WO2010103966A1 - 地磁気検知装置 - Google Patents

地磁気検知装置 Download PDF

Info

Publication number
WO2010103966A1
WO2010103966A1 PCT/JP2010/053403 JP2010053403W WO2010103966A1 WO 2010103966 A1 WO2010103966 A1 WO 2010103966A1 JP 2010053403 W JP2010053403 W JP 2010053403W WO 2010103966 A1 WO2010103966 A1 WO 2010103966A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
geomagnetic
axis sensor
data
detection
Prior art date
Application number
PCT/JP2010/053403
Other languages
English (en)
French (fr)
Inventor
希世 廣部
幸光 山田
勝之 川原田
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Priority to JP2011503778A priority Critical patent/JP4890660B2/ja
Priority to KR1020117018912A priority patent/KR101210394B1/ko
Publication of WO2010103966A1 publication Critical patent/WO2010103966A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C17/00Compasses; Devices for ascertaining true or magnetic north for navigation or surveying purposes
    • G01C17/02Magnetic compasses
    • G01C17/28Electromagnetic compasses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/02Rotary gyroscopes
    • G01C19/04Details
    • G01C19/06Rotors
    • G01C19/065Means for measuring or controlling of rotors' angular velocity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux

Definitions

  • the present invention relates to a geomagnetic detection device that detects geomagnetism with sensors directed in each of three orthogonal directions, and in particular, when a magnetic detection unit mounted with a sensor rotates in a three-dimensional space, its orientation is determined
  • the present invention relates to a geomagnetic detection device that can accurately know an angular velocity.
  • a geomagnetic detection device that detects geomagnetism using a three-axis magnetic sensor that detects magnetic field strength in three directions orthogonal to each other is used as an azimuth detection device, a rotation detection device, an attitude detection device, and the like.
  • the magnetic gyro described in Patent Document 1 includes a three-axis magnetic sensor that detects geomagnetism disposed on three-axis orthogonal coordinates. When rotated in a three-dimensional space, this magnetic gyro determines difference vectors between two different time points using output data of three axes, and the difference vectors become smaller than a predetermined threshold value. It is determined to determine which of the three axes it is rotating about by determining whether it is or not.
  • the magnetic gyro described in Patent Document 1 can detect the rotational state when it rotates about any of three axes determined by the orientation of the magnetic sensor, but an axis other than the above three axes can be detected. When it rotates about the axis of rotation, it becomes impossible to recognize the rotation axis, and it becomes impossible to identify in which plane of rotation it is rotating. That is, the angular velocity when rotating about an arbitrary axis in the three-dimensional space can not be detected with only one magnetic gyro described in Patent Document 1.
  • Patent Document 2 discloses an attitude sensor mounted on an airplane or the like.
  • the attitude sensor has a geomagnetic detection device, and is provided with a load weight and a force detection device for detecting the gravity acting on the load weight.
  • the attitude sensor tilts with an airplane etc.
  • the inclination with respect to the direction of gravity is detected by the detection output of the force detection device, and the azimuth output obtained by the geomagnetic detection device is used as information on the inclination attitude obtained by the force detection device To make corrections.
  • the three-axis attitude detection device described in Patent Document 3 detects the attitude of a target object, it is equipped with both a magnetic sensor capable of detecting three directions and a gyro sensor capable of detecting three directions. It is done. Therefore, it is not suitable for being mounted on a small portable device or the like, and both the magnetic sensor and the gyro sensor are mounted, which has a disadvantage of increasing power consumption.
  • JP 2008-224642 A JP-A-2-238336 JP-A-11-248456
  • the present invention solves the above-mentioned conventional problems, in which the geomagnetism is detected by sensors directed in the directions of three orthogonal axes, and even if the magnetic detection unit having the sensor is inclined, the azimuth and angular velocity It is an object of the present invention to provide a geomagnetic detection device capable of detecting with high accuracy.
  • the present invention has a magnetic detection unit in which a reference X direction, a reference Y direction, and a reference Z direction which are orthogonal to each other are determined, and a calculation unit.
  • the magnetic detection unit is an X-axis sensor whose absolute value of the detected output is maximum
  • the absolute value of the detected output A Y-axis sensor having the largest value and a Z-axis sensor having the largest absolute value of detection output when the reference Z direction is directed to the direction of geomagnetism are mounted
  • the magnetic detection unit includes the X-axis sensor and It is rotatable in three dimensions while maintaining the orthogonal relationship between the Y-axis sensor and the Z-axis sensor
  • the calculation unit specifies the coordinate position of the geomagnetic vector on the three-dimensional coordinates of XYZ based on the detection outputs of the X-axis sensor, the Y-axis sensor
  • the present invention always obtains plural pieces of geomagnetic vector information specified by the detection outputs of the X-axis sensor, the Y-axis sensor and the Z-axis sensor, and calculates the rotation axis of the magnetic detection unit in an absolute space
  • the plane of rotation is calculated. Therefore, even if the reference X direction, the reference Y direction, and the reference Z direction of the magnetic detection unit are inclined in space, absolute orientation can be detected.
  • the present invention extracts data of coordinate positions of two geomagnetic vectors, and obtains an opening angle from the rotation axis of the coordinate positions of the two geomagnetic vectors and a time when the two geomagnetic vectors are obtained, The angle is differentiated by the time to obtain the angular velocity of the magnetic detection unit.
  • the present invention can also calculate angular acceleration by differentiating the calculated angular velocity with the time.
  • the calculation unit intermittently extracts detection outputs of the X-axis sensor, the Y-axis sensor and the Z-axis sensor based on a clock signal to obtain coordinate positions of geomagnetic vectors,
  • the rotation axis or plane of rotation is calculated by specifying the coordinate positions of at least three geomagnetic vectors with a predetermined time longer than the extraction time of.
  • the calculation unit intermittently extracts detection outputs of the X-axis sensor, the Y-axis sensor, and the Z-axis sensor based on a clock signal to obtain the coordinate position of the geomagnetic vector.
  • the data of the plurality of coordinate positions obtained intermittently are sequentially stored in the buffer memory, and from the data of the plurality of coordinate positions stored in the buffer memory, the opening angle of the geomagnetic vector is determined according to a predetermined threshold value Selecting two pieces of data of two coordinate positions which become larger, differentiating an open angle of the selected two coordinate positions by time of data of the selected two coordinate positions to obtain an angular velocity of the magnetic detection unit Is preferred.
  • the angular velocity is selected from the latest data and the selected past data by selecting the past data from the latest data of the coordinate position to the past and the opening angle from the latest data at the position exceeding the threshold Ask for
  • a value at which absolute values of detection outputs of the X-axis sensor, the Y-axis sensor and the Z-axis sensor are maximum is taken as an absolute value (R) of a geomagnetic vector.
  • the angle between the Z direction and the geomagnetic vector is the inclination angle ( ⁇ )
  • the angle between the geomagnetic vector projected on the XY plane and the basic X direction is the azimuth angle ( ⁇ ).
  • the axis of rotation is determined from the point of intersection of a perpendicular bisector of a line connecting two detection points and a perpendicular bisector of a line connecting two other detection points.
  • a value at which the absolute value of each of the detection outputs of the X-axis sensor, the Y-axis sensor and the Z-axis sensor is maximum is taken as an absolute value (R) of the geomagnetic vector.
  • the angle between the basic Z direction and the geomagnetic vector is the inclination angle ( ⁇ ), and the angle between the basic magnetic direction projected onto the XY plane and the basic X direction is the azimuth angle ( ⁇ ).
  • the intersection point at which the two vertical bisectors are shortest Is identified as the center of the plane of rotation.
  • the computing unit computes two or more of the rotation axes when the apparatus is started, and the intersection point of the two or more rotation axes is a three-dimensional reference X direction, a reference Y axis direction, and a reference It is recognized as the origin in the Z-axis direction.
  • the origins in the reference X direction, the reference Y direction, and the reference Z direction can be obtained by specifying a plurality of rotation axes from a plurality of geomagnetic vectors. That is, by performing the arithmetic processing of the present invention, calibration can be performed automatically when the apparatus is started by turning on the power or the like.
  • the present invention has a simple configuration in which X-axis sensor, Y-axis sensor, and Z-sensor oriented in three orthogonal directions are provided, and absolute azimuth and angular velocity are high even when the whole is tilted in space. The accuracy can be detected.
  • a circuit block diagram of a geomagnetic detection device Explanatory drawing explaining the storage area of the data of the memory provided in the geomagnetic detection apparatus shown in FIG.
  • the geomagnetic detection device 1 has a magnetic detection unit 2.
  • an X-axis sensor 3, a Y-axis sensor 4 and a Z-axis sensor 5 are mounted.
  • a reference X direction, a reference Y direction, and a reference Z axis orthogonal to each other are determined in advance as fixed axes.
  • FIG. 5 shows the reference X direction by the reference axis x, the reference Y direction by the reference axis y, and the reference Z direction by the reference axis z.
  • the intersection of the reference axis x and the reference axis y and the reference axis z is a reference origin O.
  • the X-axis sensor 3 is fixed along the reference axis x
  • the Y-axis sensor 4 is fixed along the reference axis y
  • the Z-axis sensor is fixed along the reference axis z.
  • the X-axis sensor 3, the Y-axis sensor 4 and the Z-axis sensor 5 are all configured by GMR elements.
  • the GMR element includes a pinned magnetic layer and a free magnetic layer formed of a soft magnetic material formed of a Ni-Co alloy or a Ni-Fe alloy, and copper or the like sandwiched between the pinned magnetic layer and the free magnetic layer. And a nonmagnetic conductive layer.
  • An antiferromagnetic layer is stacked under the pinned magnetic layer, and the magnetization of the pinned magnetic layer is pinned by the anti-ferromagnetic coupling between the antiferromagnetic layer and the pinned magnetic layer.
  • the X-axis sensor 3 detects the component Bx directed to the reference X direction of geomagnetism, and detects the magnetic field component B + x in the positive direction in the reference X direction and the magnetic field component Bx in the negative direction in the reference X direction it can.
