WO2013146526A1 - 脂肪酸またはグリセリン脂肪酸エステル用固化促進剤 - Google Patents

脂肪酸またはグリセリン脂肪酸エステル用固化促進剤 Download PDF

Info

Publication number
WO2013146526A1
WO2013146526A1 PCT/JP2013/058071 JP2013058071W WO2013146526A1 WO 2013146526 A1 WO2013146526 A1 WO 2013146526A1 JP 2013058071 W JP2013058071 W JP 2013058071W WO 2013146526 A1 WO2013146526 A1 WO 2013146526A1
Authority
WO
WIPO (PCT)
Prior art keywords
fatty acid
solidification
layer
acid ester
glycerin fatty
Prior art date
Application number
PCT/JP2013/058071
Other languages
English (en)
French (fr)
Inventor
真一 吉川
晴康 木田
Original Assignee
不二製油株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 不二製油株式会社 filed Critical 不二製油株式会社
Priority to JP2013530262A priority Critical patent/JP5376100B1/ja
Publication of WO2013146526A1 publication Critical patent/WO2013146526A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D7/00Edible oil or fat compositions containing an aqueous phase, e.g. margarines
    • A23D7/005Edible oil or fat compositions containing an aqueous phase, e.g. margarines characterised by ingredients other than fatty acid triglycerides
    • A23D7/0053Compositions other than spreads
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D7/00Edible oil or fat compositions containing an aqueous phase, e.g. margarines
    • A23D7/005Edible oil or fat compositions containing an aqueous phase, e.g. margarines characterised by ingredients other than fatty acid triglycerides
    • A23D7/0056Spread compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0241Containing particulates characterized by their shape and/or structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/25Silicon; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/36Carboxylic acids; Salts or anhydrides thereof
    • A61K8/361Carboxylic acids having more than seven carbon atoms in an unbroken chain; Salts or anhydrides thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/36Carboxylic acids; Salts or anhydrides thereof
    • A61K8/368Carboxylic acids; Salts or anhydrides thereof with carboxyl groups directly bound to carbon atoms of aromatic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/37Esters of carboxylic acids
    • A61K8/375Esters of carboxylic acids the alcohol moiety containing more than one hydroxy group
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/49Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
    • A61K8/494Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with more than one nitrogen as the only hetero atom
    • A61K8/4953Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with more than one nitrogen as the only hetero atom containing pyrimidine ring derivatives, e.g. minoxidil
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/36Silicates having base-exchange properties but not having molecular sieve properties
    • C01B33/38Layered base-exchange silicates, e.g. clays, micas or alkali metal silicates of kenyaite or magadiite type
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/36Silicates having base-exchange properties but not having molecular sieve properties
    • C01B33/38Layered base-exchange silicates, e.g. clays, micas or alkali metal silicates of kenyaite or magadiite type
    • C01B33/40Clays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/10General cosmetic use
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/412Microsized, i.e. having sizes between 0.1 and 100 microns

