WO2006088057A1 - 方位計測装置 - Google Patents

方位計測装置 Download PDF

Info

Publication number
WO2006088057A1
WO2006088057A1 PCT/JP2006/302647 JP2006302647W WO2006088057A1 WO 2006088057 A1 WO2006088057 A1 WO 2006088057A1 JP 2006302647 W JP2006302647 W JP 2006302647W WO 2006088057 A1 WO2006088057 A1 WO 2006088057A1
Authority
WO
WIPO (PCT)
Prior art keywords
azimuth
magnetic
magnetic data
points
axis
Prior art date
Application number
PCT/JP2006/302647
Other languages
English (en)
French (fr)
Inventor
Yukimitsu Yamada
Original Assignee
Alps Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co., Ltd. filed Critical Alps Electric Co., Ltd.
Publication of WO2006088057A1 publication Critical patent/WO2006088057A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C17/00Compasses; Devices for ascertaining true or magnetic north for navigation or surveying purposes
    • G01C17/38Testing, calibrating, or compensating of compasses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C17/00Compasses; Devices for ascertaining true or magnetic north for navigation or surveying purposes
    • G01C17/02Magnetic compasses

Definitions

  • the present invention relates to an azimuth measuring apparatus mounted on a portable terminal or the like, and more particularly to an azimuth measuring apparatus capable of detecting an azimuth angle with high accuracy by a simple calibration.
  • An azimuth measuring device mounted on a cellular phone or the like detects geomagnetism using a three-axis magnetic sensor and calculates an azimuth angle at a measurement point.
  • Patent Document 1 exists.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-12416
  • Patent Document 1 the azimuth measuring device is rotated 180 degrees in the same plane, and the output value of the magnetic sensor at the rotation start position is subtracted from the output value of the magnetic sensor at the position rotated 180 degrees. If you ask for an offset!
  • the present invention is for solving the above-described conventional problems, and can perform calibration for suppressing the influence of an internal magnetic field with a simple operation, and can detect an azimuth angle with high accuracy.
  • a simple orientation measuring device For the purpose of providing a simple orientation measuring device!
  • the present invention provides a magnetic detection means capable of detecting geomagnetism generated in a direction along at least two axes orthogonal to each other at the origin, and a circle formed by three or more magnetic data detected by the magnetic detection means.
  • a center point is calculated from an arc or ellipse detection locus, and an offset correction value is calculated for converting the detection locus into a reference locus centered on the origin, and the offset correction value is calculated from magnetic data.
  • An azimuth calculating means for calculating a corrected direction angle after removal and a control means for controlling the operation of each means are provided.
  • the offset compensation values xg and yg for calibration can be obtained by a simple method of obtaining the intersection of at least two vertical bisectors. And av. Av.
  • the offset compensation values xg and yg can be obtained only by slightly rotating (within 90 °) an electronic device equipped with the bearing measuring device. That is, the electronic machine av. Av.
  • Calibration can be performed with a slight rotation of the instrument, reducing the burden on the operator when measuring the azimuth angle.
  • the magnetic detection means continuously acquires the magnetic data at a predetermined sampling period
  • the correction calculation means continuously calculates the offset correction value
  • the azimuth calculation means Continuously calculates the corrected azimuth angle.
  • the magnetic detection unit continuously acquires the magnetic data at a predetermined sampling period, and when the magnetic data changes, the correction calculation unit calculates an offset correction value.
  • the azimuth calculation means calculates the corrected azimuth angle.
  • the correction calculation means is different from the first perpendicular bisector for a straight line connecting any two points of the three or more points of magnetic data and the two arbitrary points.
  • a large number of arbitrary two points are extracted from a plurality of magnetic data, a large number of vertical bisectors are set for each straight line connecting the two points, and the large number of vertical bisectors are set. It is preferable that the average coordinate of the center point is obtained by averaging the coordinates of a plurality of intersection points where the cross points intersect.
  • the average of the offset compensation values of the X-axis component of the distance between the center point and the origin is xg, y
  • the average offset compensation value of the axis component is yg
  • the calculation of the orientation angle ⁇ in the azimuth calculation means can be performed by the following equation (4).
  • Fig. 1 is a two-dimensional plan view showing the relationship between an azimuth angle and an electronic device equipped with an azimuth measuring device (three-axis electronic compass).
  • Fig. 2 is a block diagram showing the configuration of the azimuth measuring device.
  • Fig. 3 is an azimuth analysis diagram for explaining the principle of tilt correction three-dimensionally.
  • Fig. 4 is a side view of an electronic device two-dimensionally showing a state tilted by a pitch angle around the X axis.
  • Fig. 5 is y.
  • FIG. 3 is a bottom view of an electronic device that two-dimensionally shows a state rotated by a roll angle ⁇ around an axis.
  • FIG. 1 is a mobile phone shown as a representative example of the electronic device 1. This electronic device 1 is equipped with a bearing measuring device 2.
  • the azimuth measuring device 2 includes a magnetic detection means 3, a correction calculation means 9, an azimuth calculation means 10 and a control means 11.
  • the magnetic detection means 3 has three magnetic sensors 4a, 4b, 4c, a switching means 6, an amplification means 7, and an AZD conversion means 8.
  • the magnetic sensors 4a, 4b, 4c are arranged in directions orthogonal to each other, the width direction of the electronic device 1 is the x ′ axis, the longitudinal direction of the electronic device 1 is the y ′ axis, and the plate thickness of the electronic device 1 is Assuming that the direction is the z ′ axis, the magnetic sensor 4a is the x ′ axis direction, the magnetic sensor 4b is the y ′ axis direction, and the magnetic sensor 4c is the strength of the magnetic field (geomagnetic field) generated in the z ′ axis direction.
  • the x'y'z 'orthogonal coordinate system is formed by the three magnetic sensors 4a, 4b, 4c, and the three-axis direction component of the geomagnetic vector H generated around the earth is always obtained. Measure and measure.
  • Each output of the magnetic sensors 4a, 4b, 4c is connected to the switching means 6.
  • the control means 11 drives the switching means 6 in order to switch the outputs (analog quantities) of the magnetic sensors 4a, 4b, 4c in order and guide them to the amplifying means 7.
  • the amplifying means 7 amplifies the outputs of the magnetic sensors 4a, 4b, 4c with a predetermined gain, and outputs them to the AZD converting means 8 provided at the subsequent stage.
  • the AZD conversion means 8 generates magnetic data X, Y, and Z by converting the amplified outputs of the magnetic sensors 4a, 4b, and 4c into digital signals at a predetermined sampling frequency.
  • the magnetic sensors 4a, 4b, 4c constituting the magnetic detection means include, for example, an MR (Magno Resistive) sensor, a GIG (Granular in Gap) sensor, a Honoré element, a flux gate type magnetic sensor (special Kaihei 9-43322 and JP-A-11-118892) can be used.
  • a horizontal plane in which the x ′ axis and the y ′ axis of the x ′ y ′ z ′ orthogonal coordinate system that changes according to the attitude of the electronic device 1 are parallel to the ground (x 'y' plane (ground plane)), and the y-axis is oriented to true north, and the z 'axis, which is perpendicular to both the x'-axis and y-axis', is oriented in the vertical direction (gravity direction).
  • This is the xyz Cartesian coordinate system standard.
  • the symbols Hx, Hy, and Hz indicate the magnitudes of the X-axis component, y-axis component, and z-axis component of the geomagnetic vector H detected by the three-axis magnetic sensor mounted on the electronic device 1 (the magnetic field Strength).
  • the symbol H ′ indicates the horizontal component when the geomagnetic vector H is projected onto the ground plane (xy plane) and the direction of magnetic north.
  • the azimuth angle ⁇ shown in FIGS. 1 and 3 is an angle formed by the reference y ′ axis and magnetic north (the horizontal component ′ ′) of the geomagnetic vector.
  • the azimuth angle ⁇ ′ is an angle formed by the reference y ′ axis and true north, and is the angle that the azimuth measuring device of the present invention finally seeks.
  • the sign shown in FIG. 4 indicates that when the electronic device 1 is rotated about the x ′ axis (X axis), the y axis (or the ground plane (xy plane)) and the y after rotation. It means the posture angle (hereinafter referred to as the pitch angle) formed by the 'axis (or x' y 'plane).
  • reference numeral j8 shown in FIG. 5 indicates the X axis (or the ground plane (xy plane)) and the rotated x 'axis (or x') when the electronic device is rotated around the l ⁇ y 'axis (y axis). This means the posture angle (hereinafter referred to as roll angle) formed by y'plane.
  • reference numeral 7? Shown in FIG. 3 is an angle formed by the ground plane (xy plane) and the geomagnetic vector H that cuts through the ground plane, and means a depression angle (downward is a plus). .
  • the above-mentioned dip angle r? Varies depending on the location, and tends to increase as the latitude increases.