  • the magnetization direction of the fixed magnetic layer is fixed in the Px direction which is a direction along the X-axis.
  • the direction of magnetization of the free magnetic layer is determined by the direction of the geomagnetism.
  • the resistance value of the X-axis sensor 3 is minimized, and the magnetization direction of the free magnetic layer is opposite to the Ox direction. Then, the resistance value of the X-axis sensor 3 becomes maximum. Further, when the direction of the free magnetic layer is orthogonal to the Px direction, the resistance value is an average value of the maximum value and the minimum value.
  • the X-axis sensor 3 and the fixed resistor are connected in series, and a voltage is applied to the series circuit of the X-axis sensor 3 and the fixed resistor.
  • the midpoint voltage between the resistors is taken out as a detection output of the X axis.
  • the magnetic detection unit 2 is entirely tilted so that the reference axis x shown in FIG. 5 coincides with the geomagnetic vector and the fixed direction Px of the magnetization of the pinned magnetic layer of the X axis sensor 3 is the same as the geomagnetic vector
  • the applied magnetic field component B + x is maximized.
  • the detection output of the X axis at this time is the maximum value on the plus side with respect to the origin.
  • the magnetic field component B applied to the X-axis sensor 3 -X is the largest.
  • the detection output of the X axis at this time is the maximum value on the negative side with respect to the origin.
  • the magnetic field component By in the Y-axis direction is not applied to the Y-axis sensor 4 or when a magnetic field orthogonal to the Py direction is applied, the Y-axis output from the magnetic field data detector 6 The detection output of is the origin.
  • the reference axis y is made coincident with the geomagnetic vector and the direction of the geomagnetic vector is made consistent with the fixed direction Py of the magnetization of the fixed magnetic layer, the magnetic field component B + y applied to the Y-axis sensor 4 is maximized and the detection output of the Y axis is The maximum value on the plus side with respect to the origin.
  • the magnetic field component B-y given to the Y-axis sensor 4 becomes maximum, and the detection output of the Y-axis becomes the maximum value on the minus side with respect to the origin.
  • the detection output of the Z-axis output from the magnetic field data detector 6 Is the origin.
  • the magnetic field component B + z given to the Z axis sensor 5 becomes maximum, and the detection output of the Z axis is The maximum value on the plus side with respect to the origin.
  • the magnetic field component B-y given to the Z-axis sensor 5 becomes maximum, and the detection output of the Z-axis becomes the maximum value on the minus side with respect to the origin.
  • the absolute value of the maximum value of the positive side detection output is the same as the absolute value of the negative side detection output.
  • the detection output on the positive side is obtained by the magnetic field component B + x
  • the detection output on the negative side is obtained by the magnetic field component Bx
  • the maximum value of the detection output on the positive side and the detection on the negative side If the absolute value is the same as the maximum value of the output, a magnetic sensor other than the GMR element can be used.
  • a magnetic sensor other than the GMR element can be used.
  • a combination of a Hall element or MR element capable of detecting only the magnetic field strength on the positive side along the reference axis x and a Hall element or MR element capable of detecting only the magnetic field strength on the negative side is used as the X-axis sensor 3 It is also good.
  • detection outputs of the X axis, the Y axis, and the Z axis detected by the magnetic field data detection unit 6 are given to the calculation unit 10.
  • the arithmetic unit 10 includes an A / D converter, a CPU, a clock circuit, and the like. Depending on the measurement time of the clock circuit of operation unit 10, detection outputs of the X axis, Y axis and Z axis detected by magnetic field data detection unit 6 are intermittently read out to operation unit 10 in short cycles, and respectively The detection output of is converted into a digital value by the A / D conversion unit provided in the calculation unit.
  • the computing unit 10 functions as an azimuth computing unit 10a, an angular velocity computing unit 10b, and an angular acceleration computing unit 10c. These arithmetic units are all executed by programmed software. However, a part of the data processing is commonly performed in the azimuth calculation unit 10a, the angular velocity calculation unit 10b, and the angular acceleration calculation unit 10c.
  • a memory 7 is connected to the CPU constituting the calculation unit 10.
  • software for performing processing of each of the azimuth calculating unit 10a, the angular velocity calculating unit 10b, and the angular acceleration calculating unit 10c is programmed and stored.
  • the memory 7 has a storage area 8a in which software for azimuth calculation and data as a calculation result are stored, and a storage area 8b in which software for angular velocity calculation and data as a calculation result are stored. Further, it has a common data storage area 8 c commonly used as data for azimuth calculation and data for angular velocity calculation.
  • the angular velocity calculation unit 10b processing of a plurality of steps is performed by software.
  • the detection output of the X axis, the detection output of the Y axis, and the detection output of the Z axis are intermittently read out in a short cycle in synchronization with the clock circuit from the magnetic field data detection unit 6, these detection outputs are A / D converted. Converted to digital data by Furthermore, the detection output of the X-axis, the detection output of the Y-axis, and the detection output of the Z-axis intermittently read by the arithmetic processing in the arithmetic unit 10 are coordinate positions of the geomagnetic vector Bg on polar coordinates shown in FIG.
  • the data of the coordinate position read and calculated in a short cycle in synchronization with the clock circuit is applied to the storage 11a of the data buffer 11 shown in FIG.
  • the data is sequentially sent out from the storage units 11a to 11n, and the data of the storage unit 11n of the final stage is discarded.
  • the geomagnetic detection device 1 While the geomagnetic detection device 1 is in operation, the latest data is continuously read from the magnetic field data detection unit 6 and stored in the data buffer 11 in order.
  • the data selection processing 15 of the angular velocity calculation unit 10 b reads out data required for calculation out of a plurality of data indicating the coordinate position of the geomagnetic vector Bg stored in the storage units 11 a to 11 n of the data buffer 11.
  • the read data is given to the rotation plane calculation processing 12 and the rotation axis calculation processing 13.
  • the calculation results in the rotation plane calculation processing 12 and the rotation axis calculation processing 13 are sent to the angular velocity calculation processing 14, and the angular velocity at that moment is continuously calculated.
  • the data buffer 11, data selection processing 15, rotational plane calculation processing 12 and rotational axis calculation processing 13 of the angular velocity calculation unit 10b shown in FIG. 3 are executed as common processing in the azimuth calculation unit 10a shown in FIG.
  • the results calculated by the rotation plane calculation processing 12 and the rotation axis calculation processing 13 are stored in the common data storage area 8c of the memory 7 as needed, and are also used as data for azimuth calculation.
  • calibration processing is performed based on the data held in the common data storage area 8c, and positional information of the origin Og of the three-dimensional polar coordinates shown in FIGS. 6 and 7 calculated by this calibration processing It is stored in the common data storage area 8c.
  • FIG. 6 and FIG. 7 are for explaining the arithmetic processing in the arithmetic unit 10 in an illustration.
  • the reference axis x0, the reference axis y0, and the reference axis z0 on the data in the arithmetic processing of the geomagnetic detection unit 10b are shown in rectangular coordinates.
  • the reference axis x0, the reference axis y0, and the reference axis z0 correspond to the reference axis x on which the X axis sensor 3 is disposed and the reference axis y on which the Y axis sensor 4 is disposed in the magnetic detection unit 2 shown in FIG. It corresponds to each of the reference axis z to arrange.
  • the magnitude of the geomagnetic vector Bg shown in FIG. 6 is detected as a detection output Xg by the X-axis sensor 3, a detection output Yg by the Y-axis sensor 4, and a detection output Zg by the Z-axis sensor 5.
  • coordinate point S (R, ⁇ , where the detection outputs Xg, Yg, Zg of X-axis sensor 3, Y-axis sensor 4 and Z-axis sensor 5 indicate the position of geomagnetic vector Bg on three-dimensional polar coordinates) converted to data of ⁇ ).
  • This conversion process is performed by a conversion program stored in the arithmetic unit 10.
  • the parameter ⁇ in the three-dimensional polar coordinates shown in FIG. 6 is a geomagnetic vector with respect to the reference axis z0 on the data corresponding to the reference axis z of the magnetic detection unit 2 (in FIG. 6, the reference axis z is oriented in the direction of gravity).
  • the inclination angle of Bg is, and ⁇ is the azimuth angle of the geomagnetic vector Bg with respect to the reference axis x0 on the data corresponding to the reference axis x.
  • the detection output on the plus side of the X-axis sensor 3 when the direction Px of the fixed magnetization of the X-axis sensor 3 shown in FIG. 5 is directed to the geomagnetism is maximized, but its absolute value is (R).
  • (R) be the absolute value of the maximum value of the detection output on the negative side when the direction is reverse to the geomagnetism.
  • the absolute value of the geomagnetic vector Bg can be represented by R on a three-dimensional polar coordinate.
  • a coordinate point S (R, ⁇ , ⁇ ) representing the geomagnetic vector Bg on three-dimensional polar coordinates can be obtained as a point on the spherical coordinate Bb of the radius R.
  • the depression angle ⁇ 90.
  • the coordinate point S (R, ⁇ , ⁇ ) on the three-dimensional coordinate of the geomagnetic vector Bg exists on the equatorial line Hg of the spherical coordinate Bb set on the data shown in FIG.
  • the magnetic detection unit 2 when the magnetic detection unit 2 is installed with the reference axis x and the reference axis y oriented horizontally to the ground plane with the reference axis z oriented in the direction of gravity at a predetermined latitude of the northern hemisphere of the earth,
  • the geomagnetic vector Bg at the place determines the dip angle ⁇ , and the coordinate point S (R, ⁇ , ⁇ ) on the three-dimensional coordinates of the geomagnetic vector Bg lies on the latitude line Ha centered on the reference axis z0 on the data .
  • the coordinate point S (R, ⁇ , ⁇ ) on the three-dimensional coordinates of the geomagnetic vector Bg is It moves on the equatorial line Hg of the spherical coordinate Bb shown in FIG.
  • the coordinate point S (R, ⁇ , ⁇ ) has spherical coordinates. Move on the latitude line Ha of Bb.
  • the coordinate point S (R, ⁇ , ⁇ ) moves on the equatorial line Hg or moves on the latitude line Ha Do.
  • FIG. 7 shows a detection state when the magnetic detection unit 2 shown in FIG. 5 is in a posture in which the axis Oa different from the reference axes x, y and z is directed in the direction of gravity.
  • the inclination angle between the reference axis z and the axis Oa indicating the direction of gravity is ⁇ z.