Definitions

  • the present invention comprises a fatty acid or a solidification accelerator for glycerin fatty acid ester that can be used for promoting the solidification of various fatty acids and glycerin fatty acid esters by a simple method, and contains one or more selected from fatty acids or glycerin fatty acid esters.
  • the present invention relates to a preparation, a method for producing the same, and a method for producing a fractionated lipid in which the preparation is fractionated into a solid part and a liquid part.
  • Glycerin fatty acid esters including triglycerides are used in various lipid products ranging from lipid processed foods to cosmetics and pharmaceuticals. Among these products, especially those that require solidification of the lipid by cooling, when preparing the final product by solidifying the molten lipid, solidify it efficiently in a short time to obtain the target quality It is demanded.
  • Patent Document 1 has a problem that lipids contained in margarine and the like are not completely solidified in a cooling kneader and solidification of lipids proceeds during storage, resulting in roughness and deterioration in quality. Stipulates the composition of lipids used as a means for solving this problem. However, a lipid obtained through a special reaction process is necessary and lacks versatility.
  • Patent Document 2 discloses a technique in which an ester of a fatty acid having 20 or more carbon atoms is added as a lipid solidification accelerator in order to obtain a solidified lipid suitable for margarine.
  • the amount used is as high as several percent with respect to lipids, and it does not mention the effect of actively promoting the solidification rate.
  • An object of the present invention is to provide a simple solidification promoting method for a lipid composition comprising a fatty acid or a glycerin fatty acid ester, particularly for a lipid composition for food or cosmetics.
  • the present inventors have found that the solidification time is shortened by mixing talc with a melt of glycerin fatty acid ester such as triglyceride.
  • glycerin fatty acid ester such as triglyceride.
  • particles having a specific structure exert this effect not only on glycerin fatty acid esters but also on fatty acids, thereby completing the present invention.
  • the present invention (1) Particles having a single layer or a layered structure laminated by non-covalent bonds, and comprising at least one selected from the following (a) to (e): for fatty acid or glycerin fatty acid ester Solidification accelerator.
  • the octahedron layer has a two-octahedron structure and is composed of TO 1: 1 or TOTO 2: 1: 1 unit layer structure.
  • C Single or layered carbons.
  • D An aromatic carboxylic acid or an alkali metal salt thereof.
  • E Theobromine (2) The solidification accelerator for fatty acid or glycerin fatty acid ester according to (1), wherein the layered silicate mineral is talc.
  • the solidification accelerator for fatty acid or glycerin fatty acid ester according to (1) wherein the average particle diameter (median diameter) is less than 20 ⁇ m.
  • the solidification accelerator according to (1) which is a solidification start temperature raising agent.
  • a preparation comprising one or more selected from fatty acids or glycerin fatty acid esters, containing the solidification accelerator according to (1).
  • a process for producing the preparation according to (5), characterized in that (7) A method for producing a fractionated lipid, comprising a step of separating the preparation obtained by the production method according to (6) into a solid part and a liquid part and removing the remaining solidification accelerator. It is.
  • solidification of various fatty acids or glycerin fatty acid esters can be promoted by a simple method of mixing particles having a specific structure into a fatty acid or glycerin fatty acid ester melt. Furthermore, by using this technology, the productivity, physical properties, appearance and texture of preparations containing these, improvement of daily changes, and productivity when separating the preparation into solid and liquid parts Etc. can be improved.
  • the fatty acid of the present invention is a monovalent carboxylic acid having one carboxyl group at the end of the hydrocarbon chain.
  • Fatty acids having an arbitrary chain length can be used, and various fatty acids such as saturated fatty acids, unsaturated fatty acids containing polyunsaturated fatty acids, fatty acids having hydroxyl groups, and fatty acids having branched chains are targeted.
  • fatty acids are mainly used as food fragrances or cosmetic raw materials, and those having a melting point of less than 100 ° C. are preferred. More preferably, a linear saturated fatty acid having 8 to 36 carbon atoms such as caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, margaric acid, stearic acid, arachidic acid, behenic acid, lignoceric acid, palmitoleic acid, olein Specific examples include unsaturated fatty acids such as acids, and many of these can be obtained as hydrolysates of natural fats.
  • the glycerin fatty acid ester of the present invention is obtained by esterifying various fatty acids to glycerin or polyglycerin obtained by polymerizing two or more molecules of glycerin. Bonded fatty acids having any chain length can be used, and various fatty acids such as saturated fatty acids, unsaturated fatty acids including polyunsaturated fatty acids, fatty acids having hydroxyl groups, and fatty acids having branched chains are targeted. .
  • the glycerin fatty acid ester is one in which these fatty acids are linked by 1 to 3 molecules of ester per molecule of glycerin, preferably 2 to 3 molecules of the same, and more preferably the same trimolecular ester bond. In the present invention, triglyceride in which 3 molecules of fatty acid are bonded to 1 molecule of glycerin is optimal.
  • glycerin fatty acid esters are mainly used as food or cosmetic raw materials and as emulsifiers for various uses, and those having a melting point of less than 100 ° C. are preferred. More preferably, rapeseed oil, soybean oil, sunflower seed oil, cottonseed oil, peanut oil, rice bran oil, corn oil, safflower oil, olive oil, kapok oil, sesame oil, evening primrose oil, palm oil, shea butter, mainly composed of triglyceride , Monkey oil, cocoa butter, palm oil, palm kernel oil, cocoa butter, sesame oil, peanut oil, and other animal oils such as milk fat, beef tallow, lard, fish oil, etc. Specific examples thereof include those obtained by subjecting these animal and plant oils and fats to a transesterification treatment in an arbitrary combination of two or more.
  • the above fatty acid, glycerin fatty acid ester, or a mixture thereof is defined as a lipid composition, and a mixture obtained by adding the solidification accelerator of the present invention to these lipid compositions is defined as a preparation of the present invention and used thereafter. .
  • the solidification accelerator of the present invention needs to have a single layer or a layered structure laminated by non-covalent bonding.
  • non-covalent bond as used herein is a comparison by electrostatic interaction or van der Waals force interaction that exists in a gap of 0.5 to 10 mm, preferably 0.5 to 5 mm (talc is 2.8 mm) between these layers.
  • Specific bond specifically, ionic bond, metal bond, hydrogen bond, and hydrophobic bond can be exemplified.
  • Each layer has a layer thickness of about 1 to 20 mm (talc is 6.5 mm) depending on the constituent atoms, and is composed of covalent bonds.
  • the solidification accelerator for lipid composition of the present invention further comprises one or more selected from the following (a) to (e).
  • the octahedral layer is a three-octahedral structure and is a layered silicate mineral.
  • the layered silicate mineral is a group having a cleavage property among clay minerals, and examples thereof include layered silicate minerals such as talc, kaolin, smectite, and mica.
  • a tetrahedral layer is a specific surface (basal plane) in which oxygen atoms bonded to each other centered on cations such as Si4 +, Al3 +, and Fe3 + form a tetrahedron and form a hexagonal-like mesh pattern on a plane or pseudo-plane. ) Is a sheet that is connected by sharing oxygen atoms.
  • oxygen atoms bonded to each other centered on trivalent cations such as Al3 + and Fe3 + form an octahedron, and these are connected in a sheet form so that the occupation ratio of the octahedron becomes 2/3.
  • octahedral structures and oxygen atoms bonded to each other centered on divalent cations such as Mg2 + and Fe2 + form octahedrons, and these are divided into three octahedron structures connected in a sheet form in a dense state. Similar to the tetrahedrons that make up the layer, there is a basal plane.
  • a layered silicate mineral consisting of a tetrahedral layer (T) and a trioctahedral layer (O) consists of a unit layer structure of TOT 2: 1, TO 1: 1, or TOTO 2: 1: 1.
  • These have a tetrahedral layer on at least one side of the unit layer, and the surface composed of the basal surface of each tetrahedron, such as talc, that is, the basal surface is hydrophobic and has no distortion. preferable.
  • the octahedron layer has a two-octahedron structure and is composed of TO 1: 1 or TOTO 2: 1: 1 unit layer structure.
  • Silicate mineral with surface hydrophobic treatment That is, among the layered silicate minerals composed of a tetrahedral layer (T) and a dioctahedral layer (O), those having a unit layer structure of TO 1: 1 or TOTO 2: 1: 1
  • the effect of this invention is acquired by processing.
  • Typical examples include kaolin and dioctahedral chlorite, and these surfaces are subjected to hydrophobic treatment.
  • Various methods can be used for the hydrophobic treatment, but a method such as surface modification with a silane coupling agent is preferred.
  • (C) single or layered carbons The carbon atoms are arranged in layers, and examples include graphene, graphite, single-layered or multi-walled carbon nanotubes and fullerenes.
  • Aromatic carboxylic acids or alkali metal salts thereof are those having a benzene ring and one or more carboxyl groups, and having one carboxyl group, such as benzoic acid, salicylic acid, gallic acid, silica.
  • Examples of the cinnamate having two carboxyl groups include ortho- / iso (meth)-/ tere (para) -phthalic acid and melittic acid.
  • these sodium salts, potassium salts, etc. can be mentioned as the alkali metal salt.
  • it is an aromatic carboxylic acid having 2 or more carboxyl groups or an alkali metal salt thereof.
  • Theobromine is a methylated derivative of xanthine, which is a kind of purine base, and is a main alkaloid contained in cacao. Like the aromatic carboxylic acid or alkali metal salt thereof, dimers are easily formed, and a crystal structure in which these dimers are laminated in layers via hydrogen bonds is obtained.
  • a non-strained surface surrounded by covalent bonds between atoms has a high proportion of the ground surface or a surface corresponding thereto, and these surfaces are one-dimensional or coplanar on the same plane.
  • Talc, graphite, carbon nanotube, and terephthalic acid extending in the two-dimensional direction can be preferably used, and talc widely used as an additive can be more preferably used.
  • talc widely used as an additive can be more preferably used.
  • these particles There is no restriction on the use of these particles, they may be used alone or as a mixture, and as long as the total area of the basal surface is not significantly reduced, they may be used as a preparation obtained by mixing excipients and the like. .
  • the above-mentioned solidification accelerator which is a particle, is considered to exhibit an effect by the interaction between the base surface and the molecules constituting the lipid composition, and can obtain the effect even with a small amount.
  • the particle size decreases, the total area of the basal surface increases and a large effect can be obtained.
  • the effect varies greatly depending on the type, shape, aspect ratio, etc., it is necessary to select the particle size and amount of the solidification accelerator in accordance with the expected effect.
  • talc particles having an average particle diameter (median diameter) of 0.6 ⁇ m are added to the glycerin fatty acid ester mainly for the purpose of promoting the solidification of the glycerin fatty acid ester, 0.005% or more in terms of weight with respect to the glycerin fatty acid ester
  • the addition amount is preferable, more preferably 0.01% or more, and still more preferably 0.1% or more. Further, it is preferably less than 30%, more preferably less than 10%, still more preferably less than 5%. If the addition amount of the solidification accelerator is less than 0.005%, sufficient solidification promotion effect may not be obtained depending on the solidification conditions such as the cooling rate and the presence of other additives described later.
  • the amount is 30% or more, the dispersibility of the solidification accelerator is decreased, the physical properties and texture of the lipid composition containing the solidification accelerator are adversely affected, the productivity of the fractionated lipid is decreased due to the decrease in filtration efficiency, and the There are concerns about a decrease in the recovery rate of the solidification accelerator and an increase in cost burden.
  • talc particles when added in an amount of about 1% in terms of weight to the glycerin fatty acid ester mainly for the purpose of promoting the solidification of the glycerin fatty acid ester, it is preferable to use those having a median diameter of less than 20 ⁇ m. It is less than 5 ⁇ m, more preferably less than 1 ⁇ m. Further, it is preferably 0.1 ⁇ m or more, more preferably 0.3 ⁇ m or more.
  • the particle size of the solidification accelerator is 20 ⁇ m or more, the substantial reduction in the total surface area due to sedimentation / deposition, etc., or the physical properties and texture of the preparation of the present invention containing the solidification accelerator There are concerns about adverse effects, and if the particle size of the solidification accelerator is less than 0.1 ⁇ m, there is a reduction in the total area of the basal surface due to aggregation, a decrease in the recovery rate in filtration, etc. Because of concern, it is necessary to use different particle sizes depending on the application.
  • a sparingly soluble solid in the target lipid composition.
  • examples thereof include gum arabic, agar, xanthan gum, cellulose and derivatives thereof, chitin , Chitosan, various dextrins, starch and processed starch, polysaccharides such as inulin, salts such as salt, potassium chloride, calcium chloride, sodium citrate, magnesium sulfate, animal and plant proteins derived from soybeans, wheat, milk, eggs, etc.
  • a hydrolyzate can be mentioned.
  • the amount of these solids added to the solidification accelerator is too large, the substantial total surface area of the base surface significantly decreases due to association with the solidification accelerator. It is preferable to keep it at a minimum, more preferably equal or less, and even more preferably 1/10 or less.
  • Fat-soluble additive in the present invention, it is also possible to use a fat-soluble additive in combination with the above lipid composition, for example, an emulsifier such as lecithin, sucrose fatty acid ester, sorbitan fatty acid ester, glycerin fatty acid ester other than the object of solidification promotion , Coloring agents, flavoring agents, preservatives, antioxidants and the like may be used alone or in combination.
  • an emulsifier such as lecithin, sucrose fatty acid ester, sorbitan fatty acid ester, glycerin fatty acid ester other than the object of solidification promotion , Coloring agents, flavoring agents, preservatives, antioxidants and the like may be used alone or in combination.
