WO2006115004A1 - 超高強度繊維補強セメント組成物、超高強度繊維補強モルタル又はコンクリート、並びに超高強度セメント混和材 - Google Patents

超高強度繊維補強セメント組成物、超高強度繊維補強モルタル又はコンクリート、並びに超高強度セメント混和材 Download PDF

Info

Publication number
WO2006115004A1
WO2006115004A1 PCT/JP2006/307263 JP2006307263W WO2006115004A1 WO 2006115004 A1 WO2006115004 A1 WO 2006115004A1 JP 2006307263 W JP2006307263 W JP 2006307263W WO 2006115004 A1 WO2006115004 A1 WO 2006115004A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
mass
strength
cement
silica fume
Prior art date
Application number
PCT/JP2006/307263
Other languages
English (en)
French (fr)
Inventor
Yoshiharu Watanabe
Masanobu Ashida
Kazuhiro Aizawa
Kazunori Takada
Yoshihiro Hishiki
Toshio Ohno
Toshimichi Ichinomiya
Gorou Sakai
Noriaki Matsubara
Original Assignee
Denki Kagaku Kogyo Kabushiki Kaisha
Kajima Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo Kabushiki Kaisha, Kajima Corporation filed Critical Denki Kagaku Kogyo Kabushiki Kaisha
Priority to CN2006800127612A priority Critical patent/CN101160268B/zh
Priority to EP06731211.6A priority patent/EP1876153B8/en
Priority to KR1020077025044A priority patent/KR101236604B1/ko
Priority to US11/918,626 priority patent/US7670425B2/en
Publication of WO2006115004A1 publication Critical patent/WO2006115004A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/08Flue dust, i.e. fly ash
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/14Acids or salts thereof containing sulfur in the anion, e.g. sulfides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • C04B2201/52High compression strength concretes, i.e. with a compression strength higher than about 55 N/mm2, e.g. reactive powder concrete [RPC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • Ultra high strength fiber reinforced cement composition Ultra high strength fiber reinforced mortar or concrete, and ultra high strength cement admixture
  • the present invention relates to an ultrahigh strength fiber reinforced cement composition, an ultrahigh strength fiber reinforced mortar or concrete, and an ultrahigh strength cement admixture.
  • ultra-high-strength fiber reinforced cement composition containing silica fume, coal gasification fly ash, gypsum, and metal fibers mixed in a specific ratio, and ultra-high strength containing fine aggregate in this cement composition
  • Strength fiber reinforced mortar or concrete, and ultra high strength cement admixture used in these.
  • the problem with mortar and concrete is that the bending strength is basically lower than the compressive strength, and even if the compressive strength is increased, the bending strength should not be so high.
  • a method of introducing prestress with PC steel, a method of introducing chemical prestress with expanded material, a method of reinforcing with metal fiber, and a steel pipe filled with high-strength mortar or concrete Methods such as composite structures have been implemented.
  • a cement composition reinforced with metal fibers and a high bending strength cement composition and a cemented hardened body using the same have already been proposed.
  • Cement, pozzolanic material with an average particle size of less than 1.5 ⁇ m, average Compressive strength ⁇ 50 0 kgf Zc m 2 (147 N / mm 2 ), bending strength 1 50 using quartz powder with particle size of 1.5 to 20 ⁇ m, cement composition made of aggregate and metal fiber This is to obtain a cement-based cured body of kgf Zc m 2 (i 4.7 N / mm 2 ) or more (see Patent Document 1).
  • Patent Document 1 Japanese Laid-Open Patent Publication No. 1-11130508 ⁇
  • coal gasification fly ash is a gas by-product of power generation using coal.
  • the spherical particles have a smaller average particle size than ordinary pulverized coal-fired fly ash.
  • the spherical particle surface of coal gasification fly ash is smooth, it has better ball bearing action than ordinary fly ash, and is used for high strength mortar or concrete with high fluidity at low water binder ratio. What can be done has already been proposed (see Patent Document 2).
  • Patent Document 2 Japanese Patent Laid-Open No. 2 0 1-1 9 5 2 7
  • gypsum is widely used as a high-strength admixture regardless of whether or not it is steam-cured, and has been proposed as an admixture that can achieve higher strength and durability when combined with silica fume (see Patent Document 3). ).
  • Patent Document 3 Japanese Patent No. 2 5 8 1 8 0 3
  • the pozzolanic fine powder is silica fume fly ash. Since the average particle diameter of silica film is 0.1 l w m, it can be used as it is as an admixture for high strength.
  • fly ash produced as a by-product from pulverized coal-fired thermal power plants has a maximum particle size of about 10 ⁇ ⁇ ⁇ and cannot be used without classification or pulverization classification.
  • the maximum particle size of this fly ash is 5 to 10 m. Classification is required. Therefore, the problem of increasing the classification or powder classification process remains for industrial use.
  • the problem to be solved by the present invention is to improve the fluidity (workability) and increase the ratio of the bending strength to the compressive strength while increasing the absolute value of the compressive strength of the mortar not containing metal fibers.
  • the present invention provides a highly versatile ultra-high-strength fiber reinforced mortar or concrete that can obtain high bending strength even with a smaller amount of metal fibers and can also use fine aggregates used in general raw concrete.
  • Such problems are to be achieved synergistically by using cement admixtures that combine silica fume ash coal gasified fly ash and plaster in a specific range.
  • the present invention employs the following means in order to solve the above problems.
  • the total amount of silica fume and coal gasification fly ash is 5 to 40 parts by mass, and gypsum 0.5 to 8 parts by mass with respect to 100 parts by mass of cement. It is an ultra high strength fiber reinforced cement composition.
  • Ultra high strength fiber reinforcement according to any one of the above (3) to (6), characterized by having a compressive strength of 15 ON / mm 2 or higher and a bending strength of 20 N / mm 2 or higher. Mortar or concrete.
  • Silica fume, coal gasification fly ash, and gypsum are the main components, and the ratio of silica fume and coal gasification fly ash is 95 to 50 parts by mass.
  • part% which shows the mixture ratio and addition amount used by this invention is a mass reference
  • the ultra-high-strength fiber reinforced cement composition, ultra-high-strength fiber reinforced mortar or concrete of the present invention (a) has improved fluidity and good workability.
  • a member (ultra-high compressive strength, high bending strength, ultra-dense, highly durable cement cured body) can be obtained.
  • the cement used in the ultra-high-strength fiber reinforced cement composition of the present invention includes various normal Portland cements such as high strength, medium strength heat, low heat, sulfate resistance, and white, blast furnace slag and normal fly ash. These include cement mixed with Portland cement, Eco cement, super early cement, and hard cement. A cement in which an arbitrary amount of a plurality of these cements is mixed can also be used. In addition, ordinary Portland cement, early-strength Portland cement, blast furnace slag cement and the like suitable for generating ettringite are more preferable.
  • the silica fume used in the ultra-high strength fiber reinforced cement composition of the present invention is a spherical ultra fine particle by-produced when a silicon alloy such as metal silicon ferrosilicon is produced in an electric furnace or the like, and the main component is Amorphous Si 02.
  • Silica fume increases the compressive strength of the hardened cement depending on the amount added, but the ratio of bending strength to compressive strength may be lower than when it is not miscible. Furthermore, since silica fume is a spherical ultra-fine particle, when it is used in combination with a high-performance water reducing agent, good fluidity can be obtained in the cement kneaded material.
  • the coal gasification fly ash (hereinafter abbreviated as CGFA) used for the ultrahigh strength fiber reinforced cement composition of the present invention is gasified coal as described in the above paragraph [0 0 0 3]. It is discharged as a by-product when generating electricity using methane, and is a spherical fine particle with a maximum particle size of 5 to 10 / im that is discarded from the boiler flue along with the combustion gas and collected by the dust collector. In addition, it has the characteristics that the particle size is different from that of normal coal-fired fly ash and that the surface content of Si O 2 is high.
  • CGFA has a spherical particle size like silica fume, it has the effect of increasing fluidity when used in combination with a high-performance water reducing agent, but its pozzolanic activity is lower than that of silica fume. Therefore, the strength enhancement effect is small.
  • the present invention is blended at a ratio of 95 to 50 parts by mass of silica fume and 5 to 50 parts by mass of CGFA.
  • C G F A is less than 5 parts by mass, the effect of improving fluidity and bending strength is small, and if it exceeds 50 parts by mass, the compressive strength is lowered.
  • the blending ratio of C G F A to silica fume increases as the C G F A increases. If the force exceeds the peak value, the amount of CGFA increases, and the improvement effect decreases. Therefore, there is a preferred range for the blending ratio of silica film and C G F A, and the more preferred ranges of the present application are 90 to 60 parts by mass of silica fume and 10 to 40 parts by mass of C G F A.
  • a specific amount of silica fume and C G F A are added in a total amount of 5 to 40 parts by mass with respect to 100 parts by mass of cement. If the amount is less than 5 parts by mass, the improvement in fluidity and the effect of increasing strength against compressive strength and bending strength are small, and if added over 40 parts by mass, the fluidity decreases and the effect of increasing the strength according to the addition rate However, it is not preferable in terms of performance and economy. A more preferable range in the present application is 7 to 30 parts by mass.
