WO2006068174A1 - ジメチルナフタレン異性体の分離方法 - Google Patents

ジメチルナフタレン異性体の分離方法 Download PDF

Info

Publication number
WO2006068174A1
WO2006068174A1 PCT/JP2005/023482 JP2005023482W WO2006068174A1 WO 2006068174 A1 WO2006068174 A1 WO 2006068174A1 JP 2005023482 W JP2005023482 W JP 2005023482W WO 2006068174 A1 WO2006068174 A1 WO 2006068174A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimethylnaphthalene
isomer
dmn
adsorption layer
isomers
Prior art date
Application number
PCT/JP2005/023482
Other languages
English (en)
French (fr)
Inventor
Shinichi Nagao
Hiroshi Ogawa
Original Assignee
Mitsubishi Gas Chemical Company, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Company, Inc. filed Critical Mitsubishi Gas Chemical Company, Inc.
Priority to US11/722,605 priority Critical patent/US7576253B2/en
Publication of WO2006068174A1 publication Critical patent/WO2006068174A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/12Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers
    • C07C7/13Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers by molecular-sieve technique
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/20Polycyclic condensed hydrocarbons
    • C07C15/24Polycyclic condensed hydrocarbons containing two rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/14Purification; Separation; Use of additives by crystallisation; Purification or separation of the crystals