  • a coordinate point S (R, ⁇ , ⁇ ) on a three-dimensional coordinate of the geomagnetic vector Bg moves on an equatorial line Hgb inclined by the same amount as the axis Oa at the spherical coordinate Bb.
  • the inclination angle between the equator line Hg shown in FIG. 6 and the equator line Hgb shown in FIG. 7 is ⁇ z.
  • the axis Oa of the geomagnetic detection device 1 is oriented in the direction of gravity at the same northern hemisphere where the coordinate point S (R, ⁇ , ⁇ ) was present on the latitude line Ha at the time of measurement in FIG. If the axis Oa is rotated around the axis Oa or moved so as to draw a circle on the ground plane with the axis Oa oriented in the direction of gravity, the coordinate point S (R, ⁇ , ⁇ ) on the three-dimensional coordinates of the geomagnetic vector Bg Moves on the latitude line Hb shown in FIG. If the latitude line Hb shown in FIG. 7 and the latitude line Ha shown in FIG. 6 are measured at the same place in the northern hemisphere, the radius is the same, and the latitude line Ha and the latitude line Hb in the spherical coordinate Bb The inclination angle is ⁇ z.
  • a rotation plane including the latitude line Ha shown in FIG. 6 or the latitude line Hb shown in FIG. 7 is obtained from data of a plurality of coordinate points S (R, ⁇ , ⁇ ) selected from the data buffer 11.
  • the rotation plane to be included is determined.
  • a plane of rotation including the equator Hg shown in FIG. 6 or a plane of rotation including the equator Hgb shown in FIG. 7 is determined.
  • the rotation axis reference axis z0 in FIG. 6 or axis Oa in FIG. 7 when the magnetic detection unit 2 is rotated is obtained.
  • the magnetic detection unit 2 is rotated in the counterclockwise direction (CCW) with the axis Oa inclined by an angle ⁇ z from the reference axis z at gravity at a predetermined latitude of the northern hemisphere.
  • CCW counterclockwise direction
  • ⁇ z the axis Oa inclined by an angle ⁇ z from the reference axis z at gravity at a predetermined latitude of the northern hemisphere.
  • FIG. 8 shows polar coordinate data of coordinate point S (R, ⁇ , ⁇ ) calculated from detection outputs of X, Y, Z intermittently detected based on a clock circuit, in order of D1, D2,. ⁇ Indicated by Dn.
  • the data D1, D2,... Dn are sequentially stored in the data buffer 11 shown in FIG. 4, and the latest data Dn is stored in the latest storage unit 11 n of the data buffer 11.
  • the data selection process 15 uses, based on the latest data Dn, a plurality of polar coordinate data D1, D2,. Data Dx indicating a coordinate point separated by a determined predetermined distance is selected, and data D1 indicating a coordinate point separated by a predetermined distance from the coordinate point indicated by data Dx further back to the past from data Dx Is selected.
  • a straight line La connecting the coordinate position of data D1 and the coordinate position of data Dx is calculated, and straight line La is calculated.
  • a perpendicular bisector Va which is bisected and perpendicular to the straight line La is determined.
  • a straight line Lb connecting the coordinate position of the data Dx and the coordinate position of the data Dn is calculated, and a vertical bisector Vb which divides the straight line Lb and is perpendicular to the straight line Lb is determined.
  • the intersection of the vertical bisector Va and the vertical bisector Vb is calculated.
  • the length Va1 of the vertical bisector Va of the intersections is the shortest and the vertical bisector Vb If the point of intersection at which the length Vb1 is the shortest is determined, this point of intersection can be identified as the rotation center Oa1 of the plane of rotation including the latitude line Hb.
  • the plane including the latitude line Hb can be identified from the cross product of the vector from the data D1 to the data Dx and the vector from the data Dx to the data Dn. Therefore, for example, data D1, Dx, and Dx are calculated by performing an outer product of a vector perpendicular to a vector from data D1 to data Dx and a vector perpendicular to a vector from data Dx to data Dn.
  • the rotation center Oa1 of the rotation plane including the latitude line Hb can be uniquely identified from Dn.
  • the axis which is the rotation axis at the present time is calculated by calculating a line perpendicular to the rotation plane including the latitude line Hb obtained in the rotation plane calculation processing 12 and passing through the rotation center Oa1. Oa is identified.
  • the rotation axis calculation processing 13 even without using the calculation result of the rotation plane calculation processing 12, it is possible to specify the axis Oa which is the rotation axis. That is, there is an infinite number of intersections between a vertical bisector Va dividing the straight line La shown in FIG. 8 and perpendicular to the straight line La and a vertical bisector Vb dividing the straight line Lb and perpendicular to the straight line Lb. Therefore, it is possible to obtain any two of these intersection points and connect the two intersection points to specify the axis Oa that is the rotation axis.
  • An opening angle ⁇ from the center Oa1 of the rotation plane of the coordinate point shown by 3 etc. may be determined, and this angle ⁇ is differentiated at time t when two data Dn and Dn-1 are obtained. By doing this, the angular velocity is calculated.
  • FIG. 9 shows a further preferable angular velocity calculation method in the angular velocity calculation processing 14.
  • the sampling time for obtaining the data D1, D2, D3,... Shown in FIG. 8 is an extremely short time of, for example, 50 ms or less. Therefore, as described above, the opening angle between the coordinate point indicated by the latest data Dn and the coordinate point indicated by the immediately preceding data Dn-1, or the coordinate point indicated by the latest data Dn, is obtained a little before If the angular velocity is determined from the opening angle with the coordinate points indicated by the data Dn-2 and Dn-3, when the angular velocity of the rotation or circular motion of the geomagnetic detection device 1 is small, the plurality of coordinate points of the selected data The position is buried in the detection noise, which makes it difficult to accurately calculate the angular velocity.
  • the coordinate point S (R, ⁇ , ⁇ ) of the geomagnetic vector Bg when the latest data Dn is obtained is indicated by I, and data Dn-1 obtained further back than that is I , Dn-2, Dn-3,... Are indicated by H, G, F, E, D,.
  • a distance or an opening angle of two coordinate points to be a basis of calculation of the angular velocity is previously defined as a threshold value ⁇ 0.
  • the threshold value ⁇ 0 at this time is set to a length such that the opening angle of two coordinate points which are separated can be identified without being buried in the detection noise.
  • the fluctuation of the detection point due to noise is schematically indicated by D, E, F, and the threshold value ⁇ 0 is set sufficiently longer than the range of the fluctuation.
  • the data selection process 15 data corresponding to the coordinate point C which is a distance or an opening angle beyond the threshold value ⁇ 0 retroactive to the past is selected based on the coordinate point I indicated by the latest data Dn, and the angular velocity calculation process It is given to 14.
  • the angular velocity calculation processing 14 the angular velocity is calculated by differentiating the opening angle between the coordinate point I and the coordinate point C indicated by the two selected data with the time when the two data are obtained.
  • the most distant data in this case are the data stored in the storage unit 11 n and the data stored in the storage unit 11 a among the data stored in the data buffer 11 shown in FIG. This is the maximum value of 11 buffers.
  • the angular velocity data calculated in the angular velocity calculation processing 14 is output as three data of an X component, a Y component, and a Z component, and is given to a main control unit such as a portable device equipped with the geomagnetic detection device 1.
  • the inclination angle of the reference axis z0 is ⁇ z when the reference axis z0 is inclined to coincide with the axis Oa which is the rotation axis while maintaining the orthogonal relationship of the reference axes z0, x0 and y0.
  • the inclination angle of x0 is ⁇ x
  • the inclination angle of the reference axis z0 is ⁇ y
  • the component forces of the angular velocity on the inclined orthogonal axes are (d ⁇ x / dt), (d ⁇ y / dt), and (d ⁇ z / dt)
  • the X component Gx, the Y component Gy and the Z component Gy are as follows.
  • Gz (d ⁇ z / dt) ⁇ cos ( ⁇ z)
  • the calculation results of acceleration are: ⁇ x, ⁇ y, ⁇ z are all 0 degrees, and cos ( ⁇ x), cos ( ⁇ y) and cos ( ⁇ z) are all 1.
  • the calculation result in the angular velocity calculating part 10b can be used as common data.
  • the geomagnetic detection device 1 when the geomagnetic detection device 1 is powered on to start the operation, the geomagnetic detection device 1 is slightly rotated in a certain direction, the axis Oa serving as the rotation axis in the rotation axis calculation processing 13 of the angular velocity calculation unit 10b. Can be calculated. Furthermore, when the inclination angle of the geomagnetic detection device 1 is changed and rotated, an axis Oa which is another rotation axis can be calculated in the rotation axis calculation processing 13. If two axes Oa are calculated and their points of intersection are determined, the origin Og shown in FIG. 6 and FIG. 7 can be determined. From this origin Og and the absolute value R of the geomagnetic vector Bg, shown in FIG. A so-called calibration can be performed to specify spherical coordinates Bb.
  • the rotation plane calculation processing 12 of the angular velocity calculation unit 10b shown in FIG. 3 when the geomagnetic detection device 1 is powered on and rotated a little in any posture, the rotation including the latitude line Hb shown in FIG. The plane can be identified. Therefore, when the geomagnetic detection device 1 is stopped in its original posture, the direction of the geomagnetic vector, that is, the direction on the earth can be known from polar coordinate data of the coordinate point S (R, ⁇ , ⁇ ) at that time. .
  • the rotation plane calculation process 12 can be used to identify the rotation plane by rotating the geomagnetic detection device 1 in any attitude, and only after that, the orientation of the geomagnetic vector, that is, the orientation Can be accurately known, and it is not necessary to separately provide an acceleration sensor or the like for correction.
  • the angular acceleration is calculated by further differentiating the angular velocity calculated in the angular velocity calculation processing 14 with time t, and the calculation result of this angular acceleration is represented by an X component, a Y component and It can be output as the Z component.
  • the geomagnetic detection device of the present invention can be mounted on a portable device such as a mobile phone and used as a direction indicator that knows the direction on the earth.
  • a portable device such as a mobile phone
  • three-dimensional angular velocity can be calculated and three-dimensional angular velocity can be detected, it can be used for a game device or an input device of a game device using a portable device. It can be used as a detection unit that detects a change.
  • Reference Signs List 1 geomagnetic detection device 2 magnetic detection unit 3 X-axis sensor 4 Y-axis sensor 5 Z-axis sensor 6 magnetic field data detection unit 7 memory 10 operation unit 10a azimuth operation unit 10b angular velocity operation unit 10c angular acceleration operation unit 11 data buffer 12 rotation plane calculation Process 13 Rotational axis calculation process 14 Angular velocity calculation process 15 Data selection process Bb Spherical coordinate Bg Geomagnetic vector Hg, Hgb Equatorial line Ha, Hb Latitude line