  • the gypsum used in the present invention may be gypsum in various forms such as dihydrate gypsum, hemihydrate gypsum, soluble anhydrous gypsum (type III), and insoluble anhydrous gypsum (type II). Is anhydrous gypsum, hemihydrate gypsum, and dihydrate gypsum.
  • gypsum temporarily suppresses hydration of calcium aluminate to improve fluidity, and then generates ettringite in the form of needles by hydration. This ettringite fills the voids in the hardened cement body and promotes solidification, enabling high strength.
  • Gypsum is mixed in 0.5 to 8 parts by mass in terms of anhydride with respect to 100 parts by mass of cement, and if it is less than 0.5 parts by mass, the effect of increasing fluidity and strength is small, exceeding 8 parts by mass. Even if blended, the effect of increasing the strength cannot be expected. Preferably it is 1-5 mass parts.
  • the fine aggregate used in the ultra-high-strength fiber reinforced mortar or concrete of the present invention is preferable because the river sand used in the ready-mix factory is the most easily available.
  • there is no need to use a special grain size configuration such as reducing the maximum aggregate size, but the maximum aggregate size may be limited depending on the purpose and application.
  • the grain size composition specified by the Japan Society of Civil Engineers and Architectural Society is sufficient.
  • the fine aggregate is blended in an amount of 50 to 200 parts by mass with respect to 100 parts by mass of cement, silica frame, CGFA and gypsum (hereinafter simply referred to as a binder). If it is less than 50 parts by mass, the hardened cement body exhibits brittle properties and the bending strength may be reduced. On the other hand, if it exceeds 200 parts by mass, it will be difficult to obtain a compressive strength of 15 O NZmin 2 or more even if the high-performance water reducing agent is used to the maximum extent. A more preferable range of the present application is 60 to 150 parts by mass. Furthermore, any amount of coarse aggregate can be used in combination. The quality of the coarse aggregate is not particularly limited as in the case of the fine aggregate, and it is possible to use the one used in the ready-mixed factory.
  • the ultra high strength fiber reinforced mortar or concrete of the present invention 15 to 25 parts by mass of the total amount of kneaded water and high-performance water reducing agent with respect to 100 parts by mass of the binder , Simply called water ratio).
  • the high-performance water reducing agent indicates a water reducing agent that is commercially available in a liquid state regardless of the solid content concentration.
  • Examples of the high-performance water reducing agent that can be used in the ultra-high-strength fiber reinforced cement composition of the present invention include those referred to simply as high-performance water reducing agents and those referred to as high-performance AE water reducing agents.
  • the type and amount of the high-performance water reducing agent are not particularly limited, but the amount used for 100 parts by mass of cement is at most 5 parts by mass for any type of high-performance water reducing agent. The amount is preferably 4 parts by mass. Even if the amount exceeds 5 parts by mass, the water reduction rate cannot be increased in many cases.
  • High-performance water-reducing agents are polyalkylarylsulfonate-based high-performance water-reducing agents, aromatic aminosulfonate-based high-performance water-reducing agents, and melamine formalin resin sulfonate-based high-performance water-reducing agents.
  • the main component is any one of a performance water reducing agent and a polycarboxylic acid salt water reducing agent, and one or more of these are used.
  • Polyalkylaryl sulfonate-based high-performance water reducing agents include methyl naphthalene sulfonic acid formalin condensate, naphthalene sulfonic acid formalin condensate, and anthracene sulfonic acid formalin condensate.
  • Melamine formalin sulfonate-based high-performance water reducing agent includes Dare Is Chemicals. Company product name “Darlex FT-3S”, Showa Denko Construction Materials Co., Ltd. product names “Molmaster F-10 (powder)” and “Molmaster F-20 (powder)”.
  • High-performance AE water reducing agents are polyalkylaryl sulfonate-based high-performance water reducing agents, aromatic amino sulfonate-based high-performance water-reducing agents, and melamine formalin sulfonate-based power. It may mean a carboxylate-based water reducing agent.
  • a polycarboxylate-based water reducing agent is a copolymer or a salt thereof containing an unsaturated carboxylic acid monomer as a component, such as polyalkylene dallicol monoacrylate, polyalkylene dallicol monomethacrylate, maleic anhydride and styrene.
  • Copolymers of copolymers of lenacrylic acid and methacrylic acid salts and copolymers derived from monomers copolymerizable with these monomers are the mainstream.
  • the water reduction rate is large with a small addition amount. In general, it has air-entraining properties and a large delay in setting and hardening, but it has the characteristics of good flow slump retention.
  • the metal fiber used in the ultra high strength fiber reinforced mortar or concrete of the present invention is a metal fiber having a length of 5 to 30 mm and a diameter of 0.1 to 1 mm, and mortar or concrete 1 m 3 0.5 to 3% by volume is blended per unit. If the length exceeds 3 O mm, the fluidity of the mortar or concrete decreases, and as a result, the improvement in bending strength cannot be expected. Also, if it is less than 5 mm, it becomes shorter than the maximum size of the fine aggregate, so the fiber reinforcement effect when bending stress acts becomes small and the bending strength decreases. It is preferably 10 to 3 O mm. If the diameter of the metal fiber is less than 0.1 mm, the strength of the metal fiber itself becomes weak and the bending strength may be difficult to improve. If the diameter exceeds 1 mm, even if the compounding amount is increased, the metal fiber in the mortar or concrete Since the number per unit volume is reduced, the bending strength is not improved.
  • the amount of metal fibers is mortar or concrete lm 3. 5 to 3 is the volume%, 0.5 effect of improving the bending strength is less than the volume percent smaller, bending be super strong point blended 3 volume% The increase according to the compounding ratio of strength cannot be expected. Preferably it is 0.7-2.5 volume%.
  • the material of the metal fiber is not particularly limited, but steel and stainless steel are more preferable because they are easily available.
  • the mixing method for the ultra-high-strength fiber reinforced mortar or concrete of the present invention does not require a special method and may be a conventional mixing method.
  • the curing method for the ultra-high strength fiber mortar or concrete of the present invention is not limited.
  • EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, it is not restricted to these. The materials, test items, and methods used in the examples are summarized below. [Materials used]
  • Gypsum Insoluble anhydrous gypsum, natural product, density 2.82 g / cm 3
  • High performance water reducing agent Polycarboxylate water reducing agent, "Super 1000N” manufactured by Grace Chemicals Co., Ltd.
  • Metal fiber A Stainless steel with a diameter of 0.2mm and a length of 20mm, tensile strength 2000N / mm 2 or more, density 7.85 g / cm 3
  • Metal fiber B steel with a diameter of 0.2mm and length of 15mm, tensile strength 2000N / mm 2 , density 7.80 g / cm "
  • Metal fiber C steel with diameter 0.2mm, length 3, 5, 10, 15, 20, 30, 40mm, tensile strength 1600N / mm 2 , density 7.80 g / cm 3
  • the bending strength was in accordance with JIS R 5201, and the compression strength was molded into a mold with a diameter of 5 x 10 cm.
  • For mortar mixing use a JIS R 5201 mortar mixer, and put the mixture of cement, silica fume, CGFA, gypsum and fine aggregate in a polyethylene bag in advance in a kneading bowl. Kneading water in which the performance reducing agent was dissolved was added and kneaded at a low speed for 5 minutes and at a high speed for 2 minutes. The metal fibers were added little by little while stirring at low speed after the mortar was kneaded, and kneaded for 3 minutes after the addition was completed.
  • the curing method is that the molded ultra-high-strength fiber mortar specimen is immediately sealed in a constant temperature room at 20 ° C, and the mold upper surface is sealed with a vinyl sheet, then removed from the mold the next day and placed in a steam curing tank at 80 ° C The temperature was raised to 24 hours and steam curing was performed for 24 hours. After steam curing and natural cooling, a strength measurement test was conducted.
  • Example 1
  • the mixing ratio (mass ratio) of silica fume and CGF A is 95-50: 5-50, preferably the mixing ratio (mass ratio) of silica fume and CGF A is 90-60: 10-40. .
  • the amount of water is 15 mass to obtain a flow value that can be cast even if the amount of fine water reducing agent is blended and the amount of fine aggregate is reduced to 50 parts by mass. In this case, even if the metal fiber B is reduced to 0.5% by volume, a bending strength exceeding 2 ON Zm m 2 can be obtained (Experiment No. 2-1).
  • the blending amount of fine aggregate is 50 to 200 parts by mass, preferably 60 to 150 parts by mass based on the compressive strength (Experiment No. 2-1 to No. 2-14).
  • the amount of fine aggregate is 200 parts by mass and the amount of water is 25 mass.
  • the high-performance water reducing agent was 3.0% of the binder mass.
  • the structural member for bridges By using the ultra-high-strength fiber-reinforced cement mortar composition, ultra-high-strength fiber-reinforced mortar or concrete of the present invention, the structural member for bridges, the appendage for bridges, the underground structural member using ultra-high strength and high toughness It can be used for dam structural members, marine structural members, building structural members, building construction materials, civil engineering and building materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Civil Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