Definitions

  • the present invention relates to a method for efficiently separating a specific isomer from a feedstock containing a dimethylnaphthalene isomer mixture.
  • Naphthalenedicarboxylic acid obtained by acidifying each isomer of dimethylnaphthalene, or dimethyl naphthalenedicarboxylate obtained by esterifying the dicarboxylic acid is a high-performance polyester excellent in heat resistance and physical strength. It is extremely useful as a raw material.
  • DN dimethylnaphthalene
  • ⁇ -form isomers (1, 4-DMN, 1, 5-DMN, 1 , 8—DMN)
  • a j8 isomers (1, 2 -DMN, 1, 3 -DMN, 1, 6 -DMN, 1, 7—DMN)
  • ⁇ j8 isomers (2, 3 -DMN) , 2, 6 -DMN, 2, 7—DMN).
  • organic compounds are purified by operations such as distillation, crystallization, adsorption, or a combination of these methods.
  • DMN obtained by these methods with insufficient selectivity of DMN isomers contains a plurality of isomers.
  • the resin obtained from dimethyl carbonate naphthalenedicarboxylate obtained by acid-Z esterification of such a DMN isomer mixture has no physical and mechanical properties such as heat resistance, mechanical strength and dimensional stability. Because it is enough, such as polyester It cannot be used as a raw material.
  • Patent Document 1 Japanese Patent Laid-Open No. 62-240632
  • Patent Document 2 Japanese Patent No. 3157253
  • Patent Document 3 JP-A-6-65114
  • Patent Document 4 Japanese Patent No. 2641201
  • the object of the present invention is to solve the above-mentioned problems and to stably separate ⁇ ⁇ 8 type isomers such as 1,3-DMN from a DMN isomer mixture with high purity, high yield, and stability. It is to provide an inexpensive and simple industrial method.
  • the present invention relates to an adsorbent layer comprising a mordenite type zeolite and a raw material oil containing a mixture of dimethylnaphthalene isomers comprising a ⁇ isomer, a j8 isomer and j8 j8 isomer.
  • a solution with a developing solvent is passed through A, and the liquid that has passed through adsorption layer A is passed through adsorption layer B made of Y-type zeolite, and then the desorption solvent is passed through adsorption layer B.
  • a method for separating dimethylnaphthalene isomers characterized in that ⁇ - ⁇ isomers of dimethylnaphthalene are separated from the isomers.
  • a raw material oil containing a dimethylnaphthalene isomer mixture containing at least a ⁇ 13 type isomer is passed through an adsorption layer made of mordenite type zeolite together with a developing solvent, and thereafter
  • a method for separating dimethylnaphthalene isomers is provided, which comprises passing a desorption solvent through adsorption layer A and separating ⁇ - ⁇ isomers of dimethylnaphthalene from the resulting desorption solution.
  • the feedstock oil used in the present invention contains a dimethylnaphthalene (DMN) isomer mixture.
  • the DMN isomer mixture consists of at ⁇ isomer (1, 4 DMN, 1, 5-DMN, 1, 8—DM N), a j8 isomer (1, 2-DMN, 1, 3-DMN, 1 , 6-DMN, 1,7-DMN) and j8 j8 type isomers (2,3-DMN, 2,6-DMN, 2,7-DMN).
  • the feedstock contains components other than the DMN isomer mixture. However, the content of the DMN isomer mixture in the feedstock is 10% by weight or more (including 100% by weight). preferable.
  • Components other than the DMN isomer mixture include hydrocarbons such as methyl naphthalene, ethyl naphthalene, biphenyl, alkane, cycloalkane, alkene, cycloalkene, etc., but they do not inhibit the adsorption separation operation described below. As long as it contains any compound, The mixing ratio of each DMN isomer is not particularly limited.
  • the method for producing the feedstock oil containing the DMN isomer mixture is not limited. For example, it can be obtained by isomerizing dimethylnaphthalene with a solid acid catalyst or the like, or by methylation of naphthalene or disproportionation of methylnaphthalene. .
  • Examples of the developing solvent suitably used in the present invention include linear or branched aliphatic hydrocarbons and alicyclic hydrocarbons, and those having 6 to 14 carbon atoms are preferable.
  • Examples include n-hexane, n-heptane, n-octane, isooctane, n-nonane, n-decane, n-undecane, n-dodecane, cyclohexane, decalin, methylcyclohexane and the like. These may be used alone or in combination.
  • an aromatic hydrocarbon particularly from the viewpoint of elimination performance, for example, benzene, toluene, o-xylene, p-xylene, m- Examples include xylene, ethylbenzene, and jetylbenzene.
  • Y-type zeolite has a structure similar to natural faujasite, Na 0 -A1 O ⁇ 3-6
  • Mordenite type zeolite has a composition of Na 0 -A1 0 -5 to 200 SiO ⁇ ⁇ ⁇
  • the ⁇ Mordenite, Na mordenite, and Na mordenite are one or more kinds of gold selected from alkali metals such as potassium, lithium, rubidium and cesium and alkaline earth metals such as barium, calcium, magnesium, strontium and lanthanum. Mordenite ion-exchanged with a genus ion can be particularly preferably used.
  • the mordenite type zeolite may be used as it is or after pretreatment such as steam treatment, alkali treatment, acid treatment, ion exchange and the like.
  • a raw material oil containing a DMN isomer mixture is passed through an adsorption layer A made of mordenite type zeolite together with a developing solvent.
  • a developing solvent may be separately added to the separation device and allowed to pass through the adsorption layer A at the same time, or the developing solvent may be added to the raw material oil and then passed through the adsorption layer A. Good.
  • the amount of the developing solvent is preferably 1 to 200 times by weight, more preferably 5 to 150 times by weight, and even more preferably 10 to L00 by weight with respect to the amount of DMN isomer mixture in the raw material oil.
  • the amount of liquid passing through the adsorption layer A is preferably in the range of 0.1 to LOh 1 as the total supply amount (LHSV) of the raw material oil and the developing solvent per unit volume of the adsorption layer A.
  • the temperature of the adsorption layer A when the raw material oil and the developing solvent are passed is preferably in the range of 10 to 200 ° C, more preferably 20 to 150 ° C.
  • the total amount of DMN isomer mixture passing through the adsorption layer A is preferably 0.01 to 2 parts by weight with respect to 1 part by weight of the adsorption layer A.
  • the liquid that has passed through the adsorption layer A is passed through the adsorption layer B made of Y-type zeolite.
  • the a j8 type isomer contained in the passing liquid is selectively adsorbed and developed.
  • the flow rate of the flow-through liquid is preferably in the range of 0.1 to LOh 1 as the flow-through supply amount (LHSV) per unit volume of the adsorption layer B.
  • the temperature of the adsorption layer B during passage of the passing liquid is preferably in the range of 10 to 200 ° C, more preferably 20 to 150 ° C.