  • emulsifier such as lecithin, sucrose fatty acid ester, sorbitan fatty acid ester, glycerin fatty acid ester other than the object of solidification promotion , Coloring agents, flavoring agents, preservatives, antioxidants and
  • the solidification rate of the lipid composition can be obtained only by subjecting to general solidification conditions such as cooling. Can be promoted.
  • the mixing method is not particularly limited as long as the lipid composition is in a molten state and is sufficiently mixed with the solidification accelerator.
  • the lipid composition in the solidified state may be used.
  • the solidification accelerator may be added, and solidification may be performed after melting and sufficient mixing of the lipid composition portion by an operation such as heating.
  • the solidification accelerator itself may settle, accumulate, or agglomerate to substantially reduce the total surface area of the base surface, and a sufficient solidification promoting effect may not be obtained.
  • the influence of the solidification accelerator becomes relatively weak. Therefore, for example, when cooling at atmospheric pressure, the cooling rate is preferably 10 ° C. or less, more preferably every hour. The temperature is 5 ° C. or less, more preferably 1 ° C. or less per minute.
  • a solvent having a significantly different polarity such as water may be mixed with the preparation of the present invention.
  • the appearance of the solidification promoting effect and the magnitude of the effect vary depending on the relative affinity of the surface of the solidification accelerator with respect to both and the phase in which the solidification accelerator is added.
  • the affinity of the solidification accelerator surface with respect to the lipid composition is remarkably high, the solidification accelerator mainly exhibits a solidification promotion effect with respect to the bulk lipid composition, but the solidification accelerator surface is like Janus beads.
  • the solidification accelerator When two or more types of wettability are exhibited, depending on the balance of wettability, the solidification accelerator may be oriented at the interface, and may mainly exhibit a solidification promoting effect on the lipid composition near the interface. In the latter case, secondary effects such as improving the dispersion stability of the colloidal dispersion forming the interface are also expected.
  • a solidification accelerator since such a solidification accelerator has the property of self-organizing, in order to obtain the largest solidification promotion effect, it is preferable to mix with the other solvent after mixing with the lipid composition.
  • the relative affinity of the solidification accelerator surface with respect to the lipid composition is remarkably low, the solidification accelerator may move from the lipid composition side to the other, and the expected solidification promotion effect may not be obtained. .
  • the above-mentioned solidification promoting technique can be used not only for lipid compositions having various compositions but also for various lipid products containing them.
  • lipid processed foods such as margarine, shortening, cream and chocolate, cosmetics such as mascara and lipstick, and pharmaceuticals such as ointment can be exemplified, and these lipid products can be obtained by the solidification promoting technology of the present invention. It is possible to control the productivity, physical properties, appearance, texture, and control of changes over time. Among them, a remarkable effect can be obtained in shortening or the like in which there are few components other than lipids.
  • the method for producing the preparation of the present invention containing the solidification accelerator includes a step of heating and melting a lipid composition to be solidified, a step of mixing the lipid composition and the solidification accelerator, and the mixture ( Any manufacturing method may be used as long as it includes a step of cooling the preparation), and steps such as stirring, scraping, kneading, pressing, molding, or tempering and aging can be optionally included.
  • the solidification promoting technique can also be used to improve productivity and the like when producing a fractionated lipid by separating the preparation into a solid part and a liquid part.
  • the fractionated lipid refers to a lipid composition containing a fatty acid or a glycerin fatty acid ester, which is obtained by separating and fractionating individual constituent lipids based on a difference in melting point or a solubility in a solvent.
  • the solvent fractionation method using solvents, such as hexane and acetone, the dry fractionation method which does not use these solvents at all, etc. can be utilized arbitrarily.
  • the mixed solidification accelerator remains in the solid part after fractionation, only the lipid can be melted by an operation such as heating and recovered by a method such as filtration or centrifugation.
  • the solidification accelerator remaining in the liquid part after fractionation can also be recovered by the same method, and the recovered solidification accelerator is solvent-washed, high-temperature or high-pressure blow, and then mixed as necessary. It can be reused by applying a treatment such as co-washing with the components.
  • the solidification promoting effect of the lipid composition according to the present invention can be evaluated mainly based on DSC measurement.
  • DSC is an abbreviation for Differential Scanning Calorimetry, which measures the solidification temperature, melting point, glass transition point, etc. by measuring the difference in calorie between the sample and the reference material. This is the method.
  • heat flux DSC heat flux differential scanning calorimetry
  • input compensation DSC input compensated differential scanning calorimetry
  • the heat flux DSC measurement is performed to measure the input difference of thermal energy per unit time applied to both as a function of temperature.
  • the presence or absence of a solidification promoting effect is determined from the rising temperature of the exothermic peak (solidification start temperature) and the exothermic peak top temperature when the sample is cooled at a constant speed or constant temperature.
  • the temperature was kept at a temperature sufficiently higher than the melting point of the whole lipid, preferably about 15 ° C. higher than the melting point of the highest melting point lipid component for 10 minutes. Thereafter, cooling is performed.
  • part means “part by weight”.
  • Talc, muscovite, and kaolin are all classified into layered silicate minerals, but talc and muscovite have a TOT 2: 1 unit layer structure consisting of a tetrahedral layer (T) and an octahedral layer (O).
  • TOT 2 1 unit layer structure consisting of a tetrahedral layer (T) and an octahedral layer (O).
  • TOT 2 1 unit layer structure consisting of a tetrahedral layer (T) and an octahedral layer (O).
  • T tetrahedral layer
  • O octahedral layer
  • the octahedral layer adjacent to the tetrahedral layer has a three-octahedron structure densely packed in talc, whereas in the latter a tetrahedral structure with voids in muscovite and kaolin. Distortion occurs on the base surface of the layer. It is considered that such a difference in the surface structure appears as a difference in addition effect. For other layered silicate minerals such as montmorillonite, similar addition effects were observed within the same classification according to the classification by unit layer structure and octahedral layer structure.
  • Example 7 using the kaolin powder surface hydrophobically treated product showed a solidification promoting effect, but the hydroxyl groups arranged on the base surface of the octahedral layer were modified and covered with the treatment agent, so that there was little distortion. It may have resulted in a hydrophobic basal surface.
  • Table 1 Composition (unit: part) and evaluation results ⁇ About solidification promotion evaluation results> ⁇ DSC solidification start temperature and high temperature side exothermic peak top temperature both rise by 3 °C or more (remarkably promote solidification) ⁇ DSC solidification start temperature and high temperature side exothermic peak top temperature both rise by 1 °C or more (solidification promotion) -DSC solidification start temperature change or high temperature side exothermic peak top temperature change is less than 0.5 °C (less influence on solidification) * 1 For refined palm oil, use Fuji Oil Co., Ltd.
  • talc powder A use Japan Nippon Talc (trade name: talc MS, median diameter 14 ⁇ m) * 3
  • talc powder B Made by Nippon Talc Co., Ltd. (trade name: Microace SG-95, median diameter 2.5 ⁇ m) * 4
  • Talc powder C made by Nihon Talc Co., Ltd. (trade name: NANO ACE D-1000, median diameter 1.0 ⁇ m) * 5 Talc powder D used by Nippon Talc Co., Ltd.
  • Kaolin surface hydrophobized powder used by KaMin LLC (trade name: Lithosperse 7005 CS) * 7 Silica powder manufactured by Fuji Silysia Chemical Co., Ltd. (product name: SYLOPAGE 721) is used.
  • 8 Mica powder is manufactured by Yamaguchi Mica Co., Ltd. (product name: MICA POWDER TM-10).
  • 9 Kaolin powder is used by KaMin. Made by LLC (trade name: KaMin 2000C)
  • Examples 8 to 14, Comparative Example 4 To 100 parts of trilaurin (Tokyo Chemical Industry Co., Ltd., melting point 47 ° C.) completely melted at 80 ° C. or higher, each slightly soluble sample was added according to the composition shown in Table 2, and the molten state of trilaurin was maintained. Then, the mixture was sufficiently mixed with a vortex mixer or the like until the aggregate could not be visually confirmed. The obtained mixed solution was immediately subjected to an aluminum pan for DSC measurement, and evaluated by DSC measurement under the following temperature conditions.
  • trilaurin Tokyo Chemical Industry Co., Ltd., melting point 47 ° C.
  • Example 8 using talc powder showed a solidification promoting effect as in Examples 1 to 6 in which purified palm oil and talc powder were mixed.
  • an example using graphite powder in which a non-strained surface surrounded by covalent bonds between atoms extends in the same plane in two dimensions. 9 showed the most remarkable solidification promoting effect.
  • Example 10 using carbon nanotubes with the same surface extending only in the one-dimensional direction on the same plane showed a remarkable solidification promoting effect.
  • Example 11 using spherical fullerene C60 whose same surface did not extend on the same plane also showed a certain solidification promoting effect.
  • Examples 12 to 14 using sodium benzoate, terephthalic acid, and theobromine powders having a layered structure similar to these examples showed a solidification promoting effect, and in terephthalic acid having a clearer layered structure, A remarkable solidification promoting effect was observed.
  • Table 2 summarizes the presence / absence and extent of solidification promoting effect when compared with additive-free trilaurin.
  • Examples 15 to 19, Comparative Example 5 According to the formulation shown in Table 3, add 1 part of talc powder to 100 parts of each lipid completely melted at 80 ° C or higher, and vortex until no aggregates can be visually confirmed while maintaining the melted state of each lipid. Mix well with a mixer or the like. The obtained mixed solution was immediately subjected to an aluminum pan for DSC measurement, and evaluated by DSC measurement under the following temperature conditions.
  • Example 8 Examples 15 to 17, Example 19, Comparative Example 5 Initial temperature 80 ° C (10 minutes), cooling rate 1 ° C / min, final temperature 0 ° C Example 18 Initial temperature 100 ° C (10 minutes), cooling rate 1 ° C / min, final temperature 0 ° C
  • Example 8 and Examples 15 to 17 using either di- or triacylglycerol and Example 18 using polyglycerol fatty acid ester the talc powder showed a solidification promoting effect. These lipids are all glycerin fatty acid esters. Also in Example 19 using fatty acids, the talc powder showed a solidification promoting effect. On the other hand, in Comparative Example 5 using glycerin fatty acid ester and n-octadecane, which is an alkane not belonging to fatty acid, talc powder showed almost no effect of addition. Table 3 summarizes the presence and absence and degree of solidification promoting effect when compared with each lipid alone without talc powder added.
  • Table 3 Formulation (unit: parts) and evaluation results ⁇ About solidification promotion evaluation results> ⁇ DSC solidification start temperature and high temperature side exothermic peak top temperature both rise by 3 °C or more (remarkably promote solidification) ⁇ DSC solidification start temperature and high temperature side exothermic peak top temperature both rise by 1 °C or more (solidification promotion) -DSC solidification start temperature change or high temperature side exothermic peak top temperature change is less than 0.5 °C (less influence on solidification) * 17 Trimyristin uses Tokyo Chemical Industry Co., Ltd. (melting point 57 ° C) * 18 Tripalmitine uses Wako Pure Chemical Industries Co., Ltd.
  • Example 20 Comparative Example 6
  • Samples of 100 parts of RBD palm oil that was completely melted by holding at 80 ° C for 15 minutes according to the formulation shown in Table 4 were added and mixed with 1 part of talc powder, and completely melted RBD palm oil without addition of talc powder. These were poured into separate cylindrical stainless steel containers having the same shape, and kept in a hot bath at 65 ° C. for 10 minutes. Two open pitched paddles having a diameter of about 90% of a stainless steel container were inserted into these, and gently stirred at a rotation speed of 20 rpm while the surroundings were cooled with circulating water at 26 ° C. which was the same as room temperature.
  • the temperature and time when the sample temperature starts to rise due to heat generation due to solidification are T (min) and t (min), respectively, and the temperature and time when the sample temperature is the highest rise are T (max) and t (respectively). max), and 60 minutes after t (max) was defined as the end point of lipid solidification.
  • the obtained turbid liquid was immediately filtered by suction under reduced pressure of 0.5 atm, and the recovered talc powder contained in the solid fat side was recovered by melting only the solidified lipid at 80 ° C. or higher and filtering again.
  • the composition analysis by high performance liquid chromatography (HPLC) was performed and compared.
  • Example 20 using talc powder, the sample temperature started to rise due to heat generated by solidification after 30 minutes after the surroundings were cooled with circulating water, and the temperature rose the most in 42 minutes.
  • Comparative Example 6 containing only lipid, the sample temperature gradually rose after 10 minutes or more from Example 20, and the temperature rose most at 60 minutes.
  • T (min) and T (max) were higher in Example 20 than in Comparative Example 6.
  • the lipid composition on the solid fat side and the filtrate side separated by filtration after solidification was consistent with each other between Example 20 and Comparative Example 6. This result shows that the lipid solidification before fractionation can be carried out in a higher temperature zone or a shorter solidification time than in the past simply by mixing the solidification accelerator as mentioned in the present invention such as talc. It can be used to improve separation and productivity.
  • the solidification start temperature of various lipid compositions can be increased and the solidification rate can be improved by a simple method.
  • This technology improves not only the lipid composition, but also the productivity, physical properties, appearance and texture of various lipid products containing them, suppression of daily changes, etc. This greatly contributes to the improvement of productivity when sorting.

