WO2006109667A1 - 2,7-ジメチルナフタレンの精製方法 - Google Patents

2,7-ジメチルナフタレンの精製方法 Download PDF

Info

Publication number
WO2006109667A1
WO2006109667A1 PCT/JP2006/307321 JP2006307321W WO2006109667A1 WO 2006109667 A1 WO2006109667 A1 WO 2006109667A1 JP 2006307321 W JP2006307321 W JP 2006307321W WO 2006109667 A1 WO2006109667 A1 WO 2006109667A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimethylnaphthalene
purifying
raw material
solvent
material oil
Prior art date
Application number
PCT/JP2006/307321
Other languages
English (en)
French (fr)
Inventor
Shinichi Nagao
Hiroshi Ogawa
Original Assignee
Mitsubishi Gas Chemical Company, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Company, Inc. filed Critical Mitsubishi Gas Chemical Company, Inc.
Priority to JP2007512942A priority Critical patent/JP4919086B2/ja
Priority to DE602006010843T priority patent/DE602006010843D1/de
Priority to EP06731269A priority patent/EP1873133B1/en
Priority to US11/910,774 priority patent/US8124825B2/en
Priority to CN2006800156352A priority patent/CN101171215B/zh
Publication of WO2006109667A1 publication Critical patent/WO2006109667A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/12Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/373Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen with simultaneous isomerisation
    • C07C5/393Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen with simultaneous isomerisation with cyclisation to an aromatic six-membered ring, e.g. dehydrogenation of n-hexane to benzene
    • C07C5/41Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/20Polycyclic condensed hydrocarbons
    • C07C15/24Polycyclic condensed hydrocarbons containing two rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/54Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition of unsaturated hydrocarbons to saturated hydrocarbons or to hydrocarbons containing a six-membered aromatic ring with no unsaturation outside the aromatic ring
    • C07C2/64Addition to a carbon atom of a six-membered aromatic ring
    • C07C2/66Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/22Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
    • C07C5/27Rearrangement of carbon atoms in the hydrocarbon skeleton
    • C07C5/2729Changing the branching point of an open chain or the point of substitution on a ring
    • C07C5/2732Catalytic processes
    • C07C5/2737Catalytic processes with crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/12Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers
    • C07C7/13Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers by molecular-sieve technique
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the alkali- or alkaline earth metals or beryllium
    • C07C2523/04Alkali metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type