  • the total amount of the DMN isomer mixture passing through the adsorption layer B is preferably 0.01 to 2 parts by weight with respect to 1 part by weight of the adsorption layer B.
  • the desorption solvent is passed through the adsorption layer B to desorb the aj8 type isomer.
  • Adsorption layer B force
  • the outflowing desorption solution mainly consists of oc
  • the amount of the desorption solvent used is preferably 1 to 200 times the amount of the DMN isomer mixture in the feedstock used for the adsorption development.
  • the amount of the desorption solvent to be passed is preferably in the range of 0.05 to 20 h 1 as the supply amount (LHSV) of the desorption solvent per unit volume of the adsorption layer.
  • the temperature of the adsorption layer B when the desorbing solvent is passed is preferably 10 to 200 ° C, more preferably 20 to 150 ° C.
  • 8 type isomer can be desorbed by passing the desorption solvent through the adsorption layer A after the adsorption development.
  • the desorption solution that has flowed out of the adsorbent layer consists mainly of ⁇
  • the amount of the desorbing solvent is preferably 1 to 200 times by weight with respect to the amount of DMN isomer mixture in the feedstock used for adsorption development.
  • the passing amount of the desorption solvent is preferably in the range of 0.05 to 20 h 1 as the supply amount (LHSV) of the desorption solvent per unit volume of the adsorption layer.
  • the temperature of the adsorption layer A when the solvent is passed through is preferably 10 to 200 ° C, more preferably 20 to 150 ° C.
  • the adsorptive separation operation in the adsorbing layers A and Z or the adsorbing layer B described above can be carried out by various methods such as a fixed bed, a fluidized bed, and a moving bed. It is preferable to use the simulated moving bed system (see, for example, JP-A-8-217700).
  • the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
  • the raw material oil and recovered DMN were analyzed by gas chromatography.
  • Each DMN isomer (1,2-DMN, 1,3-DMN, 1,4-DMN, 1,5-DMN, 1,6-DMN, 1,7-D MN, 1,8-DMN, 2,3-DMN, 2,6-DMN, 2,7-DMN) were commercially available products (manufactured by Wako Pure Chemical Industries, Ltd.), and these were mixed and used.
  • a DMN isomer mixture (1, 3-DMN / 1, 4-DMN / 2, 3-DMN) having the composition shown in Table 1 was dissolved in heptane as a developing solvent as a feedstock oil, and 5 wt% A solution with a concentration of was prepared. Add this solution to the above-mentioned adsorption separation column, and pass through the Na mordenite layer (adsorption layer A) and HY-type zeolite layer (adsorption layer B) in the order of 2. Oh- 1 flow rate (LHSV). did. The total amount of DMN in the passed solution was 2. lg.
  • Adsorption development and desorption from the adsorption layer B were performed in the same manner as in Example 1 except that the developing solvent was o-xylene.
  • 1,3-DMN was 59.3% (recovery 84%), and the remainder was other DMN isomers, and the adsorption selectivity (separation efficiency) was extremely poor.
  • Adsorption development and desorption from the adsorption layer B were performed in the same manner as in Example 1 except that the desorption solvent was decane.
  • 1,3-DMN was 65.5% (recovery rate 7%), and the balance was other DMN isomers.
  • the adsorption selectivity (separation efficiency) was extremely poor.
  • Example 2 Same as Example 1 except that adsorbent layer A was not used and feedstock oil was passed through adsorbent layer B only. Adsorption development and desorption from adsorption layer B were performed. Among the obtained DMNs, 1,3-DMN was 75.2% (recovery rate 76%) and the others were essentially 1,4 DMN, and the adsorption selectivity (separation efficiency) was extremely poor.
  • Adsorption development and desorption from the adsorption layer A were carried out in the same manner as in Example 1 except that a commercially available sodium Y-type zeolite (manufactured by Wako Pure Chemical Industries, Ltd.) was used as the adsorbent for the adsorption layer A.
  • a commercially available sodium Y-type zeolite manufactured by Wako Pure Chemical Industries, Ltd.
  • 2,3-DMN was 26.9% (recovery 61%), and the others were essentially 1,3-DMN, and the adsorption selectivity (separation efficiency) was extremely poor.
  • Adsorption development and adsorption layer A force desorption were performed in the same manner as in Example 1 except that commercially available 13X zeolite (manufactured by Wako Pure Chemical Industries, Ltd.) was used as the adsorbent for adsorption layer A.
  • 13X zeolite manufactured by Wako Pure Chemical Industries, Ltd.
  • the others were essentially 1,3—DMN and 1,4—DMN, and the adsorption selectivity (separation efficiency) was extremely high. It was bad.
  • Adsorption development and desorption from the adsorption layer A were carried out in the same manner as in Example 1 except that a commercially available potassium L-type zeolite (manufactured by Wako Pure Chemical Industries, Ltd.) was used as the adsorbent for the adsorption layer A.
  • a commercially available potassium L-type zeolite manufactured by Wako Pure Chemical Industries, Ltd.
  • 2,3-DMN was 19.6% (recovery 4%), and the remainder was other DMN isomers. Both recovery and adsorption selectivity (separation efficiency) were extremely poor. I helped.
  • Example 2 The same operation as in Example 1 was performed except that a mixture of 1,7-DMN / 2, 7-DMN / 1,8-DMN (see Table 2) was used as the feedstock.
  • 1,7-DMN having a purity of 89.4% was obtained at a recovery rate of 56%.
  • 2,7-DMN with a purity of 90.4% was obtained with a recovery rate of 57%.
  • Example 6 The same operation as in Example 1 was performed except that a mixture of 1,5-DMN / l, 6-DMN / 2,6-DMN (see Table 3) was used as the feedstock.
  • 1,6-DMN having a purity of 90.1% was obtained with a recovery rate of 68%.
  • 2,6-DMN having a purity of 92.0% was obtained with a recovery rate of 65%.
  • Example 2 The same operation as in Example 1 was performed except that a mixture of 1,2-DMN / l, 4-DMN / 2,3-DMN (see Table 4) was used as the feedstock.
  • 1,2-DMN having a purity of 90.1% was obtained with a recovery rate of 68%.
  • 2,3-DMN with a purity of 93.8% was obtained with a recovery rate of 61%.
  • the oc ⁇ -type isomer can be separated with high selectivity from a dimethylnaphthalene isomer mixture comprising a ⁇ -type isomer, a j8-type isomer and j8 j8-type isomer.
  • a j8 j8 type isomer can be separated with high selectivity from a dimethylnaphthalene isomer mixture containing at least a ⁇ type isomer.
  • a specific dimethylnaphthalene isomer can be separated efficiently and with high purity from a dimethylnaphthalene mixture by a simple apparatus and operation, and the industrial significance is extremely large.
  • DMN isomer Classification Composition (wt%), 6-DMN ⁇ isomer 5 3.7, 5-DMN isomer 2 6.6, 6-DMN isomer 1 9. 7]
  • DMN isomer Classification Composition 2-DMN a ⁇ isomer 5 4.2, 4-DMN a a isomer 2 1.3, 3-DMN ⁇ ⁇ isomer 2 4.5