流動性(作業性)を向上させると共に、金属繊維を含まないモルタルの圧縮強度の絶対値を高めながら、圧縮強度に対する曲げ強度の比率を高めることにより、より少量の金属繊維でも高い曲げ強度が得られ、また、一般の生コンで使用されている細骨材も使用できる、汎用性の高い超高強度繊維補強モルタル又はコンクリートを提供する。 セメント、シリカフューム、石炭ガス化フライアッシュ、石膏、及び金属繊維を含有し、かつ、シリカフュームと石炭ガス化フライアッシュの割合が質量比で95~50部:5~50部であることを特徴とする超高強度繊維補強セメント組成物、さらに、このセメント組成物に細骨材を含有する超高強度繊維補強モルタル又はコンクリートであり、並びに、シリカフューム、石炭ガス化フライアッシュ、及び石膏を主成分とし、かつ、シリカフュームと石炭ガス化フライアッシュの割合が質量比で95~50部:5~50部であることを特徴とする超高強度セメント混和材である。

Description

明細書 超高強度繊維補強セメント組成物、 超高強度繊維補強モルタル又はコンクリー ト、 並びに超高強度セメント混和材 技術分野
本発明は、 超高強度繊維補強セメント組成物、 超高強度繊維補強モルタル又は コンクリート、 並びに超高強度セメント混和材に関する。 詳しくは、 特定の比率 で混合したシリカフュームと石炭ガス化フライアッシュ、 石膏、 及ぴ金属繊維を 含有する超高強度繊維補強セメント組成物、 さらに、 このセメント組成物に細骨 材を含有する超高強度繊維補強モルタル又はコンクリート、 並びに、 これらに使 用する超高強度セメント混和材である。 背景技術
モルタルやコンクリートは、 基本的に圧縮強度に比較して曲げ強度が小さいの が課題であり、圧縮強度を高くしても曲げ強度はそれほど大きくならなレ、。従来、 曲げ強度を高めるためには PC鋼材によりプレストレスを導入する方法や、 膨張 材によりケミカルプレストレスを導入する方法、 金属繊維により補強する方法、 及び鋼管に高強度なモルタルやコンクリートを充填した複合構造とする方法など が実施されている。
金属繊維で補強した超高強度、 高曲げを発現するセメント組成物やそれを用い たセメント系硬化体に関しては既に提案されており、 セメント、 平均粒径 1. 5 μ m未満のポゾラン物質、 平均粒径 1. 5〜 20 μ mの石英質粉末、 骨材からな るセメント組成物と金属繊維を用いて圧縮強度〖 5 0 0 k g f Zc m2 (147 N/mm2), 曲げ強度 1 50 k g f Zc m2 ( i 4. 7N/mm2) 以上のセメ ント系硬化体を得るというものである (特許文献 1参照)。
特許文献 1 :特開平 1 1一 130508号公^
また、 石炭ガス化フライアッシュとは、 ガスィ [石炭を用いて発電する際の副産 物として排出されるものであり、 その球形粒子は、 通常の微粉炭焚きのフライア ッシュと比べると平均粒径が小さい。 さらに、 石炭ガス化フライアッシュの球形 粒子表面は滑らかであるため、 通常のフライアッシュよりボールベアリング作用 が優れており、 低水結合材比において高流動性の高強度モルタル又はコンクリ一 ト用として利用できることも既に提案されている(特許文献 2参照)。
特許文献 2 :特開 2 0 0 1— 1 9 5 2 7号公報
さらに、 石膏類は蒸気養生の有無にかかわり無く、 高強度混和材として多用さ れ、 シリカフュームと組み合わせることによって、 より高い強度や耐久性が得ら れる混和材として提案されている(特許文献 3参照)。
特許文献 3 :特許第 2 5 8 1 8 0 3号公報
しかしながら、 特許文献 1の場合は、 ポゾラン質微粉末とはシリカフュームゃ フライアッシュであることが記载されている。 シリカフユ一ムの平均粒径は 0 . l w mであるため、 そのまま高強度用混和材として使用可能である。 一方、 微粉 炭焚き火力発電所から副生するフライアッシュは最大粒径で 1 0 Ο μ πι程度であ るため、 分級や粉砕分級しないと利用できない。 また、 ガス化石炭を用いて発電 する際の副産物として排出される石炭ガス化フライアッシュに関しては明確な記 载はないが、 このフライアッシュの最大粒径は 5〜 1 0 mであるため、 やはり 分級が必要となる。 ゆえに、 工業的に利用するには分級又は粉碎分級工程が増え るという課題が残る。 さらに、 最大粒径 1 . 5〜2 0 Ai mの石英質粉末において も、 粉砕調整しなければならないという同じ課題が存在する。 また、 シリカフユ —ムと分級しない石炭ガス化フライアッシュを特定の比率で併用した場合の特異 的な作用効果についての記載や示唆は全くない。
特許文献 2の場合は、 石炭ガス化フライアッシュのポゾラン活性はシリカフユ ームよりはかなり小さく、 蒸気養生を行っても圧縮強度を高める効果は小さいこ と、 および、 曲げ強度に対する改善効果が期待できないという課題を有する。 さ らにシリカフュームと石炭ガス化フライアッシュを特定の比率で併用した場合の 作用効果についても記載されていないし、 その示唆もないものである。
特許文献 3の場合は、 石膏類とポゾラン物質 (シリカフューム、 フライアツシ ュ等) と併用することによって容易に高強度を発現させるが、 圧縮強度に対する 曲げ強度の比率は増加しない、 すなわち、 曲げ強度の向上が期待できないという 課題がある。 さらに、 石炭ガス化フライアッシュに関する記載はないし、 シリカ フュームと石炭ガス化フライアッシュを特定の比率で併用した場合の作用効果に ついても記載されていない。 発明の開示
発明が解決しょうとする課題
本発明が解決しょうとする課題は、 流動性 (作業性)を向上させると共に、 金属 繊維を含まないモルタルの圧縮強度の絶対値を高めながら、 圧縮強度に対する曲 げ強度の比率を高めることにより、 より少量の金属繊維でも高い曲げ強度が得ら れ、 また、 一般の生コンで使用されている細骨材も使用できる、 汎用性の高い超 高強度繊維補強モルタル又はコンクリートを提供するものである。 このような課 題を、 従来知られているシリカフュームゃ石炭ガス化フライアッシュ及ぴ石膏を 特定の範囲で組み合わせたセメント混和材を使用することによって、 相乗的に達 成しようとするものである。 課題を解決するための手段
即ち、 本発明は、 上記の課題を解決するために以下の手段を採用する。
( 1 ) セメント、 シリカフューム、 石炭ガス化フライアッシュ、 石膏、 及び金属 繊維を含有し、 かつ、 シリカフュームと石炭ガス化フライアッシュの割合が質量 比で 9 5〜5 0部: 5〜5 0部であることを特徴とする超高強度繊維補強セメン ト組成物である。
( 2 ) セメント 1 0 0質量部に対して、 シリカフュームと石炭ガス化フライアツ シュの合計 5〜4 0質量部、 石膏 0 . 5〜 8質量部を含有することを特徴とする 前記 (1 ) の超高強度繊維補強セメント組成物である。
( 3 ) セメント、 シリカフューム、 石炭ガス化フライアッシュ、 石膏、 細骨材及 び金属繊維を含有し、 かつ、 シリカフュームと石炭ガス化フライアッシュの割合 が質量比で 9 5〜5 0部: 5〜5 0部であることを特徴とする超高強度繊維補強 モ^/タル又はコンクリ一トである。
(4) セメント 1 00質量部に対して、 シリカフュームと石炭ガス化フライアツ シュの合計 5〜40質量部、 石膏 0. 5〜 8質量部を含有することを特徴とする 前記 (3) の超高強度繊維補強モルタル又はコンクリートである。
(5)前記金属繊維が、長さ 5〜 30mmのものであることを特徴とする前記(3) 又は (4) の超高強度繊維補強モルタル又はコンクリートである。
(6) セメントとシリカフュームと石炭ガス化フライアッシュと石膏の合計 1 0 0質量部に対して、 細骨材 50〜200質量部、 練り混ぜ水と高性能減水剤の合 計 1 5〜25質量部を含有し、 金属繊維をモルタル又はコンクリート 1 m3当た り 0. 5〜 3容積%含有することを特徴とする前記 (3) 〜 (5) のいずれか一 の超高強度繊維補強モルタル又はコンクリートである。
(7) 15 ON/mm2以上の圧縮強度と、 20 N/mm2以上の曲げ強度を有す ることを特徴とする前記 (3) 〜 (6) のいずれか一の超高強度繊維補強モルタ ル又はコンクリートである。
(8) シリカフューム、 石炭ガス化フライアッシュ、 及び石膏を主成分とし、 か つ、 シリカフュームと石炭ガス化フライアッシュの割合が質量比で 95〜50部
: 5〜50部であることを特徴とする超高強度セメント混和材である。
(9) セメント 100質量部に対して、 シリカフュームと石炭ガス化フライアツ シュの合計 5〜40質量部、 石膏 0. 5〜 8質量部の割合で使用することを特徴 とする前記 (8) の超高強度セメント混和材である。
なお、 本発明で使用する配合割合や添加量を示す部ゃ%は質量基準であるが、 金属繊維の場合のみ習慣上容積基準である。 発明の効果
本発明の超高強度繊維補強セメント組成物、 超高強度繊維補強モルタル又はコ ンクリートは、 (a) 流動性が向上し、 良好な作業性が得られる。 また、 (b) 圧縮強度が 150 NZmm2以上、 曲げ強度が 20 NZmm2以上で、 かつ、 圧縮 強度に対する曲げ強度の比率が高い超高強度繊維補強モルタル又はコンクリート 部材 (超高圧縮強度かつ高曲げ強度、 超緻密な高耐久性のセメント硬化体) が得 られる。 発明を実施するための最良の形態
以下、 本発明を詳しく説明する。
本発明の超高強度繊維補強セメント組成物等に使用するセメントは、 普通、 早 強、 中庸熱、 低熱、 耐硫酸塩性、 及び白色などの各種ポルトランドセメント、 高 炉スラグや通常のフライアッシュをポルトランドセメントに混合した混合セメン ト、 ェコセメント、 超早強セメントや急硬セメントなどである。 また、 これらの セメントの複数を任意量混合したセメントも使用できる。 なお、 エトリンガイ ト を生成させるのに適した普通ポルトランドセメント、早強ポルトランドセメント、 高炉スラグセメントなどがより好ましい。