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Measuring Magnetic Variables (AREA)
  • Navigation (AREA)

Abstract

地磁気を検知する3軸のセンサを有し、傾いた姿勢であっても、地磁気ベクトルを検知して正確な方位を知ることができ、さらに角速度を計算できる地磁気検知装置を提供する。 地磁気ベクトルを検知するX軸センサとY軸センサおよびZ軸センサが設けられ、各センサの検知出力から地磁気ベクトルの向きが球面座標Bb上で求められる。装置の基準軸z0が重力方向に対してγzだけ傾いて回転したときに、球面座標Bb上の地磁気ベクトルの座標位置を3点D1,Dx,Dnで検出することで、緯度線Hbを含む回転平面と軸Oaを特定できる。さらに緯度線Hb上を移動するデータの距離を時間で微分することで、角速度を知ることができる。

Description

地磁気検知装置
 直交する3方向のそれぞれに向けられたセンサで地磁気を検知する地磁気検知装置に係り、特にセンサを搭載した磁気検知部が三次元空間内で回動したときにその姿勢を判別して、方位や角速度を正確に知ることができる地磁気検知装置に関する。
 互いに直交する3方向の磁界強度を検知する3軸の磁気センサを使用して地磁気を検知する地磁気検知装置は、方位検出装置、回転検出装置、姿勢検知装置などとして使用されている。
 特許文献1に記載された磁気式ジャイロは、3軸直交座標上に配置された地磁気を検知する3軸磁気センサを有している。この磁気式ジャイロは、三次元空間内で回転させたときに、3軸の出力データを用いて異なる2時点間の差分ベクトルを求め、その差分ベクトルが予め決められたしきい値よりも小さくなるか否かを判定して、3軸のうちのどの軸を中心として回転しているのかを特定するというものである。
 特許文献1に記載された磁気式ジャイロは、磁気センサの向きで決められた3軸のいずれの軸を中心として回転したときに、回転状態を検知することができるが、前記3軸以外の軸を中心として回転させたときには回転軸を認識できなくなり、どの回転平面内で回転しているのかを特定できなくなる。つまり、特許文献1に記載された1個の磁気式ジャイロだけで、三次元空間内の任意の軸を中心として回転させたときの角速度を検知できない。
 特許文献2には、飛行機などに搭載される姿勢センサが開示されている。この姿勢センサは、地磁気検出装置を有しているとともに、負荷おもりとこの負荷おもりに作用する重力を検知する力検出装置が設けられている。飛行機などとともに姿勢センサが傾いたときに、力検出装置の検知出力により重力の方向に対する傾きを検出し、地磁気検出装置で得られる方位出力を、力検出装置で得られた傾き姿勢に関する情報を用いて修正するというものである。
 特許文献2に記載された姿勢センサは、地磁気検出装置のみならず負荷おもりとこの負荷おもりに作用する重力を検知する力検出装置が設けられているために、装置が大きくまた重くなり、例えば携帯用の小型機器などに搭載することが難しい。
 特許文献3に記載された3軸姿勢検出装置は、目的物体の姿勢を検出するものであるが、3方向の検出が可能な磁気センサと、3方向の検出が可能なジャイロセンサの双方が搭載されている。そのため、携帯用の小型機器などに搭載するのに適しておらず、また、磁気センサとジャイロセンサの双方を搭載しているため、消費電力が多くなる欠点を有している。
特開2008-224642号公報 特開平2-238336号公報 特開平11-248456号公報
 本発明は上記従来の課題を解決するものであり、直交する3軸の方向に向くセンサで地磁気を検知するものであり、センサを有する磁気検知部が傾いた姿勢となっても、方位や角速度を高精度に検知することができる地磁気検知装置を提供することを目的としている。
 本発明は、互いに直交する基準X方向と基準Y方向および基準Z方向が決められた磁気検知部と、演算部とを有し、
 前記磁気検知部に、基準X方向が地磁気の方向に向けられたときに検知出力の絶対値が最大となるX軸センサと、基準Y方向が地磁気の方向に向けられたときに検知出力の絶対値が最大となるY軸センサ、および基準Z方向が地磁気の方向に向けられたときに検知出力の絶対値が最大となるZ軸センサが搭載され、前記磁気検知部は、X軸センサと前記Y軸センサおよび前記Z軸センサの直交関係を維持しながら三次元方向へ回動自在であり、
 前記演算部では、前記X軸センサと前記Y軸センサおよび前記Z軸センサのそれの検知出力に基づいて、X-Y-Zの三次元座標上で地磁気ベクトルの座標位置を特定し、前記磁気検知部が回転したときに、少なくとも3箇所の前記地磁気ベクトルの座標位置のデータを使用して、前記磁気検知部の回転軸と、前記座標位置を含む回転平面の少なくとも一方が演算されることを特徴とするものである。
 本発明は、X軸センサとY軸センサおよびZ軸センサの検知出力によって特定される地磁気ベクトルの情報を常に複数個取得して、絶対空間内での磁気検知部の回転軸を算出し、または回転平面を算出している。よって、磁気検知部の基準X方向と基準Y方向および基準Z方向が、空間内で傾いていても、絶対的な方位の検出が可能である。
 また本発明は、2つの地磁気ベクトルの座標位置のデータを抽出して、2つの地磁気ベクトルの座標位置の前記回転軸からの開き角度と、2つの前記地磁気ベクトルを得た時間を求め、前記開き角度を前記時間で微分して、前記磁気検知部の角速度を求めるものである。
 上記のように、磁気検知部の基準X方向と基準Y方向および基準Z方向が、空間内で傾いていても、空間内での地磁気検知装置の運動の角速度を正確に知ることができる。
 さらに、本発明は、算出された角速度を前記時間で微分して角加速度を求めることも可能である。
 また、本発明は、前記演算部は、クロック信号に基づいて、前記X軸センサとY軸センサおよびZ軸センサの検知出力を間欠的に抽出して地磁気ベクトルの座標位置を求めるとともに、検知出力の抽出時間よりも長い一定の時間を空けて少なくとも3箇所の地磁気ベクトルの座標位置を特定して、前記回転軸または回転平面を算出するものである。
 また本発明では、前記演算部は、クロック信号に基づいて、前記X軸センサとY軸センサおよびZ軸センサの検知出力を間欠的に抽出して地磁気ベクトルの座標位置を求めるものであり、
 間欠的に得られた複数の座標位置のデータを順番にバッファメモリに格納し、前記バッファメモリに格納された複数の座標位置のデータから、地磁気ベクトルの開き角度が予め決められたしきい値よりも大きくなる2つの座標位置のデータを2つ選択し、選択した2つの座標位置の開き角度を、選択した2つの座標位置のデータの時間で微分して、前記磁気検知部の角速度を求めることが好ましい。
 例えば、座標位置の最新のデータから過去にさかのぼり、前記最新のデータからの開き角度が前記しきい値を超える位置にある過去のデータを選択し、最新のデータと選択した過去のデータとから角速度を求める。
 上記のように開き角度がしきい値を超える2つの座標位置のデータから角速度を演算することにより、地磁気検知装置が低速で回転しているときの角速度を求めることが可能になる。
 さらに本発明は、前記演算部では、前記X軸センサと前記Y軸センサおよび前記Z軸センサのそれぞれの検知出力の絶対値が最大となった値を地磁気ベクトルの絶対値(R)とし、基本Z方向と地磁気ベクトルとの成す角度を伏角(θ)、X-Y平面に投影した地磁気ベクトルと基本X方向との成す角度を方位角(φ)として、前記地磁気ベクトルの座標位置を、前記絶対値(R)と伏角(θ)および方位角(φ)とで表される三次元の極座標上の検知点として特定し、
 2つの検知点を結ぶ線の垂直二等分線と、他の2つの検知点を結ぶ線の垂直二等分線との交点から前記回転軸を求めるものである。
 また、本発明は、前記演算部では、前記X軸センサと前記Y軸センサおよび前記Z軸センサのそれぞれの検知出力の絶対値が最大となった値を地磁気ベクトルの絶対値(R)とし、基本Z方向と地磁気ベクトルとの成す角度を伏角(θ)、X-Y平面に投影した地磁気ベクトルと基本X方向との成す角度を方位角(φ)として、前記地磁気ベクトルの座標位置を、前記絶対値(R)と伏角(θ)および方位角(φ)とで表される三次元の極座標上の検知点として特定し、
 2つの検知点を結ぶ線の垂直二等分線と、他の2つの検知点を結ぶ線の垂直二等分線との交点のうちの2つの前記垂直二等分線が最短となる前記交点を前記回転平面の中心として特定するものである。
 上記のように三次元の極座標を特定し、地磁気ベクトルを極座標上の点のデータとして処理することで、地磁気ベクトルの向きを簡単な演算で知ることができるようになる。なお、前記伏角の代わりに、前記地磁気ベクトルとX-Y平面とが成す仰角を使用してもよい。
