WO2006114390A1 - Kombinationsantrieb mit hybridreluktanzmotor - Google Patents

Kombinationsantrieb mit hybridreluktanzmotor Download PDF

Info

Publication number
WO2006114390A1
WO2006114390A1 PCT/EP2006/061729 EP2006061729W WO2006114390A1 WO 2006114390 A1 WO2006114390 A1 WO 2006114390A1 EP 2006061729 W EP2006061729 W EP 2006061729W WO 2006114390 A1 WO2006114390 A1 WO 2006114390A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive
rotor
combination
linear
reluctance motor
Prior art date
Application number
PCT/EP2006/061729
Other languages
English (en)
French (fr)
Inventor
Erich Bott
Matthias Braun
Detlef Potoradi
Holger Schunk
Rolf Vollmer
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to US11/912,596 priority Critical patent/US8063517B2/en
Priority to JP2008507089A priority patent/JP2008538890A/ja
Priority to CN2006800139304A priority patent/CN101167235B/zh
Publication of WO2006114390A1 publication Critical patent/WO2006114390A1/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
    • H02K41/033Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type with armature and magnets on one member, the other member being a flux distributor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/04Machines with one rotor and two stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/38Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with rotating flux distributors, and armatures and magnets both stationary
    • H02K21/44Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with rotating flux distributors, and armatures and magnets both stationary with armature windings wound upon the magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/18Machines moving with multiple degrees of freedom

Definitions

  • the present invention relates to a combination drive with a linear drive device and a rotation drive device.
  • FIG 5 such a known combination drive is shown in cross section.
  • This combination drive is used, for example, for driving ink rollers in a printing unit.
  • a linear motor 1 which is designed as an external rotor, and a conventional rotating motor 2.
  • Both the linear motor and the rotating motor are designed as permanent magnet synchronous motors.
  • the entire drive has two separate, different set ⁇ built stand and two separate, differently constructed runner. However, the runners are arranged on a common shaft.
  • a crucial disadvantage of the combination drive of FIG. 5 is that the entire rotor can only reciprocate by a certain distance. This lifting movement is determined constructively for the particular application. Thus, the drive can only be used for the special application. It is therefore not readily possible to enlarge the stroke to ⁇ ver, without redesigning the engine.
  • Another disadvantage is that the runner for assembly purposes is not arbitrarily removable from the engine.
  • it proves to be disadvantageous in the combination drive described above that the two parts of the Läu ⁇ fers must be performed differently. For this reason, the two stands are to be arranged at the appropriate distance, whereby a certain motor length is given, which is too large for certain applications or causes problems.
  • hybrid reluctance motors are also known in the field of drives.
  • the forces ⁇ tors or torques of the motors are generated both by means of variable reluctance and with the aid of permanent magnets. This is mentioned, for example, in VDI reports 1269 of May 1996.
  • the object of the present invention is to propose a compact, simple and inexpensive construction of a combined linear and rotary drive.
  • this object is achieved by a combi nation ⁇ drive with a linear drive device and a rotational drive means, wherein at least one of the two drive means comprises a hybrid reluctance up.
  • the motor principle of the hybrid motor in which two magnetic action mechanisms are united miteinan ⁇ used for a combination drive.
  • both the linear drive device and the rotary drive device each have a hybrid reluctance motor.
  • a single motor principle can be used for the entire drive.
  • the rotor is designed permanentmagnetein. This allows skiers great length relatively inexpensive Herge ⁇ be presents.
  • the rotor of the combination drive according to the invention can be designed so that it serves as a runner for the linear drive device as well as a rotor for the rotary drive device and is uniformly structured over its entire axial extent. This brings advantages in terms of disassembly of the drive, but also in terms of the manufacturing cost of the rotor.
  • the rotor may have a reluctance profile with evenly distributed both in the circumferential direction and in the axial direction grooves. Such a constructed runner can be produced with very little effort.
  • the rotor is integrally formed from steel. This also has a positive effect on the production costs, especially for runners who are not aligned.
  • FIG. 1 shows a cross-sectional detail of a linear drive part of a combination drive according to the invention
  • FIG. 2 shows a cross-sectional section of a rotary part of a combination drive according to the invention
  • FIGS. 1 to 3 show sections of aticiansan- drive in which both the linear drive and the Rotati ⁇ onsantrieb is implemented by a hybrid reluctance.
  • the rotor or the secondary part is permanent magnet-free.
  • the section of the linear drive shown in Figure 1 in a longitudinal section has a cylindrical stator 3, in which a likewise cylindrical rotor 4 is arranged in compliance with an air gap 5.
  • the stator 3 and the rotor 4 are rotationally symmetrical with respect to the axis of rotation 6.
  • windings 7 are inserted.
  • FIG. 1 a current flow direction through the windings 7 is indicated.
  • permanent magnets 8 are arranged on the inside of the stator 3 arranged. Their magnetization is symbolized by arrows in FIG.
  • the rotor 4 has grooves 9 whose widths are matched to the width of the permanent magnets 8 and the windings 7.
  • the principle of operation of this linear motor can be described above. German Patent Application DE 10 2004 045 992.4.
  • the rotor 4 is entspre ⁇ accordingly movable with the double arrow 10 in the axial direction.
  • the permanent magnets 8 develop in connection with the FeId- fundamental wave of the stator 3 and the reluctance profile of Läu ⁇ fers 4 is an axial force.
  • FIG. 2 shows a portion of the rotary drive means of the combination drive in a section perpendicular to its axis of rotation 6.
  • the rotor 4 is here surrounded by the stator 11 of the Rotati ⁇ onsantriebs. Grooves 91 in the rotor 4 can be clearly seen.
  • a three-phase winding 12 is inserted in grooves of the stator 11.
  • permanent magnets 13 are arranged with the corresponding Mag ⁇ netization.
  • the width (in the circumferential direction) of the grooves 9 of the rotor 3 is matched to the width of the permanent magnets 13 and the winding 12.
  • the permanent magnets in conjunction with the field fundamental of the stator 11 and the reluctance profile of the rotor 4, develop a torque. For example, for a machine with stator pole pair number 1, 24 permanent pole pairs and 23 rotor teeth, the rotor speed would be 1/23 of the stator rotation frequency.
  • the electromagnetic configuration of the linear actuator shown in FIG 1 corresponds to the rotation of the drive according to FIG 2, there is chosen the principle of Hybridreluktanzmotors with per ⁇ manentmagnettransportm rotor or secondary part in both cases.
  • the structure of the rotor 4 is shown in FIG 3. On its surface it has grooves 9 in the circumferential direction and grooves 91 in the axial direction. This results in rectangular elevations 14, which reduce the reluctance of the stator or primary part.
  • the rotor 4 consists exclusively of steel, sintered material or is laminated. Since he no permanent magnets ⁇ or has windings, he has only reluctance effect.
  • the entire combination drive is shown in the soan ⁇ view.
  • the stator 3 and 11 of the linear drive and the rotary drive are arranged axially directly adjacent to each other. They drive the common rotor 4, which has the same structure over its entire length.

