WO2006108674A2 - Elite event a2704-12 and methods and kits for identifying such event in biological samples - Google Patents
Elite event a2704-12 and methods and kits for identifying such event in biological samples Download PDFInfo
- Publication number
- WO2006108674A2 WO2006108674A2 PCT/EP2006/003454 EP2006003454W WO2006108674A2 WO 2006108674 A2 WO2006108674 A2 WO 2006108674A2 EP 2006003454 W EP2006003454 W EP 2006003454W WO 2006108674 A2 WO2006108674 A2 WO 2006108674A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nucleotide
- seq
- sequence
- nucleotide sequence
- complement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6888—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
- C12Q1/6895—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8274—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for herbicide resistance
- C12N15/8277—Phosphinotricin
Definitions
- This invention pertains to methods and kits for identifying in biological samples the presence of plant material comprising specifically transformation event A2704-12, as well as transgenic soybean plants, plant material and seeds containing such event.
- the soybean plants of the invention combine the herbicide tolerant phenotype with an agronomic performance, genetic stability and adaptability to different genetic backgrounds equivalent to the non-transformed soybean line in the absence of weed pressure.
- the phenotypic expression of a transgene in a plant is determined both by the structure of the gene itself and by its location in the plant genome. At the same time the presence of the transgene (in a foreign DNA) at different locations in the genome will influence the overall phenotype of the plant in different ways.
- the agronomically or industrially successful introduction of a commercially interesting trait in a plant by genetic manipulation can be a lengthy procedure dependent on different factors.
- the actual transformation and regeneration of genetically transformed plants are only the first in a series of selection steps, which include extensive genetic characterization, breeding, and evaluation in field trials, eventually leading to the selection of an elite event.
- A2704-12 was selected as an elite event in the development of soybean ⁇ Glycine max L.) resistant to the herbicide Liberty®, by transformation of soybean with a plasmid comprising the synthetic pat gene encoding tolerance to phosphinothricin and may be commercially sold as Liberty Link® soybean.
- the tools for use in simple and unequivocal methods for identification elite event A2704-12 in biological samples are described herein.
- the present invention relates to methods for identifying elite event A2704-12 in biological samples, which methods are based on primers or probes which specifically recognize the 5' and/or 3' flanking sequence of A2704-12.
- the invention relates to a method comprising of amplifying a sequence of a nucleic acid present in biological samples, using a polymerase chain reaction with at least two primers, one of which recognizes the 5' or 3' flanking region of A2704-12, the other which recognizes a sequence within the foreign DNA, preferably to obtain a DNA fragment of between 100 and 500 bp.
- the primers may recognize a sequence within the 5' flanking region of A2704-12 (SEQ ID No.
- the primer recognizing the 5 'flanking region may comprise the nucleotide sequence of SEQ ID No. 4 and the primer recognizing a sequence within the foreign DNA may comprise the nucleotide sequence of SEQ ID No. 8 described herein.
- the present invention more specifically relates to a method for identifying elite event A2704-12 in biological samples, which method comprises amplifying a sequence of a nucleic acid present in a biological sample, using a polymerase chain reaction with two primers having the nucleotide sequence of SEQ ID No. 4 and SEQ ID No. 8 respectively, to obtain a DNA fragment of about 185 bp.
- the present invention further relates to the specific flanking sequences of A2704-12 described herein, which can be used to develop specific identification methods for A2704-12 in biological samples. More particularly, the invention relates to the 5' and or 3' flanking regions of A2704-12 which can be used for the development of specific primers and probes as further described herein. The invention further relates to identification methods for the presence of A2704-12 in biological samples based on the use of such specific primers or probes.
- Primers may consist of a nucleotide sequence of 17 to about 200 consecutive nucleotides selected from the nucleotide sequence of SEQ ID No 1 from nucleotide 1 to nucleotide 209 or the complement of the nucleotide sequence of SEQ ID 2 from nucleotide 569 to nucleotide 1000) combined with primers consisting of a nucleotide sequence of 17 to about 200 consecutive nucleotides selected from the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 210 to nucleotide 720 or the nucleotide sequence of SEQ ID No 2 from nucleotide 1 to nucleotide 569. Primers may also comprise these nucleotide sequences located at their extreme 3' end, and further comprise unrelated sequences or sequences derived from the mentioned nucleotide sequences, but comprising mismatches.
- kits for identifying elite event A2704-12 in biological samples comprising at least one primer or probe which specifically recognizes the 5 ' or 3' flanking region of A2704-12.
- the kit of the invention may comprise, in addition to a primer which specifically recognizes the 5' or 3' flanking region of A2704-12, a second primer which specifically recognizes a sequence within the foreign DNA of A2704-12, for use in a PCR identification protocol.
- the kit of the invention comprises two specific primers, one of which recognizes a sequence within the 5' flanking region of A2704-12, and the other which recognizes a sequence within the foreign DNA.
- the primer recognizing the 5 'flanking region may comprises the nucleotide sequence of SEQ ID No. 4 and the primer recognizing the transgene may comprises the nucleotide sequence of SEQ ID No. 8 or any other primer as described herein.
- the invention further relates to a kit for identifying elite event A2704-12 in biological samples, said kit comprising the PCR primers having the nucleotide sequence of SEQ ID No. 4 and SEQ ID No. 8 for use in the A2704-12 PCR identification protocol described herein.
- the invention also relates to a kit for identifying elite event A2704-12 in biological samples, which kit comprises a specific probe having a sequence which corresponds (or is complementary to) a sequence having between 80% and 100% sequence identity with a specific region of A2704-12.
- the sequence of the probe corresponds to a specific region comprising part of the 5' or 3' flanking region of A2704-12.
- the specific probe has (or is complementary to) a sequence having between 80% and 100% sequence identity to the sequence between nucleotide 160 and 260 of
- SEQ ID No. 1 or the sequence between nucleotide 520 and 620 of SEQ ID No 2 .
- the methods and kits encompassed by the present invention can be used for different purposes such as, but not limited to the following: to identify the presence or absence of A2704-12 in plants, plant material or in products such as, but not limited to food or feed products (fresh or processed) comprising or derived from plant material; additionally or alternatively, the methods and kits of the present invention can be used to identify transgenic plant material for purposes of segregation between transgenic and non- transgenic material; additionally or alternatively, the methods and kits of the present invention can be used to determine the quality (i.e. percentage pure material) of plant material comprising A2704-12.
- the invention further relates to the 5' and/or 3' flanking regions of A2704-12 as well as to the specific primers and probes developed from the 5' and/or 3' flanking sequences of A2704-12.
- the invention also relates to soybean plants, parts thereof, cells, seeds and progeny plants comprising elite event A2704-12. Such plants, parts thereof, cells, seeds and progeny plants can be identified using the methods as herein described.
- incorporation of a recombinant DNA molecule in the plant genome typically results from transformation of a cell or tissue (or from another genetic manipulation).
- the particular site of incorporation is either due to "random" integration or is at a predetermined location (if a process of targeted integration is used).
- Plant DNA in the context of the present invention will refer to DNA originating from the plant which is transformed. Plant DNA will usually be found in the same genetic locus in the corresponding wild-type plant. The foreign DNA can be characterized by the location and the configuration at the site of incorporation of the recombinant DNA molecule in the plant genome. The site in the plant genome where a recombinant DNA has been inserted is also referred to as the "insertion site” or "target site”.
- Insertion of the recombinant DNA into the plant genome can be associated with a deletion of plant DNA, referred to as "target site deletion".
- a “flanking region” or “flanking sequence” as used herein refers to a sequence of at least 20 bp, preferably at least 50 bp, and up to 5000 bp of the plant genome which is located either immediately upstream of and contiguous with or immediately downstream of and contiguous with the foreign DNA. Transformation procedures leading to random integration of the foreign DNA will result in transformants with different flanking regions, which are characteristic and unique for each transformant.
- the recombinant DNA is introduced into a plant through traditional crossing, its insertion site in the plant genome, or its flanking regions will generally not be changed.
- an "insertion region” as used herein refers to the region corresponding to the region of at least 40 bp, preferably at least 100 bp, and up to 10000 bp, encompassed by the sequence which comprises the upstream and/or the downstream flanking region of a foreign DNA in the plant genome. Taking into consideration minor differences due to mutations within a species, an insertion region will retain, upon crossing into a plant of the same species, at least 85%, preferably 90%, more preferably 95%, and most preferably 100% sequence identity with the sequence comprising the upstream and downstream flanking regions of the foreign DNA in the plant originally obtained from transformation.
- An event is defined as a (artificial) genetic locus that, as a result of genetic engineering, carries a transgene comprising at least one copy of a gene of interest.
- the typical allelic states of an event are the presence or absence of the foreign DNA.
- An event is characterized phenotypically by the expression of the transgene.
- an event is part of the genetic makeup of a plant.
- an event can be characterized by the restriction map (e.g. as determined by Southern blotting), by the upstream and/or downstream flanking sequences of the transgene, the location of molecular markers and/or the molecular configuration of the transgene.
- transformation of a plant with a transforming DNA comprising at least one gene of interest leads to a multitude of events, each of which is unique.
- An elite event is an event which is selected from a group of events, obtained by transformation with the same transforming DNA or by back-crossing with plants obtained by such transformation, based on the expression and stability of the transgene(s) and its compatibility with optimal agronomic characteristics of the plant comprising it.
- the criteria for elite event selection are one or more, preferably two or more, advantageously all of the following: a) That the presence of the foreign DNA does not compromise other desired characteristics of the plant, such as those relating to agronomic performance or commercial value; b) That the event is characterized by a well defined molecular configuration which is stably inherited and for which appropriate tools for identity control can be developed; c) That the gene(s) of interest show(s) a correct, appropriate and stable spatial and temporal phenotypic expression, both in heterozygous (or hemizygous) and homozygous condition of the event, at a commercially acceptable level in a range of environmental conditions in which the plants carrying the event are likely to be exposed in normal agronomic use.
- the foreign DNA is associated with a position in the plant genome that allows easy introgression into desired commercial genetic backgrounds.
- the status of an event as an elite event is confirmed by introgression of the elite event in different relevant genetic backgrounds and observing compliance with one, two or all of the criteria e.g. a), b) and c) above.
- An “elite event” thus refers to a genetic locus comprising a foreign DNA, which answers to the above-described criteria.
- a plant, plant material or progeny such as seeds can comprise one or more elite events in its genome.
- the tools developed to identify an elite event or the plant, plant material comprising an elite event, or products which comprise plant material comprising the elite event are based on the specific genomic characteristics of the elite event, such as, a specific restriction map of the genomic region comprising the foreign DNA, molecular markers or the sequence of the flanking region(s) of the foreign DNA.
- primers and probes can be developed which specifically recognize this (these) sequence(s) in the nucleic acid (DNA or RNA) of a sample by way of a molecular biological technique.
- a PCR method can be developed to identify the elite event in biological samples (such as samples of plants, plant material or products comprising plant material).
- Such a PCR is based on at least two specific "primers" one recognizing a sequence within the 5' or 3' flanking region of the elite event and the other recognizing a sequence within the foreign DNA.
- the primers preferably have a sequence of between 15 and 35 nucleotides which under optimized PCR conditions "specifically recognize” a sequence within the 5' or 3' flanking region of the elite event and the foreign DNA of the elite event respectively, so that a specific fragment (“integration fragment” or discriminating amplicon) is amplified from a nucleic acid sample comprising the elite event. This means that only the targeted integration fragment, and no other sequence in the plant genome or foreign DNA, is amplified under optimized PCR conditions.
- PCR primers suitable for the invention may be the following: - oligonucleotides ranging in length from 17 nt to about 210 nt, comprising a nucleotide sequence of at least 17 consecutive nucleotides, preferably 20 consecutive nucleotides selected from the 5' flanking sequence (SEQ ID No 1 from nucleotide 1 to nucleotide 209) at their 3' end (primers recognizing 5' flanking sequences); or - oligonucleotides ranging in length from 17 nt to about 450 nt, comprising a nucleotide sequence of at least 17 consecutive nucleotides, preferably 20 consecutive nucleotides, selected from the 3' flanking sequence (complement of SEQ ID No 2 from nucleotide 569 to nucleotide 1000) at their 3' end (primers recognizing 3' flanking sequences); or - oligonucleotides ranging in length from 17 nt to about 510 nt, compris
- the primers may of course be longer than the mentioned 17 consecutive nucleotides, and may e.g. be 20, 21, 30, 35, 50, 75, 100, 150, 200 nt long or even longer.
- the primers may entirely consist of nucleotide sequence selected from the mentioned nucleotide sequences of flanking sequences and foreign DNA sequences.
- the nucleotide sequence of the primers at their 5' end i.e. outside of the 3'-located 17 consecutive nucleotides
- the 5' sequence of the primers may consist of a nucleotide sequence selected from the flanking sequences or foreign DNA, as appropriate, but may contain several (e.g. 1, 2, 5, 10 mismatches).
- the 5' sequence of the primers may even entirely consist of a nucleotide sequence unrelated to the flanking sequences or foreign DNA, such as e.g. a nucleotide sequence representing restriction enzyme recognition sites.
- a nucleotide sequence representing restriction enzyme recognition sites e.g. a nucleotide sequence representing restriction enzyme recognition sites.
- Such unrelated sequences or flanking DNA sequences with mismatches should preferably be not longer than 100, more preferably not longer than 50 or even 25 nucleotides.
- suitable primers may comprise or consist of a nucleotide sequence at their 3 ' end spanning the joining region between the plant DNA derived sequences and the foreign DNA sequences (located at nucleotides 209-210 in SEQ ID No 1 and nucleotides 568-569 in SEQ ID No 2) provided the mentioned 3'-located 17 consecutive nucleotides are not derived exclusively from either the foreign DNA or plant-derived sequences in SEQ ID No 1 or 2.
- PCR primers suitable for the invention may also be the following: - oligonucleotides ranging in length from 17 nt to about 210 nt, comprising a nucleotide sequence of at least 17 consecutive nucleotides, preferably 20 consecutive nucleotides selected SEQ ID No 1 from nucleotide 1 to nucleotide 215) at their 3' end; or
- oligonucleotides ranging in length from 17 nt to about 450 nt, comprising a nucleotide sequence of at least 17 consecutive nucleotides, preferably 20 consecutive nucleotides, selected from the complement of SEQ ID No 2 from nucleotide 554 to nucleotide 1000) at their 3' end; or
- oligonucleotides ranging in length from 17 nt to about 510 nt, comprising a nucleotide sequence of at least 17 consecutive nucleotides, preferably 20 nucleotides selected from the complement of SEQ ID No 1 from nucleotide 195 to nucleotide 720) at their 3' end or
- oligonucleotides ranging in length from 17 nt to about 570 nt, comprising a nucleotide sequence of at least 17 consecutive nucleotides, preferably 20 nucleotides selected from SEQ ID No 2 from nucleotide 1 to nucleotide 584)
- PCR primer pairs should also not comprise sequences complementary to each other.
- the "complement of a nucleotide sequence represented in SEQ ID No: X” is the nucleotide sequence which can be derived from the represented nucleotide sequence by replacing the nucleotides through their complementary nucleotide according to Chargaff s rules (AOT; GOC) and reading the sequence in the 5' to 3' direction, i.e in opposite direction of the represented nucleotide sequence.
- AOT Chargaff s rules
- Suitable primers are the oligonucleotide sequences of SEQ ID No 3, SEQ ID No 4, SEQ ID No 5 (5' flanking sequence recognizing primers) SEQ ID No 6, SEQ ID No 7, SEQ ID No 8, SEQ ID No 9, SEQ ID No 10, SEQ ID No 11 (foreign DNA recognizing primers for use with the 5' flanking sequence recognizing primers) SEQ ID No 12, SEQ ID No 13, SEQ ID No 14, SEQ ID No 15 (foreign DNA recognizing primers for use with the 3' flanking sequence recognizing primers) SEQ ID No 16, SEQ ID No 17, SEQ ID No 18 or SEQ ID No 19 (3' flanking sequence recognizing primers).
- oligonucleotide primers comprise at their 3 ' end the following sequences or consist of such sequences: a. 5' flanking sequence recognizing primers: the nucleotide sequence of SEQ ID No 1 from nucleotide 23 to nucleotide 42 - the nucleotide sequence of SEQ ID No 1 from nucleotide 68 to nucleotide 87
- nucleotide sequence of SEQ ID No 1 from nucleotide 69 to nucleotide 88 the nucleotide sequence of SEQ ID No 1 from nucleotide 134 to nucleotide 153 the nucleotide sequence of SEQ ID No 1 from nucleotide 22 to nucleotide 42 - the nucleotide sequence of SEQ ID No 1 from nucleotide 30 to nucleotide 49 the nucleotide sequence of SEQ ID No 1 from nucleotide 67 to nucleotide 87 the nucleotide sequence of SEQ ID No 1 from nucleotide 70 to nucleotide 87
- nucleotide sequence of SEQ ID No 1 from nucleotide 70 to nucleotide 88 the nucleotide sequence of SEQ ID No 1 from nucleotide 76 to nucleotide 95
- nucleotide sequence of SEQ ID No 1 from nucleotide 78 to nucleotide 97 the nucleotide sequence of SEQ ID No 1 from nucleotide 133 to nucleotide 152
- nucleotide sequence of SEQ ID No 1 from nucleotide 66 to nucleotide 87 the nucleotide sequence of SEQ ID No 1 from nucleotide 68 to nucleotide 88 - the nucleotide sequence of SEQ ID No 1 from nucleotide 73 to nucleotide 92
- nucleotide sequence of SEQ ID No 1 from nucleotide 75 to nucleotide 95 the nucleotide sequence of SEQ ID No 1 from nucleotide 77 to nucleotide 97 the nucleotide sequence of SEQ ID No 1 from nucleotide 77 to nucleotide 95
- nucleotide sequence of SEQ ID No 1 from nucleotide 31 to nucleotide 51 the nucleotide sequence of SEQ ID No 1 from nucleotide 33 to nucleotide 51 the nucleotide sequence of SEQ ID No 1 from nucleotide 30 to nucleotide 51
- nucleotide sequence of SEQ ID No 1 from nucleotide 34 to nucleotide 51 the nucleotide sequence of SEQ ID No 1 from nucleotide 205 to nucleotide 226 reign DNA sequence recognizing primers for use with 5' flanking sequence recognizing primers: the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 201 to nucleotide 220
- nucleotide sequence of SEQ ID No 1 from nucleotide 366 to nucleotide 385 - the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 201 to nucleotide 219
- nucleotide sequence of SEQ ID No 1 from nucleotide 220 to nucleotide 238 the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 221 to nucleotide 239
- nucleotide 359 the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 359 to nucleotide 378 - the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 361 to nucleotide 379
- nucleotide sequence of SEQ ID No 1 from nucleotide 366 to nucleotide 384 the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 368 to nucleotide 387 the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 496 to nucleotide 515
- nucleotide sequence of SEQ ID No 1 from nucleotide 656 to nucleotide 675 - the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 201 to nucleotide 218 the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 220 to nucleotide 237
- nucleotide sequence of SEQ ID No 1 from nucleotide 221 to nucleotide 238 the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 220 to nucleotide 240 the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 221 to nucleotide 240
- nucleotide sequence of SEQ ID No 1 from nucleotide 252 to nucleotide 271 the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 253 to nucleotide 272 - the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 359 to nucleotide 377 the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 361 to nucleotide 378 the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 358 to nucleotide 378 the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 359 to nucleotide 379
- nucleotide 394 the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 366 to nucleotide 386 the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 375 to nucleotide 393 - the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 375 to nucleotide 394
- nucleotide sequence of SEQ ID No 1 from nucleotide 496 to nucleotide 514 - the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 498 to nucleotide 515
- nucleotide 674 the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 655 to nucleotide 674 - the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 656 to nucleotide 674
- nucleotide sequence of SEQ ID No 1 from nucleotide 253 to nucleotide 271 - the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 251 to nucleotide 271
- nucleotide sequence of SEQ ID No 1 from nucleotide 359 to nucleotide 376 the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 358 to nucleotide 379 the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 362 to nucleotide 379 - the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 359 to nucleotide 380
- nucleotide 394 the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 368 to nucleotide 388 the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 375 to nucleotide 392 the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 376 to nucleotide 393 - the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 376 to nucleotide 394
- nucleotide sequence of SEQ ID No 1 from nucleotide 496 to nucleotide 513 - the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 556 to nucleotide 575 the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 558 to nucleotide 577 the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 561 to nucleotide 580
- nucleotide sequence of SEQ ID No 1 from nucleotide 563 to nucleotide 582 the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 562 to nucleotide 582 the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 608 to nucleotide 628 - the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 637 to nucleotide 656 the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 644 to nucleotide 663
- nucleotide sequence of SEQ ID No 1 from nucleotide 201 to nucleotide 222 the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 204 to nucleotide 225 - the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 223 to nucleotide 240
- nucleotide sequence of SEQ ID No 1 from nucleotide 221 to nucleotide 241 - the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 253 to nucleotide 270
- nucleotide sequence of SEQ ID No 1 from nucleotide 251 to nucleotide 272 - the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 252 to nucleotide 273 the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 253 to nucleotide 274
- nucleotide sequence of SEQ ID No 1 from nucleotide 268 to nucleotide 289 the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 377 to nucleotide 394
- nucleotide sequence of SEQ ID No 1 from nucleotide 375 to nucleotide 395 the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 440 to nucleotide 458 the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 442 to nucleotide 460 the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 440 to nucleotide 460
- nucleotide sequence of SEQ ID No 1 from nucleotide 492 to nucleotide 513 - the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 503 to nucleotide 522 the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 556 to nucleotide 574
- nucleotide sequence of SEQ ID No 1 from nucleotide 556 to nucleotide 576 the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 562 to nucleotide 579 the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 563 to nucleotide 581
- nucleotide sequence of SEQ ID No 1 from nucleotide 563 to nucleotide 583 - the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 562 to nucleotide 583
- nucleotide 651 - the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 651 to nucleotide 668 - the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 651 to nucleotide 672
- nucleotide 655 to nucleotide 676 the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 655 to nucleotide 677 the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 659 to nucleotide 680
- nucleotide sequence of SEQ ID No 1 from nucleotide 657 to nucleotide 688 the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 223 to nucleotide 242 the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 267 to nucleotide 288 the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 368 to nucleotide 389 the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 375 to nucleotide 396 the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 376 to nucleotide 397
- nucleotide 457 the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 442 to nucleotide 457 - the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 442 to nucleotide 459 the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 442 to nucleotide 463
- nucleotide sequence of SEQ ID No 1 from nucleotide 558 to nucleotide 575 the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 556 to nucleotide 577 - the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 563 to nucleotide 580
- nucleotide sequence of SEQ ID No 1 from nucleotide 645 to nucleotide 662 the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 644 to nucleotide 665 - the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 645 to nucleotide 666 the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 325 to nucleotide 342
- nucleotide sequence of SEQ ID No 1 from nucleotide 534 to nucleotide 554 - the complement of the nucleotide sequence of SEQ ID No 1 from nucleotide 221 to nucleotide 242
- nucleotide 974 the complement of the nucleotide sequence of SEQ ID No 2 from nucleotide 955 to nucleotide 973
- nucleotide 957 the complement of the nucleotide sequence of SEQ ID No 2 from nucleotide 955 to nucleotide 972 - the complement of the nucleotide sequence of SEQ ID No 2 from nucleotide 958 to nucleotide 975 the complement of the nucleotide sequence of SEQ ID No 2 from nucleotide 958 to nucleotide 977
- nucleotide 947 the complement of the nucleotide sequence of SEQ ID No 2 from nucleotide 947 to nucleotide 968 - the complement of the nucleotide sequence of SEQ ID No 2 from nucleotide 951 to nucleotide 968
- nucleotide 976 the complement of the nucleotide sequence of SEQ ID No 2 from nucleotide 951 to nucleotide 972 - the complement of the nucleotide sequence of SEQ ID No 2 from nucleotide 958 to nucleotide 976
