JP5015308B2 - 移動軌跡検知装置 - Google Patents

移動軌跡検知装置 Download PDF

Info

Publication number
JP5015308B2
JP5015308B2 JP2010227351A JP2010227351A JP5015308B2 JP 5015308 B2 JP5015308 B2 JP 5015308B2 JP 2010227351 A JP2010227351 A JP 2010227351A JP 2010227351 A JP2010227351 A JP 2010227351A JP 5015308 B2 JP5015308 B2 JP 5015308B2
Authority
JP
Japan
Prior art keywords
axis
acceleration
detection
magnetic sensor
locus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010227351A
Other languages
English (en)
Other versions
JP2012083127A (ja
Inventor
幸光 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2010227351A priority Critical patent/JP5015308B2/ja
Priority to EP11830441.9A priority patent/EP2626667A4/en
Priority to PCT/JP2011/068514 priority patent/WO2012046508A1/ja
Publication of JP2012083127A publication Critical patent/JP2012083127A/ja
Application granted granted Critical
Publication of JP5015308B2 publication Critical patent/JP5015308B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/04Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by terrestrial means
    • G01C21/08Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by terrestrial means involving use of the magnetic field of the earth
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/14Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by recording the course traversed by the object

Description

本発明は、走行時の軌跡の変化を検知する移動軌跡検知装置に係り、特に、地磁気を検知する磁気検知部を用いて、低速時と高速時の双方において、移動軌跡の検知を可能とした移動軌跡検知装置に関する。
ナビゲーションシステムに搭載される移動軌跡検知装置には、移動軌跡の方向の変化を検知する方向検知手段と、移動距離を検知する距離検知手段とが搭載される。
方向検知手段としては、振動型ジャイロスコープが知られているが、振動型ジャイロスコープは、装置が大型であり、消費電力が大きい。そのため、車載用などの大型のナビゲーションシステムに適しているが、小型の携帯機器に装備することが難しく、携帯機器に搭載される電池の寿命を低下させてしまう。
また、方向および位置を検知する手段として、GPS装置があるが、GPSセンサもアンテナが必要となり、携帯機器が大型化するのみならず、地下街や駅構内や空港内さらにはビルの内部ではGPS電波が届かず、またはきわめて弱くなる。したがって、これらの場所で正確な位置を検知することが難しい。
以下の特許文献1に記載された現在位置表示装置は、移動体の振動方向の変化量に比例した相対方向の信号を出力するレート式のジャイロスコープを用いた第1の方向検出器と、地磁気による絶対方向の信号を出力する地磁気センサを用いた第2の方向検出器を用いている。この現在位置表示装置は、電源投入時は、第2の方向検出器を使用して地磁気の方位から現在位置を検知し、第1の方向検出器が立ち上がって出力が安定してきたときに、第2の方向検出器から第1の方向検出器に検知出力を切り換えるというものである。
