WO2006112347A1 - 油脂のドライ分別方法 - Google Patents

油脂のドライ分別方法 Download PDF

Info

Publication number
WO2006112347A1
WO2006112347A1 PCT/JP2006/307819 JP2006307819W WO2006112347A1 WO 2006112347 A1 WO2006112347 A1 WO 2006112347A1 JP 2006307819 W JP2006307819 W JP 2006307819W WO 2006112347 A1 WO2006112347 A1 WO 2006112347A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
crystal part
liquid
mass
liquid part
Prior art date
Application number
PCT/JP2006/307819
Other languages
English (en)
French (fr)
Inventor
Toru Nezu
Tomonori Ito
Hiroshi Arakawa
Shintaro Takebayashi
Original Assignee
Adeka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adeka Corporation filed Critical Adeka Corporation
Priority to JP2007526834A priority Critical patent/JP4863997B2/ja
Priority to EP06731755.2A priority patent/EP1889898B1/en
Publication of WO2006112347A1 publication Critical patent/WO2006112347A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B3/00Refining fats or fatty oils
    • C11B3/16Refining fats or fatty oils by mechanical means
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B7/00Separation of mixtures of fats or fatty oils into their constituents, e.g. saturated oils from unsaturated oils
    • C11B7/0075Separation of mixtures of fats or fatty oils into their constituents, e.g. saturated oils from unsaturated oils by differences of melting or solidifying points

