いるものであってもよい。図 12はリサ一 ジュ波形を示し、ゲインを求める第 2の方法を説明するための図である。なお、図 12 は図 5Bないし図 8B又は図 6Cないし図 8Cに相当する楕円である。 [0071] この方法では、携帯機器 1を xy平面上で z軸回りに回転させたときに、複数の磁気 データ Yと磁気データ Xとから形成されるリサージュ波形 E1が、円弧状軌跡の一種で ある楕円軌跡になると仮定して行うものである。
[0072] すなわち、以下の数 6に示す楕円方程式の基づく関数 F (X, y)に、例えば磁気デ ータ (X, Y)に対応する座標であるとともに前記リサージュ波形 E1を形成する複数の 座標 PO (x (0) , y (0) )、Pl (x (l) , y(l) )、 P2 (x (2) , y(2) )、…を代入したときに 、関数 F (x, y) =0を満たす係数 a, χθおよび係数 b、 yOについて、楕円による論理 解と実際の磁気データ群 (X, y)の誤差を比較し、結果が収束するまで計算を繰り返 す。
[0073] [数 6]
a2 b2
[0074] ただし、図 12に示すように係数 a、 bの一方が楕円の長径を他方が短径を示し、係 数 xO、yOは楕円の中心座標(中心点)を示している。前記係数 a, χθを求めるときに は前記係数 b, yOを既知の値とし、また前記係数 b, yOを求めるときには前記係数 a, χθを既知の値として行う。
[0075] なお、非線形最小二乗法の解法は、ヤコビアン行列から正規直交行列を形成し、 ガウス 'ニュートン法で前記係数 a, χθまたは前記係数 b, yOを収束させる方法を用い ることが可能である。
[0076] そして、このような方法で求めた中心座標 (xO, yO)と係数 a, bとを用いることにより 、 Xゲイン Gxと Yゲイン Gyとが求められる。また Yゲイン Gy及び Zゲイン Gzについて も、前記同様に複数の磁気データ Yと磁気データ Zとから形成されるリサージュ波形 E 2から求めることできる。
[0077] そして、このようにして求められた Xゲイン Gxと Yゲイン Gyとからこれらの比 GxZGy 、または Yゲイン Gyと Zゲイン Gzとからこれの比 GzZGyを用いることにより、上記同 様に携帯端末 1を 1回転さなくとも、即ちわずかに回転させるだけで精度の高いピッ チ角(傾斜角) αを求めることが可能となる。 [0078] なお、上記実施の形態では、演算手段 10が第 1ないし第 4の演算処理部 11 , 12, 13, 14に分かれて構成されたものを用いて説明した力 本発明はこれに限られるも のではなぐ一の演算手段 10であること、すなわち一つの演算手段 10が第 1ないし 第 4の演算処理部 11 , 12, 13, 14を兼ねる構成でよいことはもちろんである。
[0079] また上記実施の形態では、傾斜角 exの例として携帯端末 1を X軸回りに回転させた ピッチ角を示して説明したが、本発明はこれに限られるものではなぐ y軸回りに回転 させたロール角であってもよい。また z軸回りに回転させた場合について説明したが、 その他の X軸又は y軸回りに回転させた場合、および 3軸周りに同時に回転させた場 合であってもよい。
図面の簡単な説明
[0080] [図 1]方位計測装置としての 3軸型電子コンパスを搭載した携帯端末と方位角との関 係を 2次元的に示す平面図、
[図 2]3軸型電子コンパスの構成を示すブロック図、
[図 3]傾斜補正の原理を 3次元的に説明するための方位解析図、
[図 4A]x軸回りにピッチ角 αだけ傾斜させた状態を 2次元的に示す携帯端末の側面 図、
[図 4B]y軸回りにピッチ角 βだけ傾斜させた状態を 2次元的に示す携帯端末の底面 図、
[図 5]Αはピッチ角 oc = 0° において携帯端末を回転させた場合の回転角度と磁気 データ X, Υ, Ζとの関係を示すグラフであり、 Βは磁気データ Υと磁気データ Xとにより 形成されるリサージュ波形、 Cは磁気データ Υと磁気データ Ζにより形成されるリサ一 ジュ波形、
[図 6]Αはピッチ角 α = 15° において携帯端末を回転させた場合の回転角度と磁気 データ X, Υ, Ζとの関係を示すグラフであり、 Βは磁気データ Υと磁気データ Xとにより 形成されるリサージュ波形、 Cは磁気データ Υと磁気データ Ζにより形成されるリサ一 ジュ波形、
[図 7]Αはピッチ角 oc =45° において携帯端末を回転させた場合の回転角度と磁気 データ X, Υ, Ζとの関係を示すグラフであり、 Βは磁気データ Υと磁気データ Xとにより 形成されるリサージュ波形、 cは磁気データ Yと磁気データ zにより形成されるリサ一 ジュ波形、
[図 8]Aはピッチ角 oc =60° において携帯端末を回転させた場合の回転角度と磁気 データ X, Υ, Zとの関係を示すグラフであり、 Bは磁気データ Yと磁気データ Xとにより 形成されるリサージュ波形、 Cは磁気データ Yと磁気データ Zにより形成されるリサ一 ジュ波形、
[図 9]ピッチ角 αとゲイン Gx, Gzとの関係を示すグラフ、
[図 10]ピッチ角 αと比 GxZGy, GzZGyとの関係を示すグラフ、
[図 11]作図法を用いてゲインを求める方法を説明するための図、
[図 12]リサージュ波形を示し、ゲインを求める第 2の方法を説明するための図、 符号の説明
1 携帯端末 (携帯電話機)
2 3軸型電子コンパス (方位計測装置)
3, 4, 5 磁気センサ (磁気検出手段)
10 演算手段
11 第 1の演算処理部
12 第 2の演算処理部
13 第 3の演算処理部
14 第 4の演算処理部
16 制御部
17 メモリ部
20 伏角及び偏角取得手段
D 偏角
H 地磁気ベクトル
Hxy 地磁気ベクトルの水平成分
Hx 地磁気ベクトル Hの X軸成分
Hy 地磁気ベクトル Hの y軸成分
Hz 地磁気ベクトル Hの z軸成分 Hx' x'軸方向の地磁気ベクトル成分 (測定値)
Hy' y'軸方向の地磁気ベクトル成分 (測定値)
Hz' z'軸方向の地磁気ベクトル成分 (測定値)
χ', y', z' 携帯端末に固定された直交座標系 (x'y'z'直交座標系)
X, y, z 直交座標系(x'y'平面が地平面、 z'軸が鉛直方向となる時の携帯端末に 固定された座標系)
X, Υ, Z 磁気データ(地磁気ベクトル成分 Hx,, Hy', Hz,の換算値)
a 携帯端末のピッチ角 (傾斜角)
«0 ピッチ角 (傾斜角)の算出値
η 伏角
Θ 磁北に対する方位角
Θ ' 真北に対する方位角