本発明の超高強度繊維補強セメント組成物等に使用するシリカフュームとは金 属シリコンゃフエロシリコンなどのシリコンァロイを電気炉等で製造する際に副 生する球形の超微粒子であり、 主成分は非晶質 S i〇2である。 シリカフューム は添加量に応じてセメント硬化体の圧縮強度は高くなるが、 圧縮強度に対する曲 げ強度の比率は無混和の場合よりも低下する場合もある。 さらに、 シリカフュー ムは球形の超微粒子であるので、 高性能減水剤などと併用すると、 セメント混練 物に良好な流動性が得られる。
本発明の超高強度繊維補強セメント組成物等に使用する石炭ガス化フライアツ シュ(Coal Gasification Fly Ash、 以下 C G F Aと略す)は、 上記段落 [ 0 0 0 3 ] にて記述したようにガス化石炭を用いて発電する際の副産物として排出されるも のであり、 燃焼ガスと一緒にボイラーの煙道から廃棄され、 集塵機で回収される 最大粒子が 5〜1 0 /i m の球形の微粒子である。 また、 通常の石炭焚きフライ アッシュとは粒子径ゃ粒子表面性状が異なると共に S i O 2含有量も高いという 特徴がある。
C G F Aはシリカフュームと同様に粒径が球状であるので、 高性能減水剤と併 用すると流動性を高める効果を有するが、 ポゾラン活性はシリカフュームより低 いので強度増進効果は小さい。
本発明では、 シリカフューム 9 5〜5 0質量部と C G F A 5〜5 0質量部の割 合で配合するが、 この特定割合で混合することによりセメント混練物の流動性や セメント硬化体の曲げ強度を相乗的に高めることが可能となる。
C G F Aが 5質量部未満では流動性や曲げ強度の改善効果は小さく、 5 0質量 部を超えると圧縮強度の低下を招くことになる。 シリカフュームに対する C G F Aの配合割合は、 C G F Aが増えるにつれて流動性も曲げ強度も改善効果が順次 大きくなる。 し力、し、 ピークの値を超えると、 C G F A量が増える.につれて、 そ れらの改善効果が低下する。 したがって、 シリカフユ一ムと C G F Aの配合割合 には好ましい範囲があり、 本願のより好ましい範囲はシリカフューム 9 0〜6 0 質量部、 C G F A 1 0〜4 0質量部である。
また、 特定の比率のシリカフュームと C G F Aは合計量で、 セメント 1 0 0質 量部に対して 5〜4 0質量部添加さ^^る。 5質量部未満では流動性の向上及び圧 縮強度や曲げ強度に対する強度増進効果が小さく、 4 0質量部を超えて添加した 場合、 流動性の低下をもたらすと同時に添加率に応じた強度増進効果が期待でき ないので、 性能的にも経済的にも好ましくない。 本願におけるより好ましい範囲 は 7〜3 0質量部である。
さらに、 本発明で使用する石膏は、 二水石膏、 半水石膏、 可溶性無水石膏(III 型)、 及び不溶性無水石膏 (II型)などの各種形態の石膏が使用されるが、 より好 ましくは無水石膏と半水石膏、 二水石膏である。 石膏は、 水和初期には一旦カル シゥムアルミネートの水和を抑えて流動性を高め、 その後、 水和反応によって針 状結晶のェトリンガイ ト生成する。 このエトリンガイ トはセメント硬化体中の空 隙を充填して密実化を促し、 高強度化を可能とする。
石膏は、 セメント 1 0 0質量部に対して無水物換算で 0 . 5〜 8質量部配合さ れ、 0 . 5質量部未満では流動性や強度を高める作用は小さく、 8質量部を超え て配合してもそれ以上強度の増進効果が期待できない。 好ましくは 1〜 5質量部 である。
本発明の超高強度繊維補強モルタル又はコンクリートに使用される細骨材は、 生コン工場で用いられている川砂ゃ碎砂が最も入手し易いので好ましいが、 特に 限定はされない。より高い強度を得るために高硬度の焼成ボーキサイ トゃ鉄鉱石、 石英へん岩、 その他の細骨材を使用することには制限は受けないものである。 ま た、 最大骨材寸法を小さくするなどの特殊な粒度構成にする必要もないが、 目的 と用途によっては、 最大骨材寸法を制限しても良い。 通常は、 土木学会や建築学 会で規定している粒度構成のもので十分である。 細骨材はセメントとシリカフユ ームと C G F Aと石膏の合計(以下、単に結合材という) 1 0 0質量部に対して、 5 0〜 2 0 0質量部配合する。 5 0質量部未満ではセメント硬化体が脆性的な性 状を示し、 曲げ強度が小さくなる場合がある。 また、 2 0 0質量部を超えると、 高性能減水剤を最大限に活用しても 1 5 O NZmin 2以上の圧縮強度を得ること が困難となる。 なお、 本願のより好ましい範囲は、 6 0〜1 5 0質量部である。 さらに、 任意量の粗骨材を併用することも可能である。 粗骨材の品質も細骨材 と同様に特に限定されるものではなく、 生コン工場で用いられているものを使用 することが可能である。
本発明の超高強度繊維補強モルタル又はコンクリートを製造する際に、 結合材 1 0 0質量部に対して、 練り混ぜ水と高性能減水剤の合計量で 1 5〜2 5質量部 配合 (以下、 単に水比という) する。 但し、 この場合の高性能減水剤は固形分濃 度に関係なく液体状態で市販されている減水剤を示す。 粉末の状態で市販されて いる高性能減水剤を使用する場合は 1 5〜2 5質量部の中には含めない。 練り混 ぜ水が 1 5質量部未満では、 細骨材を少なく して高性能減水剤の減水率が最大と なる質量を配合しても良好な流動性は得難く、 2 5質量部を超えると目的とする 高い強度は得られない。
本発明の超高強度繊維補強セメント組成物等に使用できる高性能減水剤には、 単に高性能減水剤と称されるものや高性能 A E減水剤と称されるものなどであ る。 また、 高性能減水剤の種類や配合量は特に限定されるものではないが、 いず れの種類の高性能減水剤でもセメント 1 0 0質量部に対する使用量は多くても 5 質量部であり、 好ましくは 4質量部である。 5質量部を超える量を配合しても減 水率を高めることができない場合が多い。
高性能減水剤とは、 ポリアルキルァリルスルホン酸塩系高性能減水剤、 芳香族 アミノスルホン酸塩系高性能減水剤、 メラミンホルマリン樹脂スルホン酸塩系高 性能減水剤、 および、 ポリカルボン酸塩系減水剤などのいずれかを主成分とする ものであり、 これらの一種又は二種以上が使用されるものである。 ポリアルキル ァリルスルホン酸塩系高性能減水剤には、 メチルナフタレンスルホン酸ホルマリ ン縮合物、 ナフタレンスルホン酸ホルマリン縮合物、 及びアントラセンスルホン 酸ホルマリン縮合物などがあり、 減水率が大きくて空気連行性がなく、 凝結遅延 性も小さい特徴を有する反面、 フローやスランプ保持性が小さいという課題を有 する。 市販品としては電気化学工業 (株) 社商品名 「FT-500J とそのシリーズ、 花王 (株) 社商品名 「マイティー 100 (粉末)」 や 「マイティ一 150J とそのシリ ーズ、 第一工業製薬 (株) 社商品名 「セルフロー 155」、 竹本油脂 (株) 社商品 名「ポールファイン MF」等、及び(株) フローリック社商品名「フローリック PSJ とそのシリーズなどが代表的である。 芳香族アミノスルホン酸塩系高性能減水剤 としては、 (株) フローリック社商品名 「フローリック VP200」 とそのシリーズ があり、 メラミンホルマリン樹脂スルホン酸塩系高性能減水剤には、 ダレ一スケ ミカルズ社商品名 「ダーレックス FT-3S」、 昭和電工建材 (株) 社商品名 「モル マスター F-10 (粉末)」 や 「モルマスター F-20 (粉末)」 が挙げられる。
高性能 A E減水剤は、 ポリアルキルァリルスルホン酸塩系高性能減水剤、 芳香 族アミノスルホン酸塩系高性能減水剤、 メラミンホルマリン樹脂スルホン酸塩系 の改良型もある力 一般的にはポリカルボン酸塩系減水剤を意味する場合がある。 ポリカルボン酸塩系減水剤は不飽和カルボン酸モノマーを成分として含む共重合 体又はその塩であり、例えばポリアルキレンダリコールモノアクリル酸エステル、 ポリアルキレンダリコールモノメタクリル酸エステル、 無水マレイン酸及びスチ レンの共重合体ゃァクリル酸ゃメタクリル酸塩の共重合体及びこれらの単量体と 共重合可能な単量体から導かれた共重合体などが主流であり、 高性能減水剤系よ りも少ない添加量で減水率が大きい。 一般に、 空気連行性を有し、 凝結硬化の遅 延性も大きい反面、 フローゃスランプ保持性が良好であるという特徴を有する。
(株) ェヌェムビー社商品名 「レオビルド SP 8 N, 8 HUJ シリーズ、 フロー リック (株) 社商品名 「フローリック SF500SJ シリーズ、 竹本油脂 (株) 社商 品名 「チュポール HP8」、 「チュポール HP11」 シリーズ、 グレースケミカルズ(株) 社商品名 「ダーレックスス一パー 100」、 「ダーレックスス一パー 200」 、 「ダーレ ックスス一パー 300」、 「ダーレックスス一パー 1000」 シリーズ、 花王 (株) 社商 品名 「マイティー 3000」、 「マイティー 21WH」、 「マイティー 21WH」 シリーズ、 その他が市販されている。
本発明の超高強度繊維補強モルタル又はコンクリート等に使用される金属繊維 は長さが 5〜3 0 mmで、 直径が 0 . 1〜 1 mmの金属繊維であり、 モルタル又 はコンクリート 1 m 3当たり 0 . 5〜 3容積%配合される。 長さが 3 O mmを超 えるとモルタル又はコンクリートの流動性が低下し、 その結果として曲げ強度の 向上が期待できなくなる。 また、 5 mm未満では細骨材の最大寸法より短くなる ため、 曲げ応力作用時の繊維補強効果が小さくなり、 曲げ強度が低下する。 好ま しくは 1 0〜3 O mmである。 金属繊維の直径は 0 . 1 mm未満では金属繊維そ のものの強度が弱くなるので曲げ強度は向上し難い場合があり、 1 mmを超える と配合量を多くしても金属繊維のモルタル又はコンクリート中の単位体積あたり の本数が少なくなるので曲げ強度は向上しなくなる。