 また、本発明は、演算部は、装置が始動したときに、前記回転軸を2つ以上演算し、2つ以上の回転軸の交点を、三次元の基準X方向と基準Y軸方向および基準Z軸方向の原点として認識するものである。
 前記のように、複数の地磁気ベクトルから複数の回転軸を特定することで、基準X方向と基準Y方向および基準Z方向の原点を求めることができる。すなわち本発明の演算処理を行うことで、電源が投入されるなどして装置が始動したときに、自動的にキャリブレーションを行うことができる。
 本発明は、直交する3軸方向に向けられたX軸センサとY軸センサおよびZセンサを設けるだけの簡単な構成で、空間内で全体が傾いたときでも、絶対的な方位や角速度を高精度に検知できる。
 また3軸方向に向けられた磁気のセンサのみで構成されるため、小型化と薄型化ができ、消費電力も少ない地磁気検知装置を提供することができる。
本発明の実施の形態の地磁気検知装置の回路ブロック図、 図1に示す地磁気検知装置に設けられたメモリのデータの格納領域を説明する説明図、 図1に示す地磁気検知装置に設けられた角速度演算部の機能を説明するブロック図、 データバッファの処理動作を示す説明図、 地磁気検知部に設けられたX軸センサとY軸センサおよびZ軸センサの説明図、 基準軸z0が重力方向に向けられた状態での地磁気ベクトルの演算動作を説明する三次元極座標の説明図、 基準軸z0以外の軸Oaが重力方向に向けられた状態での地磁気ベクトルの演算動作を説明する三次元極座標の説明図、 回転平面の求め方と角速度の算出方法を説明する説明図、 角速度の算出方法をさらに詳しく説明する説明図、
 図1に示す本発明の実施の形態の地磁気検知装置1は、磁気検知部2を有している。磁気検知部2には、X軸センサ3とY軸センサ4およびZ軸センサ5が搭載されている。磁気検知部2は、互いに直交する基準X方向と基準Y方向および基準Z軸が予め固定軸として決められている。図5は、基準X方向を基準軸xで示し、基準Y方向を基準軸yで示し、基準Z方向を基準軸zで示している。基準軸xと基準軸yおよび基準軸zの交点が、基準原点Oである。
 図5に示すように、X軸センサ3は基準軸xに沿って固定され、Y軸センサ4は基準軸yに沿って固定され、Z軸センサは基準軸zに沿って固定されている。
 図5の実施の形態では、X軸センサ3、Y軸センサ4およびZ軸センサ5が、いずれもGMR素子で構成されている。GMR素子は、Ni-Co合金やNi-Fe合金で形成された軟磁性材料で形成された固定磁性層および自由磁性層と、固定磁性層と自由磁性層との間に挟まれた銅などの非磁性導電層とを有している。固定磁性層の下に反強磁性層が積層され、反強磁性層と固定磁性層との反強結合により、固定磁性層の磁化が固定されている。
 X軸センサ3は、地磁気の基準X方向に向く成分Bxを検知するものであり、基準X方向でのプラス方向の磁界成分B+xと、基準X方向でのマイナス方向の磁界成分B-xを検知できる。
 図5に示すように、X軸センサ3は、固定磁性層の磁化の向きがX軸に沿う方向であるPx方向に固定されている。自由磁性層の磁化の向きは地磁気の向きによって決められる。自由磁性層の磁化の向きが固定磁性層の固定磁化の向きであるPx方向と平行になるとX軸センサ3の抵抗値が極小になり、自由磁性層の磁化の向きがOx方向と逆向きになるとX軸センサ3の抵抗値が極大になる。また、自由磁性層の向きがPx方向と直交すると、抵抗値が前記極大値と極小値との平均値となる。
 図1に示す磁場データ検知部6では、X軸センサ3と固定抵抗とが直列に接続され、X軸センサ3と固定抵抗との直列回路に電圧が与えられており、X軸センサ3と固定抵抗との間の中点電圧がX軸の検知出力として取り出される。X軸センサ3に対して、基準X方向に向く磁場成分が与えられていないとき、またはPxに対して直交する磁場が与えられているときに、X軸の検知出力が原点となる。
 磁気検知部2の全体を傾け、図5に示す基準軸xを地磁気ベクトルに一致させ、X軸センサ3の固定磁性層の磁化の固定方向Pxを地磁気ベクトルと同じ向きにするとX軸センサ3に与えられる磁界成分B+xが最大となる。このときのX軸の検知出力が、前記原点に対してプラス側の最大値となる。逆に、図5に示す基準軸xを地磁気ベクトルに一致させ、X軸センサ3の固定磁性層の磁化の固定方向Pxを地磁気ベクトルと反対に向けると、X軸センサ3に与えられる磁界成分B-xが最大となる。このときのX軸の検知出力が、前記原点に対してマイナス側の最大値となる。
 同様に、Y軸センサ4に対してY軸方向の磁界成分Byが与えられていないとき、またはPy方向と直交する磁場が与えられているときに、磁場データ検知部6から出力されるY軸の検知出力が原点となる。基準軸yを地磁気ベクトルに一致させ、地磁気ベクトルの向きを固定磁性層の磁化の固定方向Pyに一致させると、Y軸センサ4に与えられる磁界成分B+yが最大になり、Y軸の検知出力が原点に対してプラス側の最大値となる。地磁気ベクトルの向きを固定方向Pyと逆向きにすると、Y軸センサ4に与えられる磁界成分B-yが最大になり、Y軸の検知出力が、原点に対してマイナス側の最大値となる。
 また、Z軸センサ5に対してZ軸方向の磁界成分Bzが与えられていないとき、またはPzと直交する磁場が与えられているとき、磁場データ検知部6から出力されるZ軸の検知出力が原点となる。基準軸zを地磁気ベクトルに一致させ、地磁気ベクトルの向きを固定磁性層の磁化の固定方向Pzに一致させると、Z軸センサ5に与えられる磁界成分B+zが最大になり、Z軸の検知出力が原点に対してプラス側の最大値となる。地磁気ベクトルの向きを固定方向Pzと逆向きにすると、Z軸センサ5に与えられる磁界成分B-yが最大になり、Z軸の検知出力が、原点に対してマイナス側の最大値となる。
 X軸センサ3とY軸センサ4およびZ軸センサ5は、いずれもプラス側の検知出力の最大値の絶対値と、マイナス側の検知出力の絶対値とが同じである。
 なお、X軸センサ3としては、磁界成分B+xによってプラス側の検知出力が得られ、磁界成分B-xによってマイナス側の検知出力が得られ、プラス側の検知出力の最大値とマイナス側の検知出力の最大値とで絶対値が同じになれば、GMR素子以外の磁気センサで構成することができる。例えば、基準軸xに沿ってプラス側の磁界強度のみを検知できるホール素子またはMR素子と、マイナス側の磁界強度のみを検知できるホール素子またはMR素子を組み合わせて、X軸センサ3として使用してもよい。これは、Y軸センサ4とZ軸センサ5においても同じである。
 図1に示すように、磁場データ検知部6で検知されたX軸とY軸およびZ軸の検知出力は、演算部10に与えられる。演算部10は、A/D変換部とCPUおよびクロック回路などから構成されている。演算部10のクロック回路の計測時間に応じて、磁場データ検知部6で検知されたX軸とY軸およびZ軸の検知出力は、短いサイクルで間欠的に演算部10に読み出され、それぞれの検知出力は、演算部内に設けられた前記A/D変換部によってディジタル値に変換される。
 演算部10は、方位演算部10aと角速度演算部10bと角加速度演算部10cとして機能する。これら演算部は、いずれもプログラミングされたソフトウエアによって実行される。ただし、方位演算部10aと角速度演算部10bと角加速度演算部10cでは、一部のデータ処理が共通に行われる。
 演算部10を構成するCPUにはメモリ7が接続されている。図2に示すメモリ7には、方位演算部10aと角速度演算部10bと角加速度演算部10cのそれぞれの処理を行うソフトウエアがプログラミングされて格納されている。メモリ7には、方位演算用のソフトウエアおよび計算結果であるデータが格納される格納領域8aと、角速度演算用のソフトウエアおよび計算結果であるデータが格納される格納領域8bを有しており、さらに方位演算用のデータおよび角速度演算用のデータとして共通に使用される共通データの格納領域8cを有している。
 図3に示すように、角速度演算部10bでは、ソフトウエアで複数段階の処理が行われる。磁場データ検知部6から、X軸の検知出力とY軸の検知出力およびZ軸の検知出力が、クロック回路と同期して短いサイクルで間欠的に読み出されると、これら検知出力はA/D変換部でディジタルデータに変換される。さらに、演算部10内の演算処理によって、間欠的に読み出されたX軸の検知出力とY軸の検知出力およびZ軸の検知出力が、図6に示す極座標上で地磁気ベクトルBgの座標位置を示すデータに変換されて、データバッファ(バッファメモリ)11に格納される。クロック回路と同期して短いサイクルで読み出されて演算された前記座標位置のデータは、図4に示すデータバッファ11の格納部11aに与えられる。データが格納部11aに与えられる毎に、データが格納部11aから11nまで順に送り出され、最終段の格納部11nのデータが捨てられる。地磁気検知装置1が動作している間は、磁場データ検知部6から最新のデータが読み出され続け、データバッファ11に順番に格納されていく。