特公平1−48486号公報
特許文献1に記載されている地磁気センサは、電源投入時に方位を検知できる地磁気センサを有しているが、地磁気センサの他にさらにレート式のジャイロスコープを搭載しているため、装置が複雑になり、また回路構成も複雑になる。
本発明は上記従来の課題を解決するものであり、磁気センサで地磁気を検知することで、低速時と高速時の双方で移動軌跡の検知ができ、簡単な構成で且つ低消費電力で移動軌跡を検知できる移動軌跡検知装置を提供することを目的としている。
本発明は、磁気検知部と演算部とを有し、互いに直交する基準X軸と基準Y軸および基準Z軸を有する基準三次元座標が設定されており、
前記磁気検知部が、基準X軸の磁気成分を検知するX軸磁気センサと、基準Y軸の磁気成分を検知するY軸磁気センサと、基準Z軸の磁気成分を検知するZ軸磁気センサとを有し、
前記演算部で、前記X軸磁気センサと前記Y軸磁気センサおよび前記Z軸磁気センサの検知出力に基づいて、地磁気ベクトルの向きが基準三次元座標上の座標点データとして求められ、
前記座標点データから地磁気ベクトルの方位を求めて、方位の変化から移動軌跡を演算する低速軌跡演算モードと、基準三次元座標上を移動する前記座標点データから角速度を求め、角速度の変化から移動軌跡を演算する高速軌跡演算モードとが切り換えられて設定されることを特徴とするものである。
本発明の移動軌跡検知装置は、磁気検知部で地磁気ベクトルを検知して、低速時と高速時の双方において、地磁気ベクトルに基づいて移動位置を検知できるようにしている。そのため、簡単な構成で低消費電力で移動位置の検知が可能である。また、GPSの電波が届かない地下街やビルの中などであっても使用することが可能である。
本発明は、加速度検知部を有し、前記加速度検知部が、基準X軸の加速度成分を検知するX軸加速度センサと、基準Y軸の加速度成分を検知するY軸加速度センサと、基準Z軸の加速度成分を検知するZ軸加速度センサとを有しており、
低速軌跡演算モードでは、前記加速度検知部で検知される重力方向の加速度の変化から徒歩の歩数をカウントして移動距離が求められ、高速軌跡演算モードでは、前記加速度検知部で検知される進行方向の加速度の変化から移動距離が求められるものである。
さらに、本発明は、前記低速軌跡演算モードでは、前記加速度検知部で検知された重力の加速度の向きと前記座標点データとから地磁気ベクトルの方位が求められるものである。
本発明は、歩行時である低速時は、加速度検知部で重力の方向が解るので、磁気検知部で検知された地磁気ベクトルに基づいて方位と方位の変化を知ることができ、移動軌跡を求めることができる。また、加速度検知部で重力方向が解るので歩数を計測して移動距離も検知できる。一方、高速走行時に関しては、直進時は加速度検知部で加速度を検知して、移動距離を知ることができる。また高速走行時で回転するときは、加速度検知部に遠心力が作用して、重力方向が理解できなくなるので、このときは、地磁気ベクトルの座標点データの軌跡から角速度を検知することで、移動位置を検知できる。
このように、磁気検知部と加速度検知部を使用することにより、常に走行位置を検知することが可能である。
本発明は、前記演算部では、前記加速度検知部で検知される加速度の大きさに基づいて、低速軌跡演算モードと高速軌跡演算モードが切り換えられる。
例えば、前記演算部では、前記加速度検知部で検知される加速度の大きさが重力の加速度よりも大きくなったときに高速軌跡演算モードに切り換えられる。
上記のように加速度センサを使用して、低速軌跡演算モードと高速軌跡演算モードを自動的に切り換えることで、常に最適なモードで移動軌跡を検知できるようになる。
本発明は、磁気検知部で地磁気ベクトルを検知することで、低速時と高速時の移動軌跡を検知することが可能である。よって、低消費電力で移動軌跡を検知でき、地磁気が到達できる領域であれば、地下街やビルの内部でも使用することができる。
本発明の実施の形態の移動軌跡検知装置の回路ブロック図、 図1に示す移動軌跡検知装置に設けられた演算部の機能を説明するブロック図、 加速度検知部による検知動作を示す説明図、 磁気検知部に設けられたX軸磁気センサとY軸磁気センサおよびZ軸磁気センサの説明図、 地磁気ベクトルの検知動作を示す基準三次元座標の説明図、 磁気検知部で検知する地磁気ベクトルから角速度を求める演算例を示す説明図、 磁気検知部で検知する地磁気ベクトルから角速度を求める他の演算例を示す説明図、 低速走行時の軌跡の検知動作の説明図、 高速走行時の軌跡の検知動作の説明図、