- nucleotide sequence of SEQ ID No 2 from nucleotide 151 to nucleotide 170 the nucleotide sequence of SEQ ID No 2 from nucleotide 152 to nucleotide 171 the nucleotide sequence of SEQ ID No 2 from nucleotide 6 to nucleotide 25 - the nucleotide sequence of SEQ ID No 2 from nucleotide 148 to nucleotide 167 the nucleotide sequence of SEQ ID No 2 from nucleotide 151 to nucleotide 171
- nucleotide sequence of SEQ ID No 2 from nucleotide 152 to nucleotide 170
- nucleotide sequence of SEQ ID No 2 from nucleotide 153 to nucleotide 171
- nucleotide sequence of SEQ ID No 2 from nucleotide 5 to nucleotide 25
- nucleotide sequence of SEQ ID No 2 from nucleotide 7 to nucleotide 25
- nucleotide sequence of SEQ ID No 2 from nucleotide 67 to nucleotide 86 the nucleotide sequence of SEQ ID No 2 from nucleotide 89 to nucleotide 108
- nucleotide sequence of SEQ ID No 2 from nucleotide 134 to nucleotide 153
- nucleotide sequence of SEQ ID No 2 from nucleotide 147 to nucleotide 167 - the nucleotide sequence of SEQ ID No 2 from nucleotide 150 to nucleotide 171 the nucleotide sequence of SEQ ID No 2 from nucleotide 153 to nucleotide 170 the nucleotide sequence of SEQ ID No 2 from nucleotide 154 to nucleotide 171
- nucleotide sequence of SEQ ID No 2 from nucleotide 168 to nucleotide 187
- nucleotide sequence of SEQ ID No 2 from nucleotide 169 to nucleotide 187 - the nucleotide sequence of SEQ ID No 2 from nucleotide 171 to nucleotide 190
- nucleotide sequence of SEQ ID No 2 from nucleotide 197 to nucleotide 216
- nucleotide sequence of SEQ ID No 2 from nucleotide 63 to nucleotide 82
- nucleotide sequence of SEQ ID No 2 from nucleotide 66 to nucleotide 86
- nucleotide sequence of SEQ ID No 2 from nucleotide 90 to nucleotide 108
- nucleotide sequence of SEQ ID No 2 from nucleotide 93 to nucleotide 112
- nucleotide sequence of SEQ ID No 2 from nucleotide 94 to nucleotide 113
- nucleotide sequence of SEQ ID No 2 from nucleotide 101 to nucleotide 120
- nucleotide sequence of SEQ ID No 2 from nucleotide 134 to nucleotide 154 the nucleotide sequence of SEQ ID No 2 from nucleotide 146 to nucleotide 167 the nucleotide sequence of SEQ ID No 2 from nucleotide 150 to nucleotide 167 - the nucleotide sequence of SEQ ID No 2 from nucleotide 170 to nucleotide 190 the nucleotide sequence of SEQ ID No 2 from nucleotide 172 to nucleotide 190 the nucleotide sequence of SEQ ID No 2 from nucleotide 186 to nucleotide 205
- nucleotide sequence of SEQ ID No 2 from nucleotide 189 to nucleotide 208
- nucleotide sequence of SEQ ID No 2 from nucleotide 190 to nucleotide 209 - the nucleotide sequence of SEQ ID No 2 from nucleotide 191 to nucleotide 210
- nucleotide sequence of SEQ ID No 2 from nucleotide 195 to nucleotide 214
- nucleotide sequence of SEQ ID No 2 from nucleotide 196 to nucleotide 216
- nucleotide sequence of SEQ ID No 2 from nucleotide 196 to nucleotide 214
- nucleotide sequence of SEQ ID No 2 from nucleotide 198 to nucleotide 216
- nucleotide sequence of SEQ ID No 2 from nucleotide 199 to nucleotide 216
- nucleotide sequence of SEQ ID No 2 from nucleotide 208 to nucleotide 227
- nucleotide sequence of SEQ ID No 2 from nucleotide 234 to nucleotide 253
- nucleotide sequence of SEQ ID No 2 from nucleotide 235 to nucleotide 255
- nucleotide sequence of SEQ ID No 2 from nucleotide 279 to nucleotide 299
- nucleotide sequence of SEQ ID No 2 from nucleotide 281 to nucleotide 299
- nucleotide sequence of SEQ ID No 2 from nucleotide 285 to nucleotide 304
- nucleotide sequence of SEQ ID No 2 from nucleotide 296 to nucleotide 315
- nucleotide sequence of SEQ ID No 2 from nucleotide 396 to nucleotide 415 the nucleotide sequence of SEQ ID No 2 from nucleotide 64 to nucleotide 82
- nucleotide sequence of SEQ ID No 2 from nucleotide 65 to nucleotide 86
- nucleotide sequence of SEQ ID No 2 from nucleotide 67 to nucleotide 87 - the nucleotide sequence of SEQ ID No 2 from nucleotide 75 to nucleotide 92
- nucleotide sequence of SEQ ID No 2 from nucleotide 91 to nucleotide 108 the nucleotide sequence of SEQ ID No 2 from nucleotide 92 to nucleotide 1 12
- nucleotide sequence of SEQ ID No 2 from nucleotide 93 to nucleotide 1 13 the nucleotide sequence of SEQ ID No 2 from nucleotide 94 to nucleotide 1 12 - the nucleotide sequence of SEQ ID No 2 from nucleotide 95 to nucleotide 1 15 the nucleotide sequence of SEQ ID No 2 from nucleotide 95 to nucleotide 1 13 the nucleotide sequence of SEQ ID No 2 from nucleotide 97 to nucleotide 1 15
- nucleotide sequence of SEQ ID No 2 from nucleotide 100 to nucleotide 120
- nucleotide sequence of SEQ ID No 2 from nucleotide 132 to nucleotide 153 - the nucleotide sequence of SEQ ID No 2 from nucleotide 133 to nucleotide 154 the nucleotide sequence of SEQ ID No 2 from nucleotide 163 to nucleotide 182
- nucleotide sequence of SEQ ID No 2 from nucleotide 165 to nucleotide 184
- nucleotide sequence of SEQ ID No 2 from nucleotide 167 to nucleotide 187 the nucleotide sequence of SEQ ID No 2 from nucleotide 169 to nucleotide 190 - the nucleotide sequence of SEQ ID No 2 from nucleotide 173 to nucleotide 190 the nucleotide sequence of SEQ ID No 2 from nucleotide 187 to nucleotide 205
- nucleotide sequence of SEQ ID No 2 from nucleotide 189 to nucleotide 209
- nucleotide sequence of SEQ ID No 2 from nucleotide 190 to nucleotide 210
- nucleotide sequence of SEQ ID No 2 from nucleotide 190 to nucleotide 208 - the nucleotide sequence of SEQ ID No 2 from nucleotide 191 to nucleotide 209 the nucleotide sequence of SEQ ID No 2 from nucleotide 192 to nucleotide 210
- nucleotide sequence of SEQ ID No 2 from nucleotide 194 to nucleotide 214 the nucleotide sequence of SEQ ID No 2 from nucleotide 197 to nucleotide 214 the nucleotide sequence of SEQ ID No 2 from nucleotide 233 to nucleotide 253 - the nucleotide sequence of SEQ ID No 2 from nucleotide 234 to nucleotide 255
- nucleotide sequence of SEQ ID No 2 from nucleotide 235 to nucleotide 253
- nucleotide sequence of SEQ ID No 2 from nucleotide 282 to nucleotide 299 - the nucleotide sequence of SEQ ID No 2 from nucleotide 295 to nucleotide 315
- nucleotide sequence of SEQ ID No 2 from nucleotide 65 to nucleotide 82 - the nucleotide sequence of SEQ ID No 2 from nucleotide 66 to nucleotide 87
- nucleotide sequence of SEQ ID No 2 from nucleotide 75 to nucleotide 96 the nucleotide sequence of SEQ ID No 2 from nucleotide 91 to nucleotide 112 the nucleotide sequence of SEQ ID No 2 from nucleotide 92 to nucleotide 112
- nucleotide sequence of SEQ ID No 2 from nucleotide 94 to nucleotide 115 - the nucleotide sequence of SEQ ID No 2 from nucleotide 95 to nucleotide 112
- nucleotide sequence of SEQ ID No 2 from nucleotide 98 to nucleotide 115
- nucleotide sequence of SEQ ID No 2 from nucleotide 99 to nucleotide 120
- nucleotide sequence of SEQ ID No 2 from nucleotide 162 to nucleotide 182
- nucleotide sequence of SEQ ID No 2 from nucleotide 164 to nucleotide 182
- nucleotide sequence of SEQ ID No 2 from nucleotide 164 to nucleotide 184
- nucleotide sequence of SEQ ID No 2 from nucleotide 164 to nucleotide 184
- nucleotide sequence of SEQ ID No 2 from nucleotide 184 to nucleotide 205
- nucleotide sequence of SEQ ID No 2 from nucleotide 189 to nucleotide 210
- nucleotide sequence of SEQ ID No 2 from nucleotide 191 to nucleotide 208
- nucleotide sequence of SEQ ID No 2 from nucleotide 192 to nucleotide 209
- nucleotide sequence of SEQ ID No 2 from nucleotide 193 to nucleotide 214 - the nucleotide sequence of SEQ ID No 2 from nucleotide 205 to nucleotide 212
- nucleotide sequence of SEQ ID No 2 from nucleotide 232 to nucleotide 253
- nucleotide sequence of SEQ ID No 2 from nucleotide 287 to nucleotide 304
- nucleotide sequence of SEQ ID No 2 from nucleotide 294 to nucleotide 315
- nucleotide sequence of SEQ ID No 2 from nucleotide 298 to nucleotide 315
- nucleotide sequence of SEQ ID No 2 from nucleotide 161 to nucleotide 182 - the nucleotide sequence of SEQ ID No 2 from nucleotide 163 to nucleotide 184
- nucleotide sequence of SEQ ID No 2 from nucleotide 165 to nucleotide 182 the nucleotide sequence of SEQ ID No 2 from nucleotide 166 to nucleotide 187
- nucleotide sequence of SEQ ID No 2 from nucleotide 241 to nucleotide 261
- nucleotide sequence of SEQ ID No 2 from nucleotide 243 to nucleotide 261
- nucleotide sequence of SEQ ID No 2 from nucleotide 240 to nucleotide 261
- nucleotide sequence of SEQ ID No 2 from nucleotide 126 to nucleotide 145 the nucleotide sequence of SEQ ID No 2 from nucleotide 208 to nucleotide 225 the nucleotide sequence of SEQ ID No 2 from nucleotide 124 to nucleotide 145 - the nucleotide sequence of SEQ ID No 2 from nucleotide 75 to nucleotide 94 the nucleotide sequence of SEQ ID No 2 from nucleotide 231 to nucleotide 250 the nucleotide sequence of SEQ ID No 2 from nucleotide 243 to nucleotide 262
- nucleotide sequence of SEQ ID No 2 from nucleotide 230 to nucleotide 250 the nucleotide sequence of SEQ ID No 2 from nucleotide 232 to nucleotide 250 - the nucleotide sequence of SEQ ID No 2 from nucleotide 242 to nucleotide 262
- nucleotide sequence of SEQ ID No 2 from nucleotide 244 to nucleotide 262
- nucleotide sequence of SEQ ID No 2 from nucleotide 229 to nucleotide 250
- nucleotide sequence of SEQ ID No 2 from nucleotide 241 to nucleotide 262
- nucleotide sequence of SEQ ID No 2 from nucleotide 245 to nucleotide 262 - the nucleotide sequence of SEQ ID No 2 from nucleotide 287 to nucleotide 306
- nucleotide sequence of SEQ ID No 2 from nucleotide 288 to nucleotide 306 the nucleotide sequence of SEQ ID No 2 from nucleotide 230 to nucleotide 247 the nucleotide sequence of SEQ ID No 2 from nucleotide 285 to nucleotide 306
- nucleotide sequence of SEQ ID No 2 from nucleotide 287 to nucleotide 307 the nucleotide sequence of SEQ ID No 2 from nucleotide 289 to nucleotide 307 the nucleotide sequence of SEQ ID No 2 from nucleotide 286 to nucleotide 307 the nucleotide sequence of SEQ ID No 2 from nucleotide 290 to nucleotide 307 the nucleotide sequence of SEQ ID No 2 from nucleotide 229 to nucleotide 248 the nucleotide sequence of SEQ ID No 2 from nucleotide 230 to nucleotide 248 the nucleotide sequence of SEQ ID No 2 from nucleotide 227 to nucleotide 248 the nucleotide sequence of SEQ ID No 2 from nucleotide 231 to nucleotide 248
- nucleotide sequence of SEQ ID No. Z from position X to position Y indicates the nucleotide sequence including both nucleotide endpoints.
- the integration fragment has a length of between 50 and 500 nucleotides, most preferably of between 100 and 350 nucleotides.
- the specific primers may have a sequence which is between 80 and 100% identical to a sequence within the 5' or 3' flanking region of the elite event and the foreign DNA of the elite event, respectively, provided the mismatches still allow specific identification of the elite event with these primers under optimized PCR conditions.
- the range of allowable mismatches however, can easily be determined experimentally and are known to a person skilled in the art.
- the following table exemplifies the sizes of expected DNA amplicons ( or integration fragments) with selected pairs of PCR primers.
- Detection of integration fragments can occur in various ways e.g. via size estimation after gel analysis.
- the integration fragments may also be directly sequenced.
- Other sequence specific methods for detection of amplified DNA fragments are also known in the art.
- amplification of the integration fragment will occur only in biological samples comprising (the nucleic acid of) the elite event.
- a control is included of a set of primers with which a fragment within a "housekeeping gene" of the plant species of the event can be amplified.
- Housekeeping genes are genes that are expressed in most cell types and which are concerned with basic metabolic activities common to all cells.
- the fragment amplified from the housekeeping gene is a fragment which is larger than the amplified integration fragment.
- other controls can be included.
- PCR identification protocol for each elite event. It is however understood that a number of parameters in the PCR identification protocol may need to be adjusted to specific laboratory conditions, and may be modified slightly to obtain similar results. For instance, use of a different method for preparation of DNA may require adjustment of, for instance, the amount of primers, polymerase and annealing conditions used. Similarly, the selection of other primers may dictate other optimal conditions for the PCR identification protocol. These adjustments will however be apparent to a person skilled in the art, and are furthermore detailed in current PCR application manuals such as the one cited above.
- specific primers can be used to amplify an integration fragment that can be used as a "specific probe" for identifying A2704-12 in biological samples.
- the formation of this hybrid can be detected (e.g. labeling of the nucleic acid or probe), whereby the formation of this hybrid indicates the presence of A2704-12.
- identification methods based on hybridization with a specific probe (either on a solid phase carrier or in solution) have been described in the art.
- the specific probe is preferably a sequence which, under optimized conditions, hybridizes specifically to a region within the 5' or 3' flanking region of the elite event and preferably also comprising part of the foreign DNA contiguous therewith (hereinafter referred to as "specific region").
- the specific probe comprises a sequence of between 50 and 500 bp, preferably of 100 to 350 bp which is at least 80%, preferably between 80 and 85%, more preferably between 85 and 90%, especially preferably between 90 and 95%, most preferably between 95% and 100% identical (or complementary) to the nucleotide sequence of a specific region.
- the specific probe will comprise a sequence of about 15 to about 100 contiguous nucleotides identical (or complementary) to a specific region of the elite event.
- kits refers to a set of reagents for the purpose of performing the method of the invention, more particularly, the identification of the elite event A2704-12 in biological samples. More particularly, a preferred embodiment of the kit of the invention comprises at least one or two specific primers, as described above. Optionally, the kit can further comprise any other reagent described herein in the PCR identification protocol. Alternatively, according to another embodiment of this invention, the kit can comprise a specific probe, as described above, which specifically hybridizes with nucleic acid of biological samples to identify the presence of A2704-12 therein. Optionally, the kit can further comprise any other reagent (such as but not limited to hybridizing buffer, label) for identification of A2704-12 in biological samples, using the specific probe.
- any other reagent such as but not limited to hybridizing buffer, label
- the kit of the invention can be used, and its components can be specifically adjusted, for purposes of quality control (e.g., purity of seed lots), detection of the elite event in plant material or material comprising or derived from plant material, such as but not limited to food or feed products.
- quality control e.g., purity of seed lots
- detection of the elite event in plant material or material comprising or derived from plant material such as but not limited to food or feed products.
- sequence identity with regard to nucleotide sequences (DNA or RNA), refers to the number of positions with identical nucleotides divided by the number of nucleotides in the shorter of the two sequences. The alignment of the two nucleotide sequences is performed by the Wilbur and Lipmann algorithm (Wilbur and Lipmann, 1983, Proc. Nat. Acad. Sci.
- RNA sequences are said to be essentially similar or have a certain degree of sequence identity with DNA sequences, thymidine (T) in the DNA sequence is considered equal to uracil (U) in the RNA sequence.
- primer encompasses any nucleic acid that is capable of priming the synthesis of a nascent nucleic acid in a template-dependent process, such as PCR.
- primers are oligonucleotides from 10 to 30 nucleotides, but longer sequences can be employed.
- Primers may be provided in double-stranded form, though the single-stranded form is preferred. Probes can be used as primers, but are designed to bind to the target DNA or RNA and need not be used in an amplification process.
- recognizing refers to the fact that the specific primers specifically hybridize to a nucleic acid sequence in the elite event under the conditions set forth in the method (such as the conditions of the PCR identification protocol), whereby the specificity is determined by the presence of positive and negative controls.
- hybridizing refers to the fact that the probe binds to a specific region in the nucleic acid sequence of the elite event under standard stringency conditions.
- Standard stringency conditions refers to the conditions for hybridization described herein or to the conventional hybridizing conditions as described by Sambrook et al., 1989 (Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbour Laboratory Press, NY) which for instance can comprise the following steps: 1) immobilizing plant genomic DNA fragments on a filter, 2) prehybridizing the filter for 1 to 2 hours at 42°C in 50% formamide, 5 X SSPE, 2 X Denhardt's reagent and 0.1% SDS, or for 1 to 2 hours at 68 0 C in 6 X SSC, 2 X Denhardt's reagent and 0.1% SDS, 3) adding the hybridization probe which has been labeled, 4) incubating for 16 to 24 hours, 5) washing the filter for 20 min.
- a biological samples is a sample of a plant, plant material or products comprising plant material.
- plant is intended to encompass soybean (Glycine max) plant tissues, at any stage of maturity, as well as any cells, tissues, or organs taken from or derived from any such plant, including without limitation, any seeds, leaves, stems, flowers, roots, single cells, gametes, cell cultures, tissue cultures or protoplasts.
- Plant material refers to material which is obtained or derived from a plant. Products comprising plant material relate to food, feed or other products which are produced using plant material or can be contaminated by plant material. It is understood that, in the context of the present invention, such biological samples are tested for the presence of nucleic acids specific for A2704-12, implying the presence of nucleic acids in the samples. Thus the methods referred to herein for identifying elite event A2704-12 in biological samples, relate to the identification in biological samples of nucleic acids which comprise the elite event.
- nucleic acid or protein comprising a sequence of nucleotides or amino acids
- a chimeric gene comprising a DNA sequence which is functionally or structurally defined, may comprise additional DNA sequences, etc.
- the present invention also relates to the development of an elite event A2704-12 in soybean to the plants comprising this event, the progeny obtained from these plants and to the plant cells, or plant material derived from this event. Plants comprising elite event A2704-12 were obtained through as described in example 1.
- Soybean plants or plant material comprising A2704-12 can be identified according to the PCR identification protocol described for A2704-12 in Example 2. Briefly, soybean genomic DNA present in the biological sample is amplified by PCR using a primer which specifically recognizes a sequence within the 5' or 3' flanking sequence of A2704-12 such as the primer with the sequence of SEQ ID NO: 4, and a primer which recognizes a sequence in the foreign DNA, such as the primer with the sequence of SEQ ID NO: 8. DNA primers which amplify part of an endogenous soybean sequence are used as positive control for the PCR amplification. If upon PCR amplification, the material yields a fragment of the expected size, the material contains plant material from a soybean plant harboring elite event A2704-12.
- Plants harboring A2704-12 are characterized by their glufosinate tolerance, which in the context of the present invention includes that plants are tolerant to the herbicide LibertyTM.
- Tolerance to LibertyTM can be tested in different ways. The leaf paint method as described herein, is most useful when discrimination between resistant and sensitive plants is required, without killing the sensitive ones. Alternatively, tolerance can be tested by LibertyTM spray application. Spray treatments should be made between the leaf stages V3 and V4 for best results.
- Tolerant plants are characterized by the fact that spraying of the plants with at least 200 grams active ingredient/hectare (g.a.i./ha), preferably 400 g.a.i./ha, and possibly up to 1600 g.a.i./ha (4X the normal field rate), does not kill the plants.
- a broadcast application should be applied at a rate of 28-34 oz LibertyTM. It is best to apply at a volume of 20 gallons of water per acre using a flat fan type nozzle while being careful not to direct spray applications directly into the whorl of the plants to avoid surfactant burn on the leaves.
- the herbicide effect should appear within 48 hours and be clearly visible within 5-7 days.
- Plants harboring A2704-12 can further be characterized by the presence in their cells of phosphinothricin acetyl transferase as determined by a PAT assay (De Block et al, 1987).
- Plants harboring A2704-12 are also characterized by having agronomical characteristics that are comparable to commercially available varieties of soybean in the US, in the absence of weed pressure and use of LibertyTM for weed control. It has been observed that the presence of a foreign DNA in the insertion region of the soybean plant genome described herein, confers particularly interesting phenotypic and molecular characteristics to the plants comprising this event. More specifically, the presence of the foreign DNA in this particular region in the genome of these plants, results in plants which display a stable phenotypic expression of the gene of interest without significantly compromising any aspect of desired agronomic performance of the plants.
- SEQ ID No. 1 nucleotide sequence comprising a 5' flanking region ofA2704-12
- SEQ ID No. 2 nucleotide sequence comprising a 3' flanking region ofA2704-12
- SEQ ID No. 4 primer DPA021
- SEQ ID No. 5 primer KVMl 76
- SEQ ID No. 12 primer YTP007
- SEQ ID No. 14 primer HCA014
- SEQ ID No. 15 primer MDB402
- SEQ ID No. 17 primer SMOO 17
- SEQ ID No. 19 primer SMO033
- SEQ ID No. 20 primer 1 for amplification of control fragment
- SEQ ID No. 21 primer 2 for amplification of control fragment
- Fig 1 Schematic representation of the relationship between the cited nucleotide sequences and primers, black bar: foreign DNA; light bar: DNA of plant origin; the figures under the bars represent nucleotide positions; (c) refers to complement of the indicated nucleotide sequence.
- Fig. 2 PCR Identification protocol developed for A2704-12.
- Loading sequence of the gel Lanel : DNA sample from soybean plants comprising the transgenic event A2704-12; lane 2: DNA sample from a transgenic soybean plant not comprising elite event A2704-12; lane 3: control DNA samples from wild-type soybean plants; lane 4: no template control; lane 5: molecular weight marker.
- Herbicide-resistant soybean was developed by transformation of soybean with a vector comprising the coding sequence of a pat gene encoding the enzyme phosphinothricin- acetyl-transferase, under the control of the constitutive 35S promoter from Cauliflower Mosaic virus.
- Elite event A2704-12 was selected based on an extensive selection procedure based on good expression and stability of the herbicide resistance gene and its compatibility with optimal agronomic characteristics.
- the sequence of the regions flanking the foreign DNA in the A2704-12 event was determined using the thermal asymmetric interlaced (TAIL-) PCR method described by Liu et al. (1995, Plant J. 8(3):457-463). This method utilizes three nested primers in successive reactions together with a shorter arbitrary degenerate primer so that the relative amplification efficiencies of specific and non-specific products can be thermally controlled.
- the specific primers were selected for annealing to the border of the foreign DNA and based on their annealing conditions.
- a small amount (5 ⁇ l) of unpurified, secondary and tertiary, PCR products were analyzed on a 1% agarose gel. The tertiary PCR product was used for preparative amplification, purified and sequenced on an automated sequencer using the DyeDeoxy Terminator cycle kit.
- the fragment identified as comprising the 5' flanking region obtained by the TAIL-PCR method was completely sequenced (SEQ ID No. 1).
- the sequence between nucleotide 1 and 209 corresponds to plant DNA, while the sequence between nucleotide 210 and 720 corresponds to foreign DNA.
- the fragment identified as comprising the 3' flanking region obtained by the TAIL-PCR method was completely sequenced (SEQ ID No. 2).
- the sequence between nucleotide 1 and 568 corresponds to foreign DNA, while the sequence between nucleotide 569 and 1000 corresponds to plant DNA.
- primers were developed which recognize sequences within the elite event. More particularly, a primer was developed which recognizes a sequence within the 5' flanking region of A2704-12. A second primer was then selected within the sequence of the foreign DNA so that the primers span a sequence of about 183 nucleotides. The following primers were found to give particularly clear and reproducible results in a
- DPA024 5'-gTT.TTA.CAA.CgT.gAC.Tgg-3' (SEQ ID No.: 8)
- Primers targeting an endogenous sequence are preferably included in the PCR cocktail. These primers serve as an internal control in unknown samples and in the DNA positive control. A positive result with the endogenous primer-pair demonstrates that there is ample DNA of adequate quality in the genomic DNA preparation for a PCR product to be generated.
- the endogenous primers were selected to recognize a housekeeping gene in Glycine max:
- SOY02 5'-gTT.ACC.gTA.CAg.gTC.TTT.CC-3' (SEQ ID No.: 21) (located in Glycine max actin 1 gene (Accession JO 1298))
- the expected amplified fragments in the PCR reaction are:
- Template DNA Template DNA was prepared from a leaf punch according to Edwards et al. (Nucleic Acid Research, 19, pi 349, 1991). When using DNA prepared with other methods, a test run utilizing different amounts of template should be done. Usually 50 ng of genomic template DNA yields the best results.
- DNA negative control This is a PCR in which no DNA is added to the reaction. When the expected result, no PCR products, is observed this indicates that the PCR cocktail was not contaminated with target DNA.
- a DNA positive control (genomic DNA sample known to contain the transgenic sequences). Successful amplification of this positive control demonstrates that the PCR was run under conditions which allow for the amplification of target sequences.
- a wild-type DNA control This is a PCR in which the template DNA provided is genomic DNA prepared from a non-transgenic plant. When the expected result, no amplification of a transgene PCR product but amplification of the endogenous PCR product, is observed this indicates that there is no detectable transgene background amplification in a genomic DNA sample.
- the PCR mix for 25 ⁇ l reactions contains: 2.5 ⁇ l template DNA
- thermocycling profile to be followed for optimal results is the following:
- the developed protocol might require optimization for components that may differ between labs (template DNA preparation, Taq DNA polymerase, quality of the primers, dNTP's, thermocyler, etc.). Amplification of the endogenous sequence plays a key role in the protocol.
- the targeted endogenous fragment is not amplified or whenever the targeted sequences are not amplified with the same ethidium bromide staining intensities, as judged by agarose gel electrophoresis, optimization of the PCR conditions may be required.
- Glycine max leaf material from a number of plants, some of which comprising A2704- 12 were tested according to the above-described protocol. Samples from elite event A2704-12 and from Glycine max wild-type were taken as positive and negative controls, respectively.
- Figure 2 illustrates the result obtained with the elite event PCR identification protocol for A2704-12 on a number of soybean plant samples (lanes 1 to 14). The samples in lane
- Lane 1 were found to contain the elite event as the 185 bp band is detected, while the samples in lanes 2, 3 and 4 do not comprise A2704-12.
- Lane 2 comprises another soybean elite event
- lane 3 represents a non-transgenic Glycine max control
- lane 4 represents the negative control (water) sample
- lane 5 represents the Molecular Weight Marker (100 bp).
- a specific integration fragment of A2704-12 is obtained by PCR amplification using specific primers DPA021 (SEQ ID No. 4) and DPA024 (SEQ ID No. 8) or by chemical synthesis and is labeled.
- This integration fragment is used as a specific probe for the detection of A2704-12 in biological samples.
- Nucleic acid is extracted from the samples according to standard procedures. This nucleic acid is then contacted with the specific probe under hybridization conditions which are optimized to allow formation of a hybrid. The formation of the hybrid is then detected to indicate the presence of A2704- 12 nucleic acid in the sample.
- the nucleic acid in the samples is amplified using the specific primers prior to contact with the specific probe.
- the nucleic acid is labeled prior to contact with the specific probe instead of the integration fragment.