Definitions

  • the present invention relates to a method for efficiently separating 2,7-dimethylnaphthalene from a raw oil containing a mixture of 1,7-dimethylnaphthalene and 2,7-dimethylnaphthalene, and particularly, separation and purification with high purity.
  • the present invention relates to a method for separating 2,7-dimethylnaphthalene, which is difficult to achieve.
  • This 2,7-dimethyl naphthalene is oxidized to 2,7-naphthalenedicarboxylic acid, or it is esterified to dimethyl 2,7-naphthalenedicarboxylic acid, which has excellent heat resistance and physical strength. It is extremely useful as a raw material for high performance polyester.
  • Dimethylnaphthalene (hereinafter sometimes referred to as "DMN") has 10 isomers.
  • organic compounds are purified by operations such as distillation, crystallization, adsorption, or a combination of these methods.
  • Conventional methods for separating dimethylnaphthalene mixtures include crystallization and separation using an adsorbent! / Speak.
  • 2,7-dimethylnaphthalene (hereinafter sometimes referred to as “2,7-DMN”) is selectively precipitated from a dimethylnaphthalene isomer mixture using ethyl alcohol as a solvent, and low melting point DMNs are obtained.
  • Patent Document 1 By filtration while maintaining the liquid state (see Patent Document 1), or by treating the DMN isomer mixture containing 2,7-DMN with methanol, followed by crystallization separation and 2,7-DMN (See Patent Document 2), a method for obtaining 2,7-DMN with high purity from raw material oil containing DMN isomer by pressure crystal (see Patent Document 3), and DMN isomer mixture
  • Patent Document 4 a method of adsorbing and separating 2,7-DMN and 2,6-dimethylnaphthalene with high selectivity by using zeolite having a 10-membered ring as an adsorbent is known (see Patent Document 4). It has been.
  • 1,7-DMN 2,7-dinaphthane from mixtures such as 2,7-dimethylnaphthalene and 1,7-dimethylnaphthalene
  • Patent Document 1 Japanese Patent Laid-Open No. 9 124520
  • Patent Document 2 JP-A-48-22448
  • Patent Document 3 Japanese Patent Laid-Open No. 4-120027
  • Patent Document 4 Japanese Patent Laid-Open No. 1-224336
  • the present invention solves the above problems, and an object of the present invention is to produce 2,7-dimethylnaphthalene with a high purity and a high yield from a dimethylnaphthalene isomer mixture at a low production cost and a simple constitution.
  • the object of the present invention is to provide an industrially stable production method.
  • the present inventors have determined that 2,7-dimethyl by adsorption separation from a raw material oil containing 1,7-dimethylnaphthalene and 2,7-dimethylnaphthalene.
  • the separation of naphthalene the adsorption power of 1,7-dimethylnaphthalene to a specific adsorbent is used, and by using an appropriately selected adsorbent, the non-adsorbed 2,7-dimethylnaphthalene It was found that selective separation is possible.
  • 2,7-dimethylnaphthalene can be separated and purified with high purity by using L-type zeolite as the adsorbent and using aliphatic hydrocarbons or alicyclic hydrocarbons as the developing solvent. Reached Ming.
  • the present invention includes a step of contacting a raw material oil containing a mixture of 1,7-dimethylnaphthalene and 2,7-dimethylnaphthalene with L-type zeolite together with a developing solvent to adsorb 1,7-dimethylnaphthalene. This is a method for purifying 2,7-dimethylnaphthalene.
  • 1,7-dimethylnaphthalene and 2,7-dimethylnaphthalene can be produced with a simple structure.
  • the 2,7-dimethylnaphthalene can be separated efficiently and with high purity from the dimethylnaphthalene mixture, and it has great industrial significance.
  • the method for purifying 2,7-dimethylnaphthalene according to the present invention comprises contacting a raw material oil containing a mixture of 1,7-dimethylnaphthalene and 2,7-dimethylnaphthalene with L-type zeolite together with a developing solvent. , 7-dimethylnaphthalene adsorbing step (A) is included.
  • the feedstock containing a mixture of 1,7-dimethylnaphthalene and 2,7-dimethylnaphthalene used for purification in the present invention is a combined amount of 1,7-dimethylnaphthalene and 2,7-dimethylnaphthalene. Is preferably 70% by weight or more.
  • the method for producing a feedstock containing a mixture of 1,7-dimethylnaphthalene and 2,7-dimethylnaphthalene is not limited, but can be obtained by the following feedstock production process (D) with the following steps (1) to (3) I prefer that.
  • Process (1) is a process for the conversion of para-xylene and 1,3-butadiene to 5-paratolyl-2-pentene
  • process (2) is from 5-paratolyl-2-pentene to 1,7-dimethylnaphthalene.
  • step (3) 1,7-dimethylnaphthalene is isomerized to give 2,7-dimethylnaphthalene.
  • Various methods can be used for the isomerization in the isomerization step (3), but it can be performed relatively easily by using a solid acid catalyst or the like.
  • a feedstock containing 70% by weight or more of the combined amount of 1,7-dimethylnaphthalene and 2,7-dimethylnaphthalene can be easily obtained. It can be obtained.
  • Examples of the step (1) include the following.
  • 1,3-Butadiene is introduced and a batch reaction is performed. After completion of the reaction, cool, transfer to another glass container, supply sulfuric acid aqueous solution with stirring and let stand. This supernatant is distilled under reduced pressure. Supply to the column, distill off the low boiling fraction, extract the bottom liquid, and extract 5-paratoluyl-2-pentene while extracting the high boiling fraction in the high boiling power distillation column with increased vacuum.
  • Examples of the step (2) include the following.
  • reaction liquid after removing heptane is supplied to a vacuum glass distillation column, and low-boiling fraction and high-boiling fraction are withdrawn, and 98% pure 1,7-DMN is withdrawn from the middle stage of the distillation tower.
  • Examples of the step (3) include the following.
  • a feedstock containing a mixture of 1J-DMN and 2,7-DMN is preferably selected as 1,7-DMN strength zeolite by contacting it with L-type zeolite together with a developing solvent that is organic solvent strength. Adsorbed selectively (adsorption process (A)).
  • Examples of the developing solvent suitably used in the present invention include aliphatic hydrocarbons (straight and branched) and alicyclic hydrocarbons, and those having 6 to 14 carbon atoms are preferable.
  • Examples include n-hexane, n-heptane, n-octane, isooctane, n-nonane, n-decane, n-undecane, n-dodecane, cyclohexane, decalin, and methylcyclohexane.
  • a substance having a greatly different boiling point from 2,7-dimethylnaphthalene is preferable. It is a force that can use a distillation method to separate the developing solvent later.