  • the value of the dip angle ⁇ is, for example, stored in the memory means, not shown in the memory means, corresponding to an arbitrary measurement position, and a GPS (Global Positioning System) provided by one electronic device. It is possible to obtain the current measurement position via the constructed satellite and read the dip angle 7? Corresponding to the current measurement position by reading the internal memory means.
  • the electronic device 1 is a mobile phone
  • the area (current measurement position) where the mobile phone is used is determined from the position of the relay station connected during a call or mail, and the relay station is
  • the azimuth measuring device 2 shown in FIG. 2 can obtain data related to the dip angle 7 ?.
  • the dip angle and declination obtaining means 20 for obtaining In the present invention, as shown below, since the data of the dip angle ⁇ is not directly used, the acquisition of the dip angle ⁇ is not necessarily required.
  • each component of the x'y'z 'orthogonal coordinate system of the geomagnetic vector H detected by the azimuth measuring device is the same as each component of the xyz orthogonal coordinate system.
  • the above components Hx, Hy, and Hz can be expressed as the following Equation 5 by using the azimuth angle Q and the dip angle r ?.
  • the azimuth angle ⁇ is an angle formed by the y 'axis (in this case, coincident with the y axis) and the horizontal component H' of the geomagnetic vector. Can be represented as 6.
  • the azimuth angle ⁇ can be obtained from the converted value Hy of the magnetic data Y and the converted value Hz of the magnetic data Z.
  • the electronic device 1 is on any plane, if at least two magnetic data can be acquired from the three magnetic sensors 4a, 4b, 4c, they can be obtained. It is possible to obtain the azimuth angle ⁇ from the converted value of.
  • the electronic device 1 includes components such as magnets and coils that generate magnetic fields, and the three magnetic sensors 4a, 4b, and 4c detect the internal magnetic fields generated by these components. This makes it difficult to obtain the correct azimuth angle ⁇ .
  • FIG. 6 is a diagram for explaining a calibration method as an embodiment of the present invention.
  • the magnetic detection means 3 always detects the magnetic data X, Y, Z at a predetermined sampling period.
  • the magnetic sensors 4a, 4b, 4c constituting the magnetic detection means 3 are not affected by an internal magnetic field such as a magnet or a coil.
  • the horizontal axis represents the converted value of the magnetic data X output through the magnetic sensor 4a.
  • the Lissajous waveform is obtained by using the magnetic data Y output through the magnetic sensor 4b and the converted value as the vertical axis.
  • the electronic device 1 can be calibrated by obtaining the distance L and removing the distance L from the detection locus C2.
  • FIG. 8 is a flowchart for calculating the offset compensation value.
  • the electronic device 1 is installed on a horizontal plane with respect to the xy plane.
  • the switching means 6, the amplification means 7 and the AZD conversion means 8 are driven in the magnetic detection means 3 by the command of the control means 11, and the magnetic data corresponding to the magnetic sensors 4a, 4b and 4c.
  • magnetic data (X, Y) output at a predetermined sampling period is continuously taken into the memory means 12 every predetermined amount of data (for example, every 10 pieces). It is out.
  • the magnetic data (X, Y) may be taken into the memory means 12.
  • the control means 11 When it is determined that the control means 11 has exceeded the quantity power ⁇ (3 or more) of the magnetic data (X, Y) stored in the memory means 12 (ST4), it is shown in ST5 below.
  • the offset compensation value is calculated by such a method. Therefore, the offset compensation value is always calculated when magnetic data is continuously acquired. Is not added, the output offset compensation value is always 0. ) Or when the magnetic data (X, Y) is acquired due to a large change, the offset compensation value is calculated only when there is a large change.
  • the coordinates corresponding to the three magnetic data (X, ⁇ , Z) stored in the memory means 12 are P (x, y), Q (x, y), R (x, y).
  • the correction calculation means 9 is a straight line passing through arbitrary two coordinates P and Q as shown in FIG.
  • the first perpendicular bisector M that intersects the (PQ line) perpendicularly and passes through the point p that bisects the two coordinates P and Q is obtained. Note that the equation of a straight line representing the first perpendicular bisector M on the xy plane coordinate is expressed by the following equation (7).
  • the center point G of the detection locus C2 Coordinates (xg, yg) can be obtained.
  • This point can be derived from the defining power that two perpendicular bisectors of two or more straight lines passing through two points on the circumference intersect at one point, and the intersecting point (intersection point) indicates the center point of the circle.
  • the center angle of the detection trajectory C2 may be 90 ° or less, so it is necessary to rotate the electronic device 1 equipped with the direction measuring device 2 180 ° or more as usual. Because it is V, calibration can be performed easily.
  • control means 11 causes the correction calculation means 9 to repeat the contents of ST5 so as to obtain the coordinates (center coordinates) of a plurality of center points G and average the center points obtained by averaging them. Find the coordinates (xg, yg). At this time, among the average coordinates Gav. Of the center point, the xg Force S Offset compensation value in the X- axis direction, yg becomes the offset compensation value in the y-axis direction av.av.
  • the offset compensation values xg and yg are stored in the memory means 12.
  • the detection trajectory C2 is centered on the origin with no influence of the internal magnetic field.
  • the correction calculation means 9 removes the offset compensation values (xg, yg) stored in the memory means 12 from the magnetic data (X, Y) output from the magnetic detection means 3, and av av.
  • the correction calculation means 9 is the same as the previous av.
  • H x k 1 ′ (X—xg av .), H y ⁇ k 2 ′ (Y—yg J where kl and k2 are arbitrary constants (conversion coefficients).
  • the azimuth calculating means 10 calculates the compensated azimuth angle ⁇ as the azimuth output of the azimuth measuring apparatus 2 by substituting the converted values Hx and Hy into the above formula 6. As described above, it is possible to obtain a highly accurate azimuth angle ⁇ which is not influenced by the internal magnetic field or has little effect.
  • FIG. 7 is a diagram for explaining a calibration method as another embodiment of the present invention.
  • the detection trajectory (Lissajous waveform) E1 formed when the electronic device 1 is rotated about the z-axis on the xy plane is an elliptical trajectory that is a kind of arc-shaped trajectory.
  • a plurality of functions F (x, y) based on the elliptic equation shown in Equation 10 below are coordinates corresponding to the magnetic data (X, Y) and form the detection locus (elliptic locus) E1.
  • the relation that satisfies the function F (x, y) 0 when the coordinates (X, y), (X, y), (X, y)
  • one of the coefficients a and b indicates the major axis of the ellipse and the other indicates the minor axis
  • the coefficients X and y indicate the center coordinates (center point) of the ellipse.
  • the coefficients b, y are known values, and the coefficients a g g are used to determine the coefficients b, y.
  • the nonlinear least squares method uses a method in which an orthonormal matrix is formed from a Jacobian matrix and the coefficients a and X or the coefficients b and y are converged by a Gaussian Newton method.
  • Offset compensation value indicates the offset compensation value in the y-axis direction.
  • Compensation values X and y are stored in the memory means 12.
  • control unit 11 causes the correction calculation unit 9 to repeat these steps, thereby averaging the average coordinates Gav. (Xg, yg) of the center points obtained by averaging these from a plurality of center coordinates (X, y). It is preferable to obtain gg av. Av.
  • the average coordinate Gav. Of the center point is the offset compensation value in the xg force axis direction, and yg is the offset compensation value in the y axis direction and av.av.
  • the offset compensation values xg and yg are recorded in the memory means 12 as described above.
  • the correction calculation means 9 is similar to the above in that the magnetic data (X, Y) force output from the magnetic detection means 3 is the offset compensation value (xg, yg) stored in the memory means 12. av. a
  • the outgoing trajectory El can be converted into an elliptical reference trajectory E0 centered at the origin (0, 0), that is, calibration can be performed.
  • the compensated azimuth angle ⁇ can be calculated as the azimuth output of the azimuth measuring apparatus 2 by using the equations 9 and 6 as described above.
  • the present invention is not limited to this, and the electronic device 1 is rotated around the X axis or the y axis. Even in the case of rotation, calibration can be performed by using the same method as described above, and it is possible to obtain a highly accurate azimuth angle ⁇ that is not affected by the internal magnetic field or has little effect.
  • FIG. 1 A two-dimensional plan view showing the relationship between an azimuth and an electronic device equipped with an azimuth measuring device.
  • FIG. 2 Block diagram showing the configuration of the bearing measuring device
  • FIG. 5 is a bottom view of an electronic device that two-dimensionally shows a state rotated by a roll angle ⁇ around the y axis.
  • FIG. 6 is a diagram for explaining a calibration method as an embodiment of the present invention.
  • FIG. 7 is a diagram for explaining a calibration method as another embodiment of the present invention.
  • FIG. 8 is a flowchart for calculating an offset compensation value.