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Water Supply & Treatment (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 吸着剤としてモルデナイトタイプゼオライトとY型ゼオライトを使用することにより、ジメチルナフタレン異性体混合物を効率的に分離することができる。αα型異性体、αβ型異性体およびββ型異性体からなるジメチルナフタレン異性体混合物を含有する原料油を、モルデナイトタイプゼオライトからなる吸着層Aに展開溶媒とともに通液する。次いで、吸着層Aから流出する液をY型ゼオライトからなる吸着層Bに通液する。吸着層Bに脱離溶媒を通液し、得られた脱離溶液から溶媒を除くことによりジメチルナフタレンのαβ型異性体が得られる。同様にして、吸着層Aからジメチルナフタレンのββ型異性体が得られる。                                                                         

Description

明 細 書
ジメチルナフタレン異性体の分離方法
技術分野
[0001] 本発明は、ジメチルナフタレン異性体混合物を含む原料油から特定の異性体を効 率よく分離するための方法に関する。このジメチルナフタレンの各異性体を酸ィ匕して 得られるナフタレンジカルボン酸、ある 、は該ジカルボン酸をエステル化して得られる ナフタレンジカルボン酸ジメチルは耐熱性や物理的強度に優れた高性能ポリエステ ルの原料として極めて有用である。
背景技術
[0002] ジメチルナフタレン(DMN)には 10種類の異性体が存在し、 2つのメチル基のナフ タレン環上の位置から、 α型異性体(1, 4— DMN、 1, 5 -DMN, 1, 8— DMN) 、 a j8型異性体(1, 2 -DMN, 1, 3 -DMN, 1, 6 -DMN, 1 , 7— DMN)および β j8型異'性体(2, 3 -DMN, 2, 6 -DMN, 2, 7— DMN)に分類される。一般に、 有機化合物の精製は、蒸留、晶析、吸着等の操作により、あるいはそれらの方法の 組み合わせにより行われる。しかしながら、これら DMN異性体の融点差ならびに沸 点差が非常に小さいため、蒸留ゃ晶析などの容易な精製方法を用いることは困難で ある。従来 DMN混合物の分離法としては、晶析、吸着剤により分離する方法等が知 られている。ゼォライトを吸着剤として用いて DMN異性体混合物から、特に 1, 4-D MNを分離する方法 (特許文献 1参照)や、吸着展開補助溶剤、脱着剤および Y型ゼ オライトを用いた 2, 6— DMNの選択的分離方法 (特許文献 2参照)や、吸着剤として カチオンでイオン交換された Y型ゼオライトを使用し、脱着剤および溶媒として m—キ シレンを使用する、 2, 6— DMNを含む原料油から 2, 6— DMNを高純度で分離す る方法 (特許文献 3、 4参照)等が知られている。
[0003] し力しながら、これらの方法では DMN異性体の選択率が充分ではなぐ得られた D MNは複数の異性体を含む。そのような DMN異性体混合物を酸ィ匕 Zエステルイ匕し て得られるナフタレンジカルボン酸ジメチルカゝら得られる榭脂は耐熱性、機械的強度 、寸法安定性等の物理的特性や機械的特性が不十分であるため、ポリエステル等の 原料として用いることができない。特に、 a α型異性体、 a j8型異性体および j8 j8型 異性体を含む DMN混合物から a j8型異性体を分離する方法、例えば、 1 , 3— DM N、 1 , 4— DMNおよび 2, 3— DMNの混合物から 1 , 3— DMNを分離する方法は 未だ確立されて!、な!、。このため高純度の DMNが得られる工業的に有利な分離方 法にっ 、て長期にわたつて研究が続けられて 、る。
特許文献 1:特開昭 62— 240632号公報
特許文献 2 :特許第 3157253号公報
特許文献 3:特開平 6 - 65114号公報
特許文献 4:特許第 2641201号公報
発明の開示
[0004] 本発明の目的は、上記課題を解決し、 DMN異性体混合物から、 1 , 3— DMN等 の α ι8型異性体を高純度、高収率、かつ安定に分離することができる、安価で簡便 な工業的方法を提供することにある。
[0005] 本発明者等は、上記課題を解決するために鋭意検討を重ねた結果、 DMN異性体 混合物を含有する原料油をモルデナイトタイプゼォライトに接触させ、次いで、 Υ型ゼ オライトに接触させることにより α ι8型異性体および ι8 )8型異性体が高純度で分離 できることを見出し、本発明に到達した。
[0006] 即ち、本発明は、 a α型異性体、 a j8型異性体および j8 j8型異性体からなるジメ チルナフタレン異性体混合物を含有する原料油を、モルデナイトタイプゼォライトから なる吸着層 Aに展開溶媒と共に通液し、吸着層 Aを通過した液を Y型ゼオライトから なる吸着層 Bに通液し、次いで、吸着層 Bに脱離溶媒を通液し、得られた脱離溶液か らジメチルナフタレンの α β型異性体を分離することを特徴とするジメチルナフタレン 異性体の分離方法を提供する。
[0007] さらに本発明は、少なくとも β 13型異性体を含むジメチルナフタレン異性体混合物 を含有する原料油を、モルデナイトタイプゼォライトからなる吸着層 Αに展開溶媒とと もに通液し、その後、吸着層 Aに脱離溶媒を通液し、得られた脱離溶液からジメチル ナフタレンの β β型異性体を分離することを特徴とするジメチルナフタレン異性体の 分離方法を提供する。 発明を実施するための最良の形態
[0008] 本発明で使用する原料油はジメチルナフタレン (DMN)異性体混合物を含有する 。 DMN異性体混合物は、 at α型異性体(1 , 4 DMN、 1 , 5 - DMN, 1 , 8— DM N)、 a j8型異性体(1 , 2 - DMN, 1 , 3 - DMN, 1 , 6— DMN、 1 , 7— DMN)お よび j8 j8型異性体(2, 3 - DMN, 2, 6 - DMN, 2, 7— DMN)から選ばれる DMN 異性体の混合物である。原料油には DMN異性体混合物以外の成分が含まれて 、 ても! 、が、原料油中の DMN異性体混合物の含有割合は 10重量%以上(100重 量%を含む)であるのが好ましい。 DMN異性体混合物以外の成分としては、メチル ナフタレン、ェチルナフタレン、ビフエ-ル、アルカン、シクロアルカン、アルケン、シク ロアルケン等の炭化水素が挙げられるが、以下に記載する吸着分離操作を阻害しな い限りどのような化合物を含んで 、てもよ 、。各 DMN異性体の混合比は特に限定さ れない。 DMN異性体混合物を含有する原料油の製造方法は限定されず、例えば、 ジメチルナフタレンを固体酸触媒等で異性ィ匕すること、あるいは、ナフタレンのメチル 化ゃメチルナフタレンの不均化等により得られる。