  • aliphatic hydrocarbons and alicyclic hydrocarbons may be used alone or in combination. Further, aliphatic hydrocarbons and alicyclic hydrocarbons may be used in combination.
  • the L-type zeolite used in the present invention has a SiO ZA10 ratio (molar ratio) power of .2 to 7.0.
  • L-type zeolite Preferably, in the range of 5.6 to 7.0. Further, it preferably has a one-dimensional pore having a diameter of 0.7 nm (oxygen 12-membered ring), and the type of pore system is preferably three-dimensional.
  • L-type zeolite include KL-type zeolite, and examples of commercially available KL-type zeolite include “HS-500” (SiO ZA10 ratio (molar ratio) 6.0) manufactured by Wako Pure Chemical Industries, Ltd.
  • L-type zeolite, KL type power, KL type zeolite is selected from among alkali metals or alkaline earth metals such as sodium, lithium, rubidium, cesium, norium, L-type zeolite substituted with one or more of metal ions such as calcium, magnesium, strontium and lanthanum can be used.
  • These zeolites may be used as they are, or may be used after steam treatment, alkali treatment, acid treatment, ion exchange, and the like.
  • the shape is preferably molded into a spherical shape, a noodle shape or a cylindrical shape.
  • the present invention allows the raw material oil to flow through the adsorption layer filled with the L-type zeolite at the same time as the development. It is preferable to carry out by a method in which a solvent is passed through or a method in which the developing solvent is added to the raw material oil in advance and passed through the adsorption layer.
  • the developing solvent may be used in an amount of 1 to 200 times, preferably 5 to 150 times, more preferably 10 to L00 times the total amount of dimethylnaphthalene in the raw material oil.
  • the amount of liquid passing through the adsorption layer is preferably in the range of 0.1 to 10.
  • the temperature of the adsorption layer at the time of liquid passage is preferably in the range of 10 to 200 ° C, more preferably in the range of 20 to 150 ° C.
  • 1,7-dimethylnaphthalene is selectively adsorbed, and a liquid mainly containing 2,7-dimethylnaphthalene and a developing solvent is distilled out. This distillate is expanded by distillation, etc. By separating the open solvent, 2,7-dimethylnaphthalene of high purity can be obtained (developing solvent separation step (C)).
  • dimethylnaphthalene adsorbed on zeolite (mainly 1,7-dimethylnaphthalene) is desorbed and separated to recover Z.
  • aromatic hydrocarbons from the viewpoint of elimination time and the like, for example, benzene, toluene, orthoxylene, paraxylene, metaxylene, ethylbenzene, jetylbenzene and the like.
  • the amount of the desorption solvent used is preferably 1 to 200 times by weight with respect to the total amount of dimethylnaphthalene in the raw material oil.
  • the liquid flow rate at this time is preferably in the range of 0.05 to 20.
  • the temperature of the adsorption layer at the time of liquid passage is in the range of 10 to 200 ° C, preferably 20 to 150 ° C.
  • the recovered 1,7-dimethylnaphthalene can be recycled as a raw material for the isomerization step (3).
  • the adsorption step (A) and the desorption step (B) in the present invention may be performed in various ways such as a fixed bed, a fluidized bed, and a moving bed that may be performed in any of a batch type, a continuous type, and a semi-notch type.
  • a fixed bed a fluidized bed
  • a moving bed that may be performed in any of a batch type, a continuous type, and a semi-notch type.
  • it is preferable to use the simulated moving bed method see, for example, Japanese Patent Laid-Open No. 8-217700), which is an established technology.
  • the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
  • the raw materials and target products were analyzed by gas chromatography.
  • the part shown below means a weight part.
  • reaction mixture was cooled, transferred to another glass container, and 50 parts of 10% aqueous sulfuric acid solution was supplied with stirring and allowed to stand.
  • the yield per para-xylene reacted with 5-paratolyl-2-pentene was 82%.
  • This supernatant was fed to a 23 kPa distillation column at a rate of 63 parts Zhr to distill off the low boiling fraction.
  • the bottom liquid was extracted, and 5-paratoluyl-2-pentene was extracted at 10 parts Zhr while extracting a high boiling fraction at 2 parts Zhr in a 5 kPa high boiling cut distillation column.
  • the reaction solution was continuously supplied to a stainless steel cylindrical dehydrogenation reactor filled with 40 parts of 1% platinum Z activated carbon catalyst (manufactured by NE Chemcat).
  • the reaction temperature was 280 ° C.
  • the dehydrogenation reaction was carried out while simultaneously supplying 20 parts Zhr of n-heptane as a diluent solvent.
  • n-heptane was recovered by supplying to a glass distillation column whose pressure was reduced to 19 kPa.
  • the n-heptane-removed reaction solution was supplied to a glass distillation column depressurized to 13 kPa, and the low-boiling fraction was extracted at 0.05 part Zhr and the high-boiling fraction was extracted at 0.3 part Zhr. 9.4 parts of 98% pure 1,7-DMN was extracted from the middle column of the distillation column.
  • KL-type zeolite manufactured by Wako Pure Chemical Industries, Ltd., "HS-500", SiO ZA1 0 ratio as an adsorbent
  • Example 2 The same raw material oil (100 g) used in Example 1 and KL type zeolite (15 g) were contacted at 40 ° C. in a vessel equipped with a stirrer. After 2 hours, filter the zeolite and distill n-heptane. As a result of separation, 2,7-dimethylnaphthalene having a purity of 99.2% was obtained with a recovery rate of 40%.
  • the adsorbent zeolite is NaY-type zeolite (manufactured by Wako Pure Chemical Industries, Ltd., HS-320), SiO /
  • Example 2 The same procedure as in Example 1 was carried out except that the adsorbent zeolite was ZSM-5 proton type (manufactured by NU Chemcat Co., Ltd.), SiO ZA10 ratio (molar ratio) 26). In this case 1,7
  • 2,7-dimethylnaphthalene is efficiently and highly purified from a dimethylnaphthalene mixture containing 1,7-dimethylnaphthalene and 2,7-dimethylnaphthalene with a simple structure. And the industrial significance is extremely great.
  • the 2,7-dimethylnaphthalene acidified to 2,7-naphthalenedicarboxylic acid or the esterified to 2,7-naphthalenedicarboxylic acid dimethyl has excellent heat resistance and physical strength. It is extremely useful as a raw material for high-performance polyester.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Water Supply & Treatment (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