Abstract

Es soll ein kombinierter Linear- und Rotationsantrieb mit kompaktem, einfachem und kostengünstigem Aufbau zur Verfügung gestellt werden. Dazu ist ein Kombinationsantrieb mit einer Linearantriebseinrichtung (3) und einer Rotationsantriebseinrichtung (11) vorgesehen, wobei mindestens eine der beiden Antriebseinrichtungen einen Hybridreluktanzmotor aufweist. Besonders vorteilhaft ist, beide Antriebseinrichtungen als Hybridreluktanzmotor zu realisieren, wodurch nicht nur eine sehr kompakte Bauweise des Antriebs, sondern auch eine kostengünstige Herstellung des Läufers (4) ohne Permanentmagnete gewährleistet werden kann.

Description

Beschreibung
Kombinationsantrieb mit Hybridreluktanzmotor
Die vorliegende Erfindung betrifft einen Kombinationsantrieb mit einer Linearantriebseinrichtung und einer Rotationsan- triebseinrichtung.
Bislang werden kombinierte Linear- und Rotationsantriebe, auch als Kombinationsantriebe bezeichnet, meist aus zwei ge¬ trennten Aggregaten aufgebaut. Eines der Aggregate übernimmt die Linearbewegung, während das andere der Aggregate die Ro¬ tation ausführt. Die Aggregate sind vielfach auch räumlich voneinander getrennt. Im Rahmen von neueren Entwicklungen wurden die beiden Einheiten jedoch auch in ein Gehäuse integriert .
In FIG 5 ist ein derartiger bekannter Kombinationsantrieb im Querschnitt dargestellt. Dieser Kombinationsantrieb wird bei- spielsweise für den Antrieb von Farbwalzen in einem Druckwerk verwendet. In dem Antrieb arbeiten ein Linearmotor 1, der als Außenläufer ausgeführt ist, und ein konventioneller drehender Motor 2. Sowohl der Linearmotor als auch der drehende Motor sind als permanenterregte Synchronmotoren ausgeführt. Der ge- samte Antrieb besitzt zwei getrennte, unterschiedlich aufge¬ baute Ständer und zwei getrennte, unterschiedlich aufgebaute Läufer. Die Läufer sind jedoch auf einer gemeinsamen Welle angeordnet .
Ein entscheidender Nachteil des Kombinationsantriebs von FIG 5 ist, dass sich der gesamte Läufer nur um eine bestimmte Strecke hin- und herbewegen kann. Diese Hubbewegung ist für die jeweilige Anwendung konstruktiv festgelegt. Somit ist der Antrieb ausschließlich für die spezielle Anwendung einsetz- bar. Es ist also nicht ohne weiteres möglich, den Hub zu ver¬ größern, ohne den Motor umzukonstruieren . Ein weiterer Nachteil besteht darin, dass der Läufer für Montagezwecke nicht beliebig aus dem Motor ausbaubar ist. Weiterhin erweist es sich bei dem oben beschriebenen Kombinationsantrieb als nachteilig, dass die beiden Teile des Läu¬ fers unterschiedlich ausgeführt werden müssen. Aus diesem Grund sind die beiden Ständer im entsprechenden Abstand anzu- ordnen, wodurch eine gewisse Motorlänge vorgegeben ist, die für gewisse Anwendungen zu groß ist oder Probleme mit sich bringt .
Grundsätzlich sind auf dem Gebiet der Antriebe auch so ge- nannte Hybridreluktanzmotoren bekannt. Dabei werden die Kräf¬ te bzw. Drehmomente der Motoren sowohl mit Hilfe veränderlicher Reluktanz als auch mit Hilfe von Permanentmagneten erzeugt. Dies ist beispielsweise in den VDI-Berichten 1269 vom Mai 1996 erwähnt.
Darüber hinaus ist aus der deutschen Patentanmeldung DE 10 2004 045 992.4 ein Synchronlinearmotor mit permanentmagnetlosem Sekundärteil bekannt. Die Wicklungen sind in dem Primärteil eingebracht, an dem auch die Permanentmagnete an- geordnet sind.
Die Aufgabe der vorliegenden Erfindung besteht darin, einen kompakten, einfachen und kostengünstigen Aufbau eines kombinierten Linear- und Rotationsantriebs vorzuschlagen.
Erfindungsgemäß wird diese Aufgabe gelöst durch einen Kombi¬ nationsantrieb mit einer Linearantriebseinrichtung und einer Rotationsantriebseinrichtung, wobei mindestens eine der beiden Antriebseinrichtungen einen Hybridreluktanzmotor auf- weist.