 角速度演算部10bのデータ選択処理15は、データバッファ11の格納部11aないし11nに格納されている地磁気ベクトルBgの座標位置を示す複数のデータのうちの、演算に必要なものを読み出す。読み出されたデータは、回転平面計算処理12と回転軸計算処理13に与えられる。回転平面計算処理12および回転軸計算処理13での演算結果は、角速度計算処理14に送られて、その瞬間の角速度が継続的に演算される。
 図3に示す角速度演算部10bのデータバッファ11、データ選択処理15、回転平面計算処理12および回転軸計算処理13は、図1に示す方位演算部10aにおいて共通の処理として実行される。回転平面計算処理12および回転軸計算処理13で演算された結果は、必要に応じてメモリ7の共通データの格納領域8cに格納されて、方位演算用データとしても使用される。さらに、共通データの格納領域8cに保持されるデータに基づいて、キャリブレーション処理が行われ、このキャリブレーション処理によって算出された図6と図7に示す三次元の極座標の原点Ogの位置情報も共通データの格納領域8cに格納される。
 次に、演算部10の処理を角速度演算部10bを中心として説明する。図6と図7は、演算部10での演算処理を図解で説明するためのものである。
 図6と図7には、地磁気検知部10bの演算処理におけるデータ上の基準軸x0と基準軸y0および基準軸z0が直交座標で示されている。基準軸x0と基準軸y0および基準軸z0は、図5に示す磁気検知部2において、X軸センサ3を配置する基準軸xとY軸センサ4を配置する基準軸yおよびZ軸センサ5を配置する基準軸zのそれぞれに対応している。
 図6は、磁気検知部2の基準軸xと基準軸yが地球上の地平面と水平に設置され、基準軸zが重力方向に向けられた姿勢のときに、X軸センサ3とY軸センサ4およびZ軸センサ5で検知される地磁気ベクトルBgを示している。
 図6に示す地磁気ベクトルBgの大きさは、X軸センサ3による検知出力XgとY軸センサ4による検知出力YgおよびZ軸センサ5による検知出力Zgとして検出される。演算部10では、X軸センサ3とY軸センサ4およびZ軸センサ5の検知出力Xg,Yg,Zgが、三次元の極座標上で地磁気ベクトルBgの位置を示す座標点S(R,θ,φ)のデータに変換される。この変換処理は演算部10内に格納された変換プログラムによって行われる。
 図6に示す三次元の極座標におけるパラメータθは、磁気検知部2の基準軸z(図6では、基準軸zが重力方向に向けられている)に対応するデータ上の基準軸z0に対する地磁気ベクトルBgの伏角であり、φは、基準軸xに対応するデータ上の基準軸x0に対する地磁気ベクトルBgの方位角である。
 また、図5に示すX軸センサ3の固定磁化の方向Pxが地磁気に向けられたときのX軸センサ3のプラス側の検知出力が最大となるが、その絶対値を(R)とし、Pxを地磁気と逆向きとしたときのマイナス側の検知出力の最大値の絶対値を(R)とする。同じくY軸センサ4およびZ軸センサ5のプラス側の検知出力の最大値の絶対値と、マイナス側の検知出力の最大値の絶対値をともに(R)とすると、図6に示すように、三次元の極座標上では地磁気ベクトルBgの絶対値をRで表すことができる。そして、三次元の極座標の上で地磁気ベクトルBgを表す座標点S(R,θ,φ)は、半径Rの球面座標Bb上の点として求めることができる。
 図5に示す磁気検知部2を、地球の赤道上において、基準軸xと基準軸yを地平面に対して水平に向け、基準軸zを重力方向に向けた姿勢にすると、伏角θ=90度となり、地磁気ベクトルBgの三次元座標上の座標点S(R,θ,φ)は、図6に示すデータ上で設定される球面座標Bbの赤道線Hg上に存在する。
 図6に示すように、地球の北半球の所定の緯度の場所において、基準軸xと基準軸yを地平面に水平に向け基準軸zを重力方向に向けて磁気検知部2を設置すると、その場所での地磁気ベクトルBgによって伏角θが決まり、地磁気ベクトルBgの三次元座標上の座標点S(R,θ,φ)は、データ上の基準軸z0を中心とする緯度線Ha上に存在する。
 地球の赤道上において、地磁気検知装置1を、基準軸zが重力方向に向く姿勢のままで回動させると、地磁気ベクトルBgの三次元座標上の座標点S(R,θ,φ)は、図6に示す球面座標Bbの赤道線Hg上を移動する。また、地球の北半球の所定の緯度の場所で、地磁気検知装置1を、基準軸zが重力方向に向く姿勢のままで回転させると、前記座標点S(R,θ,φ)は、球面座標Bbの前記緯度線Ha上を移動する。
 ここで、地磁気検知装置1を、重力方向に向く基準軸zを中心として回転させれば、座標点S(R,θ,φ)が赤道線Hg上を移動し、または緯度線Ha上を移動する。または、基準軸zを重力方向に向けた姿勢で地磁気検知装置1を手で保持して地面上で円を描くように歩いて移動した場合も、緯度方向へ長い距離移動しなければ、空間での地磁気ベクトルBgの向きと大きさがほとんど変わらないため、基準軸zを中心として回転させたときと同様に、座標点S(R,θ,φ)は赤道線Hg上を移動し、または緯度線Ha上を移動する。
 図7は、図5に示す磁気検知部2を、基準軸x,y,zとは別の軸Oaを重力方向に向けた姿勢のときの検知状態を示している。図7では、基準軸zと重力方向を示している軸Oaとの傾き角度がγzである。
 地球の赤道上において、軸Oaを重力方向に向けて、地磁気検知装置1を軸Oaを中心として回転させ、または軸Oaを重力方向に向けたまま地平面上で円を描くように移動すると、地磁気ベクトルBgの三次元座標上の座標点S(R,θ,φ)が、球面座標Bbにおいて、前記軸Oaと同じだけ傾いた赤道線Hgbの上を移動する。図6に示す赤道線Hgと図7に示す赤道線Hgbとの傾き角度はγzである。
 次に、図6の測定のときに座標点S(R,θ,φ)が緯度線Ha上に存在していたのと同じ北半球の場所において、地磁気検知装置1の軸Oaを重力方向に向けて、軸Oa中心として回転させ、または軸Oaを重力方向に向けたまま地平面上で円を描くように移動すると、地磁気ベクトルBgの三次元座標上の座標点S(R,θ,φ)は、図7に示す緯度線Hbの上を移動する。図7に示す緯度線Hbと図6に示す緯度線Haは、北半球の同じ場所での測定であるならば、半径が同じであり、球面座標Bb内での緯度線Haと緯度線Hbとの傾き角度はγzである。
 図1と図3に示す角速度演算部10bのデータ選択処理15では、図4に示すデータバッファ11に格納された複数の地磁気ベクトルBgの球面座標Bb上の座標点S(R,θ,φ)を示すデータから計算に必要なデータが選択され、そのデータが回転平面計算処理12および回転軸計算処理13に送られる。
 回転平面計算処理12では、データバッファ11から選択された複数の座標点S(R,θ,φ)のデータから図6に示す緯度線Haを含む回転平面、または図7に示す緯度線Hbを含む回転平面が求められる。同様に、地磁気検知装置1が地球の赤道上で使用されている場合は、図6に示す赤道線Hgを含む回転平面または図7に示す赤道線Hgbを含む回転平面が求められる。また、回転軸計算処理13では、磁気検知部2を回転させたときの回転軸(図6の基準軸z0または図7の軸Oa)が求められる。
 以下では、図7に示すように、北半球の所定の緯度の位置において、基準軸zから角度γzだけ傾いている軸Oaを重力へ向けて、磁気検知部2を反時計方向(CCW)へ回転させまたは円運動させたときの、緯度線Hbを含む回転平面を求める演算処理、および回転軸である軸Oaを求める演算処理を説明する。
 軸Oaを重力へ向けて、磁気検知部2を反時計方向(CCW)へ回転させまたは円運動させたとき、球面座標Bb上に現れる地磁気ベクトルBgの極座標上の座標点S(R,θ,φ)は、緯度線Hb上を移動する。図8は、クロック回路に基づいて間欠的に検出されたX,Y,Zの検知出力から演算された座標点S(R,θ,φ)の極座標データを、順番にD1,D2,・・・Dnで示している。このデータD1,D2,・・・Dnは、図4に示すデータバッファ11に順番に格納されており、最新のデータDnがデータバッファ11の最新の格納部11nに格納されている。
 回転平面を求めるためには、データ選択処理15によって、最新のデータDnを基準とし、過去にさかのぼる複数の極座標データD1,D2,・・・Dn-1の中から、前記基準の座標点から予め決められた所定の距離だけ離れた座標点を示すデータDxが選択され、さらにデータDxからさらに過去にさかのぼって、データDxが示す座標点から予め決められた距離だけ離れた座標点を示すデータD1が選択される。
 選択されたデータDn,Dx,D1が与えられた回転平面計算処理12では、図8に示すように、データD1の座標位置とデータDxの座標位置を結ぶ直線Laを算出するとともに、直線Laを二分し且つ直線Laに垂直な垂直二等分線Vaを求める。同様に、データDxの座標位置とデータDnの座標位置を結ぶ直線Lbを算出するとともに、直線Lbを二分し且つ直線Lbに垂直な垂直二等分線Vbを求める。