【課題】ジメチルナフタレン異性体混合物から、高純度、高収率で2,7-ジメチルナフタレンを製造コストが安価で簡便な構成で工業的に安定して製造する方法を提供する。 【解決手段】1,7-ジメチルナフタレンと2,7-ジメチルナフタレンの混合物を含有する原料油を展開溶媒とともにL型ゼオライトに接触させ、1,7-ジメチルナフタレンを吸着させる工程を含むことを特徴とする2,7-ジメチルナフタレンの精製方法である。                                                                         

Description

明 細 書
2,7-ジメチルナフタレンの精製方法
技術分野
[0001] 本発明は、 1,7-ジメチルナフタレンと 2, 7-ジメチルナフタレンの混合物を含む原料 油から 2,7-ジメチルナフタレンを効率よく分離するための方法に関し、特に高純度で の分離精製が困難な 2,7-ジメチルナフタレンの分離方法に関する。この 2,7-ジメチル ナフタレンを酸化して 2,7-ナフタレンジカルボン酸にしたもの、あるいはこれをエステ ルイ匕して 2,7-ナフタレンジカルボン酸ジメチルにしたものは耐熱性や物理的強度に 優れた高性能ポリエステルの原料として極めて有用である。
背景技術
[0002] ジメチルナフタレン(以下「DMN」と記すことがある)には、 10種類の異性体が存在 する。一般に、有機化合物の精製は、蒸留や晶析、吸着等の操作により、あるいはそ れらの方法を組み合わせることにより行われる。し力しながら、これらジメチルナフタレ ン異性体の融点差ならびに沸点差が非常に小さいため、蒸留ゃ晶析による容易な 精製も困難である。従来ジメチルナフタレン混合物の分離法としては、晶析、吸着剤 により分離する方法等が知られて!/ヽる。
例えば、エチルアルコールを溶媒として、ジメチルナフタレン異性体混合物から、 2, 7-ジメチルナフタレン (以下「2,7-DMN」と記すことがある)を選択的に析出させ、融 点の低 ヽ DMN類が液体状態を保って ヽる間にろ過分離する方法 (特許文献 1参照 )や、 2,7-DMNを含む DMN異性体混合物をメタノールで処理して、晶析分離して 2, 7-DMNを得る方法 (特許文献 2参照)や、 DMN異性体を含む原料油から、圧力晶 祈によって純度の高 、2,7-DMNを得る方法 (特許文献 3参照)や、 DMN異性体混 合物から、吸着剤として 10員環を有するゼォライト等を使用することによって 2,7-DM Nおよび 2,6-ジメチルナフタレンを高選択率で吸着させ分離する方法 (特許文献 4参 照)等が知られている。
しかしながら、ジメチルナフタレン混合物の中で、特に、 2,7-ジメチルナフタレンと 1, 7-ジメチルナフタレン(以下「1,7-DMN」と記すことがある)等の混合物からの 2,7-ジ メチルナフタレンを高純度、高収率でかつ製造コストが安価で簡便な構成で工業的 に安定して製造する高純度 2,7-ジメチルナフタレンの分離方法は、未だ確立されて いない。
[0003] これらの異性体を含むジメチルナフタレンを酸ィ匕 Zエステルイ匕して得られるナフタレ ンジメチルジェステルをポリエステル原料として用いた場合、得られる榭脂は耐熱性
、機械的強度、寸法安定性等の物理的特性や機械的特性が低下するため、ポリエス テル等の原料として用いることができない。このため高純度のジメチルナフタレンのェ 業的に有利な分離方法について、長期にわたって研究が続けられている。
[0004] 特許文献 1:特開平 9 124520号公報
特許文献 2 :特開昭 48-22448号公報
特許文献 3:特開平 4-120027号公報
特許文献 4:特開平 1-224336号公報
発明の開示
[0005] 本発明は、上記課題を解決するもので、本発明の目的は、ジメチルナフタレン異性 体混合物から、高純度、高収率で 2,7-ジメチルナフタレンを製造コストが安価で簡便 な構成で工業的に安定して製造する方法を提供することにある。
[0006] 本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、 1,7-ジメチル ナフタレンと 2,7-ジメチルナフタレンを含む原料油から吸着分離法により 2,7-ジメチル ナフタレンを分離するにあたり、ある特定の吸着剤に対する 1 ,7-ジメチルナフタレンの 吸着力を利用して、適切に選ばれた吸着剤を使用することによって非吸着物である 2 ,7-ジメチルナフタレンの選択的な分離が可能であることを見出した。具体的には、吸 着剤として L型ゼオライトを用い、展開溶媒として脂肪族炭化水素や脂環式炭化水素 を用いることで 2,7-ジメチルナフタレンが高純度で分離精製できることを見出し、本発 明に到達した。
即ち、本発明は 1,7-ジメチルナフタレンと 2,7-ジメチルナフタレンの混合物を含有す る原料油を展開溶媒とともに L型ゼオライトに接触させ、 1,7-ジメチルナフタレンを吸 着させる工程を含むことを特徴とする 2,7-ジメチルナフタレンの精製方法である。
[0007] 本発明によれば簡便な構成で 1,7-ジメチルナフタレンと 2,7-ジメチルナフタレンとを 含むジメチルナフタレン混合物から、 2,7-ジメチルナフタレンを効率よぐかつ高純度 で分離することができ、工業的意義が極めて大きい。
発明を実施するための最良の形態
[0008] 本発明の 2, 7-ジメチルナフタレンの精製方法は 1,7-ジメチルナフタレンと 2, 7-ジメチ ルナフタレンの混合物を含有する原料油を展開溶媒とともに L型ゼオライトに接触さ せ、 1,7-ジメチルナフタレンを吸着させる工程 (A)を含む。
[0009] 本発明で精製に供される 1,7-ジメチルナフタレンと 2,7-ジメチルナフタレンの混合 物を含む原料油は、 1,7-ジメチルナフタレンと 2,7-ジメチルナフタレンをあわせた量 が 70重量%以上含有されたものが好ましい。 1,7-ジメチルナフタレンと 2,7-ジメチル ナフタレンの混合物を含む原料油の製造方法は限定されないが、以下に示す工程( 1)〜(3)力もなる原料油製造工程 (D)により得られることが好ま 、。工程(1)はパラ キシレンおよび 1,3-ブタジエンから 5-パラトルィル- 2-ペンテンを得るァルケ-ル化工 程であり、工程(2)は 5-パラトルィル -2-ペンテンから 1,7-ジメチルナフタレンを得る環 ィ匕'脱水素工程であり、工程(3)は 1,7-ジメチルナフタレンを異性ィ匕して 2,7-ジメチル ナフタレンを得る異性ィ匕工程である。なお、異性ィ匕工程(3)の異性ィ匕については種 々の方法を用いることができるが、固体酸触媒等を用いることにより比較的容易に行 うことができる。
この(1)〜(3)からなる原料油製造工程 (D)によれば、 1,7-ジメチルナフタレンと 2,7 -ジメチルナフタレンをあわせた量が 70重量%以上含有された原料油を容易に得るこ とがでさる。
[0010] 工程(1)の例として下記が挙げられる。
水酸ィ匕カリウム水溶液に酸ィ匕ジルコニウム粉末を加え、攪拌下加熱して含浸する。 減圧下加熱して水を留去し、そのままの状態で加熱して一晩乾燥した後、更に空気 中で温度を上げて焼成する。このようにして得られた触媒をガラス製フラスコに供給し 、窒素雰囲気下加熱して攪拌し、そこへ金属ナトリウムを加えた後、その温度で攪拌 する。次いで、パラキシレンをガラス製フラスコに供給し、加熱する。強く攪拌しながら