[0009] 本発明で好適に用いられる展開溶媒としては、直鎖または分岐脂肪族炭化水素お よび脂環式炭化水素が挙げられ、その炭素数が 6〜 14であるものが好ましい。例え ば n-へキサン、 n-ヘプタン、 n-オクタン、イソオクタン、 n-ノナン、 n-デカン、 n-ゥン デカン、 n-ドデカン、シクロへキサン、デカリン、メチルシクロへキサン等が挙げられる 。これらは単独でも、混合してもよい。
[0010] 本発明で好適に用いられる脱離溶媒としては、特に脱離性能の観点から、芳香族 炭化水素を使用することが好ましぐ例えばベンゼン、トルエン、 o キシレン、 p キ シレン、 m—キシレン、ェチルベンゼン、ジェチルベンゼン等が挙げられる。
[0011] Y型ゼオライトは、天然のフォージャサイトと類似の構造を有し、 Na 0 -A1 O · 3〜6
2 2 3
SiO · χΗ Οの組成を有する。 ΗΥ型ゼオライト、 NaY型ゼオライト、および NaY型ゼ
2 2
オライトをカリウム、リチウム、ルビジウム、セシウム等のアルカリ金属およびバリウム、 カルシウム、マグネシウム、ストロンチウム、ランタン等のアルカリ土類金属力 選ばれ た一種または二種以上の金属のイオンでイオン交換した Y型ゼオライトを特に好適に 用いることができる。 Y型ゼオライトは、そのまま用いてもよぐまたスチーム処理、アル カリ処理、酸処理、イオン交換等の前処理を行って用いても良い。
[0012] モルデナイトタイプゼォライトは、 Na 0 -A1 0 - 5〜200SiO · χΗ Οの組成を有す
2 2 3 2 2
る。 Ηモルデナイト、 Naモルデナイト、および Naモルデナイトを、カリウム、リチウム、 ルビジウム、セシウム等のアルカリ金属およびバリウム、カルシウム、マグネシウム、ス トロンチウム、ランタン等のアルカリ土類金属から選ばれた一種または二種以上の金 属のイオンでイオン交換したモルデナイトを特に好適に用いることができる。モルデ ナイトタイプゼォライトは、そのまま用いてもよぐまたスチーム処理、アルカリ処理、酸 処理、イオン交換等の前処理を行って用いても良い。
[0013] 本発明では、まず、 DMN異性体混合物を含有する原料油を、モルデナイトタイプ ゼォライトからなる吸着層 Aに展開溶媒とともに通液する。これにより、原料油中の j8 ι8型異性体が選択的に吸着展開される。この際、原料油と展開溶媒を分離装置に 別々に加えて吸着層 Aに同時に通液させてもよぐまた、予め原料油に展開溶媒を 添加してから吸着層 Aに通液させてもよい。前記展開溶媒量は、原料油中の DMN 異性体混合物量に対して好ましくは 1〜200重量倍、より好ましくは 5〜150重量倍、 さらに好ましくは 10〜: L00重量倍である。吸着層 Aへの通液量は、吸着層 A単位容 積当たりの原料油と展開溶媒の合計の供給量 (LHSV)として 0. 1〜: LOh 1の範囲で あることが好ましい。原料油と展開溶媒通液時の吸着層 Aの温度は、好ましくは 10〜 200°C、より好ましくは 20〜150°Cの範囲である。吸着層 Aに通液する DMN異性体 混合物の総量は、 1重量部の吸着層 Aに対して 0. 01〜2重量部であるのが好ましい
[0014] 次に、吸着層 Aを通過した液を Y型ゼオライトからなる吸着層 Bに通液する。これに より、通過液に含まれる a j8型異性体が選択的に吸着展開される。通過液の通液量 は、吸着層 B単位容積当たりの通過液の供給量 (LHSV)として 0. 1〜: LOh 1の範囲 であることが好ましい。通過液通液時の吸着層 Bの温度は、好ましくは 10〜200°C、 より好ましくは 20〜150°Cの範囲である。吸着層 Bに通液する DMN異性体混合物 の総量は、 1重量部の吸着層 Bに対して 0. 01〜2重量部であるのが好ましい。
[0015] 次いで、吸着層 Bに前記脱離溶媒を通液し、 a j8型異性体を脱離する。吸着層 B 力 流出した脱離溶液は、主として、 oc |8型異性体と脱離溶媒からなり、蒸留等によ り α ι8型異性体を分離することができる。脱離溶媒の使用量は、吸着展開に使用し た原料油中の DMN異性体混合物量に対して 1〜200重量倍であることが好ま 、。 また、脱離溶媒の通液量は、吸着層 Β単位容積当たりの脱離溶媒の供給量 (LHSV )として 0. 05〜20h 1の範囲であることが好ましい。脱離溶媒通液時の吸着層 Bの温 度は、好ましくは 10〜200°C、より好ましくは 20〜150°Cの範囲である。
[0016] 一方、吸着展開後の吸着層 Aに前記脱離溶媒を通液することで、 β |8型異性体を 脱離することができる。吸着層 Αから流出した脱離溶液は、主として、 β |8型異性体 と脱離溶媒からなり、蒸留等により β |8型異性体を分離することができる。脱離溶媒 の使用量は、吸着展開に使用した原料油中の DMN異性体混合物量に対して 1〜2 00重量倍であることが好ましい。脱離溶媒の通液量は、吸着層 Α単位容積当たりの 脱離溶媒の供給量 (LHSV)として 0. 05〜20h 1の範囲であることが好ましい。脱離 溶媒通液時の吸着層 Aの温度は、好ましくは 10〜200°C、より好ましくは 20〜150 °Cの範囲である。
[0017] 上述した吸着層 Aおよび Zまたは吸着層 Bにおける吸着分離操作は、固定床、流 動床、移動床など種々の方式にて実施可能である力 工業的には、既に確立された 技術である擬似移動床方式 (例えば、特開平 8— 217700号公報参照)にて実施す ることが好ましい。
実施例
[0018] 次に実施例により本発明を更に具体的に説明する。但し、本発明はこれらの実施 例により限定されるものではない。尚、以下の実施例および比較例において、原料油 および回収 DMNは、ガスクロマトグラフィーにより分析した。また、各 DMN異性体(1 , 2— DMN、 1, 3 -DMN, 1, 4 -DMN, 1, 5 -DMN, 1, 6 -DMN, 1, 7— D MN、 1, 8 -DMN, 2, 3— DMN、 2, 6— DMN、 2, 7— DMN)は、市販品(和光 純薬製)を使用し、これらを混合して用いた。
[0019] 実施例 1