金属繊維の配合量はモルタル又はコンクリート l m 3中に 0 . 5〜3容積%で あり、 0 . 5容積%未満では曲げ強度を向上させる効果は小さく、 3容積%を超 えて配合しても曲げ強度の配合率に応じた増加は期待できない。 好ましくは 0 . 7〜2 . 5容積%である。 なお、 金属繊維の材質は特に限定されないが、 鋼製、 ステンレス製が入手し易いのでより好ましい。
本発明の超高強度繊維補強モルタル又はコンクリート等の練り混ぜ方法も特別 な方法は必要でなく、 通常行われている練混ぜ方法で良い。 なお、 強制練り混ぜ 型ミキサーを使用する場合、 金属繊維を添加するタイミングは、 モルタル又はコ ンクリートに流動性がでてきた時点でミキサ一に投入して、 再度練り混ぜするの が好ましい。
また、 本発明の超高強度繊維モルタル又はコンクリート等の養生方法は限定さ れるものではなく、 場所打ちコンクリートでは通常の養生方法、 製品工場のコン タリ一トでは蒸気養生、 オートクレープ養生、 及び温水養生などが可能である。 以下、本発明を実施例にて詳細に説明するが、これらに限られるものではない。 実施例で使用する材料と試験項目とその方法を以下にまとめて示す。 〔使用材料〕
セメント :電気化学工業 (株) 社製 普通ポルトランドセメント、密度 3.16 g/cm3 細骨材 :新潟県姫川産川砂、 5mm以下、 密度 2.62 g/ cm3
S F : シリカフューム、 エルケム社製、 密度 2.44 g /cm3
C G F A:オランダ産、 密度 2.44 g/cc
石膏 :不溶性無水石膏、 天然産、 密度 2.82 g/ cm3
高性能減水剤:ポリカルボン酸塩系減水剤、 グレースケミカルズ (株)社製 「スー パー 1000N」
金属繊維 A:直径 0.2mm、 長さ 20mm のステンレス製、 引張強度 2000N/mm2以 上、 密度 7.85 g/cm3
金属繊維 B :直径 0.2mm、 長さ 15mmの鋼製、 引張強度 2000N/mm2、 密度 7.80 g/ cm"
金属繊維 C :直径 0.2mm、 長さ 3, 5, 10, 15, 20, 30, 40mmの鋼製、 引張強度 1600N/mm2、 密度 7.80 g/ cm3
〔試験項目とその方法〕
•モルタルの練り混ぜとフローの測定
JIS R 5201に準じた。 フローは、 抜き上げたときの静置フロー値 (mm)とした。 •モルタル強度の測定方法
曲げ強度は JIS R 5201に準じ、 圧縮強度は φ 5 X 10cmの型枠に成型したもの を用いた。
なお、 モルタルの練り混ぜは JIS R 5201のモルタルミキサーを使用し、 セメ ント、 シリカフューム、 C G F A、 石膏及ぴ細骨材をあらかじめポリエチレン袋 の中で手混合したものを練り鉢に入れ、 水に高性能減水剤を溶解した練り混ぜ水 を添加して、 低速で 5分間、 高速で 2分間練り混ぜた。 金属繊維はモルタルが練 り上がってから低速攪拌しながら少しずつ添加し、 添加し終わってから 3分間練 り混ぜた。 また、 養生方法は、 成形した超高強度繊維モルタル供試体は直ちに 2 0 °C恒温室内で型枠上面をビニールシートにより封緘養生後、 翌日脱型、 蒸気養 生槽に入れて 8 0 °Cまで昇温し、 2 4時間蒸気養生を行った。 蒸気養生後自然放 冷を行った後、 強度測定試験を実施した。 実施例 1
結合材 1 0 0質量部に対して、 細骨材 1 0 0質量部、 水(練り混ぜ水と減水剤 を結合材に対して 3質量部を含む)比 1 9質量部、 金属繊維 Aの配合率を 0 . 7 容積%として、 結合材の中のシリカフュームと C G F Aの配合比率とその量及ぴ 石膏の配合量を任意に変えて超高強度繊維モルタルを練り混ぜ、 供試体を成形し て養生し、 圧縮強度と曲げ強度を測定した結果を表 1に示した。
表 1
Figure imgf000013_0001
(注 1 )シリカフューム、 CGFA、 石膏量はセメント 1 0 0質量部に対する配合割合 (質量部) (注 2 )曲げ強度と圧縮強度の単位は N/讓 2。 表 1に示されるように、 実験 No.l- 1のプレーンに対して比較例のシリカフユ ームと CGF Aの単独添加又はそれらに石膏を併用した実験 No.l- 2〜 No.l- 7 の比較例では、 圧縮強度はプレーンよりそれぞれ高くなるが、 曲げ強度は 20N /mm2を超えない。 また、 圧縮強度に対する曲げ強度の比率もプレーンと同等 か、 低下する傾向が示される。
実験 No.l- 8〜No.l-15では、 石膏の配合量とシリカフュームと CGF Aとの 合計の配合量を一定としてシリカフュームと CGF Aの配合比率を変化させた。 CGF Aの配合比率が増加すると、 圧縮強度は徐々に低下するが、 曲げ強度は逆 に増加して最大になり、 その後低下する。 すなわち、 シリカフュームと CGF A の比率が 95 : 5より小さい (実験 No.l- 8:比較例) と、 曲げ強度は 2 ON/ mm2未満であるが、 95 : 5 (実験 No.1-9) で曲げ強度は 20 N/mm2を超 え、 70 : 30 (実験 No.1-12) で最大となり、 50 : 50 (実験 No.1-14) より も CGF Aの配合率が多くなる (実験 No.1-15:比較例) と圧縮強度は 1 50N ノ mm2を下回り、 曲げ強度も 2 ONノ mm2未満となる。 以上より、 シリカフユ ームと CGF Aの配合比率(質量比率)は 95〜50 : 5〜50であり、 好ましく はシリカフュームと CGF Aの配合比率(質量比率)は 90〜60 : 10〜40で ある。
また、 石膏の配合量を変えた実験 No.1-16〜 No.1-22では、 石膏 0. 5〜8質 量部で効果が認められる。 また、 石膏 1質量部 (実験 No.1-17) から効果が顕著 になり、 5質量部 (実験 No.1-20) を超えて配合しても添加率に対する強度改善 効果は認められない。 したがって、 より好ましい範囲は 1〜 5質量部であること も示されている。
シリカフュームと CGF Aの配合比率と石膏の配合量を一定としてシリカフユ —ムと CGF Aの配合量を変えた実験 No.1-23 〜 1-28 では、 圧縮強度と曲げ強 度はそれぞれ 1 50NZmm2、 20 N/mm2以上得られ、 配合量が多くなるほ ど高い値が得られるが、 多すぎても相対的にセメント量が少なくなるので強度は 低下し、 シリカフュームと CGF Aの合計の配合率は 5〜40質量部であり、 好 ましくは 7〜30質量部である。 実施例 2
セメント 100質量部に対して、 シリカフューム : CGFA= 70 : 30の混 合物を 1 5質量部、 石膏を 3質量部配合した結合材に対して、 細骨材の比率と水 結合材比、 金属繊維 Bの配合量を変えて実施例 1と同様の実験を行った。 結果を 表 2に示す。 フロー値は流し込み成形可能な 200 ± 5mmとなるように高性能 減水剤量を任意に添加した。
表 2
Figure imgf000015_0001
(注 1)※水量は減水剤も含む
(注 2)細骨材、 水量はシリカフユ一厶 +GGFA+石膏量 +セメントからなる結合材 100質 量部に対する配合割合 (質量部)
表 2より、 高性能減水剤の効果が最大となる量を配合して、 細骨材量を 50質 量部と少なくしても、 流し込み成型可能なフロー値を得るには水量は 1 5質量部 であり、 この場合、 金属繊維 Bを 0. 5容積%と少なくしても曲げ強度は 2 ON Zm m 2を超える強度が得られる(実験 No.2- 1 )。
細骨材量を増加させてゆくと、 水量も多くなるが脆性的性質が改善されるため に、 圧縮強度は増加し、 最大を示した後、 低下する。 したがって、 圧縮強度から 細骨材の配合量は 50〜 200質量部であり、 好ましくは 60〜 1 50質量部で ある(実験 No.2-1〜 No.2-14)。 なお、 細骨材量が 200質量部で水量が 25質量 部でも、 金属繊維 B O. 5容積%配合で曲げ強度は 2 ONZmm2を超え、 圧縮 強度も 15 ONZmm2を超えることが示される(実験 Νο·2-15)。
曲げ強度は金属繊維 Βの配合量に大きく依存するが、 3. 5容積%を超えて配 合しても曲げ強度の増加は認められないことも示されている(実験 Νο.2- 10)。 実施例 3
セメント 100質量部に対して、 シリカフユ一ム: CGFA==60 : 40の混 合物を 13質量部、 石膏を 3質量部配合した結合材に対して、 結合材 100質量 部に対して細骨材を 70質量部、 水を 16質量部、 金属繊維 Cの繊維長と配合量 を変化させて実施例 1と同様の実験を行った。 結果を表 3に示す。 なお、 高性能 減水剤は結合材質量の 3. 0 %とした。
表 3
Figure imgf000016_0001
残存した。
表 3より、 繊維長が 5〜 3 Ommであれば、 良好な流動性を確保しつつ、 高い 曲げ強度を得ることができる。 一方、 繊維長が 5mm未満(実験 No.3-1)では、 曲げ強度向上の効果が小さい。 また、 繊維長が 3 Ommを超える(実験 No.3-9) と、 急速に流動性が低下し、 成型に困難を生じる結果となる。 産業上の利用可能性
本発明の超高強度繊維補強セメン卜組成物、 超高強度繊維補強モルタル又はコ ンクリートを用いることにより、 超高強度で高靭性を利用して橋梁用構造部材、 橋梁用付属物、 地下構造部材、 ダム構造部材、 海洋構造部材、 建築構造部材、 建 築建材、 土木建築資材などに利用可能である。