1,3-ブタジエンを導入してバッチ反応させる。反応終了後冷却し、別のガラス容器に 移送し、撹拌しながら硫酸水溶液を供給し静置する。この上澄み液を減圧下、蒸留 塔へ供給し低沸点留分を留去し、塔底液を抜き出し、さらに減圧度を上げた高沸力 ット蒸留塔で、高沸点留分を抜き出しながら、 5-パラトルィル -2-ペンテンを抜き出す
[0011] 工程(2)の例として下記が挙げられる。
H型モルデナイト、シリカ、及びバインダーとしてアルミナを含有するアルミナゾルに 純水を加えて室温下よく混合撹拌する。その後、押し出し成形器を用いて成形後、 加熱乾燥し、さらに温度を上げて焼成して触媒を調製する。この触媒をステンレス製 の筒状の環化反応器に充填し、常圧、加熱下、上記で得られた 5-パラトルィル -2-ぺ ンテン及び窒素を供給し、環化反応を行う。環化反応後、引き続きこの反応液を、白 金 Z活性炭触媒を充填したステンレス製の筒状の脱水素反応器に供給する。希釈 溶媒としてヘプタンを同時に供給しながら、加熱して脱水素反応を行う。反応後、減 圧したガラス製蒸留塔に供給し、ヘプタンを回収する。ヘプタン除去後の反応液を、 減圧したガラス製の蒸留塔に供給し、低沸点留分および高沸点留分を抜き出し、 98 %純度の 1 ,7-DMNを蒸留塔の中段から抜き出す。
[0012] 工程 (3)の例として下記が挙げられる。
SiO ZA1 O比が 203の H型モルデナイトとアルミナゾルを純水に加えてよく練り
2 2 3
合わせる。加熱して乾燥後、空気中でさらに加熱して焼成し、砕いて粒径 1. 0〜2. 0 mmのものを集め触媒とする。この触媒をステンレス製の筒状反応器に充填し、 1,7- DMNを、異性化反応器下部より供給し常圧下、加熱して異性化反応を行う。得られ た反応液の 1J-DMNと 2,7-DMNの混合比は重量比で、 2Z3〜: LZlのものである
[0013] 1J-DMNと 2,7-DMNの混合物を含む原料油は、好ましくは有機溶媒力 なる展 開溶媒とともに、 L型ゼオライトに接触させることで、 1,7-DMN力 型ゼオライトに選 択的に吸着される(吸着工程 (A) )。
[0014] 本発明で好適に用いられる展開溶媒としては、脂肪族炭化水素 (直鎖、分岐)およ び脂環式炭化水素が挙げられ、その炭素数が 6〜14であるものが好ましい。例えば n—へキサン、 n—ヘプタン、 n—オクタン、イソオクタン、 n—ノナン、 n—デカン、 n— ゥンデカン、 n—ドデカン、シクロへキサン、デカリン、メチルシクロへキサンが挙げら れ、特に 2,7-ジメチルナフタレンとは沸点が大きく異なる物質が好ましい。後に展開 溶媒を分離する際に蒸留法を用いることができる力 である。
なお、上記脂肪族炭化水素および脂環式炭化水素は、これらを単独で用いてもよ いし、混合して用いてもよい。また、脂肪族炭化水素と脂環式炭化水素を併用しても よい。
[0015] また、本発明で用いる L型ゼオライトとしては、 SiO ZA1 0比(モル比)力 .2〜7.0の
2 2 3
ものであり、好ましくは 5.6〜7.0の範囲のものである。また、 0.7nmの直径(酸素 12員環 )をもつ 1次元の細孔を有し、孔路系のタイプは 3次元のものが好ましい。 L型ゼォライ トとしては、 KL型ゼオライトが挙げられ、市販の KL型ゼオライトとしては、和光純薬( 株)製「HS-500」 (SiO ZA1 0比(モル比) 6.0)が挙げられる。
2 2 3
さらに、 L型ゼオライトとしては、 KL型のほ力、 KL型ゼオライトをアルカリ金属または アルカリ土類金属の中カゝら選ばれた金属イオン、例えばナトリウム、リチウム、ルビジ ゥム、セシウム、ノ リウム、カルシウム、マグネシウム、ストロンチウム、ランタン等の金 属イオンの 、ずれか一種または二種以上で置換した L型ゼオライトを用いることがで きる。また、これらのゼォライトは、これをそのまま用いてもよぐまたスチーム処理、ァ ルカリ処理、酸処理、イオン交換等を行って用いても良い。形状としては、球状または ヌードル状または円柱状に成型されて使用するのが好ましい。
[0016] 原料油および展開溶媒と、 L型ゼオライトを接触させる方法に特に制限はないが、 本発明は、上記 L型ゼオライトが充填された吸着層に、原料油を通液すると同時に、 前記展開溶媒を通液するか、予め原料油に前記展開溶媒を添加して吸着層に通液 する方法により行うことが好まし 、。
この場合、前記展開溶媒量は、原料油中のジメチルナフタレンの総量に対して 1〜 200重量倍、好ましくは 5〜 150重量倍、より好ましくは 10〜: L00重量倍用いるとよい 。また、前記吸着層への通液量は、吸着層に対する LHSV (原料油と展開溶媒の合 計)として 0. 1〜10. Oh— 1の範囲であることが好ましい。通液時の吸着層の温度は、 1 0〜200°Cの範囲が好ましく、さらに好ましくは 20〜 150°Cの範囲である。
[0017] 上記吸着操作により、 1,7-ジメチルナフタレンが選択的に吸着され、主として 2,7-ジ メチルナフタレンと展開溶媒を含む液が留出する。この留出液から、蒸留等により展 開溶媒を分離することにより、高純度の 2,7-ジメチルナフタレンが得られる(展開溶媒 の分離工程 (C) )。
一般に目的物を吸着させると、その脱離 ·回収のために煩雑な操作や条件管理が 必要であるが、本発明では、 目的物である 2,7-ジメチルナフタレンを吸着させないの で、簡便な操作で目的物を得ることができる。
[0018] 上記吸着操作(吸着工程 (A) )の後、ゼォライトに吸着されたジメチルナフタレン( 主に 1,7-ジメチルナフタレン)を脱離して分離 Z回収するためには、脱離溶媒を使用 する。本発明においては、脱離時間等の観点から、芳香族系炭化水素を使用するこ とが好ましぐ例えばベンゼン、トルエン、オルソキシレン、パラキシレン、メタキシレン 、ェチルベンゼン、ジェチルベンゼン等が挙げられる。脱離溶媒の使用量は、原料 油中のジメチルナフタレンの総量に対して 1〜200重量倍であることが好ましい。また 、この時の通液量は、吸着層に対する LHSVとして 0. 05〜20. Oh— 1の範囲であるこ とが好ましい。通液時の吸着層の温度は、 10〜200°C、好ましくは 20〜150°Cの範 囲である。なお、回収された 1,7-ジメチルナフタレンは、上記異性化工程(3)の原料 としてリサイクルすることができる。
[0019] 本発明における吸着工程 (A)や脱離工程 (B)は、バッチ式、連続式、あるいはセミ ノ ツチ式のいずれで行ってもよぐ固定床、流動床、移動床など、種々の方式にて実 施可能であるが、工業的には、既に確立された技術である、擬似移動床方式 (例え ば、特開平 8— 217700号公報参照)にて実施することが好ましい。
実施例
[0020] 次に実施例により本発明を更に具体的に説明する。但し、本発明はこれらの実施 例により限定されるものではない。以下の実施例および比較例において、原料およ び目的物は、ガスクロマトグラフィーにより分析した。なお、以下に示す部は重量部を 意味する。
[0021] 合成例 1
<パラキシレンおよび 1 ,3-ブタジエンから 5-パラトルィル- 2-ペンテンを得るアルケニ ル化工程 (工程(1) ) >