- the specific probe is attached to a solid carrier (such as, but not limited to a filter, strip or beads), prior to contact with the samples.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Analytical Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Cell Biology (AREA)
- Mycology (AREA)
- Botany (AREA)
- Immunology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Priority Applications (10)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| MX2007012383A MX2007012383A (es) | 2005-04-08 | 2006-04-04 | Evento elite a2704-12 y metodos y equipos para identificar dicho evento en muestras biologicas. |
| BRPI0608667-5A BRPI0608667B1 (pt) | 2005-04-08 | 2006-04-04 | Ácido nucléico específico, pares de iniciadores, sondas, kits e métodos para identificar o evento elite a2704-12 em amostras biológicas, confirmar a pureza de sementes e analisar sementes em relação à presença do referido evento elite |
| CN200680010143.4A CN101151373B (zh) | 2005-04-08 | 2006-04-04 | 原种事件a2704-12以及用于鉴定生物样品中此事件的方法和试剂盒 |
| CA2603944A CA2603944C (en) | 2005-04-08 | 2006-04-04 | Elite event a2704-12 comprising the integration of the phosphinothricin acetyltransferase (pat) gene into soybeans, and methods and kits for identifying such event in biological samples |
| JP2008504705A JP5256020B2 (ja) | 2005-04-08 | 2006-04-04 | エリートイベントa2704−12、ならびに生物サンプル中の該イベントを同定するための方法およびキット |
| ES06724339T ES2388548T3 (es) | 2005-04-08 | 2006-04-04 | Suceso de élite A2704-12 y métodos y estuches para identificar a dicho suceso en muestras biológicas |
| US11/910,899 US8012689B2 (en) | 2005-04-08 | 2006-04-04 | Elite event A2407-12 and methods and kits for identifying such event in biological samples |
| EP06724339A EP1869187B1 (en) | 2005-04-08 | 2006-04-04 | Elite event a2704-12 and methods and kits for identifying such event in biological samples |
| US13/196,705 US9322069B2 (en) | 2005-04-08 | 2011-08-02 | Elite event A2704-12 and methods and kits for identifying such event in biological samples |
| US13/974,532 US20140026262A1 (en) | 2005-04-08 | 2013-08-23 | Elite event a2704-12 and methods and kits for identifying such event in biological samples |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP05075833 | 2005-04-08 | ||
| EP05075833.3 | 2005-04-08 | ||
| US67021305P | 2005-04-11 | 2005-04-11 | |
| US60/670,213 | 2005-04-11 |
Related Child Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/910,899 A-371-Of-International US8012689B2 (en) | 2005-04-08 | 2006-04-04 | Elite event A2407-12 and methods and kits for identifying such event in biological samples |
| US13/196,705 Division US9322069B2 (en) | 2005-04-08 | 2011-08-02 | Elite event A2704-12 and methods and kits for identifying such event in biological samples |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| WO2006108674A2 true WO2006108674A2 (en) | 2006-10-19 |
| WO2006108674A3 WO2006108674A3 (en) | 2006-12-14 |
Family
ID=39251260
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/EP2006/003454 Ceased WO2006108674A2 (en) | 2005-04-08 | 2006-04-04 | Elite event a2704-12 and methods and kits for identifying such event in biological samples |
Country Status (9)
| Country | Link |
|---|---|
| US (3) | US8012689B2 (enExample) |
| EP (1) | EP1869187B1 (enExample) |
| JP (2) | JP5256020B2 (enExample) |
| CN (2) | CN101151373B (enExample) |
| BR (1) | BRPI0608667B1 (enExample) |
| CA (1) | CA2603944C (enExample) |
| ES (1) | ES2388548T3 (enExample) |
| MX (1) | MX2007012383A (enExample) |
| WO (1) | WO2006108674A2 (enExample) |
Cited By (350)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1950311A1 (en) * | 2007-01-29 | 2008-07-30 | Scientific Institute of Public Health (IPH) | Transgenic plant event detection |
| WO2008092866A1 (en) | 2007-01-29 | 2008-08-07 | Scientific Institute Of Public Health (Iph) | Transgenic plant event detection |
| WO2010080829A1 (en) * | 2009-01-07 | 2010-07-15 | Basf Agrochemical Products B.V. | Soybean event 127 and methods related thereto |
| WO2011063413A2 (en) | 2009-11-23 | 2011-05-26 | Bayer Bioscience N.V. | Herbicide tolerant soybean plants and methods for identifying same |
| WO2011063411A1 (en) | 2009-11-23 | 2011-05-26 | Bayer Bioscience N.V. | Elite event ee-gm3 and methods and kits for identifying such event in biological samples |
| WO2012072696A1 (de) | 2010-12-01 | 2012-06-07 | Bayer Cropscience Ag | Wirkstoffkombinationen umfassend pyridylethylbenzamide und weitere wirkstoffe |
| WO2012072660A1 (en) | 2010-12-01 | 2012-06-07 | Bayer Cropscience Ag | Use of fluopyram for controlling nematodes in crops and for increasing yield |
| WO2012072489A1 (de) | 2010-11-29 | 2012-06-07 | Bayer Cropscience Ag | Alpha-beta-ungesättigte imine |
| WO2012120105A1 (en) | 2011-03-10 | 2012-09-13 | Bayer Cropscience Ag | Use of lipochito-oligosaccharide compounds for safeguarding seed safety of treated seeds |
| WO2012126938A2 (en) | 2011-03-23 | 2012-09-27 | Bayer Cropscience Ag | Active compound combinations |
| WO2012136581A1 (en) | 2011-04-08 | 2012-10-11 | Bayer Cropscience Ag | Fungicide hydroximoyl-tetrazole derivatives |
| WO2012171914A1 (en) | 2011-06-14 | 2012-12-20 | Bayer Intellectual Property Gmbh | Use of an enaminocarbonyl compound in combination with a biological control agent |
| EP2561759A1 (en) | 2011-08-26 | 2013-02-27 | Bayer Cropscience AG | Fluoroalkyl-substituted 2-amidobenzimidazoles and their effect on plant growth |
| WO2013026740A2 (en) | 2011-08-22 | 2013-02-28 | Bayer Cropscience Nv | Methods and means to modify a plant genome |
| CN102965444A (zh) * | 2012-12-11 | 2013-03-13 | 福建出入境检验检疫局检验检疫技术中心 | 转基因大豆a2704-12的lamp检测引物及方法 |
| WO2013037956A1 (en) | 2011-09-16 | 2013-03-21 | Bayer Intellectual Property Gmbh | Use of 5-phenyl- or 5-benzyl-2 isoxazoline-3 carboxylates for improving plant yield |
| WO2013037717A1 (en) | 2011-09-12 | 2013-03-21 | Bayer Intellectual Property Gmbh | Fungicidal 4-substituted-3-{phenyl[(heterocyclylmethoxy)imino]methyl}-1,2,4-oxadizol-5(4h)-one derivatives |
| WO2013037955A1 (en) | 2011-09-16 | 2013-03-21 | Bayer Intellectual Property Gmbh | Use of acylsulfonamides for improving plant yield |
| WO2013037958A1 (en) | 2011-09-16 | 2013-03-21 | Bayer Intellectual Property Gmbh | Use of phenylpyrazolin-3-carboxylates for improving plant yield |
| WO2013050410A1 (en) | 2011-10-04 | 2013-04-11 | Bayer Intellectual Property Gmbh | RNAi FOR THE CONTROL OF FUNGI AND OOMYCETES BY INHIBITING SACCHAROPINE DEHYDROGENASE GENE |
| WO2013075817A1 (en) | 2011-11-21 | 2013-05-30 | Bayer Intellectual Property Gmbh | Fungicide n-[(trisubstitutedsilyl)methyl]-carboxamide derivatives |
| WO2013079566A2 (en) | 2011-11-30 | 2013-06-06 | Bayer Intellectual Property Gmbh | Fungicidal n-bicycloalkyl and n-tricycloalkyl (thio)carboxamide derivatives |
| WO2013092519A1 (en) | 2011-12-19 | 2013-06-27 | Bayer Cropscience Ag | Use of anthranilic acid diamide derivatives for pest control in transgenic crops |
| WO2013098146A1 (en) | 2011-12-29 | 2013-07-04 | Bayer Intellectual Property Gmbh | Fungicidal 3-[(1,3-thiazol-4-ylmethoxyimino)(phenyl)methyl]-2-substituted-1,2,4-oxadiazol-5(2h)-one derivatives |
| WO2013098147A1 (en) | 2011-12-29 | 2013-07-04 | Bayer Intellectual Property Gmbh | Fungicidal 3-[(pyridin-2-ylmethoxyimino)(phenyl)methyl]-2-substituted-1,2,4-oxadiazol-5(2h)-one derivatives |
| WO2013110594A1 (en) | 2012-01-25 | 2013-08-01 | Bayer Intellectual Property Gmbh | Active compound combinations containing fluopyram and biological control agent |
| WO2013110591A1 (en) | 2012-01-25 | 2013-08-01 | Bayer Intellectual Property Gmbh | Active compounds combination containing fluopyram bacillus and biologically control agent |
| WO2013127704A1 (en) | 2012-02-27 | 2013-09-06 | Bayer Intellectual Property Gmbh | Active compound combinations containing a thiazoylisoxazoline and a fungicide |
| WO2013139949A1 (en) | 2012-03-23 | 2013-09-26 | Bayer Intellectual Property Gmbh | Compositions comprising a strigolactame compound for enhanced plant growth and yield |
| WO2013153143A1 (en) | 2012-04-12 | 2013-10-17 | Bayer Cropscience Ag | N-acyl- 2 - (cyclo) alkylpyrrolidines and piperidines useful as fungicides |
| WO2013156559A1 (en) | 2012-04-20 | 2013-10-24 | Bayer Cropscience Ag | N-cycloalkyl-n-[(heterocyclylphenyl)methylene]-(thio)carboxamide derivatives |
| WO2013156560A1 (en) | 2012-04-20 | 2013-10-24 | Bayer Cropscience Ag | N-cycloalkyl-n-[(trisubstitutedsilylphenyl)methylene]-(thio)carboxamide derivatives |
| EP2662360A1 (en) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | 5-Halogenopyrazole indanyl carboxamides |
| EP2662361A1 (en) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | Pyrazol indanyl carboxamides |
| EP2662362A1 (en) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | Pyrazole indanyl carboxamides |
| EP2662364A1 (en) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | Pyrazole tetrahydronaphthyl carboxamides |
| EP2662363A1 (en) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | 5-Halogenopyrazole biphenylcarboxamides |
| EP2662370A1 (en) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | 5-Halogenopyrazole benzofuranyl carboxamides |
| WO2013167545A1 (en) | 2012-05-09 | 2013-11-14 | Bayer Cropscience Ag | Pyrazole indanyl carboxamides |
| WO2013167544A1 (en) | 2012-05-09 | 2013-11-14 | Bayer Cropscience Ag | 5-halogenopyrazole indanyl carboxamides |
| WO2013174836A1 (en) | 2012-05-22 | 2013-11-28 | Bayer Cropscience Ag | Active compounds combinations comprising a lipo-chitooligosaccharide derivative and a nematicide, insecticidal or fungicidal compound |
| WO2014019983A1 (en) | 2012-07-31 | 2014-02-06 | Bayer Cropscience Ag | Compositions comprising a pesticidal terpene mixture and an insecticide |
| WO2014043435A1 (en) | 2012-09-14 | 2014-03-20 | Bayer Cropscience Lp | Hppd variants and methods of use |
| EP2719280A1 (en) | 2012-10-11 | 2014-04-16 | Bayer CropScience AG | Use of N-phenylethylpyrazole carboxamide derivatives or salts thereof for resistance management of phytopathogenic fungi |
| WO2014060502A1 (en) | 2012-10-19 | 2014-04-24 | Bayer Cropscience Ag | Active compound combinations comprising carboxamide derivatives |
| WO2014060519A1 (en) | 2012-10-19 | 2014-04-24 | Bayer Cropscience Ag | Method for enhancing tolerance to abiotic stress in plants using carboxamide or thiocarboxamide derivatives |
| WO2014060518A1 (en) | 2012-10-19 | 2014-04-24 | Bayer Cropscience Ag | Method of plant growth promotion using carboxamide derivatives |
| WO2014060520A1 (en) | 2012-10-19 | 2014-04-24 | Bayer Cropscience Ag | Method for treating plants against fungi resistant to fungicides using carboxamide or thiocarboxamide derivatives |
| US8722072B2 (en) | 2010-01-22 | 2014-05-13 | Bayer Intellectual Property Gmbh | Acaricidal and/or insecticidal active ingredient combinations |
| EP2735231A1 (en) | 2012-11-23 | 2014-05-28 | Bayer CropScience AG | Active compound combinations |
| WO2014083089A1 (en) | 2012-11-30 | 2014-06-05 | Bayer Cropscience Ag | Ternary fungicidal and pesticidal mixtures |
| WO2014082950A1 (en) | 2012-11-30 | 2014-06-05 | Bayer Cropscience Ag | Ternary fungicidal mixtures |
| WO2014083031A2 (en) | 2012-11-30 | 2014-06-05 | Bayer Cropscience Ag | Binary pesticidal and fungicidal mixtures |
| WO2014083033A1 (en) | 2012-11-30 | 2014-06-05 | Bayer Cropsience Ag | Binary fungicidal or pesticidal mixture |
| WO2014083088A2 (en) | 2012-11-30 | 2014-06-05 | Bayer Cropscience Ag | Binary fungicidal mixtures |
| WO2014086747A2 (en) | 2012-12-03 | 2014-06-12 | Bayer Cropscience Ag | Composition comprising a biological control agent and a fungicide |
| WO2014086753A2 (en) | 2012-12-03 | 2014-06-12 | Bayer Cropscience Ag | Composition comprising biological control agents |
| WO2014086748A2 (en) | 2012-12-03 | 2014-06-12 | Bayer Cropscience Ag | Composition comprising a biological control agent and a fungicide |
| WO2014086749A2 (en) | 2012-12-03 | 2014-06-12 | Bayer Cropscience Ag | Composition comprising a biological control agent and an insecticide |
| WO2014086759A2 (en) | 2012-12-03 | 2014-06-12 | Bayer Cropscience Ag | Composition comprising biological control agents |
| WO2014086758A2 (en) | 2012-12-03 | 2014-06-12 | Bayer Cropscience Ag | Composition comprising a biological control agent and an insecticide |
| WO2014086750A2 (en) | 2012-12-03 | 2014-06-12 | Bayer Cropscience Ag | Composition comprising a biological control agent and an insecticide |
| WO2014086764A2 (en) | 2012-12-03 | 2014-06-12 | Bayer Cropscience Ag | Composition comprising a biological control agent and a fungicide |
| WO2014090765A1 (en) | 2012-12-12 | 2014-06-19 | Bayer Cropscience Ag | Use of 1-[2-fluoro-4-methyl-5-(2,2,2-trifluoroethylsulfinyl)phenyl]-5-amino-3-trifluoromethyl)-1 h-1,2,4 tfia zole for controlling nematodes in nematode-resistant crops |
| WO2014095826A1 (en) | 2012-12-18 | 2014-06-26 | Bayer Cropscience Ag | Binary fungicidal and bactericidal combinations |
| WO2014095677A1 (en) | 2012-12-19 | 2014-06-26 | Bayer Cropscience Ag | Difluoromethyl-nicotinic- tetrahydronaphtyl carboxamides |
| WO2014124375A1 (en) | 2013-02-11 | 2014-08-14 | Bayer Cropscience Lp | Compositions comprising gougerotin and a biological control agent |
| WO2014124368A1 (en) | 2013-02-11 | 2014-08-14 | Bayer Cropscience Lp | Compositions comprising gougerotin and a fungicide |
| WO2014124373A1 (en) | 2013-02-11 | 2014-08-14 | Bayer Cropscience Lp | Compositions comprising gougerotin and an insecticide |
| WO2014138339A2 (en) | 2013-03-07 | 2014-09-12 | Athenix Corp. | Toxin genes and methods for their use |
| WO2014170345A2 (en) | 2013-04-19 | 2014-10-23 | Bayer Cropscience Ag | Method for improved utilization of the production potential of transgenic plants |
| WO2014170364A1 (en) | 2013-04-19 | 2014-10-23 | Bayer Cropscience Ag | Binary insecticidal or pesticidal mixture |
| WO2014177514A1 (en) | 2013-04-30 | 2014-11-06 | Bayer Cropscience Ag | Nematicidal n-substituted phenethylcarboxamides |
| WO2014177582A1 (en) | 2013-04-30 | 2014-11-06 | Bayer Cropscience Ag | N-(2-fluoro-2-phenethyl)carboxamides as nematicides and endoparasiticides |
| WO2014206953A1 (en) | 2013-06-26 | 2014-12-31 | Bayer Cropscience Ag | N-cycloalkyl-n-[(bicyclylphenyl)methylene]-(thio)carboxamide derivatives |
| WO2015082587A1 (en) | 2013-12-05 | 2015-06-11 | Bayer Cropscience Ag | N-cycloalkyl-n-{[2-(1-substitutedcycloalkyl)phenyl]methylene}-(thio)carboxamide derivatives |
| WO2015082586A1 (en) | 2013-12-05 | 2015-06-11 | Bayer Cropscience Ag | N-cycloalkyl-n-{[2-(1-substitutedcycloalkyl)phenyl]methylene}-(thio)carboxamide derivatives |
| EP2885970A1 (en) | 2013-12-21 | 2015-06-24 | Bayer CropScience AG | Fungicide compositions comprising compound I, at least one succinate dehydrogenase (SDH) inhibitor and at least one triazole fungicide |
| WO2015138394A2 (en) | 2014-03-11 | 2015-09-17 | Bayer Cropscience Lp | Hppd variants and methods of use |
| WO2015160619A1 (en) | 2014-04-16 | 2015-10-22 | Bayer Cropscience Lp | Compositions comprising ningnanmycin and a fungicide |
| WO2015160620A1 (en) | 2014-04-16 | 2015-10-22 | Bayer Cropscience Lp | Compositions comprising ningnanmycin and an insecticide |
| WO2015160618A1 (en) | 2014-04-16 | 2015-10-22 | Bayer Cropscience Lp | Compositions comprising ningnanmycin and a biological control agent |
| US9206137B2 (en) | 2010-11-15 | 2015-12-08 | Bayer Intellectual Property Gmbh | N-Aryl pyrazole(thio)carboxamides |
| RU2574777C2 (ru) * | 2009-01-07 | 2016-02-10 | Басф Агрокемикал Продактс Б.В. | Событие 127 в геноме сои и связанные с ним способы |
| US9265252B2 (en) | 2011-08-10 | 2016-02-23 | Bayer Intellectual Property Gmbh | Active compound combinations comprising specific tetramic acid derivatives |
| WO2016166077A1 (en) | 2015-04-13 | 2016-10-20 | Bayer Cropscience Aktiengesellschaft | N-cycloalkyl-n-(biheterocyclyethylene)-(thio)carboxamide derivatives |
| EP3097782A1 (en) | 2015-05-29 | 2016-11-30 | Bayer CropScience Aktiengesellschaft | Methods for controlling phytopathogenic nematodes by combination of fluopyram and biological control agents |
| WO2017042259A1 (en) | 2015-09-11 | 2017-03-16 | Bayer Cropscience Aktiengesellschaft | Hppd variants and methods of use |
| EP3205210A1 (en) | 2012-05-30 | 2017-08-16 | Bayer CropScience Aktiengesellschaft | Composition comprising a biological control agent and a fungicide selected from inhibitors of the succinate dehydrogenase |
| EP3243387A2 (en) | 2012-05-30 | 2017-11-15 | Bayer CropScience Aktiengesellschaft | Compositions comprising a biological control agent and an insecticide |
| WO2018019676A1 (en) | 2016-07-29 | 2018-02-01 | Bayer Cropscience Aktiengesellschaft | Active compound combinations and methods to protect the propagation material of plants |
| EP3281526A1 (en) | 2012-05-30 | 2018-02-14 | Bayer CropScience Aktiengesellschaft | Composition comprising a biological control agent and a fungicide |
| EP3292764A2 (en) | 2012-05-30 | 2018-03-14 | Bayer CropScience Aktiengesellschaft | Composition comprising a biological control agent and a fungicide selected from inhibitors of the respiratory chain at complex iii |
| EP3300603A2 (en) | 2012-05-30 | 2018-04-04 | Bayer CropScience Aktiengesellschaft | Composition comprising a biological control agent and a fungicide |
| EP3318128A2 (en) | 2012-05-30 | 2018-05-09 | Bayer CropScience Aktiengesellschaft | Composition comprising a biological control agent and a fungicide |
| WO2018098214A1 (en) | 2016-11-23 | 2018-05-31 | Bayer Cropscience Lp | Axmi669 and axmi991 toxin genes and methods for their use |
| WO2018119336A1 (en) | 2016-12-22 | 2018-06-28 | Athenix Corp. | Use of cry14 for the control of nematode pests |
| WO2018119361A1 (en) | 2016-12-22 | 2018-06-28 | Bayer Cropscience Lp | Elite event ee-gm4 and methods and kits for identifying such event in biological samples |
| WO2018114393A1 (en) | 2016-12-19 | 2018-06-28 | Basf Se | Substituted oxadiazoles for combating phytopathogenic fungi |
| WO2018119364A1 (en) | 2016-12-22 | 2018-06-28 | Bayer Cropscience Lp | Elite event ee-gm5 and methods and kits for identifying such event in biological samples |
| WO2018136611A1 (en) | 2017-01-18 | 2018-07-26 | Bayer Cropscience Lp | Use of bp005 for the control of plant pathogens |
| WO2018136604A1 (en) | 2017-01-18 | 2018-07-26 | Bayer Cropscience Lp | Bp005 toxin gene and methods for its use |
| EP3360418A1 (en) | 2012-05-30 | 2018-08-15 | Bayer CropScience Aktiengesellschaft | Composition comprising a biological control agent and a fungicide |
| EP3363289A2 (en) | 2012-05-30 | 2018-08-22 | Bayer CropScience Aktiengesellschaft | Compositions comprising a biological control agent and an insecticide |
| WO2018153730A1 (en) | 2017-02-21 | 2018-08-30 | Basf Se | Substituted oxadiazoles for combating phytopathogenic fungi |
| WO2018165091A1 (en) | 2017-03-07 | 2018-09-13 | Bayer Cropscience Lp | Hppd variants and methods of use |
| WO2018184970A1 (en) | 2017-04-07 | 2018-10-11 | Basf Se | Substituted oxadiazoles for combating phytopathogenic fungi |
| WO2018188962A1 (en) | 2017-04-11 | 2018-10-18 | Basf Se | Substituted oxadiazoles for combating phytopathogenic fungi |
| WO2018195256A1 (en) | 2017-04-21 | 2018-10-25 | Bayer Cropscience Lp | Method of improving crop safety |
| WO2018202487A1 (en) | 2017-05-04 | 2018-11-08 | Basf Se | Substituted 5-(haloalkyl)-5-hydroxy-isoxazoles for combating phytopathogenic fungi |
| WO2018202491A1 (en) | 2017-05-04 | 2018-11-08 | Basf Se | Substituted trifluoromethyloxadiazoles for combating phytopathogenic fungi |
| WO2018219797A1 (en) | 2017-06-02 | 2018-12-06 | Basf Se | Substituted oxadiazoles for combating phytopathogenic fungi |
| WO2018234139A1 (en) | 2017-06-19 | 2018-12-27 | Basf Se | 2-[[5-(trifluoromethyl)-1,2,4-oxadiazol-3-yl]aryloxy](thio)acetamides for combating phytopathogenic fungi |
| WO2019025250A1 (en) | 2017-08-04 | 2019-02-07 | Basf Se | SUBSTITUTED TRIFLUOROMETHYLOXADIAZOLES FOR COMBATING PHYTOPATHOGENIC FUNGI |
| WO2019038042A1 (en) | 2017-08-21 | 2019-02-28 | Basf Se | SUBSTITUTED TRIFLUOROMETHYLOXADIAZOLES FOR THE CONTROL OF PHYTOPATHOGENIC FUNGI |
| WO2019052932A1 (en) | 2017-09-18 | 2019-03-21 | Basf Se | SUBSTITUTED TRIFLUOROMETHYLOXADIAZOLES FOR COMBATING PHYTOPATHOGENIC FUNGI |
| WO2019068811A1 (en) | 2017-10-06 | 2019-04-11 | Bayer Aktiengesellschaft | COMPOSITIONS COMPRISING FLUOPYRAM AND TIOXAZAFENE |
| WO2019083810A1 (en) | 2017-10-24 | 2019-05-02 | Basf Se | IMPROVING HERBICIDE TOLERANCE FOR 4-HYDROXYPHENYLPYRUVATE DIOXYGENASE (HPPD) INHIBITORS BY NEGATIVE REGULATION OF HPPD EXPRESSION IN SOYBEANS |
| WO2019083808A1 (en) | 2017-10-24 | 2019-05-02 | Basf Se | IMPROVING HERBICIDE TOLERANCE AGAINST HPPD INHIBITORS BY REGULATION OF PUTATIVE REDUCED 4-HYDROXYPHENYLPYRUVATE REDUCES IN SOYBEANS |
| WO2019101511A1 (en) | 2017-11-23 | 2019-05-31 | Basf Se | Substituted trifluoromethyloxadiazoles for combating phytopathogenic fungi |
| WO2019121143A1 (en) | 2017-12-20 | 2019-06-27 | Basf Se | Substituted cyclopropyl derivatives |
| WO2019137995A1 (en) | 2018-01-11 | 2019-07-18 | Basf Se | Novel pyridazine compounds for controlling invertebrate pests |
| WO2019145221A1 (en) | 2018-01-29 | 2019-08-01 | BASF Agro B.V. | New agrochemical formulations |
| WO2019154663A1 (en) | 2018-02-07 | 2019-08-15 | Basf Se | New pyridine carboxamides |
| WO2019154665A1 (en) | 2018-02-07 | 2019-08-15 | Basf Se | New pyridine carboxamides |
| WO2019166257A1 (en) | 2018-03-01 | 2019-09-06 | BASF Agro B.V. | Fungicidal compositions of mefentrifluconazole |
| WO2019219464A1 (en) | 2018-05-15 | 2019-11-21 | Basf Se | Substituted trifluoromethyloxadiazoles for combating phytopathogenic fungi |
| WO2019224092A1 (en) | 2018-05-22 | 2019-11-28 | Basf Se | Pesticidally active c15-derivatives of ginkgolides |
| WO2019233863A1 (de) | 2018-06-04 | 2019-12-12 | Bayer Aktiengesellschaft | Herbizid wirksame bizyklische benzoylpyrazole |
| EP3613736A1 (en) | 2018-08-22 | 2020-02-26 | Basf Se | Substituted glutarimide derivatives |
| EP3628158A1 (en) | 2018-09-28 | 2020-04-01 | Basf Se | Pesticidal mixture comprising a mesoionic compound and a biopesticide |