Definitions

  • the present invention relates to a method for dry separation of fats and oils.
  • the crystallization temperature when the crystallization temperature is lowered, not only the target triglyceride component but also the lower melting point triglyceride is crystallized at the same time, and the purity of the target triglyceride component is lowered. Therefore, in order to selectively fractionate the desired triglyceride, it is desirable to slowly crystallize at a high temperature, but in order to obtain a practical crystallization rate, it must be crystallized at a lower temperature. There were many cases.
  • the crystals generated by dry fractionation are formed by agglomeration of fine crystals to form a spherical shape, the liquid part is embedded in the crystal or the liquid part remains in the crystal gap. There was a drawback that the purity was easily lowered.
  • Patent Document 1 discloses that a fatty acid mixture obtained by cooling a fatty acid mixture composed of a solid fatty acid and a liquid fatty acid to crystallize the solid fatty acid. Mixing the aqueous wetting agent, splitting it into an aqueous phase in which solid fatty acids are dispersed and a liquid fatty acid phase, and maintaining the resulting aqueous phase in which the solid fatty acids are dispersed at a temperature below the melting point of the solid fatty acids, A method for sweating liquid fatty acids is described. However, in the method of Patent Document 1, it is necessary to remove the wetting agent aqueous solution.
  • Patent Document 2 discloses a method in which a crystal is heated and sweated while the crystal is supported by a zigzag bent screen-like support structure.
  • this method of Patent Document 2 has a disadvantage that a special apparatus is required and the liquid part does not elute unless a considerable amount of crystals are dissolved.
  • Patent Document 3 discloses a dry fractionation method in which only a part of the crystal fraction is melted to raise the temperature, and after sweating, press filtration is performed.
  • the structure of the fat crystal is weakened by heating, so that it is easily disintegrated by the subsequent pressing operation, and the filterability (separating the liquid part from the crystal part) is extremely high. Sufficient solid-liquid separation after bad sweating was difficult.
  • Patent Document 1 Japanese Patent Laid-Open No. 4-306296
  • Patent Document 2 Japanese Patent Laid-Open No. 11-76701
  • Patent Document 3 Japanese Unexamined Patent Application Publication No. 2004-123839
  • the purpose of the present invention is to make it possible to separate the oil and fat power of high purity, efficiency by using a wetting agent and a special apparatus for the crystal part (high melting point component) and the medium melting point part.
  • the purpose is to provide a dry separation method.
  • FIG. 1 is a diagram showing a DSC melting pattern for setting the heating temperature of crystal part 1.
  • FIG. 2 is a diagram showing a DSC melting pattern for setting the heating temperature of crystal part 1 when a plurality of melting peaks are observed.
  • the oil and fat used in the present invention may be any oil and fat as long as it is an oil or fat other than liquid oil.
  • oils rich in symmetrical triglycerides such as palm oil, shea fat, monkey fat, iripe fat, cacao fat, coconut fat, mango kernel oil, lauric fats such as palm oil and palm kernel oil, beef fat, pork Animal fats and oils such as fat and milk fat, and fractionated fats, hardened oils and transesterified oils thereof can be used.
  • liquid oils such as soybean oil and rapeseed oil can be used as a hardened oil obtained by curing the oil.
  • fats and oils used for hard butter which are fats and oils for chocolate, can be optimally used.
  • liquid part 2 and liquid part 1 obtained at this time are distinguished by the difference in melting point, they correspond to a high melting point component, a medium melting point component and a low melting point component, respectively.
  • the above fats and oils are first dissolved.
  • the melting temperature varies depending on the fats and oils used, but there is no particular limitation as long as the fats and oils are melted.
  • the melted oil is cooled and crystallized, and is separated into a crystal part 1 and a liquid part 1.
  • the crystallization temperature should be such that it can be separated into crystal part 1 and liquid part 1.
  • the crystallization method is not particularly limited as long as it is a crystallization method used for dry fractionation.
  • a method of cooling crystallization while stirring (2) a method of cooling crystallization under standing (3) After cooling and crystallizing with stirring, the method of further cooling and crystallizing under standing, (4) After cooling and crystallizing under standing and then fluidizing by mechanical stirring. wear.
  • the crystal slurry obtained by the above crystallization preferably has a solid fat content (SFC) of 1 to 65% at the crystallization temperature. If the solid fat content within the above range is less than 1% or more than 65%, the solid fat content with good separation efficiency when separating into crystalline part 1 and liquid part 1 The separation efficiency tends to deteriorate.
  • SFC solid fat content
  • the solid fat content (SFC) at the crystallization temperature is more preferably 3 to 40% in order to improve the yield. More preferably, the content is 5 to 35%.
  • the solid fat content (SFC) at the above crystallization temperature is more preferably 20 to 65% in order to improve the yield. More preferably, the content is 40 to 65%.
  • the fat crystals contained in the above-mentioned crystal slurry are agglomerated with fine crystals, preferably 99% or more of the fat crystals, preferably 5 to 1500 ⁇ m, more preferably 50 to: within the range of LOOO ⁇ m, and the median diameter is preferably 200 to 800 ⁇ m, more preferably 300 to 600 ⁇ m. If the fat crystal is outside the above range, for example, if the fat crystal is needle-shaped, if there is 1% or more of the fat crystal with a particle size of less than 5 m, or if the median diameter is less than 200 m, Filterability is poor and it may be difficult to separate crystal part 1 and liquid part 1.
  • a method for separating the crystal slurry from the crystal part 1 and the liquid part natural filtration, suction filtration, squeeze filtration, centrifugation, and the like can be used.
  • the dry fractionation method of the present invention In order to minimize the number of machines used in the process and simplify the separation operation, a press filter that can perform pressurization and separation, a filter press that can be pressed (a membrane filter), a belt press, etc. are used. The squeezing filtration which was performed is preferable.
  • the solid fat content (SFC) at the crystallization temperature of the above crystallization slurry is high and the slurry is very viscous, or looks like a block, it is slurried by pressure during squeeze filtration. Therefore, it is particularly suitable.
  • a preferable pressure when the pressure filtration is performed is preferably 0.2 MPa or more, and more preferably 0.5 to 5 MPa.
  • the rate of increase in pressure is IMPaZ or less, preferably 0.5 MPaZ or less, more preferably 0. IMPaZ. It is as follows. If the pressurization rate is greater than 1 MPaZ, the purity of the crystal part 2 may eventually decrease.
  • the size of the fat crystal of the obtained crystal part 1 is almost the same as the size of the fat crystal contained in the crystal slurry.
  • the crystal part 1 obtained by the above-mentioned fractionation of the crystal slurry is heated while being squeezed and sweated to separate into the crystal part 2 and the liquid part 2.
  • the crystal part 2 having higher separation efficiency and higher purity can be obtained compared to the conventional sweating operation.
  • the reason why the sweating operation that is heated while squeezing is higher in the separation efficiency than that of the conventional sweating operation only by heating and a high purity crystal part can be obtained is as follows.
  • the first reason is that by gradually separating and removing the liquid part generated by perspiration, the amount of crystal in the crystal part can be kept high and the structure of the crystal part can be maintained in a pressure-resistant state that is strong. .
  • the second reason is that by keeping the amount of the liquid part in the crystal part small, the solid-liquid equilibrium is biased toward the solid side, so that the dissolution amount of the crystal part can be kept to a minimum.
  • the pressure during pressing is preferably 0.02 to 2 MPa, more preferably 0.03 to: L 5 MPa, and most preferably 0.04 to LMPa. If the pressure during squeezing is lower than 0.02 MPa, the time required for elution and separation of liquid part 2 becomes longer, and when it is immediately separated into crystal part 2 and liquid part 2, medium melting point components remain in crystal part 2. The separation efficiency is likely to deteriorate. On the other hand, if the pressure during squeezing is higher than 2 MPa, when the crystal part 1 is heated while being squeezed and sweated, the high melting point component immediately passes through the filter cloth and is immediately divided between the crystal part 2 and the liquid part 2. The separation efficiency tends to deteriorate.
  • the pressure at the time of squeezing may be gradually reduced from the beginning to the end of the sweating process. This is because, depending on the state of the fat crystal of the crystal part 1, the pressure resistance of the crystal is reduced by the sweating operation, and the crystal may be collapsed by the pressure.
  • the heating of the crystal part 1 is performed at a temperature that is higher than the crystallization temperature of the oil and fat and the crystal part is not completely dissolved.
  • the crystal part 1 is melted by DSC (differential scanning calorimeter).
  • the temperature should be at least the onset temperature (Fig. L, Ta) of the melting peak observed and less than the offset temperature (Fig. L, Tb).
  • Fig. L, Ta onset temperature
  • Fig. L, Tb offset temperature
  • the liquid part 2 obtained at this time may be further fractionated according to the time during which the liquid part 2 is eluted.
  • liquid part removed at the beginning of perspiration is a component with a lower melting point even in liquid part 2.
  • the liquid part 2 obtained after the removal of the liquid part 2 is obtained when the liquid part 2 having a lower melting point and a higher purity can be obtained.
  • the heating temperature is increased in a multistage manner from the beginning to the end of the sweating process, so that a plurality of liquid parts can be obtained. Part 2 may be obtained.
  • liquid part removed at the initial stage of sweating is a component having a lower melting point even in the liquid part 2.
  • a liquid part 2 having a high density can be obtained.
  • the heating temperature may be continuously increased from the beginning to the end of the sweating process.
  • the liquid part is gradually removed from the crystal part by heating and sweating while squeezing, so the melting peak observed when the crystal part is melted with DSC gradually moves to the high temperature side. Therefore, at this time, the crystal part 2 with higher purity can be obtained by continuously raising the sweating temperature in accordance with the movement of the melting peak to the high temperature side.
  • the ratio of crystal part 2 is more than 98, it is necessary to increase the heating temperature when the crystal part 1 is heated while being squeezed and sweated, so that the medium melting point component easily dissolves in the crystal part 2.