In vorteilhafter Weise kann somit das Motorprinzip des Hybridmotors, bei dem zwei magnetische Wirkmechanismen miteinan¬ der vereint sind, für einen Kombinationsantrieb verwendet werden. Damit lässt sich der Kombinationsantrieb einfach und kostengünstig aufbauen. Vorzugsweise besitzt sowohl die Linearantriebseinrichtung als auch die Rotationsantriebseinrichtung jeweils einen Hybridreluktanzmotor. Dadurch kann für den gesamten Antrieb ein einziges Motorprinzip verwendet werden.
Entsprechend einer besonders bevorzugten Ausgestaltung ist der Läufer permanentmagnetfrei ausgestaltet. Hierdurch können Läufer großer Baulänge verhältnismäßig kostengünstig herge¬ stellt werden.
Der Läufer des erfindungsgemäßen Kombinationsantriebs kann so ausgestaltet sein, dass er gleichzeitig als Läufer für die Linearantriebseinrichtung als auch als Läufer für die Rotationsantriebseinrichtung dient und dabei über seine gesamte a- xiale Erstreckung einheitlich strukturiert ist. Dies bringt Vorteile hinsichtlich der Demontage des Antriebs, aber auch hinsichtlich der Herstellungskosten des Läufers.
Weiterhin kann der Läufer ein Reluktanzprofil mit gleichmäßig sowohl in Umfangsrichtung als auch in axialer Richtung verteilten Nuten aufweisen. Ein derartig aufgebauter Läufer lässt sich mit sehr geringem Aufwand herstellen.
Entsprechend einer weiteren vorteilhaften Ausgestaltung ist der Läufer einteilig aus Stahl gebildet. Auch dies wirkt sich speziell gegenüber geblechten Läufern positiv auf die Herstellungskosten aus.
Spezielle Anwendungsbereiche des erfindungsgemäßen Kombinati- onsantriebs liegen auf dem Gebiet der Werkzeugmaschinen,
Spritzgussmaschinen und Druckmaschinen. Dabei können insbesondere Bohrspindeln, Extruderschnecken und Farbwalzen mit dem oben dargestellten Kombinationsantrieb ausgestattet wer¬ den. Daneben können auch Roboter, Bestückungsautomaten, Ver- packungsautomaten für die Lebensmittelindustrie und derglei¬ chen mit den Kombinationsantrieben versehen werden. Die vorliegende Erfindung wird nun anhand der beigefügten Zeichnungen näher erläutert, in denen zeigen:
FIG 1 einen Querschnittsausschnitt eines Linearantriebsteils eines erfindungsgemäßen Kombinationsantriebs;
FIG 2 einen Querschnittsabschnitt eines Rotationsteils eines erfindungsgemäßen Kombinationsantriebs;
FIG 3 eine dreidimensionale Ansicht eines erfindungsgemäßen
Läufers; FIG 4 eine Seitenansicht eines erfindungsgemäßen Kombinati¬ onsantriebs; und
FIG 5 einen Querschnitt durch einen Kombinationsantrieb gemäß dem Stand der Technik.
Das nachfolgend näher geschilderte Ausführungsbeispiel stellt eine bevorzugte Ausführungsform der vorliegenden Erfindung dar .
Die FIG 1 bis 3 zeigen Ausschnitte eines Kombinationsan- triebs, bei dem sowohl der Linearantrieb als auch der Rotati¬ onsantrieb durch einen Hybridreluktanzmotor realisiert ist. Bei der gewählten Ausführungsform ist der Läufer bzw. das Sekundärteil permanentmagnetfrei.
Der in FIG 1 in einem Längsschnitt dargestellte Ausschnitt des Linearantriebs besitzt einen zylinderförmigen Ständer 3, in dem ein ebenfalls zylinderförmiger Läufer 4 unter Einhaltung eines Luftspalts 5 angeordnet ist. Der Ständer 3 und der Läufer 4 sind rotationssymmetrisch gegenüber der Drehachse 6. In Nuten des Ständers 3 sind Wicklungen 7 eingelegt. In FIG 1 ist eine Stromflussrichtung durch die Wicklungen 7 angedeutet. An der Innenseite des Ständers 3 sind Permanentmagnete 8 angeordnet. Ihre Magnetisierung ist in FIG 1 durch Pfeile symbolisiert .