Claims

請求の範囲
1 . セメント、 シリカフューム、 石炭ガス化フライアッシュ、 石膏、 及び金属繊 維を含有し、 かつ、 シリカフュームと石炭ガス化フライアッシュの割合が質量比 で 9 5〜 5 0部: 5〜5 0部であることを特徴とする超高強度繊維補強セメント 組成物。
2 . セメント 1 0 0質量部に対して、 シリカフュームと石炭ガス化フライアツシ ュの合計 5〜4 0質量部、 石膏 0 . 5〜8質量部を含有することを特徴とする請 求の範囲第 1項に記載の超高強度繊維補強セメント組成物。
3 . セメント、 シリカフューム、 石炭ガスィ匕フライアッシュ、 石膏、 細骨材及び 金属繊維を含有し、 かつ、 シリカフユ ムと石炭ガス化フライアッシュの割合が 質量比で 9 5〜5 0部: 5〜5 0部であることを特徴とする超高強度繊維補強モ ルタル又はコンクリート。
4 . セメント 1 0 0質量部に対して、 シリカフュームと石炭ガス化フライアツシ ュの合計 5〜4 0質量部、 石膏 0 . 5〜8質量部を含有することを特徴とする請 求の範囲第 3項に記載の超高強度繊維補強モルタル又はコンクリ一ト。
5 . 前記金属繊維が、 長ざ 5〜3 0 mmのものであることを特徴とする請求の範 囲第 3項に記載の超高強度繊維補強モルタル又はコンクリート。
6 . 前記金属繊維が、 長さ 5〜3 0 mmのものであることを特徴とする請求の範 囲第 4項に記載の超高強度繊維補強モルタル又はコンクリート。
7 . セメントとシリカフュームと石炭ガス化フライアッシュと石膏の合計 1 0 0 質量部に対して、 細骨材 5 0〜2 0 0質量部、 練り混ぜ水と高性能減水剤の合計 1 5〜2 5質量部を含有し、 金属繊維をモルタル又はコンクリート 1 m 3当たり 0 . 5〜 3容積%含有することを特徴とする請求の範囲第 3項〜第 6項のいずれ か一項に記載の超高強度繊維補強モルタル又はコンクリート。
8 . 1 5 0 N/mm 2以上の圧縮強度と、 2 0 N/mm2以上の曲げ強度を有する ことを特徴とする請求の範囲第 3項〜第 6項のいずれか一項に記載の超高強度繊 維補強モルタル又はコンクリート。
9 . 1 5 O N/mm2以上の圧縮強度と、 2 0 NZmm2以上の曲げ強度を有する ことを特徴とする請求の範囲第 7項に記載の超高強度繊維補強モルタル又はコン クリート。
1 0 . シリカフューム、 石炭ガス化クライアッシュ、 及び石膏を主成分とし、 か つ、 シリカフュームと石炭ガス化フライアッシュの割合が質量比で 9 5〜5 0部
: 5〜5 0部であることを特徴とする超高強度セメント混和材。
1 1 . セメント 1 0 0質量部に対して、 シリカフュームと石炭ガス化フライアツ シュの合計 5〜 4 0質量部、 石膏 0 . 5〜 8質量部の割合で使用することを特徴 とする請求の範囲第 1 0項に記載の超高強度セメント混和材。
PCT/JP2006/307263 2005-04-18 2006-03-30 超高強度繊維補強セメント組成物、超高強度繊維補強モルタル又はコンクリート、並びに超高強度セメント混和材 WO2006115004A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2006800127612A CN101160268B (zh) 2005-04-18 2006-03-30 超高强度纤维增强水泥组合物、超高强度纤维增强砂浆或混凝土以及超高强度水泥外加材料
EP06731211.6A EP1876153B8 (en) 2005-04-18 2006-03-30 Ultrahigh-strength cement composition, ultrahigh-strength fiber-reinforced mortar or concrete, and ultrahigh-strength cement additive
KR1020077025044A KR101236604B1 (ko) 2005-04-18 2006-03-30 초고강도 섬유 보강 시멘트 조성물, 초고강도 섬유 보강모르타르 또는 콘크리트, 및 초고강도 시멘트 혼화재
US11/918,626 US7670425B2 (en) 2005-04-18 2006-03-30 Ultra high strength fiber-reinforced cement composition, ultra high strength fiber-reinforced mortar or concrete and ultra high strength cement additives