図1に示す本発明の実施の形態の移動軌跡検知装置1は、携帯機器などに搭載されて、歩行時である低速走行時と自動車などに乗った高速走行時に双方において移動軌跡を検知することが可能である。
移動軌跡検知装置1は、地磁気を検知するための磁気検知部2と、加速度を検知する加速度検知部12とを有している。
図3と図4に示すように、移動軌跡検知装置1には、基準三次元座標が設定されている。基準三次元座標は、基準X軸(X0軸)と、基準Y軸(Y0軸)および基準Z軸(Z0軸)が互いに直交しており、その交点が原点Oである。移動軌跡検知装置1は、基準X軸と基準Y軸および基準Z軸の直交関係を維持したまま、空間内で自由に移動できる。
図1に示すように加速度検知部12は、X軸加速度センサ13とY軸加速度センサ14およびZ軸加速度センサ15を有している。
X軸加速度センサ13は、主に基準X軸に沿って移動する質量と、質量の移動距離を検知するセンサとを有している。Y軸加速度センサ14は、主に基準Y軸に沿って移動する質量と、質量の移動距離を検知するセンサとを有している。Z軸加速度センサ15は、主に基準Z軸に沿って移動する質量と、質量の移動距離を検知するセンサとを有している。
図1に示すように、X軸加速度センサ13、Y軸加速度センサ14およびZ軸加速度センサ15で検知された検知出力は、加速度データ検知部16に与えられる。それぞれの加速度センサ13,14,15のセンサで検知された質量の移動距離に比例する検知出力が加速度データ検知部16に与えられると、加速度データ検知部16において、基準X軸方向と基準Y軸方向および基準Z方向のそれぞれの方向の加速度成分が求められる。
図2に示すように、演算部20はCPUを主体として構成されており、CPUはメモリ7に格納されているソフトウエアを呼び出して制御フローを実行する。図2には、演算部20のCPUにおいて実行されるソフトウエアの処理領域を各機能部毎に分割して示している。
加速度データ検知部16で求められた基準X軸と基準Y軸および基準Z軸のそれぞれの方向の加速度成分の検知出力は、演算部20においてディジタル値に変換され、演算部20の一部である加速度データ演算部21に与えられる。加速度データ演算部21において、3方向の加速度成分から移動軌跡検知装置1に与えられている加速度が演算される。
図3は、それぞれの加速度センサ13,14,15によって、基準X軸方向の加速度成分αxと基準Y軸方向の加速度成分αyおよび基準Z軸方向の加速度成分αzが検知されている状態を示している。加速度データ演算部21では、各加速度成分αx,αy,αzが合成されて、加速度ベクトルαmが求められる。加速度ベクトルαmは、基準三次元座標上での加速度の向きを示しているとともに、加速度の大きさを示している。
移動軌跡検知装置1を搭載してる携帯機器などが停止しているとき、加速度ベクトルαmの向きが、重力の作用方向を意味しており、加速度ベクトルαmの絶対値が、重力の加速度αgの絶対値(9.8m/sec2)と等しい。
図2に示すように、演算部20が加速度判別部22を有している。加速度判別部22は、加速度データ演算部21で演算された図3に示す加速度ベクトルαmの絶対値が、重力の加速度αgの絶対値(9.8m/sec2)と比較される。
加速度判別部22において、加速度ベクトルαmの絶対値が、重力の加速度とほぼ等しいと判断したときに、すなわち、重力の加速度に一定の幅(±γ%(例えば±3%や±5%))を与えておき、加速度ベクトルαmの絶対値が前記幅内(重力の加速度±γ%の範囲内)であると判断したときは、移動軌跡検知装置1を搭載した携帯機器が静止しているか、または低速で移動していると判断する。このとき、切換え部23が動作して、低速軌跡演算部31において低速軌跡演算モードが設定される。加速度ベクトルの絶対値が、重力の加速度プラスγ%を超えたと判断したときは、携帯機器が高速に移動していると判断し、切換え部23が動作して、高速軌跡演算部32において高速軌跡演算モードが設定される。