Der Läufer 4 besitzt Nuten 9, deren Breiten auf die Breite der Permanentmagnete 8 bzw. der Wicklungen 7 abgestimmt sind. Das Wirkungsprinzip dieses Linearmotors kann der oben genann- ten deutschen Patentanmeldung DE 10 2004 045 992.4 entnommen werden. Innerhalb des Ständers 3 ist der Läufer 4 entspre¬ chend dem Doppelpfeil 10 in axialer Richtung bewegbar. Die Permanentmagnete 8 entwickeln in Verbindung mit der FeId- grundwelle des Ständers 3 und des Reluktanzprofils des Läu¬ fers 4 eine axiale Kraft .
FIG 2 zeigt einen Abschnitt der Rotationsantriebseinrichtung des Kombinationsantriebs in einem Schnitt senkrecht zu dessen Drehachse 6. Der Läufer 4 ist hier vom Ständer 11 des Rotati¬ onsantriebs umgeben. Nuten 91 im Läufer 4 sind deutlich zu erkennen .
Eine Drehstromwicklung 12 ist in Nuten des Ständers 11 einge- bracht. An der Innenfläche des zylinderförmigen Ständers 11 sind wiederum Permanentmagnete 13 mit der entsprechenden Mag¬ netisierung angeordnet. Die Breite (in Umfangsrichtung) der Nuten 9 des Läufers 3 ist auf die Breite der Permanentmagnete 13 und der Wicklung 12 abgestimmt. Die Permanentmagnete ent- wickeln in Verbindung mit der Feldgrundwelle des Ständers 11 und des Reluktanzprofils des Läufers 4 ein Drehmoment. Die Drehzahl des Läufers würde zum Beispiel für eine Maschine mit Ständerpolpaarzahl 1, 24 Permanentpolpaaren und 23 Läuferzähnen 1/23 der Ständerdrehfrequenz betragen.
Die elektromagnetische Konfiguration des Linearantriebs gemäß FIG 1 entspricht der des Rotationsantriebs gemäß FIG 2, da in beiden Fällen das Prinzip des Hybridreluktanzmotors mit per¬ manentmagnetfreiem Läufer bzw. Sekundärteil gewählt ist.
Die Struktur des Läufers 4 ist FIG 3 zu entnehmen. An seiner Oberfläche besitzt er Nuten 9 in Umfangsrichtung und Nuten 91 in axialer Richtung. Dadurch ergeben sich rechteckförmige Erhöhungen 14, die die Reluktanz des Ständers bzw. Primärteils erniedrigen. Der Läufer 4 besteht ausschließlich aus Stahl, aus Sintermaterial oder ist geblecht. Da er keine Permanent¬ magnete oder Wicklungen besitzt, hat er ausschließlich Reluktanz-Wirkung . In FIG 4 ist der gesamte Kombinationsantrieb in der Seitenan¬ sicht dargestellt. Die Ständer 3 und 11 des Linearantriebs und des Rotationsantriebs sind axial unmittelbar aneinander angeordnet. Sie treiben den gemeinsamen Läufer 4 an, der über seine gesamte Länge die gleiche Struktur besitzt. Dies bedeu¬ tet, dass der Linearantrieb und der Rotationsantrieb den Läu¬ fer an praktisch allen axialen Positionen gemeinsam nutzen können. Im Gegensatz hierzu kann der aus dem Stand der Technik gemäß FIG 5 bekannte Rotationsantrieb den Läuferabschnitt des Linearantriebs nicht nutzen, und umgekehrt.
Aus FIG 4 ist leicht zu erkennen, dass der Läufer 4 problemlos durch den Motor geschoben werden kann, was sowohl für die Montage als auch für den Betrieb Vorteile bringt. Ein weite- rer Vorteil dieses Läufers 4 besteht in der einfachen Her¬ stellung. Aus einer Stahlvollwelle kann durch Längsfräsen und Einstichdrehen sehr kostengünstig die Läuferkontur hergestellt werden. Weiterhin erlaubt dieser Läuferaufbau, dass die gesamte Länge des Läufers 4 zur Kraft- und Drehmomentbil- düng genutzt werden kann. Würde der Läufer entsprechend FIG 5 aus unterschiedlich aufgebauten Läuferabschnitten bestehen, so würde bei großen Hüben die Anordnung unverhältnismäßig viel länger werden. Entsprechend dem Prinzip von FIG 4 können auch bei großen Hüben die beiden Ständer 3, 11 sehr eng zu- sammengebaut werden, so dass eine kompakte Bauform des An¬ triebs gewährleistet werden kann. Der unschätzbare Vorteil, dass auf dem Läufer keine teuren Permanentmagnete angeordnet werden müssen, wurde eingangs bereits erwähnt und kommt bei großen Hüben besonders zum Tragen.