Abstract

脂肪酸またはグリセリン脂肪酸エステルから選ばれる1以上からなる脂質組成物について、好ましくは食品用または化粧品用の脂質組成物について、簡便な固化促進方法及び該脂質組成物を固体部と液体部に分別する分別脂質の製造方法を提供する。単層または非共有結合により積層する層状構造を有する粒子であって、次の(a)~(e)から選ばれる1種以上からなるものを固化促進剤として用いる。(a)構成する四面体層(T)及び八面体層(O)のうち八面体層が3八面体構造である、層状珪酸塩鉱物。(b)構成する四面体層(T)及び八面体層(O)のうち八面体層が2八面体構造であり、T-Oの1:1またはT-O-T-Oの2:1:1単位層構造からなる層状珪酸塩鉱物であって、これを表面疎水処理したもの。(c)単層または層状カーボン類。(d)芳香族カルボン酸またはそのアルカリ金属塩。(e)テオブロミン。

Description

脂肪酸またはグリセリン脂肪酸エステル用固化促進剤
 本発明は、簡便な方法で多様な脂肪酸やグリセリン脂肪酸エステルの固化促進に用いることのできる脂肪酸またはグリセリン脂肪酸エステル用固化促進剤、これらを含有し且つ脂肪酸またはグリセリン脂肪酸エステルから選ばれる1以上からなる調製物、及びその製造方法、ならびに該調製物を固体部と液体部に分別する分別脂質の製造方法に関する。
 トリグリセリドを始めとするグリセリン脂肪酸エステルは、脂質加工食品類から化粧品類、医薬品類に至るまで種々の脂質製品に利用されている。これら製品のうち、特に冷却による脂質の固化を必要とするものにおいては、融解状態の脂質を固化させて最終製品を調製する際に、目標品質を得るためにその固化を短時間で効率良く行うことが求められている。
 特許文献1には、マーガリン等に含まれる脂質が冷却捏和装置中で完全には固化せず、保存中に脂質の固化が進行した結果、ざらつきが生じ品質が劣化する問題が挙げられており、この解決手段として使用する脂質の組成を規定している。しかし、特殊な反応工程を経て得られる脂質が必要であり、汎用性に欠ける。
 特許文献2には、マーガリンに適した固化性の良い脂質を得るために、炭素数20以上の脂肪酸のエステルを、脂質固化促進剤として添加する技術が開示されている。しかし、その使用量は脂質に対して数%と高く、また積極的に固化速度を促進する効果について触れられていない。
特開2008-161176号公報 特開2000-116322号公報
 本発明の目的は、脂肪酸またはグリセリン脂肪酸エステルからなる脂質組成物について、特に食品用または化粧品用の脂質組成物について、簡便な固化促進方法を提供することにある。
 本発明者らは、上記背景技術に鑑み鋭意探索した結果、タルクをトリグリセリド等のグリセリン脂肪酸エステルの融液に混合することで、固化時間が短縮されることを見出した。更に鋭意検討を重ねた結果、特定の構造を有する粒子がグリセリン脂肪酸エステルのみならず脂肪酸に対しても本効果を発揮することを見出し、本発明を完成するに至った。
 即ち、本発明は、
(1)単層または非共有結合により積層する層状構造を有する粒子であって、次の(a)~(e)から選ばれる1種以上からなることを特徴とする、脂肪酸またはグリセリン脂肪酸エステル用固化促進剤。
(a)構成する四面体層(T)及び八面体層(O)のうち八面体層が3八面体構造である、層状珪酸塩鉱物。
(b)構成する四面体層(T)及び八面体層(O)のうち八面体層が2八面体構造であり、T-Oの1:1またはT-O-T-Oの2:1:1単位層構造からなる層状珪酸塩鉱物であって、これを表面疎水処理したもの。
(c)単層または層状カーボン類。
(d)芳香族カルボン酸またはそのアルカリ金属塩。
(e)テオブロミン
(2)層状珪酸塩鉱物がタルクであることを特徴とする、(1)に記載の脂肪酸またはグリセリン脂肪酸エステル用固化促進剤。
(3)平均粒子径(メジアン径)20μm未満であることを特徴とする、(1)に記載の脂肪酸またはグリセリン脂肪酸エステル用固化促進剤。
(4)凝固開始温度上昇剤である、(1)に記載の固化促進剤。
(5)(1)に記載の固化促進剤を含有し、且つ脂肪酸またはグリセリン脂肪酸エステルから選ばれる1以上からなる調製物。
(6)脂肪酸またはグリセリン脂肪酸エステルを加熱融解する工程、該脂肪酸またはグリセリン脂肪酸エステルと該固化促進剤とを該固化促進剤の融点未満の温度で混合する工程、及び該混合物を冷却する工程を含むことを特徴とする、(5)に記載の調製物の製造方法。
(7)(6)に記載の製造方法により得られた調製物を固体部と液体部に分別し、残存する固化促進剤を除去する工程を含むことを特徴とする、分別脂質の製造方法。
である。
 本発明によれば、特定の構造を有する粒子を脂肪酸またはグリセリン脂肪酸エステル融液に混合するという簡便な方法により、多様な脂肪酸またはグリセリン脂肪酸エステルの固化を促進することができる。さらにこの技術を利用することで、これらを含有する調製物の生産性,物性,外観,テクスチャーの向上、経日的変化の抑制、該調製物を固体部と液体部に分別する際の生産性等を向上させることも可能となる。
 以下に本発明をより詳細に説明する。
(脂肪酸)
 本発明の脂肪酸とは、炭化水素鎖の末端に1つのカルボキシル基を有する1価カルボン酸である。脂肪酸は任意の鎖長のものを使用することができ、飽和脂肪酸、多価不飽和脂肪酸を含む不飽和脂肪酸、ヒドロキシル基を有する脂肪酸、分岐鎖を有する脂肪酸など、各種の脂肪酸が対象となる。
 これら脂肪酸は主に食品香料または化粧品原料として用いられるものであり、また、融点が100℃未満のものが好ましい。更に好ましくは、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、マルガリン酸、ステアリン酸、アラキジン酸、ベヘン酸、リグノセリン酸等の炭素数8~36の直鎖飽和脂肪酸、パルミトレイン酸、オレイン酸等の不飽和脂肪酸を具体的に例示することができ、これらの多くは天然脂の加水分解物として得ることができる。
(グリセリン脂肪酸エステル)
 本発明のグリセリン脂肪酸エステルとは、グリセリンまたはグリセリンが2分子以上重合したポリグリセリンに対し、各種の脂肪酸がエステル結合したものである。結合脂肪酸は任意の鎖長のものを使用することができ、飽和脂肪酸,多価不飽和脂肪酸を含む不飽和脂肪酸、ヒドロキシル基を有する脂肪酸、分岐鎖を有する脂肪酸など、各種の脂肪酸が対象となる。グリセリン脂肪酸エステルは、これら脂肪酸がグリセリン1分子当たり1~3分子エステル結合したものであり、好ましくは同2~3分子、更に好ましくは同3分子エステル結合したものである。本発明には、グリセリン1分子に対して脂肪酸3分子が結合した、トリグリセリドが最適である。
 これらグリセリン脂肪酸エステルは主に食品または化粧品原料として、また各種用途の乳化剤として用いられるものであり、融点が100℃未満のものが好ましい。更に好ましくは、トリグリセリドを主成分とする、菜種油,大豆油,ヒマワリ種子油,綿実油,落花生油,米糠油,コーン油,サフラワー油,オリーブ油,カポック油,ゴマ油,月見草油,パーム油,シア脂,サル脂,カカオ脂,ヤシ油,パーム核油,ココアバター,ゴマ油,ピーナッツ油等の植物油脂、ならびに乳脂,牛脂,ラード,魚油等の動物油脂、これらの動植物油脂を分別または水素添加処理したもの、さらにこれらの動植物油脂単独または2種類以上を任意に組み合わせてエステル交換処理したものを具体的に例示することができる。
 上記脂肪酸,グリセリン脂肪酸エステル、またはこれらの混合物を脂質組成物と定義し、また、これら脂質組成物に本発明の固化促進剤を添加した混合物を本発明調製物と定義して、以降で使用した。
(層状構造)
 本発明の固化促進剤は、単層または非共有結合により積層する層状構造からなる必要がある。ここで言う「非共有結合」とは、これら層間の0.5~10Å、好ましくは0.5~5Å程度(タルクは2.8Å)の間隙に存在する静電的相互作用やファンデルワールス力相互作用等による比較的弱い結合を指し、具体的にはイオン結合や金属結合、水素結合、疎水結合を例示することができる。それぞれの層は、構成する原子にもよるが、概ね1~20Å程度(タルクは6.5Å)の層厚を有し、共有結合により構成されている。
(固化促進剤)
 本発明の脂質組成物用固化促進剤は、更に、次の(a)~(e)から選ばれる1種以上からなる。
(a)構成する四面体層(T)及び八面体層(O)のうち八面体層が3八面体構造である、層状珪酸塩鉱物であるもの。
 ここで層状珪酸塩鉱物とは、粘土鉱物のうち劈開性を有する一群であり、タルク、カオリン、スメクタイト、マイカ等の層状珪酸塩鉱物が挙げられる。四面体層とは、Si4+,Al3+,Fe3+などのカチオンを中心に互いに結合した酸素原子が四面体を形成し、平面または擬平面上でヘキサゴナル様のメッシュパターンを形成するように特定面(基底面)の酸素原子を共有して連なったシートである。一方、八面体層は、Al3+,Fe3+など3価のカチオンを中心に互いに結合した酸素原子が八面体を形成し、八面体の占有率が2/3になるようにこれらがシート状に連なった2八面体構造と、Mg2+,Fe2+など2価のカチオンを中心に互いに結合した酸素原子が八面体を形成し、これらが密な状態でシート状に連なった3八面体構造に分けられ、四面体層を構成する四面体同様に基底面が存在する。
 四面体層(T)と3八面体層(O)からなる層状珪酸塩鉱物は、T-O-Tの2:1,T-Oの1:1,またはT-O-T-Oの2:1:1の単位層構造からなり、典型的には、タルク,蛇紋石,3八面体型スメクタイト,3八面体型バーミキュライト,金雲母及び黒雲母に代表される3八面体型マイカ,3八面体型クロライトが挙げられる。また、これに後述する表面疎水処理を行なっても良い。
 これらは、単位層の少なくとも片面に四面体層を有しており、タルクのように各四面体の基底面で構成される表面、すなわち基底表面(basal surface)が疎水的で歪のないものが好ましい。
(b)構成する四面体層(T)及び八面体層(O)のうち八面体層が2八面体構造であり、T-Oの1:1またはT-O-T-Oの2:1:1単位層構造からなる層状珪酸塩鉱物を表面疎水処理したもの。
 すなわち、四面体層(T)と2八面体層(O)からなる層状珪酸塩鉱物のうち、T-Oの1:1,またはT-O-T-Oの2:1:1の単位層構造を有するものについて、表面疎水処理を施すことで本発明の効果が得られる。典型的にはカオリン,2八面体型クロライトが挙げられ、これらの表面を疎水処理する。疎水処理には、種々の方法を利用できるが、シランカップリング剤による表面修飾等の方法が好ましい。
(c)単層または層状カーボン類、
 炭素原子が層状に配置しているものであり、グラフェン,グラファイト,単層または複層からなるカーボンナノチューブ及びフラーレンが例示される。
(d)芳香族カルボン酸またはそのアルカリ金属塩
 芳香族カルボン酸とは、ベンゼン環と1以上のカルボキシル基を有するもので、1つのカルボキシル基を有するものとして、安息香酸,サリチル酸,没食子酸,ケイ皮酸を、2つのカルボキシル基を有するものとして、オルト-/イソ(メタ)-/テレ(パラ)-の各フタル酸,メリト酸が例示される。また、これらのナトリウム塩,カリウム塩等をそのアルカリ金属塩として挙げることができる。好ましくは、2以上のカルボキシル基を有する芳香族カルボン酸またはそのアルカリ金属塩である。
(e)テオブロミン
 テオブロミンとは、プリン塩基の一種であるキサンチンがメチル化された誘導体で、カカオに含まれる主要アルカロイドである。上記芳香族カルボン酸またはそのアルカリ金属塩同様、二量体を形成しやすく、これらの二量体が水素結合を介して層状に積層した結晶構造となる。
 本発明においては、これらの中でも特に、原子間共有結合で囲まれた歪のない面が、基底表面またはこれに相当する面に占める割合が高く、かつこれらの面が同一平面上で一次元または二次元方向に伸張している、タルク,グラファイト,カーボンナノチューブ,テレフタル酸を好適に使用でき、添加物として広く使用が認められているタルクをより好適に使用できる。これらの粒子に使用制限はなく、単体、または混合物として使用しても良いし、基底表面合計面積が顕著に低下しない限りにおいては、賦形剤等を混合してなる製剤として使用しても良い。