| EP3643705A1 (en) | 2018-10-24 | 2020-04-29 | Basf Se | Pesticidal compounds |
| WO2020083662A1 (en) | 2018-10-23 | 2020-04-30 | Basf Se | Tricyclic pesticidal compounds |
| EP3670501A1 (en) | 2018-12-17 | 2020-06-24 | Basf Se | Substituted [1,2,4]triazole compounds as fungicides |
| WO2020144308A1 (en) | 2019-01-11 | 2020-07-16 | Basf Se | Crystalline forms of 1-(1,2-dimethylpropyl)-n-ethyl-5-methyl-n-pyridazin-4-yl-pyrazole-4-carboxamide |
| EP3696177A1 (en) | 2019-02-12 | 2020-08-19 | Basf Se | Heterocyclic compounds for the control of invertebrate pests |
| EP3701796A1 (en) | 2019-08-08 | 2020-09-02 | Bayer AG | Active compound combinations |
| EP3708565A1 (en) | 2020-03-04 | 2020-09-16 | Bayer AG | Pyrimidinyloxyphenylamidines and the use thereof as fungicides |
| WO2020231751A1 (en) | 2019-05-10 | 2020-11-19 | Bayer Cropscience Lp | Active compound combinations |
| WO2020239517A1 (en) | 2019-05-29 | 2020-12-03 | Basf Se | Mesoionic imidazolium compounds and derivatives for combating animal pests |
| WO2020244970A1 (en) | 2019-06-06 | 2020-12-10 | Basf Se | New carbocyclic pyridine carboxamides |
| WO2020244969A1 (en) | 2019-06-06 | 2020-12-10 | Basf Se | Pyridine derivatives and their use as fungicides |
| WO2020244968A1 (en) | 2019-06-06 | 2020-12-10 | Basf Se | Fungicidal n-(pyrid-3-yl)carboxamides |
| EP3766879A1 (en) | 2019-07-19 | 2021-01-20 | Basf Se | Pesticidal pyrazole derivatives |
| EP3769623A1 (en) | 2019-07-22 | 2021-01-27 | Basf Se | Mesoionic imidazolium compounds and derivatives for combating animal pests |
| WO2021013720A1 (en) | 2019-07-23 | 2021-01-28 | Bayer Aktiengesellschaft | Novel heteroaryl-triazole compounds as pesticides |
| WO2021013719A1 (en) | 2019-07-23 | 2021-01-28 | Bayer Aktiengesellschaft | Novel heteroaryl-triazole compounds as pesticides |
| WO2021013721A1 (de) | 2019-07-22 | 2021-01-28 | Bayer Aktiengesellschaft | 5-amino substituierte pyrazole und triazole als schädlingsbekämpfungsmittel |
| WO2021022069A1 (en) | 2019-08-01 | 2021-02-04 | Bayer Cropscience Lp | Method of improving cold stress tolerance and crop safety |
| WO2021058659A1 (en) | 2019-09-26 | 2021-04-01 | Bayer Aktiengesellschaft | Rnai-mediated pest control |
| WO2021063736A1 (en) | 2019-10-02 | 2021-04-08 | Basf Se | Bicyclic pyridine derivatives |
| WO2021063735A1 (en) | 2019-10-02 | 2021-04-08 | Basf Se | New bicyclic pyridine derivatives |
| WO2021064075A1 (en) | 2019-10-02 | 2021-04-08 | Bayer Aktiengesellschaft | Active compound combinations comprising fatty acids |
| WO2021069567A1 (en) | 2019-10-09 | 2021-04-15 | Bayer Aktiengesellschaft | Novel heteroaryl-triazole compounds as pesticides |
| WO2021069569A1 (en) | 2019-10-09 | 2021-04-15 | Bayer Aktiengesellschaft | Novel heteroaryl-triazole compounds as pesticides |
| WO2021089673A1 (de) | 2019-11-07 | 2021-05-14 | Bayer Aktiengesellschaft | Substituierte sulfonylamide zur bekämpfung tierischer schädlinge |
| WO2021097162A1 (en) | 2019-11-13 | 2021-05-20 | Bayer Cropscience Lp | Beneficial combinations with paenibacillus |
| WO2021099271A1 (en) | 2019-11-18 | 2021-05-27 | Bayer Aktiengesellschaft | Active compound combinations comprising fatty acids |
| WO2021099303A1 (en) | 2019-11-18 | 2021-05-27 | Bayer Aktiengesellschaft | Novel heteroaryl-triazole compounds as pesticides |
| WO2021105091A1 (en) | 2019-11-25 | 2021-06-03 | Bayer Aktiengesellschaft | Novel heteroaryl-triazole compounds as pesticides |
| US11066424B2 (en) | 2018-08-18 | 2021-07-20 | Boragen, Inc. | Solid forms of substituted benzoxaborole and compositions thereof |
| WO2021155084A1 (en) | 2020-01-31 | 2021-08-05 | Pairwise Plants Services, Inc. | Suppression of shade avoidance response in plants |
| WO2021165195A1 (en) | 2020-02-18 | 2021-08-26 | Bayer Aktiengesellschaft | Heteroaryl-triazole compounds as pesticides |
| WO2021209490A1 (en) | 2020-04-16 | 2021-10-21 | Bayer Aktiengesellschaft | Cyclaminephenylaminoquinolines as fungicides |
| WO2021211926A1 (en) | 2020-04-16 | 2021-10-21 | Pairwise Plants Services, Inc. | Methods for controlling meristem size for crop improvement |
| WO2021213978A1 (de) | 2020-04-21 | 2021-10-28 | Bayer Aktiengesellschaft | 2-(het)aryl-substituierte kondensierte heterocyclen-derivate als schädlingsbekämpfungsmittel |
| EP3903581A1 (en) | 2020-04-28 | 2021-11-03 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors i |
| EP3903584A1 (en) | 2020-04-28 | 2021-11-03 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors iv |
| EP3903582A1 (en) | 2020-04-28 | 2021-11-03 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors ii |
| EP3903583A1 (en) | 2020-04-28 | 2021-11-03 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors iii |
| WO2021219513A1 (en) | 2020-04-28 | 2021-11-04 | Basf Se | Pesticidal compounds |
| WO2021224323A1 (en) | 2020-05-06 | 2021-11-11 | Bayer Aktiengesellschaft | Novel heteroaryl-triazole compounds as pesticides |
| WO2021224220A1 (en) | 2020-05-06 | 2021-11-11 | Bayer Aktiengesellschaft | Pyridine (thio)amides as fungicidal compounds |
| EP3909950A1 (en) | 2020-05-13 | 2021-11-17 | Basf Se | Heterocyclic compounds for the control of invertebrate pests |
| WO2021228734A1 (en) | 2020-05-12 | 2021-11-18 | Bayer Aktiengesellschaft | Triazine and pyrimidine (thio)amides as fungicidal compounds |
| WO2021233861A1 (en) | 2020-05-19 | 2021-11-25 | Bayer Aktiengesellschaft | Azabicyclic(thio)amides as fungicidal compounds |
| EP3915971A1 (en) | 2020-12-16 | 2021-12-01 | Bayer Aktiengesellschaft | Phenyl-s(o)n-phenylamidines and the use thereof as fungicides |
| WO2021245087A1 (en) | 2020-06-04 | 2021-12-09 | Bayer Aktiengesellschaft | Heterocyclyl pyrimidines and triazines as novel fungicides |
| WO2021247477A1 (en) | 2020-06-02 | 2021-12-09 | Pairwise Plants Services, Inc. | Methods for controlling meristem size for crop improvement |
| WO2021249800A1 (en) | 2020-06-10 | 2021-12-16 | Basf Se | Substituted [1,2,4]triazole compounds as fungicides |
| WO2021249995A1 (en) | 2020-06-10 | 2021-12-16 | Bayer Aktiengesellschaft | Azabicyclyl-substituted heterocycles as fungicides |
| WO2021255170A1 (en) | 2020-06-19 | 2021-12-23 | Bayer Aktiengesellschaft | 1,3,4-oxadiazole pyrimidines as fungicides |
| WO2021257775A1 (en) | 2020-06-17 | 2021-12-23 | Pairwise Plants Services, Inc. | Methods for controlling meristem size for crop improvement |
| WO2021255169A1 (en) | 2020-06-19 | 2021-12-23 | Bayer Aktiengesellschaft | 1,3,4-oxadiazole pyrimidines as fungicides |
| WO2021255089A1 (en) | 2020-06-19 | 2021-12-23 | Bayer Aktiengesellschaft | 1,3,4-oxadiazole pyrimidines and 1,3,4-oxadiazole pyridines as fungicides |
| WO2021255071A1 (en) | 2020-06-18 | 2021-12-23 | Bayer Aktiengesellschaft | 3-(pyridazin-4-yl)-5,6-dihydro-4h-1,2,4-oxadiazine derivatives as fungicides for crop protection |
| WO2021255118A1 (en) | 2020-06-18 | 2021-12-23 | Bayer Aktiengesellschaft | Composition for use in agriculture |
| WO2021255091A1 (en) | 2020-06-19 | 2021-12-23 | Bayer Aktiengesellschaft | 1,3,4-oxadiazoles and their derivatives as fungicides |
| EP3929189A1 (en) | 2020-06-25 | 2021-12-29 | Bayer Animal Health GmbH | Novel heteroaryl-substituted pyrazine derivatives as pesticides |
| WO2022002818A1 (de) | 2020-07-02 | 2022-01-06 | Bayer Aktiengesellschaft | Heterocyclen-derivate als schädlingsbekämpfungsmittel |
| EP3939961A1 (en) | 2020-07-16 | 2022-01-19 | Basf Se | Strobilurin type compounds and their use for combating phytopathogenic fungi |
| WO2022017836A1 (en) | 2020-07-20 | 2022-01-27 | BASF Agro B.V. | Fungicidal compositions comprising (r)-2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1- (1,2,4-triazol-1-yl)propan-2-ol |
| EP3945089A1 (en) | 2020-07-31 | 2022-02-02 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors v |
| WO2022033991A1 (de) | 2020-08-13 | 2022-02-17 | Bayer Aktiengesellschaft | 5-amino substituierte triazole als schädlingsbekämpfungsmittel |
| EP3960727A1 (en) | 2020-08-28 | 2022-03-02 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors vi |
| WO2022043559A2 (en) | 2020-08-31 | 2022-03-03 | Basf Se | Yield improvement |
| WO2022053453A1 (de) | 2020-09-09 | 2022-03-17 | Bayer Aktiengesellschaft | Azolcarboxamide als schädlingsbekämpfungsmittel |
| EP3970494A1 (en) | 2020-09-21 | 2022-03-23 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors viii |
| WO2022058327A1 (en) | 2020-09-15 | 2022-03-24 | Bayer Aktiengesellschaft | Substituted ureas and derivatives as new antifungal agents |
| EP3974414A1 (de) | 2020-09-25 | 2022-03-30 | Bayer AG | 5-amino substituierte pyrazole und triazole als schädlingsbekämpfungsmittel |
| WO2022090069A1 (en) | 2020-11-02 | 2022-05-05 | Basf Se | Compositions comprising mefenpyr-diethyl |
| WO2022089969A1 (en) | 2020-10-27 | 2022-05-05 | BASF Agro B.V. | Compositions comprising mefentrifluconazole |
| WO2022090071A1 (en) | 2020-11-02 | 2022-05-05 | Basf Se | Use of mefenpyr-diethyl for controlling phytopathogenic fungi |
| WO2022106304A1 (en) | 2020-11-23 | 2022-05-27 | BASF Agro B.V. | Compositions comprising mefentrifluconazole |
| WO2022129196A1 (en) | 2020-12-18 | 2022-06-23 | Bayer Aktiengesellschaft | Heterobicycle substituted 1,2,4-oxadiazoles as fungicides |
| WO2022129188A1 (en) | 2020-12-18 | 2022-06-23 | Bayer Aktiengesellschaft | 1,2,4-oxadiazol-3-yl pyrimidines as fungicides |
| WO2022128524A1 (en) | 2020-12-14 | 2022-06-23 | Basf Se | Sulfoximine pesticides |
| WO2022129190A1 (en) | 2020-12-18 | 2022-06-23 | Bayer Aktiengesellschaft | (hetero)aryl substituted 1,2,4-oxadiazoles as fungicides |
| WO2022129200A1 (en) | 2020-12-18 | 2022-06-23 | Bayer Aktiengesellschaft | Use of dhodh inhibitor for controlling resistant phytopathogenic fungi in crops |
| EP4036083A1 (de) | 2021-02-02 | 2022-08-03 | Bayer Aktiengesellschaft | 5-oxy substituierte hetereozyklen, als schädlingsbekämpfungsmittel |
| EP4043444A1 (en) | 2021-02-11 | 2022-08-17 | Basf Se | Substituted isoxazoline derivatives |
| WO2022173885A1 (en) | 2021-02-11 | 2022-08-18 | Pairwise Plants Services, Inc. | Methods and compositions for modifying cytokinin oxidase levels in plants |
| WO2022182834A1 (en) | 2021-02-25 | 2022-09-01 | Pairwise Plants Services, Inc. | Methods and compositions for modifying root architecture in plants |
| WO2022207494A1 (en) | 2021-03-30 | 2022-10-06 | Bayer Aktiengesellschaft | 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide |
| WO2022207496A1 (en) | 2021-03-30 | 2022-10-06 | Bayer Aktiengesellschaft | 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide |
| WO2022233777A1 (en) | 2021-05-06 | 2022-11-10 | Bayer Aktiengesellschaft | Alkylamide substituted, annulated imidazoles and use thereof as insecticides |
| WO2022233758A1 (en) | 2021-05-03 | 2022-11-10 | Basf Se | Additives for enhancing the pesticidal effectiveness of pesticidal microorganisms |
| WO2022238391A1 (de) | 2021-05-12 | 2022-11-17 | Bayer Aktiengesellschaft | 2-(het)aryl-substituierte kondensierte heterocyclen-derivate als schädlingsbekämpfungsmittel |
| EP4091451A1 (en) | 2021-05-17 | 2022-11-23 | BASF Agro B.V. | Compositions comprising mefentrifluconazole |
| WO2022243109A1 (en) | 2021-05-18 | 2022-11-24 | Basf Se | New substituted quinolines as fungicides |
| WO2022243107A1 (en) | 2021-05-18 | 2022-11-24 | Basf Se | New substituted pyridines as fungicides |
| WO2022243111A1 (en) | 2021-05-18 | 2022-11-24 | Basf Se | New substituted pyridines as fungicides |
| WO2022266271A1 (en) | 2021-06-17 | 2022-12-22 | Pairwise Plants Services, Inc. | Modification of growth regulating factor family transcription factors in soybean |
| WO2022263285A1 (en) | 2021-06-14 | 2022-12-22 | Basf Se | Yield improvement by gene combinations |
| WO2022271892A1 (en) | 2021-06-24 | 2022-12-29 | Pairwise Plants Services, Inc. | Modification of hect e3 ubiquitin ligase genes to improve yield traits |
| WO2023278651A1 (en) | 2021-07-01 | 2023-01-05 | Pairwise Plants Services, Inc. | Methods and compositions for enhancing root system development |
| EP4119547A1 (en) | 2021-07-12 | 2023-01-18 | Basf Se | Triazole compounds for the control of invertebrate pests |
| WO2023011958A1 (en) | 2021-08-02 | 2023-02-09 | Basf Se | (3-pirydyl)-quinazoline |
| WO2023011957A1 (en) | 2021-08-02 | 2023-02-09 | Basf Se | (3-quinolyl)-quinazoline |
| WO2023017120A1 (en) | 2021-08-13 | 2023-02-16 | Bayer Aktiengesellschaft | Active compound combinations and fungicide compositions comprising those |
| WO2023019188A1 (en) | 2021-08-12 | 2023-02-16 | Pairwise Plants Services, Inc. | Modification of brassinosteroid receptor genes to improve yield traits |
| WO2023023496A1 (en) | 2021-08-17 | 2023-02-23 | Pairwise Plants Services, Inc. | Methods and compositions for modifying cytokinin receptor histidine kinase genes in plants |
| EP4140995A1 (en) | 2021-08-27 | 2023-03-01 | Basf Se | Pyrazine compounds for the control of invertebrate pests |
| EP4140986A1 (en) | 2021-08-23 | 2023-03-01 | Basf Se | Pyrazine compounds for the control of invertebrate pests |
| WO2023025682A1 (en) | 2021-08-25 | 2023-03-02 | Bayer Aktiengesellschaft | Novel pyrazinyl-triazole compounds as pesticides |
| EP4144739A1 (de) | 2021-09-02 | 2023-03-08 | Bayer Aktiengesellschaft | Anellierte pyrazole als schädlingsbekämpfungsmittel |
| WO2023034891A1 (en) | 2021-09-02 | 2023-03-09 | Pairwise Plants Services, Inc. | Methods and compositions for improving plant architecture and yield traits |
| WO2023034731A1 (en) | 2021-08-30 | 2023-03-09 | Pairwise Plants Services, Inc. | Modification of ubiquitin binding peptidase genes in plants for yield trait improvement |
| EP4151631A1 (en) | 2021-09-20 | 2023-03-22 | Basf Se | Heterocyclic compounds for the control of invertebrate pests |
| WO2023049720A1 (en) | 2021-09-21 | 2023-03-30 | Pairwise Plants Services, Inc. | Methods and compositions for reducing pod shatter in canola |
| WO2023060152A2 (en) | 2021-10-07 | 2023-04-13 | Pairwise Plants Services, Inc. | Methods for improving floret fertility and seed yield |
| WO2023060028A1 (en) | 2021-10-04 | 2023-04-13 | Pairwise Plants Services, Inc. | Methods for improving floret fertility and seed yield |
| WO2023072670A1 (en) | 2021-10-28 | 2023-05-04 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors x |
| WO2023072671A1 (en) | 2021-10-28 | 2023-05-04 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors ix |
| WO2023078915A1 (en) | 2021-11-03 | 2023-05-11 | Bayer Aktiengesellschaft | Bis(hetero)aryl thioether (thio)amides as fungicidal compounds |
| WO2023099445A1 (en) | 2021-11-30 | 2023-06-08 | Bayer Aktiengesellschaft | Bis(hetero)aryl thioether oxadiazines as fungicidal compounds |
| EP4194453A1 (en) | 2021-12-08 | 2023-06-14 | Basf Se | Pyrazine compounds for the control of invertebrate pests |
| WO2023108035A1 (en) | 2021-12-09 | 2023-06-15 | Pairwise Plants Services, Inc. | Methods for improving floret fertility and seed yield |
| EP4198023A1 (en) | 2021-12-16 | 2023-06-21 | Basf Se | Pesticidally active thiosemicarbazone compounds |
| EP4198033A1 (en) | 2021-12-14 | 2023-06-21 | Basf Se | Heterocyclic compounds for the control of invertebrate pests |
| WO2023147526A1 (en) | 2022-01-31 | 2023-08-03 | Pairwise Plants Services, Inc. | Suppression of shade avoidance response in plants |
| WO2023148036A1 (en) | 2022-02-01 | 2023-08-10 | Globachem Nv | Methods and compositions for controlling pests in soybean |
| WO2023148028A1 (en) | 2022-02-01 | 2023-08-10 | Globachem Nv | Methods and compositions for controlling pests |
| WO2023156270A1 (en) | 2022-02-18 | 2023-08-24 | Basf Se | Coumarin synthesis and uses thereof |
| WO2023156402A1 (en) | 2022-02-17 | 2023-08-24 | Basf Se | Pesticidally active thiosemicarbazone compounds |
| EP4238971A1 (en) | 2022-03-02 | 2023-09-06 | Basf Se | Substituted isoxazoline derivatives |
| WO2023168217A1 (en) | 2022-03-02 | 2023-09-07 | Pairwise Plants Services, Inc. | Modification of brassinosteroid receptor genes to improve yield traits |
| WO2023192838A1 (en) | 2022-03-31 | 2023-10-05 | Pairwise Plants Services, Inc. | Early flowering rosaceae plants with improved characteristics |
| WO2023196886A1 (en) | 2022-04-07 | 2023-10-12 | Pairwise Plants Services, Inc. | Methods and compositions for improving resistance to fusarium head blight |
| WO2023205714A1 (en) | 2022-04-21 | 2023-10-26 | Pairwise Plants Services, Inc. | Methods and compositions for improving yield traits |
| WO2023215704A1 (en) | 2022-05-02 | 2023-11-09 | Pairwise Plants Services, Inc. | Methods and compositions for enhancing yield and disease resistance |
| WO2023213626A1 (en) | 2022-05-03 | 2023-11-09 | Bayer Aktiengesellschaft | Use of (5s)-3-[3-(3-chloro-2-fluorophenoxy)-6-methylpyridazin-4-yl]-5-(2-chloro-4-methylbenzyl)-5,6-dihydro-4h-1,2,4-oxadiazine for controlling unwanted microorganisms |
| WO2023215809A1 (en) | 2022-05-05 | 2023-11-09 | Pairwise Plants Services, Inc. | Methods and compositions for modifying root architecture and/or improving plant yield traits |
| WO2023213670A1 (en) | 2022-05-03 | 2023-11-09 | Bayer Aktiengesellschaft | Crystalline forms of (5s)-3-[3-(3-chloro-2-fluorophenoxy)-6-methylpyridazin-4-yl]-5-(2-chloro-4-methylbenzyl)-5,6-dihydro-4h-1,2,4-oxadiazine |
| US11834466B2 (en) | 2017-11-30 | 2023-12-05 | 5Metis, Inc. | Benzoxaborole compounds and formulations thereof |
| EP4295688A1 (en) | 2022-09-28 | 2023-12-27 | Bayer Aktiengesellschaft | Active compound combination |
| WO2024006792A1 (en) | 2022-06-29 | 2024-01-04 | Pairwise Plants Services, Inc. | Methods and compositions for controlling meristem size for crop improvement |
| WO2024006791A1 (en) | 2022-06-29 | 2024-01-04 | Pairwise Plants Services, Inc. | Methods and compositions for controlling meristem size for crop improvement |
| WO2024006679A1 (en) | 2022-06-27 | 2024-01-04 | Pairwise Plants Services, Inc. | Methods and compositions for modifying shade avoidance in plants |
| WO2024018016A1 (en) | 2022-07-21 | 2024-01-25 | Syngenta Crop Protection Ag | Crystalline forms of 1,2,4-oxadiazole fungicides |
| WO2024028243A1 (en) | 2022-08-02 | 2024-02-08 | Basf Se | Pyrazolo pesticidal compounds |
| WO2024030984A1 (en) | 2022-08-04 | 2024-02-08 | Pairwise Plants Services, Inc. | Methods and compositions for improving yield traits |
| WO2024033374A1 (en) | 2022-08-11 | 2024-02-15 | Syngenta Crop Protection Ag | Novel arylcarboxamide or arylthioamide compounds |
| WO2024036240A1 (en) | 2022-08-11 | 2024-02-15 | Pairwise Plants Services, Inc. | Methods and compositions for controlling meristem size for crop improvement |
| WO2024054880A1 (en) | 2022-09-08 | 2024-03-14 | Pairwise Plants Services, Inc. | Methods and compositions for improving yield characteristics in plants |
| EP4342885A1 (en) | 2022-09-20 | 2024-03-27 | Basf Se | N-(3-(aminomethyl)-phenyl)-5-(4-phenyl)-5-(trifluoromethyl)-4,5-dihydroisoxazol-3-amine derivatives and similar compounds as pesticides |
| WO2024068838A1 (en) | 2022-09-28 | 2024-04-04 | Syngenta Crop Protection Ag | Fungicidal compositions |
| WO2024068518A1 (en) | 2022-09-28 | 2024-04-04 | Bayer Aktiengesellschaft | 3-heteroaryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide |
| WO2024068837A1 (en) | 2022-09-28 | 2024-04-04 | Syngenta Crop Protection Ag | Agricultural methods |
| WO2024068519A1 (en) | 2022-09-28 | 2024-04-04 | Bayer Aktiengesellschaft | 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide |
| WO2024068520A1 (en) | 2022-09-28 | 2024-04-04 | Bayer Aktiengesellschaft | 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide |
| WO2024068517A1 (en) | 2022-09-28 | 2024-04-04 | Bayer Aktiengesellschaft | 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide |
| EP4361126A1 (en) | 2022-10-24 | 2024-05-01 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors xv |
| WO2024100069A1 (en) | 2022-11-08 | 2024-05-16 | Syngenta Crop Protection Ag | Microbiocidal pyridine derivatives |
| WO2024104823A1 (en) | 2022-11-16 | 2024-05-23 | Basf Se | New substituted tetrahydrobenzoxazepine |
| WO2024104818A1 (en) | 2022-11-16 | 2024-05-23 | Basf Se | Substituted benzodiazepines as fungicides |
| WO2024104815A1 (en) | 2022-11-16 | 2024-05-23 | Basf Se | Substituted benzodiazepines as fungicides |
| WO2024104822A1 (en) | 2022-11-16 | 2024-05-23 | Basf Se | Substituted tetrahydrobenzodiazepine as fungicides |
| EP4385327A1 (en) | 2022-12-15 | 2024-06-19 | Kimitec Group S.L. | Biopesticide composition and method for controlling and treating broad spectrum of pests and diseases in plants |
| EP4389210A1 (en) | 2022-12-21 | 2024-06-26 | Basf Se | Heteroaryl compounds for the control of invertebrate pests |
| WO2024137438A2 (en) | 2022-12-19 | 2024-06-27 | BASF Agricultural Solutions Seed US LLC | Insect toxin genes and methods for their use |
| WO2024165343A1 (en) | 2023-02-08 | 2024-08-15 | Basf Se | New substituted quinoline compounds for combatitng phytopathogenic fungi |
| WO2024173622A1 (en) | 2023-02-16 | 2024-08-22 | Pairwise Plants Services, Inc. | Methods and compositions for modifying shade avoidance in plants |
| WO2024182658A1 (en) | 2023-03-02 | 2024-09-06 | Pairwise Plants Services, Inc. | Methods and compositions for modifying shade avoidance in plants |
| WO2024186950A1 (en) | 2023-03-09 | 2024-09-12 | Pairwise Plants Services, Inc. | Modification of brassinosteroid signaling pathway genes for improving yield traits in plants |
| WO2024194038A1 (en) | 2023-03-17 | 2024-09-26 | Basf Se | Substituted pyridyl/pyrazidyl dihydrobenzothiazepine compounds for combatting phytopathogenic fungi |
| EP4455137A1 (en) | 2023-04-24 | 2024-10-30 | Basf Se | Pyrimidine compounds for the control of invertebrate pests |
| WO2024223034A1 (en) | 2023-04-26 | 2024-10-31 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors xvi |
| EP4461130A2 (en) | 2019-10-14 | 2024-11-13 | Basf Agricultural Solutions Seed Us Llc | Novel insect resistant genes and methods of use |
| EP4461128A2 (en) | 2019-10-14 | 2024-11-13 | BASF Agricultural Solutions Seed US LLC | Novel insect resistant genes and methods of use |
| WO2024238902A1 (en) | 2023-05-18 | 2024-11-21 | Pairwise Plants Services, Inc. | Methods and compositions for improving yield characteristics in plants |