Abstract

【課題】 簡単な操作で内部磁界の影響を抑えるキャリブレーションを行うことができ、且つ方位角を高精度に検出することが可能な方位計測装置を提供する。 【解決手段】 方位計測装置をわずかに回転させると、磁気検出手段が円弧状の検出軌跡C2上の点として少なくとも3点(P、Q、R)を検出するが、座標P,Qを通るPQ線の垂直二等分線Mと、座標Q,Rを通るQR線の垂直二等分線Nを求めるとともにそれらの交点を検出軌跡C2の中心点Gとして求め、前記中心点Gと原点Oとの距離をLとすると、前記距離Lのx成分をx軸方向のオフセット補償値、y成分をy軸方向のオフセット補償値とすることができる。磁気検出手段が検出した磁気データから各オフセット補償値を成分ごとに除去することにより、キャリブレーションされた磁気データを得ることができ、この磁気データから精度の高い方位角θを求めることが可能となる。

Description

明 細 書
方位計測装置
技術分野
[0001] 本発明は、携帯型端末などに搭載される方位計測装置に係わり、特に簡単なキヤリ ブレーシヨンで高精度に方位角を検出できるようにした方位計測装置に関する。 背景技術
[0002] 携帯電話機などに搭載されて 、る方位計測装置 (電子コンノス)は、 3軸型の磁気 センサを用いて地磁気を検出して測定地点における方位角などの算出を行うもので ある。
[0003] し力しながら、携帯電話機内にはスピーカを始めとして磁場を発生させる電子部品 がー緒に搭載されて 、る。前記のような磁場は前記地磁気に対してノイズやオフセッ トとして作用するため、このような環境下で検知された地磁気力も算出される方位角 には大きな誤差が含まれやす 、と 、う問題がある。
[0004] 上記のような方位計測装置が、地磁気以外の外部磁場に起因するノイズやオフセ ットの影響を少なくするための先行技術としては、例えば以下の特許文献 1などが存 在している。
特許文献 1 :特開 2004— 12416号公報
発明の開示
発明が解決しょうとする課題
[0005] 特許文献 1では、方位計測装置を同一平面内で 180度回転させ、回転開始位置で の磁気センサの出力値と、 180度回転させた位置での磁気センサの出力値とを減算 してオフセットを求めると!、うものである。
[0006] しかし、上記特許文献 1に記載された発明にあってさえもキャリブレーションを確実 に行うためには方位計測装置自体を 180度以上回転させる必要があり、使用上煩雑 であった。
[0007] 特に、回転中に軸振れなどを伴うと、キャリブレーション不能を示すエラーが表示さ れてしまい、何度もキャリブレーション操作をやり直しさせる必要が生じてユーザーに 過度の負担をかけて 、たと 、う問題もある。
[0008] 本発明は上記従来の課題を解決するためのものであり、簡単な操作で内部磁界の 影響を抑えるキャリブレーションを行うことができるとともに、方位角を高精度に検出す ることが可能な方位計測装置を提供することを目的として!/、る。
課題を解決するための手段
[0009] 本発明は、原点で直交する少なくとも 2軸に沿う方向に発生する地磁気の検出が可 能な磁気検出手段と、前記磁気検出手段が検出した 3点以上の磁気データによって 形成される円弧状または楕円状の検出軌跡からその中心点を算出するとともに、この 検出軌跡を前記原点を中心とする基準軌跡に変換するオフセット補正値を算出する 補正演算手段と、磁気データから前記オフセット補正値を除去してから補正後の方 位角を算出する方位演算手段と、前記各手段の動作を制御する制御手段と、を備え たことを特徴とするものである。
[0010] 本発明では、少なくとも 2本の垂直二等分線の交点を求めるという簡単な方法により 、キャリブレーション用のオフセット補償値 xg 及び yg を求めることができる。しかも av. av.
、理論上は方位測定装置を搭載した電子機器をわずかに (90° 以内で)回転させる だけで前記オフセット補償値 xg 及び yg を求めることができる。すなわち、電子機 av. av.
器をわずかに回転させるだけでキャリブレーションを行うことができるため、方位角を 測定する上で操作者にかける負担を軽減することができる。
[0011] 例えば、前記磁気検出手段は、所定のサンプリング周期で継続的に前記磁気デー タを取得しており、前記補正演算手段は継続的に前記オフセット補正値を算出すると ともに、前記方位演算手段が継続的に補正後の方位角を算出するものである。
[0012] あるいは前記磁気検出手段は、所定のサンプリング周期で継続的に前記磁気デー タを取得しており、前記磁気データが変化したときに、前記補正演算手段がオフセッ ト補正値を算出するとともに、方位演算手段が補正後の方位角を算出するものである
[0013] 上記において、前記補正演算手段が、前記 3点以上の磁気データのうち、任意の 2 点間を結ぶ直線に対する第 1の垂直二等分線と、前記任意の 2点とは異なる他の 2 点間を結ぶ直線に対する第 2の垂直二等分線とを求めるとともに、前記第 1の垂直二 等分線と第 2の垂直二等分線との交点を前記基準軌跡の中心点に設定することを特 徴とするものが好ましい。
[0014] さらには、複数の磁気データから任意の 2点を多数抽出し、それぞれの 2点間を結 ぶ直線ごとに垂直二等分線を多数設定するとともに、前記多数の垂直二等分線が交 差する複数の交点の座標を平均化したものを前記中心点の平均座標とするものが好 ましい。
[0015] また前記補正演算手段は、前記検出軌跡を形成する磁気データに対応する座標 を以下の数 3に示す関数 F (x, y)に代入したときに、前記関数 F (x, y) = 0を満たす 係数 a, b, xおよび yを求めるとともに、このとき求めた前記 Xを X軸方向のオフセット g g g 補償値とし、且つ前記 yを y軸方向のオフセット補償値とするものが好ましい。
g
[0016] [数 3]
(x - xg† (y - y, )
a 2 b2
[0017] この場合には、前記中心点と原点との間の距離のうち X軸成分のオフセット補償値 の平均を xg 、 y
av. 軸成分のオフセット補償値の平均を yg
av.とし、かつ前記磁気検出手 段から出力される磁気データを (X, Y)としたときに、前記方位演算手段における方 位角 Θの算出が以下の数 4で行うことができる。
[0018] [数 4]
Figure imgf000005_0001
[0019] ただし、 Hx, Hyは Hx = kl ' (X— xg )、 Hy=k2 ' (Y— yg )であり、 kl , k2は任 av. av.
意の定数である。
発明の効果
[0020] 本発明では、方位計測装置を搭載した電子機器を、 90° 以内でわずかに回転さ せると 、う簡単な操作だけで、内部磁界の影響を受けな 、キャリブレーションを行うこ とができる。よって、操作者に過度の負担をかけることなぐ精度の高い方位角を算出 することがでさるよう〖こなる。
発明を実施するための最良の形態 [0021] 図 1は方位計測装置 (3軸型電子コンパス)を搭載した電子機器と方位角との関係 を 2次元的に示す平面図、図 2は方位計測装置の構成を示すブロック図、図 3は傾斜 補正の原理を 3次元的に説明するための方位解析図、図 4は X軸回りにピッチ角ひだ け傾斜させた状態を 2次元的に示す電子機器の側面図、図 5は y軸回りロール角 β だけ回転させた状態を 2次元的に示す電子機器の底面図である。