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005120127A JP4558569B2 (ja) 2005-04-18 2005-04-18 超高強度繊維補強セメント組成物、超高強度繊維補強モルタル又はコンクリート、並びに超高強度セメント混和材
JP2005-120127 2005-04-18

Publications (1)

Publication Number Publication Date
WO2006115004A1 true WO2006115004A1 (ja) 2006-11-02

Family

ID=37214632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/307263 WO2006115004A1 (ja) 2005-04-18 2006-03-30 超高強度繊維補強セメント組成物、超高強度繊維補強モルタル又はコンクリート、並びに超高強度セメント混和材

Country Status (6)

Country Link
US (1) US7670425B2 (ja)
EP (1) EP1876153B8 (ja)
JP (1) JP4558569B2 (ja)
KR (1) KR101236604B1 (ja)
CN (1) CN101160268B (ja)
WO (1) WO2006115004A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011528313A (ja) * 2008-07-18 2011-11-17 ラファルジュ 水性剤
CN112430027A (zh) * 2020-12-24 2021-03-02 陕西科技大学 一种基于牛毛的纤维增强泡沫混凝土及其制备方法
CN113968705A (zh) * 2021-11-10 2022-01-25 中铁十二局集团有限公司 一种桥面铺装用多元胶凝体系stc超高韧性混凝土材料
CN114290481A (zh) * 2021-12-17 2022-04-08 中建三局集团有限公司 一种高强度hpc板的制作方法
CN116283187A (zh) * 2023-03-23 2023-06-23 上海宝生新型建材有限公司 一种环保并具有高抗压强度的混凝土及其制备方法
CN116354665A (zh) * 2023-03-07 2023-06-30 中南大学 超高性能混凝土用组合物、超高性能混凝土及其制备方法和应用
CN117902874A (zh) * 2024-01-19 2024-04-19 广东工业大学 一种快硬高强度钢纤维增强混凝土及其制备方法
CN118239740A (zh) * 2024-05-10 2024-06-25 广州隧华智慧交通科技有限公司 一种uhpc混凝土及其制备方法

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4994056B2 (ja) * 2007-02-14 2012-08-08 電気化学工業株式会社 セメント混和材、セメント組成物、及びセメントコンクリート
KR100807761B1 (ko) 2007-04-27 2008-02-28 주식회사 콘크리닉 알파형반수석고를 이용한 시멘트조성물 및 이를 이용한시공방법
JP4607161B2 (ja) * 2007-09-28 2011-01-05 電気化学工業株式会社 低収縮超高強度繊維補強セメント組成物、低収縮超高強度繊維補強モルタル又はコンクリート、並びに低収縮超高強度セメント混和材
CL2009000371A1 (es) * 2008-03-03 2009-10-30 United States Gypsum Co Composicion cementicia, que contiene una fase continua que resulta del curado de una mezcla cementicia, en ausencia de harina de silice, y que comprende cemento inorganico, mineral inorganico, relleno puzolanico, policarboxilato y agua; y uso de la composicion en una panel y barrera cementicia.
CL2009000373A1 (es) * 2008-03-03 2009-10-30 United States Gypsum Co Metodo para hacer un panel resistente a explosivos, con las etapas de preparar una mezcla cementicia acuosa de cemento, rellenos inorganicos y puzolanico, agente autonivelante de policarboxilato, y formar la mezcla en un panel con refuerzo de fibra, luego curar, pulir, cortar y curar el panel.
JP5713540B2 (ja) * 2009-02-06 2015-05-07 電気化学工業株式会社 超高強度繊維補強モルタルの吹付け工法及びモルタル硬化体
FR2942219A1 (fr) * 2009-02-13 2010-08-20 Omnium Traitement Valorisa Installation de filtration comprenant une dalle en beton fibre
CN102372470B (zh) * 2010-08-23 2013-05-08 汪峻峰 一种高性能砂浆的制备方法
MX2013006016A (es) 2010-12-02 2013-12-16 Cemex Res Group Ag Sistema de pared reforzada y metodo.
JP5031131B2 (ja) * 2010-12-28 2012-09-19 太平洋セメント株式会社 セメント混合材、セメント添加材、並びに混合セメントの製造方法
US9115026B2 (en) 2012-08-21 2015-08-25 Taisei Corporation Cementitious matrix and fiber reinforced cement based mixture
CN102888947B (zh) * 2012-11-04 2015-02-18 西安建筑科技大学 一种高延性组合砖柱及其施工方法
CN102888946B (zh) * 2012-11-04 2014-12-31 西安建筑科技大学 一种钢管高延性纤维混凝土组合柱
CN102953358A (zh) * 2012-11-23 2013-03-06 中国水电顾问集团贵阳勘测设计研究院 重力坝溢流面抗冲结构的改进方法及结构
JP6516411B2 (ja) * 2013-06-17 2019-05-22 宇部興産株式会社 高強度セメントモルタル組成物及び高強度セメントモルタル硬化体の製造方法
US10066146B2 (en) 2013-06-21 2018-09-04 Halliburton Energy Services, Inc. Wellbore servicing compositions and methods of making and using same
JP2015074945A (ja) * 2013-10-10 2015-04-20 中日本高速道路株式会社 舗装用補修材、及びそれを用いた舗装体の補修方法
JP6264644B2 (ja) * 2014-01-28 2018-01-24 住友大阪セメント株式会社 混和材、セメント組成物およびセメント硬化体
FR3022543B1 (fr) * 2014-06-20 2021-05-14 Lafarge Sa Nouveau beton a ultra haute performance
DE102014108761A1 (de) 2014-06-23 2015-12-24 Jörg Rathenow Verfahren zum Veredeln von Werkstoffen
JP6417891B2 (ja) * 2014-11-21 2018-11-07 宇部興産株式会社 高強度コンクリート組成物及び高強度コンクリート硬化体の製造方法
JP6417890B2 (ja) * 2014-11-21 2018-11-07 宇部興産株式会社 高強度コンクリート組成物及び高強度コンクリート硬化体の製造方法
WO2017098409A1 (es) * 2015-12-07 2017-06-15 Cementos Argos S.A. Formulación y método de obtención de concretos de ultra alto desempeño
CN106277906A (zh) * 2016-08-08 2017-01-04 安徽炎胜新材料科技有限公司 一种缓凝早强混凝土减水剂及其制备方法
JP6964548B2 (ja) * 2018-03-28 2021-11-10 鹿島建設株式会社 モルタル組成物及びその製造方法、並びに、コンクリート構造物の補修・補強方法
CN111116105A (zh) * 2018-10-31 2020-05-08 慧邦开源(北京)科技有限公司 一种建筑专用的新型混凝土
CN111302723A (zh) * 2018-12-11 2020-06-19 北京海普斯建材有限公司 加气混凝土干混抹灰砂浆及其制备方法
KR102062485B1 (ko) 2019-03-19 2020-02-21 (주)알로이테크 비소성 경량블록의 제조 방법
CN111875282A (zh) * 2019-05-01 2020-11-03 邓彩霞 一种水泥抗折增强剂
KR102079898B1 (ko) 2019-05-30 2020-02-20 주식회사 네이처 비소성 건축마감재용 기능성 경량보드의 제작 방법 및 이에 의해 제작된 비소성 건축마감재용 기능성 경량보드
CN111807781B (zh) * 2020-06-28 2021-11-30 江阴市新远见工程有限公司 一种高黏结性纤维增强混凝土及其加工工艺
CN111848044A (zh) * 2020-07-28 2020-10-30 李辉潮 一种绿色环保高性能混凝土及其制备方法
CN114057443A (zh) * 2020-08-07 2022-02-18 杭州墨泰科技股份有限公司 一种机制砂基快速凝结地秤砂浆
CN112047692B (zh) * 2020-09-14 2023-03-17 江西龙正科技发展有限公司 适用于制备uhpc电杆的材料和基于该材料制成的电杆
CN112456881A (zh) * 2020-12-08 2021-03-09 成都精准混凝土有限公司 一种高耐久性混凝土及其制备方法
CN112960943B (zh) * 2021-02-08 2022-07-01 重庆昊磐节能科技有限公司 一种煤气化渣干粉砂浆及其制备方法和包装方法
KR102313829B1 (ko) 2021-03-09 2021-10-15 손성래 경량블록조성물 및 그 제조방법
KR102397193B1 (ko) * 2021-07-19 2022-05-12 문보경 석탄가스화기 플라이애시를 이용한 고강도 플라이애시 시멘트 조성물
CN113480272A (zh) * 2021-08-17 2021-10-08 雨发建设集团有限公司 一种自养护微膨胀的超高性能混凝土及其制备方法
CN113800836A (zh) * 2021-09-29 2021-12-17 福建省深宝建材有限公司 一种抗裂混凝土及其制备方法
KR102525169B1 (ko) * 2021-10-21 2023-04-24 문보경 시멘트 강도 강화제 및 그 조성물
CN115504731A (zh) * 2022-07-07 2022-12-23 浙江荣电电力器材有限公司 一种混凝土配方及其制备的混凝土通信杆塔
KR102583735B1 (ko) * 2022-09-16 2023-10-04 하나건설 주식회사 친환경 초속경 콘크리트 구조물 보수 시공방법
CN116063048B (zh) * 2023-02-08 2024-07-23 华新水泥股份有限公司 超高性能混凝土瓦及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4652433A (en) * 1986-01-29 1987-03-24 Florida Progress Corporation Method for the recovery of minerals and production of by-products from coal ash
JPH11147747A (ja) * 1997-11-12 1999-06-02 Electric Power Dev Co Ltd コンクリート組成物
JP2005022931A (ja) * 2003-07-04 2005-01-27 Kajima Corp 超高強度コンクリートの自己収縮低減法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4640715A (en) * 1985-03-06 1987-02-03 Lone Star Industries, Inc. Mineral binder and compositions employing the same
AUPO612097A0 (en) * 1997-04-10 1997-05-08 James Hardie Research Pty Limited Building products
JP3868063B2 (ja) 1997-06-10 2007-01-17 ヤンマー農機株式会社 田植機
JP3684447B2 (ja) * 1999-07-05 2005-08-17 鹿島建設株式会社 石炭ガス化フライアッシュを用いた高流動コンクリートおよび低水/粉体比コンクリートの製法
FR2813601B1 (fr) * 2000-09-01 2003-05-02 Lafarge Sa Betons fibres a tres hautes resistances et ductilite