  • the separation of crystal part 2 and liquid part 2 tends to be difficult.
  • the crystal part 2 obtained by the fractionation method of the present invention is one in which the crystal part (high melting point component) of the crystal part 1 is more concentrated, particularly for hard butter that is a fat for chocolate as a raw oil.
  • Trisaturated glycerides are symmetric type triglycerides When Lido is more concentrated, it has a characteristic.
  • the content of the symmetrical triglyceride in the crystal part 2 obtained by the fractionation method of the present invention is preferably 75 to 99% by weight, more preferably 80 to 95% by weight, and most preferably 85 to 95% by weight. It is.
  • Crystal part 2 Applications of the crystal part 2 include fats and oils for chocolate, fats and oils for white chocolate, fats and oils for butter cream, fats and oils for sand cream, and raw oils and fats for margarine 'shortening.
  • the liquid part 2 obtained by the fractionation method of the present invention is one in which the high melting point component of the crystal part 1 has been removed, and in particular, the fats and oils used for hard butter that are fats and oils for chocolate are used as raw material fats and oils. In this case, it contains a large amount of symmetric triglyceride and has a low trisaturated glyceride content.
  • the content of the symmetrical triglyceride in the liquid part 2 obtained by the fractionation method of the present invention is preferably 50 to 99% by weight, more preferably 70 to 95% by weight.
  • the content of tri-saturated glycerides is preferably 5% or less, more preferably 3% or less.
  • Applications of Liquid Part 2 include chocolate fats and oils, white chocolate fats and oils, butter cream fats and oils, sand cream fats and oils, margarine 'shortening raw oils and fats, chocolate hardness adjustment, ice cream and ice cream It can be used as a raw material oil for OZW type emulsified fats such as coating fats and whip creams.
  • DG diglyceride
  • P palmitic acid
  • S stearic acid
  • A arachidic acid
  • O oleic acid
  • L linoleic acid
  • s saturated fatty acid
  • u unsaturated fatty acid
  • Crystal part 1 in the membrane filter was pressurized to 0.5 MPa, the temperature of the thermostatic chamber was raised to 40 ° C, kept at this temperature for 8 hours, and the liquid part 2 that had eluted and the membrane filter press. Crystal part 2 remained as crystals was obtained.
  • the onset temperature by DSC (differential scanning calorimeter) of crystal part 1 was 25 ° C, and the offset temperature was 48 ° C.
  • the yield at this time was 16.9% by mass for crystal part 1, 83.1% by mass for liquid part 1, 4.5% by mass for crystal part 2, and 12.4% by mass for liquid part 2.
  • Liquid part 2 corresponds to the medium melting point component, and sus was 83.7% by mass and sss was 1.4% by mass.
  • Crystal part 2 corresponds to the high melting point component, sus was 60.5% by mass, and sss was 24.1% by mass.
  • Crystal part 1 in the membrane filter pressurized to 0.5 MPa With the crystal part 1 in the membrane filter pressurized to 0.5 MPa, the temperature of the thermostatic chamber was raised to 35 ° C, and the liquid part 2 that had been eluted for 8 hours and remained as crystals in the membrane filter press remained. Crystal part 2 was obtained.
  • the onset temperature by DSC (Differential Scanning Calorimeter) of crystal part 1 was 25 ° C, and the offset temperature of crystal part 1 was 45 ° C.
  • the yield at this time was 13.5% by mass for crystal part 1, 86.5% by mass for liquid part 1, 3.6% by mass for crystal part 2, and 9.9% by mass for liquid part 2.
  • Liquid part 2 This corresponds to the medium melting point component, sus was 76% by mass, and sss was 1% by mass. Crystal part 2 corresponds to the high melting point component, sus was 49.9% by mass, and sss was 43% by mass.
  • crystal part 1 in the membrane filter pressurized to 0.5 MPa raise the temperature of the thermostatic chamber to 40 ° C, hold for 1 hour and elute the liquid part 2-1 and hold for another 7 hours.
  • the dissolved liquid part 2-2 and the crystal part 2 remaining as crystals in the membrane filter were obtained.
  • the onset temperature by DSC (differential scanning calorimeter) of crystal part 1 was 25 ° C, and the offset temperature of crystal part 1 was 48 ° C.
  • the yield at this time was 14.8% by mass for crystal part 1, 85.2% by mass for liquid part 1, 3.6% by mass for crystal part 2, 0.5% by mass for liquid part 2-1 and liquid.
  • Part 2-2 was 10.7% by mass.
  • Liquid part 2 1, 2-2 corresponds to the medium melting point component, sus is 71.9% by weight in liquid part 2-1, 88.6% by weight in liquid part 2-2, sss is liquid part 2— It was 0.3% by mass for 1 and 3.3% by mass for liquid part 2-2.
  • Crystal part 2 corresponds to the high melting point component, sus is 44.9% by mass, and sss is 44.9 mass 0 /. Met.
  • Liquid Part 1 is completely dissolved and then crystallized at 22 ° C for 11 hours with slow stirring. A crystal slurry with a force of S6% (22 ° C) was obtained. The crystallized slurry was separated by filtration using a membrane filter (filter press capable of squeezing) in a thermostatic chamber adjusted to 22 ° C, and then squeezed at 3 MPa to obtain crystal part 2 and liquid part 2.
  • a membrane filter filter press capable of squeezing
  • the yield at this time was 6.9% by mass for crystal part 1, 93.1% by mass for liquid part 1, 12.5% by mass for crystal part 2, and 80.6% by mass for liquid part 2.
  • Crystal part 2 corresponds to the medium melting point component
  • sus was 84.4% by mass
  • sss was 2.2% by mass
  • Crystal part 1 corresponds to the high melting point component.
  • Sus is 77.1% by mass and sss is 15.5% by mass.
  • the yield at this time was 11.6% by mass for crystal part 1, 88.4% by mass for liquid part 1, 7.8% by mass for crystal part 2, and 3.8% by mass for liquid part 2.
  • Liquid part 2 corresponds to the medium melting point component, and sus was 80.5% by mass and sss was 6.1% by mass.
  • Crystal part 2 corresponds to the high melting point component, and sus was 69.3% by mass and sss was 19.4% by mass.
  • Example 1 and Comparative Example 1 are compared, in Example 1, a high melting point component having a higher sss content than the high melting point component of Comparative Example 1 obtained by the conventional fractionation method can be obtained. Recognize. Comparing Example 1 and Comparative Example 2, in Example 1, a higher melting point component with a higher sss content and a middle melting point component with a higher sus content are obtained than in Comparative Example 2 in which no squeezing is performed in the sweating process. I understand that
  • Example 3 Comparing Example 1 and Example 3, the liquid part 2-2 of Example 3 obtained by fractionating the liquid part 2 obtained in the perspiration process by the time for further dissolution is more than the liquid part 2 of Example 1. It can be seen that a medium melting point component having a higher sus content is obtained.
  • the temperature of the thermostatic chamber was raised to 26 ° C in 1 hour, then 11 The heating temperature was continuously raised to 28 ° C. over time to obtain the eluted liquid part 2 and the remaining crystal part 2 as crystals in the membrane filter press.
  • the onset temperature by DSC (differential scanning calorimeter) of crystal part 1 was 25 ° C, and the offset temperature of crystal part 1 was 36 ° C.
  • the onset temperature by DSC of crystal part 2 was 27 ° C, and the offset temperature was 36 ° C.
  • the yield at this time was 23.8% by mass for crystal part 1, 76.2% by mass for liquid part 1, 20.9% by mass for crystal part 2, and 2.9% by mass for liquid part 2.
  • Liquid part 2 corresponds to the medium melting point component, and sus was 59% by mass and sss was 0% by mass.
  • Crystal part 2 corresponds to the high melting point component, and sus was 86% by mass and sss was 3.0% by mass.
  • the temperature of the thermostatic chamber was heated at 28 ° C. for 8 hours to obtain a liquid part 2-1, which was eluted.
  • the pressure was reduced to 0.5 MPa, and the mixture was heated at 35 ° C. for 16 hours to obtain liquid part 2-2 that had been eluted and crystal part 2-2 that remained as crystals in the membrane filter press.
  • the onset temperature of the crystal part 1 by DSC was 25 ° C, and the offset temperature was 43 ° C.
  • the yield at this time was 30.7% by mass for crystal part 1, 69.3% by mass for liquid part 1, 0.9% by mass for crystal part 2-2, and 17.3% by mass for liquid part 2-1
  • the liquid part 2-2 was 12.5% by weight.
  • Table 7 The results of measuring the triglyceride composition of each fraction by HPLC are shown in Table 7 below.
  • the liquid part 21 and the liquid part 2-2 correspond to the medium melting point component, and the sus of the liquid part 2-2 was 87 mass% and the sss was 1.2 mass%.
  • Crystal part 2 corresponds to the high melting point component, and sus is 53 mass. / 0 and sss were 33% by mass.
  • Crystallized part 1 and liquid part 1 were obtained by squeezing the high-viscosity crystallized slurry obtained by crystallization at 3 MPa in a thermostatic chamber adjusted to 31 ° C.
  • the crystal part 1 in the squeezer was pressurized to 0.5 MPa and the temperature of the thermostatic chamber was heated at 35 ° C for 8 hours to elute the liquid part 2 and the crystal part remaining as crystals in the membrane filter press. 2 got.
  • the onset temperature of DSC (differential scanning calorimeter) of crystal part 1 was 32 ° C, and the offset temperature was 40 ° C.
  • the yield at this time was 65% by mass for crystal part 1, 35% by mass for liquid part 1, 54% by mass for crystal part 2, and 11% by mass for liquid part 2.
  • Liquid part 2 corresponds to the medium melting point component, and sus of crystal part 2 was 91% by mass and sss was 0.2% by mass. Crystal part 2 corresponds to the high melting point component, and sus was 51% by mass and sss was 0% by mass.
  • Crystal part 1 in the squeezing machine is heated to 0.5 MPa at a pressure of 0.5 MPa and heated for 5 hours at 33 ° C.
  • Liquid part 2 has been eluted, and crystal part 2 remains as crystals in the membrane filter press.
  • the onset temperature by DSC (Differential Scanning Calorimeter) of crystal part 1 was 28 ° C and the offset temperature was 38 ° C.
  • the yield at this time was 75% by mass for crystal part 1, 25% by mass for liquid part 1, and 55% by mass for crystal part 2. %, Liquid part 2 is 20 mass. /. Met.
  • Liquid part 2 corresponds to the medium melting point component, and sus was 77% by mass and sss was 0.3% by mass.
  • Crystal part 2 corresponds to the high melting point component, sus being 94% by mass and sss being 1.8% by mass.
  • the liquid part 2-2 obtained by increasing the heating temperature in a multistage manner has a very high sus content, and also has a trisaturated glyceride content. It can be seen that the yield is extremely low and high.
  • the sus content is further concentrated in the crystal part 2 obtained by the dry fractionation method of the present invention using fats and oils having a high sus content.
  • high-purity crystal parts high-melting-point components
  • medium-melting-point parts can be separated from fats and oils with efficiency without using a wetting agent or special equipment. Monkey.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Microbiology (AREA)
  • Fats And Perfumes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 油脂を溶解した後、冷却結晶化させ、結晶化スラリーとし、これを結晶部1と液状部1に分別し、得られた結晶部1を圧搾しながら加熱して発汗させ、結晶部2と液状部2に分別することを特徴とする油脂のドライ分別方法。この油脂のドライ分別方法によれば、純度の高い結晶部(高融点成分)や中融点部を、湿潤剤や特殊な装置を使うことなく、効率よく、油脂から分別することができる。この方法により、分別された油脂は、チョコレート用油脂などとして好適に使用される。