(添加量と粒径)
 粒子である上記固化促進剤は、その基底表面と脂質組成物を構成する分子との相互作用により効果を発現すると考えられ、微量でもその効果を得ることができるが、添加量が多いほど、また粒子径が小さくなるほど基底表面合計面積が増加し、大きな効果を得ることができる。ただし、種類や形状、アスペクト比等によって、効果が大きく変わるため、期待する効果に合わせて固化促進剤の粒子径、添加量を選択する必要がある。
 例えば、グリセリン脂肪酸エステルの固化促進を主な目的として、平均粒子径(メジアン径)0.6μmのタルク粒子を該グリセリン脂肪酸エステルに添加する場合、該グリセリン脂肪酸エステルに対して重量換算で0.005%以上の添加量が好ましく、より好ましくは同0.01%以上、さらに好ましくは同0.1%以上である。また、同30%未満が好ましく、より好ましくは同10%未満、さらに好ましくは同5%未満である。固化促進剤の添加量が同0.005%未満であると、冷却速度等の固化条件や後述するその他添加物の存在によっては十分な固化促進効果を得られない場合があり、また固化促進剤の添加量が同30%以上であると、該固化促進剤の分散性低下,該固化促進剤を含有する脂質組成物の物性やテクスチャーへの悪影響,濾過効率低下に伴う分別脂質の生産性低下や該固化促進剤の回収率低下,コスト負担の増加等が懸念される。
 また、同じくグリセリン脂肪酸エステルの固化促進を主な目的として、タルク粒子を該グリセリン脂肪酸エステルに対して重量換算で1%程度添加する場合、メジアン径20μm未満のものを用いるのが好ましく、より好ましくは同5μm未満、さらに好ましくは同1μm未満である。また、同0.1μm以上が好ましく、同0.3μm以上が更に好ましい。一方で、固化促進剤の粒子径が同20μm以上であると、沈降・堆積等による基底表面合計面積の実質的な減少、あるいは該固化促進剤を含有する本発明調製物の物性やテクスチャーへの悪影響が懸念され、また固化促進剤の粒子径が0.1μm未満であると、凝集による基底表面合計面積の減少や、濾過等における回収率低下、特にサブミクロンオーダーのものに関しては人体への悪影響が懸念されるため、用途によっても粒子径を使い分ける必要がある。
(脂質難溶性添加物)
 本発明においては、上記固化促進剤以外にも、対象とする脂質組成物に難溶性の固形分を併用することが可能で、その一例として、アラビアガム,寒天,キサンタンガム,セルロース及びその誘導体,キチン,キトサン,各種デキストリン,でん粉及び加工でん粉,イヌリン等の多糖類、食塩,塩化カリウム,塩化カルシウム,クエン酸ナトリウム,硫酸マグネシウム等の塩類、大豆,小麦,乳,卵等に由来する動植物タンパク及びその加水分解物を挙げることができる。しかし、上記固化促進剤に対するこれら固形分の添加量が多すぎると、該固化促進剤との会合により実質的な基底表面合計面積が顕著に低下するため、同添加量を重量比で10倍以下に抑えるのが好ましく、より好ましくは等量以下、さらに好ましくは10分の1以下である。
(脂溶性添加物)
 本発明においては、上記脂質組成物に脂溶性添加剤を併用することも可能であり、例えば、レシチン,ショ糖脂肪酸エステル,ソルビタン脂肪酸エステル,固化促進の対象とする以外のグリセリン脂肪酸エステル等の乳化剤,着色料,着香料,防腐剤,酸化防止剤等を、単独または複数使用しても良い。これら添加剤は任意の量で使用できるが、添加剤自身の効果により上記固化促進剤の効果を妨げる場合に限り、例えば固化促進の対象とする脂質組成物全量に対し重量換算で0.1%以下というように、極力使用量を抑える方が良い。
(利用)
 次に、本発明の固化促進剤の好ましい利用方法について説明する。本発明によれば、上記固化促進剤と、融解状態にある固化促進対象の脂質組成物とを十分混合した後、冷却等の一般的な固化条件に付すだけで、該脂質組成物の固化速度を促進することができる。固化促進処理を行う際に、該脂質組成物が融解状態にあって、上記固化促進剤と十分に混合されていれば、混合方法に特に制限はなく、例えば固化状態にある該脂質組成物に該固化促進剤を添加し、加熱等の操作による該脂質組成物部分の融解及び十分な混合の後、固化を行なっても良い。混合が不十分であれば、固化促進剤自体が沈降・堆積あるいは凝集により、基底表面合計面積が実質的に減少し、十分な固化促進効果を得られない場合がある。また、急冷などの急激な固化条件下では、固化促進剤の影響が相対的に弱くなるため、例えば大気圧下で冷却を行う場合、冷却速度は毎分10℃以下が好ましく、より好ましくは毎分5℃以下、さらに好ましくは毎分1℃以下である。
 また、混合する上記固化促進剤が溶解しない限り、本発明調製物に対し、水等の極性が大きく異なる溶媒を混合しても良い。この場合、両者に対する固化促進剤表面の相対的な親和度や、該固化促進剤を添加する相によって、固化促進効果の現れ方や効果の大きさが異なる。例えば、脂質組成物に対する固化促進剤表面の親和性が顕著に高い場合、該固化促進剤は主にバルクの脂質組成物に対して固化促進効果を示すが、固化促進剤表面がヤヌスビーズのように二種類以上の濡れ性を示すような場合、濡れ性のバランスによっては該固化促進剤が界面に配向し、主に界面付近の脂質組成物に対して固化促進効果を示すことがある。後者の場合、界面を形成するコロイド分散体の分散安定性向上等の副次的な効果も期待される。ただし、このような固化促進剤は自己組織化する性質があることから、最も大きな固化促進効果を得るためには、脂質組成物と混合した後に他方の溶媒と混合することが好ましい。一方、脂質組成物に対する固化促進剤表面の相対的な親和性が顕著に低い場合、該固化促進剤が脂質組成物側から他方へ移行し、期待する固化促進効果を得られない可能性がある。
 従って、上記固化促進技術は、様々な組成の脂質組成物のみならず、これらを含む種々の脂質製品にも利用することができる。具体的には、マーガリン,ショートニング,クリーム,チョコレート等の脂質加工食品類、マスカラや口紅等の化粧品類、軟膏等の医薬品類を例示することができ、本発明の固化促進技術により、これら脂質製品の生産性,物性,外観,テクスチャーの向上、経日的変化の抑制等の制御も可能となる。中でも、脂質以外の成分が少ないショートニング等において、顕著な効果を得ることができる。
 上記固化促進剤を含む、本発明調製物の製造方法は、固化促進の対象となる脂質組成物を加熱融解する工程、該脂質組成物と上記固化促進剤とを混合する工程、及び該混合物(調製物)を冷却する工程を含むものであれば、いかなる製造方法でも良く、攪拌,掻取,混練,加圧,成形,あるいはテンパリング及び熟成等の工程を任意に含むことができる。
(分別への利用)
 さらに上記固化促進技術は、上記調製物を固体部と液体部に分別することで分別脂質を製造する際の、生産性等の向上に利用することもできる。尚、分別脂質とは、脂肪酸またはグリセリン脂肪酸エステルを含む脂質組成物について、構成する個々の脂質を融点の差や溶媒への溶解性の差により分離分画(分別)したものである。適用する分別方法について特に制限はなく、ヘキサンやアセトンなどの溶剤を用いる溶剤分別法や、これらの溶剤を全く用いないドライ分別法等を任意に利用することができる。混合した固化促進剤の大半は、分別後固体部に残るが、加熱等の操作により脂質のみを融解し、濾過、遠心分離等の方法で回収することができる。分別後液体部に残存する上記固化促進剤についても、同様の方法で回収することができ、回収した固化促進剤は、必要に応じて溶剤洗浄、高熱または高圧ブロー、続いて混合する脂質組成物含有成分による共洗い等の処理を施すことで、再利用することができる。
(固化促進効果の評価)
 本発明による脂質組成物の固化促進効果は、主にDSC測定に基づいて評価することができる。DSCとは、Differential Scanning Calorimetry(示差走査熱量測定)の略称であり、測定試料と基準物質との間の熱量の差を計測することで、凝固温度や融点、ガラス転移点等を測定する熱分析の手法である。熱流束示差走査熱量測定(熱流束DSC)と入力補償示差走査熱量測定(入力補償DSC)の二種類があるが、本発明においては、試料及び基準物質で構成される試料部の温度を、一定のプログラムによって変化させながら、その試料及び基準物質の温度が等しくなるように、両者に加えた単位時間当たりの熱エネルギーの入力差を温度の関数として測定する、熱流束DSC測定を行う。DSC測定では、一定速度または一定温度で試料の冷却を行なった際の発熱ピークの立ち上がり温度(凝固開始温度)及び発熱ピークトップ温度から、固化促進効果の有無を判定する。なお、評価に際しては、脂質のいわゆる「メモリー効果」の影響を避けるため、脂質全体の融点より十分高い温度、好ましくは最も融点の高い脂質成分の融点より約15℃以上高い温度で10分間保持した後、冷却を行うこととする。
 次に、実施例、比較例等を挙げて本発明をさらに具体的に説明するが、これらの実施例等は本発明を制限するものではない。なお、以下の記載において、「部」はすべて「重量部」を意味する。
〔実施例1~7、比較例1~3〕
 80℃以上で完全融解した精製パーム油(不二製油社製、融点37℃)100部に対し、これに難溶性の各試料を表1に示した配合に従って添加し、精製パーム油の融解状態を維持したまま、凝集物が目視で確認できなくなるまでボルテックスミキサー等により十分に混合した。得られた混合液を直ちにDSC測定用のアルミパンに供し、次項に示す温度条件でDSC測定(島津製作所社製熱流束DSC測定器;DSC-60使用、以下同じ)による評価を行なった。
<評価温度条件>
 DSC測定;初期温度 80℃(10分間),冷却速度 5℃/分,最終温度 0℃
 一般に、パーム油は固化速度が遅いことで知られているが、タルク粉末を使用した実施例1~6において、固化促進効果が確認された。これらの効果は、タルク粉末の粒子径が小さいほど、メジアン径0.6μmのタルク粉末では添加量が多いほど顕著になる傾向が見られた。また、カオリン粉末表面疎水処理品を使用した実施例7についても、同様の効果が確認された。
 一方、層状構造を持たないシリカ粉末を使用した比較例1,白雲母粉末を使用した比較例2、及び未処理のカオリン粉末を使用した比較例3では、各試料の添加効果はほとんど観察されなかった。表1に、無添加の精製パーム油と比較したときの、固化促進効果の有無及び程度の大小をまとめた。
 タルク,白雲母,カオリンはいずれも層状珪酸塩鉱物に分類されるが、タルク及び白雲母は四面体層(T)及び八面体層(O)からなるT-O-Tの2:1単位層構造を、カオリンはT-Oの1:1単位層構造を有する。このため、タルク及び白雲母では四面体層が基底表面を構成し、カオリンでは四面体層と八面体層がそれぞれ基底表面のおよそ半分を占める。また、四面体層に隣接する八面体層が、タルクでは密に充填された3八面体構造であるのに対し、白雲母及びカオリンでは空隙のある2八面体構造であるため、後者では四面体層の基底表面に歪が生じる。このような表面構造の違いが添加効果の差として現れたと考えられる。モンモリロナイト等のその他層状珪酸塩鉱物についても、単位層構造及び八面体層構造による分類に従って、同じ分類内では同様の添加効果が観察された。一方、カオリン粉末表面疎水処理品を使用した実施例7は固化促進効果を示したが、八面体層の基底表面上に並ぶヒドロキシル基が修飾を受け、処理剤で覆われることで、歪の少ない疎水的な基底表面を生じた可能性がある。
表1 配合(単位:部)及び評価結果
Figure JPOXMLDOC01-appb-I000001
<固化促進評価結果について>
◎ DSC凝固開始温度及び高温側発熱ピークトップ温度がともに3℃以上上昇(顕著な固化促進)
○ DSC凝固開始温度及び高温側発熱ピークトップ温度がともに1℃以上上昇(固化促進)
- DSC凝固開始温度変化または高温側発熱ピークトップ温度変化が0.5℃未満(固化への影響少ない)