Claims

請求の範囲
[1] 互いに直交する 3軸方向の磁気成分を検出する磁気センサと、前記磁気センサの 出力を取得して演算する演算手段とを備えた傾斜センサであって、
前記演算手段は、少なくとも前記 3軸方向の磁気成分を換算して 3つの磁気データ を生成する第 1の演算処理部と、前記磁気データ力 所定のアクセスコードを算出す る第 2の演算処理部と、傾斜角に関する複数のデータが記憶されたメモリ部と、前記 各部の動作を制御する制御部とを有しており、
前記制御部が、前記メモリ部にアクセスしたときに、前記アクセスコードに対応する 傾斜角を呼び出すようにしたことを特徴とする傾斜センサ。
[2] 前記第 2の演算処理部は、前記磁気センサを任意の 1軸回りに回転させたときに、 残りの 2軸に関する磁気データ力 楕円状のリサージュ波形を生成するとともに前記 楕円の長径または短径の長さ寸法を算出し、前記長径または短径のうち前記回転と ともに変化する一方の長さ寸法を前記アクセスコードとすることを特徴とする請求項 1 記載の傾斜センサ。
[3] 前記第 2の演算処理部は、前記磁気センサを任意の 1軸回りに回転させたときに、 残りの 2軸に関する磁気データ力 楕円状のリサージュ波形を生成するとともに前記 楕円の長径または短径の長さ寸法を算出し、前記長径の長さ寸法と前記短径の長さ 寸法との比を前記アクセスコードとすることを特徴とする請求項 1記載の傾斜センサ。
[4] 前記 1軸回りの回転が 1回転以上であることを特徴とする請求項 1ないし 3のいずれ か一項に記載の傾斜センサ。
[5] 前記 1軸回りの回転が 1回転以内であるときには、既知の値として前記メモリ部に記 憶されている楕円の長径の長さ寸法と前記楕円上の任意と一点として入力される磁 気データとから求めた前記楕円の短径の長さ寸法、または前記長径の長さ寸法と前 記短径の長さ寸法との比のいずれか一方を前記アクセスコードとすることを特徴とす る請求項 2または 3記載の傾斜センサ。
[6] 前記 3軸方向の磁気成分を換算した磁気データと、前記請求項 1ないし 5のいずれ か一項に記載された傾斜センサが算出した傾斜角とから方位角が算出されることを 特徴とする方位計測装置。
[7] 伏角及び偏角取得手段が設けられており、前記伏角及び偏角取得手段が GPS用 の人工衛星力 受信した電波力 前記測定位置を割り出すとともに、前記測定位置 に対応する伏角及び偏角に関するデータ力 Sメモリ部から呼び出される請求項 6記載 の方位計測装置。
[8] 伏角及び偏角取得手段が設けられており、前記伏角及び偏角取得手段が携帯電 話システムの中継局との間における通信力も測定位置を割り出すとともに、このときの 測定位置に対応する前記伏角及び偏角に関するデータがメモリ部から又は前記中 継局を介して取得される請求項 6記載の方位計測装置。
PCT/JP2006/307642 2005-04-25 2006-04-11 傾斜センサおよびこれを用いた方位計測装置 WO2006115041A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP06731589A EP1876417A4 (en) 2005-04-25 2006-04-11 TILT SENSOR AND DIRECTION DETECTION DEVICE THEREWITH