市販の Naモルデナイト (和光純薬製)および HY型ゼオライト (和光純薬製)をそれ ぞれ内容積 25mlのガラス製チューブ型カラム(8mm φ X 500mm)に充填して吸着 層 Aと吸着層 Bを含むカラムを作製した。 2つのカラムを直列につないで吸着分離力 ラムにし、これを外部力 加熱して各吸着層の温度を 40°Cに保持した。 次に、原料油として、第 1表に示す組成の DMN異性体混合物(1, 3-DMN/1, 4-DMN/2, 3— DMN)を、展開溶媒であるヘプタンに溶解して 5wt%の濃度の 溶液を調製した。この溶液を上記吸着分離カラムに加え、 Naモルデナイト層(吸着層 A)、 HY型ゼオライト層(吸着層 B)の順にそれぞれ 2. Oh— 1の通液量 (LHSV)で通 液して吸着展開した。通液した溶液中の DMN総量は 2. lgであった。
吸着操作後、脱離溶媒であるオルソキシレンを通液量 (LHSV) 1. Oh 1で吸着層 B に通液し、吸着層 B力も流出する溶液を回収した。回収した溶液から、オルソキシレ ンを蒸留分離した結果、純度 98. 5%の 1, 3— DMNが回収率 78%で得られた。 一方、吸着操作後の吸着層 Aに、脱離溶媒である o—キシレンを通液量 (LHSV) 1 . Oh 1で通液し、吸着層 Aから流出する溶液を回収した。回収した溶液から、 o—キシ レンを蒸留分離した結果、純度 96. 1%の 2, 3— DMNが回収率 73%で得られた。
[0020] 実施例 2
展開溶媒をデカンとした以外は実施例 1と同様に吸着展開および吸着層 Bからの 脱離を行った結果、純度 88. 6%の 1, 3— DMNが回収率 62%で得られた。
[0021] 実施例 3
脱離溶媒をトルエンとした以外は実施例 1と同様に吸着展開および吸着層 Bからの 脱離を行った結果、純度 90. 5%の 1, 3— DMNが回収率 71%で得られた。
[0022] 比較例 1
展開溶媒を o—キシレンとした以外は実施例 1と同様に吸着展開および吸着層 Bか らの脱離を行った。得られた DMN中、 1, 3— DMNは 59. 3% (回収率 84%)、残部 は他の DMN異性体であり、吸着の選択性 (分離効率)は極めて悪かった。
[0023] 比較例 2
脱離溶媒をデカンとした以外は実施例 1と同様に吸着展開および吸着層 Bからの 脱離を行った。得られた DMN中、 1, 3— DMNは 65. 5% (回収率 7%)、残部は他 の DMN異性体であり、吸着の選択性 (分離効率)は極めて悪かった。
[0024] 比較例 3
吸着層 Aを使用せず、吸着層 Bのみに原料油を通液した以外は実施例 1と同様に 吸着展開および吸着層 Bからの脱離を行った。得られた DMN中、 1, 3— DMNは 7 5. 2% (回収率 76%)、他は実質 1, 4 DMNであり、吸着の選択性 (分離効率)は 極めて悪かった。
[0025] 比較例 4
吸着層 Aの吸着剤として、市販のナトリウム Y型ゼオライト (和光純薬製)を用いた以 外は実施例 1と同様に吸着展開および吸着層 Aからの脱離を行った。得られた DM N中、 2, 3— DMNは 26. 9% (回収率 61%)、他は実質 1, 3— DMNであり、吸着 の選択性 (分離効率)は極めて悪かった。
[0026] 比較例 5
吸着層 Aの吸着剤として、市販の 13Xゼォライト (和光純薬製)を用いた以外は実 施例 1と同様に吸着展開および吸着層 A力もの脱離を行った。得られた DMN中、 2 , 3— DMNは 22. 5% (回収率 54%)、他は実質 1, 3— DMNと 1, 4— DMNであり 、吸着の選択性 (分離効率)は極めて悪かった。
[0027] 比較例 6
吸着層 Aの吸着剤として、市販のカリウム L型ゼオライト (和光純薬製)を用いた以 外は実施例 1と同様に吸着展開および吸着層 Aからの脱離を行った。得られた DM N中、 2, 3— DMNは 19. 6% (回収率 4%)、残部は他の DMN異性体であり、回収 率および吸着の選択性 (分離効率)の双方が極めて悪力つた。
[0028] 実施例 4
原料油として、 1, 7-DMN/2, 7-DMN/1, 8— DMNの混合物(第 2表参照) を用いた以外は実施例 1と同様の操作を行った。吸着層 Bからの脱離により、純度 89 . 4%の 1, 7— DMNが回収率 56%で得られた。また、吸着層 Aからの脱離により、 純度 90. 4%の 2, 7— DMNが回収率 57%で得られた。
[0029] 実施例 5
原料油として、 1, 5-DMN/l, 6-DMN/2, 6— DMNの混合物(第 3表参照) を用いた以外は実施例 1と同様の操作を行った。吸着層 Bからの脱離により、純度 90 . 1%の 1, 6— DMNが回収率 68%で得られた。また、吸着層 Aからの脱離により、 純度 92. 0%の 2, 6— DMNが回収率 65%で得られた。 [0030] 実施例 6
原料油として、 1, 2-DMN/l, 4-DMN/2, 3— DMNの混合物(第 4表参照) を用いた以外は実施例 1と同様の操作を行った。吸着層 Bからの脱離により、純度 90 . 1%の 1, 2— DMNが回収率 68%で得られた。また、吸着層 Aからの脱離により、 純度 93.8%の 2, 3— DMNが回収率 61%で得られた。
産業上の利用可能性
[0031] 本発明によれば、 a α型異性体、 a j8型異性体および j8 j8型異性体からなるジメ チルナフタレン異性体混合物から oc β型異性体を選択性よく分離することができる。 また、少なくとも β β型異性体を含むジメチルナフタレン異性体混合物から j8 j8型異 性体を選択性よく分離することができる。本発明によれば簡便な装置、操作でジメチ ルナフタレン混合物から、特定のジメチルナフタレン異性体を効率よぐかつ高純度 で分離することができ、工業的意義が極めて大きい。
[0032] [表 1] 第 1表
DMN異性休 分類 組成 (重量%)
1 , 3 - DMN α β異性体 5 6 . 9
1, 4 DMN 異十生体 2 1 . 9
2, 3 - DMN β β異性体 2 1 . 2
[表 2] 笫 2表
DMN異性体 分類 組成
1 , 7 - DMN α β異性体 5 8 . 1
2 , 7 - DMN β β異性体 2 3. 3
1 , 8 - DMN a a異性休 1 8 . 6
[0034] [表 3] 第 3表
DMN異性体 分類 組成 (重量%) , 6 - DMN α 異性体 5 3. 7 , 5 - DMN 異性体 2 6 . 6 , 6 - DMN 異性体 1 9. 7 ]
第 4表
DMN異性体 分類 組成 , 2 - DMN a β異性体 5 4. 2 , 4 - DMN a a異性体 2 1 . 3 , 3 - DMN β β異性体 2 4. 5