※1 精製パーム油は、不二製油社製(融点37℃)を使用
※2 タルク粉末Aは、日本タルク社製(商品名:タルクMS、メジアン径14μm)を使用
※3 タルク粉末Bは、日本タルク社製(商品名:ミクロエースSG-95、メジアン径2.5μm)を使用
※4 タルク粉末Cは、日本タルク社製(商品名:NANO ACE D-1000、メジアン径1.0μm)を使用
※5 タルク粉末Dは、日本タルク社製(商品名:NANO ACE D-600、メジアン径0.6μm)を使用
※6 カオリン表面疎水処理粉末は、KaMin LLC社製(商品名:Lithosperse 7005 CS)を使用
※7 シリカ粉末は、富士シリシア化学社製(商品名:SYLOPAGE 721)を使用
※8 白雲母粉末は、ヤマグチマイカ社製(商品名:MICA POWDER TM-10)を使用
※9 カオリン粉末は、KaMin LLC社製(商品名:KaMin 2000C)を使用
〔実施例8~14、比較例4〕
 80℃以上で完全融解したトリラウリン(東京化成工業社製、融点47℃)100部に対し、これに難溶性の各試料を表2に示した配合に従って添加し、トリラウリンの融解状態を維持したまま、凝集物が目視で確認できなくなるまでボルテックスミキサー等により十分混合した。得られた混合液を直ちにDSC測定用のアルミパンに供し、以下に示す温度条件でDSC測定による評価を行なった。
<評価温度条件>
 初期温度 80℃(10分間),冷却速度 1℃/分,最終温度 0℃
 タルク粉末を使用した実施例8は、精製パーム油とタルク粉末を混合した実施例1~6同様、固化促進効果を示した。また、層状カーボン類に属するグラファイト、カーボンナノチューブ、フラーレンC60の中では、原子間共有結合で囲まれた歪のない面が同一平面上で二次元方向に伸張しているグラファイト粉末を使用した実施例9が、最も顕著な固化促進効果を示した。次いで、同面が、同一平面上で一次元方向にのみ伸張しているカーボンナノチューブを使用した実施例10が、顕著な固化促進効果を示した。同面が、同一平面上に伸張していない球状のフラーレンC60を使用した実施例11も、一定の固化促進効果を示した。さらに、これらと類似の層状構造を有する、安息香酸ナトリウム,テレフタル酸,テオブロミンの各粉末を使用した実施例12~14は、いずれも固化促進効果を示し、より明確な層状構造を有するテレフタル酸において、顕著な固化促進効果が観察された。表2に、無添加のトリラウリンと比較したときの、固化促進効果の有無及び程度の大小をまとめた。
表2 配合(単位:部)及び評価結果
Figure JPOXMLDOC01-appb-I000002
<固化促進評価結果について>
◎◎ DSC凝固開始温度及び高温側発熱ピークトップ温度がともに7℃以上上昇(非常に顕著な固化促進)
◎○ DSC凝固開始温度及び高温側発熱ピークトップ温度がともに5℃以上上昇(かなり顕著な固化促進)
◎ DSC凝固開始温度及び高温側発熱ピークトップ温度がともに3℃以上上昇(顕著な固化促進)
○ DS凝固開始温度及び高温側発熱ピークトップ温度がともに1℃以上上昇(固化促進)
- DSC凝固開始温度変化または高温側発熱ピークトップ温度変化が0.5℃未満(固化への影響少ない)