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005126687A JP4252555B2 (ja) 2005-04-25 2005-04-25 傾斜センサおよびこれを用いた方位計測装置
JP2005-126687 2005-04-25

Publications (1)

Publication Number Publication Date
WO2006115041A1 true WO2006115041A1 (ja) 2006-11-02

Family

ID=37214666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/307642 WO2006115041A1 (ja) 2005-04-25 2006-04-11 傾斜センサおよびこれを用いた方位計測装置

Country Status (4)

Country Link
US (1) US7377046B2 (ja)
EP (1) EP1876417A4 (ja)
JP (1) JP4252555B2 (ja)
WO (1) WO2006115041A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2098945A1 (en) * 2006-12-06 2009-09-09 Alps Electric Co., Ltd. Motion-sensing program and electronic compass using the same
CN101819284A (zh) * 2010-05-18 2010-09-01 长安大学 一种利用陀螺仪测定地球极移的方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4904052B2 (ja) * 2005-12-27 2012-03-28 アルプス電気株式会社 磁気方位検出装置
JP5017527B2 (ja) * 2007-03-23 2012-09-05 アイチ・マイクロ・インテリジェント株式会社 電子コンパスシステム
JP5341861B2 (ja) * 2010-10-18 2013-11-13 アルプス電気株式会社 磁界検知装置
US9569002B2 (en) * 2010-12-17 2017-02-14 Blackberry Limited Portable electronic device having a sensor arrangement for gesture recognition
JP5849448B2 (ja) * 2011-06-14 2016-01-27 リコーイメージング株式会社 3軸電子コンパスを用いた方位測定方法および方位測定装置
US8957850B2 (en) * 2012-07-30 2015-02-17 Harris Corporation Hand-held communication devices with finger navigation user interface
KR101246617B1 (ko) * 2012-09-25 2013-03-25 한국지질자원연구원 다기능 클리노미터
US10175043B2 (en) * 2013-05-15 2019-01-08 FLIR Belgium BVBA Toroidal shape recognition for automatic compass calibration systems and methods
CN105378429B (zh) * 2013-05-15 2018-11-30 菲力尔系统公司 自动罗盘校准系统及相应的方法
JP2015141139A (ja) * 2014-01-29 2015-08-03 株式会社ミツトヨ 手動測定装置
DE102014219798A1 (de) * 2014-09-30 2016-03-31 Siemens Aktiengesellschaft Mobiles Endgerät und Verfahren zur Orientierungsbestimmung an einem mobilen Endgerät
TWI729064B (zh) * 2016-01-28 2021-06-01 日商日本鼎意股份有限公司 包括內置有感應器的球的系統、行動終端的程式及經由行動終端監控球的動向之方法
CN106403919B (zh) * 2016-09-26 2018-12-11 西安坤蓝电子技术有限公司 一种电子磁罗盘的动态修正方法
CN107063237A (zh) * 2016-12-14 2017-08-18 歌尔股份有限公司 一种测量物体姿态角的方法和装置
US10983206B2 (en) 2017-11-07 2021-04-20 FLIR Belgium BVBA Low cost high precision GNSS systems and methods
US11280896B2 (en) 2017-06-16 2022-03-22 FLIR Belgium BVBA Doppler GNSS systems and methods
JP6724884B2 (ja) * 2017-11-27 2020-07-15 Tdk株式会社 演算処理装置、角度センサ及びステアリング装置
CN112821905B (zh) * 2020-12-30 2022-01-14 北京航空航天大学杭州创新研究院 一种基于evs的ads-b接收机数字增益补偿系统及其补偿方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03154816A (ja) * 1989-11-13 1991-07-02 Alpine Electron Inc 車両方位演算方法
JP2000356520A (ja) * 1999-06-11 2000-12-26 Tokin Corp 姿勢角検出装置
JP2002196055A (ja) * 2000-10-16 2002-07-10 Ap One System Co Ltd 3軸磁気センサ、全方位磁気センサおよびそれらを用いた方位測定方法
JP2005265414A (ja) * 2004-03-16 2005-09-29 Citizen Watch Co Ltd 電子方位計及び記録媒体
JP2006113019A (ja) * 2004-10-18 2006-04-27 Alps Electric Co Ltd 3軸型電子コンパス及びこれを用いた方位検出方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1314961B1 (en) * 2001-11-22 2009-07-15 Yamaha Corporation Electronic apparatus
JP4151785B2 (ja) * 2003-04-03 2008-09-17 旭化成エレクトロニクス株式会社 方位角計測装置及び方位角計測プログラム、並びに方位角計測方法
US7268544B2 (en) * 2004-10-01 2007-09-11 Alps Electric Co., Ltd. Magnetism detecting device for canceling offset voltage
KR100882051B1 (ko) * 2004-10-07 2009-02-09 야마하 가부시키가이샤 온도 센서 및 온도 센서의 보정 방법
JP4919142B2 (ja) * 2005-10-19 2012-04-18 アイチ・マイクロ・インテリジェント株式会社 磁気コンパス
KR100655937B1 (ko) * 2005-11-25 2006-12-11 삼성전자주식회사 방위각을 산출하는 지자기 센서 및 그 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03154816A (ja) * 1989-11-13 1991-07-02 Alpine Electron Inc 車両方位演算方法
JP2000356520A (ja) * 1999-06-11 2000-12-26 Tokin Corp 姿勢角検出装置
JP2002196055A (ja) * 2000-10-16 2002-07-10 Ap One System Co Ltd 3軸磁気センサ、全方位磁気センサおよびそれらを用いた方位測定方法
JP2005265414A (ja) * 2004-03-16 2005-09-29 Citizen Watch Co Ltd 電子方位計及び記録媒体
JP2006113019A (ja) * 2004-10-18 2006-04-27 Alps Electric Co Ltd 3軸型電子コンパス及びこれを用いた方位検出方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1876417A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2098945A1 (en) * 2006-12-06 2009-09-09 Alps Electric Co., Ltd. Motion-sensing program and electronic compass using the same
EP2098945A4 (en) * 2006-12-06 2012-09-26 Alps Electric Co Ltd MOTION DETECTION PROGRAM AND ELECTRONIC COMPASS THEREFOR
CN101819284A (zh) * 2010-05-18 2010-09-01 长安大学 一种利用陀螺仪测定地球极移的方法