Description

明 細 書
油脂のドライ分別方法
技術分野
[0001] 本発明は油脂のドライ分別方法に関する。
背景技術
[0002] 油脂のドライ分別において、純度の高い結晶部を得るためには、目的とするトリダリ セリド成分のみを選択的に結晶化し、さらに結晶部の分離工程において結晶部への 液状部の混入を最小限に抑えることが重要である。油脂は多種類のトリグリセリドを含 む混合物であるため、融点の近いトリグリセリド同士は互いに混じりあった結晶を形成 する傾向があり、結晶化するトリグリセリドの組成は結晶化温度に依存して変化する。 例えば、結晶化温度を低くすると、目的とするトリグリセリド成分のみならず、より融 点の低いトリグリセリドが同時に結晶化し、目的とするトリグリセリド成分の純度が低下 する。従って、目的とするトリグリセリドを選択的に分別するためには、高い温度でゆ つくりと結晶化することが望ましいが、実用的な結晶化速度を得るために、より低温で 結晶化せざるを得な 、場合が多カゝつた。
さらに、ドライ分別で生成する結晶は、微細な結晶が凝集し球状を成したものである ため、結晶内部に液状部が抱きこまれたり、結晶間隙に液状部が残存することにより 、結晶部の純度が低下しやす 、と 、う欠点があった。
[0003] 一方、純度の高い結晶部を得るために、結晶部を加熱して結晶の一部を溶解させ 、結晶表面や結晶内に存在する液状部と共に溶出する発汗という操作が知られてい る。
この発汗操作を利用した先行技術としては、特許文献 1に、固体脂肪酸と液体脂肪 酸からなる脂肪酸混合物を冷却して固体脂肪酸を晶析させ、得られた固体脂肪酸が 晶析した脂肪酸混合物に、湿潤剤水溶液を混合し、これを固体脂肪酸が分散した水 相と液体脂肪酸相に分相し、得られた固体脂肪酸が分散した水相を固体脂肪酸の 融点以下の温度に加温保持しながら、液体脂肪酸を発汗させる方法が記載されて 、 る。しかし、この特許文献 1の方法では、湿潤剤水溶液を除去する必要があった。 特許文献 2には、ジグザグに曲がったスクリーン状支持構造体で結晶を支持しなが ら、結晶を加熱発汗させる方法が開示されている。しかし、この特許文献 2の方法で は、特殊な装置を必要とし、また、相当量の結晶を溶解しないと液状部が溶出してこ ないという欠点があった。
特許文献 3には、結晶画分の一部のみを融解する昇温を行って発汗後、圧搾濾過 する乾式分画方法が開示されている。しかし、この特許文献 3の方法は、加熱により 油脂結晶の構造が弱くなるため、続いて行なう圧搾操作によって容易に崩壊してしま い、濾過性 (結晶部から液状部を分離すること)が極めて悪ぐ発汗後の十分な固液 分離が困難であった。
また、得られた結晶部や液状部を更にドライ分別を行なって中融点部を得る場合、 上述のとおり分離効率が悪いことに加え、 1回目の分別工程が完全に分別が終了し てからでないと 2回目の分別工程に移行できないため、時間効率も悪いものであった 特許文献 1:特開平 4— 306296号公報
特許文献 2:特開平 11― 76701号公報
特許文献 3 :特開 2004— 123839号公報
発明の開示
発明が解決しょうとする課題
[0004] 本発明の目的は、純度の高!、結晶部 (高融点成分)や中融点部を、湿潤剤や特殊 な装置を使うことなぐ効率よぐ油脂力も分別することができる、油脂のドライ分別方 法を提供することにある。
課題を解決するための手段
[0005] 本発明は、油脂を溶解した後、冷却結晶化させ、結晶化スラリーとし、これを結晶部 1と液状部 1に分別し、得られた結晶部 1を圧搾しながら加熱して発汗させ、結晶部 2 と液状部 2に分別することを特徴とする油脂のドライ分別方法により、上記の課題を解 決したものである。
図面の簡単な説明 [0006] [図 1]図 1は、結晶部 1の加熱温度を設定するための DSC融解パターンを示した図で ある。
[図 2]図 2は、融解ピークが複数観察される場合の結晶部 1の加熱温度を設定するた めの DSC融解パターンを示した図である。
発明を実施するための最良の形態
[0007] 本発明に用いる油脂は液状油以外の油脂であれば、どのような油脂でも構わない
。具体的には、パーム油、シァ脂、サル脂、ィリッペ脂、カカオ脂、コクム脂、マンゴー 核油等の対称型トリグリセリドに富む油脂、ヤシ油、パーム核油等のラウリン系油脂、 牛脂、豚脂、乳脂等の動物油脂、およびこれらの分別脂、硬化油、エステル交換油 を用いることができる。大豆油、ナタネ油等の液状油であっても、これを硬化した硬化 油を用いることは可能である。また特にチョコレート用の油脂であるハードバター用に 用いられる油脂を最適に用いることができる。
[0008] 本発明は、上記の油脂を溶解した後、冷却結晶化させ、結晶ィ匕スラリーとし、これを 結晶部 1と液状部 1に分別し、得られた結晶部 1を圧搾しながら加熱して発汗させ、結 晶部 2と液状部 2に分別することを特徴とする油脂のドライ分別方法である。
このとき得られる結晶部 2、液状部 2、液状部 1を融点の違いで区別すると、それぞ れ高融点成分、中融点成分、低融点成分にあたるものである。
[0009] 本発明では、まず上記の油脂を溶解する。溶解する温度は、用いる油脂によって 異なるものであるが、油脂が溶解する温度であれば、特に制限はない。
[0010] 次いで、溶解した油脂を冷却結晶化し、これを結晶部 1と液状部 1に分別する。結 晶化温度は結晶部 1と液状部 1に分別できるような温度とする。
結晶化方法は、ドライ分別に用いられる結晶化方法であれば特に限定されるもので はなぐ例えば、(1)攪拌しながら冷却結晶化する方法、(2)静置下で冷却結晶化す る方法、(3)攪拌しながら冷却結晶化した後、さらに静置下で冷却結晶化する方法、 (4)静置下で冷却結晶化した後、機械的攪拌により流動化する方法をあげることがで きる。
なお、上記方法の中でも、ラウリン系油脂や対称型トリグリセリドに富む油脂等、特 にチョコレート用の油脂であるハードバター用に用いられる油脂を使用した場合、攪 拌下で濾過性の良 、結晶を多量に析出させることが難し 、ため、上記(3)又は (4) の方法で結晶化するのが好ましい。そして結晶化は回分式操作である必要はなぐ 連続的な結晶化操作、回分式結晶化を多段にしたカスケード操作でも良い。
[0011] 上記の結晶化により得られる結晶ィ匕スラリーは、その結晶化温度での固体脂含量( SFC)を 1〜65%とすることが好ましい。固体脂含量が上記範囲内の結晶ィ匕スラリー は、結晶部 1と液状部 1に分別する際の分別効率が良ぐ固体脂含量が 1%よりも少 なかったり、 65%よりも多いと、該分別効率が悪くなりやすい。
なお、結晶部 2 (高融点成分)の分離のみを目的とする場合は、収率を向上させる ためには、上記結晶化温度での固体脂含量 (SFC)が、より好ましくは 3〜40%、さら に好ましくは 5〜35%とする。
また、液状部 2 (中融点部)の分離のみを目的とする場合は、収率を向上させるため には、上記結晶化温度での固体脂含量 (SFC)が、より好ましくは 20〜65%、さらに 好ましくは 40〜65%とする。
上記結晶ィ匕スラリーに含まれる油脂結晶は微細な結晶が凝集し球状を成したもの であることが好ましぐその粒度分布 (体積基準)において、油脂結晶の 99%以上が 、好ましくは 5〜 1500 μ m、より好ましくは 50〜: LOOO μ mの範囲内であり、且つ、メ ジアン径カ S好ましくは 200〜800 μ m、より好ましくは 300力ら 600 μ mであること力 S 望ましい。油脂結晶が上記範囲外である場合、例えば、油脂結晶が針状である場合 や、粒径が 5 m未満の油脂結晶が 1%以上存在する場合、あるいは、メジアン径が 200 m未満の場合、濾過性が悪く結晶部 1と液状部 1を分離することが困難になる 場合がある。また、粒径 1500 mを超える油脂結晶が 1%以上存在する場合、ある いは、メジアン径が 800 mを超える場合、圧搾時に圧力により油脂結晶が崩壊して しまい、濾過性が悪く結晶部 1と液状部 1を分離することが困難になる場合がある。
[0012] また、上記の結晶ィ匕スラリーを結晶部 1と液状部 1に分別する方法としては自然濾 過、吸引濾過、圧搾濾過、遠心分離等を用いることができ、本発明のドライ分別方法 において使用する機械を最小限に抑え、分別操作を簡便に行なうためには加圧と分 別を行なうことができる圧搾濾過機や、圧搾できるフィルタープレス (メンプレンフィル ター)、ベルトプレス等を用いた圧搾濾過が好ましい。 特に、上記結晶化スラリーの結晶化温度での固体脂含量 (SFC)が高ぐ極めて粘 度の高いスラリーであったり、一見ブロック状に見える場合などにおいては、圧搾濾 過時に圧力によりスラリー化するため、特に適して 、る。