※10 トリラウリンは、東京化成工業社製(融点47℃)を使用
※11 グラファイト粉末は、Johnson Matthey社製(商品名:Graphite powder、synthetic、conducting grade)を使用
※12 カーボンナノチューブは、東京化成工業社製(商品名:カーボンナノチューブ単層(>55%))を使用
※13 フラーレンC60は、STREM CHEMICALS社製(商品名:Fullerene-C60)を使用
※14 安息香酸ナトリウム粉末は、和光純薬工業社製(商品名:安息香酸ナトリウム、食品添加物グレード)を使用
※15 テレフタル酸粉末は、東京化成工業社製(商品名:テレフタル酸)を使用
※16 テオブロミン粉末は、東京化成工業社製(商品名:テオブロミン)を使用
〔実施例15~19、比較例5〕
 表3に示した配合に従い、80℃以上で完全融解した各脂質100部に対してタルク粉末1部を添加し、各脂質の融解状態を維持したまま、凝集物が目視で確認できなくなるまでボルテックスミキサー等により十分混合した。得られた混合液を直ちにDSC測定用のアルミパンに供し、以下に示す温度条件でDSC測定による評価を行なった。
<評価温度条件> 
 実施例8、実施例15~17、実施例19、比較例5
 初期温度 80℃(10分間)、冷却速度 1℃/分、最終温度 0℃
 実施例18
 初期温度 100℃(10分間)、冷却速度 1℃/分、最終温度 0℃
 ジ、トリアシルグリセロールのいずれかを使用した実施例8及び実施例15~17、ならびにポリグリセリン脂肪酸エステルを使用した実施例18において、タルク粉末は固化促進効果を示した。これらの脂質はいずれもグリセリン脂肪酸エステルである。また、脂肪酸を使用した実施例19においても、タルク粉末は固化促進効果を示した。一方、グリセリン脂肪酸エステル及び脂肪酸に属さないアルカンであるn-オクタデカンを使用した比較例5では、タルク粉末はほとんど添加効果を示さなかった。表3に、タルク粉末無添加の各脂質単体と比較したときの、固化促進効果の有無及び程度の大小をまとめた。
表3 配合(単位:部)及び評価結果
Figure JPOXMLDOC01-appb-I000003
<固化促進評価結果について>
◎ DSC凝固開始温度及び高温側発熱ピークトップ温度がともに3℃以上上昇(顕著な固化促進)
○ DSC凝固開始温度及び高温側発熱ピークトップ温度がともに1℃以上上昇(固化促進)
- DSC凝固開始温度変化または高温側発熱ピークトップ温度変化が0.5℃未満(固化への影響少ない)

※17 トリミリスチンは、東京化成工業社製(融点57℃)を使用
※18 トリパルミチンは、和光純薬工業社製(融点60~67℃)を使用
※19 α,α’-ジラウリンは、東京化成工業社製(融点59℃)を使用
※20 テトラグリセリンヘキサベヘネートは、理研ビタミン社製(商品名:ポエムJ-46B、融点69.3℃)を使用
※21 ラウリン酸は、東京化成工業社製(融点45℃)を使用
※22 n-オクタデカンは、東京化成工業社製(融点28℃)を使用
〔実施例20、比較例6〕
 表4に示した配合に従って80℃以上,15分間保持して完全融解したRBDパーム油100部にタルク粉末を1部添加混合した混合物、及びタルク粉末無添加の完全融解したRBDパーム油をそれぞれ試料とし、これらを別々の同じ形状を有する円柱状のステンレス容器に注ぎ、65℃の温浴槽に10分間保持した。これらにステンレス容器の約9割の直径を有するオープンピッチド2枚パドルを差込み、室温と同じ26℃の循環水で周囲を冷却しながら、20rpmの回転速度で緩やかに攪拌した。固化に伴う発熱により、試料温度が上昇し始めた時の温度及び時間をそれぞれT(min)及びt(min)、試料温度が最も上昇した時の温度及び時間をそれぞれT(max)及びt(max)と定義し、t(max)から60分後を脂質固化の終点とした。得られた混濁液は直ちに0.5atm減圧下で吸引濾別し、回収した固体脂側に含まれるタルク粉末は、80℃以上で固化脂質のみを融解し、再度濾過することにより回収した。それぞれの固体脂側及び濾液側の脂質組成については、高速液体クロマトグラフィー(HPLC)による組成分析を行い比較した。
 タルク粉末を使用した実施例20では、循環水で周囲を冷却して30分を過ぎたあたりから、固化に伴う発熱により試料温度が上昇し始め、42分で最も温度が上昇した。一方、脂質のみの比較例6では、実施例20より10分以上遅れて試料温度が緩やかに上昇し、60分で最も温度が上昇した。T(min)及びT(max)は、いずれも比較例6より実施例20の方が高い値を示した。固化後に濾別した固体脂側及び濾液側の脂質組成は、実施例20及び比較例6の間で互いに一致していた。この結果は、タルクのような本発明で言うところの固化促進剤を混合するだけで、従来より高い温度帯または短い固化時間で分別前の脂質固化を行えることを示しており、脂質分別工程における分離性や生産性の向上等に役立てることができる。
表4 配合(単位:部)及び評価結果
Figure JPOXMLDOC01-appb-I000004
※23 RBDパーム油は、パルマジュ・エディブルオイル社製(融点37℃)を使用
 本発明により、簡便な方法で多様な脂質組成物の凝固開始温度を上昇させ、固化速度を向上させることができる。この技術は、脂質組成物のみならず、これらを含有する種々の脂質製品の生産性,物性,外観,テクスチャーの向上、経日的変化の抑制等や、該脂質組成物を固体部と液体部に分別する際の生産性等の向上に大きく貢献するものである。