[0022] 図 1は電子機器 1の代表例として示す携帯電話機である。この電子機器 1には方位 計測装置 2が搭載されている。
[0023] 図 2に示すように前記方位計測装置 2は、磁気検出手段 3、補正演算手段 9、方位 演算手段 10および制御手段 11を有している。
[0024] 前記磁気検出手段 3は、 3ケの磁気センサ 4a, 4b, 4cと、切換手段 6、増幅手段 7 および AZD変換手段 8を有している。前記磁気センサ 4a, 4b, 4cは互いに直交す る方向に配置されており、前記電子機器 1の幅方向を x'軸、前記電子機器 1の長手 方向を y'軸、電子機器 1の板厚方向を z'軸とすると、前記磁気センサ 4aは x'軸方向 、前記磁気センサ 4bは y'軸方向、前記磁気センサ 4cは z'軸方向にそれぞれ発生し た磁界 (地磁気)の強さをアナログ量として検出する。したがって、前記方位計測装置 2では 3ケの磁気センサ 4a, 4b, 4cにより x'y' z'直交座標系が形成されており、常に 地球の回りに発生する地磁気ベクトル Hの 3軸方向成分を測定して 、る。
[0025] 前記磁気センサ 4a, 4b, 4cの各出力は切換手段 6に接続されている。前記制御手 段 11は、前記切換手段 6を順番に駆動することにより、磁気センサ 4a, 4b, 4cの出 力(アナログ量)を順番に切り換えて前記増幅手段 7に導く。前記増幅手段 7は所定 のゲインで前記磁気センサ 4a, 4b, 4cの各出力をそれぞれ増幅し、その次の後段に 設けられた AZD変換手段 8に出力する。前記 AZD変換手段 8では、前記増幅後 の磁気センサ 4a, 4b, 4cの出力を所定のサンプリング周波数でデジタル信号に変換 することにより、磁気データ X, Y, Zを生成する。
[0026] なお、前記磁気検出手段を構成する磁気センサ 4a, 4b, 4cとしては、例えば MR ( Magneto Resistive)センサ、 GIG (Granular in Gap)センサ、ホーノレ素子、フラックスゲ ート型磁気センサ (特開平 9—43322号および特開平 11― 118892号公報参照)な どを用いることができる。 [0027] 以下の説明においては、電子機器 1の姿勢に応じて変化する前記 x' y' z '直交座 標系の x'軸と y'軸とが地面に対して平行となる水平面 (x' y'平面 (地平面) )を形成 しており、 y軸'が真北を向き且つ前記 x'軸と y軸'の双方に直交する z '軸が鉛直方 向(重力方向)を向いた状態を xyz直交座標系の基準としている。
[0028] また符号 Hx、 Hy、 Hzは、電子機器 1に搭載された前記 3軸型磁気センサが検知し た地磁気ベクトル Hの X軸成分, y軸成分および z軸成分の大きさ(磁界の強さ)を意 味している。また符号 H 'は前記地磁気ベクトル Hを前記地平面 (xy平面)に投影した ときの水平成分を示すとともに、磁北の向きを示している。
[0029] 図 1および図 3に示す方位角 Θは、基準とする y'軸と磁北 (地磁気ベクトルの水平 成分 Η ' )とが成す角である。また方位角 Θ 'は、基準とする y'軸と真北とが成す角で あり、本発明の方位計測装置が最終的に求めようとする角度である。
[0030] さら〖こ図 4〖こ示す符号ひは、電子機器 1を x '軸 (X軸)回りに回転させたときに前記 y 軸 (または地平面 (xy平面) )と回転後の y'軸 (または x' y '平面)とが成す姿勢角(以 下ピッチ角という。)を意味する。また図 5に示す符号 j8は電子機器 l^y'軸 (y軸)回 りに回転させたときに前記 X軸 (または地平面 (xy平面) )と回転後の x'軸 (または x' y '平面)とが成す姿勢角(以下ロール角と 、う。)を意味して 、る。
[0031] ここで、図 3に示す符号 7?は前記地平面 (xy平面)と前記地平面を突っ切る地磁気 ベクトル Hとが成す角であり、伏角(下向きをプラスとする)を意味している。ただし、前 記伏角 r?は場所によって異なる値であり、緯度が高くなるほど大きな値となる傾向が ある。
[0032] 伏角 ηの値は、例えば任意の測定位置に対応する伏角 ηデータを図示しな 、メモ リ手段に記憶させておき、電子機器 1〖こ設けられた GPS (汎地球測位システム)を構 築する人工衛星を介して現在の測定位置を入手するとともに、前記現在の測定位置 に対応する前記伏角 7?を内部の前記メモリ手段力 読み出すことで入手することが 可能である。あるいは前記電子機器 1が携帯電話機の場合には、通話やメールの際 に接続される中継局の位置から携帯電話機が使用されて!ヽる地域 (現在の測定位置 )を割り出し、前記中継局を介して前記伏角 r?に関するデータを外部力 入手するこ とが可能であり、図 2に示す前記方位計測装置 2は前記前記伏角 7?に関するデータ を取得するための伏角及び偏角取得手段 20を有している。なお、本発明において は、以下に示すように伏角 ηのデータを直接用いていないので前記伏角 ηの入手 は必ずしも必要なものではな 、。
[0033] まず、最も簡単な場合、すなわち xyz直交座標系の中心に電子機器 1が置かれ、且 つ前記ピッチ角 aとロール角 /3が共に α = j8 = 0° の場合にける磁北に対する方位 角 Θの検出方法について説明する。なお、ピッチ角 αおよびロール角 βは共に 0° であるから、 xyz直交座標系と X ' y' z '直交座標系とは一致した状態にある。
[0034] このとき、前記方位計測装置が検出した地磁気ベクトル Hの x' y ' z '直交座標系の 各成分は xyz直交座標系の各成分と同じであるから、この場合の地磁気ベクトル Hの 各成分をそれぞれ Hx、 Hy、 Hzとすると、前記各成分 Hx、 Hy、 Hzは方位角 Qと伏 角 r?を用いることにより、以下の数 5のように表わすことができる。
[0035] [数 5]
Figure imgf000008_0001
[0036] 前記方位角 Θは、図 1および図 3に示すように y'軸 (この場合は y軸と一致する)と 地磁気ベクトルの水平成分 H 'との成す角であるから、以下の数 6として表わすことが できる。
[0037] [数 6]
Figure imgf000008_0002
[0038] この式においては伏角 7?は消去されてしまうので、前記伏角 7?を知らなくとも方位 角 Θを求めることは可能である。