図2に示すように、演算部20は、歩数計算部24と走行距離計算部25を有している。切換え部23において低速軌跡演算モードが設定されているときで、且つ加速度データ演算部21で演算された加速度ベクトルαmが周期的に変化しているとき、すなわち、加速度ベクトルαmが、重力加速度±γ%の範囲内で且つ加速度ベクトルαmが規則的に変化しているときは、歩数計算部24が動作する。歩数計算部24は、加速度ベクトルαmの変化の1周期を徒歩時の1歩と判断し、歩数がカウントされる。
走行距離計算部25は、切換え部23において高速軌跡演算モードが設定されているときに、図3に示す加速度ベクトルαmの絶対値の変化から走行距離が計算される。すなわち、加速度ベクトルαmの絶対値が、重力の加速度プラスγ%を越えたときは、走行距離計算部25において、加速度ベクトルαmの絶対値の変化が求められ、この変化から走行加速度が求められる。この走行加速度が時間で2回積分されて移動距離が計算される。
図1に示すように、磁気検知部2はX軸磁気センサ3とY軸磁気センサ4およびZ軸磁気センサ5を有している。図4に示すように、X軸磁気センサ3は基準X軸(X0軸)に沿って固定され、Y軸磁気センサ4は基準Y軸(Y0軸)に沿って固定され、Z軸磁気センサ5は基準Z軸(Z0軸)に沿って固定されている。
X軸磁気センサ3とY軸磁気センサ4およびZ軸磁気センサ5は、いずれもGMR素子で構成されている。GMR素子は、Ni−Co合金やNi−Fe合金などの軟磁性材料で形成された固定磁性層および自由磁性層と、固定磁性層と自由磁性層との間に挟まれた銅などの非磁性導電層とを有している。固定磁性層の下に反強磁性層が積層され、反強磁性層と固定磁性層との反強結合により、固定磁性層の磁化が固定されている。
X軸磁気センサ3は、地磁気の基準X軸(X0軸)に向く成分を検知するものであり、固定磁性層の磁化の向きが基準X軸に沿うPX方向に固定されている。自由磁性層の磁化の向きは地磁気の向きに反応する。自由磁性層の磁化の向きがPX方向と平行になるとX軸磁気センサ3の抵抗値が極小になり、自由磁性層の磁化の向きがPX方向と逆向きになるとX軸磁気センサ3の抵抗値が極大になる。自由磁性層の磁化の向きがPX方向と直交すると、抵抗値が前記極大値と極小値との平均値となる。
図1に示す磁場データ検知部6では、X軸磁気センサ3と固定抵抗とが直列に接続され、X軸磁気センサ3と固定抵抗との直列回路に電圧が与えられており、X軸磁気センサ3と固定抵抗との間の電圧がX軸の検知出力として取り出される。X軸磁気センサ3に対して基準X軸に向く磁界が与えられていないとき、またはPX方向に直交する磁界が与えられているときに、X軸検知出力が中点電圧となる。
磁気検知部2の姿勢を変えて、X軸磁気センサ3の固定磁性層の磁化の固定方向PXを地磁気ベクトルVと同じ向きにするとX軸磁気センサ3に与えられる磁界成分が極大値となる。このときのX軸検知出力は、前記中点電位に対してプラス側の極大値となる。逆に、X軸磁気センサ3の固定磁性層の磁化の固定方向PXを地磁気ベクトルVと反対に向けると、X軸磁気センサ3に与えられる逆向きの磁界成分が極大値となる。このときのX軸検知出力は、前記中点電圧に対してマイナス側の極大値となる。
Y軸磁気センサ4とZ軸磁気センサ5も、それぞれ固定抵抗とが直列に接続され、Y軸磁気センサ4またはZ軸磁気センサ5と固定抵抗との直列回路に電圧が与えられており、各センサと固定抵抗との間の中点電圧がY軸検知出力またはZ軸検知出力として取り出される。
Y軸磁気センサ4の固定磁性層の磁化の固定方向PYを地磁気ベクトルVと同じ向きにすると、Y軸検知出力は、中点電圧に対してプラス側の極大値になる。Y軸磁気センサ4の固定磁性層の磁化の固定方向PYを地磁気ベクトルVと反対に向けると、Y軸検知出力は、中点電圧に対してマイナス側の極大値となる。同様に、Z軸磁気センサ5の固定磁性層の磁化の固定方向PZを地磁気ベクトルVと同じ向きにすると、Z軸検知出力は、中点電圧に対してプラス側の極大値になる。Z軸磁気センサ5の固定磁性層の磁化の固定方向PZを地磁気ベクトルVと反対に向けると、Z軸検知出力は、中点電圧に対してマイナス側の極大値となる。
地磁気ベクトルVの大きさが一定であれば、X軸磁気センサ3とY軸磁気センサ4およびZ軸磁気センサ5からの検知出力は、いずれもプラス側の極大値の絶対値と、マイナス側の極大値の絶対値とが同じである。
X軸磁気センサ3としては、地磁気ベクトルの向きによってプラス側の検知出力とマイナス側の検知出力が得られ、プラス側の検知出力の極大値とマイナス側の検知出力の極大値とで絶対値が同じになれば、GMR素子以外の磁気センサで構成することもできる。例えば、X軸に沿ってプラス側の磁界強度のみを検知できるホール素子またはMR素子と、マイナス側の磁界強度のみを検知できるホール素子またはMR素子を組み合わせて、X軸磁気センサ3として使用してもよい。これは、Y軸磁気センサ4とZ軸磁気センサ5においても同じである。