水酸ィ匕カリウム 5部を含有する水溶液に酸ィ匕ジルコニウム粉末 30部を加え、攪拌下 50°Cで 1時間含浸した。減圧下 70°Cで水を留去し、 115°Cで一晩乾燥した後、更に 空気中 500°Cで焼成した。このようにして得られた触媒 10部をガラス製フラスコに供 給し、窒素雰囲気下 180°Cで攪拌し、そこへ金属ナトリウム 0. 5部を加えた後、その 温度で 60分攪拌した。ノ ラキシレン 1000部をガラス製フラスコに供給し、 140°Cに 加熱した。強く攪拌しながら 1,3-ブタジエン 70部を 1時間で導入してバッチ反応した 。反応終了後冷却し、別のガラス容器に移送し、撹拌しながら 50部の 10%硫酸水溶 液を供給し静置した。 5-パラトルィル- 2-ペンテンの反応したパラキシレンあたりの収 率は 82%であった。この上澄み液を 23kPaの蒸留塔へ 63部 Zhrの速度で供給し低 沸点留分を留去した。塔底液を抜き出し、 5kPaの高沸カット蒸留塔で、高沸点留分 を 2部 Zhrで抜き出しながら、 5-パラトルィル -2-ペンテンを 10部 Zhrで抜き出して 得た。
[0022] く 5-パラトルィル -2-ペンテンから 1,7-ジメチルナフタレンを得る環ィ匕'脱水素工程( 工程 (2) ) >
東ソー製 H型モルデナイト 15部、シリカ 270部、及びバインダーとしてアルミナ含量 70重量%のアルミナゾル 21部に純水 500部をカ卩えて室温下よく混合撹拌した。その 後、押し出し成形器を用いて成形後、 110°Cで乾燥し、 350°Cで 3時間焼成して触媒 を調製した。この触媒をステンレス製の筒状の環化反応器に充填し、常圧下、反応温 度 170°Cで、上記で得られた 5-パラトルィル -2-ペンテンを 10部 Zhrの速度で、およ び窒素 250部 Zminで供給し、環化反応を行った。希釈媒の原料に対するモル比は 11であった。環化反応後、引き続きこの反応液を、 1%白金 Z活性炭触媒 (NEケム キャット社製)を 40部充填したステンレス製の筒状の脱水素反応器に供給した。反応 温度は 280°Cであった。希釈溶媒として n—ヘプタンを 20部 Zhr同時に供給しなが ら、脱水素反応を行った。反応後、 19kPaに減圧したガラス製蒸留塔に供給し、 n- ヘプタンを回収した。 n—ヘプタン除去後の反応液を、 13kPaに減圧したガラス製の 蒸留塔に供給し、低沸点留分を 0. 05部 Zhrで、高沸点留分を 0. 3部 Zhrで抜き出 し、 98%純度の 1,7-DMNを蒸留塔の中段から 9. 4部抜き出した。
[0023] < 1,7-ジメチルナフタレンを固体酸触媒等で異性ィ匕する異性ィ匕工程 (工程 (3) ) >
SiO ZA1 O比が 203の H型モルデナイト(東ソ一製) 100部とアルミナゾル (触媒 化成製アルミナ 70wt%) 20部を純水に加えてよく練り合わせた。 110°Cで乾燥後、 空気中 500°Cで 2時間焼成し、砕いて粒径 1. 0〜2. Ommのもの^^め触媒とした。 この触媒 20部をステンレス製の筒状反応器に充填した。 1,7-DMNを、異性化反応 器下部より 9. 4部 Zhrで供給し常圧下、 225°Cで異性ィ匕反応を行った。 得られた反 応液の 1,7- DMNと 2,7- DMNの混合比は重量比で、 2Z3〜lZlのものであった。こ の混合物の組成を表 1に示す。
[0024] 実施例 1
吸着剤として市販の KL型ゼオライト (和光純薬 (株)製、「HS-500」、 SiO ZA1 0比
2 2 3
(モル比) 6.0)を用い、これを内容積 25mLのガラス製チューブ型カラム(8mm φ X 5 00mm)へ充填して、吸着分離カラムとし、これを外部から加熱して充填層の温度を 4 0°Cに保持した。次に、原料油として、表 1に示す組成のジメチルナフタレン異性体混 合物を、展開溶媒である n—ヘプタンに溶解して 5重量%の濃度のジメチルナフタレ ン溶液を調製し、吸着剤容量に対する流量 (LHSV)を 2. Oh— 1として、上記吸着分離 カラム (KL型ゼオライト層)に通液して吸着展開した(吸着工程 (A) )。この吸着分離 カラム力 留出する留出液を回収し、 n—ヘプタンを蒸留分離した結果、純度 99. 1 %の 2, 7-ジメチルナフタレンが回収率 42% (原料油中の 2, 7-ジメチルナフタレン基準 、以下同様)で得られた (展開溶媒分離工程 (C) )。吸着操作後、脱離溶媒であるォ ルソキシレンを吸着剤容量に対する流量 (LHSV)を 1. Oh— して、該吸着分離カラ ムの KL型ゼオライト層へ通液して、ジメチルナフタレンを脱離させたところ、 2,7-ジメ チルナフタレン 37. 9%、 1,7-ジメチルナフタレン 62. 1%力もなるジメチルナフタレン 混合物が得られた (脱離工程 (B) )。
[0025] 実施例 2
展開溶媒力 —デカンである以外は、実施例 1と同様に行った。吸着分離層から留 出する溶液を回収し、 n—デカンを蒸留分離した結果、純度 97. 2%の 2,7-ジメチル ナフタレンが回収率 41 %で得られた。
[0026] 実施例 3
実施例 1で使用したものと同じ原料油(100g)と KL型ゼオライト(15g)を攪拌機付 き容器内で 40°Cにて接触させた。 2時間後、ゼォライトをろ別し、 n—ヘプタンを蒸留 分離した結果、純度 99. 2%の 2,7-ジメチルナフタレンが回収率 40%で得られた。
[0027] 比較例 1
吸着剤であるゼォライトが NaY型ゼオライト(和光純薬 (株)製、 HS— 320」、 SiO /
2
A1 0比(モル比) 5.5)である以外は、実施例 1と同様に行った。この場合、 1,7-ジメチ
2 3
ルナフタレンの選択的吸着はみられず、 1,7-ジメチルナフタレン、 2, 7-ジメチルナフタ レンいずれもほぼ全量吸着された。吸着分離層から留出する溶液を回収したところ、 原料油中の 1,7-ジメチルナフタレンと 2,7-ジメチルナフタレンの合計に対して 1%に 相当するジメチルナフタレン(2, 7-ジメチルナフタレン 56%、 1,7-ジメチルナフタレン 4 4%)が含まれていた。
[0028] 比較例 2
吸着剤であるゼォライトが ZSM— 5プロトンタイプ (ェヌ 'ィー ケムキャット (株)製」 、 SiO ZA1 0比(モル比) 26)である以外は、実施例 1と同様に行った。この場合、 1,7
2 2 3
-ジメチルナフタレンの選択的吸着はみられず、 1,7-ジメチルナフタレン、 2,7-ジメチ ルナフタレンいずれもほとんど吸着されな力つた。吸着分離層から留出する溶液を回 収したところ、原料油中の 1,7-ジメチルナフタレンと 2,7-ジメチルナフタレンの合計に 対して 94%に相当するジメチルナフタレン(2, 7-ジメチルナフタレン 59%、 1,7-ジメチ ルナフタレン 41%)が含まれていた。
[0029] [表 1]
Figure imgf000010_0001
産業上の利用可能性
本発明によれば簡便な構成で 1,7-ジメチルナフタレンと 2,7-ジメチルナフタレンとを 含むジメチルナフタレン混合物から、 2,7-ジメチルナフタレンを効率よぐかつ高純度 で分離することができ、工業的意義が極めて大きい。この 2,7-ジメチルナフタレンを酸 化して 2,7-ナフタレンジカルボン酸にしたもの、あるいはこれをエステル化して 2,7-ナ フタレンジカルボン酸ジメチルにしたものは耐熱性や物理的強度に優れた高性能ポ リエステルの原料として極めて有用である。