[0039] 以上のように、ピッチ角 aとロール角 13が共に α = j8 = 0° の場合、すなわち電子 機器 1を地平面 (xy平面)に対して平行に置いた状態では、前記磁気センサ 4aから 検出された磁気データ Χ (χ '軸方向の磁界の強さ)を地磁気ベクトルに換算した値 H Xと、前記磁気センサ 4bから検出された磁気データ Y (y '軸方向の磁界の強さ)を地 磁気ベクトルに換算した値 Hyとから方位角 Θを求めることが可能である。同様に電 子機器 1を yz平面に対して平行に置 ヽた状態では、磁気データ Yの換算値 Hyおよ び磁気データ Zの換算値 Hzとから方位角 Θを求めることが可能であり、電子機器 1を zx平面に対して平行に置 ヽた状態では、磁気データ Zの換算値 Hxおよび磁気デー タ Xの換算値 Hxとから方位角 Θを求めることが可能である。この点を一般ィ匕すると、 前記電子機器 1がいずれかの平面上にある場合には、前記 3つの磁気センサ 4a, 4b , 4cのうちから少なくとも 2つの磁気データを取得することができれば、それらの換算 値から方位角 Θを求めることが可能である。
[0040] ところで電子機器 1の内部には、磁石やコイルなど磁界を発生させる部品が搭載さ れており、これらの部品が発生した内部磁界を前記 3つの磁気センサ 4a, 4b, 4cが 検出してしまうと、正しい方位角 Θを求めることが困難になる。
[0041] そこで、内部磁界による影響を最小に抑えるためのキャリブレーションが必要となり 、以下にはその方法について説明する。
[0042] 図 6は本発明における実施の形態としてのキャリブレーションの方法を説明するた めの図である。
[0043] 上記ように、前記磁気検出手段 3は、常に所定のサンプリング周期で前記磁気デー タ X, Y, Zの検出を行っている。
[0044] まず、前記磁気検出手段 3を構成する磁気センサ 4a, 4b, 4cが磁石やコイルなど の内部磁界の影響を全く受けない理想的な場合において説明する。このような理想 的な条件下で前記電子機器 1を xy平面上で z軸回りに回転させた場合において、前 記磁気センサ 4aを介して出力される磁気データ Xの換算値を横軸にとり、且つ前記 磁気センサ 4bを介して出力される磁気データ Yと換算値を縦軸にとってリサージュ波 形を求める。すると図 6に一点鎖線で示すような原点 0 (0, 0)を中心とし所定の半径 r (r= (Hx2+Hy2) 1/2)からなる円弧状の基準軌跡 C1を得ることができる。なお、この ときの方位角を示す Θは上記数 6である。
[0045] 次に、内部磁界による影響を受けた状態において、上記同様に電子機器 1を xy平 面上で z軸回りに回転させたときのリサージュ波形を求めてみると、図 6に点線で示す ような円状又は円弧状の検出軌跡 C2となる。
[0046] 前記基準軌跡 C1と検出軌跡 C2とを比較すると、両軌跡 CI, C2の半径はほぼ一 致するものの、検出軌跡 C2の中心は原点 O力も距離 Lだけずれたものであることが わかる。すなわち、前記距離 Lが前記内部磁界に基づいて前記磁気センサ 4a, 4bに 重畳している誤差の大きさを示している。したがって、この距離 Lを求めて前記検出 軌跡 C2から前記距離 Lを除去することにより、電子機器 1のキャリブレーションを行う ことができる。
[0047] そこで、前記検出軌跡 C2の中心座標を求めることが必要となる力 以下において は円弧状の検出軌跡 C2上の任意の 3点の座標を P (x , y )、 Q (x , y )、 R(x , y )
1 1 2 2 3 3 とし、この 3点力も前記検出軌跡 C2の中心点 Gの中心座標 (xg, yg)を求める方法に ついて説明する。なお、図 8はオフセット補償値を算出するためのフローチャートであ る。
[0048] 図 8に示すように、 ST1では電子機器 1を xy面に対し水平面に設置する。このとき、 前記制御手段 11の命令により、前記磁気検出手段 3では前記切換手段 6、増幅手 段 7および AZD変換手段 8が駆動されており、前記磁気センサ 4a, 4b, 4cに対応 する磁気データ (X, Υ, Z)が所定のサンプリング周期で出力されている(ST2)。な お、電子機器 1は xy面に対し水平であるため、 Z = 0として以後の説明においては省 略する。
[0049] この状態において、方位計測装置 2を搭載した電子機器 1に対し Z軸回りの回転が 与えられると(ST3)、磁気データ Zには変化は生じないか又はその変化量が小さい 力 磁気データ Xおよび Yには大きな変化が生じる。
[0050] 前記方位計測装置 2では、所定のサンプリング周期で出力されて来る磁気データ( X, Y)を所定のデータ量ごと (例えば、 10ケごと)に継続的に随時前記メモリ手段 12 に取り込んでいる。あるいは、前記磁気データ (X, Υ, Z)を構成する 2つ以上の要素 に大きな変化が生じたことを検知したとおきに、前記制御手段 11の指令を受けて前 記磁気データ (X, Y)をメモリ手段 12に取り込むようにしてもよい。
[0051] そして、制御手段 11は前記メモリ手段 12に記憶された磁気データ (X, Y)の数量 力^を超えた(3以上)と判断した場合 (ST4)には、以下の ST5に示すような方法でォ フセット補償値を算出する。したがって、磁気データを継続的に取得しているケース では常にオフセット補償値を算出している(ただし、この場合には電子機器 1に回転 が加えられていないため、出力されるオフセット補償値は常に 0である。)か、あるいは 大きな変化に起因して磁気データ (X, Y)を取得するケースでは、大きな変化があつ たときに始めてオフセット補償値が算出されることになる。
[0052] ここで、前記メモリ手段 12に記憶されている 3つの磁気データ (X, Υ, Z)に対応す る座標は P (x , y )、 Q (x , y )、R(x , y )である。
1 1 2 2 3 3
[0053] ST5では、補正演算手段 9が、図 6に示すように任意の 2つの座標 P, Qを通る直線
(PQ線)に垂直に交差するとともに前記 2つの座標 P, Q間を二等分する点 pを通る第 1の垂直二等分線 Mを求める。なお、 xy平面座標上において前記第 1の垂直二等分 線 Mを表す直線の方程式は以下の数 7となる。
[0054] [数 7] x「 2 X y!+ y2
y厂 y2 2 2
[0055] 同様に任意の 2つの座標 Q, Rを通る直線 (QR線)に垂直に交差するとともに、前 記 2つの座標 Q, Rを二等分する点 qを通る第 2の垂直二等分線 Nを以下の数 8に示 す直線の方程式として求める。
[0056] [数 8] 2 3 y2+ y3
2 2
[0057] よって、前記第 1の垂直二等分線 M (数 7)と前記第 2の垂直二等分線 N (数 8)の解 を求めることにより、前記検出軌跡 C2の中心点 Gの座標(xg, yg)を求めることができ る。この点は、円周上の 2点を通る 2以上の直線の各垂直二等分線は一点で交差し、 前記交差する点(交点)は円の中心点を示すという定義力 導き出せる。しかも、中心 点(中心座標)を導出するには、検出軌跡 C2の中心角は 90° 以下でもよいため、従 来のように方位計測装置 2を搭載した電子機器 1を 180° 以上回転させる必要がな V、ため、キャリブレーションを容易に行うことができる。
[0058] 次に、制御手段 11は補正演算手段 9に前記 ST5の内容を繰り返させることにより、 複数の中心点 Gの座標 (中心座標)を求めるとともに、これらを平均化した中心点の平 均座標(xg , yg )を求める。このとき、前記中心点の平均座標 Gav.のうち、前記 xg 力 SX軸方向のオフセット補償値であり、前記 yg が y軸方向のオフセット補償値とな av. av.