図1に示すように、磁場データ検知部6で検知されたX軸検知出力とY軸検知出力およびZ軸検知出力は、演算部20に与えられる。演算部20にクロック回路が設けられており、クロック回路の計測時間に応じて、磁場データ検知部6で検知されたX軸検知出力とY軸検知出力およびZ軸検知出力が、短いサイクルで間欠的にサンプリングされて演算部20に読み出される。
それぞれの検知出力は、演算部内に設けられたA/D変換部によってディジタル値に変換され、図2に示す座標点データ演算部26に与えられる。
座標点データ演算部26では、X軸検知出力とY軸検知出力およびZ軸検知出力から、磁気検知部2で検知した地磁気ベクトルVが、図5に示すX0−Y0−Z0の基準三次元座標上の座標点データDaに変換される。磁場データ検知部6から次々に読み出された検知出力が座標点データDaに変換されて、演算部20内のデータバッファ(バッファメモリ)27に格納される。データバッファ27は、クロック回路と同期して短いサイクルでサンプリングされて演算された前記座標点データDaが順番に格納され、新たな座標点データが格納されるたびに最も古い座標点データDaが捨てられる。移動軌跡検知装置1が動作している間は、最新の座標点データDaが演算されてデータバッファ11に順番に格納されていく。
図5に示すように、磁気検知部2が地球上のいずれかの場所に置かれると、地磁気ベクトルが各磁気センサで検知される。磁場データ検知部6から、X軸磁気センサ3からの検知出力に基づいてX軸検知出力xaが得られ、Y軸磁気センサ4からの検知出力に基づいてY軸検知出力yaが得られ、Z軸磁気センサ5から検知出力に基づいてZ軸検知出力zaが得られる。座標点データ演算部26では、前記各軸の検知出力xa,ya,zaに基づいて、地磁気ベクトルVの向きが、基準三次元座標上の座標点データDa(xa,ya,za)として求められる。地磁気ベクトルVを示す座標点データDa(xa,ya,za)はサンプリング周期毎に次々と得られ、データバッファ27に順に格納されていく。
移動軌跡検知装置1は、電源が投入された直後または使用を開始するときに、キャリブレーションが行なわれる。キャリブレーションは、移動軌跡検知装置1を搭載した携帯機器のディスプレイに表示される指示などに基づいて行われる。キャリブレーションは、使用者が移動軌跡検知装置1を任意の方向へ数回だけ回転させることで行われる。座標点データ演算部26では、キャリブレーションにおいて次々に得られる座標点データDaのいくつかをサンプリングする。少なくとも3個の座標点データDaを得ることで、その時点での座標点データDaの回転軌跡に一致する円を特定できる。この円が複数個求められ、それぞれの円の中心を通り且つ円を含む平面に垂直な中心線が求められ、複数の中心線の交点が求められる。座標点データ演算部26では、前記交点がX0−Y0−Z0の三次元座標の原点Oとなるように補正される。
上記キャリブレーション処理の結果、図5に示すように、座標点データDa(xa,xb,xc)が、基準三次元座標の原点Oを中心とする基準球面座標G上の点として表現される。基準球面座標Gの半径は、地磁気ベクトルVの絶対値に比例している。
図2に示すように、演算部20は方位計算部28と角速度計算部29を有している。
図2に示す加速度判別部22において、加速度ベクトルαmの絶対値が、重力の加速度の大きさにほぼ一致していると判断され、切換え部23において低速軌跡演算モードに切り換えられているときは、図3に示す加速度ベクトルαmの向きが、重力の作用方向を示している。なお、図3に示す加速度成分の検知と図5に示す磁界成分の検知は、同じ基準三次元座標に基づいている。
よって、低速軌跡演算モードでは、方位計算部28において、図3に示す加速度ベクトルαmと図5に示す地磁気ベクトルVとから、移動軌跡検知装置1において絶対的な方位とその変化が求められる。方位計算部28では、重力方向を示している加速度ベクトルαmと垂直で且つ原点Oを通る水平面を基準三次元座標上に設定し、地磁気ベクトルVを水平面に投影することで、南北方向を知ることができる。この投影線の移動角度の変化を知ることで、低速軌跡演算モードにおいて、移動軌跡検知装置1が移動しているときの移動軌跡を知ることができる。