Claims

請求の範囲
[1] a a型異性体、 α β型異性体および /3 型異性体力 なるジメチルナフタレン異性 体混合物を含有する原料油を、モルデナイトタイプゼォライトからなる吸着層 Αに展 開溶媒と共に通液し、吸着層 Aを通過した液を Y型ゼオライトからなる吸着層 Bに通 液し、次いで、吸着層 Bに脱離溶媒を通液し、得られた脱離溶液からジメチルナフタ レンの (X β型異性体を分離することを特徴とするジメチルナフタレン異性体の分離方 法。
[2] 原料油および展開溶媒通液後の吸着層 Αに脱離溶媒を通液し、得られた脱離溶液 力 ジメチルナフタレンの j8 β型異性体を分離する請求項 1に記載のジメチルナフタ レン異性体の分離方法。
[3] 展開溶媒が、直鎖脂肪族炭化水素、分岐脂肪族炭化水素および脂環式炭化水素 力 なる群より選ばれる少なくとも 1種の化合物である請求項 1または 2に記載のジメ チルナフタレン異性体の分離方法。
[4] 脱離溶媒が、芳香族炭化水素である請求項 1〜3のいずれかに記載のジメチルナフ タレン異性体の分離方法。
[5] 展開溶媒量が、原料油中のジメチルナフタレン異性体混合物量に対して 1〜200重 量倍である請求項 1〜4のいずれかに記載のジメチルナフタレン異性体の分離方法
[6] 原料油および展開溶媒の通液時の吸着層 Αの温度が、 10〜200°Cである請求項 1 〜5のいずれかに記載のジメチルナフタレン異性体の分離方法。
[7] 吸着層 Aを通過した液または脱離溶媒の通液時の吸着層 Bの温度が、 10〜200°C である請求項 1〜6のいずれかに記載のジメチルナフタレン異性体の分離方法。
[8] 少なくとも β β型異性体を含むジメチルナフタレン異性体混合物を含有する原料油 を、モルデナイトタイプゼォライトからなる吸着層 Αに展開溶媒とともに通液し、その後 、吸着層 Aに脱離溶媒を通液し、得られた脱離溶液力 ジメチルナフタレンの j8 j8型 異性体を分離することを特徴とするジメチルナフタレン異性体の分離方法。
[9] 展開溶媒が、直鎖脂肪族炭化水素、分岐脂肪族炭化水素および脂環式炭化水素 力 なる群より選ばれる少なくとも 1種の化合物である請求項 8に記載のジメチルナフ タレン異性体の分離方法。
[10] 脱離溶媒が、芳香族炭化水素である請求項 8または 9に記載のジメチルナフタレン異 性体の分離方法。
[11] 展開溶媒量が、原料油中のジメチルナフタレン異性体混合物量に対して 1〜200重 量倍である請求項 8〜: LOのいずれかに記載のジメチルナフタレン異性体の分離方 法。
[12] 原料油および展開溶媒の通液時の吸着層 Aの温度が、 10〜200°Cである請求項 8 〜: L 1の 、ずれかに記載のジメチルナフタレン異性体の分離方法。
[13] 前記吸着層 Aおよび Zまたは吸着層 Bにおける吸着分離操作を擬似移動床方式で 行うことを特徴とする請求項 1〜12のいずれかに記載のジメチルナフタレン異性体の 分離方法。
PCT/JP2005/023482 2004-12-24 2005-12-21 ジメチルナフタレン異性体の分離方法 WO2006068174A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/722,605 US7576253B2 (en) 2004-12-24 2005-12-21 Method of separating dimethylnaphthalene isomers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-373979 2004-12-24
JP2004373979 2004-12-24