る。なお、このオフセット補償値 xg 及び yg は前記メモリ手段 12に記憶される。
av. av.
[0059] そして、円弧状の検出軌跡 C2上の任意の 3点の座標 P (x , y )、 Q (x , y )、 R (x
1 1 2 2 3
, y
3 )からそれぞれ前記 x軸方向のオフセット補償値 xg
av.および前記 y軸方向のオフ セット補償値 yg を除去すると、検出軌跡 C2を内部磁界の影響を無くし原点を中心 av.
とする円弧状の基準軌跡 C1に変換すること、すなわちキャリブレーションすることが できる。
[0060] 次に、方位計測装置 2では、操作者の操作に応じて方位角の測定が行われる。こ のとき、前記補正演算手段 9は磁気検出手段 3から出力される磁気データ (X, Y)か ら、前記メモリ手段 12に記憶されている前記オフセット補償値 (xg , yg )を除去し av. av.
た補償後の磁気データ (X— xg , Y-yg )を求める。さらに補正演算手段 9は、前 av. av.
記補償後の磁気データ (X— xg , Y-yg
av. av. )を地磁気ベクトル Hの成分 Hx, Hyに 以下の数 9のようにして換算する。
[0061] [数 9]
H x = k 1 ' ( X— x g av . )、 H y - k 2 ' ( Y— y g J ただし、 kl, k2は任意の定数 (換算係数)である。
[0062] そして、方位演算手段 10が前記換算値 Hx, Hyを上記数 6に代入することによって 補償後の方位角 Θを方位計測装置 2の方位出力として算出する。以上により、前記 内部磁界の影響のない、または影響の少ない精度の高い方位角 Θを得ることができ る。
[0063] また、その他のキャリブレーション方法としては、非線形最小二乗法と楕円方程式 による手法を用いることちできる。
[0064] 図 7は本発明における他の実施の形態としてのキャリブレーションの方法を説明す るための図である。
[0065] この方法では、電子機器 1を xy平面上で z軸回りに回転させたときの形成される検 出軌跡 (リサージュ波形) E1が、円弧状軌跡の一種である楕円軌跡になると仮定して 行う。 [0066] すなわち、以下の数 10に示す楕円方程式の基づく関数 F (x, y)に、磁気データ (X , Y)に対応する座標であるとともに前記検出軌跡 (楕円軌跡) E1を形成する複数の 座標 (X , y )、(X , y )、(X , y ) · · ·を代入したときに、関数 F (x, y) =0を満たす係
1 1 2 2 3 3
数 a, Xおよび係数 b、 yを求める。
g g
[0067] [数 10]
o b
[0068] ただし、図 7に示すように係数 a、 bの一方が楕円の長径を他方が短径を示し、係数 X、 yは楕円の中心座標(中心点)を示している。なお、前記係数 a, Xを求めるとき g g g
には前記係数 b, yを既知の値とし、また前記係数 b, yを求めるときには前記係数 a g g
, χを既知の値として行う。
g
[0069] なお、非線形最小二乗法の解法は、ヤコビアン行列から正規直交行列を形成し、 ガウス 'ニュートン法で前記係数 a, Xまたは前記係数 b, yを収束させる方法を用い g g
ることが可能である。
[0070] そして、このような方法から求まる中心座標 (X , y )のうち、前記 X力 軸方向のォ g g g
フセット補償値を、前記 yが y軸方向のオフセット補償値を示しており、これらオフセッ g
ト補償値 X及び yは前記メモリ手段 12に記憶される。
g g
[0071] また制御手段 11は、補正演算手段 9にこれらの工程を繰り返させることにより、複数 の中心座標 (X , y )からこれらを平均化した中心点の平均座標 Gav. (xg , yg )を g g av. av. 求めるようにすることが好ましい。このとき、前記中心点の平均座標 Gav.のうち、前記 xg 力 軸方向のオフセット補償値であり、前記 yg が y軸方向のオフセット補償値と av. av.
なる。なお、このオフセット補償値 xg 及び yg は上記同様に前記メモリ手段 12に記 av. av.
憶される。
[0072] よって、前記補正演算手段 9は、上記同様に磁気検出手段 3から出力される磁気デ ータ (X, Y)力 前記メモリ手段 12に記憶されている前記オフセット補償値 (xg , yg av. a
)を除去した補償後の磁気データ (X— xg , Y-yg )を求めることにより、前記検 v. av. av.
出軌跡 Elを原点 (0, 0)を中心とする楕円状の基準軌跡 E0に変換すること、すなわ ちキャリブレーションすることが可能である。 [0073] そして、上記同様に数 9、数 6を用いることにより補償後の方位角 Θを方位計測装 置 2の方位出力として算出することが可能となる。
[0074] なお、上記実施の形態では、電子機器 1を z軸回りに回転させた場合について説明 したが、本発明はこれに限られるものではなぐ電子機器 1を X軸回りまたは y軸回りに 回転させた場合にも上記同様の方法を用いることにより、キャリブレーションすること ができ、内部磁界の影響のない、または影響の少ない精度の高い方位角 Θを得るこ とが可能である。
図面の簡単な説明
[0075] [図 1]方位計測装置を搭載した電子機器と方位角との関係を 2次元的に示す平面図
[図 2]方位計測装置の構成を示すブロック図、
[図 3]傾斜補正の原理を 3次元的に説明するための方位解析図、
[図 4]x軸回りにピッチ角 αだけ傾斜させた状態を 2次元的に示す電子機器の側面図
[図 5]y軸回りロール角 βだけ回転させた状態を 2次元的に示す電子機器の底面図、 [図 6]本発明における実施の形態としてのキャリブレーションの方法を説明するための 図、
[図 7]本発明における他の実施の形態としてのキャリブレーションの方法を説明する ための図、
[図 8]オフセット補償値を算出するためのフローチャート、
符号の説明
[0076] 1 電子機器
2 方位計測装置 (3軸型電子コンパス)
3 磁気検出手段
4a, 4b, 4c 磁気センサ
6 切換手段
7 増幅手段
8 AZD変換手段 9 補正演算手段
10 方位演算手段
11 制御手段
12 メモリ手段
20 伏角及び偏角取得手段
C1 円弧状の基準軌跡
C2 円弧状の検出軌跡
E1 楕円状の基準軌跡
E2 楕円状の検出軌跡
H 地磁気ベクトル
H, 地磁気ベクトルの水平成分
Hx 地磁気ベクトル Hの X軸成分の換算値
Hy 地磁気ベクトル Hの y軸成分の換算値
Hz 地磁気ベクトル Hの z軸成分の換算値
M 第 1の垂直二等分線
N 第 2の垂直二等分線
Χ', y', z' 電子機器に固定された直交座標系(x'y'z'直交座標系)
X, y, z 直交座標系(x'y'平面が地平面、 z'軸が鉛直方向となる時の電子機器に 固定された座標系)
xg , yg オフセット補償値の平均
av. av.
X, Y, Z 磁気データ (磁気センサの出力)
a 電子機器の実際のピッチ角(姿勢角)
β ロール角(姿勢角)
η 伏角
Θ 磁北に対する方位角