Claims

Patentansprüche
1. Kombinationsantrieb mit
— einer Linearantriebseinrichtung (1) und - einer Rotationsantriebseinrichtung (2), d a d u r c h g e k e n n z e i c h n e t , dass
- mindestens eine der beiden Antriebseinrichtungen einen Hybridreluktanzmotor aufweist.
2. Kombinationsantrieb nach Anspruch 1, wobei die Linearan¬ triebseinrichtung (1) und die Rotationsantriebseinrichtung (2) jeweils einen Hybridreluktanzmotor aufweisen.
3. Kombinationsantrieb nach Anspruch 1 oder 2, wobei der Läu- fer (4) der beiden Antriebseinrichtungen permanentmagnetfrei ist .
4. Kombinationsantrieb nach einem der vorhergehenden Ansprüche, wobei der Läufer für die Linearantriebseinrichtung (1) und die Rotationsantriebseinrichtung (2) dient und über seine gesamte axiale Erstreckung einheitlich strukturiert ist.
5. Kombinationsantrieb nach einem der vorhergehenden Ansprü¬ che, wobei der Läufer (4) ein Reluktanzprofil mit gleichmäßig sowohl in Umfangsrichtung als auch in axialer Richtung verteilten Nuten (9, 91) aufweist.
6. Kombinationsantrieb nach einem der vorhergehenden Ansprü¬ che, wobei der Läufer (4) einteilig aus Stahl gebildet ist.
7. Werkzeugmaschine, Spritzgussmaschine, Druckmaschine oder Roboter mit einem Kombinationsantrieb nach einem der vorhergehenden Ansprüche.
PCT/EP2006/061729 2005-04-25 2006-04-21 Kombinationsantrieb mit hybridreluktanzmotor WO2006114390A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/912,596 US8063517B2 (en) 2005-04-25 2006-04-21 Combination drive with a hybrid reluctance motor
JP2008507089A JP2008538890A (ja) 2005-04-25 2006-04-21 ハイブリッドリラクタンスモータを有する組合せ駆動装置
CN2006800139304A CN101167235B (zh) 2005-04-25 2006-04-21 带有一混合式磁阻电动机的组合式驱动装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005019112.6 2005-04-25
DE102005019112A DE102005019112A1 (de) 2005-04-25 2005-04-25 Kombinationsantrieb mit Hybridreluktanzmotor

Publications (1)

Publication Number Publication Date
WO2006114390A1 true WO2006114390A1 (de) 2006-11-02

Family

ID=36699101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/061729 WO2006114390A1 (de) 2005-04-25 2006-04-21 Kombinationsantrieb mit hybridreluktanzmotor

Country Status (5)

Country Link
US (1) US8063517B2 (de)
JP (1) JP2008538890A (de)
CN (1) CN101167235B (de)
DE (1) DE102005019112A1 (de)
WO (1) WO2006114390A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090072634A1 (en) * 2006-03-17 2009-03-19 Siemens Aktiengesellschaft Electrical machine
CN103930363A (zh) * 2011-09-16 2014-07-16 柿子技术公司 具有被动转子的机器人驱动器
US10476354B2 (en) 2011-09-16 2019-11-12 Persimmon Technologies Corp. Robot drive with isolated optical encoder