| EP4467535A1 (en) | 2023-05-25 | 2024-11-27 | Basf Se | Lactam pesticidal compounds |
| EP4488270A1 (en) | 2023-07-06 | 2025-01-08 | Basf Se | Triazole compounds for the control of invertebrate pests |
| EP4488269A1 (en) | 2023-07-06 | 2025-01-08 | Basf Se | Triazole compounds for the control of invertebrate pests |
| EP4488273A1 (en) | 2023-07-06 | 2025-01-08 | Basf Se | Triazole compounds for the control of invertebrate pests |
| WO2025008446A1 (en) | 2023-07-05 | 2025-01-09 | Bayer Aktiengesellschaft | Composition for use in agriculture |
| WO2025008227A1 (en) | 2023-07-05 | 2025-01-09 | Basf Se | Substituted pyridyl/pyrazinyl dihydropyrrolotriazine compounds for combatting phytopath-ogenic fungi |
| WO2025008226A1 (en) | 2023-07-05 | 2025-01-09 | Basf Se | Substituted quinolyl/quinoxalyl dihydropyrrolotriazine compounds for combatting phyto-pathogenic fungi |
| WO2025008447A1 (en) | 2023-07-05 | 2025-01-09 | Bayer Aktiengesellschaft | Composition for use in agriculture |
| WO2025019522A1 (en) | 2023-07-18 | 2025-01-23 | Pairwise Plants Services, Inc. | Methods and compositions for modifying root architecture in plants |
| WO2025024617A1 (en) | 2023-07-27 | 2025-01-30 | Pairwise Plants Services, Inc. | Methods and compositions for modifying plant yield traits |
| WO2025026787A1 (en) | 2023-08-01 | 2025-02-06 | Globachem Nv | Plant defense elicitors |
| WO2025026738A1 (en) | 2023-07-31 | 2025-02-06 | Bayer Aktiengesellschaft | 6-[5-(ethylsulfonyl)-1-methyl-1h-imidazol-4-yl]-7-methyl-3-(pentafluoroethyl)-7h-imidazo[4,5-c]pyridazine derivatives as pesticides |
| WO2025026815A1 (en) | 2023-08-01 | 2025-02-06 | Globachem Nv | Insecticidal mixtures |
| WO2025032038A1 (en) | 2023-08-09 | 2025-02-13 | Bayer Aktiengesellschaft | Pyridazin-4-yloxadiazines as novel fungicides |
| WO2025031842A1 (en) | 2023-08-09 | 2025-02-13 | Basf Se | New substituted benzoxazepine picolinonitrile compounds for combatting phytopathogenic fungi |
| WO2025031668A1 (en) | 2023-08-09 | 2025-02-13 | Bayer Aktiengesellschaft | Azaheterobiaryl-substituted 4,5-dihydro-1h-2,4,5-oxadiazines as novel fungicides |
| WO2025031843A1 (en) | 2023-08-09 | 2025-02-13 | Basf Se | New substituted benzoxazine picolinonitrile compounds for combatting phytopathogenic fungi |
| WO2025031989A1 (en) | 2023-08-04 | 2025-02-13 | Syngenta Crop Protection Ag | Methods of controlling or preventing infestation of plants by the phytopathogenic microorganism corynespora cassiicola |
| WO2025031913A1 (en) | 2023-08-04 | 2025-02-13 | Syngenta Crop Protection Ag | Methods of controlling or preventing infestation of plants by the phytopathogenic microorganism corynespora cassiicola |
| WO2025031990A1 (en) | 2023-08-04 | 2025-02-13 | Syngenta Crop Protection Ag | Methods of controlling or preventing infestation of soybean plants by the phytopathogenic microorganism corynespora cassiicola |
| WO2025064734A1 (en) | 2023-09-21 | 2025-03-27 | Pairwise Plants Services, Inc. | Early flowering black raspberry plants with improved characteristics |
| WO2025068226A2 (en) | 2023-09-29 | 2025-04-03 | Basf Se | Methods for protecting plants using mixtures comprising sulfur and selected terpenes |
| WO2025078128A1 (en) | 2023-10-11 | 2025-04-17 | Bayer Aktiengesellschaft | Pyridazin-3-one-4-yloxadiazines as novel fungicides |
| WO2025078181A1 (en) | 2023-10-09 | 2025-04-17 | Basf Se | Fungicidal mixture comprising substituted pyridines |
| WO2025080600A1 (en) | 2023-10-11 | 2025-04-17 | Pairwise Plants Services, Inc. | Methods and compositions for improving crop yield traits |
| WO2025078183A1 (en) | 2023-10-09 | 2025-04-17 | Basf Se | Fungicidal mixture comprising substituted quinazolyl quinolines |
| WO2025090606A1 (en) | 2023-10-27 | 2025-05-01 | Basf Agricultural Solutions Us Llc | Use of novel genes for the control of nematode pests |
| WO2025098874A1 (en) | 2023-11-10 | 2025-05-15 | Bayer Aktiengesellschaft | Active compound combinations having fungicidal/insecticidal/acaricidal properties |
| WO2025098876A1 (en) | 2023-11-10 | 2025-05-15 | Bayer Aktiengesellschaft | Active compound combinations having insecticidal/acaricidal properties |
| WO2025098875A1 (en) | 2023-11-10 | 2025-05-15 | Bayer Aktiengesellschaft | Active compound combinations having insecticidal/acaricidal properties |
| WO2025111030A2 (en) | 2023-07-07 | 2025-05-30 | Basf Agricultural Solutions Us Llc | Use of novel genes for the control of nematode pests |
| WO2025120070A1 (en) | 2023-12-08 | 2025-06-12 | Syngenta Crop Protection Ag | Polymorphs of a methoxyacrylate derivative |
| WO2025125639A1 (en) | 2023-12-13 | 2025-06-19 | Syngenta Crop Protection Ag | Method of pathogen control in soybean |
| EP4574819A1 (en) | 2023-12-22 | 2025-06-25 | Basf Se | Diazinone compounds for the control of invertebrate pests |
| WO2025132562A1 (en) | 2023-12-22 | 2025-06-26 | Basf Agricultural Solutions Us Llc | Increased resistance by expression of a defense signal multiplier protein |
| WO2025131902A1 (en) | 2023-12-21 | 2025-06-26 | Basf Se | Methods for protecting plants using mixtures comprising sulfur, selected terpenes and phosphites. |
| WO2025162985A1 (en) | 2024-01-30 | 2025-08-07 | Basf Plant Science Company Gmbh | Increased plant disease resistance by expression of a glycine-rich protein |
| WO2025168620A1 (en) | 2024-02-07 | 2025-08-14 | Bayer Aktiengesellschaft | Heteroaryl-substituted 4,5-dihydro-1h-2,4,5-oxadiazines as novel fungicides |
| WO2025178902A1 (en) | 2024-02-22 | 2025-08-28 | Pairwise Plants Services, Inc. | Methods and compositions for improving yield characteristics in plants |
| WO2025180964A1 (en) | 2024-03-01 | 2025-09-04 | Basf Se | New substituted benzoxazepine compounds for combatting phytopathogenic fungi |
| WO2025186065A1 (en) | 2024-03-05 | 2025-09-12 | Bayer Aktiengesellschaft | Heteroaryl-substituted (aza)quinoxaline derivatives as pesticides |
| WO2025190927A1 (en) | 2024-03-14 | 2025-09-18 | Bayer Aktiengesellschaft | Active compound combinations having insecticidal/acaricidal properties |
| WO2025202482A1 (en) | 2024-03-28 | 2025-10-02 | Syngenta Crop Protection Ag | Fungicidal compositions |
| WO2025202499A1 (en) | 2024-03-28 | 2025-10-02 | Syngenta Crop Protection Ag | Fungicidal compositions |
| WO2025211272A1 (en) | 2024-04-04 | 2025-10-09 | Nihon Nohyaku Co., Ltd. | Pesticidal mixtures comprising an ethylsulfone compound |
| EP4640052A1 (en) | 2024-04-24 | 2025-10-29 | Basf Se | Mixtures of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors with at least one further pesticide i |
| WO2025223904A1 (en) | 2024-04-24 | 2025-10-30 | Basf Se | Mixtures of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors with at least one further pesticide i |
| EP4652842A1 (en) | 2024-05-21 | 2025-11-26 | Kimitec Biogroup S.L | Biopesticide composition, procedure of obtain thereof, and method for controlling and treating broad spectrum of pests, diseases and weeds in plants |
| EP4652843A1 (en) | 2024-05-21 | 2025-11-26 | Kimitec Biogroup S.L | Biopesticide composition, procedure of obtain thereof, and method for controlling and treating broad spectrum of pests in plants |
Families Citing this family (185)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101151373B (zh) * | 2005-04-08 | 2016-02-24 | 拜尔作物科学公司 | 原种事件a2704-12以及用于鉴定生物样品中此事件的方法和试剂盒 |
| TWI667347B (zh) | 2010-12-15 | 2019-08-01 | 瑞士商先正達合夥公司 | 大豆品種syht0h2及偵測其之組合物及方法 |
| PL2699093T3 (pl) | 2011-04-22 | 2016-04-29 | Bayer Cropscience Ag | Kombinacje związku aktywnego zawierające pochodną karboksyamidową i związek grzybobójczy |
| US8722980B2 (en) | 2012-07-02 | 2014-05-13 | Mertec, Llc | Soybean cultivar S090059 |
| US8716569B2 (en) | 2012-07-02 | 2014-05-06 | Mertec, Llc | Soybean cultivar 11430023 |
| US8759630B2 (en) | 2012-07-02 | 2014-06-24 | Mertec, Llc | Soybean cultivar S110125 |
| US8766050B2 (en) | 2012-07-02 | 2014-07-01 | Mertec, Llc | Soybean cultivar XB35H12 |
| US8829288B2 (en) | 2012-07-02 | 2014-09-09 | Mertec Llc | Soybean cultivar 11203105 |
| US8759629B2 (en) | 2012-07-02 | 2014-06-24 | Mertec, Llc | Soybean cultivar S110124 |
| US8822770B2 (en) | 2012-07-03 | 2014-09-02 | Mertec, Llc | Soybean cultivar S110129 |
| US8722982B2 (en) | 2012-07-03 | 2014-05-13 | Mertec, Llc | Soybean cultivar 19091245 |
| US8722981B2 (en) | 2012-07-03 | 2014-05-13 | Mertec, Llc | Soybean cultivar 11190435 |
| US8722983B2 (en) | 2012-07-03 | 2014-05-13 | Mertec, Llc | Soybean cultivar S110130 |
| US8878020B2 (en) | 2012-07-18 | 2014-11-04 | M.S. Technologies Llc | Soybean cultivar S110226 |
| US8722985B2 (en) | 2012-07-18 | 2014-05-13 | M.S. Technologies Llc | Soybean cultivar S100108 |
| US9155259B2 (en) | 2012-07-18 | 2015-10-13 | M.S. Technologies Llc | Soybean cultivar S100325 |
| US8735684B2 (en) | 2012-07-18 | 2014-05-27 | M.S. Technologies Llc | Soybean cultivar S100168 |
| US8889955B2 (en) | 2012-07-18 | 2014-11-18 | M.S. Technologies Llc | Soybean cultivar XB36AX12 |
| US9157047B2 (en) | 2012-07-18 | 2015-10-13 | M.S. Technologies Llc | Soybean cultivar S110132 |
| US9155260B2 (en) | 2012-07-18 | 2015-10-13 | M.S. Technologies Llc | Soybean cultivar 11263801 |
| US9155328B2 (en) | 2012-07-18 | 2015-10-13 | M.S. Technology LLC | Soybean cultivar S100321 |
| US8872004B2 (en) | 2012-07-18 | 2014-10-28 | M.S. Technologies, Llc | Soybean cultivar S110126 |
| US8940964B2 (en) | 2012-07-18 | 2015-01-27 | M.S. Technologies Llc | Soybean cultivar S110181 |
| US8722984B2 (en) | 2012-07-18 | 2014-05-13 | M.S. Technologies Llc | Soybean cultivar S100324 |
| US9155261B2 (en) | 2012-07-18 | 2015-10-13 | M.S. Technologies Llc | Soybean cultivar S110122 |
| US8878019B2 (en) | 2012-07-18 | 2014-11-04 | M.S. Technologies, Llc | Soybean cultivar S110123 |
| US8829289B2 (en) | 2012-07-18 | 2014-09-09 | M.S. Technologies Llc | Soybean cultivar S100248 |
| US8722986B2 (en) | 2012-07-19 | 2014-05-13 | M.S. Technologies Llc | Soybean cultivar S100106 |
| US8940965B2 (en) | 2012-07-26 | 2015-01-27 | M.S. Technologies Llc | Soybean cultivar XB31U12 |
| US8940966B2 (en) | 2012-07-26 | 2015-01-27 | M.S. Technologies Llc | Soybean cultivar XB36AW12 |
| US8962934B2 (en) | 2012-07-26 | 2015-02-24 | M.S. Technologies Llc | Soybean cultivar XB33J12 |
| US8722990B2 (en) | 2012-07-26 | 2014-05-13 | M.S. Technologies Llc | Soybean cultivar S110121 |
| US8962935B2 (en) | 2012-07-26 | 2015-02-24 | M.S. Technologies Llc | Soybean cultivar 11251426 |
| US8729355B2 (en) | 2012-07-26 | 2014-05-20 | M.S. Technologies Llc | Soybean cultivar S110128 |
| US8722989B2 (en) | 2012-07-26 | 2014-05-13 | M.S. Technologies Llc | Soybean cultivar S100239 |
| US8962936B2 (en) | 2012-07-26 | 2015-02-24 | M.S. Technologies Llc | Soybean cultivar S110245 |
| US8716570B2 (en) | 2012-07-26 | 2014-05-06 | M.S. Technologies Llc | Soybean cultivar S110127 |
| US8962937B2 (en) | 2012-07-26 | 2015-02-24 | M.S. Technologies Llc | Soybean cultivar 10221117 |
| US8729354B2 (en) | 2012-07-26 | 2014-05-20 | M.S. Technologies Llc | Soybean cultivar 15183211 |
| US8722988B2 (en) | 2012-07-26 | 2014-05-13 | M.S. Technologies Llc | Soybean cultivar S100242 |
| US8722987B2 (en) | 2012-07-26 | 2014-05-13 | M.S. Technologies Llc | Soybean cultivar S100143 |
| US9192138B1 (en) | 2014-05-02 | 2015-11-24 | M.S. Technologies, Llc | Soybean cultivar S130057 |
| US8969662B2 (en) | 2013-05-15 | 2015-03-03 | M.S. Technologies Llc | Soybean cultivar XB47J13 |
| US9018457B2 (en) | 2013-05-15 | 2015-04-28 | M.S. Technologies, Llc | Soybean cultivar S120080 |
| US9095110B2 (en) | 2013-05-15 | 2015-08-04 | M.S. Technologies Llc | Soybean cultivar S110215 |
| US9018458B2 (en) | 2013-05-15 | 2015-04-28 | M. S. Technologies, LLC | Soybean cultivar YB44J13 |
| US9095109B2 (en) | 2013-05-15 | 2015-08-04 | M.S. Technologies Llc | Soybean cultivar S110180 |
| US9018456B2 (en) | 2013-05-15 | 2015-04-28 | M. S. Technologies, LLC | Soybean cultivar S120067 |
| US9018459B2 (en) | 2013-05-21 | 2015-04-28 | M. S. Technologies, LLC | Soybean cultivar S110175 |
| US9072250B2 (en) | 2013-05-21 | 2015-07-07 | M.S. Technologies Llc | Soybean cultivar S120101 |
| US9018464B2 (en) | 2013-05-21 | 2015-04-28 | M. S. Technologies, LLC | Soybean cultivar S110268 |
| US9018460B2 (en) | 2013-05-21 | 2015-04-28 | M. S. Technologies, LLC | Soybean cultivar YB37H13 |
| US8889959B1 (en) | 2013-05-21 | 2014-11-18 | M.S. Technologies Llc | Soybean cultivar S110190 |
| US9066488B2 (en) | 2013-05-21 | 2015-06-30 | M.S. Technologies Llc | Soybean cultivar S100138 |
| US9072249B2 (en) | 2013-05-21 | 2015-07-07 | M.S. Technologies Llc | Soybean cultivar S110241 |
| US9018463B2 (en) | 2013-05-21 | 2015-04-28 | M.S. Technologies, Llc | Soybean cultivar S120078 |
| US9018462B2 (en) | 2013-05-21 | 2015-04-28 | M.S. Technologies, Llc | Soybean cultivar S120087 |
| US9018461B2 (en) | 2013-05-21 | 2015-04-28 | M. S. Technologies, LLC | Soybean cultivar S120090 |
| US9072248B2 (en) | 2013-05-21 | 2015-07-07 | M.S. Technologies Llc | Soybean cultivar S110254 |
| US9072247B2 (en) | 2013-05-21 | 2015-07-07 | M.S. Technologies Llc | Soybean cultivar S110237 |
| US9072251B2 (en) | 2013-05-21 | 2015-07-07 | M.S. Technologies Llc | Soybean cultivar S120097 |
| US8889958B1 (en) | 2013-05-21 | 2014-11-18 | M.S. Technologies Llc | Soybean cultivar S110257 |
| US9161505B2 (en) | 2013-05-22 | 2015-10-20 | M.S. Technologies Llc | Soybean cultivar YB45U13 |
| US9232739B2 (en) | 2014-05-01 | 2016-01-12 | M.S. Technologies Llc | Soybean cultivar S120085 |
| US9433170B2 (en) | 2014-05-01 | 2016-09-06 | M.S. Technologies Llc | Soybean cultivar S120070 |
| US9192137B1 (en) | 2014-05-01 | 2015-11-24 | M.S. Technologies, Llc | Soybean cultivar S110192 |
| US9307730B2 (en) | 2014-05-01 | 2016-04-12 | M.S. Technologies Llc | Soybean cultivar S120082 |
| US9237716B2 (en) | 2014-05-01 | 2016-01-19 | M.S. Technologies Llc | Soybean cultivar S120077 |
| US9307729B2 (en) | 2014-05-01 | 2016-04-12 | M.S. Technologies Llc | Soybean cultivar S120081 |
| US9237717B2 (en) | 2014-05-01 | 2016-01-19 | M.S. Technologies Llc | Soybean cultivar S120091 |
| US9185869B1 (en) | 2014-05-01 | 2015-11-17 | M.S. Technologies, Llc | Soybean cultivar S120099 |
| US9451755B2 (en) | 2014-05-01 | 2016-09-27 | M.S. Technologies Llc | Soybean cultivar S120063 |
| US9237718B2 (en) | 2014-05-01 | 2016-01-19 | M.S. Technologies Llc | Soybean cultivar S130050 |
| US9326477B2 (en) | 2014-05-02 | 2016-05-03 | M.S. Technologies, Llc | Soybean cultivar S130056 |
| US9237722B2 (en) | 2014-05-02 | 2016-01-19 | M.S. Technologies Llc | Soybean cultivar S130059 |
| US9313984B2 (en) | 2014-05-02 | 2016-04-19 | M.S. Technologies Llc | Soybean cultivar S120094 |
| US9185870B1 (en) | 2014-05-02 | 2015-11-17 | M.S. Technologies, Llc | Soybean cultivar S130058 |
| US9313985B2 (en) | 2014-05-02 | 2016-04-19 | M.S. Technologies Llc | Soybean cultivar S130047 |
| US9313983B2 (en) | 2014-05-02 | 2016-04-19 | M.S. Technologies Llc | Soybean cultivar S130061 |
| US9313982B2 (en) | 2014-05-02 | 2016-04-19 | M.S. Technologies Llc | Soybean cultivar S130054 |
| US9198393B2 (en) | 2014-05-02 | 2015-12-01 | M.S. Technologies, Llc | Soybean cultivar S130060 |
| US9307731B2 (en) | 2014-05-02 | 2016-04-12 | M.S. Technologies Llc | Soybean cultivar S120074 |
| US9320229B2 (en) | 2014-05-02 | 2016-04-26 | M.S. Technologies, Llc | Soybean cultivar S130052 |
| US9237724B2 (en) | 2014-05-02 | 2016-01-19 | M.S. Technologies Llc | Soybean cultivar S130053 |
| US9237723B2 (en) | 2014-05-02 | 2016-01-19 | M.S. Technologies Llc | Soybean cultivar S130049 |
| US9232742B2 (en) | 2014-05-02 | 2016-01-12 | M.S. Technologies Llc | Soybean cultivar S130055 |
| US9265214B2 (en) | 2014-05-02 | 2016-02-23 | M.S. Technologies, Llc | Soybean cultivar S120104 |
| US9320208B2 (en) | 2014-05-02 | 2016-04-26 | M.S. Technologies, Llc | Soybean cultivar S130051 |
| US9193976B1 (en) | 2014-06-09 | 2015-11-24 | M.S. Technologies, Llc | Soybean cultivar S120071 |
| CA2883685C (en) * | 2014-11-19 | 2017-08-29 | Monsanto Technology Llc | Soybean variety xr30at14rx |
| CA2883599C (en) * | 2014-11-19 | 2017-09-05 | Monsanto Technology Llc | Soybean variety xr27ak14rx |
| CA2883610C (en) * | 2014-11-24 | 2017-09-05 | Monsanto Technology Llc | Soybean variety xb07a14r2 |
| US9560818B2 (en) * | 2015-02-26 | 2017-02-07 | M.S. Technologies Llc | Soybean cultivar S140141 |
| US9497917B2 (en) | 2015-02-26 | 2016-11-22 | M.S. Technologies Llc | Soybean cultivar S130075 |
| US9456572B2 (en) | 2015-02-26 | 2016-10-04 | M.S. Technologies Llc | Soybean cultivar S140143 |
| US9532525B2 (en) | 2015-02-26 | 2017-01-03 | M.S. Technologies Llc | Soybean cultivar S130066 |
| US9271469B1 (en) | 2015-02-26 | 2016-03-01 | M.S. Technologies, Llc | Soybean cultivar S140157 |
| US9345221B1 (en) | 2015-02-26 | 2016-05-24 | M.S. Technologies, Llc | Soybean cultivar S140154 |
| US9560819B2 (en) | 2015-02-26 | 2017-02-07 | M.S. Technologies Llc | Soybean cultivar S140150 |
| US9578830B2 (en) | 2015-02-26 | 2017-02-28 | M.S. Technologies Llc | Soybean cultivar S110170 |
| US9554535B2 (en) | 2015-02-26 | 2017-01-31 | M.S. Technologies Llc | Soybean cultivar S130074 |
| US9351466B1 (en) | 2015-02-26 | 2016-05-31 | M.S. Technologies, Llc | Soybean cultivar S140156 |
| US9265224B1 (en) | 2015-02-26 | 2016-02-23 | M.S. Technologies, Llc | Soybean cultivar S130065 |
| US9560816B2 (en) | 2015-02-26 | 2017-02-07 | M.S. Technologies Llc | Soybean cultivar S130079 |
| US9247705B1 (en) | 2015-02-26 | 2016-02-02 | M.S. Technologies Llc | Soybean cultivar S140165 |
| US9456573B2 (en) | 2015-02-26 | 2016-10-04 | M.S. Technologies Llc | Soybean cultivar S140155 |
| US9532524B2 (en) | 2015-02-26 | 2017-01-03 | M.S. Technologies Llc | Soybean cultivar S140183 |
| US9565820B2 (en) | 2015-02-26 | 2017-02-14 | M.S. Technologies Llc | Soybean cultivar S130084 |
| US9241470B1 (en) | 2015-02-26 | 2016-01-26 | M.S. Technologies Llc | Soybean cultivar S130070 |
| US9554536B2 (en) | 2015-02-26 | 2017-01-31 | M.S. Technologies Llc | Soybean cultivar S140140 |
| US9351465B1 (en) | 2015-02-26 | 2016-05-31 | M.S. Technologies, Llc | Soybean cultivar S140151 |
| US9560817B2 (en) | 2015-02-26 | 2017-02-07 | M.S. Technologies Llc | Soybean cultivar S140144 |
| US9241469B1 (en) | 2015-02-26 | 2016-01-26 | M.S. Technologies Llc | Soybean cultivar S130063 |
| US9456571B2 (en) | 2015-02-26 | 2016-10-04 | M.S. Technologies Llc | Soybean cultivar S140147 |
| US9357736B1 (en) | 2015-02-26 | 2016-06-07 | M.S. Technologies, Llc | Soybean cultivar S140158 |
| US9661818B1 (en) | 2016-01-28 | 2017-05-30 | M.S. Technologies, Llc | Soybean cultivar S150105 |
| US9999183B2 (en) | 2016-01-28 | 2018-06-19 | M.S. Technologies, Llc | Soybean cultivar S140174 |
| US9756812B2 (en) | 2016-01-28 | 2017-09-12 | M.S. Technologies Llc | Soybean cultivar S140170 |
| US9655334B1 (en) | 2016-01-28 | 2017-05-23 | M.S. Technologies, Llc | Soybean cultivar S140145 |
| US9737010B1 (en) | 2016-01-28 | 2017-08-22 | M.S. Technologies Llc | Soybean cultivar S140159 |
| US9655335B1 (en) | 2016-01-28 | 2017-05-23 | M.S. Technologies, Llc | Soybean cultivar S140146 |
| US9737011B1 (en) | 2016-01-28 | 2017-08-22 | M.S. Technologies Llc | Soybean cultivar S140166 |
| US9686940B1 (en) | 2016-01-28 | 2017-06-27 | M.S. Technologies, Llc | Soybean cultivar S150106 |
| US9693522B1 (en) | 2016-01-28 | 2017-07-04 | M.S. Technologies, Llc | Soybean cultivar S140153 |
| HRP20210497T1 (hr) | 2016-12-22 | 2021-05-14 | Syngenta Participations Ag | Polimorfi |
| GB201622007D0 (en) | 2016-12-22 | 2017-02-08 | And See Cambridge Display Tech Ltd Syngenta Participations Ag | Polymorphs |
| US9888650B1 (en) | 2017-02-28 | 2018-02-13 | M.S. Technologies, Llc | Soybean cultivar S140173 |
| US9999188B1 (en) | 2017-02-28 | 2018-06-19 | M.S. Technologies, Llc | Soybean cultivar S160149 |
| UY37623A (es) | 2017-03-03 | 2018-09-28 | Syngenta Participations Ag | Derivados de oxadiazol tiofeno fungicidas |
| BR112019020134B1 (pt) | 2017-03-31 | 2023-05-09 | Syngenta Participations Ag | Composições fungicidas |
| CN113979962A (zh) | 2017-03-31 | 2022-01-28 | 先正达参股股份有限公司 | 杀真菌组合物 |
| BR112019020693B1 (pt) | 2017-04-03 | 2023-11-28 | Syngenta Participations Ag | Compostos derivados de oxadiazol microbiocidas, suas composições, método para controlar ou prevenir a infestação de plantas úteis por microrganismos fitopatogênicos utilizando tais compostos e seus usos |
| WO2018184985A1 (en) | 2017-04-05 | 2018-10-11 | Syngenta Participations Ag | Microbiocidal oxadiazole derivatives |
| BR112019020735B1 (pt) | 2017-04-05 | 2023-12-05 | Syngenta Participations Ag | Compostos derivados de oxadiazol microbiocidas e seu uso, composição agroquímica e método para controlar ou prevenir a infestação de plantas úteis por microrganismos fitopatogênicos |
| BR112019020756B1 (pt) | 2017-04-05 | 2023-11-28 | Syngenta Participations Ag | Compostos derivados de oxadiazol microbicidas, composição agroquímica compreendendo os mesmos, método para controlar ou prevenir a infestação de plantas úteis por microrganismos fitopatogênicos e uso desses compostos |
| WO2018184988A1 (en) | 2017-04-05 | 2018-10-11 | Syngenta Participations Ag | Microbiocidal oxadiazole derivatives |
| WO2018184987A1 (en) | 2017-04-05 | 2018-10-11 | Syngenta Participations Ag | Microbiocidal oxadiazole derivatives |
| WO2018184986A1 (en) | 2017-04-05 | 2018-10-11 | Syngenta Participations Ag | Microbiocidal oxadiazole derivatives |
| WO2018185211A1 (en) | 2017-04-06 | 2018-10-11 | Syngenta Participations Ag | Microbiocidal oxadiazole derivatives |
| WO2018219773A1 (en) | 2017-06-02 | 2018-12-06 | Syngenta Participations Ag | Fungicidal compositions |
| WO2018219825A1 (en) | 2017-06-02 | 2018-12-06 | Syngenta Participations Ag | Microbiocidal oxadiazole derivatives |
| US11154058B2 (en) | 2017-06-14 | 2021-10-26 | Syngenta Participations Ag | Fungicidal compositions |
| CA3067309A1 (en) | 2017-06-28 | 2019-01-03 | Syngenta Participations Ag | Fungicidal compositions |
| WO2019011926A1 (en) | 2017-07-11 | 2019-01-17 | Syngenta Participations Ag | MICROBIOCIDE OXADIAZOLE DERIVATIVES |