圧搾濾過を行なう場合の好ましい圧力は、 0. 2MPa以上、さらに好ましくは 0. 5〜 5MPaであることが好ましい。なお、圧搾時の圧力は圧搾初期から圧搾終期にかけ て徐々に上昇させることが好ましぐその圧力の上昇速度は IMPaZ分以下、好まし くは 0. 5MPaZ分以下、さらに好ましくは 0. IMPaZ分以下である。加圧速度が 1 MPaZ分より大きいと、最終的に結晶部 2の純度が低下する場合がある。
[0013] 上記の結晶ィ匕スラリーの分別は、得られる結晶部 1と液状部 1の割合が、質量比率 で、結晶部 1:液状部 1 = 5: 95-90: 10となるように行なうのが好まし 、。
なお、結晶部 2 (高融点成分)の分離のみを目的とする場合は、収率を向上させる ためには、さらに好ましくは結晶部 1 :液状部 1 = 10: 90〜50: 50、より好ましくは結 晶部 1:液状部 1 = 10: 90-40: 60となるように行なう。
また、液状部 2 (中融点部)の分離のみを目的とする場合は、収率を向上させるため には、さらに好ましくは結晶部 1 :液状部 1 =50: 50〜90: 10、より好ましくは結晶部 1 :液状部 1 = 60: 40-90: 10となるように行なう。
なお、得られる結晶部 1の油脂結晶の大きさは、上記結晶ィ匕スラリーに含まれる油 脂結晶の大きさとほぼ同一である。
[0014] 次いで、上記の結晶ィ匕スラリーの分別により得られた結晶部 1を、圧搾しながら加熱 して発汗させ、結晶部 2と液状部 2に分別する。
すなわち、本発明では、加熱を行なって後圧搾していた、従来の発汗操作と異なり 、圧搾しながら加熱して発汗させることで、加熱による結晶部の溶解と、溶解した液状 部の分離を並行して行なう点が異なる。
そして、圧搾しながら加熱して発汗させることにより、従来の発汗操作にくらべて、分 離効率が高ぐより純度の高い結晶部 2を得ることができるものである。
ここで、圧搾しながら加熱する発汗操作が、なぜ、従来の加熱のみの発汗操作に比 ベて分離効率が高まり、高い純度の結晶部を得ることができるのかという理由は以下 のとおりである。 第 1の理由は、発汗により生じた液状部を漸次分離除去することにより、結晶部中 の結晶量を高く保ち、結晶部の構造を強ぐ耐圧性のある状態に保つことができるた めである。
第 2の理由は、結晶部中の液状部の量を少なく保つことによって、固液平衡が固体 側に偏るため、結晶部の溶解量を最小限に保つことができるためである。
圧搾する際の圧力は、好ましくは 0. 02から 2MPa、さらに好ましくは 0. 03〜: L 5 MPa、最も好ましくは 0. 04〜: LMPaとする。圧搾する際の圧力が 0. 02MPaよりも 低いと、液状部 2の溶出、分離に要する時間が長くなりやすぐ結晶部 2と液状部 2に 分別したとき、結晶部 2に中融点成分が残存しやすいため、分離効率が悪くなりやす い。一方、圧搾する際の圧力が 2MPaより高いと、結晶部 1を圧搾しながら加熱して 発汗させているときに、高融点成分がろ布を透過しやすぐ結晶部 2と液状部 2の分 離効率が悪くなりやすい。
また、圧搾する際の圧力は、発汗工程の初期より終期にかけて徐々に低下させても よい。これは、結晶部 1の油脂結晶の状態によっては、発汗操作により結晶の耐圧性 が低下し、圧力により結晶が崩壊する恐れがあるためである。
また、上記の結晶部 1の加熱は、上記の油脂の結晶化温度よりも高く結晶部が完全 に溶解しな 、温度で行なうが、好ましくは結晶部 1を DSC (示差走査熱量計)で融解 した場合に観察される融解ピークのオンセット温度(図 l,Ta)以上、且つ、オフセット 温度(図 l,Tb)未満の温度とする。なお、融解ピークが複数観察される場合は、結晶 部として分画した 、成分の融解ピークを基準とすれば良 、。例えば図 2のようにメイン となる融解ピークとショルダーが観察され、メインとなるピークを結晶部として分画した い場合、 Tacが基準となる。
この分別工程では、上記のように圧搾を行いながら加熱し発汗させ、分別を行なう ので、圧搾と分別を同時に行なえる圧搾濾過機や、圧搾できるフィルタープレス (メン ブレンフィルター)、ベルトプレス等を用いた圧搾濾過が好ましい。
このとき得られる液状部 2を、液状部 2が溶出してくる時間により、さらに分画してもよ い。
これは、発汗の初期に除去される液状部は、液状部 2でもより融点の低い成分であ るため、これを除去した後に得られる液状部 2は、より低融点部分の少ない、より純度 の高 、液状部 2が得られると 、うものである。
また、より純度の高い液状部 2を得るために、上記の結晶部 1を圧搾しながら加熱し て発汗させる際に、発汗工程の初期より終期にかけて加熱温度を多段的に上昇させ 、複数の液状部 2を得てもよい。
これは、発汗の初期に除去される液状部は、液状部 2でもより融点の低い成分であ るため、これを除去した後に加熱温度を上昇させることで、より低融点部分の少ない、 より純度の高い液状部 2が得られるというものである。
また、より純度の高い結晶部 2を得るために、上記の結晶部 1を圧搾しながら加熱し て発汗させる際に、発汗工程の初期より終期にかけて加熱温度を連続的に上昇させ てもよい。
これは、圧搾しながら加熱して発汗することにより、結晶部から徐々に液状部が除 去されるため、結晶部を DSCで融解した場合に観察される融解ピークは徐々に高温 側に移動するため、このとき融解ピークの高温側への移動に合わせて、発汗温度を 連続的に上げていくことによって、より純度の高い結晶部 2を得ることができるもので ある。
上記の分別は、該分別により得られる液状部 2と結晶部 2の割合力 質量比率で、 液状部 2:結晶部 2 = 98: 2〜2: 98となるように分別を行なうのが好ましぐさらに好ま しくは液状部 2:結晶部 2 = 95: 5〜5: 95、最も好ましくは液状部 2:結晶部 2 = 93: 7 〜 10 : 90となるように分別を行なう。結晶部 2の割合が 2より少ないと、発汗の工程で 高融点成分が液状部 2に溶解しやすいため、結晶部 2と液状部 2を分別することが難 しくなりやすい。また、結晶部 2の割合が 98より多いと、結晶部 1を圧搾しながら加熱 して発汗させる際の加熱温度を高くする必要が起こりやすぐそのため結晶部 2に中 融点成分が溶解しやすいため、結晶部 2と液状部 2の分別が難しくなりやすい。 次に、本発明の分別方法により得られた結晶部 2について述べる。
本発明の分別方法により得られた結晶部 2は、結晶部 1の結晶部(高融点成分)が 、より濃縮されているものであり、特に、原料油脂としてチョコレート用の油脂であるハ ードバター用に用いられる油脂を使用した場合、トリ飽和グリセリドゃ対称型トリグリセ リドがより濃縮されて 、ると 、う特徴を有する。
その場合、本発明の分別方法により得られた結晶部 2の対称型トリグリセリドの含有 量は、好ましくは 75〜99重量%、さらに好ましくは 80〜95重量%、最も好ましくは 8 5〜95重量%である。
上記結晶部 2の用途としては、チョコレート用油脂、ホワイトチョコレート用油脂、バタ 一クリーム用油脂、サンドクリーム用油脂、マーガリン 'ショートニングの原料油脂など が挙げられる。
次に、本発明の分別方法により得られた液状部 2について述べる。
本発明の分別方法により得られた液状部 2は、結晶部 1の高融点成分が除去され ているものであり、特に、原料油脂としてチョコレート用の油脂であるハードバター用 に用いられる油脂を使用した場合、対称型トリグリセリドを多く含有しながら、トリ飽和 グリセリド含量が低 、と 、う特徴を有する。
その場合、本発明の分別方法により得られた液状部 2の対称型トリグリセリドの含有 量は、好ましくは 50〜99重量%、さらに好ましくは 70〜95重量%である。そして、トリ 飽和グリセリドの含有量は、好ましくは 5%以下、さらに好ましくは 3%以下である。 上記液状部 2の用途としては、チョコレート用油脂、ホワイトチョコレート用油脂、バタ 一クリーム用油脂、サンドクリーム用油脂、マーガリン 'ショートニングの原料油脂をは じめ、チョコレートの硬さ調整やアイスクリームやアイスコーティング用油脂、ホイップク リームなどの OZW型乳化油脂の原料油などに使用することが可能である。