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006013636B4 (de) * 2006-03-22 2012-02-09 Siemens Ag Druckmaschine bzw. elektrische Maschine für eine Druckmaschine
DE102007009747B4 (de) * 2007-02-28 2009-01-29 Siemens Ag Transfersystem
EP2045036A1 (de) * 2007-10-04 2009-04-08 Siemens Aktiengesellschaft Werkzeugwechselvorrichtung mit einem direktangetriebenen Hub- und Schwenkaktor
FR2940430B1 (fr) * 2008-12-22 2011-01-07 Sagem Defense Securite Actionneur avec capteur d'efforts
DE102010001997B4 (de) 2010-02-16 2016-07-28 Siemens Aktiengesellschaft Linearmotor mit verminderter Kraftwelligkeit
DE102010028872A1 (de) 2010-05-11 2011-11-17 Siemens Aktiengesellschaft Antriebsvorrichtung für Dreh- und Linearbewegungen mit entkoppelten Trägheiten
CN101997389B (zh) * 2010-11-11 2013-01-16 东南大学 直线旋转永磁作动器
EP2508769B1 (de) 2011-04-06 2013-06-19 Siemens Aktiengesellschaft Magnetische Axiallagervorrichtung mit erhöhter Eisenfüllung
WO2012153377A1 (ja) * 2011-05-06 2012-11-15 富士通株式会社 半導体集積回路およびその制御方法
DE102011079819A1 (de) * 2011-07-26 2013-01-31 Hilti Aktiengesellschaft Handwerkzeugmaschine mit Lagereinrichtung
JP5418556B2 (ja) * 2011-08-23 2014-02-19 株式会社安川電機 リニアモータの可動子およびリニアモータ
EP2604876B1 (de) 2011-12-12 2019-09-25 Siemens Aktiengesellschaft Magnetisches Radiallager mit Einzelblechen in tangentialer Richtung
EP2639935B1 (de) 2012-03-16 2014-11-26 Siemens Aktiengesellschaft Rotor mit Permanenterregung, elektrische Maschine mit einem solchen Rotor und Herstellungsverfahren für den Rotor
EP2639936B1 (de) 2012-03-16 2015-04-29 Siemens Aktiengesellschaft Elektrische Maschine mit permanent erregtem Läufer und zugehöriger permanent erregter Läufer
EP2639934B1 (de) 2012-03-16 2015-04-29 Siemens Aktiengesellschaft Rotor mit Permanenterregung, elektrische Maschine mit einem solchen Rotor und Herstellungsverfahren für den Rotor
EP2709238B1 (de) 2012-09-13 2018-01-17 Siemens Aktiengesellschaft Permanenterregte Synchronmaschine mit Ferritmagneten
EP2793363A1 (de) 2013-04-16 2014-10-22 Siemens Aktiengesellschaft Einzelsegmentläufer mit Halteringen
EP2973947B1 (de) 2013-04-17 2017-05-17 Siemens Aktiengesellschaft Elektrische maschine mit einem flusskonzentierenden permanentmagnetrotor und reduzierung des axialen streuflusses
EP2838180B1 (de) 2013-08-16 2020-01-15 Siemens Aktiengesellschaft Läufer einer dynamoelektrischen rotatorischen Maschine
EP2928052A1 (de) 2014-04-01 2015-10-07 Siemens Aktiengesellschaft Elektrische Maschine mit permanenterregtem Innenstator und Aussenstator mit Wicklungen
EP2999090B1 (de) 2014-09-19 2017-08-30 Siemens Aktiengesellschaft Permanenterregter Läufer mit geführtem Magnetfeld
EP3035496B1 (de) 2014-12-16 2017-02-01 Siemens Aktiengesellschaft Rotor für eine permanentmagneterregte elektrische Maschine
EP3373421B1 (de) 2017-03-09 2019-11-20 Siemens Aktiengesellschaft Gehäuseeinheit für eine elektrische maschine
CN109600015B (zh) * 2018-12-20 2020-09-25 江苏大学 一种定子励磁型直线旋转电机结构
CN109905011B (zh) * 2019-03-15 2020-05-26 广东极迅精密仪器有限公司 一种电机及具有其的芯片拾取放置装置
CN111865020B (zh) * 2019-04-26 2022-05-10 香港理工大学 定子动子轴向多段式旋转直线电机和致动装置及机器人
CN116345830B (zh) * 2023-05-30 2024-02-27 湖南凌翔磁浮科技有限责任公司 一种直线与旋转复合运动电机