Claims (7)

  1. 単層または非共有結合により積層する層状構造を有する粒子であって、次の(a)~(e)から選ばれる1種以上からなることを特徴とする、脂肪酸またはグリセリン脂肪酸エステル用固化促進剤。
    (a)構成する四面体層(T)及び八面体層(O)のうち八面体層が3八面体構造である、層状珪酸塩鉱物。
    (b)構成する四面体層(T)及び八面体層(O)のうち八面体層が2八面体構造であり、T-Oの1:1またはT-O-T-Oの2:1:1単位層構造からなる層状珪酸塩鉱物であって、これを表面疎水処理したもの。
    (c)単層または層状カーボン類。
    (d)芳香族カルボン酸またはそのアルカリ金属塩
    (e)テオブロミン
  2. 層状珪酸塩鉱物がタルクであることを特徴とする、請求項1に記載の脂肪酸またはグリセリン脂肪酸エステル用固化促進剤。
  3. 平均粒子径(メジアン径)20μm未満であることを特徴とする、請求項1に記載の脂肪酸またはグリセリン脂肪酸エステル用固化促進剤。
  4. 凝固開始温度上昇剤である、請求項1に記載の固化促進剤。
  5. 請求項1に記載の固化促進剤を含有し、且つ脂肪酸またはグリセリン脂肪酸エステルから選ばれる1以上からなる調製物。
  6. 脂肪酸またはグリセリン脂肪酸エステルを加熱融解する工程、該脂肪酸またはグリセリン脂肪酸エステルと該固化促進剤とを該固化促進剤の融点未満の温度で混合する工程、及び該混合物を冷却する工程を含むことを特徴とする、請求項5に記載の調製物の製造方法。
  7. 請求項6に記載の製造方法により得られた調製物を固体部と液体部に分別し、残存する固化促進剤を除去する工程を含むことを特徴とする、分別脂質の製造方法。
PCT/JP2013/058071 2012-03-28 2013-03-21 脂肪酸またはグリセリン脂肪酸エステル用固化促進剤 WO2013146526A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013530262A JP5376100B1 (ja) 2012-03-28 2013-03-21 脂肪酸またはグリセリン脂肪酸エステル用固化促進剤

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012073167 2012-03-28
JP2012-073167 2012-03-28
JP2012149735 2012-07-03
JP2012-149735 2012-07-03

Publications (1)

Publication Number Publication Date
WO2013146526A1 true WO2013146526A1 (ja) 2013-10-03

Family

ID=49259782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058071 WO2013146526A1 (ja) 2012-03-28 2013-03-21 脂肪酸またはグリセリン脂肪酸エステル用固化促進剤

Country Status (3)

Country Link
JP (1) JP5376100B1 (ja)
MY (1) MY164534A (ja)
WO (1) WO2013146526A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015183080A (ja) * 2014-03-24 2015-10-22 不二製油株式会社 脂肪酸またはグリセリン脂肪酸エステル含有脂質の晶析法
WO2016107785A1 (en) * 2014-12-29 2016-07-07 Imerys Talc Europe Methods for processing vegetable oils and vegetable oil compositions
WO2022202158A1 (ja) 2021-03-23 2022-09-29 不二製油グループ本社株式会社 油脂の固化促進方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241245A (ja) * 2005-03-01 2006-09-14 Daiki Axis:Kk 使用済食用油脂の再生処理方法及びその処理剤
WO2006112347A1 (ja) * 2005-04-14 2006-10-26 Adeka Corporation 油脂のドライ分別方法
JP2007084683A (ja) * 2005-09-22 2007-04-05 Oriza Yuka Kk 油脂組成物
JP2008260902A (ja) * 2007-04-13 2008-10-30 Kureha Corp ポリグリコール酸の結晶化温度を高くする方法及び結晶化温度を高くしたポリグリコール酸樹脂組成物
WO2012086565A1 (ja) * 2010-12-22 2012-06-28 不二製油株式会社 油脂の乾式分別法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241245A (ja) * 2005-03-01 2006-09-14 Daiki Axis:Kk 使用済食用油脂の再生処理方法及びその処理剤
WO2006112347A1 (ja) * 2005-04-14 2006-10-26 Adeka Corporation 油脂のドライ分別方法
JP2007084683A (ja) * 2005-09-22 2007-04-05 Oriza Yuka Kk 油脂組成物
JP2008260902A (ja) * 2007-04-13 2008-10-30 Kureha Corp ポリグリコール酸の結晶化温度を高くする方法及び結晶化温度を高くしたポリグリコール酸樹脂組成物
WO2012086565A1 (ja) * 2010-12-22 2012-06-28 不二製油株式会社 油脂の乾式分別法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015183080A (ja) * 2014-03-24 2015-10-22 不二製油株式会社 脂肪酸またはグリセリン脂肪酸エステル含有脂質の晶析法
WO2016107785A1 (en) * 2014-12-29 2016-07-07 Imerys Talc Europe Methods for processing vegetable oils and vegetable oil compositions
WO2022202158A1 (ja) 2021-03-23 2022-09-29 不二製油グループ本社株式会社 油脂の固化促進方法
JP7193043B1 (ja) * 2021-03-23 2022-12-20 不二製油株式会社 油脂の固化促進方法
US20240032556A1 (en) * 2021-03-23 2024-02-01 Fuji Oil Holdings Inc. Method for promoting solidification of oil and fat

Also Published As

Publication number Publication date
JP5376100B1 (ja) 2013-12-25
MY164534A (en) 2017-12-29
JPWO2013146526A1 (ja) 2015-12-14

Similar Documents

Publication Publication Date Title
Guo et al. Synthesis, physicochemical properties, and health aspects of structured lipids: A review
Singh et al. Advances in edible oleogel technologies–A decade in review
Liu et al. Fabrication of concentrated fish oil emulsions using dual-channel microfluidization: Impact of droplet concentration on physical properties and lipid oxidation
Fioramonti et al. Multilayer emulsions as a strategy for linseed oil microencapsulation: Effect of pH and alginate concentration
Azizi et al. Improvement of physicochemical properties of encapsulated echium oil using nanostructured lipid carriers
JP5376100B1 (ja) 脂肪酸またはグリセリン脂肪酸エステル用固化促進剤
Soleimanian et al. Wax‐based delivery systems: Preparation, characterization, and food applications
Patel Edible oil structuring
CN1422122A (zh) 含油和极性脂质的天然原料的分级分离方法
EP1998627B1 (en) A solid product comprising oil-droplets
US20160324178A1 (en) Structuring and Gelling Agents
US8796342B2 (en) Oil gel
Yu et al. Effect of ultrasound on the structural characteristics and oxidative stability of walnut oil oleogel coated with soy protein isolate-phosphatidylserine
Lu et al. Bioaccessibility of polymethoxyflavones encapsulated in resistant starch particle stabilized Pickering emulsions: Role of fatty acid complexation and heat treatment
CN111328882A (zh) 一种仿人乳脂肪球结构乳液及其制备方法
Sagiri et al. Natural and bioderived molecular gelator–based oleogels and their applications
Babin et al. Interactions in dispersions of sugar particles in food oils: influence of emulsifier
Zheng et al. A novel strategy for preparation of rice bran protein oleogels based on high internal phase emulsion template
JP6194831B2 (ja) 脂肪酸またはグリセリン脂肪酸エステル含有脂質の晶析法
Granger et al. Physicochemical behavior of oil-in-water emulsions: influence of milk protein mixtures, glycerol ester mixtures and fat characteristics
JP2015063597A (ja) 脂肪酸またはグリセリン脂肪酸エステル用結晶構造制御剤
TW202011996A (zh) 軟膠囊填充用組成物、填充了該組成物的軟膠囊以及它們的製造方法
Marangoni et al. Controlled release of food lipids using monoglyceride gel phases regulates lipid and insulin metabolism in humans
JP6241119B2 (ja) 脂肪酸またはモノグリセリン脂肪酸エステル用結晶構造制御剤
Chen et al. Pickering emulsions synergistically stabilized by sugar beet pectin and montmorillonite exhibit enhanced storage stability and viscoelasticity

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013530262

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13768685

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: IDP00201405648

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13768685

Country of ref document: EP

Kind code of ref document: A1