Also Published As

Publication number Publication date
EP1876417A4 (en) 2011-10-19
EP1876417A1 (en) 2008-01-09
US20080052933A1 (en) 2008-03-06
US7377046B2 (en) 2008-05-27
JP2006300880A (ja) 2006-11-02
JP4252555B2 (ja) 2009-04-08

Similar Documents

Publication Publication Date Title
WO2006115041A1 (ja) 傾斜センサおよびこれを用いた方位計測装置
WO2006035505A1 (ja) 磁気センサの制御方法、制御装置、および携帯端末装置
WO2006088057A1 (ja) 方位計測装置
JP2007500350A (ja) 3軸コンパスソリューションのための2軸磁気センサを使用するシステム
JP2006113019A (ja) 3軸型電子コンパス及びこれを用いた方位検出方法
KR20050057011A (ko) 휴대 단말 장치
WO2012111413A1 (ja) 地磁気応用機器
Cho et al. A calibration technique for a two‐axis magnetic compass in telematics devices
KR101210394B1 (ko) 지자기 검지장치
JP5386698B2 (ja) 室内位置検出装置
JP2008241675A (ja) 電子コンパス
JP2005061969A (ja) 方位角計測装置及び方位角計測方法
Markovič et al. Calibration of a solid-state magnetic compass using angular-rate information from low-cost sensors
JPWO2014115848A1 (ja) 回転情報演算方法、回転情報演算プログラム、磁気型ジャイロスコープおよび移動体
JP2007163388A (ja) 方位センサおよび記録媒体
JP5017527B2 (ja) 電子コンパスシステム
JP2006275523A (ja) 電子方位装置および記録媒体
JP2006053081A (ja) 方位角計測装置、および、方位角計測方法
JPH08278137A (ja) 方位出力装置
JP2006337333A (ja) 3軸型電子コンパス及びこれを用いた方位検出方法
CN109716064B (zh) 电子罗盘
KR100674194B1 (ko) 자기 센서의 제어 방법, 제어 장치 및 휴대 단말 장치
JP2002164987A (ja) 携帯端末機器用姿勢角度検出装置の取り付け方法
JP4938496B2 (ja) 方位計測装置及びその方法
KR100655936B1 (ko) 방위각 측정 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11974368

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006731589

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006731589

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11974368

Country of ref document: US