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5315751A (en) * 1990-10-24 1994-05-31 International Business Machines Corporation Method of fabricating a combined linear-rotary direct drive step motor
EP0655825A1 (de) * 1993-11-19 1995-05-31 ORIENTAL MOTOR CO., Ltd. Schrittmotor für den kombinierten linearen drehbaren Antrieb
DE10261796A1 (de) * 2002-12-27 2004-07-22 Index-Werke Gmbh & Co. Kg Hahn & Tessky Antriebseinheit

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3999090A (en) * 1975-09-30 1976-12-21 Crs Stepper motor
JPS5246413A (en) 1975-10-13 1977-04-13 Nippon Telegr & Teleph Corp <Ntt> Rotary rectilinear motor
US4607197A (en) * 1978-04-17 1986-08-19 Imc Magnetics Corporation Linear and rotary actuator
JPS61161952A (ja) * 1985-01-09 1986-07-22 Yaskawa Electric Mfg Co Ltd 3相リニア誘導子形モ−タ
JP2711098B2 (ja) * 1987-09-10 1998-02-10 株式会社リコー インクジェット記録方法
FR2622066B1 (fr) * 1987-10-16 1995-08-25 Rossi Rinaldo Machine electrique a entrefers radiaux
JPH0747976Y2 (ja) 1991-05-14 1995-11-01 株式会社安川電機 高速リラクタンスモータの回転子
FR2765745B1 (fr) * 1997-07-03 1999-07-30 Parvex Sa Moteur lineaire
DE19842948A1 (de) * 1998-09-18 2000-03-30 Siemens Ag Elektromotor
EP1045509A1 (de) * 1999-04-16 2000-10-18 Newage International Limited Wechselstrommaschine
AU7878301A (en) 2000-08-23 2002-03-04 Takara Shuzo Co Method of amplifying nucleic acid
DE10133654A1 (de) * 2001-07-11 2003-02-06 Siemens Ag Synchronmaschine
US20030052563A1 (en) * 2001-09-14 2003-03-20 Karl Assmann Electric machine
DE10153750A1 (de) * 2001-10-31 2003-05-22 Siemens Ag Rotor für PM-Synchronmaschine
DE10156782C1 (de) * 2001-11-19 2003-04-17 Siemens Ag Gebersystem für einen Ferraris-Bewegungsgeber
DE10202518B4 (de) * 2002-01-23 2006-02-23 Siemens Ag Schweisszange
DE10212863B4 (de) * 2002-03-22 2006-06-08 Siemens Ag Ansteuerschaltung für einen Sperrschicht-Feldeffekttransistor
DE10212869A1 (de) * 2002-03-22 2003-09-18 Siemens Ag Ansteuerschaltung für einen Sperrschicht-Feldeffekttransistor
DE10230876C5 (de) * 2002-07-09 2009-09-10 Siemens Ag Antriebsvorrichtung für eine Kunststoffverarbeitungsmaschine
DE10236941A1 (de) * 2002-08-12 2004-03-04 Siemens Ag Stator für eine Synchronmaschine
DE10236942A1 (de) * 2002-08-12 2004-03-04 Siemens Ag Blechpaket für eine elektrische Maschine
DE10248771A1 (de) * 2002-10-18 2004-04-29 Siemens Ag Permanenterregte Synchronmaschine
DE10258778A1 (de) * 2002-12-16 2004-07-22 Siemens Ag Elektrische Maschine mit Heatpipes
DE10304905B3 (de) * 2003-02-06 2004-05-13 Siemens Ag Abdeckung für ein elektronisches Gerät
DE10317591A1 (de) * 2003-04-16 2004-11-11 Siemens Ag Optischer Geber für drehzahlregelbare Motoren
DE10320599B4 (de) * 2003-05-08 2010-04-01 Siemens Ag Antriebsvorrichtung für Kunststoffextruder mit nach hinten herausnehmbarer Extruderschnecke
DE10324601A1 (de) * 2003-05-30 2004-12-16 Siemens Ag Antriebsvorrichtung für Linear- und Rotationsbewegung
DE10324664A1 (de) * 2003-05-30 2004-12-30 Siemens Ag Rollen und Rollenmotoren
DE10324666A1 (de) * 2003-05-30 2004-12-23 Siemens Ag Elektrische Maschine mit einem Ständer und einem Läufer
CN1317811C (zh) * 2003-06-12 2007-05-23 国家磁浮交通工程技术研究中心 永磁和电磁混合励磁的长定子直线同步电机
US20070040466A1 (en) * 2003-09-11 2007-02-22 Rolf Vollmer Electric machine with an induction rotor
WO2005027321A1 (de) * 2003-09-11 2005-03-24 Siemens Aktiengesellschaft Dreiphasige synchronmaschine mit permanentmagnetläufer mit induktionskäfig
DE10345631A1 (de) * 2003-09-29 2005-05-04 Siemens Ag Elektrische Maschine mit Trägervorrichtung mit Messsystem
DE10352814A1 (de) * 2003-11-12 2005-06-30 Siemens Ag Elektrische Maschine
US20060049697A1 (en) * 2004-09-08 2006-03-09 Nikon Corporation Split coil linear motor for z force
DE102004045992A1 (de) 2004-09-22 2006-04-06 Siemens Ag Elektrische Maschine
JP2006174552A (ja) 2004-12-14 2006-06-29 Nissan Motor Co Ltd アキシャルギャップ型回転電機のロータ構造
JP4229063B2 (ja) 2004-12-24 2009-02-25 花王株式会社 容器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5315751A (en) * 1990-10-24 1994-05-31 International Business Machines Corporation Method of fabricating a combined linear-rotary direct drive step motor
EP0655825A1 (de) * 1993-11-19 1995-05-31 ORIENTAL MOTOR CO., Ltd. Schrittmotor für den kombinierten linearen drehbaren Antrieb
DE10261796A1 (de) * 2002-12-27 2004-07-22 Index-Werke Gmbh & Co. Kg Hahn & Tessky Antriebseinheit