| WO2019011928A1 (en) | 2017-07-11 | 2019-01-17 | Syngenta Participations Ag | MICROBIOCIDE OXADIAZOLE DERIVATIVES |
| WO2019011929A1 (en) | 2017-07-11 | 2019-01-17 | Syngenta Participations Ag | MICROBIOCIDE OXADIAZOLE DERIVATIVES |
| BR112020000465B1 (pt) | 2017-07-11 | 2024-02-20 | Syngenta Participations Ag | Derivados oxadiazol microbiocidas |
| WO2019012001A1 (en) | 2017-07-12 | 2019-01-17 | Syngenta Participations Ag | Microbiocidal oxadiazole derivatives |
| WO2019012011A1 (en) | 2017-07-12 | 2019-01-17 | Syngenta Participations Ag | MICROBIOCIDE OXADIAZOLE DERIVATIVES |
| BR112020000463A2 (pt) | 2017-07-13 | 2020-07-21 | Syngenta Participations Ag | derivados oxadiazol microbiocidas |
| BR112020001585A2 (pt) | 2017-07-27 | 2020-08-11 | Basf Se | usos de uma composição e método para controlar plantas prejudiciais em uma cultura de campo tolerante a glufosinato |
| UY37913A (es) | 2017-10-05 | 2019-05-31 | Syngenta Participations Ag | Derivados de picolinamida fungicidas que portan un grupo terminal cuaternario |
| UY37912A (es) | 2017-10-05 | 2019-05-31 | Syngenta Participations Ag | Derivados de picolinamida fungicidas que portan grupos terminales heteroarilo o heteroariloxi |
| WO2019096709A1 (en) | 2017-11-15 | 2019-05-23 | Syngenta Participations Ag | Microbiocidal picolinamide derivatives |
| WO2019207062A1 (en) | 2018-04-26 | 2019-10-31 | Syngenta Participations Ag | Microbiocidal oxadiazole derivatives |
| US20210269426A1 (en) | 2018-06-29 | 2021-09-02 | Syngenta Crop Protection Ag | Microbiocidal oxadiazole derivatives |
| EP3818058A1 (en) | 2018-07-02 | 2021-05-12 | Syngenta Crop Protection AG | 3-(2-thienyl)-5-(trifluoromethyl)-1,2,4-oxadiazole derivatives as agrochemical fungicides |
| CN112689631A (zh) | 2018-07-16 | 2021-04-20 | 先正达农作物保护股份公司 | 杀微生物的噁二唑衍生物 |
| US10492435B1 (en) | 2018-08-01 | 2019-12-03 | M.S. Technologies, L.L.C. | Soybean cultivar S160157 |
| US10555470B1 (en) | 2018-08-01 | 2020-02-11 | M.S. Technologies, L.L.C. | Soybean cultivar S160123 |
| US10492434B1 (en) | 2018-08-01 | 2019-12-03 | M.S. Technologies, L.L.C. | Soybean cultivar S160124 |
| CN113195462A (zh) | 2018-10-17 | 2021-07-30 | 先正达农作物保护股份公司 | 杀微生物的噁二唑衍生物 |
| AR116628A1 (es) | 2018-10-18 | 2021-05-26 | Syngenta Crop Protection Ag | Compuestos microbiocidas |
| CN109136341A (zh) * | 2018-10-19 | 2019-01-04 | 浙江省农业科学院 | 一种检测转基因大豆a2704-12的引物、探针及试剂盒和方法 |
| WO2020165403A1 (en) | 2019-02-15 | 2020-08-20 | Syngenta Crop Protection Ag | Phenyl substituted thiazole derivatives as microbiocidal compounds |
| KR20210132089A (ko) | 2019-02-20 | 2021-11-03 | 신젠타 크롭 프로텍션 아게 | 스피로피디온의 용도 |
| GB201903942D0 (en) | 2019-03-22 | 2019-05-08 | Syngenta Crop Protection Ag | Microbiocidal compounds |
| WO2020208095A1 (en) | 2019-04-10 | 2020-10-15 | Syngenta Crop Protection Ag | Microbiocidal picolinamide derivatives |
| US20220167615A1 (en) | 2019-04-10 | 2022-06-02 | Syngenta Crop Protection Ag | Fungicidal compositions |
| CN110129359B (zh) * | 2019-05-21 | 2021-08-10 | 先正达生物科技(中国)有限公司 | 检测基因编辑事件以及测定基因编辑效率的方法以及其应用 |
| EP3994124A1 (en) | 2019-07-05 | 2022-05-11 | Syngenta Crop Protection AG | Microbiocidal picolinamide derivatives |
| GB201910037D0 (en) | 2019-07-12 | 2019-08-28 | Syngenta Crop Protection Ag | Microbiocidal compounds |
| BR112022017254A2 (pt) | 2020-03-05 | 2022-10-18 | Syngenta Crop Protection Ag | Composições fungicidas |
| UY39115A (es) | 2020-03-05 | 2021-10-29 | Syngenta Crop Protection Ag | Mezclas fungicidas de derivados de arilo metoxiacrilato |
| GB202006399D0 (en) | 2020-04-30 | 2020-06-17 | Syngenta Crop Protection Ag | Microbiocidal compounds |
| GB202006386D0 (en) | 2020-04-30 | 2020-06-17 | Syngenta Crop Protection Ag | Microbiocidal Compounds |
| GB202006480D0 (en) | 2020-05-01 | 2020-06-17 | Syngenta Crop Protection Ag | Microbiocidal compounds |
| GB202006606D0 (en) | 2020-05-05 | 2020-06-17 | Syngenta Crop Protection Ag | Microbiocidal compounds |
| GB202014840D0 (en) | 2020-09-21 | 2020-11-04 | Syngenta Crop Protection Ag | Microbiocidal compounds |
| TW202231187A (zh) | 2020-11-27 | 2022-08-16 | 瑞士商先正達農作物保護公司 | 殺有害生物組成物 |
| UY39544A (es) | 2020-12-02 | 2022-06-30 | Syngenta Crop Protection Ag | Composiciones fungicidas que comprenden una mezcla de componentes (a) y (b) como principios activos |
| WO2022117650A1 (en) | 2020-12-02 | 2022-06-09 | Syngenta Crop Protection Ag | Fungicidal compositions |
| AR125089A1 (es) | 2021-03-19 | 2023-06-07 | Syngenta Crop Protection Ag | Composiciones plaguicidas |
| AU2022269255B2 (en) | 2021-05-04 | 2025-09-11 | Syngenta Crop Protection Ag | Use of clethodim for insect control |
| CN117597025A (zh) | 2021-07-02 | 2024-02-23 | 先正达农作物保护股份公司 | 精吡氟禾草灵用于昆虫控制的用途 |
Family Cites Families (23)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5965138A (en) * | 1985-09-06 | 1999-10-12 | Syntro Corporation | Recombinant chimeric virus and uses thereof |
| US6395966B1 (en) * | 1990-08-09 | 2002-05-28 | Dekalb Genetics Corp. | Fertile transgenic maize plants containing a gene encoding the pat protein |
| US5928905A (en) * | 1995-04-18 | 1999-07-27 | Glaxo Group Limited | End-complementary polymerase reaction |
| US5576477A (en) * | 1995-11-03 | 1996-11-19 | Asgrow Seed Company | Soybean cultivar A2704 |
| US20020073443A1 (en) * | 1996-02-28 | 2002-06-13 | Heifetz Peter B. | Herbicide tolerance achieved through plastid transformation |
| US5824850A (en) | 1997-02-07 | 1998-10-20 | Asgrow Seed Company | Soybean cultivar 8816079010574 |
| US6177617B1 (en) | 1997-02-07 | 2001-01-23 | Asgrow Seed Company | Soybean cultivar 89248009206 |
| US6376754B1 (en) | 1997-03-07 | 2002-04-23 | Asgrow Seed Company | Plants having resistance to multiple herbicides and its use |
| AU748761B2 (en) * | 1997-11-27 | 2002-06-13 | Vlaams Interuniversitair Instituut Voor Biotechnologie Vzw | Isolation and characterization of plant regulatory sequences |
| DE19754929A1 (de) * | 1997-12-10 | 1999-06-17 | Hoechst Schering Agrevo Gmbh | Verfahren zur Herstellung transgener Pflanzen mit veränderter 5-Aminolävulinsäure-Biosynthese und Verfahren zur Identifizierung von Effektoren der 5-Aminolävulinsäure Synthese |
| US6180391B1 (en) * | 1998-01-28 | 2001-01-30 | Amgen Inc. | Highly efficient controlled expression of exogenous genes in e. coli |
| US6333449B1 (en) * | 1998-11-03 | 2001-12-25 | Plant Genetic Systems, N.V. | Glufosinate tolerant rice |
| AU1336200A (en) * | 1998-11-03 | 2000-05-22 | Aventis Cropscience N.V. | Glufosinate tolerant rice |
| US20040031072A1 (en) * | 1999-05-06 | 2004-02-12 | La Rosa Thomas J. | Soy nucleic acid molecules and other molecules associated with transcription plants and uses thereof for plant improvement |
| US6506963B1 (en) * | 1999-12-08 | 2003-01-14 | Plant Genetic Systems, N.V. | Hybrid winter oilseed rape and methods for producing same |
| US6395485B1 (en) * | 2000-01-11 | 2002-05-28 | Aventis Cropscience N.V. | Methods and kits for identifying elite event GAT-ZM1 in biological samples |
| US20020132271A1 (en) * | 2000-09-29 | 2002-09-19 | Onisk Dale V. | Reagents, method and kit for detecting phosphinothricin-N-acetyltransferase protein |
| US6818807B2 (en) * | 2001-08-06 | 2004-11-16 | Bayer Bioscience N.V. | Herbicide tolerant cotton plants having event EE-GH1 |
| AU2003231284A1 (en) * | 2002-05-03 | 2003-11-17 | Monsanto Technology, Llc | Seed specific usp promoters for expressing genes in plants |
| EP1506300A2 (en) * | 2002-05-17 | 2005-02-16 | Vlaams Interuniversitair Instituut voor Biotechnologie vzw. | Genes and uses thereof to modulate secondary metabolite biosynthesis |
| CN1470643A (zh) * | 2002-07-26 | 2004-01-28 | 深圳市匹基生物工程股份有限公司 | 含有pat基因转基因作物核酸扩增用引物序列 |
| CN100335651C (zh) * | 2002-09-24 | 2007-09-05 | 深圳市匹基生物工程股份有限公司 | 一种荧光PCR定性检测含有Pat基因转基因作物探针序列及试剂盒 |
| CN101151373B (zh) * | 2005-04-08 | 2016-02-24 | 拜尔作物科学公司 | 原种事件a2704-12以及用于鉴定生物样品中此事件的方法和试剂盒 |
-
2006
- 2006-04-04 CN CN200680010143.4A patent/CN101151373B/zh active Active
- 2006-04-04 WO PCT/EP2006/003454 patent/WO2006108674A2/en not_active Ceased
- 2006-04-04 MX MX2007012383A patent/MX2007012383A/es active IP Right Grant
- 2006-04-04 JP JP2008504705A patent/JP5256020B2/ja active Active
- 2006-04-04 ES ES06724339T patent/ES2388548T3/es active Active
- 2006-04-04 CA CA2603944A patent/CA2603944C/en active Active
- 2006-04-04 EP EP06724339A patent/EP1869187B1/en active Active
- 2006-04-04 CN CN201310009219.3A patent/CN103103262B/zh active Active
- 2006-04-04 BR BRPI0608667-5A patent/BRPI0608667B1/pt active IP Right Grant
- 2006-04-04 US US11/910,899 patent/US8012689B2/en active Active
-
2011
- 2011-08-02 US US13/196,705 patent/US9322069B2/en active Active
-
2012
- 2012-07-13 JP JP2012157610A patent/JP5612636B2/ja active Active
-
2013
- 2013-08-23 US US13/974,532 patent/US20140026262A1/en not_active Abandoned
Non-Patent Citations (1)
| Title |
|---|
| None |
Cited By (400)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1950311A1 (en) * | 2007-01-29 | 2008-07-30 | Scientific Institute of Public Health (IPH) | Transgenic plant event detection |
| WO2008092866A1 (en) | 2007-01-29 | 2008-08-07 | Scientific Institute Of Public Health (Iph) | Transgenic plant event detection |
| EA024233B1 (ru) * | 2007-01-29 | 2016-08-31 | Сайнтифик Инститьют Оф Паблик Хелт (Ипх) | Способы, реагенты, материалы и наборы для исследования образца на наличие или отсутствие материала, происходящего от одного или нескольких независимых трансформантов растений |
| US8700336B2 (en) | 2007-01-29 | 2014-04-15 | Scientific Institute of Pulic Health | Transgenic plant event detection |
| US9714454B2 (en) | 2007-01-29 | 2017-07-25 | Scientific Institute Of Public Health | Transgenic plant event detection |
| WO2010080829A1 (en) * | 2009-01-07 | 2010-07-15 | Basf Agrochemical Products B.V. | Soybean event 127 and methods related thereto |
| RU2574777C2 (ru) * | 2009-01-07 | 2016-02-10 | Басф Агрокемикал Продактс Б.В. | Событие 127 в геноме сои и связанные с ним способы |
| US9024114B2 (en) | 2009-01-07 | 2015-05-05 | Empresa Brasileira de Pesquisa Agropecuaria—EMBRAPA | Soybean event 127 and methods related thereto |
| US9961848B2 (en) | 2009-01-07 | 2018-05-08 | Empresa Brasileira De Pesquisa Agropecuaria-Embrapa | Soybean event 127 and methods related thereto |
| US8642748B2 (en) | 2009-11-23 | 2014-02-04 | Bayer Cropscience N.V. | Elite event EE-GM3 and methods and kits for identifying such event in biological samples |
| CN102858996B (zh) * | 2009-11-23 | 2016-01-13 | 拜尔作物科学股份有限公司 | 原种事件ee-gm3以及用于鉴定生物样品中的该事件的方法和试剂盒 |
| US9631202B2 (en) | 2009-11-23 | 2017-04-25 | M.S. Technologies Llc | Elite event EE-GM3 and methods and kits for identifying such event in biological samples |
| CN102858996A (zh) * | 2009-11-23 | 2013-01-02 | 拜尔作物科学股份有限公司 | 原种事件ee-gm3以及用于鉴定生物样品中的该事件的方法和试剂盒 |
| WO2011063413A2 (en) | 2009-11-23 | 2011-05-26 | Bayer Bioscience N.V. | Herbicide tolerant soybean plants and methods for identifying same |
| WO2011063411A1 (en) | 2009-11-23 | 2011-05-26 | Bayer Bioscience N.V. | Elite event ee-gm3 and methods and kits for identifying such event in biological samples |
| US10494681B2 (en) | 2009-11-23 | 2019-12-03 | Basf Agricultural Solutions Seed, Us Llc | Elite event EE-GM3 and methods and kits for identifying such event in biological samples |
| US9062324B2 (en) | 2009-11-23 | 2015-06-23 | M.S. Technologies Llc | Herbicide tolerant soybean plants and methods for identifying same |
| US9683242B2 (en) | 2009-11-23 | 2017-06-20 | M.S. Technologies, Llc | Herbicide tolerant soybean plants and methods for identifying same |
| US8592650B2 (en) | 2009-11-23 | 2013-11-26 | Bayer Cropscience N.V. | Elite event EE-GM3 and methods and kits for identifying such event in biological samples |
| US8722072B2 (en) | 2010-01-22 | 2014-05-13 | Bayer Intellectual Property Gmbh | Acaricidal and/or insecticidal active ingredient combinations |
| US9206137B2 (en) | 2010-11-15 | 2015-12-08 | Bayer Intellectual Property Gmbh | N-Aryl pyrazole(thio)carboxamides |
| WO2012072489A1 (de) | 2010-11-29 | 2012-06-07 | Bayer Cropscience Ag | Alpha-beta-ungesättigte imine |
| US9055743B2 (en) | 2010-11-29 | 2015-06-16 | Bayer Intellectual Property Gmbh | Alpha, beta-unsaturated imines |
| EP3103339A1 (de) | 2010-12-01 | 2016-12-14 | Bayer Intellectual Property GmbH | Wirkstoffkombinationen umfassend pyridylethylbenzamide und weitere wirkstoffe |
| WO2012072696A1 (de) | 2010-12-01 | 2012-06-07 | Bayer Cropscience Ag | Wirkstoffkombinationen umfassend pyridylethylbenzamide und weitere wirkstoffe |
| EP3103340A1 (de) | 2010-12-01 | 2016-12-14 | Bayer Intellectual Property GmbH | Wirkstoffkombinationen umfassend pyridylethylbenzamide und weitere wirkstoffe |
| WO2012072660A1 (en) | 2010-12-01 | 2012-06-07 | Bayer Cropscience Ag | Use of fluopyram for controlling nematodes in crops and for increasing yield |
| EP3103334A1 (de) | 2010-12-01 | 2016-12-14 | Bayer Intellectual Property GmbH | Wirkstoffkombinationen umfassend pyridylethylbenzamide und weitere wirkstoffe |
| EP3103338A1 (de) | 2010-12-01 | 2016-12-14 | Bayer Intellectual Property GmbH | Wirkstoffkombinationen umfassend pyridylethylbenzamide und weitere wirkstoffe |
| EP3092900A1 (de) | 2010-12-01 | 2016-11-16 | Bayer Intellectual Property GmbH | Wirkstoffkombinationen umfassend pyridylethylbenzamide und weitere wirkstoffe |
| WO2012120105A1 (en) | 2011-03-10 | 2012-09-13 | Bayer Cropscience Ag | Use of lipochito-oligosaccharide compounds for safeguarding seed safety of treated seeds |
| EP3292761A1 (en) | 2011-03-23 | 2018-03-14 | Bayer Intellectual Property GmbH | Active compound combinations |
| EP3295797A1 (en) | 2011-03-23 | 2018-03-21 | Bayer Intellectual Property GmbH | Active compound combinations |
| WO2012126938A2 (en) | 2011-03-23 | 2012-09-27 | Bayer Cropscience Ag | Active compound combinations |
| EP3292760A1 (en) | 2011-03-23 | 2018-03-14 | Bayer Intellectual Property GmbH | Active compound combinations |
| WO2012136581A1 (en) | 2011-04-08 | 2012-10-11 | Bayer Cropscience Ag | Fungicide hydroximoyl-tetrazole derivatives |
| WO2012171914A1 (en) | 2011-06-14 | 2012-12-20 | Bayer Intellectual Property Gmbh | Use of an enaminocarbonyl compound in combination with a biological control agent |
| US9265252B2 (en) | 2011-08-10 | 2016-02-23 | Bayer Intellectual Property Gmbh | Active compound combinations comprising specific tetramic acid derivatives |
| WO2013026740A2 (en) | 2011-08-22 | 2013-02-28 | Bayer Cropscience Nv | Methods and means to modify a plant genome |
| US10538774B2 (en) | 2011-08-22 | 2020-01-21 | Basf Agricultural Solutions Seed, Us Llc | Methods and means to modify a plant genome |
| US9670496B2 (en) | 2011-08-22 | 2017-06-06 | Bayer Cropscience N.V. | Methods and means to modify a plant genome |
| EP2561759A1 (en) | 2011-08-26 | 2013-02-27 | Bayer Cropscience AG | Fluoroalkyl-substituted 2-amidobenzimidazoles and their effect on plant growth |
| WO2013037717A1 (en) | 2011-09-12 | 2013-03-21 | Bayer Intellectual Property Gmbh | Fungicidal 4-substituted-3-{phenyl[(heterocyclylmethoxy)imino]methyl}-1,2,4-oxadizol-5(4h)-one derivatives |
| WO2013037956A1 (en) | 2011-09-16 | 2013-03-21 | Bayer Intellectual Property Gmbh | Use of 5-phenyl- or 5-benzyl-2 isoxazoline-3 carboxylates for improving plant yield |
| WO2013037955A1 (en) | 2011-09-16 | 2013-03-21 | Bayer Intellectual Property Gmbh | Use of acylsulfonamides for improving plant yield |
| WO2013037958A1 (en) | 2011-09-16 | 2013-03-21 | Bayer Intellectual Property Gmbh | Use of phenylpyrazolin-3-carboxylates for improving plant yield |
| WO2013050410A1 (en) | 2011-10-04 | 2013-04-11 | Bayer Intellectual Property Gmbh | RNAi FOR THE CONTROL OF FUNGI AND OOMYCETES BY INHIBITING SACCHAROPINE DEHYDROGENASE GENE |
| WO2013075817A1 (en) | 2011-11-21 | 2013-05-30 | Bayer Intellectual Property Gmbh | Fungicide n-[(trisubstitutedsilyl)methyl]-carboxamide derivatives |
| WO2013079566A2 (en) | 2011-11-30 | 2013-06-06 | Bayer Intellectual Property Gmbh | Fungicidal n-bicycloalkyl and n-tricycloalkyl (thio)carboxamide derivatives |
| WO2013092519A1 (en) | 2011-12-19 | 2013-06-27 | Bayer Cropscience Ag | Use of anthranilic acid diamide derivatives for pest control in transgenic crops |
| WO2013098146A1 (en) | 2011-12-29 | 2013-07-04 | Bayer Intellectual Property Gmbh | Fungicidal 3-[(1,3-thiazol-4-ylmethoxyimino)(phenyl)methyl]-2-substituted-1,2,4-oxadiazol-5(2h)-one derivatives |
| WO2013098147A1 (en) | 2011-12-29 | 2013-07-04 | Bayer Intellectual Property Gmbh | Fungicidal 3-[(pyridin-2-ylmethoxyimino)(phenyl)methyl]-2-substituted-1,2,4-oxadiazol-5(2h)-one derivatives |
| WO2013110594A1 (en) | 2012-01-25 | 2013-08-01 | Bayer Intellectual Property Gmbh | Active compound combinations containing fluopyram and biological control agent |
| WO2013110591A1 (en) | 2012-01-25 | 2013-08-01 | Bayer Intellectual Property Gmbh | Active compounds combination containing fluopyram bacillus and biologically control agent |
| WO2013127704A1 (en) | 2012-02-27 | 2013-09-06 | Bayer Intellectual Property Gmbh | Active compound combinations containing a thiazoylisoxazoline and a fungicide |
| WO2013139949A1 (en) | 2012-03-23 | 2013-09-26 | Bayer Intellectual Property Gmbh | Compositions comprising a strigolactame compound for enhanced plant growth and yield |
| WO2013153143A1 (en) | 2012-04-12 | 2013-10-17 | Bayer Cropscience Ag | N-acyl- 2 - (cyclo) alkylpyrrolidines and piperidines useful as fungicides |
| WO2013156560A1 (en) | 2012-04-20 | 2013-10-24 | Bayer Cropscience Ag | N-cycloalkyl-n-[(trisubstitutedsilylphenyl)methylene]-(thio)carboxamide derivatives |
| WO2013156559A1 (en) | 2012-04-20 | 2013-10-24 | Bayer Cropscience Ag | N-cycloalkyl-n-[(heterocyclylphenyl)methylene]-(thio)carboxamide derivatives |
| EP2662362A1 (en) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | Pyrazole indanyl carboxamides |
| EP2662363A1 (en) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | 5-Halogenopyrazole biphenylcarboxamides |
| WO2013167544A1 (en) | 2012-05-09 | 2013-11-14 | Bayer Cropscience Ag | 5-halogenopyrazole indanyl carboxamides |
| EP2662360A1 (en) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | 5-Halogenopyrazole indanyl carboxamides |
| EP2662361A1 (en) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | Pyrazol indanyl carboxamides |
| WO2013167545A1 (en) | 2012-05-09 | 2013-11-14 | Bayer Cropscience Ag | Pyrazole indanyl carboxamides |
| EP2662370A1 (en) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | 5-Halogenopyrazole benzofuranyl carboxamides |
| EP2662364A1 (en) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | Pyrazole tetrahydronaphthyl carboxamides |
| WO2013174836A1 (en) | 2012-05-22 | 2013-11-28 | Bayer Cropscience Ag | Active compounds combinations comprising a lipo-chitooligosaccharide derivative and a nematicide, insecticidal or fungicidal compound |
| EP3281526A1 (en) | 2012-05-30 | 2018-02-14 | Bayer CropScience Aktiengesellschaft | Composition comprising a biological control agent and a fungicide |
| EP3363289A2 (en) | 2012-05-30 | 2018-08-22 | Bayer CropScience Aktiengesellschaft | Compositions comprising a biological control agent and an insecticide |
| EP3360418A1 (en) | 2012-05-30 | 2018-08-15 | Bayer CropScience Aktiengesellschaft | Composition comprising a biological control agent and a fungicide |
| EP3300603A2 (en) | 2012-05-30 | 2018-04-04 | Bayer CropScience Aktiengesellschaft | Composition comprising a biological control agent and a fungicide |
| EP3243387A2 (en) | 2012-05-30 | 2017-11-15 | Bayer CropScience Aktiengesellschaft | Compositions comprising a biological control agent and an insecticide |
| EP3488700A1 (en) | 2012-05-30 | 2019-05-29 | Bayer CropScience Aktiengesellschaft | Composition comprising a biological control agent and a fungicide |
| EP3409120A1 (en) | 2012-05-30 | 2018-12-05 | Bayer CropScience Aktiengesellschaft | Composition comprising a biological control agent and a fungicide |
| EP3292764A2 (en) | 2012-05-30 | 2018-03-14 | Bayer CropScience Aktiengesellschaft | Composition comprising a biological control agent and a fungicide selected from inhibitors of the respiratory chain at complex iii |
| EP3318128A2 (en) | 2012-05-30 | 2018-05-09 | Bayer CropScience Aktiengesellschaft | Composition comprising a biological control agent and a fungicide |
| EP3205210A1 (en) | 2012-05-30 | 2017-08-16 | Bayer CropScience Aktiengesellschaft | Composition comprising a biological control agent and a fungicide selected from inhibitors of the succinate dehydrogenase |
| EP3424322A1 (en) | 2012-07-31 | 2019-01-09 | Bayer CropScience Aktiengesellschaft | Compositions comprising a pesticidal terpene mixture and an insecticide |
| WO2014019983A1 (en) | 2012-07-31 | 2014-02-06 | Bayer Cropscience Ag | Compositions comprising a pesticidal terpene mixture and an insecticide |
| EP3173477A1 (en) | 2012-09-14 | 2017-05-31 | Bayer Cropscience LP | Hppd variants and methods of use |
| WO2014043435A1 (en) | 2012-09-14 | 2014-03-20 | Bayer Cropscience Lp | Hppd variants and methods of use |
| EP3683307A2 (en) | 2012-09-14 | 2020-07-22 | BASF Agricultural Solutions Seed US LLC | Hppd variants and methods of use |
| EP2719280A1 (en) | 2012-10-11 | 2014-04-16 | Bayer CropScience AG | Use of N-phenylethylpyrazole carboxamide derivatives or salts thereof for resistance management of phytopathogenic fungi |
| WO2014056956A1 (en) | 2012-10-11 | 2014-04-17 | Bayer Cropscience Ag | Use of n-phenylethylpyrazole carboxamide derivatives or salts thereof for resistance management of phytopathogenic fungi |
| WO2014060518A1 (en) | 2012-10-19 | 2014-04-24 | Bayer Cropscience Ag | Method of plant growth promotion using carboxamide derivatives |
| WO2014060520A1 (en) | 2012-10-19 | 2014-04-24 | Bayer Cropscience Ag | Method for treating plants against fungi resistant to fungicides using carboxamide or thiocarboxamide derivatives |
| WO2014060502A1 (en) | 2012-10-19 | 2014-04-24 | Bayer Cropscience Ag | Active compound combinations comprising carboxamide derivatives |
| WO2014060519A1 (en) | 2012-10-19 | 2014-04-24 | Bayer Cropscience Ag | Method for enhancing tolerance to abiotic stress in plants using carboxamide or thiocarboxamide derivatives |