実施例
[0017] 以下、本発明を実施例により更に詳細に説明するが、本発明はこれらの実施例に より何ら制限されるものではない。
なお、下記の表 1〜5において、 DG:ジグリセライド、 P:パルミチン酸、 S :ステアリン 酸、 A:ァラキジン酸、 O:ォレイン酸、 L:リノール酸、 s :飽和脂肪酸、 u:不飽和脂肪 酸を示すものとする。また、下記の表 1〜5に記載の数値の単位は質量%である。
[0018] 〔実施例 1〕
パームォレインをドライ分別して得たヨウ素価 45のパーム中融点部 500gをジャケッ ト付ガラス製晶析槽に取り、 60°Cで完全に溶解した後、ゆっくり攪拌しながら 22°Cで 8時間結晶化し SFCが 10% (22°C)の結晶ィ匕スラリーを得た。該結晶ィ匕スラリーの粒 度分布を調べたところ、 60〜800 μ mの範囲内であり、メジアン径は 650 μ mであつ た。 22°Cに調温した恒温槽内で、メンブレンフィルター(圧搾できるフィルタープレス) を用いて結晶ィ匕スラリーを濾過分別後、 3MPaで圧搾し、結晶部 1と液状部 1を得た 。メンブレンフィルタ一中の結晶部 1を 0. 5MPaに加圧した状態で恒温槽の温度を 4 0°Cに上げ、この温度に 8時間保持し溶出してきた液状部 2とメンブレンフィルタープ レス内の結晶として残存した結晶部 2を得た。なお、結晶部 1の DSC (示差走査熱量 計)によるオンセット温度は 25°C、オフセット温度は 48°Cであった。
この時の収率は、結晶部 1が 16. 9質量%、液状部 1が 83. 1質量%、結晶部 2が 4 . 5質量%、液状部 2が 12. 4質量%であった。
各画分のトリグリセリド組成を HPLCで測定した結果を下記表 1に示した。液状部 2 は中融点成分にあたるものであり、 susは 83. 7質量%、 sssは 1. 4質量%であった。 結晶部 2は高融点成分にあたるものであり、 susは 60. 5質量%、 sssは 24. 1質量% であった。
〔実施例 2〕
ヨウ素価 56のパームォレイン 500gをジャケット付ガラス製晶析槽に取り、 60°Cで完 全に溶解した後、ゆっくり攪拌しながら 18°Cで 5時間結晶化し SFCが 10% (22°C)の 結晶ィ匕スラリーを得た。該結晶ィ匕スラリーの粒度分布を調べたところ、 60〜700 m の範囲内であり、メジアン径は 400 μ mであった。 18°Cに調温した恒温槽内で、メン プレンフィルター (圧搾できるフィルタープレス)を用いて結晶ィ匕スラリーを濾過分別 後、 3MPaで圧搾し、結晶部 1と液状部 1を得た。メンブレンフィルタ一中の結晶部 1 を 0. 5MPaに加圧した状態で恒温槽の温度を 35°Cに上げ、 8時間保持し溶出して きた液状部 2とメンブレンフィルタープレス内の結晶として残存した結晶部 2を得た。 なお、結晶部 1の DSC (示差走査熱量計)によるオンセット温度は 25°C、結晶部 1の オフセット温度は 45°Cであった。
この時の収率は、結晶部 1が 13. 5質量%、液状部 1が 86. 5質量%、結晶部 2が 3. 6質量%、液状部 2が 9. 9質量%であった。
各画分のトリグリセリド組成を HPLCで測定した結果を下記表 2に示した。液状部 2は 中融点成分にあたるものであり、 susは 76質量%、 sssは 1質量%であった。結晶部 2 は高融点成分にあたるものであり、 susは 49. 9質量%、 sssは 43質量%であった。
[0020] 〔実施例 3〕
パームォレインをドライ分別して得たヨウ素価 45のパーム中融点部 500gをジャケッ ト付ガラス製晶析槽に取り、 60°Cで完全に溶解した後、ゆっくり攪拌しながら 22°Cで 8時間結晶化し SFCが 10% (22°C)の結晶ィ匕スラリーを得た。該結晶ィ匕スラリーの粒 度分布を調べたところ、 70〜620 μ mの範囲内であり、メジアン径は 500 μ mであつ た。 22°Cに調温した恒温槽内で、メンブレンフィルター(圧搾できるフィルタープレス) を用いて結晶ィ匕スラリーを濾過分別後、 3MPaで圧搾し、結晶部 1と液状部 1を得た 。メンブレンフィルタ一中の結晶部 1を 0. 5MPaに加圧した状態で恒温槽の温度を 4 0°Cに上げ、 1時間保持し溶出してきた液状部 2— 1とその後さらに 7時間保持して溶 出してきた液状部 2— 2およびメンブレンフィルター内の結晶として残存した結晶部 2 を得た。なお、結晶部 1の DSC (示差走査熱量計)によるオンセット温度は 25°C、結 晶部 1のオフセット温度は 48°Cであった。
この時の収率は、結晶部 1が 14. 8質量%、液状部 1が 85. 2質量%、結晶部 2が 3. 6質量%、液状部 2—1が 0. 5質量%、液状部 2— 2が 10. 7質量%であった。
各画分のトリグリセリド組成を HPLCで測定した結果を下記表 3に示した。液状部 2 1、 2— 2は中融点成分にあたるものであり、 susは液状部 2—1で 71. 9質量%、液 状部 2— 2で 88. 6質量%、 sssは液状部 2— 1で 0. 3質量%、液状部 2— 2で 3. 3質 量%であった。結晶部 2は高融点成分にあたるものであり、 susは 44. 9質量%、 sss は 44. 9質量0 /。であった。
[0021] 〔比較例 1〕
パームォレインをドライ分別して得たヨウ素価 45のパーム中融点部 500gをジャケッ ト付ガラス製晶析槽に取り、 60°Cで完全に溶解した後、ゆっくり攪拌しながら 22°Cで 4時間結晶化し、 SFCが 4% (22°C)の結晶ィ匕スラリーを得た。 22°Cに調温した恒温 槽内で、メンブレンフィルター (圧搾できるフィルタープレス)を用いて結晶ィ匕スラリー を濾過分別後、 3MPaで圧搾し、結晶部 1と液状部 1を得た。
液状部 1を完全に溶解した後、ゆっくり攪拌しながら 22°Cで 11時間結晶化し、 SFC 力 S6% (22°C)の結晶ィ匕スラリーを得た。 22°Cに調温した恒温槽内で、メンブレンフィ ルター (圧搾できるフィルタープレス)を用いて結晶ィ匕スラリーを濾過分別後、 3MPa で圧搾し、結晶部 2と液状部 2を得た。
この時の収率は、結晶部 1が 6. 9質量%、液状部 1が 93. 1質量%、結晶部 2が 12. 5質量%、液状部 2が 80. 6質量%であった。
各画分のトリグリセリド組成を HPLCで測定した結果を下記表 4に示した。結晶部 2は 中融点成分にあたるものであり、 susは 84. 4質量%、 sssは 2. 2質量%であった。結 晶部 1は高融点成分にあたるものであり、 susは 77. 1質量%、 sssは 15. 5質量%で めつに。
[0022] 〔比較例 2〕
パームォレインをドライ分別して得たヨウ素価 45のパーム中融点部 500gをジャケッ ト付ガラス製晶析槽に取り、 60°Cで完全に溶解した後、ゆっくり攪拌しながら 22°Cで 8時間結晶化し、 SFCが 10% (22°C)の結晶ィ匕スラリーを得た。該結晶ィ匕スラリーの 粒度分布を調べたところ、 60〜800 μ mの範囲内であり、メジアン径は 650 μ mであ つた。 22°Cに調温した恒温槽内で、メンブレンフィルター(圧搾できるフィルタープレ ス)を用いて結晶ィ匕スラリーを濾過分別後、 3MPaで圧搾し、結晶部 1と液状部 1を得 た。メンブレンフィルタ一中の結晶部 1を加圧せずに恒温槽の温度を 40°Cに上げ、 8 時間保持後、 0. IMPaで圧搾し、溶出してきた液状部 2とメンブレンフィルター内の 結晶として残存した結晶部 2を得た。なお、結晶部 1の DSC (示差走査熱量計)によ るオンセット温度は 24. 5°C、結晶部 1のオフセット温度は 47°Cであった。
この時の収率は、結晶部 1が 11. 6質量%、液状部 1が 88. 4質量%、結晶部 2が 7 . 8質量%、液状部 2が 3. 8質量%であった。
各画分のトリグリセリド組成を HPLCで測定した結果を下記表 5に示した。液状部 2 は中融点成分にあたるものであり、 susは 80. 5質量%、 sssは 6. 1質量%であった。 結晶部 2は高融点成分にあたるものであり、 susは 69. 3質量%、 sssは 19. 4質量% であった。
[0023] [表 1]
Figure imgf000013_0001