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090072634A1 (en) * 2006-03-17 2009-03-19 Siemens Aktiengesellschaft Electrical machine
US8283815B2 (en) * 2006-03-17 2012-10-09 Siemens Aktiengesellschaft Electrical machine
CN103930363A (zh) * 2011-09-16 2014-07-16 柿子技术公司 具有被动转子的机器人驱动器
US9800114B2 (en) 2011-09-16 2017-10-24 Persimmon Technologies Corporation Robot drive with radially adjustable sensor connection
US10020704B2 (en) 2011-09-16 2018-07-10 Persimmon Technologies Corporation Electrical connection through motor housing
US10476354B2 (en) 2011-09-16 2019-11-12 Persimmon Technologies Corp. Robot drive with isolated optical encoder
US11031850B2 (en) 2011-09-16 2021-06-08 Persimmon Technologies Corporation Robot drive with isolated optical encoder
US11469649B2 (en) 2011-09-16 2022-10-11 Persimmon Technologies Corporation Robot drive with isolated optical encoder

Also Published As

Publication number Publication date
JP2008538890A (ja) 2008-11-06
CN101167235A (zh) 2008-04-23
CN101167235B (zh) 2011-03-02
DE102005019112A1 (de) 2006-10-26
US8063517B2 (en) 2011-11-22
US20090212644A1 (en) 2009-08-27

Similar Documents

Publication Publication Date Title
WO2006114390A1 (de) Kombinationsantrieb mit hybridreluktanzmotor
EP0706461B1 (de) Antriebseinheit
DE102010028872A1 (de) Antriebsvorrichtung für Dreh- und Linearbewegungen mit entkoppelten Trägheiten
DE112005003694T5 (de) Magnetmotor
DE4341166A1 (de) Drehantriebs-Vorrichtung für die Welle einer Werkzeugmaschine
DE102017218153B3 (de) Rotor einer elektrischen Maschine
DE19500112A1 (de) Elektrische Antriebsvorrichtung mit mehr als einem permanentmagnetisch erregten Rotor
DE102009055396A1 (de) Elektrischer Antrieb mit Schneckengetriebe
DE102019218437A1 (de) Rotor für eine Elektromaschine und Verfahren zur Herstellung eines Rotors
EP0738591B1 (de) Übertragungszylinder mit elektromotorischer Antriebseinheit
EP2097964B1 (de) Drehfeldmaschine mit glockenläufer
DE102006059135A1 (de) Elektrische Maschine
EP1928679B1 (de) Antriebseinheit mit verschachtelten elektromotoren
DE102006014498A1 (de) Stator für eine elektrische Maschine
EP3002852A1 (de) Rotor mit hineinragenden Stegen
DE19530283A1 (de) Übertragungszylinder mit elektromotorischer Antriebseinheit
DE19961201B4 (de) Antrieb für eine Nähmaschine, insbesondere eine Industrienähmaschine
DE102012205421A1 (de) Elektromotor
DE102020129142B4 (de) Läufer für eine rotierende elektrische Maschine
AT523723B1 (de) Getriebemotor
DE102004062340B4 (de) Elektromagnetischer Antrieb mit Flußleitstücken
EP2149971B1 (de) Drehlinearantriebsvorrichtung mit läuferstabilisierendem, weichmagnetischem Element
WO2017167710A1 (de) Rotoranordnung
DE10056875A1 (de) Rotor für eine elektrische Maschine
DE202005020628U1 (de) Antriebseinheit mit verschachtelten Elektromotoren

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2008507089

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200680013930.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06763049

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11912596

Country of ref document: US