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4652433A (en) * 1986-01-29 1987-03-24 Florida Progress Corporation Method for the recovery of minerals and production of by-products from coal ash
JPH11147747A (ja) * 1997-11-12 1999-06-02 Electric Power Dev Co Ltd コンクリート組成物
JP2005022931A (ja) * 2003-07-04 2005-01-27 Kajima Corp 超高強度コンクリートの自己収縮低減法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1876153A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011528313A (ja) * 2008-07-18 2011-11-17 ラファルジュ 水性剤
CN112430027A (zh) * 2020-12-24 2021-03-02 陕西科技大学 一种基于牛毛的纤维增强泡沫混凝土及其制备方法
CN113968705A (zh) * 2021-11-10 2022-01-25 中铁十二局集团有限公司 一种桥面铺装用多元胶凝体系stc超高韧性混凝土材料
CN114290481A (zh) * 2021-12-17 2022-04-08 中建三局集团有限公司 一种高强度hpc板的制作方法
CN114290481B (zh) * 2021-12-17 2023-05-16 中建三局集团有限公司 一种高强度hpc板的制作方法
CN116354665A (zh) * 2023-03-07 2023-06-30 中南大学 超高性能混凝土用组合物、超高性能混凝土及其制备方法和应用
CN116283187A (zh) * 2023-03-23 2023-06-23 上海宝生新型建材有限公司 一种环保并具有高抗压强度的混凝土及其制备方法
CN116283187B (zh) * 2023-03-23 2023-08-22 上海宝生新型建材有限公司 一种环保并具有高抗压强度的混凝土及其制备方法
CN117902874A (zh) * 2024-01-19 2024-04-19 广东工业大学 一种快硬高强度钢纤维增强混凝土及其制备方法
CN118239740A (zh) * 2024-05-10 2024-06-25 广州隧华智慧交通科技有限公司 一种uhpc混凝土及其制备方法

Also Published As

Publication number Publication date
EP1876153A1 (en) 2008-01-09
EP1876153B8 (en) 2017-01-25
JP4558569B2 (ja) 2010-10-06
KR101236604B1 (ko) 2013-02-22
JP2006298679A (ja) 2006-11-02
EP1876153A4 (en) 2013-11-27
CN101160268B (zh) 2011-06-22
EP1876153B1 (en) 2016-09-14
US20090071378A1 (en) 2009-03-19
CN101160268A (zh) 2008-04-09
KR20070120174A (ko) 2007-12-21
US7670425B2 (en) 2010-03-02

Similar Documents

Publication Publication Date Title
JP4558569B2 (ja) 超高強度繊維補強セメント組成物、超高強度繊維補強モルタル又はコンクリート、並びに超高強度セメント混和材
JP4607161B2 (ja) 低収縮超高強度繊維補強セメント組成物、低収縮超高強度繊維補強モルタル又はコンクリート、並びに低収縮超高強度セメント混和材
Nazari et al. Influence of Al2O3 nanoparticles on the compressive strength and workability of blended concrete
Yazıcı et al. Utilization of fly ash and ground granulated blast furnace slag as an alternative silica source in reactive powder concrete
Nazari et al. Benefits of Fe2O3 nanoparticles in concrete mixing matrix
JP6732404B2 (ja) 繊維補強セメント複合材及びその製造方法
JP4593412B2 (ja) 遠心力コンクリート製品及びその製造方法
JP4813355B2 (ja) セメント混和材、セメント組成物、モルタル及びコンクリート
JP5713540B2 (ja) 超高強度繊維補強モルタルの吹付け工法及びモルタル硬化体
Nazari et al. An investigation on the Strength and workability of cement based concrete performance by using ZrO2 nanoparticles
EP3307690A1 (en) Advanced fiber reinforced concrete mix designs
WO2008044361A1 (fr) Produit de remplissage pour un joint de renforcement et procédé de remplissage de joint de renforcement à l'aide de celui-ci
Biolzi et al. Sustainable concretes for structural applications
JP4298247B2 (ja) 高流動コンクリート
JP2004352575A (ja) 水硬性組成物の補強用繊維及びそれを含む水硬性組成物
JP4167787B2 (ja) 複合部材
JP6983522B2 (ja) セメント組成物
Metwally et al. Significance of blast furnace slag as coarse aggregate in concrete
JP4230158B2 (ja) モルタルの調製方法
ALHDEDY et al. GREEN CONCRETE ROAD DESIGN USING FURNACE SLAG AND FLY ASH
Thomas et al. Experimental Investigations of the Influence of Industrial By-Products on Highly Flowable High-Strength Concrete
Tagnit-Hamou et al. Sustainable ultra-high-performance glass concrete for infrastructures
JP2001213654A (ja) 急硬性を有する超高強度モルタル又はコンクリート
Deo A Review of High Volume Low Lime Fly Ash Concrete
JP2024042172A (ja) 繊維補強モルタル組成物及びそのモルタル

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680012761.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11918626

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2006731211

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006731211

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077025044

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006731211

Country of ref document: EP