 次に、前記垂直二等分線Vaと垂直二等分線Vbの交点を算出する。ここで、垂直二等分線Vaと垂直二等分線Vbの交点は無限に存在するため、前記交点のうちの垂直二等分線Vaの長さVa1が最も短く且つ垂直二等分線Vbの長さVb1が最も短くなる前記交点を求めれば、この交点を緯度線Hbを含む回転平面の回転中心Oa1として特定できる。
 または、データD1からデータDxまでのベクトルと、データDxからデータDnまでのベクトルとの外積から緯度線Hbを含む平面を特定できる。したがって、例えば、データD1からデータDxまでのベクトルに対して垂直なベクトルと、データDxからデータDnまでのベクトルに対して垂直なベクトルの外積などのベクトル計算を行うことで、データD1,Dx,Dnから一義的に緯度線Hbを含む回転平面の回転中心Oa1を特定できる。
 回転軸計算処理13では、回転平面計算処理12で求められた緯度線Hbを含む回転平面に垂直で且つ前記回転中心Oa1を通る線を算出することで、現時点での回転軸となっている軸Oaが特定される。なお、回転軸計算処理13では、回転平面計算処理12の計算結果を使用しなくても、回転軸となっている軸Oaを特定できる。すなわち、図8に示す直線Laを二分し且つ直線Laに垂直な垂直二等分線Vaと、直線Lbを二分し且つ直線Lbに垂直な垂直二等分線Vbとの交点は無限に存在しているため、この交点をいずれか2つ求め、この2つの交点を結ぶことで回転軸となっている軸Oaを特定することが可能である。
 次に、図3に示す角速度計算処理14では、データバッファ11に格納された最新の極座標データDnで示される座標点と、その前に得られたデータDn-1(またはDn-2やDn-3などであってもよい)で示される座標点の、回転平面の中心Oa1からの開き角度αが求められ、この角度αを、2つのデータDnとDn-1が得られた時間tで微分することで、角速度が算出される。
 なお、回転平面を求めなくても、回転軸計算処理13において回転軸となる軸Oaが特定されていれば、この軸Oa上の任意の点を中心として、データDnで示される座標点と、データDn-1(またはDn-2やDn-3などであってもよい)で示される座標点との開き角度を算出し、これを時間tで微分することで角速度を得ることができる。
 図9は、前記角速度計算処理14におけるさらに好ましい角速度の計算手法を示している。
 図8に示すデータD1,D2,D3,・・・を得るサンプリング時間は例えば50msや30ms以下のきわめて短い時間である。したがって、前述のように最新のデータDnが示す座標点と、そのすぐ前のデータDn-1が示す座標点との開き角度、または最新のデータDnが示す座標点と、その少し前に得られたデータDn-2やDn-3が示す座標点との開き角度から角速度を求めようとすると、地磁気検知装置1の回転または円運動の角速度が小さい場合に、選択したデータの複数の座標点の位置が検出ノイズ内に埋もれてしまい、角速度を正確に算出することが難しくなる。
 図9では、最新のデータDnが得られたときの、地磁気ベクトルBgの座標点S(R,θ,φ)をIで示しており、それよりも過去にさかのぼって得られたデータDn-1,Dn-2,Dn-3,・・・が示す座標点を、H,G,F,E,D,・・・で示している。
 角速度計算処理14では、角速度の計算の基礎とすべき2つの座標点の距離または開き角度を予めしきい値α0として定めておく。このときのしきい値α0は、離れている2つの座標点の開き角度を検出ノイズに埋もれさせることなく識別できる長さに設定される。図9では、ノイズによる検出点のゆらぎを、模式的にD,E,Fで示しており、しきい値α0は前記ゆらぎの範囲よりも十分に長く設定される。
 データ選択処理15では、最新のデータDnが示す座標点Iを基準にして、過去にさかのぼってしきい値α0を超える距離または開き角度となる座標点Cに対応するデータが選択されて角速度計算処理14に与えられる。角速度計算処理14では、選択された2つのデータが示す座標点Iと座標点Cの開き角度を、2つのデータが得られた時間で微分することで角速度を算出する。
 地磁気検知装置1の運動の角速度が大きい場合は、最新のデータDnを基準として過去にさかのぼって選択されるデータが比較的近いものとなる。逆に、運動の角速度が小さい場合は、最新のデータDnと、しきい値α0を越えたものとして選択された過去のデータが遠いものとなる。この場合に最も離れているデータは、図4に示すデータバッファ11に格納されているデータのうちの格納部11nに格納されているデータと格納部11aに格納されているデータであり、データバッファ11のバッファ数の最大値である。
 上記処理を行うことで、低速で運動しているときの角速度の算出が可能になる。
 なお、角速度計算処理14において演算された角速度データは、X成分とY成分およびZ成分の3つのデータとして出力されて、地磁気検知装置1を搭載した携帯用機器などの主制御部に与えられる。
 図7において、基準軸z0、x0、y0の直交関係を維持したまま、基準軸z0を回転軸となる軸Oaに一致させるように傾けたときの、基準軸z0の傾き角度をγz、基準軸x0の傾き角度をγx、基準軸z0の傾き角度をγyとし、傾いた直交軸における角速度の分力を(dαx/dt)、(dαy/dt)、(dαz/dt)とすると、加速度データのX成分GxとY成分GyおよびZ成分Gyは以下の通りである。
 Gx=(dαx/dt)・cos(γx)
 Gy=(dαy/dt)・cos(γy)
 Gz=(dαz/dt)・cos(γz)
 例えば、図6に示すように、基準軸zが重力方向に向けられた姿勢で地磁気検知装置1を回転させたときの加速度の演算結果は、γx、γy、γzが全て0度で、cos(γx)、cos(γy)、cos(γz)が全て1である。このときZ方向の角速度成分(dαz/dt)は0であるから、角速度は、X成分のGx=(dαx/dt)と、Y成分のGy=(dαy/dt)のみで表される。
 なお、図1に示す方位演算部10aでは、角速度演算部10bでの演算結果を共通データとして使用することができる。
 まず、地磁気検知装置1の電源を投入して動作を開始したときに、地磁気検知装置1を一定の方向へ少し回転させると、角速度演算部10bの回転軸計算処理13で回転軸となる軸Oaを算出できる。さらに地磁気検知装置1の傾き角度を変えて回転させると、回転軸計算処理13で、他の回転軸となる軸Oaを算出できる。2つの軸Oaを算出し、その交点を求めれば、図6と図7に示す原点Ogを求めることができ、この原点Ogと地磁気ベクトルBgの絶対値Rとから、図6と図7に示す球面座標Bbを特定するいわゆるキャリブレーションを行うことができる。
 また、図3に示す角速度演算部10bの回転平面計算処理12では、地磁気検知装置1に電源を投入して、いずれかの姿勢で少しだけ回転させると、図7に示す緯度線Hbを含む回転平面を特定できる。よって、地磁気検知装置1をそのままの姿勢で回転を停止させると、そのときの座標点S(R,θ,φ)の極座標データから、地磁気ベクトルの方向すなわち地球上での方位を知ることができる。
 すなわち、従来は、図7に示すように、重力の方向に対して基準軸zを傾けてしまうと、別に設けた加速度センサなどを使用して、図5に示す磁気検知部2の傾き姿勢を検知し、この傾き姿勢の検知出力で補正して、基準軸zを重力方向へ向けたのと同じ検出値に換算する必要があった。しかし、前記回転平面計算処理12を使用すると、地磁気検知装置1をどのような姿勢で使用しても、少しだけ回転させれば、回転平面を特定できるので、その後は地磁気ベクトルの向き、すなわち方位を正確に知ることができ、加速度センサなどを別に設けて補正することが不要になる。
 また、図10aに示す角加速度演算部10cでは、角速度計算処理14において計算した角速度をさらに時間tで微分することで角加速度が算出され、この角加速度の計算結果を、X成分とY成分およびZ成分として出力できる。
 本発明の地磁気検知装置は、携帯電話機などの携帯用機器に搭載して、地球上の方位を知る方位計として使用することができる。また三次元の角速度を算出でき、さらに三次元の角速度を検知できるので、携帯機器を使用してゲーム装置、ゲーム装置の入力装置に使用することができ、またロボットの腕や関節などの姿勢の変化を検知する検知部として使用することができる。
1 地磁気検知装置
2 磁気検知部
3 X軸センサ
4 Y軸センサ
5 Z軸センサ
6 磁場データ検知部
7 メモリ
10 演算部
10a 方位演算部
10b 角速度演算部
10c 角加速度演算部
11 データバッファ
12 回転平面計算処理
13 回転軸計算処理
14 角速度計算処理
15 データ選択処理
Bb 球面座標
Bg 地磁気ベクトル
Hg,Hgb 赤道線
Ha,Hb 緯度線