Claims

請求の範囲
[1] 原点で直交する少なくとも 2軸に沿う方向に発生する地磁気の検出が可能な磁気 検出手段と、前記磁気検出手段が検出した 3点以上の磁気データによって形成され る円弧状または楕円状の検出軌跡からその中心点を算出するとともに、この検出軌 跡を前記原点を中心とする基準軌跡に変換するオフセット補正値を算出する補正演 算手段と、磁気データ力 前記オフセット補正値を除去して力 補正後の方位角を算 出する方位演算手段と、前記各手段の動作を制御する制御手段と、を備えたことを 特徴とする方位計測装置。
[2] 前記磁気検出手段は、所定のサンプリング周期で継続的に前記磁気データを取得 しており、前記補正演算手段は継続的に前記オフセット補正値を算出するとともに、 前記方位演算手段が継続的に補正後の方位角を算出することを特徴とする請求項 1 記載の方位計測装置。
[3] 前記磁気検出手段は、所定のサンプリング周期で継続的に前記磁気データを取得 しており、前記磁気データが変化したときに、前記補正演算手段がオフセット補正値 を算出するとともに、方位演算手段が補正後の方位角を算出することを特徴とする請 求項 1記載の方位計測装置。
[4] 前記補正演算手段が、前記 3点以上の磁気データのうち、任意の 2点間を結ぶ直 線に対する第 1の垂直二等分線と、前記任意の 2点とは異なる他の 2点間を結ぶ直 線に対する第 2の垂直二等分線とを求めるとともに、前記第 1の垂直二等分線と第 2 の垂直二等分線との交点を前記基準軌跡の中心点に設定することを特徴とする請求 項 1な 、し 3の 、ずれか一項に記載の方位計測装置。
[5] 複数の磁気データから任意の 2点を多数抽出し、それぞれの 2点間を結ぶ直線ごと に垂直二等分線を多数設定するとともに、前記多数の垂直二等分線が交差する複 数の交点の座標を平均化したものを前記中心点の平均座標とすることを特徴とする 請求項 4記載の方位計測装置。
[6] 前記補正演算手段は、前記検出軌跡を形成する磁気データに対応する座標を以 下の数 1に示す関数 F (x, y)に代入したときに、前記関数 F (x, y) =0を満たす係数 a, b, xおよび yを求めるとともに、このとき求めた前記 Xを X軸方向のオフセット補償 値とし、且つ前記 yを y軸方向のオフセット補償値とすることを特徴とする請求項 1な g
V、し 3の 、ずれか一項に記載の方位計測装置。
(x 2
/ , =
Figure imgf000017_0001
前記中心点と原点との間の距離のうち X軸成分のオフセット補償値の平均を xg 、 y av. 軸成分のオフセット補償値の平均を yg
av.とし、かつ前記磁気検出手段から出力される 磁気データを (X, Y)としたときに、前記方位演算手段における方位角 Θの算出が以 下の数 2で行われることを特徴とする請求項 1な 、し 6の 、ずれか一項に記載の方位 計測装置。
Figure imgf000017_0002
ただし、 Hx, Hyは Hx = kl ' (X— xg )、 Hy=k2' (Y— yg )であり、 kl, k2は任 av. av.
意の定数である。
PCT/JP2006/302647 2005-02-17 2006-02-15 方位計測装置 WO2006088057A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-040445 2005-02-17
JP2005040445A JP2006226810A (ja) 2005-02-17 2005-02-17 方位計測装置