| WO2014079789A1 (en) | 2012-11-23 | 2014-05-30 | Bayer Cropscience Ag | Active compound combinations |
| EP2735231A1 (en) | 2012-11-23 | 2014-05-28 | Bayer CropScience AG | Active compound combinations |
| WO2014083031A2 (en) | 2012-11-30 | 2014-06-05 | Bayer Cropscience Ag | Binary pesticidal and fungicidal mixtures |
| WO2014083033A1 (en) | 2012-11-30 | 2014-06-05 | Bayer Cropsience Ag | Binary fungicidal or pesticidal mixture |
| WO2014082950A1 (en) | 2012-11-30 | 2014-06-05 | Bayer Cropscience Ag | Ternary fungicidal mixtures |
| WO2014083088A2 (en) | 2012-11-30 | 2014-06-05 | Bayer Cropscience Ag | Binary fungicidal mixtures |
| WO2014083089A1 (en) | 2012-11-30 | 2014-06-05 | Bayer Cropscience Ag | Ternary fungicidal and pesticidal mixtures |
| WO2014086748A2 (en) | 2012-12-03 | 2014-06-12 | Bayer Cropscience Ag | Composition comprising a biological control agent and a fungicide |
| WO2014086749A2 (en) | 2012-12-03 | 2014-06-12 | Bayer Cropscience Ag | Composition comprising a biological control agent and an insecticide |
| EP3318129A1 (en) | 2012-12-03 | 2018-05-09 | Bayer CropScience Aktiengesellschaft | Method for pest control by applying a combination of paecilomyces lilacinus and fluopyram |
| WO2014086747A2 (en) | 2012-12-03 | 2014-06-12 | Bayer Cropscience Ag | Composition comprising a biological control agent and a fungicide |
| WO2014086750A2 (en) | 2012-12-03 | 2014-06-12 | Bayer Cropscience Ag | Composition comprising a biological control agent and an insecticide |
| WO2014086758A2 (en) | 2012-12-03 | 2014-06-12 | Bayer Cropscience Ag | Composition comprising a biological control agent and an insecticide |
| WO2014086759A2 (en) | 2012-12-03 | 2014-06-12 | Bayer Cropscience Ag | Composition comprising biological control agents |
| WO2014086764A2 (en) | 2012-12-03 | 2014-06-12 | Bayer Cropscience Ag | Composition comprising a biological control agent and a fungicide |
| WO2014086753A2 (en) | 2012-12-03 | 2014-06-12 | Bayer Cropscience Ag | Composition comprising biological control agents |
| CN102965444A (zh) * | 2012-12-11 | 2013-03-13 | 福建出入境检验检疫局检验检疫技术中心 | 转基因大豆a2704-12的lamp检测引物及方法 |
| CN102965444B (zh) * | 2012-12-11 | 2014-05-21 | 福建出入境检验检疫局检验检疫技术中心 | 转基因大豆a2704-12的lamp检测引物及方法 |
| WO2014090765A1 (en) | 2012-12-12 | 2014-06-19 | Bayer Cropscience Ag | Use of 1-[2-fluoro-4-methyl-5-(2,2,2-trifluoroethylsulfinyl)phenyl]-5-amino-3-trifluoromethyl)-1 h-1,2,4 tfia zole for controlling nematodes in nematode-resistant crops |
| WO2014095826A1 (en) | 2012-12-18 | 2014-06-26 | Bayer Cropscience Ag | Binary fungicidal and bactericidal combinations |
| WO2014095677A1 (en) | 2012-12-19 | 2014-06-26 | Bayer Cropscience Ag | Difluoromethyl-nicotinic- tetrahydronaphtyl carboxamides |
| WO2014124379A1 (en) | 2013-02-11 | 2014-08-14 | Bayer Cropscience Lp | Compositions comprising a streptomyces-based biological control agent and an insecticide |
| WO2014124375A1 (en) | 2013-02-11 | 2014-08-14 | Bayer Cropscience Lp | Compositions comprising gougerotin and a biological control agent |
| WO2014124368A1 (en) | 2013-02-11 | 2014-08-14 | Bayer Cropscience Lp | Compositions comprising gougerotin and a fungicide |
| WO2014124373A1 (en) | 2013-02-11 | 2014-08-14 | Bayer Cropscience Lp | Compositions comprising gougerotin and an insecticide |
| WO2014124361A1 (en) | 2013-02-11 | 2014-08-14 | Bayer Cropscience Lp | Compositions comprising a streptomyces-based biological control agent and another biological control agent |
| WO2014124369A1 (en) | 2013-02-11 | 2014-08-14 | Bayer Cropscience Lp | Compositions comprising a streptomyces-based biological control agent and a fungicide |
| EP3626828A2 (en) | 2013-03-07 | 2020-03-25 | BASF Agricultural Solutions Seed US LLC | Toxin genes and methods for their use |
| WO2014138339A2 (en) | 2013-03-07 | 2014-09-12 | Athenix Corp. | Toxin genes and methods for their use |
| WO2014170345A2 (en) | 2013-04-19 | 2014-10-23 | Bayer Cropscience Ag | Method for improved utilization of the production potential of transgenic plants |
| WO2014170364A1 (en) | 2013-04-19 | 2014-10-23 | Bayer Cropscience Ag | Binary insecticidal or pesticidal mixture |
| WO2014177582A1 (en) | 2013-04-30 | 2014-11-06 | Bayer Cropscience Ag | N-(2-fluoro-2-phenethyl)carboxamides as nematicides and endoparasiticides |
| WO2014177514A1 (en) | 2013-04-30 | 2014-11-06 | Bayer Cropscience Ag | Nematicidal n-substituted phenethylcarboxamides |
| WO2014206953A1 (en) | 2013-06-26 | 2014-12-31 | Bayer Cropscience Ag | N-cycloalkyl-n-[(bicyclylphenyl)methylene]-(thio)carboxamide derivatives |
| WO2015082587A1 (en) | 2013-12-05 | 2015-06-11 | Bayer Cropscience Ag | N-cycloalkyl-n-{[2-(1-substitutedcycloalkyl)phenyl]methylene}-(thio)carboxamide derivatives |
| WO2015082586A1 (en) | 2013-12-05 | 2015-06-11 | Bayer Cropscience Ag | N-cycloalkyl-n-{[2-(1-substitutedcycloalkyl)phenyl]methylene}-(thio)carboxamide derivatives |
| EP2885970A1 (en) | 2013-12-21 | 2015-06-24 | Bayer CropScience AG | Fungicide compositions comprising compound I, at least one succinate dehydrogenase (SDH) inhibitor and at least one triazole fungicide |
| WO2015138394A2 (en) | 2014-03-11 | 2015-09-17 | Bayer Cropscience Lp | Hppd variants and methods of use |
| WO2015160619A1 (en) | 2014-04-16 | 2015-10-22 | Bayer Cropscience Lp | Compositions comprising ningnanmycin and a fungicide |
| WO2015160620A1 (en) | 2014-04-16 | 2015-10-22 | Bayer Cropscience Lp | Compositions comprising ningnanmycin and an insecticide |
| WO2015160618A1 (en) | 2014-04-16 | 2015-10-22 | Bayer Cropscience Lp | Compositions comprising ningnanmycin and a biological control agent |
| WO2016166077A1 (en) | 2015-04-13 | 2016-10-20 | Bayer Cropscience Aktiengesellschaft | N-cycloalkyl-n-(biheterocyclyethylene)-(thio)carboxamide derivatives |
| EP3097782A1 (en) | 2015-05-29 | 2016-11-30 | Bayer CropScience Aktiengesellschaft | Methods for controlling phytopathogenic nematodes by combination of fluopyram and biological control agents |
| WO2016193073A1 (en) | 2015-05-29 | 2016-12-08 | Bayer Cropscience Aktiengesellschaft | Methods for controlling phytopathogenic nematodes by combination of fluopyram and biological control agents |
| WO2017042259A1 (en) | 2015-09-11 | 2017-03-16 | Bayer Cropscience Aktiengesellschaft | Hppd variants and methods of use |
| WO2018019676A1 (en) | 2016-07-29 | 2018-02-01 | Bayer Cropscience Aktiengesellschaft | Active compound combinations and methods to protect the propagation material of plants |
| WO2018098214A1 (en) | 2016-11-23 | 2018-05-31 | Bayer Cropscience Lp | Axmi669 and axmi991 toxin genes and methods for their use |
| WO2018114393A1 (en) | 2016-12-19 | 2018-06-28 | Basf Se | Substituted oxadiazoles for combating phytopathogenic fungi |
| WO2018119364A1 (en) | 2016-12-22 | 2018-06-28 | Bayer Cropscience Lp | Elite event ee-gm5 and methods and kits for identifying such event in biological samples |
| WO2018119336A1 (en) | 2016-12-22 | 2018-06-28 | Athenix Corp. | Use of cry14 for the control of nematode pests |
| WO2018119361A1 (en) | 2016-12-22 | 2018-06-28 | Bayer Cropscience Lp | Elite event ee-gm4 and methods and kits for identifying such event in biological samples |
| WO2018136604A1 (en) | 2017-01-18 | 2018-07-26 | Bayer Cropscience Lp | Bp005 toxin gene and methods for its use |
| WO2018136611A1 (en) | 2017-01-18 | 2018-07-26 | Bayer Cropscience Lp | Use of bp005 for the control of plant pathogens |
| WO2018153730A1 (en) | 2017-02-21 | 2018-08-30 | Basf Se | Substituted oxadiazoles for combating phytopathogenic fungi |
| WO2018165091A1 (en) | 2017-03-07 | 2018-09-13 | Bayer Cropscience Lp | Hppd variants and methods of use |
| WO2018184970A1 (en) | 2017-04-07 | 2018-10-11 | Basf Se | Substituted oxadiazoles for combating phytopathogenic fungi |
| WO2018188962A1 (en) | 2017-04-11 | 2018-10-18 | Basf Se | Substituted oxadiazoles for combating phytopathogenic fungi |
| WO2018195256A1 (en) | 2017-04-21 | 2018-10-25 | Bayer Cropscience Lp | Method of improving crop safety |
| WO2018202487A1 (en) | 2017-05-04 | 2018-11-08 | Basf Se | Substituted 5-(haloalkyl)-5-hydroxy-isoxazoles for combating phytopathogenic fungi |
| WO2018202491A1 (en) | 2017-05-04 | 2018-11-08 | Basf Se | Substituted trifluoromethyloxadiazoles for combating phytopathogenic fungi |
| WO2018219797A1 (en) | 2017-06-02 | 2018-12-06 | Basf Se | Substituted oxadiazoles for combating phytopathogenic fungi |
| WO2018234139A1 (en) | 2017-06-19 | 2018-12-27 | Basf Se | 2-[[5-(trifluoromethyl)-1,2,4-oxadiazol-3-yl]aryloxy](thio)acetamides for combating phytopathogenic fungi |
| WO2019025250A1 (en) | 2017-08-04 | 2019-02-07 | Basf Se | SUBSTITUTED TRIFLUOROMETHYLOXADIAZOLES FOR COMBATING PHYTOPATHOGENIC FUNGI |
| WO2019038042A1 (en) | 2017-08-21 | 2019-02-28 | Basf Se | SUBSTITUTED TRIFLUOROMETHYLOXADIAZOLES FOR THE CONTROL OF PHYTOPATHOGENIC FUNGI |
| WO2019052932A1 (en) | 2017-09-18 | 2019-03-21 | Basf Se | SUBSTITUTED TRIFLUOROMETHYLOXADIAZOLES FOR COMBATING PHYTOPATHOGENIC FUNGI |
| WO2019068811A1 (en) | 2017-10-06 | 2019-04-11 | Bayer Aktiengesellschaft | COMPOSITIONS COMPRISING FLUOPYRAM AND TIOXAZAFENE |
| WO2019083810A1 (en) | 2017-10-24 | 2019-05-02 | Basf Se | IMPROVING HERBICIDE TOLERANCE FOR 4-HYDROXYPHENYLPYRUVATE DIOXYGENASE (HPPD) INHIBITORS BY NEGATIVE REGULATION OF HPPD EXPRESSION IN SOYBEANS |
| WO2019083808A1 (en) | 2017-10-24 | 2019-05-02 | Basf Se | IMPROVING HERBICIDE TOLERANCE AGAINST HPPD INHIBITORS BY REGULATION OF PUTATIVE REDUCED 4-HYDROXYPHENYLPYRUVATE REDUCES IN SOYBEANS |
| WO2019101511A1 (en) | 2017-11-23 | 2019-05-31 | Basf Se | Substituted trifluoromethyloxadiazoles for combating phytopathogenic fungi |
| US11834466B2 (en) | 2017-11-30 | 2023-12-05 | 5Metis, Inc. | Benzoxaborole compounds and formulations thereof |
| WO2019121143A1 (en) | 2017-12-20 | 2019-06-27 | Basf Se | Substituted cyclopropyl derivatives |
| WO2019137995A1 (en) | 2018-01-11 | 2019-07-18 | Basf Se | Novel pyridazine compounds for controlling invertebrate pests |
| WO2019145221A1 (en) | 2018-01-29 | 2019-08-01 | BASF Agro B.V. | New agrochemical formulations |
| WO2019154663A1 (en) | 2018-02-07 | 2019-08-15 | Basf Se | New pyridine carboxamides |
| WO2019154665A1 (en) | 2018-02-07 | 2019-08-15 | Basf Se | New pyridine carboxamides |
| WO2019166257A1 (en) | 2018-03-01 | 2019-09-06 | BASF Agro B.V. | Fungicidal compositions of mefentrifluconazole |
| WO2019219464A1 (en) | 2018-05-15 | 2019-11-21 | Basf Se | Substituted trifluoromethyloxadiazoles for combating phytopathogenic fungi |
| WO2019224092A1 (en) | 2018-05-22 | 2019-11-28 | Basf Se | Pesticidally active c15-derivatives of ginkgolides |
| WO2019233863A1 (de) | 2018-06-04 | 2019-12-12 | Bayer Aktiengesellschaft | Herbizid wirksame bizyklische benzoylpyrazole |
| US11560393B2 (en) | 2018-08-18 | 2023-01-24 | 5Metis, Inc. | Solid forms of substituted benzoxaborole and compositions thereof |
| US11066424B2 (en) | 2018-08-18 | 2021-07-20 | Boragen, Inc. | Solid forms of substituted benzoxaborole and compositions thereof |
| US12098159B2 (en) | 2018-08-18 | 2024-09-24 | 5Metis, Inc. | Solid forms of substituted benzoxaborole and compositions thereof |
| US11236115B2 (en) | 2018-08-18 | 2022-02-01 | 5Metis, Inc. | Solid forms of substituted benzoxaborole and compositions thereof |
| EP3613736A1 (en) | 2018-08-22 | 2020-02-26 | Basf Se | Substituted glutarimide derivatives |
| WO2020064480A1 (en) | 2018-09-28 | 2020-04-02 | Basf Se | Pesticidal mixture comprising a mesoionic compound and a biopesticide |
| EP3628158A1 (en) | 2018-09-28 | 2020-04-01 | Basf Se | Pesticidal mixture comprising a mesoionic compound and a biopesticide |
| WO2020083662A1 (en) | 2018-10-23 | 2020-04-30 | Basf Se | Tricyclic pesticidal compounds |
| EP3643705A1 (en) | 2018-10-24 | 2020-04-29 | Basf Se | Pesticidal compounds |
| WO2020083733A1 (en) | 2018-10-24 | 2020-04-30 | Basf Se | Pesticidal compounds |
| EP3670501A1 (en) | 2018-12-17 | 2020-06-24 | Basf Se | Substituted [1,2,4]triazole compounds as fungicides |
| WO2020144308A1 (en) | 2019-01-11 | 2020-07-16 | Basf Se | Crystalline forms of 1-(1,2-dimethylpropyl)-n-ethyl-5-methyl-n-pyridazin-4-yl-pyrazole-4-carboxamide |
| EP3696177A1 (en) | 2019-02-12 | 2020-08-19 | Basf Se | Heterocyclic compounds for the control of invertebrate pests |
| WO2020231751A1 (en) | 2019-05-10 | 2020-11-19 | Bayer Cropscience Lp | Active compound combinations |
| WO2020239517A1 (en) | 2019-05-29 | 2020-12-03 | Basf Se | Mesoionic imidazolium compounds and derivatives for combating animal pests |
| WO2020244970A1 (en) | 2019-06-06 | 2020-12-10 | Basf Se | New carbocyclic pyridine carboxamides |
| WO2020244968A1 (en) | 2019-06-06 | 2020-12-10 | Basf Se | Fungicidal n-(pyrid-3-yl)carboxamides |
| WO2020244969A1 (en) | 2019-06-06 | 2020-12-10 | Basf Se | Pyridine derivatives and their use as fungicides |
| EP3766879A1 (en) | 2019-07-19 | 2021-01-20 | Basf Se | Pesticidal pyrazole derivatives |
| WO2021013561A1 (en) | 2019-07-19 | 2021-01-28 | Basf Se | Pesticidal pyrazole and triazole derivatives |
| WO2021013721A1 (de) | 2019-07-22 | 2021-01-28 | Bayer Aktiengesellschaft | 5-amino substituierte pyrazole und triazole als schädlingsbekämpfungsmittel |
| EP3769623A1 (en) | 2019-07-22 | 2021-01-27 | Basf Se | Mesoionic imidazolium compounds and derivatives for combating animal pests |
| WO2021013719A1 (en) | 2019-07-23 | 2021-01-28 | Bayer Aktiengesellschaft | Novel heteroaryl-triazole compounds as pesticides |
| WO2021013720A1 (en) | 2019-07-23 | 2021-01-28 | Bayer Aktiengesellschaft | Novel heteroaryl-triazole compounds as pesticides |
| WO2021022069A1 (en) | 2019-08-01 | 2021-02-04 | Bayer Cropscience Lp | Method of improving cold stress tolerance and crop safety |
| EP3701796A1 (en) | 2019-08-08 | 2020-09-02 | Bayer AG | Active compound combinations |
| WO2021058659A1 (en) | 2019-09-26 | 2021-04-01 | Bayer Aktiengesellschaft | Rnai-mediated pest control |
| WO2021063736A1 (en) | 2019-10-02 | 2021-04-08 | Basf Se | Bicyclic pyridine derivatives |
| WO2021063735A1 (en) | 2019-10-02 | 2021-04-08 | Basf Se | New bicyclic pyridine derivatives |
| WO2021064075A1 (en) | 2019-10-02 | 2021-04-08 | Bayer Aktiengesellschaft | Active compound combinations comprising fatty acids |
| WO2021069569A1 (en) | 2019-10-09 | 2021-04-15 | Bayer Aktiengesellschaft | Novel heteroaryl-triazole compounds as pesticides |
| WO2021069567A1 (en) | 2019-10-09 | 2021-04-15 | Bayer Aktiengesellschaft | Novel heteroaryl-triazole compounds as pesticides |
| EP4461130A2 (en) | 2019-10-14 | 2024-11-13 | Basf Agricultural Solutions Seed Us Llc | Novel insect resistant genes and methods of use |
| EP4461128A2 (en) | 2019-10-14 | 2024-11-13 | BASF Agricultural Solutions Seed US LLC | Novel insect resistant genes and methods of use |
| WO2021089673A1 (de) | 2019-11-07 | 2021-05-14 | Bayer Aktiengesellschaft | Substituierte sulfonylamide zur bekämpfung tierischer schädlinge |
| WO2021097162A1 (en) | 2019-11-13 | 2021-05-20 | Bayer Cropscience Lp | Beneficial combinations with paenibacillus |
| WO2021099303A1 (en) | 2019-11-18 | 2021-05-27 | Bayer Aktiengesellschaft | Novel heteroaryl-triazole compounds as pesticides |
| WO2021099271A1 (en) | 2019-11-18 | 2021-05-27 | Bayer Aktiengesellschaft | Active compound combinations comprising fatty acids |
| WO2021105091A1 (en) | 2019-11-25 | 2021-06-03 | Bayer Aktiengesellschaft | Novel heteroaryl-triazole compounds as pesticides |
| WO2021155084A1 (en) | 2020-01-31 | 2021-08-05 | Pairwise Plants Services, Inc. | Suppression of shade avoidance response in plants |
| WO2021165195A1 (en) | 2020-02-18 | 2021-08-26 | Bayer Aktiengesellschaft | Heteroaryl-triazole compounds as pesticides |
| EP3708565A1 (en) | 2020-03-04 | 2020-09-16 | Bayer AG | Pyrimidinyloxyphenylamidines and the use thereof as fungicides |
| WO2021211926A1 (en) | 2020-04-16 | 2021-10-21 | Pairwise Plants Services, Inc. | Methods for controlling meristem size for crop improvement |
| WO2021209490A1 (en) | 2020-04-16 | 2021-10-21 | Bayer Aktiengesellschaft | Cyclaminephenylaminoquinolines as fungicides |
| WO2021213978A1 (de) | 2020-04-21 | 2021-10-28 | Bayer Aktiengesellschaft | 2-(het)aryl-substituierte kondensierte heterocyclen-derivate als schädlingsbekämpfungsmittel |
| EP3903582A1 (en) | 2020-04-28 | 2021-11-03 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors ii |
| WO2021219513A1 (en) | 2020-04-28 | 2021-11-04 | Basf Se | Pesticidal compounds |
| EP3903583A1 (en) | 2020-04-28 | 2021-11-03 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors iii |
| EP3903584A1 (en) | 2020-04-28 | 2021-11-03 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors iv |
| EP3903581A1 (en) | 2020-04-28 | 2021-11-03 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors i |
| WO2021224220A1 (en) | 2020-05-06 | 2021-11-11 | Bayer Aktiengesellschaft | Pyridine (thio)amides as fungicidal compounds |
| WO2021224323A1 (en) | 2020-05-06 | 2021-11-11 | Bayer Aktiengesellschaft | Novel heteroaryl-triazole compounds as pesticides |
| WO2021228734A1 (en) | 2020-05-12 | 2021-11-18 | Bayer Aktiengesellschaft | Triazine and pyrimidine (thio)amides as fungicidal compounds |
| EP3909950A1 (en) | 2020-05-13 | 2021-11-17 | Basf Se | Heterocyclic compounds for the control of invertebrate pests |
| WO2021233861A1 (en) | 2020-05-19 | 2021-11-25 | Bayer Aktiengesellschaft | Azabicyclic(thio)amides as fungicidal compounds |
| WO2021247477A1 (en) | 2020-06-02 | 2021-12-09 | Pairwise Plants Services, Inc. | Methods for controlling meristem size for crop improvement |
| WO2021245087A1 (en) | 2020-06-04 | 2021-12-09 | Bayer Aktiengesellschaft | Heterocyclyl pyrimidines and triazines as novel fungicides |
| WO2021249995A1 (en) | 2020-06-10 | 2021-12-16 | Bayer Aktiengesellschaft | Azabicyclyl-substituted heterocycles as fungicides |
| WO2021249800A1 (en) | 2020-06-10 | 2021-12-16 | Basf Se | Substituted [1,2,4]triazole compounds as fungicides |
| WO2021257775A1 (en) | 2020-06-17 | 2021-12-23 | Pairwise Plants Services, Inc. | Methods for controlling meristem size for crop improvement |
| WO2021255118A1 (en) | 2020-06-18 | 2021-12-23 | Bayer Aktiengesellschaft | Composition for use in agriculture |
| WO2021255071A1 (en) | 2020-06-18 | 2021-12-23 | Bayer Aktiengesellschaft | 3-(pyridazin-4-yl)-5,6-dihydro-4h-1,2,4-oxadiazine derivatives as fungicides for crop protection |
| WO2021255091A1 (en) | 2020-06-19 | 2021-12-23 | Bayer Aktiengesellschaft | 1,3,4-oxadiazoles and their derivatives as fungicides |
| WO2021255089A1 (en) | 2020-06-19 | 2021-12-23 | Bayer Aktiengesellschaft | 1,3,4-oxadiazole pyrimidines and 1,3,4-oxadiazole pyridines as fungicides |
| WO2021255169A1 (en) | 2020-06-19 | 2021-12-23 | Bayer Aktiengesellschaft | 1,3,4-oxadiazole pyrimidines as fungicides |
| WO2021255170A1 (en) | 2020-06-19 | 2021-12-23 | Bayer Aktiengesellschaft | 1,3,4-oxadiazole pyrimidines as fungicides |
| EP3929189A1 (en) | 2020-06-25 | 2021-12-29 | Bayer Animal Health GmbH | Novel heteroaryl-substituted pyrazine derivatives as pesticides |
| WO2021259997A1 (en) | 2020-06-25 | 2021-12-30 | Bayer Animal Health Gmbh | Novel heteroaryl-substituted pyrazine derivatives as pesticides |
| WO2022002818A1 (de) | 2020-07-02 | 2022-01-06 | Bayer Aktiengesellschaft | Heterocyclen-derivate als schädlingsbekämpfungsmittel |
| EP3939961A1 (en) | 2020-07-16 | 2022-01-19 | Basf Se | Strobilurin type compounds and their use for combating phytopathogenic fungi |
| WO2022017836A1 (en) | 2020-07-20 | 2022-01-27 | BASF Agro B.V. | Fungicidal compositions comprising (r)-2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1- (1,2,4-triazol-1-yl)propan-2-ol |
| EP3945089A1 (en) | 2020-07-31 | 2022-02-02 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors v |
| WO2022033991A1 (de) | 2020-08-13 | 2022-02-17 | Bayer Aktiengesellschaft | 5-amino substituierte triazole als schädlingsbekämpfungsmittel |
| EP3960727A1 (en) | 2020-08-28 | 2022-03-02 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors vi |
| WO2022043559A2 (en) | 2020-08-31 | 2022-03-03 | Basf Se | Yield improvement |
| WO2022053453A1 (de) | 2020-09-09 | 2022-03-17 | Bayer Aktiengesellschaft | Azolcarboxamide als schädlingsbekämpfungsmittel |
| WO2022058327A1 (en) | 2020-09-15 | 2022-03-24 | Bayer Aktiengesellschaft | Substituted ureas and derivatives as new antifungal agents |
| EP3970494A1 (en) | 2020-09-21 | 2022-03-23 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors viii |
| EP3974414A1 (de) | 2020-09-25 | 2022-03-30 | Bayer AG | 5-amino substituierte pyrazole und triazole als schädlingsbekämpfungsmittel |
| WO2022089969A1 (en) | 2020-10-27 | 2022-05-05 | BASF Agro B.V. | Compositions comprising mefentrifluconazole |
| WO2022090071A1 (en) | 2020-11-02 | 2022-05-05 | Basf Se | Use of mefenpyr-diethyl for controlling phytopathogenic fungi |
| WO2022090069A1 (en) | 2020-11-02 | 2022-05-05 | Basf Se | Compositions comprising mefenpyr-diethyl |
| WO2022106304A1 (en) | 2020-11-23 | 2022-05-27 | BASF Agro B.V. | Compositions comprising mefentrifluconazole |
| WO2022128524A1 (en) | 2020-12-14 | 2022-06-23 | Basf Se | Sulfoximine pesticides |
| EP3915971A1 (en) | 2020-12-16 | 2021-12-01 | Bayer Aktiengesellschaft | Phenyl-s(o)n-phenylamidines and the use thereof as fungicides |
| WO2022129188A1 (en) | 2020-12-18 | 2022-06-23 | Bayer Aktiengesellschaft | 1,2,4-oxadiazol-3-yl pyrimidines as fungicides |
| WO2022129190A1 (en) | 2020-12-18 | 2022-06-23 | Bayer Aktiengesellschaft | (hetero)aryl substituted 1,2,4-oxadiazoles as fungicides |
| WO2022129200A1 (en) | 2020-12-18 | 2022-06-23 | Bayer Aktiengesellschaft | Use of dhodh inhibitor for controlling resistant phytopathogenic fungi in crops |
| WO2022129196A1 (en) | 2020-12-18 | 2022-06-23 | Bayer Aktiengesellschaft | Heterobicycle substituted 1,2,4-oxadiazoles as fungicides |
| EP4036083A1 (de) | 2021-02-02 | 2022-08-03 | Bayer Aktiengesellschaft | 5-oxy substituierte hetereozyklen, als schädlingsbekämpfungsmittel |
| EP4043444A1 (en) | 2021-02-11 | 2022-08-17 | Basf Se | Substituted isoxazoline derivatives |