Claims (9)

  1.  互いに直交する基準X方向と基準Y方向および基準Z方向が決められた磁気検知部と、演算部とを有し、
     前記磁気検知部に、基準X方向が地磁気の方向に向けられたときに検知出力の絶対値が最大となるX軸センサと、基準Y方向が地磁気の方向に向けられたときに検知出力の絶対値が最大となるY軸センサ、および基準Z方向が地磁気の方向に向けられたときに検知出力の絶対値が最大となるZ軸センサが搭載され、前記磁気検知部は、X軸センサと前記Y軸センサおよび前記Z軸センサの直交関係を維持しながら三次元方向へ回動自在であり、
     前記演算部では、前記X軸センサと前記Y軸センサおよび前記Z軸センサのそれの検知出力に基づいて、X-Y-Zの三次元座標上で地磁気ベクトルの座標位置を特定し、前記磁気検知部が回転したときに、少なくとも3箇所の前記地磁気ベクトルの座標位置のデータを使用して、前記磁気検知部の回転軸と、前記座標位置を含む回転平面の少なくとも一方が演算されることを特徴とする地磁気検知装置。
  2.  2つの地磁気ベクトルの座標位置のデータを抽出して、2つの地磁気ベクトルの座標位置の前記回転軸からの開き角度と、2つの前記地磁気ベクトルを得た時間を求め、前記開き角度を前記時間で微分して、前記磁気検知部の角速度を求める請求項1記載の地磁気検知装置。
  3.  算出された角速度を前記時間で微分して角加速度を求める請求項2記載の地磁気検知装置。
  4.  前記演算部は、クロック信号に基づいて、前記X軸センサとY軸センサおよびZ軸センサの検知出力を間欠的に抽出して地磁気ベクトルの座標位置を求めるとともに、検知出力の抽出時間よりも長い一定の時間を空けて少なくとも3箇所の地磁気ベクトルの座標位置を特定して、前記回転軸または回転平面を算出する請求項1ないし3のいずれかに記載の地磁気検知装置。
  5.  前記演算部は、クロック信号に基づいて、前記X軸センサとY軸センサおよびZ軸センサの検知出力を間欠的に抽出して地磁気ベクトルの座標位置を求めるものであり、
     間欠的に得られた複数の座標位置のデータを順番にバッファメモリに格納し、前記バッファメモリに格納された複数の座標位置のデータから、地磁気ベクトルの開き角度が予め決められたしきい値よりも大きくなる2つの座標位置のデータを2つ選択し、選択した2つの座標位置の開き角度を、選択した2つの座標位置のデータの時間で微分して、前記磁気検知部の角速度を求める請求項2または3記載の地磁気検知装置。
  6.  座標位置の最新のデータから過去にさかのぼり、前記最新のデータからの開き角度が前記しきい値を超える位置にある過去のデータを選択し、最新のデータと選択した過去のデータとから角速度を求める請求項5記載の地磁気検知装置。
  7.  前記演算部では、前記X軸センサと前記Y軸センサおよび前記Z軸センサのそれぞれの検知出力の絶対値が最大となった値を地磁気ベクトルの絶対値(R)とし、基本Z方向と地磁気ベクトルとの成す角度を伏角(θ)、X-Y平面に投影した地磁気ベクトルと基本X方向との成す角度を方位角(φ)として、前記地磁気ベクトルの座標位置を、前記絶対値(R)と伏角(θ)および方位角(φ)とで表される三次元の極座標上の検知点として特定し、
     2つの検知点を結ぶ線の垂直二等分線と、他の2つの検知点を結ぶ線の垂直二等分線との交点から前記回転軸を求める請求項1ないし6のいずれかに記載の地磁気検知装置。
  8.  前記演算部では、前記X軸センサと前記Y軸センサおよび前記Z軸センサのそれぞれの検知出力の絶対値が最大となった値を地磁気ベクトルの絶対値(R)とし、基本Z方向と地磁気ベクトルとの成す角度を伏角(θ)、X-Y平面に投影した地磁気ベクトルと基本X方向との成す角度を方位角(φ)として、前記地磁気ベクトルの座標位置を、前記絶対値(R)と伏角(θ)および方位角(φ)とで表される三次元の極座標上の検知点として特定し、
     2つの検知点を結ぶ線の垂直二等分線と、他の2つの検知点を結ぶ線の垂直二等分線との交点のうちの2つの前記垂直二等分線が最短となる前記交点を前記回転平面の中心として特定する請求項1ないし6のいずれかに記載の地磁気検知装置。
  9.  演算部は、装置が始動したときに、前記回転軸を2つ以上演算し、2つ以上の回転軸の交点を、三次元の基準X方向と基準Y軸方向および基準Z軸方向の原点として認識する請求項1ないし8のいずれかに記載の地磁気検知装置。
PCT/JP2010/053403 2009-03-10 2010-03-03 地磁気検知装置 WO2010103966A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011503778A JP4890660B2 (ja) 2009-03-10 2010-03-03 地磁気検知装置
KR1020117018912A KR101210394B1 (ko) 2009-03-10 2010-03-03 지자기 검지장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009056442 2009-03-10
JP2009-056442 2009-03-10

Publications (1)

Publication Number Publication Date
WO2010103966A1 true WO2010103966A1 (ja) 2010-09-16

Family

ID=42728256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053403 WO2010103966A1 (ja) 2009-03-10 2010-03-03 地磁気検知装置

Country Status (3)

Country Link
JP (1) JP4890660B2 (ja)
KR (1) KR101210394B1 (ja)
WO (1) WO2010103966A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012046508A1 (ja) * 2010-10-07 2012-04-12 アルプス電気株式会社 移動軌跡検知装置
JP2012088124A (ja) * 2010-10-18 2012-05-10 Alps Electric Co Ltd 磁界検知装置
WO2013005509A1 (ja) * 2011-07-05 2013-01-10 アイチ・マイクロ・インテリジェント株式会社 磁気式ジャイロ
JP2014002089A (ja) * 2012-06-20 2014-01-09 Aichi Micro Intelligent Corp 磁気データ処理装置
CN114967942A (zh) * 2022-03-31 2022-08-30 河北迥然科技有限公司 一种运动姿态分析方法、终端及存储介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101519431B1 (ko) * 2013-05-27 2015-05-12 (주)마이크로인피니티 방위각 제공 장치
KR101397965B1 (ko) 2013-12-03 2014-05-27 국방과학연구소 플라즈마 구동기의 입력 전원의 파라미터 최적화 방법 및 컴퓨터 판독 가능한 기록 매체
KR102581198B1 (ko) * 2018-04-16 2023-09-22 한국전자통신연구원 신발 모델을 이용한 보행 항법 장치 및 그 방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63113309A (ja) * 1986-10-30 1988-05-18 Pioneer Electronic Corp 地磁気センサのデ−タ処理方法
JP2002090151A (ja) * 2000-09-14 2002-03-27 Japan Aviation Electronics Industry Ltd センサ異常判定回路および操向制御装置
JP2004012416A (ja) * 2002-06-11 2004-01-15 Asahi Kasei Corp 方位角計測装置、キャリブレーション方法およびキャリブレーションプログラム
JP2004286732A (ja) * 2003-03-05 2004-10-14 Citizen Watch Co Ltd 方位測定装置、方位測定方法、および方位測定プログラム
JP2005061969A (ja) * 2003-08-11 2005-03-10 Asahi Kasei Electronics Co Ltd 方位角計測装置及び方位角計測方法
JP2005106569A (ja) * 2003-09-30 2005-04-21 Nec Tokin Corp 地磁気方位センサおよび地磁気方位センサの使用方法
JP2006226810A (ja) * 2005-02-17 2006-08-31 Alps Electric Co Ltd 方位計測装置
JP2008215915A (ja) * 2007-03-01 2008-09-18 Yamaha Corp 磁気データ処理装置、方法およびプログラムならびに磁気処理システム。

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63113309A (ja) * 1986-10-30 1988-05-18 Pioneer Electronic Corp 地磁気センサのデ−タ処理方法
JP2002090151A (ja) * 2000-09-14 2002-03-27 Japan Aviation Electronics Industry Ltd センサ異常判定回路および操向制御装置
JP2004012416A (ja) * 2002-06-11 2004-01-15 Asahi Kasei Corp 方位角計測装置、キャリブレーション方法およびキャリブレーションプログラム
JP2004286732A (ja) * 2003-03-05 2004-10-14 Citizen Watch Co Ltd 方位測定装置、方位測定方法、および方位測定プログラム
JP2005061969A (ja) * 2003-08-11 2005-03-10 Asahi Kasei Electronics Co Ltd 方位角計測装置及び方位角計測方法
JP2005106569A (ja) * 2003-09-30 2005-04-21 Nec Tokin Corp 地磁気方位センサおよび地磁気方位センサの使用方法
JP2006226810A (ja) * 2005-02-17 2006-08-31 Alps Electric Co Ltd 方位計測装置
JP2008215915A (ja) * 2007-03-01 2008-09-18 Yamaha Corp 磁気データ処理装置、方法およびプログラムならびに磁気処理システム。

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012046508A1 (ja) * 2010-10-07 2012-04-12 アルプス電気株式会社 移動軌跡検知装置
JP2012083127A (ja) * 2010-10-07 2012-04-26 Alps Electric Co Ltd 移動軌跡検知装置
JP2012088124A (ja) * 2010-10-18 2012-05-10 Alps Electric Co Ltd 磁界検知装置
WO2013005509A1 (ja) * 2011-07-05 2013-01-10 アイチ・マイクロ・インテリジェント株式会社 磁気式ジャイロ
JP2013015435A (ja) * 2011-07-05 2013-01-24 Aichi Micro Intelligent Corp 磁気式ジャイロ
JP2014002089A (ja) * 2012-06-20 2014-01-09 Aichi Micro Intelligent Corp 磁気データ処理装置
CN114967942A (zh) * 2022-03-31 2022-08-30 河北迥然科技有限公司 一种运动姿态分析方法、终端及存储介质
CN114967942B (zh) * 2022-03-31 2023-04-18 河北迥然科技有限公司 一种运动姿态分析方法、终端及存储介质

Also Published As

Publication number Publication date
JP4890660B2 (ja) 2012-03-07
JPWO2010103966A1 (ja) 2012-09-13
KR101210394B1 (ko) 2012-12-11
KR20110104564A (ko) 2011-09-22

Similar Documents

Publication Publication Date Title
WO2010103966A1 (ja) 地磁気検知装置
US9234754B2 (en) Geomagnetism sensing device
EP2482033B1 (en) Geomagnetism detection device
JPWO2006035505A1 (ja) 磁気センサの制御方法、制御装置、および携帯端末装置
CN111707175A (zh) 信号处理电路、位置检测装置和磁传感器系统
TWI452263B (zh) Geomagnetic detection device
JP5374422B2 (ja) 磁界検知装置
JP5425671B2 (ja) 磁界検知装置
JP5498209B2 (ja) 磁界検知装置
JP5015308B2 (ja) 移動軌跡検知装置
JP2006275523A (ja) 電子方位装置および記録媒体
JP5457890B2 (ja) 方位検知装置
JP5144701B2 (ja) 磁界検知装置
JP5498208B2 (ja) 磁界検知装置
JPH033190B2 (ja)
JP5490576B2 (ja) 磁界検知装置
JP5341861B2 (ja) 磁界検知装置
JP2010237030A (ja) 現在位置表示装置
JP5498196B2 (ja) 磁界検知装置
JP2011185861A (ja) 地磁気検知装置
KR20170092356A (ko) 3축 지자기 센서의 방위각 보정 시스템
JP2011169656A (ja) 磁界検知装置
JP5643547B2 (ja) 磁気検知装置
JP2007163389A (ja) 方位センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10750720

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011503778

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117018912

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10750720

Country of ref document: EP

Kind code of ref document: A1