移動軌跡検知装置1が高速で移動しているときは、図3に示す加速度ベクトルαmの絶対値が重力の加速度よりも大きくなり、重力の向きも理解できなくなる。重力の向きが解らなくなると、加速度ベクトルαmから水平面が求められないため、地磁気ベクトルVが水平面においてどの角度だけ回動したのか理解できなくなる。また、移動軌跡検知装置1が高速で回転軌跡を移動すると、加速度検知部12で検知される加速度ベクトルαmに遠心力が加わるため、重力の向きがさらに不明になり、また移動による加速度がどの向きに作用しているのかもわからなくなる。
そこで、切換え部23において、高速軌跡演算モードが設定されているときは、角速度計算部29において、地磁気ベクトルVの角速度が求められ、この角速度の変化に基づいて、移動軌跡検知装置1の移動軌跡が求められる。
角速度計算部29では、図6に示すように、データバッファ27に格納された複数の座標点データを使用して角速度が演算される。図6では、D1が最新の座標点データであり、それから遡ってサンプリングされた座標点データが、D2,D3,D4,・・・Dn−1、Dnである。角速度計算部29では、最新のデータに近い2つの座標点データを結ぶ直線とこの直線に直交する第1の直交線L1が求められ、それよりも前に得られた他の2つの座標点データを結ぶ直線とこの直線に交叉する第2の直交線L2とが求められ、2つの直交線L1,L2の交点から座標点データが移動している回転軌跡円H1の中心Osが求められる。
あるいは、図7に示すように、基準三次元座標上において複数の候補円が予め予測されて設定される。この候補円は、半径を変化させたり、原点Oからの角度を変えて、一定の規則の基で複数決められている。あるいはランダムに複数決められている。これらの候補円と、複数の座標点データD1,D2,D3,・・・との誤差を最小二乗法により計算し、誤差が最も小さい候補円を回転軌跡円H2とし、その中心Osが求められる。
角速度計算部29では、いずれかの演算で特定された回転軌跡円H1の中心Osからいずれかの2つの座標点データの開き角度を求め、2つの座標点データのサンプル時間で微分することで角速度が求められる。移動軌跡検知装置1が運動していると、新たな座標点データDaが次々と得られてデータバッファ27に格納される。最新の座標点データを使用し、または最新のデータに近い座標点データを用いて、角速度の計算を繰り返すことで、次々に変化する座標点データの角速度およびその変化を検知することができる。
図8は、低速軌跡演算部31で設定される低速軌跡演算モードを示している。低速軌跡演算モードでは、歩数計算部24で計算された歩数と、予め設定されている使用者の一歩の移動距離のデータとから走行距離が算出される。この走行距離と、方位計算部28で計算される地磁気ベクトルVを検知した方位の計算値とから、移動軌跡Laが求められる。したがって、GPS電波が届かない地下街やビルの内部であっても、地磁気が到達する領域であれば、移動軌跡検知装置1を携帯した人の歩行時の移動軌跡Laを知ることができ、ナビゲーション装置などに使用することができる。
図9は、高速軌跡演算部32で設定される高速軌跡演算モードを示している。高速軌跡演算モードは、走行距離計算部25と角速度計算部29の計算結果から移動軌跡が求められる。
高速軌跡演算部32では、角速度計算部29で計算された角速度が予め決められた基準以下または基準未満と判断したときには、ほぼ直線走行であると判断し、走行距離計算部25の走行距離の計算値から直線状の移動軌跡Lbが求められる。角速度計算部29で計算された角速度が前記基準以上または基準を越えたと判断したときは、角速度計算部29の計算結果から回動軌跡Lcが演算される。
以上から、移動軌跡検知装置1を搭載した携帯機器を所持して歩行しているときも、自動車などに乗って高速で移動しているときも、磁気検知部2と加速度検知部12を使用して移動軌跡の検知が可能になる。
1 移動軌跡検知装置
2 磁気検知部
3 X軸磁気センサ
4 Y軸磁気センサ
5 Z軸磁気センサ
6 磁場データ検知部
12 加速度検知部
13 X軸加速度センサ
14 Y軸加速度センサ
15 Z軸加速度センサ
16 加速度データ検知部
20 演算部
21 加速度データ演算部
22 加速度判別部
23 切換え部
24 歩数計算部
25 走行距離計算部
26 座標点データ演算部
27 データバッファ
28 方位計算部
29 角速度計算部
31 低速軌跡演算部
32 高速軌跡演算部
X0 基準X軸
Y0 基準Y軸
Z0 基準Z軸
V 地磁気ベクトル
αm 加速度ベクトル