| WO2022173885A1 (en) | 2021-02-11 | 2022-08-18 | Pairwise Plants Services, Inc. | Methods and compositions for modifying cytokinin oxidase levels in plants |
| WO2022182834A1 (en) | 2021-02-25 | 2022-09-01 | Pairwise Plants Services, Inc. | Methods and compositions for modifying root architecture in plants |
| WO2022207494A1 (en) | 2021-03-30 | 2022-10-06 | Bayer Aktiengesellschaft | 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide |
| WO2022207496A1 (en) | 2021-03-30 | 2022-10-06 | Bayer Aktiengesellschaft | 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide |
| WO2022233758A1 (en) | 2021-05-03 | 2022-11-10 | Basf Se | Additives for enhancing the pesticidal effectiveness of pesticidal microorganisms |
| WO2022233777A1 (en) | 2021-05-06 | 2022-11-10 | Bayer Aktiengesellschaft | Alkylamide substituted, annulated imidazoles and use thereof as insecticides |
| WO2022238391A1 (de) | 2021-05-12 | 2022-11-17 | Bayer Aktiengesellschaft | 2-(het)aryl-substituierte kondensierte heterocyclen-derivate als schädlingsbekämpfungsmittel |
| EP4091451A1 (en) | 2021-05-17 | 2022-11-23 | BASF Agro B.V. | Compositions comprising mefentrifluconazole |
| WO2022243107A1 (en) | 2021-05-18 | 2022-11-24 | Basf Se | New substituted pyridines as fungicides |
| WO2022243111A1 (en) | 2021-05-18 | 2022-11-24 | Basf Se | New substituted pyridines as fungicides |
| WO2022243109A1 (en) | 2021-05-18 | 2022-11-24 | Basf Se | New substituted quinolines as fungicides |
| WO2022263285A1 (en) | 2021-06-14 | 2022-12-22 | Basf Se | Yield improvement by gene combinations |
| WO2022266271A1 (en) | 2021-06-17 | 2022-12-22 | Pairwise Plants Services, Inc. | Modification of growth regulating factor family transcription factors in soybean |
| WO2022271892A1 (en) | 2021-06-24 | 2022-12-29 | Pairwise Plants Services, Inc. | Modification of hect e3 ubiquitin ligase genes to improve yield traits |
| WO2023278651A1 (en) | 2021-07-01 | 2023-01-05 | Pairwise Plants Services, Inc. | Methods and compositions for enhancing root system development |
| EP4119547A1 (en) | 2021-07-12 | 2023-01-18 | Basf Se | Triazole compounds for the control of invertebrate pests |
| WO2023011958A1 (en) | 2021-08-02 | 2023-02-09 | Basf Se | (3-pirydyl)-quinazoline |
| WO2023011957A1 (en) | 2021-08-02 | 2023-02-09 | Basf Se | (3-quinolyl)-quinazoline |
| WO2023019188A1 (en) | 2021-08-12 | 2023-02-16 | Pairwise Plants Services, Inc. | Modification of brassinosteroid receptor genes to improve yield traits |
| WO2023017120A1 (en) | 2021-08-13 | 2023-02-16 | Bayer Aktiengesellschaft | Active compound combinations and fungicide compositions comprising those |
| WO2023023496A1 (en) | 2021-08-17 | 2023-02-23 | Pairwise Plants Services, Inc. | Methods and compositions for modifying cytokinin receptor histidine kinase genes in plants |
| EP4140986A1 (en) | 2021-08-23 | 2023-03-01 | Basf Se | Pyrazine compounds for the control of invertebrate pests |
| WO2023025682A1 (en) | 2021-08-25 | 2023-03-02 | Bayer Aktiengesellschaft | Novel pyrazinyl-triazole compounds as pesticides |
| EP4140995A1 (en) | 2021-08-27 | 2023-03-01 | Basf Se | Pyrazine compounds for the control of invertebrate pests |
| WO2023034731A1 (en) | 2021-08-30 | 2023-03-09 | Pairwise Plants Services, Inc. | Modification of ubiquitin binding peptidase genes in plants for yield trait improvement |
| EP4144739A1 (de) | 2021-09-02 | 2023-03-08 | Bayer Aktiengesellschaft | Anellierte pyrazole als schädlingsbekämpfungsmittel |
| WO2023034891A1 (en) | 2021-09-02 | 2023-03-09 | Pairwise Plants Services, Inc. | Methods and compositions for improving plant architecture and yield traits |
| EP4151631A1 (en) | 2021-09-20 | 2023-03-22 | Basf Se | Heterocyclic compounds for the control of invertebrate pests |
| WO2023049720A1 (en) | 2021-09-21 | 2023-03-30 | Pairwise Plants Services, Inc. | Methods and compositions for reducing pod shatter in canola |
| WO2023060028A1 (en) | 2021-10-04 | 2023-04-13 | Pairwise Plants Services, Inc. | Methods for improving floret fertility and seed yield |
| WO2023060152A2 (en) | 2021-10-07 | 2023-04-13 | Pairwise Plants Services, Inc. | Methods for improving floret fertility and seed yield |
| WO2023072670A1 (en) | 2021-10-28 | 2023-05-04 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors x |
| WO2023072671A1 (en) | 2021-10-28 | 2023-05-04 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors ix |
| WO2023078915A1 (en) | 2021-11-03 | 2023-05-11 | Bayer Aktiengesellschaft | Bis(hetero)aryl thioether (thio)amides as fungicidal compounds |
| WO2023099445A1 (en) | 2021-11-30 | 2023-06-08 | Bayer Aktiengesellschaft | Bis(hetero)aryl thioether oxadiazines as fungicidal compounds |
| EP4194453A1 (en) | 2021-12-08 | 2023-06-14 | Basf Se | Pyrazine compounds for the control of invertebrate pests |
| WO2023108035A1 (en) | 2021-12-09 | 2023-06-15 | Pairwise Plants Services, Inc. | Methods for improving floret fertility and seed yield |
| EP4198033A1 (en) | 2021-12-14 | 2023-06-21 | Basf Se | Heterocyclic compounds for the control of invertebrate pests |
| WO2023110932A1 (en) | 2021-12-16 | 2023-06-22 | Basf Se | Pesticidally active thiosemicarbazone compounds |
| EP4198023A1 (en) | 2021-12-16 | 2023-06-21 | Basf Se | Pesticidally active thiosemicarbazone compounds |
| WO2023147526A1 (en) | 2022-01-31 | 2023-08-03 | Pairwise Plants Services, Inc. | Suppression of shade avoidance response in plants |
| WO2023148028A1 (en) | 2022-02-01 | 2023-08-10 | Globachem Nv | Methods and compositions for controlling pests |
| WO2023148036A1 (en) | 2022-02-01 | 2023-08-10 | Globachem Nv | Methods and compositions for controlling pests in soybean |
| WO2023156402A1 (en) | 2022-02-17 | 2023-08-24 | Basf Se | Pesticidally active thiosemicarbazone compounds |
| WO2023156270A1 (en) | 2022-02-18 | 2023-08-24 | Basf Se | Coumarin synthesis and uses thereof |
| WO2023168217A1 (en) | 2022-03-02 | 2023-09-07 | Pairwise Plants Services, Inc. | Modification of brassinosteroid receptor genes to improve yield traits |
| EP4238971A1 (en) | 2022-03-02 | 2023-09-06 | Basf Se | Substituted isoxazoline derivatives |
| WO2023192838A1 (en) | 2022-03-31 | 2023-10-05 | Pairwise Plants Services, Inc. | Early flowering rosaceae plants with improved characteristics |
| WO2023196886A1 (en) | 2022-04-07 | 2023-10-12 | Pairwise Plants Services, Inc. | Methods and compositions for improving resistance to fusarium head blight |
| WO2023205714A1 (en) | 2022-04-21 | 2023-10-26 | Pairwise Plants Services, Inc. | Methods and compositions for improving yield traits |
| WO2023215704A1 (en) | 2022-05-02 | 2023-11-09 | Pairwise Plants Services, Inc. | Methods and compositions for enhancing yield and disease resistance |
| WO2023213626A1 (en) | 2022-05-03 | 2023-11-09 | Bayer Aktiengesellschaft | Use of (5s)-3-[3-(3-chloro-2-fluorophenoxy)-6-methylpyridazin-4-yl]-5-(2-chloro-4-methylbenzyl)-5,6-dihydro-4h-1,2,4-oxadiazine for controlling unwanted microorganisms |
| WO2023213670A1 (en) | 2022-05-03 | 2023-11-09 | Bayer Aktiengesellschaft | Crystalline forms of (5s)-3-[3-(3-chloro-2-fluorophenoxy)-6-methylpyridazin-4-yl]-5-(2-chloro-4-methylbenzyl)-5,6-dihydro-4h-1,2,4-oxadiazine |
| WO2023215809A1 (en) | 2022-05-05 | 2023-11-09 | Pairwise Plants Services, Inc. | Methods and compositions for modifying root architecture and/or improving plant yield traits |
| WO2024006679A1 (en) | 2022-06-27 | 2024-01-04 | Pairwise Plants Services, Inc. | Methods and compositions for modifying shade avoidance in plants |
| WO2024006792A1 (en) | 2022-06-29 | 2024-01-04 | Pairwise Plants Services, Inc. | Methods and compositions for controlling meristem size for crop improvement |
| WO2024006791A1 (en) | 2022-06-29 | 2024-01-04 | Pairwise Plants Services, Inc. | Methods and compositions for controlling meristem size for crop improvement |
| WO2024018016A1 (en) | 2022-07-21 | 2024-01-25 | Syngenta Crop Protection Ag | Crystalline forms of 1,2,4-oxadiazole fungicides |
| WO2024028243A1 (en) | 2022-08-02 | 2024-02-08 | Basf Se | Pyrazolo pesticidal compounds |
| WO2024030984A1 (en) | 2022-08-04 | 2024-02-08 | Pairwise Plants Services, Inc. | Methods and compositions for improving yield traits |
| WO2024033374A1 (en) | 2022-08-11 | 2024-02-15 | Syngenta Crop Protection Ag | Novel arylcarboxamide or arylthioamide compounds |
| WO2024036240A1 (en) | 2022-08-11 | 2024-02-15 | Pairwise Plants Services, Inc. | Methods and compositions for controlling meristem size for crop improvement |
| WO2024054880A1 (en) | 2022-09-08 | 2024-03-14 | Pairwise Plants Services, Inc. | Methods and compositions for improving yield characteristics in plants |
| EP4342885A1 (en) | 2022-09-20 | 2024-03-27 | Basf Se | N-(3-(aminomethyl)-phenyl)-5-(4-phenyl)-5-(trifluoromethyl)-4,5-dihydroisoxazol-3-amine derivatives and similar compounds as pesticides |
| EP4295688A1 (en) | 2022-09-28 | 2023-12-27 | Bayer Aktiengesellschaft | Active compound combination |
| WO2024068838A1 (en) | 2022-09-28 | 2024-04-04 | Syngenta Crop Protection Ag | Fungicidal compositions |
| WO2024068518A1 (en) | 2022-09-28 | 2024-04-04 | Bayer Aktiengesellschaft | 3-heteroaryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide |
| WO2024068837A1 (en) | 2022-09-28 | 2024-04-04 | Syngenta Crop Protection Ag | Agricultural methods |
| WO2024068519A1 (en) | 2022-09-28 | 2024-04-04 | Bayer Aktiengesellschaft | 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide |
| WO2024068520A1 (en) | 2022-09-28 | 2024-04-04 | Bayer Aktiengesellschaft | 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide |
| WO2024068517A1 (en) | 2022-09-28 | 2024-04-04 | Bayer Aktiengesellschaft | 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide |
| EP4361126A1 (en) | 2022-10-24 | 2024-05-01 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors xv |
| WO2024100069A1 (en) | 2022-11-08 | 2024-05-16 | Syngenta Crop Protection Ag | Microbiocidal pyridine derivatives |
| WO2024104822A1 (en) | 2022-11-16 | 2024-05-23 | Basf Se | Substituted tetrahydrobenzodiazepine as fungicides |
| WO2024104815A1 (en) | 2022-11-16 | 2024-05-23 | Basf Se | Substituted benzodiazepines as fungicides |
| WO2024104818A1 (en) | 2022-11-16 | 2024-05-23 | Basf Se | Substituted benzodiazepines as fungicides |
| WO2024104823A1 (en) | 2022-11-16 | 2024-05-23 | Basf Se | New substituted tetrahydrobenzoxazepine |
| EP4385327A1 (en) | 2022-12-15 | 2024-06-19 | Kimitec Group S.L. | Biopesticide composition and method for controlling and treating broad spectrum of pests and diseases in plants |
| WO2024126688A1 (en) | 2022-12-15 | 2024-06-20 | Kimitec Biogroup S.L | Biopesticide composition and method for controlling and treating broad spectrum of pests and diseases in plants |
| WO2024137438A2 (en) | 2022-12-19 | 2024-06-27 | BASF Agricultural Solutions Seed US LLC | Insect toxin genes and methods for their use |
| EP4389210A1 (en) | 2022-12-21 | 2024-06-26 | Basf Se | Heteroaryl compounds for the control of invertebrate pests |
| WO2024165343A1 (en) | 2023-02-08 | 2024-08-15 | Basf Se | New substituted quinoline compounds for combatitng phytopathogenic fungi |
| WO2024173622A1 (en) | 2023-02-16 | 2024-08-22 | Pairwise Plants Services, Inc. | Methods and compositions for modifying shade avoidance in plants |
| WO2024182658A1 (en) | 2023-03-02 | 2024-09-06 | Pairwise Plants Services, Inc. | Methods and compositions for modifying shade avoidance in plants |
| WO2024186950A1 (en) | 2023-03-09 | 2024-09-12 | Pairwise Plants Services, Inc. | Modification of brassinosteroid signaling pathway genes for improving yield traits in plants |
| WO2024194038A1 (en) | 2023-03-17 | 2024-09-26 | Basf Se | Substituted pyridyl/pyrazidyl dihydrobenzothiazepine compounds for combatting phytopathogenic fungi |
| EP4455137A1 (en) | 2023-04-24 | 2024-10-30 | Basf Se | Pyrimidine compounds for the control of invertebrate pests |
| WO2024223034A1 (en) | 2023-04-26 | 2024-10-31 | Basf Se | Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors xvi |
| WO2024238902A1 (en) | 2023-05-18 | 2024-11-21 | Pairwise Plants Services, Inc. | Methods and compositions for improving yield characteristics in plants |
| EP4467535A1 (en) | 2023-05-25 | 2024-11-27 | Basf Se | Lactam pesticidal compounds |
| WO2025008227A1 (en) | 2023-07-05 | 2025-01-09 | Basf Se | Substituted pyridyl/pyrazinyl dihydropyrrolotriazine compounds for combatting phytopath-ogenic fungi |
| WO2025008447A1 (en) | 2023-07-05 | 2025-01-09 | Bayer Aktiengesellschaft | Composition for use in agriculture |
| WO2025008226A1 (en) | 2023-07-05 | 2025-01-09 | Basf Se | Substituted quinolyl/quinoxalyl dihydropyrrolotriazine compounds for combatting phyto-pathogenic fungi |
| WO2025008446A1 (en) | 2023-07-05 | 2025-01-09 | Bayer Aktiengesellschaft | Composition for use in agriculture |
| EP4488269A1 (en) | 2023-07-06 | 2025-01-08 | Basf Se | Triazole compounds for the control of invertebrate pests |
| EP4488270A1 (en) | 2023-07-06 | 2025-01-08 | Basf Se | Triazole compounds for the control of invertebrate pests |
| EP4488273A1 (en) | 2023-07-06 | 2025-01-08 | Basf Se | Triazole compounds for the control of invertebrate pests |
| WO2025111030A2 (en) | 2023-07-07 | 2025-05-30 | Basf Agricultural Solutions Us Llc | Use of novel genes for the control of nematode pests |
| WO2025019522A1 (en) | 2023-07-18 | 2025-01-23 | Pairwise Plants Services, Inc. | Methods and compositions for modifying root architecture in plants |
| WO2025024617A1 (en) | 2023-07-27 | 2025-01-30 | Pairwise Plants Services, Inc. | Methods and compositions for modifying plant yield traits |
| WO2025026738A1 (en) | 2023-07-31 | 2025-02-06 | Bayer Aktiengesellschaft | 6-[5-(ethylsulfonyl)-1-methyl-1h-imidazol-4-yl]-7-methyl-3-(pentafluoroethyl)-7h-imidazo[4,5-c]pyridazine derivatives as pesticides |
| WO2025026787A1 (en) | 2023-08-01 | 2025-02-06 | Globachem Nv | Plant defense elicitors |
| WO2025026788A1 (en) | 2023-08-01 | 2025-02-06 | Globachem Nv | Plant defense elicitors |
| WO2025026815A1 (en) | 2023-08-01 | 2025-02-06 | Globachem Nv | Insecticidal mixtures |
| WO2025026785A1 (en) | 2023-08-01 | 2025-02-06 | Globachem Nv | Plant defense elicitors |
| WO2025031990A1 (en) | 2023-08-04 | 2025-02-13 | Syngenta Crop Protection Ag | Methods of controlling or preventing infestation of soybean plants by the phytopathogenic microorganism corynespora cassiicola |
| WO2025031989A1 (en) | 2023-08-04 | 2025-02-13 | Syngenta Crop Protection Ag | Methods of controlling or preventing infestation of plants by the phytopathogenic microorganism corynespora cassiicola |
| WO2025031913A1 (en) | 2023-08-04 | 2025-02-13 | Syngenta Crop Protection Ag | Methods of controlling or preventing infestation of plants by the phytopathogenic microorganism corynespora cassiicola |
| WO2025031668A1 (en) | 2023-08-09 | 2025-02-13 | Bayer Aktiengesellschaft | Azaheterobiaryl-substituted 4,5-dihydro-1h-2,4,5-oxadiazines as novel fungicides |
| WO2025031843A1 (en) | 2023-08-09 | 2025-02-13 | Basf Se | New substituted benzoxazine picolinonitrile compounds for combatting phytopathogenic fungi |
| WO2025031842A1 (en) | 2023-08-09 | 2025-02-13 | Basf Se | New substituted benzoxazepine picolinonitrile compounds for combatting phytopathogenic fungi |
| WO2025032038A1 (en) | 2023-08-09 | 2025-02-13 | Bayer Aktiengesellschaft | Pyridazin-4-yloxadiazines as novel fungicides |
| WO2025064734A1 (en) | 2023-09-21 | 2025-03-27 | Pairwise Plants Services, Inc. | Early flowering black raspberry plants with improved characteristics |
| WO2025068226A2 (en) | 2023-09-29 | 2025-04-03 | Basf Se | Methods for protecting plants using mixtures comprising sulfur and selected terpenes |
| WO2025078181A1 (en) | 2023-10-09 | 2025-04-17 | Basf Se | Fungicidal mixture comprising substituted pyridines |
| WO2025078183A1 (en) | 2023-10-09 | 2025-04-17 | Basf Se | Fungicidal mixture comprising substituted quinazolyl quinolines |
| WO2025078128A1 (en) | 2023-10-11 | 2025-04-17 | Bayer Aktiengesellschaft | Pyridazin-3-one-4-yloxadiazines as novel fungicides |
| WO2025080600A1 (en) | 2023-10-11 | 2025-04-17 | Pairwise Plants Services, Inc. | Methods and compositions for improving crop yield traits |
| WO2025090606A1 (en) | 2023-10-27 | 2025-05-01 | Basf Agricultural Solutions Us Llc | Use of novel genes for the control of nematode pests |
| WO2025098876A1 (en) | 2023-11-10 | 2025-05-15 | Bayer Aktiengesellschaft | Active compound combinations having insecticidal/acaricidal properties |
| WO2025098875A1 (en) | 2023-11-10 | 2025-05-15 | Bayer Aktiengesellschaft | Active compound combinations having insecticidal/acaricidal properties |
| WO2025098874A1 (en) | 2023-11-10 | 2025-05-15 | Bayer Aktiengesellschaft | Active compound combinations having fungicidal/insecticidal/acaricidal properties |
| WO2025120070A1 (en) | 2023-12-08 | 2025-06-12 | Syngenta Crop Protection Ag | Polymorphs of a methoxyacrylate derivative |
| WO2025125639A1 (en) | 2023-12-13 | 2025-06-19 | Syngenta Crop Protection Ag | Method of pathogen control in soybean |
| WO2025131902A1 (en) | 2023-12-21 | 2025-06-26 | Basf Se | Methods for protecting plants using mixtures comprising sulfur, selected terpenes and phosphites. |
| EP4574819A1 (en) | 2023-12-22 | 2025-06-25 | Basf Se | Diazinone compounds for the control of invertebrate pests |
| WO2025132562A1 (en) | 2023-12-22 | 2025-06-26 | Basf Agricultural Solutions Us Llc | Increased resistance by expression of a defense signal multiplier protein |
| WO2025162985A1 (en) | 2024-01-30 | 2025-08-07 | Basf Plant Science Company Gmbh | Increased plant disease resistance by expression of a glycine-rich protein |
| WO2025168620A1 (en) | 2024-02-07 | 2025-08-14 | Bayer Aktiengesellschaft | Heteroaryl-substituted 4,5-dihydro-1h-2,4,5-oxadiazines as novel fungicides |
| WO2025178902A1 (en) | 2024-02-22 | 2025-08-28 | Pairwise Plants Services, Inc. | Methods and compositions for improving yield characteristics in plants |
| WO2025180964A1 (en) | 2024-03-01 | 2025-09-04 | Basf Se | New substituted benzoxazepine compounds for combatting phytopathogenic fungi |
| WO2025186065A1 (en) | 2024-03-05 | 2025-09-12 | Bayer Aktiengesellschaft | Heteroaryl-substituted (aza)quinoxaline derivatives as pesticides |
| WO2025190927A1 (en) | 2024-03-14 | 2025-09-18 | Bayer Aktiengesellschaft | Active compound combinations having insecticidal/acaricidal properties |
| WO2025202482A1 (en) | 2024-03-28 | 2025-10-02 | Syngenta Crop Protection Ag | Fungicidal compositions |
| WO2025202499A1 (en) | 2024-03-28 | 2025-10-02 | Syngenta Crop Protection Ag | Fungicidal compositions |
| WO2025211272A1 (en) | 2024-04-04 | 2025-10-09 | Nihon Nohyaku Co., Ltd. | Pesticidal mixtures comprising an ethylsulfone compound |
| EP4640052A1 (en) | 2024-04-24 | 2025-10-29 | Basf Se | Mixtures of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors with at least one further pesticide i |
| WO2025223904A1 (en) | 2024-04-24 | 2025-10-30 | Basf Se | Mixtures of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors with at least one further pesticide i |
| EP4652842A1 (en) | 2024-05-21 | 2025-11-26 | Kimitec Biogroup S.L | Biopesticide composition, procedure of obtain thereof, and method for controlling and treating broad spectrum of pests, diseases and weeds in plants |
| EP4652843A1 (en) | 2024-05-21 | 2025-11-26 | Kimitec Biogroup S.L | Biopesticide composition, procedure of obtain thereof, and method for controlling and treating broad spectrum of pests in plants |
| WO2025242522A1 (en) | 2024-05-21 | 2025-11-27 | Kimitec Biogroup S.L. | Biopesticide composition, procedure of obtain thereof, and method for controlling and treating broad spectrum of pests, diseases and weeds in plants |
Also Published As
| Publication number | Publication date |
|---|---|
| CA2603944A1 (en) | 2006-10-19 |
| US9322069B2 (en) | 2016-04-26 |
| JP5256020B2 (ja) | 2013-08-07 |
| US20110294127A1 (en) | 2011-12-01 |
| BRPI0608667A2 (pt) | 2010-01-19 |
| US20140026262A1 (en) | 2014-01-23 |
| CA2603944C (en) | 2015-06-23 |
| MX2007012383A (es) | 2007-11-07 |
| EP1869187A2 (en) | 2007-12-26 |
| CN103103262B (zh) | 2017-07-04 |
| US20080320616A1 (en) | 2008-12-25 |
| BRPI0608667B1 (pt) | 2018-05-02 |
| WO2006108674A3 (en) | 2006-12-14 |
| CN103103262A (zh) | 2013-05-15 |
| JP5612636B2 (ja) | 2014-10-22 |
| ES2388548T3 (es) | 2012-10-16 |
| JP2012228261A (ja) | 2012-11-22 |
| CN101151373A (zh) | 2008-03-26 |
| US8012689B2 (en) | 2011-09-06 |
| JP2008535489A (ja) | 2008-09-04 |
| EP1869187B1 (en) | 2012-06-13 |
| CN101151373B (zh) | 2016-02-24 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9322069B2 (en) | Elite event A2704-12 and methods and kits for identifying such event in biological samples | |
| US8952142B2 (en) | Elite event A5547-127 and methods and kits for identifying such event in biological samples | |
| US6951929B2 (en) | Methods and kits for identifying elite event GAT-ZM1 in biological samples | |
| US9394566B2 (en) | Herbicide tolerant cotton plants and methods for identifying same | |
| AU2001235414A1 (en) | Methods and kits for identifying elite event GAT-ZM1 in biological samples | |
| HK1123327A (en) | Herbicide tolerant cotton plants and methods for identifying same |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 2006724339 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 200680010143.4 Country of ref document: CN |
|
| WWE | Wipo information: entry into national phase |
Ref document number: MX/a/2007/012383 Country of ref document: MX Ref document number: 11910899 Country of ref document: US Ref document number: 2603944 Country of ref document: CA Ref document number: 2008504705 Country of ref document: JP |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWW | Wipo information: withdrawn in national office |
Ref document number: DE |
|
| NENP | Non-entry into the national phase |
Ref country code: RU |
|
| WWW | Wipo information: withdrawn in national office |
Ref document number: RU |
|
| WWP | Wipo information: published in national office |
Ref document number: 2006724339 Country of ref document: EP |
|
| ENP | Entry into the national phase |
Ref document number: PI0608667 Country of ref document: BR Kind code of ref document: A2 |