Publications (1)

Publication Number Publication Date
WO2006088057A1 true WO2006088057A1 (ja) 2006-08-24

Family

ID=36916461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302647 WO2006088057A1 (ja) 2005-02-17 2006-02-15 方位計測装置

Country Status (2)

Country Link
JP (1) JP2006226810A (ja)
WO (1) WO2006088057A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101806595A (zh) * 2010-04-19 2010-08-18 美新半导体(无锡)有限公司 一种两维电子指南针校准算法
CN102510994A (zh) * 2009-09-26 2012-06-20 阿尔卑斯电气株式会社 地磁检测装置
US8843338B2 (en) 2011-07-29 2014-09-23 Nokia Corporation Processing Data for Calibration

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111445A1 (ja) 2007-03-06 2008-09-18 Alps Electric Co., Ltd. 方位演算プログラム及び電子コンパス
JP4787359B2 (ja) * 2007-05-24 2011-10-05 旭化成エレクトロニクス株式会社 物理量計測装置および物理量計測方法
CN102224394B (zh) * 2008-11-20 2015-04-08 旭化成微电子株式会社 物理量测量装置以及物理量测量方法
WO2010103966A1 (ja) * 2009-03-10 2010-09-16 アルプス電気株式会社 地磁気検知装置
JP5144701B2 (ja) * 2010-03-10 2013-02-13 アルプス電気株式会社 磁界検知装置
WO2014119824A1 (ko) * 2013-01-31 2014-08-07 (주)코어센스 3축 mems 지자기 센서의 방위각 보정장치 및 보정방법
JP5937137B2 (ja) * 2014-05-09 2016-06-22 アルプス電気株式会社 地磁気検出装置
JP6372751B2 (ja) * 2014-09-22 2018-08-15 カシオ計算機株式会社 電子機器及びオフセット値取得方法、オフセット値取得プログラム
JP2018146407A (ja) * 2017-03-06 2018-09-20 株式会社トプコン 建築作業機械における回転部材の回転中心取得方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05215553A (ja) * 1992-02-03 1993-08-24 Nec Home Electron Ltd ナビゲーション装置
JPH0968431A (ja) * 1995-08-31 1997-03-11 Furuno Electric Co Ltd 電子式コンパス
JP2000131068A (ja) * 1998-10-23 2000-05-12 Citizen Watch Co Ltd 電子式方位計およびその補正値算出方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05215553A (ja) * 1992-02-03 1993-08-24 Nec Home Electron Ltd ナビゲーション装置
JPH0968431A (ja) * 1995-08-31 1997-03-11 Furuno Electric Co Ltd 電子式コンパス
JP2000131068A (ja) * 1998-10-23 2000-05-12 Citizen Watch Co Ltd 電子式方位計およびその補正値算出方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102510994A (zh) * 2009-09-26 2012-06-20 阿尔卑斯电气株式会社 地磁检测装置
CN102510994B (zh) * 2009-09-26 2014-01-08 阿尔卑斯电气株式会社 地磁检测装置
CN101806595A (zh) * 2010-04-19 2010-08-18 美新半导体(无锡)有限公司 一种两维电子指南针校准算法
CN101806595B (zh) * 2010-04-19 2012-01-04 美新半导体(无锡)有限公司 一种两维电子指南针校准方法
US8843338B2 (en) 2011-07-29 2014-09-23 Nokia Corporation Processing Data for Calibration

Also Published As

Publication number Publication date
JP2006226810A (ja) 2006-08-31

Similar Documents

Publication Publication Date Title
WO2006088057A1 (ja) 方位計測装置
JP4252555B2 (ja) 傾斜センサおよびこれを用いた方位計測装置
US7119533B2 (en) Method, system and device for calibrating a magnetic field sensor
US6836971B1 (en) System for using a 2-axis magnetic sensor for a 3-axis compass solution
JP4034039B2 (ja) 携帯電話
JP2006113019A (ja) 3軸型電子コンパス及びこれを用いた方位検出方法
KR20070079345A (ko) 지자기 센서의 자기 오프셋 측정 방법 및 장치
JP7025215B2 (ja) 測位システム及び測位方法
JP4890660B2 (ja) 地磁気検知装置
JP2005061969A (ja) 方位角計測装置及び方位角計測方法
JP2008241675A (ja) 電子コンパス
JP2007163388A (ja) 方位センサおよび記録媒体
JP2006275523A (ja) 電子方位装置および記録媒体
JP5475873B2 (ja) 地磁気検知装置
JP2006023318A (ja) 3軸磁気センサ、全方位磁気センサおよびそれらを用いた方位測定方法
JP4149344B2 (ja) 地磁気方位センサおよび地磁気方位センサの使用方法
JPH08278137A (ja) 方位出力装置
JP2011185868A (ja) 方位検知装置
JP2006337333A (ja) 3軸型電子コンパス及びこれを用いた方位検出方法
JP5498209B2 (ja) 磁界検知装置
KR100674194B1 (ko) 자기 센서의 제어 방법, 제어 장치 및 휴대 단말 장치
KR101298845B1 (ko) 오브젝트에 구비된 지자기 센서의 방위각 보정 방법 및 장치
KR20110126450A (ko) 전자 나침반의 방위 오차를 보정하는 방법
CN109716064B (zh) 电子罗盘
JP4648423B2 (ja) 回転角度計測装置及び回転角度計測方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06713788

Country of ref document: EP

Kind code of ref document: A1