[0024] [表 2]
Figure imgf000013_0002
[0025] [表 3」
Figure imgf000014_0001
[0026] [表 4]
Figure imgf000014_0002
[0027] [表 5]
Figure imgf000015_0001
[0028] 実施例 1と比較例 1を比較すると、実施例 1では、従来の分別方法で得られた比較 例 1の高融点成分よりも sssの含有量が多い高融点成分が得られることがわかる。 実施例 1と比較例 2を比較すると、実施例 1では、発汗工程において圧搾を行なわ ない比較例 2よりも、 sssの含有量が多い高融点成分や susの含有量が多い中融点 成分が得られることがわかる。
実施例 1と実施例 3を比較すると、発汗工程において得られた液状部 2をさらに溶 出する時間により分画した実施例 3の液状部 2— 2のほうが、実施例 1の液状部 2より もより susの含有量が多い中融点成分が得られることがわかる。
[0029] 〔実施例 4〕
ヨウ素価 56のパームォレイン 500gをジャケット付ガラス製晶析槽に取り、 60°Cで完 全に溶解した後、ゆっくり攪拌しながら 18°Cで 65時間結晶化し SFCが 21%の結晶 ィ匕スラリーを得た。該結晶ィ匕スラリーの粒度分布を調べたところ、 100〜400 mの 範囲内であり、メジアン径は 280 μ mであった。 18°Cに調温した恒温槽内で、メンブ レンフィルタープレス(圧搾できるフィルタープレス)を用いて結晶化スラリーを濾過分 別後、 IMPaで圧搾し、結晶部 1と液状部 1を得た。メンブレンフィルタープレス中の 結晶部 1を 0. 7MPaに加圧した状態で恒温槽の温度を 1時間で 26°Cに、次いで 11 時間で 28°Cに、連続的に加熱温度を上昇させ、溶出してきた液状部 2とメンブレンフ ィルタープレス内の結晶として残存した結晶部 2を得た。なお、結晶部 1の DSC (示 差走査熱量計)によるオンセット温度温度は 25°C、結晶部 1のオフセット温度は 36°C であった。また、発汗終了後の結晶部 2の DSCによるオンセット温度は 27°C、オフセ ット温度は 36°Cであった。
この時の収率は、結晶部 1が 23. 8質量%、液状部 1が 76. 2質量%、結晶部 2が 20 . 9質量%、液状部 2が 2. 9質量%であった。
各画分のトリグリセリド組成を HPLCで測定した結果を下記表 6に示した。液状部 2 は中融点成分にあたるものであり、 susは 59質量%、 sssは 0質量%であった。結晶 部 2は高融点成分にあたるものであり、 susは 86質量%、 sssは 3. 0質量%であった。 〔実施例 5〕
ヨウ素価 56のパームォレイン 150kgをジャケット付製晶析槽に取り、 60°Cで完全に 溶解した後、ゆっくり攪拌しながら 17°Cで 48時間結晶化し SFCが 22%の結晶ィ匕スラ リーを得た。該結晶ィ匕スラリーの粒度分布を調べたところ、 60〜820 mの範囲内で あり、メジアン径は 450 μ mであった。 17°Cに調温した恒温槽内で、メンブレンフィル タープレス (圧搾できるフィルタープレス)を用いて結晶ィ匕スラリーを濾過分別後、 5M Paで圧搾し、結晶部 1と液状部 1を得た。メンブレンフィルタープレス中の結晶部 1を 0. 7MPaに加圧した状態で恒温槽の温度を 28°Cで 8時間加熱し溶出してきた液状 部 2—1を得た。次いで圧力を 0. 5MPaに下げ、 35°Cで 16時間加熱し、溶出してき た液状部 2— 2とメンブレンフィルタープレス内の結晶として残存した結晶部 2— 2を 得た。なお、結晶部 1の DSC (示差走査熱量計)によるオンセット温度温度は 25°C、 オフセット温度は 43°Cであった。
この時の収率は、結晶部 1が 30. 7質量%、液状部 1が 69. 3質量%、結晶部 2— 2 が 0. 9質量%、液状部 2—1が 17. 3質量%、液状部 2— 2が 12. 5重量%であった。 各画分のトリグリセリド組成を HPLCで測定した結果を下記表 7に示した。液状部 2 1、液状部 2— 2は中融点成分にあたるものであり、液状部 2— 2の susは 87質量% 、 sssは 1. 2質量%であった。結晶部 2は高融点成分にあたるものであり、 susは 53質 量。 /0、 sssは 33質量%であった。 [0031] 〔実施例 6〕
脱酸、脱色したサル脂 2kgを 60°Cで完全に溶解した後、トレイに取り、 31°Cまで放 冷後、種晶を 0. 01%添加、混合し、そのまま 31°Cで 22時間、静置結晶化し、 SFC が 52%の高粘度結晶ィ匕スラリーを得た。該結晶ィ匕スラリーの粒度分布を調べたとこ ろ、 50〜450 μ mの範囲内であり、メジアン径は 230 μ mであった。なお、種晶は予 め分別して得たサル脂結晶部をォリーブ油に 20%溶解し、 5°Cで冷却して得たスラリ 一を用いた。結晶化して得られた高粘度結晶ィ匕スラリーを 31°Cに調温した恒温槽内 で、 3MPaで圧搾し、結晶部 1と液状部 1を得た。圧搾機中の結晶部 1を 0. 5MPaに 加圧した状態で恒温槽の温度を 35°Cで 8時間加熱し溶出してきた液状部 2と、メンブ レンフィルタープレス内の結晶として残存した結晶部 2を得た。なお、結晶部 1の DS C (示差走査熱量計)によるオンセット温度は 32°C、オフセット温度は 40°Cであった。 この時の収率は、結晶部 1が 65質量%、液状部 1が 35質量%、結晶部 2が 54質量 %、液状部 2が 11質量%であった。
各画分のトリグリセリド組成を HPLCで測定した結果を下記表 8に示した。液状部 2 は中融点成分にあたるものであり、結晶部 2の susは 91質量%、 sssは 0. 2質量%で あった。結晶部 2は高融点成分にあたるものであり、 susは 51質量%、 sssは 0質量% であった。
[0032] 〔実施例 7〕
カカオ脂 2kgを 60°Cで完全に溶解した後、トレイに取り、 5°Cの冷蔵庫で 4時間冷 却、結晶化後、 30°Cの恒温槽内で 40時間、静置結晶化し、 SFCが 60%の高粘度 結晶ィ匕スラリーを得た。該結晶ィ匕スラリーの粒度分布を調べたところ、 50〜450 m の範囲内であり、メジアン径は 230 mであった。結晶化して得られた高粘度結晶化 スラリーを 30°Cに調温した恒温槽内で、 3MPaで圧搾し、結晶部 1と液状部 1を得た 。圧搾機中の結晶部 1を 0. 5MPaに加圧した状態で恒温槽の温度を 33°Cで 5時間 加熱し溶出してきた液状部 2と、メンブレンフィルタープレス内の結晶として残存した 結晶部 2を得た。なお、結晶部 1の DSC (示差走査熱量計)によるオンセット温度は 2 8°C、オフセット温度は 38°Cであった。
この時の収率は、結晶部 1が 75質量%、液状部 1が 25質量%、結晶部 2が 55質量 %、液状部 2が 20質量。/。であった。
各画分のトリグリセリド組成を HPLCで測定した結果を下記表 9に示した。液状部 2 は中融点成分にあたるものであり、 susは 77質量%、 sssは 0. 3質量%であった。結 晶部 2は高融点成分にあたるものであり、 susは 94質量%、 sssは 1. 8質量%であつ た。
[表 6]
Figure imgf000018_0001
[表 7]
Figure imgf000019_0001
[0035] [表 8]
Figure imgf000019_0002
[0036] [表 9]
Figure imgf000020_0001
[0037] 実施例 4からわかるとおり、発汗させる際に、加熱温度を連続的に上弁させて得ら れた結晶部 2は、 susの含有量が極めて高ぐまた高収率であることがわ力る。
また、実施例 5からわかるとおり、発汗させる際に、加熱温度を多段的に上昇させて 得られた液状部 2— 2は、 susの含有量が極めて高いことに加え、トリ飽和グリセリド含 量が極めて低ぐまた高収率であることがわかる。
さらに、実施例 7、 8からわかるとおり、 sus含量の高い油脂を使用して、本発明のド ライ分別方法で得られた結晶部 2は、 sus含量がさらに濃縮されていることがわかる。 産業上の利用可能性
[0038] 本発明の油脂のドライ分別方法によれば、純度の高い結晶部(高融点成分)や中 融点部を、湿潤剤や特殊な装置を使うことなぐ効率よ 油脂から分別することがで さる。