Claims (5)

  1. 磁気検知部と演算部とを有し、互いに直交する基準X軸と基準Y軸および基準Z軸を有する基準三次元座標が設定されており、
    前記磁気検知部が、基準X軸の磁気成分を検知するX軸磁気センサと、基準Y軸の磁気成分を検知するY軸磁気センサと、基準Z軸の磁気成分を検知するZ軸磁気センサとを有し、
    前記演算部で、前記X軸磁気センサと前記Y軸磁気センサおよび前記Z軸磁気センサの検知出力に基づいて、地磁気ベクトルの向きが基準三次元座標上の座標点データとして求められ、
    前記座標点データから地磁気ベクトルの方位を求めて、方位の変化から移動軌跡を演算する低速軌跡演算モードと、基準三次元座標上を移動する前記座標点データから角速度を求め、角速度の変化から移動軌跡を演算する高速軌跡演算モードとが切り換えられて設定されることを特徴とする移動軌跡検知装置。
  2. 加速度検知部を有し、前記加速度検知部が、基準X軸の加速度成分を検知するX軸加速度センサと、基準Y軸の加速度成分を検知するY軸加速度センサと、基準Z軸の加速度成分を検知するZ軸加速度センサとを有しており、
    低速軌跡演算モードでは、前記加速度検知部で検知される重力方向の加速度の変化から徒歩の歩数をカウントして移動距離が求められ、高速軌跡演算モードでは、前記加速度検知部で検知される進行方向の加速度の変化から移動距離が求められる請求項1記載の移動軌跡検知装置。
  3. 前記低速軌跡演算モードでは、前記加速度検知部で検知された重力の加速度の向きと前記座標点データとから地磁気ベクトルの方位が求められる請求項2記載の移動軌跡検知装置。
  4. 前記演算部では、前記加速度検知部で検知される加速度の大きさに基づいて、低速軌跡演算モードと高速軌跡演算モードが切り換えられる請求項2または3記載の移動軌跡検知装置。
  5. 前記演算部では、前記加速度検知部で検知される加速度の大きさが重力の加速度よりも大きくなったときに高速軌跡演算モードに切り換えられる請求項4記載の移動軌跡検知装置。
JP2010227351A 2010-10-07 2010-10-07 移動軌跡検知装置 Expired - Fee Related JP5015308B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010227351A JP5015308B2 (ja) 2010-10-07 2010-10-07 移動軌跡検知装置
EP11830441.9A EP2626667A4 (en) 2010-10-07 2011-08-15 DEVICE FOR DETECTING A ROAD TRACK
PCT/JP2011/068514 WO2012046508A1 (ja) 2010-10-07 2011-08-15 移動軌跡検知装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010227351A JP5015308B2 (ja) 2010-10-07 2010-10-07 移動軌跡検知装置