Claims

請求の範囲
[1] 1,7-ジメチルナフタレンと 2,7-ジメチルナフタレンの混合物を含有する原料油を展開 溶媒とともに L型ゼオライトに接触させ、 1,7-ジメチルナフタレンを吸着させる工程 (A
)を含むことを特徴とする 2,7-ジメチルナフタレンの精製方法。
[2] 展開溶媒が、脂肪族炭化水素および Zまたは脂環式炭化水素であることを特徴とす る請求項 1に記載の 2,7-ジメチルナフタレンの精製方法。
[3] 原料油と L型ゼオライトの接触温度が、 10〜200°Cであることを特徴とする請求項 1〖こ 記載の 2,7-ジメチルナフタレンの精製方法。
[4] 展開溶媒量が、原料油中のジメチルナフタレンの総量に対して 1〜200重量倍であ る請求項 1に記載の 2,7-ジメチルナフタレンの精製方法。
[5] 吸着工程 (A)を擬似移動床方式で行うことを特徴とする請求項 1〜4のいずれかに 記載の 2,7-ジメチルナフタレンの精製方法。
[6] 1,7-ジメチルナフタレンが吸着された L型ゼオライトに脱離溶媒を接触させ、ジメチル ナフタレンを脱離する工程 (B)を含む請求項 1に記載の 2,7-ジメチルナフタレンの精 製方法。
[7] 脱離溶媒が、芳香族炭化水素であることを特徴とする請求項 6に記載の 2,7-ジメチル ナフタレンの精製方法。
[8] 吸着工程 (A)および Zまたは脱離工程 (B)を擬似移動床方式で行うことを特徴とす る請求項 6又は 7に記載の 2,7-ジメチルナフタレンの精製方法。
[9] 吸着工程 (A)における留出液力 展開溶媒を分離する工程 (C)を含む請求項 1〜8 のいずれかに記載の 2,7-ジメチルナフタレンの精製方法。
[10] 原料油が以下の工程(1)〜(3)からなる原料油製造工程 (D)により得られたものであ る請求項 1記載の 2,7-ジメチルナフタレンの精製方法。
工程(1)パラキシレンおよび 1 ,3-ブタジエンから 5-パラトルィル- 2-ペンテンを得るァ ノレケ-ノレイ匕工程、
工程(2) 5-パラトルィル -2-ペンテンから 1,7-ジメチルナフタレンを得る環ィ匕'脱水素 工程、
工程 (3) 1,7-ジメチルナフタレンを異性ィ匕して 2,7-ジメチルナフタレンを得る異性ィ匕
ェ ll£L0£/900Zd£/13d Ζ\ .9960Ϊ/900Ζ OAV
PCT/JP2006/307321 2005-04-06 2006-04-06 2,7-ジメチルナフタレンの精製方法 WO2006109667A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007512942A JP4919086B2 (ja) 2005-04-06 2006-04-06 2,7−ジメチルナフタレンの精製方法
DE602006010843T DE602006010843D1 (de) 2005-04-06 2006-04-06 Verfahren zur aufreinigung von 2,7-dimethylnaphthalin
EP06731269A EP1873133B1 (en) 2005-04-06 2006-04-06 Method of purifying 2,7-dimethylnaphthalene
US11/910,774 US8124825B2 (en) 2005-04-06 2006-04-06 Method of purifying 2,7-dimethylnaphthalene
CN2006800156352A CN101171215B (zh) 2005-04-06 2006-04-06 2,7-二甲基萘的精制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005109737 2005-04-06
JP2005-109737 2005-04-06

Publications (1)

Publication Number Publication Date
WO2006109667A1 true WO2006109667A1 (ja) 2006-10-19

Family

ID=37086943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/307321 WO2006109667A1 (ja) 2005-04-06 2006-04-06 2,7-ジメチルナフタレンの精製方法

Country Status (7)

Country Link
US (1) US8124825B2 (ja)
EP (1) EP1873133B1 (ja)
JP (1) JP4919086B2 (ja)
KR (1) KR20080024109A (ja)
CN (1) CN101171215B (ja)
DE (1) DE602006010843D1 (ja)
WO (1) WO2006109667A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62240632A (ja) * 1986-04-11 1987-10-21 Mitsui Petrochem Ind Ltd ジメチルナフタレン異性体の分離方法
JPH01224336A (ja) * 1988-03-04 1989-09-07 Idemitsu Kosan Co Ltd ジメチルナフタレン異性体の分離方法
JPH026320A (ja) * 1988-01-04 1990-01-10 Exxon Chem Patents Inc ゼオライトl及びその製造方法
JPH05213787A (ja) * 1992-02-06 1993-08-24 Nikko Kyodo Co Ltd 2,6−ジメチルナフタレンの分離方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3668267A (en) * 1970-01-30 1972-06-06 Sun Oil Co Separation of 2,7-dimethylnaphthalene from 2,6-dimethylnaphthalene with molecular sieves
US3775500A (en) * 1972-08-09 1973-11-27 Sun Research Development Preparation of 2,7-dimethylnaphthalene
JP2766059B2 (ja) * 1990-09-12 1998-06-18 財団法人石油産業活性化センター 2,7―ジメチルナフタレンの分離方法
JPH08217700A (ja) * 1995-02-13 1996-08-27 Chiyoda Corp パラキシレンの分離方法
JPH09124520A (ja) * 1995-11-08 1997-05-13 Cosmo Sogo Kenkyusho:Kk 2,7−ジメチルナフタレンの分離回収法
US6057487A (en) * 1997-12-30 2000-05-02 Chevron Chemical Company Method for producing 2,6-DMN from mixed dimethylnaphthalenes by crystallization, adsorption and isomerization
DE60002513T2 (de) * 1999-02-22 2004-04-08 Mitsubishi Gas Chemical Co., Inc. Verfahren zur Herstellung von Dimethyltetralin
CN100584808C (zh) * 2004-12-24 2010-01-27 三菱瓦斯化学株式会社 二甲基萘异构体的分离方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62240632A (ja) * 1986-04-11 1987-10-21 Mitsui Petrochem Ind Ltd ジメチルナフタレン異性体の分離方法
JPH026320A (ja) * 1988-01-04 1990-01-10 Exxon Chem Patents Inc ゼオライトl及びその製造方法
JPH01224336A (ja) * 1988-03-04 1989-09-07 Idemitsu Kosan Co Ltd ジメチルナフタレン異性体の分離方法
JPH05213787A (ja) * 1992-02-06 1993-08-24 Nikko Kyodo Co Ltd 2,6−ジメチルナフタレンの分離方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1873133A4 *

Also Published As

Publication number Publication date
CN101171215A (zh) 2008-04-30
CN101171215B (zh) 2011-09-21
EP1873133A1 (en) 2008-01-02
US20100113853A1 (en) 2010-05-06
EP1873133A4 (en) 2008-12-03
JPWO2006109667A1 (ja) 2008-11-13
KR20080024109A (ko) 2008-03-17
EP1873133B1 (en) 2009-12-02
DE602006010843D1 (de) 2010-01-14
US8124825B2 (en) 2012-02-28
JP4919086B2 (ja) 2012-04-18

Similar Documents

Publication Publication Date Title
RU2345835C2 (ru) Композиция адсорбента и способы ее получения и применения
TWI498311B (zh) 對-取代芳香族碳化氫的製造方法
JP4521656B2 (ja) パラキシレンおよびスチレンの同時生成法
TWI363753B (en) Process for producing para-xylene
TWI432409B (zh) 轉化烴之方法及p-二甲苯之製法
TW460437B (en) Meta-xylene production process
CN111187132A (zh) 一种由甲醇和/或二甲醚制备汽油联产对二甲苯的方法
JP4735774B2 (ja) エチルベンゼンの転化方法及びパラキシレン製造方法
WO2006109667A1 (ja) 2,7-ジメチルナフタレンの精製方法
WO2005082817A1 (ja) アダマンタンの製造方法
JPS5945652B2 (ja) パラ−ジエチルベンゼンの製造法
CN114656323B (zh) 一种多产对二甲苯的工艺系统和工艺方法
CN114716290B (zh) 由混合芳烃多产对二甲苯的工艺系统和工艺方法
US10676413B2 (en) Production and separation of dimethyl biphenyl isomers
US10676412B2 (en) Production and separation of dimethyl biphenyl isomers
JP5920703B2 (ja) パラ置換芳香族炭化水素製造用触媒及びその製造方法、並びにそれを用いたパラ置換芳香族炭化水素の製造方法
TW200535128A (en) Process for producing adamantane
JPH0466459B2 (ja)
JPH05246909A (ja) アルケニルベンゼン及びその誘導体の製造方法
WO2006068174A1 (ja) ジメチルナフタレン異性体の分離方法
JPH0466458B2 (ja)
KR20030046548A (ko) 디에틸벤젠 이성질체 혼합물로부터 1,2-디에틸벤젠을분리하는 방법
JP2009084227A (ja) ベンゼンの製造方法
JPH10182512A (ja) イソプロペニルベンゼン類の分離方法
JPH11292801A (ja) 高純度テトラ核置換アルキルベンゼンの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680015635.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007512942

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 2006731269

Country of ref document: EP

Ref document number: 1020077025708

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2006731269

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11910774

Country of ref document: US