Claims

請求の範囲
[1] 油脂を溶解した後、冷却結晶化させ、結晶化スラリーとし、これを結晶部 1と液状部
1に分別し、得られた結晶部 1を圧搾しながら加熱して発汗させ、結晶部 2と液状部 2 に分別することを特徴とする油脂のドライ分別方法。
[2] 上記の結晶ィ匕スラリーの固体脂含量 (SFC)が 1〜65%である請求の範囲第 1項記 載の油脂のドライ分別方法。
[3] 上記の圧搾を 0. 02〜lMPaで行なう請求の範囲第 1又は 2項記載の油脂のドライ 分別方法。
[4] 上記の結晶部 1を圧搾しながら加熱して発汗させる際に、液状部 2が溶出してくる 時間により、さらに該液状部 2を分画することを特徴とする請求の範囲第 1〜3項のい ずれかに記載の油脂のドライ分別方法。
[5] 上記の結晶部 1を圧搾しながら加熱して発汗させる際に、加熱温度を多段的に上 昇させ、複数の液状部 2を得ることを特徴とする請求の範囲第 1〜4項のいずれかに 記載の油脂のドライ分別方法。
[6] 上記の結晶部 1を圧搾しながら加熱して発汗させる際に、加熱温度を連続的に上 昇させることを特徴とする請求の範囲第 1〜4項のいずれかに記載の油脂のドライ分 別方法。
[7] 請求の範囲第 1〜6項のいずれかに記載のドライ分別方法により得られた結晶部 2 [8] 請求の範囲第 1〜6項のいずれかに記載のドライ分別方法により得られた液状部 2
PCT/JP2006/307819 2005-04-14 2006-04-13 油脂のドライ分別方法 WO2006112347A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007526834A JP4863997B2 (ja) 2005-04-14 2006-04-13 油脂のドライ分別方法
EP06731755.2A EP1889898B1 (en) 2005-04-14 2006-04-13 Dry fractionation method for fat

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005117391 2005-04-14
JP2005-117391 2005-04-14

Publications (1)

Publication Number Publication Date
WO2006112347A1 true WO2006112347A1 (ja) 2006-10-26

Family

ID=37115070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/307819 WO2006112347A1 (ja) 2005-04-14 2006-04-13 油脂のドライ分別方法

Country Status (4)

Country Link
EP (1) EP1889898B1 (ja)
JP (1) JP4863997B2 (ja)
CN (1) CN100580070C (ja)
WO (1) WO2006112347A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010106412A (ja) * 2008-09-30 2010-05-13 Gunze Ltd 繊維、生地及び肌着
WO2013065726A1 (ja) * 2011-11-02 2013-05-10 不二製油株式会社 油脂組成物、チョコレート及び複合菓子
WO2013146526A1 (ja) * 2012-03-28 2013-10-03 不二製油株式会社 脂肪酸またはグリセリン脂肪酸エステル用固化促進剤
JP2016077175A (ja) * 2014-10-10 2016-05-16 株式会社Adeka ハードバターの製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2496606B (en) 2011-11-15 2014-01-22 Desmet Ballestra Engineering S A Nv Continuous fractionation of triglyceride oils
JP2019034980A (ja) * 2016-11-28 2019-03-07 不二製油グループ本社株式会社 油脂の乾式分別法
CN107904011A (zh) * 2017-11-16 2018-04-13 罗乌支 一种将蝇蛆原油分离为4种蝇蛆油的方法
BR112020008913B1 (pt) * 2017-11-22 2024-01-02 Aak Ab (Publ) Processo para fracionamento a seco de uma oleína de óleo de palma, sistema de fracionamento e fração intermediária de óleo de palma

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59712772D1 (de) * 1997-07-16 2007-01-11 Sulzer Chemtech Ag Verfahren zur fraktionierten Kristallisation von Substanzen, zur Durchführung des Verfahrens geeigneter Kristallisator, sowie Verwendung des Kristallisators

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BELKACEMI K. ET AL: "Fractionation of Milk Fat by Falling Film Layer Crystallization", SEPARATION SCIENCE AND TECHNOLOGY, vol. 38, no. 12-13, 2003, pages 3115 - 3131, XP008072323 *
LUDECKE U. ET AL: "Scaleup in Suspension Crystallization of Two Multi Compound Fatty Acid Mixtures", ENGINEERING IN LIFE SCIENCES, vol. 3, no. 3, 2003, pages 154 - 158, XP008072324 *
PETERS-ERJAWETZ S. ET AL: "Milk Fat Fractionation by Solid-Layer Melt Crystallization", JOURNAL OF THE AMERICAN OIL CHEMISTS' SOCIETY, vol. 76, no. 5, 1999, pages 579 - 584, XP008072333 *
See also references of EP1889898A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010106412A (ja) * 2008-09-30 2010-05-13 Gunze Ltd 繊維、生地及び肌着
WO2013065726A1 (ja) * 2011-11-02 2013-05-10 不二製油株式会社 油脂組成物、チョコレート及び複合菓子
JP5488765B2 (ja) * 2011-11-02 2014-05-14 不二製油株式会社 油脂組成物、チョコレート及び複合菓子
US8865246B2 (en) 2011-11-02 2014-10-21 Fuji Oil Company Limited Oil or fat composition, chocolate and combined confectionery
WO2013146526A1 (ja) * 2012-03-28 2013-10-03 不二製油株式会社 脂肪酸またはグリセリン脂肪酸エステル用固化促進剤
JP5376100B1 (ja) * 2012-03-28 2013-12-25 不二製油株式会社 脂肪酸またはグリセリン脂肪酸エステル用固化促進剤
JP2016077175A (ja) * 2014-10-10 2016-05-16 株式会社Adeka ハードバターの製造方法

Also Published As

Publication number Publication date
EP1889898A4 (en) 2012-10-31
CN100580070C (zh) 2010-01-13
EP1889898A1 (en) 2008-02-20
JPWO2006112347A1 (ja) 2008-12-11
JP4863997B2 (ja) 2012-01-25
EP1889898B1 (en) 2014-11-12
CN1989231A (zh) 2007-06-27

Similar Documents

Publication Publication Date Title
WO2006112347A1 (ja) 油脂のドライ分別方法
JP5929763B2 (ja) 油脂の乾式分別法
JP4682848B2 (ja) 油脂の乾式分別法
WO1996005279A1 (en) Oil modification
JP5500080B2 (ja) 油脂の乾式分別法
EP1548094B1 (en) Dry fractionation method for fat
JP6721385B2 (ja) ハードバターの製造方法
JP6534512B2 (ja) ハードバターの製造方法
JP4522064B2 (ja) 油脂のドライ分別方法
WO2014109313A1 (ja) 油脂の製造方法
JP6525112B2 (ja) 油脂の乾式分別法
JP2014162859A (ja) 油脂の乾式分別方法
JP7255758B2 (ja) 油脂の晶析方法
JP4887553B2 (ja) 食用油脂の分別法
JP2014141539A (ja) 油脂の乾式分別法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2007526834

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006731755

Country of ref document: EP

Ref document number: 3739/KOLNP/2006

Country of ref document: IN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200680000452.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006731755

Country of ref document: EP