Publications (1)

Publication Number Publication Date
WO2006068174A1 true WO2006068174A1 (ja) 2006-06-29

Family

ID=36601772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/023482 WO2006068174A1 (ja) 2004-12-24 2005-12-21 ジメチルナフタレン異性体の分離方法

Country Status (4)

Country Link
US (1) US7576253B2 (ja)
KR (1) KR20070089147A (ja)
CN (1) CN100584808C (ja)
WO (1) WO2006068174A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080024109A (ko) * 2005-04-06 2008-03-17 미츠비시 가스 가가쿠 가부시키가이샤 2,7-디메틸나프탈렌의 정제 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62240632A (ja) * 1986-04-11 1987-10-21 Mitsui Petrochem Ind Ltd ジメチルナフタレン異性体の分離方法
JPH05501545A (ja) * 1989-07-24 1993-03-25 コーク ケミカル カンパニー,ア ディビィジョン オブ コーク リファイニング カンパニー,エル.ピー. ジアルキル化多核芳香族化合物の選択的な収着

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2641201B2 (ja) 1986-12-11 1997-08-13 三菱化学株式会社 2,6―ジメチルナフタレンの分離方法
JP3157253B2 (ja) 1992-02-06 2001-04-16 株式会社ジャパンエナジー 2,6−ジメチルナフタレンの分離方法
JP3101844B2 (ja) 1992-08-21 2000-10-23 財団法人石油産業活性化センター 2,6−ジメチルナフタレンの分離方法
US6072098A (en) * 1996-03-15 2000-06-06 Mitsubishi Gas Chemical Company, Inc. Process for producing highly pure 2,6-dimethylnaphthalene

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62240632A (ja) * 1986-04-11 1987-10-21 Mitsui Petrochem Ind Ltd ジメチルナフタレン異性体の分離方法
JPH05501545A (ja) * 1989-07-24 1993-03-25 コーク ケミカル カンパニー,ア ディビィジョン オブ コーク リファイニング カンパニー,エル.ピー. ジアルキル化多核芳香族化合物の選択的な収着

Also Published As

Publication number Publication date
CN100584808C (zh) 2010-01-27
KR20070089147A (ko) 2007-08-30
US7576253B2 (en) 2009-08-18
CN101072741A (zh) 2007-11-14
US20080125615A1 (en) 2008-05-29

Similar Documents

Publication Publication Date Title
US3696107A (en) Improved hydrocarbon separation process
JP3496122B2 (ja) 模擬移動床吸着および結晶化を用いる、c8芳香族炭化水素中のパラキシレンの分離装置
US3114782A (en) Separation of tri-alkyl substituted aromatic hydrocarbon isomers
US4326092A (en) Process for the separation of meta-xylene
FI92926C (fi) Para-ksyleenin adsorptioerotus tetraliinidesorbentin avulla
US4306107A (en) Production of pure M-xylene and pure ethyl benzene from a mixture of C8 aromatic isomers
US4021499A (en) Process for separating ethylbenzene
US3133126A (en) Aromatic hydrocarbon separation
GB2199590A (en) Separating 2, 6-dimethylnaphthalene from isomeric mixtures
US4423279A (en) Separation of bi-alkyl substituted monocyclic aromatic isomers with pyrolyzed adsorbent
WO2006068174A1 (ja) ジメチルナフタレン異性体の分離方法
JP4918987B2 (ja) ジメチルナフタレン異性体の分離方法
US4743708A (en) Process for the separation of C10 aromatic isomers
US3772399A (en) Separation of 2,6-dimethylnaphthalene from 1,5-dimethylnaphthalene with molecular sieve
US3849508A (en) Process for producing para-diethylbenzene
EP0180425A2 (en) A process for separating ethylebenzene from xylenes by selective adsorption on a cesium-substituted x zeolite
JP3157253B2 (ja) 2,6−ジメチルナフタレンの分離方法
JPH08217700A (ja) パラキシレンの分離方法
US8124825B2 (en) Method of purifying 2,7-dimethylnaphthalene
JPH01199921A (ja) 2,6−ジイソプロピルナフタレンの吸着分離方法
EP1167328B1 (en) Process for separating mixtures of hydrocarbon isomers in gas phase on molecular sieves
JPS61130244A (ja) ゼオライト吸着剤を用いてその他のキシレン及びエチルベンゼンを含有する原料流からパラキシレンの分離を増進する方法
JPS6289636A (ja) パラキシレンとエチルベンゼンの分離回収方法
KR20030046548A (ko) 디에틸벤젠 이성질체 혼합물로부터 1,2-디에틸벤젠을분리하는 방법
JPH0374209B2 (ja)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077012738

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580042000.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11722605

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05820138

Country of ref document: EP

Kind code of ref document: A1

WWP Wipo information: published in national office

Ref document number: 11722605

Country of ref document: US