Publications (2)

Publication Number Publication Date
JP2012083127A JP2012083127A (ja) 2012-04-26
JP5015308B2 true JP5015308B2 (ja) 2012-08-29

Family

ID=45927507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010227351A Expired - Fee Related JP5015308B2 (ja) 2010-10-07 2010-10-07 移動軌跡検知装置

Country Status (3)

Country Link
EP (1) EP2626667A4 (ja)
JP (1) JP5015308B2 (ja)
WO (1) WO2012046508A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104112301B (zh) * 2014-06-23 2015-07-22 深圳市一体数科科技有限公司 基于智能终端和服务器端的汽车驾驶行为分析方法及系统
JP6844338B2 (ja) * 2017-03-10 2021-03-17 カシオ計算機株式会社 情報処理装置、情報処理方法及びプログラム
CN108195372A (zh) * 2017-11-09 2018-06-22 捷开通讯(深圳)有限公司 一种测量距离的方法、移动终端和具有存储功能的装置
CN109029459B (zh) * 2018-07-24 2023-07-21 南京信息工程大学 一种运动目标轨迹追踪系统及基于该系统的计算方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5833283A (ja) * 1981-08-21 1983-02-26 本田技研工業株式会社 移動体の現在位置表示装置
ATE396381T1 (de) * 2002-11-05 2008-06-15 Nokia Corp Mobiler elektronischer dreidimensionaler kompass
JP4165407B2 (ja) * 2004-01-30 2008-10-15 セイコーエプソン株式会社 位置推定装置、位置推定方法、位置推定プログラム及び位置推定プログラムを記録したコンピュータ読み取り可能な記録媒体
JP4615287B2 (ja) * 2004-11-01 2011-01-19 東京計器株式会社 方位姿勢検出装置
JP2008151731A (ja) * 2006-12-20 2008-07-03 Seiko Epson Corp ナビゲーション装置及びナビゲーション装置の制御方法
JP4890660B2 (ja) * 2009-03-10 2012-03-07 アルプス電気株式会社 地磁気検知装置

Also Published As

Publication number Publication date
EP2626667A1 (en) 2013-08-14
EP2626667A4 (en) 2016-05-18
WO2012046508A1 (ja) 2012-04-12
JP2012083127A (ja) 2012-04-26

Similar Documents

Publication Publication Date Title
CN100510623C (zh) 移动终端装置
JP3848941B2 (ja) 地磁界センサの姿勢誤差補償装置及び方法
JP4890660B2 (ja) 地磁気検知装置
JP2004286732A5 (ja)
US9140802B2 (en) Auxiliary as vehicle speed when difference between auxiliary and propagation above threshold
JP5015308B2 (ja) 移動軌跡検知装置
JP4599502B1 (ja) 磁気式ジャイロ
WO2018214226A1 (zh) 一种无人车实时姿态测量方法
JP5678357B2 (ja) 回転情報演算方法、回転情報演算プログラム、磁気型ジャイロスコープおよび移動体
JP5374422B2 (ja) 磁界検知装置
JP5475873B2 (ja) 地磁気検知装置
JP2006275523A (ja) 電子方位装置および記録媒体
JP5457890B2 (ja) 方位検知装置
JP5425671B2 (ja) 磁界検知装置
JP5498209B2 (ja) 磁界検知装置
JPH033190B2 (ja)
CN204158397U (zh) 一种人体运动检测装置
JP2012132851A (ja) 旋回検出装置、端末装置及びプログラム
JP5144701B2 (ja) 磁界検知装置
JP2010237030A (ja) 現在位置表示装置
JP5125534B2 (ja) 方位検出装置および方位検出プログラム
JP5490576B2 (ja) 磁界検知装置
JP5498196B2 (ja) 磁界検知装置
JP2011185865A (ja) 磁界検知装置
Umek et al. Usability of Smartphone Inertial Sensors for Confined Area Motion Tracking

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120606

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5015308

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees