WO2021209490A1 - Cyclaminephenylaminoquinolines as fungicides - Google Patents

Cyclaminephenylaminoquinolines as fungicides Download PDF

Info

Publication number
WO2021209490A1
WO2021209490A1 PCT/EP2021/059634 EP2021059634W WO2021209490A1 WO 2021209490 A1 WO2021209490 A1 WO 2021209490A1 EP 2021059634 W EP2021059634 W EP 2021059634W WO 2021209490 A1 WO2021209490 A1 WO 2021209490A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
formula
compound
membered
methyl
Prior art date
Application number
PCT/EP2021/059634
Other languages
French (fr)
Inventor
Philippe Desbordes
Sébastien NAUD
Christophe Dubost
Philippe Rinolfi
Vincent Thomas
Virginie LEMPEREUR
Valérie TOQUIN
Sybille Lamprecht
Ruth Meissner
Original Assignee
Bayer Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Aktiengesellschaft filed Critical Bayer Aktiengesellschaft
Publication of WO2021209490A1 publication Critical patent/WO2021209490A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/34Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
    • A01N43/40Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom six-membered rings
    • A01N43/42Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom six-membered rings condensed with carbocyclic rings
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/48Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
    • A01N43/601,4-Diazines; Hydrogenated 1,4-diazines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/04Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D207/06Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with radicals, containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/04Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D207/10Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/06Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D211/08Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms
    • C07D211/10Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with radicals containing only carbon and hydrogen atoms attached to ring carbon atoms
    • C07D211/14Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with radicals containing only carbon and hydrogen atoms attached to ring carbon atoms with hydrocarbon or substituted hydrocarbon radicals attached to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/10Spiro-condensed systems
    • C07D491/107Spiro-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring

Definitions

  • the present disclosure relates to fungicidal active compounds, more specifically to cyclaminephenylaminoquinolines and derivatives thereof, intermediates for their preparation and use thereof as fungicidal active compound, particularly in the form of fungicide compositions.
  • the present disclosure also relates to methods for the control of phytopathogenic fungi of plants using these compounds or compositions comprising thereof.
  • WO 2011/081174, WO 2012/161071 , WO 2013/002205, WO 2013/058256 and JP 2014/166991 disclose nitrogen-containing heterocyle compounds suitable for use as fungicides.
  • the present invention provides new fungicidal compounds which have advantages over known compounds and compositions in at least some of these aspects.
  • the present invention relates to compounds of the formula (I): wherein Q 1 , Z, Y 2 , Y 3 , Y 4 , Y 5 , L, A, Q 2 , Q 3 , Q 4 , X, W, n, m and p are as recited herein, as well as their salts, N-oxides and solvates.
  • the present invention relates to compositions comprising at least one compound of formula (I) as defined herein and at least one agriculturally suitable auxiliary.
  • the present invention also relates to the use of a compound of formula (I) as defined herein or a composition as defined herein for controlling phytopathogenic microorganisms in agriculture.
  • the present invention also relates to processes and intermediates for preparing compounds of formula (I) as disclosed herein.
  • halogen refers to fluorine, chlorine, bromine or iodine atom.
  • oxo refers to an oxygen atom which is bound to a carbon atom or sulfur atom via a double bound.
  • C 1 -C 8 -alkyl refers to a saturated, branched or straight hydrocarbon chain having 1 , 2, 3, 4, 5, 6, 7 or 8 carbon atoms.
  • Examples of C 1 -C 8 -alkyl include but are not limited to methyl, ethyl, propyl (n-propyl), 1-methylethyl (iso-propyl), butyl (n-butyl), 1-methylpropyl (sec-butyl), 2- methylpropyl (iso-butyl), 1 ,1-dimethylethyl (tert-butyl), pentyl, 1-methylbutyl, 2-methylbutyl, 3- methylbutyl, 2,2-dimethylpropyl, 1-ethylpropyl, 1 ,1-dimethylpropyl, 1 ,2-dimethylpropyl, hexyl, 1- methylpentyl, 2-methylpentyl, 3-methylpentyl, 4-methylp
  • said hydrocarbon chain has 1 , 2, 3 or 4 carbon atoms (“C 1 -C 4 -alkyl”), e.g. methyl, ethyl, propyl, iso- propyl, butyl, sec-butyl, iso-butyl or tert-butyl.
  • C 1 -C 4 -alkyl e.g. methyl, ethyl, propyl, iso- propyl, butyl, sec-butyl, iso-butyl or tert-butyl.
  • C 2 -C 8 -alkenyl refers to an unsaturated, branched or straight hydrocarbon chain having 2, 3, 4, 5, 6, 7 or 8 carbon atoms and comprising at least one double bond.
  • Examples of C 2 -C 8 -alkenyl include but are not limited to ethenyl (or "vinyl"), prop-2-en-1-yl (or “allyl”), prop-1 -en-1-yl, but-3-enyl, but-2-enyl, but-1-enyl, pent-4-enyl, pent-3-enyl, pent-2-enyl, pent-1-enyl, hex-5-enyl, hex-4- enyl, hex-3-enyl, hex-2-enyl, hex-1 -enyl, prop-1 -en-2-yl (or “isopropenyl”), 2-methylprop-2-enyl, 1- methylprop-2-enyl
  • C 2 -C 8 -alkynyl refers to a branched or straight hydrocarbon chain having 2, 3, 4, 5, 6, 7 or 8 carbon atoms and comprising at least one triple bond.
  • Examples of C 2 -C 8 -alkynyl include but are not limited to ethynyl, prop-1-ynyl, prop-2-ynyl (or “propargyl"), but-1-ynyl, but-2-ynyl, but-3-ynyl, pent-1-ynyl, pent-2-ynyl, pent-3-ynyl, pent-4-ynyl, hex-1 -ynyl, hex-2-ynyl, hex-3-ynyl, hex-4-ynyl, hex-5- ynyl, 1-methylprop-2-ynyl, 2-methylbut-3-ynyl, 1-methylbut-3-ynyl, 1-methylbut-2
  • C 1 -C 8 -halogenoalkyl refers to a C 1 -C 8 -alkyl group as defined above in which one or more hydrogen atoms are replaced with one or more halogen atoms that may be the same or different.
  • C 1 -C 8 -halogenoalkyl comprises up to 9 halogen atoms that can be the same or different.
  • C 2 -C 8 -halogenoalkenyl refers to a C 2 -C 8 -alkenyl group as defined above in which one or more hydrogen atoms are replaced with one or more halogen atoms that may be the same or different.
  • C 1 -C 8 -halogenoalkenyl comprises up to 9 halogen atoms that can be the same or different.
  • C 2 -C 8 -halogenoalkynyl refers to a C 2 -C 8 -alkynyl group as defined above in which one or more hydrogen atoms are replaced with one or more halogen atoms that may be the same or different.
  • C 1 -C 8 -halogenoalkynyl comprises up to 9 halogen atoms that can be the same or different.
  • C 1 -C 8 -alkoxy refers to a group of formula (C 1 -C 8 -alkyl)-O-, in which the term “C 1 -C 8 -alkyl” is as defined herein.
  • C 1 -C 8 -alkoxy examples include but are not limited to methoxy, ethoxy, n-propoxy, 1-methylethoxy, n-butoxy, 1-methylpropoxy, 2-methylpropoxy, 1 ,1-dimethylethoxy, n-pentoxy, 1-methylbutoxy, 2-methylbutoxy, 3-methylbutoxy, 2,2-dimethylpropoxy, 1-ethylpropoxy, 1 ,1- dimethylpropoxy, 1 ,2-dimethylpropoxy, n-hexyloxy, 1-methylpentoxy, 2-methylpentoxy, 3- methylpentoxy, 4-methylpentoxy, 1 ,1-dimethylbutoxy, 1 ,2-dimethylbutoxy, 1 ,3-dimethylbutoxy, 2,2- dimethylbutoxy, 2,3-dimethylbutoxy, 3,3-dimethylbutoxy, 1-ethylbutoxy, 2-ethylbutoxy, 1 ,1 ,2- trimethylpropoxy, 1 ,2,2-trimethylpropoxy,
  • C 1 -C 8 -halogenalkoxy refers to a C 1 -C 8 -alkoxy group as defined above in which one or more hydrogen atoms are replaced with one or more halogen atoms that may be the same or different.
  • C 1 -C 8 -halogenoalkoxy examples include but are not limited to ch loro methoxy, bromomethoxy, dichloromethoxy, trichloromethoxy, fluoromethoxy, difluoromethoxy, trifluoromethoxy, chlorofluoromethoxy, dichlorofluoromethoxy, chlorodifluoromethoxy, 1-chloroethoxy, 1-bromoethoxy, 1- fluoroethoxy, 2-fluoroethoxy, 2,2-difluoroethoxy, 2,2,2-trifluoroethoxy, 2-chloro-2-fluoroethoxy, 2-chloro- 2,2-difluoroethoxy, 2,2-dichloro-2-fluoroethoxy, 2,2,2-trichloroethoxy, pentafluoroethoxy and 1 ,1 ,1- trifluoroprop-2-oxy.
  • C 1 -C 8 -alkylsulfanyl refers to a saturated, linear or branched group of formula (C 1 -C 8 -alkyl)-S-, in which the term “C 1 -C 8 -alkyl” is as defined herein.
  • C 1 -C 8 -alkylsulfanyl examples include but are not limited to methylsulfanyl, ethylsulfanyl, propylsulfanyl, isopropylsulfanyl, butylsulfanyl, sec-butylsulfanyl, isobutylsulfanyl, tert-butylsulfanyl, pentylsulfanyl, isopentylsulfanyl, hexylsulfanyl group.
  • C 1 -C 8 -halogenoalkylsulfanyl refers to a C 1 -C 8 -alkylsulfanyl as defined above in which one or more hydrogen atoms are replaced with one or more halogen atoms that may be the same or different.
  • C 1 -C 8 -alkylsulfinyl include but are not limited to saturated, straight-chain or branched alkylsulfinyl radicals having 1 to 8, preferably 1 to 6 and more preferably 1 to 4 carbon atoms, for example (but not limited to) methylsulfinyl, ethylsulfinyl, propylsulfinyl, 1-methylethylsulfinyl, butylsulfinyl, 1-methylpropylsulfinyl, 2- methylpropylsulfinyl, 1 ,1-dimethylethylsulfinyl, pentylsulfinyl, 1-methylbutylsulfinyl, 2-methylbutylsulfinyl, 3-methylbutylsulfinyl, 2,2-dimethylpropylsulfinyl, 1-ethylpropylsulfinyl, 1 ,1-d
  • C 1 -C 8 -halogenoalkylsulfinyl refers to a C 1 -C 8 -alkylsulfinyl as defined above in which one or more hydrogen atoms are replaced with one or more halogen atoms that may be the same or different.
  • C 1 -C 8 - alkylsulfonyl examples include but are not limited to methylsulfonyl, ethylsulfonyl, propylsulfonyl, 1-methyl- ethylsulfonyl, butylsulfonyl, 1-methylpropylsulfonyl, 2-methylpropylsulfonyl, 1 ,1-dimethylethylsulfonyl, pentylsulfonyl, 1-methylbutylsulfonyl, 2-methylbutylsulfonyl, 3-methylbutylsulfonyl, 2,2- dimethylpropylsulfonyl, 1-ethylpropylsulfonyl, 1 ,1-dimethylpropylsulfonyl, 1 ,2-dimethylpropylsulfonyl, hexylsulfonyl, 1-methylpentylsul
  • C 1 -C 8 -halogenoalkylsulfonyl refers to a C 1 -C 8 -alkylsulfonyl as defined above in which one or more hydrogen atoms are replaced with one or more halogen atoms that may be the same or different.
  • C 1 -C 8 -halogenoalkylcarbonyl refers to a C 1 -C 8 -alkylcarbonyl as defined above in which one or more hydrogen atoms are replaced with one or more halogen atoms that may be the same or different.
  • C 1 -C 8 -halogenoalkoxycarbonyl refers to a C 1 -C 8 -alkoxycarbonyl as defined above in which one or more hydrogen atoms are replaced with one or more halogen atoms that may be the same or different.
  • non-aromatic C 3 -C 12 -carbocycle refers to a non-aromatic, saturated or unsaturated, hydrocarbon ring system in which all of the ring members, which vary from 3 to 12, are carbon atoms.
  • the ring system may be monocyclic or polycyclic (fused, spiro or bridged).
  • polycyclic non-aromatic C 3 -C 12 -carbocycle include non-aromatic bicyclic C7-Ci 2 -carbocycle.
  • Non- aromatic C 3 -C 12 -carbocycles include but are not limited to C 3 -C 12 -cycloalkyl (mono or bicyclic), C 3 -C 12 - cycloalkenyl (mono or bicyclic), bicylic system comprising an aryl (e.g. phenyl) fused to a monocyclic C 3 -C 7 -cycloalkyl (e.g. tetrahydronaphthalenyl, indanyl), bicylic system comprising an aryl (e.g. phenyl) fused to a monocyclic C 3 -C 8 -cycloalkenyl (e.g.
  • indenyl, dihydronaphthalenyl) and tricyclic system comprising a cyclopropyl connected through one carbon atom to a bicylic system comprising an aryl (e.g. phenyl) fused to a monocyclic C 3 -C 7 -cycloalkyl or to a monocyclic C 3 -C 8 -cycloalkenyl.
  • aryl e.g. phenyl
  • the non- aromatic C 3 -C 12 -carbocycle can be attached to the parent molecular moiety through any carbon atom.
  • C 3 -C 12 -cycloalkyl refers to a saturated, monovalent, mono- or bicylic hydrocarbon ring which contains 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12 carbon atoms.
  • C 3 -C 7 -cycloalkyl designates monocyclic C 3 -C 7 -cycloalkyls which include but are not limited to cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl, cycloheptyl.
  • bicyclic C 6 -C 12 -cycloalkyls include but are not limited to bicyclo[3.1.1]heptane, bicyclo[2.2.1]heptane, bicyclo[2.2.2]octane, bicyclo[3.2.2]- nonane, bicyclo[3.3.1]nonane, bicyclo[4.2.0]octyl, octahydropentalenyl and bicyclo[4.2.1]nonane.
  • C 3 -C 12 -cycloalkenyl refers to an unsaturated, monovalent, mono- or bicylic hydrocarbon ring which contains 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12 carbon atoms.
  • monocyclic C 3 -C 8 -cycloalkenyl group include but are not limited to cyclobutenyl, cyclopentenyl, cyclohexenyl, cycloheptenyl and cyclooctenyl group.
  • Examples of bicyclic C6-Ci2-cycloalkenyl group include but are not limited to bicyclo[2.2.1]hept-2-enyl or bicyclo[2.2.2]oct-2-enyl.
  • aromatic C 6 -C 14 -carbocycle refers to an aromatic hydrocarbon ring system in which all of the ring members, which vary from 6 to 14, preferably from 6 to 10, are carbon atoms.
  • the ring system may be monocyclic or fused polycyclic (e.g. bicyclic or tricyclic).
  • aryl include but are not limited to phenyl, azulenyl, naphthyl and fluorenyl.
  • the aryl can be attached to the parent molecular moiety through any carbon atom.
  • said substituent(s) may be at any positions on said aryl ring(s). Particularly, in the case of aryl being a phenyl group, said substituent(s) may occupy one or both ortho positions, one or both meta positions, or the para position, or any combination of these positions.
  • non-aromatic 3- to 10-membered heterocycle refers to a saturated or partially unsaturated non-aromatic ring system comprising 1 to 4, or 1 to 3 heteroatoms independently selected from the group consisting of oxygen, nitrogen and sulfur. If the ring system contains more than one oxygen atoms, they are not directly adjacent.
  • Non aromatic heterocycles include but are not limited to 3- to 7-membered monocyclic non-aromatic heterocycles and 6- to 10-membered polycyclic (e.g. bicyclic or tricyclic) non-aromatic heterocycles.
  • the non-aromatic 3- to 10-membered heterocycle can be connected to the parent molecular moiety through any carbon atom or nitrogen atom contained within the heterocycle.
  • non-aromatic 3- to 7-membered monocyclic heterocycle refers to a 3-, 4-, 5- , 6- or 7-membered monocyclic ring system containing 1 , 2 or 3 heteroatoms independently selected from the group consisting of oxygen, nitrogen and sulfur where the ring system is saturated or unsaturated but not aromatic.
  • the heterocycle may comprise one to three nitrogen atoms, or one or two oxygen atoms, or one or two sulfur atoms, or one to three nitrogen atoms and one oxygen atom, or one to three nitrogen atoms and a sulfur atom or one sulfur atom and one oxygen atom.
  • saturated non-aromatic heterocycles include but are not limited to 3-membered ring such as oxiranyl, aziridinyl, 4-membered ring such as azetidinyl, oxetanyl, thietanyl, 5-membered ring such as tetrahydrofuranyl, 1 ,3-dioxolanyl, tetrahydrothienyl, pyrrolidinyl, pyrazolidinyl, imidazolidinyl, triazolidinyl, isoxazolidinyl, oxazolidinyl, oxadiazolidinyl, thiazolidinyl, isothiazolidinyl, thiadiazolidinyl, 6- membered ring such as piperidinyl, hexahydropyridazinyl, hexahydropyrimidinyl, piperazinyl, triazinanyl, hexahydro
  • unsaturated non-aromatic hererocyles include but are not limited to 5- membered ring such as dihydrofuranyl, 1 ,3-dioxolyl, dihydrothienyl, pyrrolinyl, dihydroimidazolyl, dihydropyrazolyl, isoxazolinyl, dihydrooxazolyl, dihydrothiazolyl or 6-membered ring such as pyranyl, thiopyranyl, thiazinyl and thiadiazinyl.
  • 5- membered ring such as dihydrofuranyl, 1 ,3-dioxolyl, dihydrothienyl, pyrrolinyl, dihydroimidazolyl, dihydropyrazolyl, isoxazolinyl, dihydrooxazolyl, dihydrothiazolyl or 6-membered ring such as pyranyl, thiopyranyl, thiazinyl and
  • the two substituents together with the nitrogen atom to which they are linked can form a heterocyclyl group, preferably a 5- to 7-membered heterocyclyl group, that can be substituted or that can include other hetero atoms, for example a morpholinyl group, a thiomorpholinyl group, a piperazinyl group or piperidinyl group.
  • non-aromatic 6- to 10-membered polycyclic heterocycle refers to a 6-, 7-, 8- , 9-, 10-membered polycyclic (e.g. bicyclic or tricyclic) ring system containing 1 , 2 or 3 heteroatoms independently selected from the group consisting of oxygen, nitrogen and sulfur where the ring system is saturated or unsaturated but not aromatic.
  • Non-aromatic bicyclic heterocycles may consist of a monocyclic heteroaryl as defined herein fused to a monocyclic C 3 -C 7 -cycloalkyl, a monocyclic C 3 -C 8 - cycloalkenyl or a monocyclic non-aromatic heterocycle or may consist of a monocyclic non-aromatic heterocycle fused either to an aryl (e.g. phenyl), a monocyclic C 3 -C 7 -cycloalkyl, a monocyclic C 3 -C 8 - cycloalkenyl or a monocyclic non-aromatic heterocycle.
  • aryl e.g. phenyl
  • nitrogen atom may be at the bridgehead (e.g. 4,5,6,7-tetrahydropyrazolo[1 ,5-a]pyridinyl, 5,6,7,8-tetrahydro-[1 ,2,4]triazolo[1 ,5-a]pyridinyl, 5, 6,7,8- tetrahydroimidazo[1 ,2-a]pyridinyl).
  • Non-aromatic tricyclic heterocycles may consist of a monocyclic cycloalkyl connected through one common atom to a non-aromatic bicyclic heterocycle.
  • aromatic 5- to 14-membered heterocycle or “heteroaryl” as used herein refers to an aromatic ring system comprising 1 to 4 heteroatoms independently selected from the group consisting of oxygen, nitrogen and sulfur. If the ring system contains more than one oxygen atom, they are not directly adjacent.
  • Aromatic heterocycles include aromatic 5- or6-membered monocyclic heterocycles and 6- to 14-membered polycyclic (e.g. bicyclic or tricyclic) aromatic heterocycles.
  • the 5- to 14-membered aromatic heterocycle can be connected to the parent molecular moiety through any carbon atom or nitrogen atom contained within the heterocycle.
  • aromatic 5- or 6-membered monocyclic heterocycle or “monocyclic heteroaryl” as used herein refers to a 5- or 6-membered monocyclic ring system containing 1 , 2, 3 or 4 heteroatoms independently selected from the group consisting of oxygen, nitrogen and sulfur.
  • Examples of 5- membered monocyclic heteroaryl include but are not limited to furyl (furanyl), thienyl, pyrrolyl, pyrazolyl, imidazolyl, triazolyl, tetrazolyl, isoxazolyl, oxazolyl, oxadiazolyl, oxatriazolyl, isothiazolyl, thiazolyl, thiadiazolyl and thiatriazolyl.
  • Examples of 6-membered monocyclic heteroaryl include but are not limited to pyridinyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, tetrazinyl.
  • 6- to 14-membered polycyclic aromatic heterocycle or “polycyclic heteroaryl” as used herein refers to a 6-, 7-, 8-, 9-, 10-, 11-, 12-, 13- or 14-membered polycyclic (e.g. bicyclic or tricyclic) ring system containing 1 , 2 or 3 heteroatoms independently selected from the group consisting of oxygen, nitrogen and sulfur.
  • Aromatic bicyclic heterocycles may consist of a monocyclic heteroaryl as defined herein fused to an aryl (e.g. phenyl) or to a monocyclic heteroaryl.
  • bicyclic aromatic heterocycle examples include but are not limited to 9-membered ring such as indolyl, indolizinyl, isoindolyl, benzimadozolyl, imidazopyridinyl, indazolyl, benzotriazolyl, purinyl, benzofuranyl, benzothiophenyl, benzothiazolyl, benzoxazolyl and benzisoxazolyl or 10-membered ring such as quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, quinoxalinyl, phthalazinyl, naphthyridinyl, pteridinal and benzodioxinyl.
  • 9-membered ring such as indolyl, indolizinyl, isoindolyl, benzimadozolyl, imidazopyridinyl, indazolyl, benzotriazolyl,
  • nitrogen atom may be at the bridgehead (e.g. imidazo[1 ,2-a]pyridinyl, [1 ,2,4]triazolo[4,3- a]pyridinyl, imidazo[1 ,2-a]pyridinyl, imidazo[2,1-b]oxazolyl, furo[2,3-d]isoxazolyl).
  • Examples of tricyclic aromatic heterocyle include but are not limited to carbazolyl, acridinyl and phenazinyl.
  • heteroaryloxy designate a group of formula -O- R wherein R is respectively a heteroaryl, an aryl, a heterocyclyl as defined herein.
  • substituents refers to a number of substituents that ranges from one to the maximum number of substituents possible based on the number of available bonding sites, provided that the conditions of stability and chemical feasibility are met.
  • leaving group as used herein is to be understood as meaning a group which is displaced from a compound in a substitution or an elimination reaction, for example a halogen atom, a trifluoromethanesulfonate (“triflate”) group, alkoxy, methanesulfonate, p-toluenesulfonate, etc.
  • the present invention provides cyclaminephenylaminoquinolines and derivatives thereof as described herein below that may be used for controlling phytopathogenic microorganisms, preferably phytopathogenic fungi and oomycetes, in agriculture (e.g. in crop protection).
  • the present invention relates to compounds of formula (I): wherein
  • Q 1 is CY 1 or N wherein:
  • Y 1 is selected from the group consisting of hydrogen atom, halogen atom, C 1 -C 8 - alkyl, C 2 -C 8 -alkenyl, C 2 -C 8 -alkynyl, C 3 -C 7 -cycloalkyl, C 4 -C7-cycloalkenyl, hydroxyl, C 1 -C 8 -alkoxy, C 6 -C 14 -aryl, 3- to 10-membered heterocyclyl, 5- to 14-membered heteroaryl, formyl, C 1 -C 8 -alkylcarbonyl, (hydroxyimino)C 1 -C 8 -alkyl, carboxyl, (C 1 - C 8 -alkoxyimino)C 1 -C 8 -alkyl, C 1 -C 8 -alkoxycarbonyl, carbamoyl, C 1 -C 8 -alkyl- carbamoyl, di-C 1 -C 8
  • Y 2 , Y 3 , Y 4 and Y 5 are independently selected from the group consisting of hydrogen atom, halogen atom, C 1 -C 8 -alkyl, C 2 -C 8 -alkenyl, C 2 -C 8 -alkynyl, C 3 -C 7 -cycloalkyl, C 4 -C 7 -cycloalkenyl, hydroxyl, C 1 -C 8 -alkoxy, C 6 -C 14 -aryl, 3- to 10-membered heterocyclyl, 5- to 14-membered heteroaryl, formyl, C 1 -C 8 -alkylcarbonyl, (hydroxyimino)C 1 -C 8 -alkyl, carboxyl, (C 1 -C 8 - alkoxyimino)C 1 -C 8 -alkyl, C 1 -C 8 -alkoxycarbonyl, carbamoyl, C 1 -C 8 -alkyl
  • Z is selected from the group consisting of hydrogen atom, halogen atom, hydroxyl, C 1 -C 8 -alkyl, C 2 -C 8 -alkenyl, C 2 -C 8 -alkynyl, C 1 -C 8 -alkoxy, C 3 -C 7 -cycloalkyl, C 4 -C7-cycloalkenyl, formyl, C 1 -C 8 - alkylcarbonyl, (hydroxyimino)C 1 -C 8 -alkyl, (C 1 -C 8 -alkoxyimino)C 1 -C 8 -alkyl, carboxyl, C 1 -C 8 - alkoxycarbonyl, C 1 -C 8 -alkylcarbamoyl, di-C 1 -C 8 -alkylcarbamoyl, C 1 -C 8 -alkylamino, di-C 1 -C 8 - alkylamino,
  • n 0, 1 , 2, 3 or 4;
  • L is CR 1a R 1b or NR 1c wherein
  • R 1a and R 1b are independently selected from the group consisting of hydrogen atom, halogen atom, C 1 -C 8 -alkoxy and C 1 -C 8 -alkyl;
  • R 1c is selected from the group consisting of hydrogen atom, C 1 -C 8 -alkyl, C 2 -C 8 - alkenyl, C 3 -C 8 -alkynyl, C 3 -C 7 -cycloalkyl, C 1 -C 8 -alkylcarbonyl, C 1 -C 8 - alkoxycarbonyl, C 1 -C 8 -alkylsulfonyl, C 6 -C 14 -aryl-C 1 -C 8 -alkyl and phenylsulfonyl, wherein acyclic aliphatic R 1c radicals may be substituted with one or more R a substituents and wherein cyclic R 1c radicals may be substituted with one or more R b substituents;
  • Q 4 is O, S, CR 4a R 4b or NR 4c provided that p is 2 when Q 4 is O, S or NR 4c ;
  • R 2a and R 2b are independently selected from the group consisting of hydrogen atom, halogen atom, C 1 -C 8 -alkyl, C 2 -C 8 -alkenyl, C 2 -C 8 -alkynyl, C 3 -C 7 -cycloalkyl, C 4 -C7-cycloalkenyl, C 1 -C 8 - alkoxy C 1 -C 8 -alkylcarbonyl, C 3 -C 7 -cycloalkylcarbonyl, C 1 -C 8 -alkoxycarbonyl, C 6 -C 14 -aryl, 3- to 10-membered heterocyclyl, 5- to 14-membered heteroaryl, C 6 -C 14 -aryl-C 1 -C 8 -alkyl, 3- to 10- membered heterocyclyl-C 1 -C 8 -alkyl, 5- to 14-membered heteroaryl-C 1 -C 8 -alkyl and
  • R 2a and R 2b form, together with the carbon atom to which they are linked, a C 3 -C 7 -cycloalkyl, or a 3- to 10-membered heterocyclyl, wherein the C 3 -C 7 -cycloalkyl and 3- to 10-membered heterocyclyl may be substituted with one or more R b substituents;
  • R 3a and R 3b are independently selected from the group consisting of hydrogen atom, halogen atom, C 1 -C 8 -alkyl, C 2 -C 8 -alkenyl, C 2 -C 8 -alkynyl, C 3 -C 7 -cycloalkyl, C 4 -C 7 -cycloalkenyl, hydroxyl, Ci-Ce-alkoxy, sulfanyl, C 1 -C 8 -alkylsulfanyl, C 1 -C 8 -alkylsulfinyl, C 1 -C 8 -alkylsulfonyl, C 1 -C 8 - alkylcarbonyl, C 3 -C 7 -cycloalkylcarbonyl, C 1 -C 8 -alkoxycarbonyl, C 6 -C 14 aryl, 3- to 10-membered heterocyclyl, 5- to 14-membered heteroaryl, C 6 -C 14 -
  • R 4a and R 4b are independently selected from the group consisting of hydrogen atom, halogen atom, C 1 -C 8 -alkyl, C 2 -C 8 -alkenyl, C 2 -C 8 -alkynyl, C 3 -C 7 -cycloalkyl, C 4 -C 7 -cycloalkenyl, hydroxyl, C 1 -C 8 -alkoxy, sulfanyl, C 1 -C 8 -alkylsulfanyl, C 1 -C 8 -alkylsulfinyl, C 1 -C 8 -alkylsulfonyl, C 1 -C 8 - alkylcarbonyl, C 3 -C 7 -cycloalkylcarbonyl, C 1 -C 8 -alkoxycarbonyl, C 6 -C 14 -aryl, 3- to 10-membered heterocyclyl, 5- to 14-membered heteroaryl, C 6 -
  • R 4a and R 4b form, together with the carbon atom to which they are linked, a C 3 -C 7 -cycloalkyl, or a 3- to 10-membered heterocyclyl, wherein the C 3 -C 7 -cycloalkyl and 3- to 10-membered heterocyclyl may be substituted with one or more R b substituents; • R 4c is selected from the group consisting of hydrogen atom, C 1 -C 8 -alkyl, C 2 -C 8 -alkenyl, C 3 -C 8 - alkynyl, C 3 -C 7 -cycloalkyl, C 1 -C 8 -alkylcarbonyl, C 1 -C 8 -alkoxycarbonyl, C 1 -C 8 -alkylsulfonyl, C 6 - C 14 -aryl-C 1 -C 8 -alkyl and phenylsulfonyl, wherein acyclic aliphatic
  • A is a direct bond or CH 2 ,
  • each W is independently selected from the group consisting of C 1 -C 8 -alkyl, and C 1 -C 8 - halogenoalkyl, wherein said C 1 -C 8 -alkyl and C 1 -C 8 -halogenoalkyl, may be substituted with one or more W a substituents;
  • X is independently selected from the group consisting of halogen atom, hydroxyl, C 1 -C 8 -alkyl, Ci-Ce-alkoxy, C 2 -C 8 -alkenyl, C 2 -C 8 -alkynyl, C 3 -C 7 -cycloalkyl, C 4 -C 7 -cycloalkenyl, C 6 -C 14 -aryl, 3- to 10-membered heterocyclyl, 5- to 14-membered heteroaryl, C 1 -C 8 -alkylcarbonyl, (hydroxyimino)-C 1 -C 8 -alkyl, (C 1 -C 8 -alkoxyimino)C 1 -C 8 -alkyl, carboxyl, C 1 -C 8 -alkoxycarbonyl, carbamoyl, C 1 -C 8 -alkylcarbamoyl, di-C 1 -C 8 -alkylcarbamoy
  • each Y a , Z a , R a , W a and X a is independently selected from the group consisting of halogen atom, nitro, hydroxyl, cyano, carboxyl, amino, sulfanyl, pentafluoro- ⁇ 6 -sulfanyl, formyl, carbamoyl, carbamate, C 3 -C 7 -cycloalkyl, C 3 -C 8 -halogenocycloalkyl having 1 to 5 halogen atoms, C 2 -C 8 - alkenyl, C 2 -C 8 -alkynyl, C 1 -C 8 -alkylamino, di-C 1 -C 8 -alkylamino, C 1 -C 8 -alkoxy, C 1 -C 8 - halogenoalkoxy having 1 to 5 halogen atoms, C 1 -C 8 -alkylsulfanyl, C 1 -C 8
  • each Y b , Z b , R b and X b is independently selected from the group consisting of halogen atom, nitro, hydroxyl, cyano, carboxyl, amino, sulfanyl, sulfinyl, sulfonyl, pentafluoro- ⁇ 6 -sulfanyl, formyl, carbamoyl, carbamate, C 1 -C 8 -alkyl, C 3 -C 7 -cycloalkyl, C 1 -C 8 -halogenoalkyl having 1 to 5 halogen atoms, C3-Cs-halogenocycloalkyl having 1 to 5 halogen atoms, C 2 -C 8 -alkenyl, C 2 -C 8 - alkynyl, C 1 -C 8 -alkylamino, di-C 1 -C 8 -alkylamino, C 1 -C 8 -alkoxy, C 1
  • the compounds of fomula (I) can suitably be in their free form, salt form, N-oxide form or solvate form (e.g. hydrate).
  • acyclic radicals as used herein in the expressions “wherein acyclic radicals may be substituted” designate any of the acyclic groups recited in the paragraph before said expressions, or any acyclic moiety of a composite group (e.g. the C 1 -C 8 -alkyl moiety of aryl-C 1 -C 8 -alkyl).
  • acyclic radicals in the expression “wherein acyclic Y 1 radicals may be substituted with one or more Y a substituents” designate the following: C 1 -C 8 -alkyl; C 1 -C 8 -halogenoalkyl; C 2 -C 8 -alkenyl; C 2 -C 8 -halogenoalkenyl; C 2 -C 8 -alkynyl; C 2 -C 8 -halogenoalkynyl; C 1 -C 8 -alkoxy; C 1 -C 8 - halogenoalkoxy; C 1 -C 8 -alkyl moiety of the following composite groups: C 1 -C 8 -alkylcarbonyl, (hydroxyimino)C 1 -C 8 -alkyl, (C 1 -C 8 -alkoxyimino)C 1 -C 8 -alkyl, C 1 -C 8 -alkyl-
  • cyclic radicals as used herein in the expressions “wherein cyclic radicals may be substituted” designate any of the cyclic groups, be it alicyclic or aromatic, recited in the paragraph before said expressions, or any cyclic moiety of a composite group (e.g. the aryl moiety of aryl-C 1 -C 8 -alkyl).
  • cyclic radicals in the expression “wherein cyclic Y 1 radicals may be substituted” designate the following: C 3 -C 7 -cycloalkyl, C 4 -C 7 -cycloalkenyl, aryl, heterocyclyl and heteroaryl.
  • a group containing an acyclic moiety and a cyclic moiety e.g. aryl-C 1 -C 8 -alkyl, aryloxy- C 1 -C 8 -alkyl
  • each of these moieties may be substituted independently of each other.
  • R 2a is an aryl-Ci-Ce-alkyl
  • the C 1 -C 8 -alkyl moiety of said group may be substituted by one or more R a substituents and the aryl moiety may be substituted by one or more R b substituents.
  • compound of formula (I) may be present in the form of different stereoisomers. These stereoisomers are, for example, enantiomers, diastereomers, atropisomers or geometric isomers. Accordingly, the invention encompasses both pure stereoisomers and any mixture of these isomers. Where a compound can be present in two or more tautomer forms in equilibrium, reference to the compound by means of one tautomeric description is to be considered to include all tautomer forms.
  • the compound of fomula (I) may be present in the form of the free compound and/or a salt thereof, such as an agrochemically active salt.
  • Agrochemically active salts include acid addition salts of inorganic and organic acids well as salts of customary bases.
  • inorganic acids are hydrohalic acids, such as hydrogen fluoride, hydrogen chloride, hydrogen bromide and hydrogen iodide, sulfuric acid, phosphoric acid and nitric acid, and acidic salts, such as sodium bisulfate and potassium bisulfate.
  • Useful organic acids include, for example, formic acid, carbonic acid and alkanoic acids such as acetic acid, trifluoroacetic acid, trichloroacetic acid and propionic acid, and also glycolic acid, thiocyanic acid, lactic acid, succinic acid, citric acid, benzoic acid, cinnamic acid, oxalic acid, saturated or mono- or diunsaturated fatty acids having 6 to 20 carbon atoms, alkylsulfuric monoesters, alkylsulfonic acids (sulfonic acids having straight- chain or branched alkyl radicals having 1 to 20 carbon atoms), arylsulfonic acids or aryldisulfonic acids (aromatic radicals, such as phenyl and naphthyl, which bear one or two sulfonic acid groups), alkylphosphonic acids (phosphonic acids having straight-chain or branched alkyl radicals having 1 to 20 carbon atoms), arylphosphonic
  • Solvates of the compounds of formula (I) or their salts are stoichiometric compositions of the compounds with solvents.
  • the compounds of formula (I) may exist in multiple crystalline and/or amorphous forms. Crystalline forms include unsolvated crystalline forms, solvates and hydrates.
  • Q 1 is preferably CY 1 or N wherein Y 1 is selected from the group consisting of hydrogen atom, halogen atom, C 1 -C 6 -alkyl, C 1 -C 6 -halogenoalkyl comprising up to 9 halogen atoms that can be the same or different, C 3 -C 7 -cycloalkyl, hydroxyl, C 1 -C 6 -alkoxy, C 1 -C 6 -halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different, C 1 -C 6 -alkoxycarbonyl, formyl and cyano, preferably Y 1 is selected from the group consisting of hydrogen, halogen atom (e.g. chlorine) and C 1 -C 6 -alkyl (e.g. methyl), more preferably Y 1 is a hydrogen atom.
  • Y 1 is selected from the group consisting of hydrogen, halogen atom (e.g. chlorine) and C 1
  • Q 1 is CY 1 or N wherein Y 1 is a hydrogen atom.
  • Z is preferably selected from the group consisting of hydrogen atom, halogen atom, C 1 -C 6 -alkyl, C 1 -C 6 -halogenoalkyl comprising up to 9 halogen atoms that can be the same or different, C 1 -C 6 -alkoxy, C 1 -C 6 -halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different and cyano.
  • Z is a hydrogen atom, a halogen atom (e.g. chlorine), a C 1 -C 6 -alkyl (e.g. methyl) or a C 1 -C 6 -halogenoalkyl comprising up to 9 halogen atoms that can be the same or different (e.g. difluoromethyl), even more preferably Z is a hydrogen atom or a C 1 -C 6 -alkyl (e.g. methyl), most preferably Z is a hydrogen atom or methyl.
  • a halogen atom e.g. chlorine
  • C 1 -C 6 -alkyl e.g. methyl
  • C 1 -C 6 -halogenoalkyl comprising up to 9 halogen atoms that can be the same or different (e.g. difluoromethyl
  • Z is a hydrogen atom or a C 1 -C 6 -alkyl (e.g. methyl)
  • most preferably Z is
  • Y 2 , Y 3 , Y 4 and Y 5 are preferably independently selected from the group consisting of hydrogen atom, halogen atom, C 1 -C 6 -alkyl, C 1 -C 6 -halogenoalkyl comprising up to 9 halogen atoms that can be the same or different, C 3 -C 7 -cycloalkyl, hydroxyl, C 1 -C 6 -alkoxy, C 1 -C 6 - halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different, C 1 -C 6 - alkylcarbonyl, formyl and cyano.
  • Y 2 , Y 3 , Y 4 and Y 5 are independently selected from the group consisting of hydrogen atom, halogen atom, C 1 -C 6 -alkyl, C 1 -C 6 -halogenoalkyl comprising up to 9 halogen atoms that can be the same or different (e.g. trifluoromethyl) and cyano.
  • Y 2 , Y 3 , Y 4 and Y 5 are independently a hydrogen atom or a halogen atom (preferably fluorine or chlorine).
  • L is preferably CR 1a R 1b or NR 1c wherein:
  • R 1a and R 1b are independently selected from the group consisting of hydrogen atom, halogen atom, C 1 -C 6 -alkoxy and C 1 -C 6 alkyl;
  • R 1c is selected from the group consisting of hydrogen atom and C 1 -C 6 -alkyl.
  • L is CR 1a R 1b or NR 1c wherein R 1a , R 1b and R 1c are hydrogen atoms.
  • n is preferably 0, 1 or 2, more preferably 0 or 1 .
  • m is preferably 0 or 1 , more preferably 0.
  • X is preferably independently selected from the group consisting of halogen atom, C 1 -C 6 -alkyl, C 1 -C 6 -halogenoalkyl comprising up to 9 halogen atoms that can be the same or different, C 3 -C 7 -cycloalkyl, C 1 -C 6 -alkoxy and C 1 -C 6 -halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different.
  • X is a halogen atom (e.g. fluoro or chloro), C 1 -C 6 -alkyl (e.g. methyl), C 1 -C 6 - halogenoalkyl comprising up to 9 halogen atoms that can be the same or different (e.g. trifluromethyl) or C 1 -C 6 -alkoxy comprising up to 9 halogen atoms that can be the same or different (e.g. methoxy). Even more preferably X is fluoro or chloro, most preferably fluoro.
  • X is preferably attached to the phenyl moiety at position 3, i.e. in ortho position with regard to the carbon atom bearing linker A
  • R 2a and R 2b are preferably independently selected from the group consisting of hydrogen atom, C 1 -C 6 -alkyl, C 1 -C 6 -alkoxy-C 1 -C 6 -alkyl, C 1 -C 6 -halogenoalkyl comprising up to 9 halogen atoms that can be the same or different, C 6 -C 10 -aryl, 5- or 6-membered heteroaryl, C 6 -C 10 -aryl-C 1 -C 6 - alkyl and 5- or 6-membered heteroaryl-C 1 -C 6 -alkyl, or R 2a and R 2b form, together with the carbon atom to which they are linked, a 3- to 10-membered heterocyclyl ring.
  • R 2a and R 2b are independently selected from the group consisting of hydrogen atom, C 1 -C 6 -alkyl, C 1 -C 6 -alkoxy-C 1 -C 6 -alkyl and 5- or 6-membered heteroaryl-C 1 -C 6 -alkyl, or R 2a and R 2b form, together with the carbon atom to which they are linked, a 4-membered heterocyclyl ring, preferably comprising 1 heteroatom selected from the group consisting of oxygen, nitrogen and sulfur (e.g. an oxetanyl ring).
  • R 2a is selected from the group consisting of hydrogen atom, C 1 -C 6 -alkyl, C 1 -C 6 - alkoxy-C 1 -C 6 -alkyl and 5- or 6-membered heteroaryl-C 1 -C 6 -alkyl
  • R 2b is hydrogen atom or R 2a and R 2b form, together with the carbon atom to which they are linked, a 4-membered heterocyclyl ring comprising 1 heteroatom selected from the group consisting of oxygen, nitrogen and sulfur (e.g. oxetanyl ring).
  • R 2a or R 2b is different than a hydrogen atom.
  • R 3a and R 3b are preferably independently selected from the group consisting of hydrogen atom, halogen atom, C 1 -C 6 -alkyl, C 1 -C 6 -halogenoalkyl comprising up to 9 halogen atoms that can be the same or different, hydroxy, C 1 -C 6 -alkoxy, 5- or 6-membered heteroaryloxy and 5- or 6- membered heteroaryl-C 1 -C 6 -alkyl or R 3a and R 3b form, together with the carbon atom to which they are linked, a 3- to 10-membered heterocyclyl ring.
  • R 3a and R 3b are independently selected from the group consisting of hydrogen atom, halogen atom, hydroxy, C 1 -C 6 -alkoxy, 5- or 6-membered heteroaryloxy and 5- or 6-membered heteroaryl-C 1 -C 6 -alkyl or R 3a and R 3b form, together with the carbon atom to which they are linked, a 4- membered heterocyclyl ring, preferably comprising 1 heteroatom selected from the group consisting of oxygen, nitrogen and sulfur (e.g. an oxetanyl ring).
  • R 3a is selected from the group consisting of hydrogen atom, halogen atom, Ci- C 6 -alkyl, C 1 -C 6 -halogenoalkyl comprising up to 9 halogen atoms that can be the same or different, hydroxy, C 1 -C 6 -alkoxy, 5- or 6-membered heteroaryloxy and 5- or 6-membered heteroaryl-C 1 -C 6 -alkyl and R 3b is hydrogen atom or R 3a and R 3b form, together with the carbon atom to which they are linked, a 4-membered heterocyclyl ring comprising 1 heteroatom selected from the group consisting of oxygen, nitrogen and sulfur (e.g. oxetanyl ring).
  • Q 4 is preferably O, CR 4a R 4b or NR 4c wherein:
  • R 4a and R 4b are preferably independently selected from the group consisting of hydrogen atom, C 1 -C 6 -alkyl, C 1 -C 6 -halogenoalkyl comprising up to 9 halogen atoms that can be the same or different, hydroxy, C 1 -C 6 -alkoxy, or R 4a and R 4b form, together with the carbon atom to which they are linked, a 3- to 10-membered heterocyclyl ring.
  • R 4a and R 4b are hydrogen atoms, or R 4a and R 4b form, together with the carbon atom to which they are linked, a 4-membered heterocyclyl ring, preferably comprising 1 heteroatom selected from the group consisting of oxygen, nitrogen and sulfur (e.g. an oxetanyl ring).
  • R 4c is preferably selected from the group consisting of hydrogen atom, C 1 -C 6 - alkyl, C 1 -C 6 -halogenoalkyl comprising up to 9 halogen atoms that can be the same or different, C 3 -C 7 - cycloalkyl-C 1 -C 6 -alkyl, C 1 -C 6 -alkylcarbonyl, C 1 -C 6 -halogenoalkyl-carbonyl, C 1 -C 6 -alkoxycarbonyl, C 1 -C 6 - halogenoalkoxycarbonyl and C6-C10-aryl-C 1 -C 6 -alkyl.
  • R 4c is selected from the group consisting of hydrogen atom, C 1 -C 6 -alkyl and C 1 -C 6 - alkoxycarbonyl.
  • R 4c is selected from the group consisting of hydrogen atom, methyl and tert- butoxycarbonyl.
  • Y 2 with one or more preferred features of Q 1 , Y 1 , Z, Y 3 , Y 4 , Y 5 , L, R 1a , R 1b , R 1c , n, m, X, W, R 2a , R 2b , R 3a , R 3b , R 4a , R 4b and R 4c ;
  • Y 3 with one or more preferred features of Q 1 , Y 1 , Z, Y 2 , Y 4 , Y 5 , L, R 1a , R 1b , R 1c , n, m, X, W, R 2a , R 2b , R 3a , R 3b , R 4a , R 4b and R 4c ;
  • Y 4 with one or more preferred features of Q 1 , Y 1 , Z, Y 2 , Y 3 , Y 5 , L, R 1a , R 1b , R 1c , n, m, X, W, R 2a , R 2b , R 3a , R 3b , R 4a , R 4b and R 4c ;
  • Y 5 with one or more preferred features of Q 1 , Y 1 , Z, Y 2 , Y 3 , Y 4 , L, R 1a , R 1b , R 1c , n, m, X, W, R 2a , R 2b , R 3a , R 3b , R 4a , R 4b and R 4c ;
  • L with one or more preferred features of Q 1 , Y 1 , Z, Y 2 , Y 3 , Y 4 , Y 5 , R 1a , R 1b , R 1c , n, m, X, W, R 2a , R 2b , R 3a , R 3b , R 4a , R 4b and R 4c ;
  • R 1a with one or more preferred features of Q 1 , Y 1 , Z, Y 2 , Y 3 , Y 4 , Y 5 , L, R 1b , R 1c , n, m, X, W, R 2a , R 2b , R 3a , R 3b , R 4a , R 4b and R 4c ;
  • R 1b with one or more preferred features of Q 1 , Y 1 , Z, Y 2 , Y 3 , Y 4 , Y 5 , L, R 1a , R 1c , n, m, X, W, R 2a , R 2b , R 3a , R 3b , R 4a , R 4b and R 4c ;
  • R 1c with one or more preferred features of Q 1 , Y 1 , Z, Y 2 , Y 3 , Y 4 , Y 5 , L, R 1a , R 1b , n, m, X, W, R 2a , R 2b , R 3a , R 3b , R 4a , R 4b and R 4c ;
  • n with one or more preferred features of Q 1 , Y 1 , Z, Y 2 , Y 3 , Y 4 , Y 5 , L, R 1a , R 1b , R 1c , m, X, W, R 2a , R 2b , R 3a , R 3b , R 4a , R 4b and R 4c ;
  • R 2a with one or more preferred features of Q 1 , Y 1 , Z, Y 2 , Y 3 , Y 4 , Y 5 , L, R 1a , R 1b , R 1c , n, m, X, W, R 2b , R 3a , R 3b , R 4a , R 4b and R 4c ;
  • R 2b with one or more preferred features of Q 1 , Y 1 , Z, Y 2 , Y 3 , Y 4 , Y 5 , L, R 1a , R 1b , R 1c , n, m, X, W, R 2a , R 3a , R 3b , R 4a , R 4b and R 4c ;
  • R 3a with one or more preferred features of Q 1 , Y 1 , Z, Y 2 , Y 3 , Y 4 , Y 5 , L, R 1a , R 1b , R 1c , n, m, X, W, R 2a , R 2b , R 3b , R 4a , R 4b and R 4c ;
  • R 3b with one or more preferred features of Q 1 , Y 1 , Z, Y 2 , Y 3 , Y 4 , Y 5 , L, R 1a , R 1b , R 1c , n, m, X, W, R 2a , R 2b , R 3a , R 4a , R 4b and R 4c ;
  • R 4a with one or more preferred features of Q 1 , Y 1 , Z, Y 2 , Y 3 , Y 4 , Y 5 , L, R 1a , R 1b , R 1c , n, m, X, W, R 2a , R 2b , R 3a , R 3b , R 4b and R 4c ;
  • R 4b with one or more preferred features of Q 1 , Y 1 , Z, Y 2 , Y 3 , Y 4 , Y 5 , L, R 1a , R 1b , R 1c , n, m, X, W, R 2a , R 2b , R 3a , R 3b , R 4a and R 4c ;
  • - preferred features of R 4c with one or more preferred features of Q 1 , Y 1 , Z, Y 2 , Y 3 , Y 4 , Y 5 , L, R 1a , R 1b , R 1c , n, m, X, W, R 2a , R 2b , R 3a , R 3b , R 4a and R 4b ;
  • the said preferred features can also be selected among the more preferred features of each of Q 1 , Y 1 , Z, Y 2 , Y 3 , Y 4 , Y 5 , L, R 1a , R 1b , R 1c , n, m, X, W, R 2a , R 2b , R 3a , R 3b , R 4a , R 4b and R 4c so as to form most preferred subclasses of compounds according to the invention.
  • Q 1 is CY 1 or N wherein Y 1 is a hydrogen atom
  • Y 2 , Y 3 , Y 4 and Y 5 are independently a hydrogen atom or a halogen atom
  • Z is selected from the group consisting of hydrogen atom and C 1 -C 6 -alkyl, preferably methyl; m is 0; n is 0 or 1 ; p is 1 or 2;
  • L is CR 1a R 1b or NR 1c wherein R 1a , R 1b and R 1c are hydrogen atoms;
  • Q 2 is CR 2a R 2b ;
  • Q 3 is CR 3a R 3b ;
  • Q 4 is O, CR 4a R 4b or NR 4c provided that p is 2 when Q 4 is O or NR 4c ;
  • R 2a and R 2b are independently selected from the group consisting of hydrogen atom, C 1 -C 6 - alkyl, C 1 -C 6 -alkoxy-C 1 -C 6 -alkyl and 5- or 6-membered heteroaryl-C 1 -C 6 -alkyl, or
  • R 2a and R 2b form, together with the carbon atom to which they are linked, a 4-membered heterocyclyl ring, preferably comprising 1 heteroatom selected from the group consisting of oxygen, nitrogen and sulfur (e.g. an oxetanyl ring);
  • R 3a and R 3b are independently selected from the group consisting of hydrogen atom, halogen atom, C 1 -C 6 -alkyl, C 1 -C 6 -halogenoalkyl comprising up to 9 halogen atoms that can be the same or different, hydroxy, C 1 -C 6 -alkoxy, 5- or 6-membered heteroaryloxy and 5- or 6-membered heteroaryl-C 1 - C 6 -alkyl or
  • R 3a and R 3b form, together with the carbon atom to which they are linked, a 4-membered heterocyclyl ring, preferably comprising 1 heteroatom selected from the group consisting of oxygen, nitrogen and sulfur (e.g. an oxetanyl ring).
  • R 4a and R 4b are hydrogen atoms, or R 4a and R 4b form a 4-membered heterocyclyl ring, preferably comprising 1 heteroatom selected from the group consisting of oxygen, nitrogen and sulfur (e.g. an oxetanyl ring);
  • R 4c is selected from the group consisting of hydrogen atom, C 1 -C 6 -alkyl and C 1 -C 6 - alkoxycarbonyl;
  • A is a direct bond or CH 2 and X is a halogen atom.
  • the present invention also relates to any compounds of formula (I) disclosed in table 4 below.
  • Compounds of formula (I) may be used for controlling phytopathogenic microorganisms, preferably phytopathogenic fungi and oomycetes, in agriculture (e.g. in crop protection).
  • the present invention also relates to processes for the preparation of compounds of formula (I).
  • the variables Q 1 , Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Z, L, A, n, m, p, X, W, Q 2 , Q 3 and Q 4 have the meanings given above for the compounds of formula (I). These definitions apply not only to the end products of the formula (I) but likewise to all intermediates.
  • Process P1 can be performed in the presence of a transition metal catalyst such as palladium and if appropriate in the presence of a phosphine ligand or a N-heterocyclic carbene ligand, if appropriate in the presence of a base and if appropriate in the presence of a solvent according to known processes.
  • a transition metal catalyst such as palladium and if appropriate in the presence of a phosphine ligand or a N-heterocyclic carbene ligand, if appropriate in the presence of a base and if appropriate in the presence of a solvent according to known processes.
  • Process P1 can be carried out in the presence of a catalyst, such as a palladium salt or complex.
  • a catalyst such as a palladium salt or complex.
  • Suitable palladium salts or complexes for this purpose are for example, palladium chloride, palladium acetate, tetrakis(triphenylphosphine)palladium(0), bis(dibenzylideneacetone)palladium(0), tris(dibenzylideneacetone)dipalladium(0), bis(triphenylphosphine)palladium(ll) dichloride, [1 ,1 - bis(diphenylphosphino)ferrocene]dichloropalladium(ll), bis(cinnamyl)dichlorodipalladium(ll), bis(allyl)- dichlorodipalladium(ll) or [1 ,1 ’-Bis(di-tert-butylphosphino)ferrocene]dich
  • a palladium complex in the reaction mixture by separate addition to the reaction of a palladium salt and a ligand or salt, such as triethylphosphine, tri-tert-butylphosphine, tri- tert-butylphosphonium tetrafluoroborate, tricyclohexylphosphine, 2-(dicyclohexylphosphino)biphenyl, 2- (di-tert-butylphosphino)biphenyl, 2-(dicyclohexylphosphino)-2'-(N,N-dimethylamino)biphenyl, 2-(tert- butylphosphino)-2'-(N,N-dimethylamino)biphenyl, 2-di-tert-butylphosphino-2’,4’,6’-triisopropylbiphenyl 2-dicyclohexylphosphino-2’,4’,6
  • catalyst and/or ligand from commercial catalogues such as “Metal Catalysts for Organic Synthesis” by Strem Chemicals or “Phosphorous Ligands and Compounds” by Strem Chemicals.
  • Suitable bases for carrying out Process P1 can be inorganic and organic bases which are customary for such reactions.
  • Suitable solvents for carrying out process P1 can be customary inert organic solvents. Preference is given to using optionally halogenated, aliphatic, alicyclic or aromatic hydrocarbons, such as petroleum ether, pentane, hexane, heptane, cyclohexane, methylcyclohexane, benzene, toluene, xylene or decalin; chlorobenzene, dichlorobenzene, dichloromethane, chloroform, carbon tetrachloride, dichloroethane or trichloroethane; ethers, such as diethyl ether, diisopropyl ether, methyl t-butyl ether, methyl t-amyl ether, dioxane, tetrahydrofuran, 2-methyltetrahydrofuran, 1 ,2-dimethoxyethane, 1 ,2- diethoxyethane or anisole; n
  • process P1 may be carried out in presence of a catalyst such as copper(l) iodide and a ligand such as a diamine, an amino alcohol, an amino acid or a phosphine may also be used.
  • a catalyst such as copper(l) iodide and a ligand such as a diamine, an amino alcohol, an amino acid or a phosphine may also be used.
  • the reation is usually carried out in presence of a base such as potassium phosphate, potassium carbonate or sodium carbonate.
  • polar aprotic solvents such as N,N-dimethylformamide or dimethylsulfoxide may be used.
  • Process P1 may be performed in an inert atmosphere such as argon or nitrogen atmosphere.
  • an inert atmosphere such as argon or nitrogen atmosphere.
  • 1 mole or an excess of compound of formula (III) and from 1 to 5 moles of base and from 0.01 to 20 mole percent of a palladium complex can be employed per mole of compound of formula (II). It is also possible to employ the reaction components in other ratios. Work-up is carried out by known methods.
  • Process P2 can be performed in the presence of a transition metal catalyst such as palladium and if appropriate in the presence of a phosphine ligand or a N-heterocyclic carbene ligand, if appropriate in the presence of a base and if appropriate in the presence of a solvent according to known processes.
  • a transition metal catalyst such as palladium and if appropriate in the presence of a phosphine ligand or a N-heterocyclic carbene ligand, if appropriate in the presence of a base and if appropriate in the presence of a solvent according to known processes.
  • Anilines of formula (V) can be prepared by reduction of the nitro group of derivatives of formula (VI) according to known processes (Patai's Chemistry of Functional Groups - Amino, Nitroso, Nitro and Related Groups - 1996).
  • Nitro derivatives of formula (VI) can be prepared by condensation of a cyclic amine of formula (III) on a fluoronitrobenzene of formula (VII) in the presence of a base according to known processes [SNAr condensation]
  • Fluoronitrobenzene derivatives of formula (VII) are commercially available or can be prepared by known processes.
  • Suitable catalysts, bases and solvents for carrying out process P2 can be those as disclosed in connection with process P1 .
  • Process P2 may be performed in an inert atmosphere such as argon or nitrogen atmosphere.
  • an inert atmosphere such as argon or nitrogen atmosphere.
  • 1 mole or an excess of compound of formula (V) and from 1 to 5 moles of base and from 0.01 to 20 mole percent of a palladium complex can be employed per mole of compound of formula (IV). It is also possible to employ the reaction components in other ratios. Work-up is carried out by known methods.
  • Process P3 can be performed in the presence of a base and if appropriate in the presence of a solvent according to known processes.
  • Cyclic amines of formula (III) are commercially available or can be made by methods known by the person skilled in the art.
  • Suitable bases and solvents for carrying out process P3 can be as disclosed in connection with process P1.
  • Process P4 can be performed in the presence of a transition metal catalyst such as palladium and if appropriate in the presence of a phosphine ligand or a N-heterocyclic carbene ligand, if appropriate in the presence of a base and if appropriate in the presence of a solvent according to known processes.
  • a transition metal catalyst such as palladium and if appropriate in the presence of a phosphine ligand or a N-heterocyclic carbene ligand, if appropriate in the presence of a base and if appropriate in the presence of a solvent according to known processes.
  • Anilines of formula (IX) can be prepared by reduction of the nitro group of derivatives of formula (X) according to known processes (Patai's Chemistry of Functional Groups - Amino, Nitroso, Nitro and Related Groups - 1996).
  • Nitro derivatives of formula (X) can be prepared by condensation of a cyclic amine of formula (III) on a halogeno benzylic derivative of formula (XI) wherein Hal is Cl, Br, I; preferably Cl or Br, in the presence of a base according to known processes.
  • Halogeno benzylic derivatives of formula (XI) are commercially available or can be prepared by known processes. Suitable catalysts, bases and solvents for carrying out process P4 can be as disclosed in connection with process P1 .
  • Process P4 may be performed in an inert atmosphere such as argon or nitrogen atmosphere.
  • an inert atmosphere such as argon or nitrogen atmosphere.
  • 1 mole or an excess of compound of formula (IX) and from 1 to 5 moles of base and from 0.01 to 20 mole percent of a palladium complex can be employed per mole of compound of formula (IV). It is also possible to employ the reaction components in other ratios. Work-up is carried out by known methods.
  • Process P5 can be performed in the presence of a transition metal catalyst such as palladium and if appropriate in the presence of a phosphine ligand or a N-heterocyclic carbene ligand, if appropriate in the presence of a base and if appropriate in the presence of a solvent according to known processes.
  • a transition metal catalyst such as palladium and if appropriate in the presence of a phosphine ligand or a N-heterocyclic carbene ligand, if appropriate in the presence of a base and if appropriate in the presence of a solvent according to known processes.
  • Boronic acid or boronic ester derivatives of formula (XII) can be prepared from halogeno derivatives (IV) using a reagent such as bis(pinacolato)diboron in presence of a transition metal catalyst such as palladium and if appropriate in presence of a phosphine ligand or a N-heterocyclic carbene ligand, if appropriate in presence of a base and if appropriate in presence of a solvent according to known processes.
  • a transition metal catalyst such as palladium
  • a phosphine ligand or a N-heterocyclic carbene ligand if appropriate in presence of a base and if appropriate in presence of a solvent according to known processes.
  • Halides of formula (XIII) are commercially available or can be made by methods known by the person skilled in the art such as halogenation of alcohols of formula (XIV) according to known processes:
  • Alcohols of formula (XIV) are commercially available or can be made by methods known by the person skilled in the art such as reduction of an aldehyde or an ester.
  • Suitable catalysts, bases and solvents for carrying out process P5 can be those as disclosed in connection with process P1 .
  • Process P5 may be performed in an inert atmosphere such as argon or nitrogen atmosphere.
  • an inert atmosphere such as argon or nitrogen atmosphere.
  • 1 mole or an excess of compound of formula (XII) and from 1 to 5 moles of base and from 0.01 to 20 mole percent of a palladium complex can be employed per mole of compound of formula (XIII). It is also possible to employ the reaction components in other ratios. Work-up is carried out by known methods.
  • compounds of formula (lb) or formula (Id) are treated with a base such as sodium hydride and an alkyl halide, preferentially an iodoalkyl such as iodomethane.
  • a base such as sodium hydride and an alkyl halide, preferentially an iodoalkyl such as iodomethane.
  • the reaction is usually carried out in polar aprotic solvents such as dimethylformamide.
  • polar aprotic solvents such as dimethylformamide.
  • P6 1 mole or an excess of an alkyl halide and from 1 to 5 moles of base can be employed per mole of compound of formula (lb) or formula (Id). It is also possible to employ the reaction components in other ratios. Work-up is carried out by known methods.
  • Processes P1 , P2, P3, P4, P5 and P6 are generally carried out under atmospheric pressure. It is also possible to operate under elevated or reduced pressure.
  • reaction temperatures can be varied within a relatively wide range. In general, these processes are carried out at temperatures from - 78 °C to 200 °C, preferably from - 78 °C to 150 °C.
  • a way to control the temperature for the processes is to use microwave technology.
  • reaction mixture is concentrated under reduced pressure.
  • residue that remains can be freed by known methods, such as chromatography or crystallization, from any impurities that can still be present.
  • reaction mixture is treated with water and the organic phase is separated off and, after drying, concentrated under reduced pressure. If appropriate, the remaining residue can, be freed by customary methods, such as chromatography, crystallization or distillation, from any impurities that may still be present.
  • the compounds of formula (I) can be prepared according to the general processes of preparation described above. It will nevertheless be understood that, on the basis of his general knowledge and of available publications, the skilled worker will be able to adapt the methods according to the specifics of each compound, which it is desired to synthesize.
  • the present invention also relates to intermediates for the preparation of compounds of formula (I).
  • Some of the said intermediates are represented by formula (I’): wherein U is selected from the group consisting of amino and nitro and X, n, W, m, p, Q 2 , Q 3 and Q 4 have the definitions given above.
  • said intermediates of formula (I’) are chosen from intermediates wherein X is a fluorine atom at position 3 of phenyl moiety and n is 1 , represented by formula (I’a): wherein U, W, m, p, Q 2 , Q 3 and Q 4 have the definitions given above.
  • formula (I’a) wherein U, W, m, p, Q 2 , Q 3 and Q 4 have the definitions given above.
  • U is an amino group
  • formula (V) wherein X, n, W, m, p, Q 2 , Q 3 and Q 4 have the definitions given above.
  • the said intermediates of formula (V) are chosen from intermediates wherein X is a fluorine atom at position 3 of phenyl moiety and n is 1 , represented by formula (Va): wherein, W, m, p, Q 2 , Q 3 and Q 4 have the definitions given above.
  • intermediates of formula (I') wherein U is a nitro group represented by formula (VI): wherein X, n, W, m, p, Q 2 , Q 3 and Q 4 have the definitions given above.
  • the said intermediates of formula (VI) are chosen from intermediates wherein X is a fluorine atom at position 3 of phenyl moiety and n is 1 , represented by formula (Via): wherein, W, m, p, Q 2 , Q 3 and Q 4 have the definitions given above.
  • the cyclic amine defined by variables W, p, m, Q 2 , Q 3 and Q 4 is chosen from one of the moieties disclosed in table 1 below: Table 1
  • the cyclic amine defined by variables W, p, m, Q 2 , Q 3 and Q 4 is chosen from one of the moieties disclosed in table 2 below:
  • Hal is chosen from chloro, bromo or iodo atom and A, X, n, W, m, p, Q 2 , Q 3 and Q 4 have the definitions given above.
  • the said intermediates of formula (XIII) are chosen from intermediates wherein X is a fluorine atom at position 3 of phenyl moiety and n is 1 , and A is direct bond, represented by formula (Xllla):
  • the compound of formula (XIII) or (XII la) does not represent: 1-[2-(chloromethyl)-6-fluoro-phenyl]piperidine,
  • the cyclic amine defined by variables W, p, m, Q 2 , Q 3 25 and Q 4 is chosen from one of the moieties disclosed in table 3 below: Table 3
  • Q 2 is CR 2a R 2b wherein at least one of R 2a or R 2b is different than a hydrogen atom.
  • the present invention further relates to compositions, in particular compositions for controlling unwanted microorganisms.
  • the composition may be applied to the microorganisms and/or in their habitat.
  • composition comprises at least one compound of formula (I) and at least one agriculturally suitable auxiliary, e.g. carrier(s) and/or surfactant(s).
  • agriculturally suitable auxiliary e.g. carrier(s) and/or surfactant(s).
  • a carrier is a solid or liquid, natural or synthetic, organic or inorganic substance that is generally inert.
  • the carrier generally improves the application of the compounds, for instance, to plants, plants parts or seeds.
  • suitable solid carriers include, but are not limited to, ammonium salts, in particular ammonium sulfates, ammonium phosphates and ammonium nitrates, natural rock flours, such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite and diatomaceous earth, silica gel and synthetic rock flours, such as finely divided silica, alumina and silicates.
  • typically useful solid carriers for preparing granules include, but are not limited to crushed and fractionated natural rocks such as calcite, marble, pumice, sepiolite and dolomite, synthetic granules of inorganic and organic flours and granules of organic material such as paper, sawdust, coconut shells, maize cobs and tobacco stalks.
  • suitable liquid carriers include, but are not limited to, water, organic solvents and combinations thereof.
  • suitable solvents include polar and nonpolar organic chemical liquids, for example from the classes of aromatic and nonaromatic hydrocarbons (such as cyclohexane, paraffins, alkylbenzenes, xylene, toluene, tetrahydronaphthalene, alkylnaphthalenes, chlorinated aromatics or chlorinated aliphatic hydrocarbons such as chlorobenzenes, chloroethylenes or methylene chloride), alcohols and polyols (which may optionally also be substituted, etherified and/or esterified, such as ethanol, propanol, butanol, benzylalcohol, cyclohexanol or glycol), ketones (such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone), esters (including fats and oils) and (poly)ethers, unsubstituted and substituted amines, amide
  • the carrier may also be a liquefied gaseous extender, i.e. liquid which is gaseous at standard temperature and under standard pressure, for example aerosol propellants such as halohydrocarbons, butane, propane, nitrogen and carbon dioxide.
  • a liquefied gaseous extender i.e. liquid which is gaseous at standard temperature and under standard pressure
  • aerosol propellants such as halohydrocarbons, butane, propane, nitrogen and carbon dioxide.
  • Preferred solid carriers are selected from clays, talc and silica.
  • Preferred liquid carriers are selected from water, fatty acid amides and esters thereof, aromatic and nonaromatic hydrocarbons, lactams and carbonic acid esters.
  • the amount of carrier typically ranges from 1 to 99.99%, preferably from 5 to 99.9%, more preferably from 10 to 99.5%, and most preferably from 20 to 99% by weight of the composition.
  • Liquid carriers are typically present in a range of from 20 to 90%, for example 30 to 80% by weight of the composition.
  • Solid carriers are typically present in a range of from 0 to 50%, preferably 5 to 45%, for example 10 to 30% by weight of the composition.
  • composition comprises two or more carriers, the outlined ranges refer to the total amount of carriers.
  • the surfactant can be an ionic (cationic or anionic), amphoteric or non-ionic surfactant, such as ionic or non-ionic emulsifier(s), foam formers), dispersant(s), wetting agent(s), penetration enhancer(s) and any mixtures thereof.
  • surfactants include, but are not limited to, salts of polyacrylic acid, salts of lignosulfonic acid (such as sodium lignosulfonate), salts of phenolsulfonic acid or naphthalenesulfonic acid, polycondensates of ethylene oxide and/or propylene oxide with fatty alcohols, fatty acids or fatty amines (for example, polyoxyethylene fatty acid esters such as castor oil ethoxylate, polyoxyethylene fatty alcohol ethers, for example alkylaryl polyglycol ethers), substituted phenols (preferably alkylphenols or arylphenols) and ethoxylates thereof (such as tristyrylphenol ethoxylate), salts of sulfosuccinic esters, taurine derivatives (preferably alkyl taurates), phosphoric esters of polyethoxylated alcohols or phenols, fatty esters of polyols (such a fatty acid esters of g,
  • Preferred surfactants are selected from polyoxyethylene fatty alcohol ethers, polyoxyethylene fatty acid esters, alkylbenzene sulfonates, such as calcium dodecylbenzenesulfonate, castor oil ethoxylate, sodium lignosulfonate and arylphenol ethoxylates, such as tristyrylphenol ethoxylate.
  • the amount of surfactants typically ranges from 5 to 40%, for example 10 to 20%, by weight of the composition.
  • auxiliaries include water repellents, siccatives, binders (adhesive, tackifier, fixing agent, such as carboxymethylcellulose, natural and synthetic polymers in the form of powders, granules or latices, such as gum arabic, polyvinyl alcohol and polyvinyl acetate, natural phospholipids such as cephalins and lecithins and synthetic phospholipids, polyvinylpyrrolidone and tylose), thickeners and secondary thickeners (such as cellulose ethers, acrylic acid derivatives, xanthan gum, modified clays, e.g. the products available under the name Bentone, and finely divided silica), stabilizers (e.g.
  • cold stabilizers preservatives (e.g. dichlorophene and benzyl alcohol hemiformal), antioxidants, light stabilizers, in particular UV stabilizers, or other agents which improve chemical and/or physical stability), dyes or pigments (such as inorganic pigments, e.g. iron oxide, titanium oxide and Prussian Blue; organic dyes, e.g. alizarin, azo and metal phthalocyanine dyes), antifoams (e.g.
  • auxiliaries mineral and vegetable oils, perfumes, waxes, nutrients (including trace nutrients, such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc), protective colloids, thixotropic substances, penetrants, sequestering agents and complex formers.
  • the choice of the auxiliaries depends on the intended mode of application of the compound of formula (I) and/or on the physical properties of the compound(s).
  • the auxiliaries may be chosen to impart particular properties (technical, physical and/or biological properties) to the compositions or use forms prepared therefrom. The choice of auxiliaries may allow customizing the compositions to specific needs.
  • compositions may be provided to the end user as ready-for-use formulation, i.e. the compositions may be directly applied to the plants or seeds by a suitable device, such as a spraying or dusting device.
  • a suitable device such as a spraying or dusting device.
  • the compositions may be provided to the end user in the form of concentrates which have to be diluted, preferably with water, prior to use.
  • composition can be prepared in conventional manners, for example by mixing the compound of formula (I) with one or more suitable auxiliaries, such as disclosed herein above.
  • the composition comprises a fungicidally effective amount of the compound(s) of formula (I)
  • effective amount denotes an amount, which is sufficient for controlling harmful fungi on cultivated plants or in the protection of materials and which does not result in a substantial damage to the treated plants. Such an amount can vary in a broad range and is dependent on various factors, such as the fungal species to be controlled, the treated cultivated plant or material, the climatic conditions and the specific compound of formula (I) used.
  • the composition comprising at least one compound of formula (I) contains from 0.01 to 99% by weight, preferably from 0.05 to 98% by weight, more preferred from 0.1 to 95% by weight, even more preferably from 0.5 to 90% by weight, most preferably from 1 to 80% by weight of the compound of formula (I). It is possible that a composition comprises two or more compounds of the invention. In such case the outlined ranges refer to the total amount of compounds of the present invention.
  • composition comprising at least one compound of formula (I) may be in any customary composition type, such as solutions (e.g aqueous solutions), emulsions, water- and oil-based suspensions, powders (e.g. wettable powders, soluble powders), dusts, pastes, granules (e.g. soluble granules, granules for broadcasting), suspoemulsion concentrates, natural or synthetic products impregnated with the compound compound of formula (I), fertilizers and also microencapsulations in polymeric substances.
  • the compound of formula (I) may be present in a suspended, emulsified or dissolved form. Examples of particular suitable composition types are solutions, watersoluble concentrates (e.g.
  • SL LS
  • dispersible concentrates DC
  • suspensions and suspension concentrates e.g. SC, OD, OF, FS
  • emulsifiable concentrates e.g. EC
  • emulsions e.g. EW, EO, ES, ME, SE
  • capsules e.g. CS, ZC
  • pastes pastilles
  • wettable powders or dusts e.g. WP, SP, WS, DP, DS
  • pressings e.g. BR, TB, DT
  • granules e.g. WG, SG, GR, FG, GG, MG
  • insecticidal articles e.g.
  • compositions types are defined by the Food and Agriculture Organization of the United Nations (FAO). An overview is given in the "Catalogue of pesticide formulation types and international coding system", Technical Monograph No. 2, 6th Ed. May 2008, Croplife International.
  • the composition is in form of one of the following types: EC, SC, FS, SE, OD and WG, more preferred EC, SC, OD and WG.
  • composition types and their preparation are given below. If two or more compounds of the invention are present, the outlined amount of compound of formula (I) refers to the total amount of compounds of the present invention. This applies mutatis mutandis for any further component of the composition, if two or more representatives of such component, e.g. wetting agent, binder, are present.
  • SL, LS Water-soluble concentrates
  • ком ⁇ онент e.g. a mixture of calcium dodecylbenzenesulfonate and castor oil ethoxylate
  • surfactant e.g. a mixture of calcium dodecylbenzenesulfonate and castor oil ethoxylate
  • water- insoluble organic solvent e.g. aromatic hydrocarbon
  • This mixture is added to such amount of water by means of an emulsifying machine to result in a total amount of 100 % by weight.
  • the resulting composition is a homogeneous emulsion. Before application the emulsion may be further diluted with water.
  • a suitable grinding equipment e.g. an agitated ball mill
  • 20-60 % by weight of at least one compound of formula (I) are comminuted with addition of 2-10 % by weight surfactant (e.g. sodium lignosulfonate and polyoxyethylene fatty alcohol ether), 0.1-2 % by weight thickener (e.g. xanthan gum) and waterto give a fine active substance suspension.
  • surfactant e.g. sodium lignosulfonate and polyoxyethylene fatty alcohol ether
  • thickener e.g. xanthan gum
  • waterto a fine active substance suspension.
  • the water is added in such amount to result in a total amount of 100 % by weight. Dilution with water gives a stable suspension of the active substance.
  • binder e.g. polyvinylalcohol
  • a suitable grinding equipment e.g. an agitated ball mill
  • 20-60 % by weight of at least one compound of formula (I) are comminuted with addition of 2-10 % by weight surfactant (e.g. sodium lignosulfonate and polyoxyethylene fatty alcohol ether), 0.1-2 % by weight thickener (e.g. modified clay, in particular Bentone, or silica) and an organic carrier to give a fine active substance oil suspension.
  • the organic carrier is added in such amount to result in a total amount of 100 % by weight. Dilution with water gives a stable dispersion of the active substance.
  • At least one compound of formula (I) are ground finely with addition of surfactant (e.g. sodium lignosulfonate and polyoxyethylene fatty alcohol ether) and converted to water-dispersible or water- soluble granules by means of technical appliances (e. g. extrusion, spray tower, fluidized bed).
  • surfactant e.g. sodium lignosulfonate and polyoxyethylene fatty alcohol ether
  • the surfactant is used in such amount to result in a total amount of 100 % by weight. Dilution with water gives a stable dispersion or solution of the active substance.
  • WP, SP, WS Water-dispersible powders and water-soluble powders
  • % by weight of at least one compound of formula (I) are ground in a rotor-stator mill with addition of 1-8 % by weight surfactant (e.g. sodium lignosulfonate, polyoxyethylene fatty alcohol ether) and such amount of solid carrier, e.g. silica gel, to result in a total amount of 100 % by weight. Dilution with water gives a stable dispersion or solution of the active substance.
  • surfactant e.g. sodium lignosulfonate, polyoxyethylene fatty alcohol ether
  • solid carrier e.g. silica gel
  • agitated ball mill 5-25 % by weight of at least one compound of formula (I) are comminuted with addition of 3-10 % by weight surfactant (e.g. sodium lignosulfonate), 1-5 % by weight binder (e.g. carboxymethylcellulose) and such amount of water to result in a total amount of 100 % by weight.
  • surfactant e.g. sodium lignosulfonate
  • binder e.g. carboxymethylcellulose
  • 5-20 % by weight of at least one compound of formula (I) are added to 5-30 % by weight organic solvent blend (e.g. fatty acid dimethylamide and cyclohexanone), 10-25 % by weight surfactant blend (e.g. polyoxyethylene fatty alcohol ether and arylphenol ethoxylate), and such amount of waterto result in a total amount of 100 % by weight. This mixture is stirred for 1 h to produce spontaneously a thermodynamically stable microemulsion.
  • CS An oil phase comprising 5-50 % by weight of at least one compound of formula (I), 0-40 % by weight water- insoluble organic solvent (e.g. aromatic hydrocarbon), 2-15 % by weight acrylic monomers (e.g.
  • methylmethacrylate, methacrylic acid and a di- or triacrylate are dispersed into an aqueous solution of a protective colloid (e.g. polyvinyl alcohol). Radical polymerization initiated by a radical initiator results in the formation of poly(meth)acrylate microcapsules.
  • a protective colloid e.g. polyvinyl alcohol
  • Radical polymerization initiated by a radical initiator results in the formation of poly(meth)acrylate microcapsules.
  • an oil phase comprising 5-50 % by weight of at least one compound of formula (I), 0-40 % by weight water-insoluble organic solvent (e.g. aromatic hydrocarbon), and an isocyanate monomer (e.g. diphenylmethene-4,4'-diisocyanatae) are dispersed into an aqueous solution of a protective colloid (e.g. polyvinyl alcohol).
  • At least one compound of formula (I) are ground finely and associated with such amount of solid carrier (e.g. silicate) to result in a total amount of 100 % by weight.
  • Granulation is achieved by extrusion, spray-drying or the fluidized bed.
  • compositions types i) to xiii) may optionally comprise further auxiliaries, such as 0.1-1 % by weight preservatives, 0.1-1 % by weight antifoams, 0.1-1 % by weight dyes and/or pigments, and 5-10% by weight antifreezes.
  • the compound of formula (I) and the composition comprising at least one compound of formula (I) can be mixed with other active ingredients like fungicides, bactericides, acaricides, nematicides, insecticides, biological control agents or herbicides. Mixtures with fertilizers, growth regulators, safeners, nitrification inhibitors, semiochemicals and/or other agriculturally beneficial agents are also possible. This may allow to broaden the activity spectrum or to prevent development of resistance. Examples of known fungicides, insecticides, acaricides, nematicides and bactericides are disclosed in the Pesticide Manual, 17th Edition. The active ingredients specified herein by their Common Name are known and described, for example, in The Pesticide Manual (16th Ed. British Crop Protection Council) or can be searched on the internet (e.g. www.alanwood.net/pesticides).
  • fungicides which could be mixed with the compound of formula (I) and the composition comprising at least one compound of formula (I) are:
  • Inhibitors of the ergosterol biosynthesis for example (1.001) cyproconazole, (1.002) difenoconazole, (1.003) epoxiconazole, (1.004) fenbuconazole, (1.005) fenhexamid, (1.006) fenpropidin, (1.007) fenpropimorph, (1.008) fenpyrazamine, (1.009) Fluoxytioconazole, (1.010) fluquinconazole, (1.011) flutriafol, (1.012) hexaconazole, (1.013) imazalil, (1.014) imazalil sulfate, (1.015) ipconazole, (1.016) ipfentrifluconazole, (1.017) mefentrifluconazole, (1.018) metconazole, (1.019) myclobutanil, (1.020) paclobutrazol, (1 .021) penconazole, (1 .022) prochlora
  • Inhibitors of the respiratory chain at complex I or II for example (2.001) benzovindiflupyr, (2.002) bixafen, (2.003) boscalid, (2.004) carboxin, (2.005) cyclobutrifluram, (2.006) flubeneteram, (2.007) fluindapyr, (2.008) fluopyram, (2.009) flutolanil, (2.010) fluxapyroxad, (2.011) furametpyr, (2.012) inpyrfluxam, (2.013) Isofetamid, (2.014) isoflucypram, (2.015) isopyrazam, (2.016) penflufen, (2.017) penthiopyrad, (2.018) pydiflumetofen, (2.019) pyrapropoyne, (2.020) pyraziflumid, (2.021) sedaxane, (2.022) Thifluxamide, (2.023) 1 ,3-dimethyl-N-(1 ,1 ,
  • Inhibitors of the respiratory chain at complex III for example (3.001) ametoctradin, (3.002) amisulbrom, (3.003) azoxystrobin, (3.004) coumethoxystrobin, (3.005) coumoxystrobin, (3.006) cyazofamid, (3.007) dimoxystrobin, (3.008) enoxastrobin, (3.009) famoxadone, (3.010) fenamidone, (3.011) fenpicoxamid, (3.012) florylpicoxamid, (3.013) flufenoxystrobin, (3.014) fluoxastrobin, (3.015) kresoxim-methyl, (3.016) mandestrobin, (3.017) metarylpicoxamid, (3.018) metominostrobin, (3.019) metyltetraprole, (3.020) orysastrobin, (3.021) picoxystrobin, (3.022) pyraclostrobin, (3.021) pic
  • Inhibitors of the mitosis and cell division for example (4.001) carbendazim, (4.002) diethofencarb,
  • Compounds capable to induce a host defence for example (6.001) acibenzolar-S-methyl, (6.002) fosetyl-aluminium, (6.003) fosetyl-calcium, (6.004) fosetyl-sodium, (6.005) isotianil, (6.006) phosphorous acid and its salts, (6.007) probenazole, (6.008) tiadinil.
  • Inhibitors of the amino acid and/or protein biosynthesis for example (7.001) cyprodinil, (7.002) kasugamycin, (7.003) kasugamycin hydrochloride hydrate, (7.004) oxytetracycline, (7.005) pyrimethanil
  • Inhibitors of the ATP production for example (8.001) silthiofam.
  • Inhibitors of the cell wall synthesis for example (9.001) benthiavalicarb, (9.002) dimethomorph, (9.003) flumorph, (9.004) iprovalicarb, (9.005) mandipropamid, (9.006) pyrimorph, (9.007) valifenalate, (9.008) (2E)-3-(4-tert-butylphenyl)-3-(2-chloropyridin-4-yl)-1-(morpholin-4-yl)prop-2-en-1-one, (9.009) (2Z)-3-(4-tert-butylphenyl)-3-(2-chloropyridin-4-yl)-1-(morpholin-4-yl)prop-2-en-1-one.
  • Inhibitors of the lipid synthesis or transport, or membrane synthesis for example (10.001) fluoxapiprolin, (10.002) natamycin, (10.003) oxathiapiprolin, (10.004) propamocarb, (10.005) propamocarb hydrochloride, (10.006) propamocarb-fosetylate, (10.007) tolclofos-methyl, (10.008) 1-(4- ⁇ 4-[(5R)-5-(2,6-difluorophenyl)-4,5-dihydro-1 ,2-oxazol-3-yl]-1 ,3-thiazol-2-yl ⁇ piperidin-1-yl)-2-[5-methyl- 3-(trifluoromethyl)-1 H-pyrazol-1 -yl]ethanone, (10.009) 1 -(4- ⁇ 4-[(5S)-5-(2,6-difluorophenyl)-4,5-dihydro- 1 ,2-oxazol-3
  • Inhibitors of the melanin biosynthesis for example (11 .001) tolprocarb, (11 .002) tricyclazole.
  • Inhibitors of the nucleic acid synthesis for example (12.001) benalaxyl, (12.002) benalaxyl-M (kiralaxyl), (12.003) metalaxyl, (12.004) metalaxyl-M (mefenoxam).
  • Inhibitors of the signal transduction for example (13.001) fludioxonil, (13.002) iprodione, (13.003) procymidone, (13.004) proquinazid, (13.005) quinoxyfen, (13.006) vinclozolin.
  • the compound of formula (I) and the composition may also be combined with one or more biological control agents.
  • biological control is defined as control of harmful organisms such as a phytopathogenic fungi and/or insects and/or acarids and/or nematodes by the use or employment of a biological control agent.
  • biological control agent is defined as an organism other than the harmful organisms and / or proteins or secondary metabolites produced by such an organism for the purpose of biological control. Mutants of the second organism shall be included within the definition of the biological control agent.
  • mutant refers to a variant of the parental strain as well as methods for obtaining a mutant or variant in which the pesticidal activity is greater than that expressed by the parental strain.
  • the ’’parent strain is defined herein as the original strain before mutagenesis.
  • the parental strain may be treated with a chemical such as N-methyl-N'-nitro-N-nitrosoguanidine, ethylmethanesulfone, or by irradiation using gamma, x-ray, or UV-irradiation, or by other means well known to those skilled in the art.
  • a chemical such as N-methyl-N'-nitro-N-nitrosoguanidine, ethylmethanesulfone, or by irradiation using gamma, x-ray, or UV-irradiation, or by other means well known to those skilled in the art.
  • Known mechanisms of biological control agents comprise enteric bacteria that control root rot by out-competing fungi for space on the surface of the root.
  • Bacterial toxins, such as antibiotics have been used to control pathogens.
  • the toxin can be isolated and applied directly to the plant or the bacterial species may be administered so it produces the toxin in situ.
  • a ’’variant is a strain having all the identifying characteristics of the NRRL or ATCC Accession Numbers as indicated in this text and can be identified as having a genome that hybridizes under conditions of high stringency to the genome of the NRRL or ATCC Accession Numbers.
  • Hybridization refers to a reaction in which one or more polynucleotides react to form a complex that is stabilized via hydrogen bonding between the bases of the nucleotide residues.
  • the hydrogen bonding may occur by Watson-Crick base pairing, Hoogstein binding, or in any other sequence-specific manner.
  • the complex may comprise two strands forming a duplex structure, three or more strands forming a multi-stranded complex, a single self-hybridizing strand, or any combination of these.
  • Hybridization reactions can be performed under conditions of different “stringency”. In general, a low stringency hybridization reaction is carried out at about 40 °C in 10 X SSC or a solution of equivalent ionic strength/temperature. A moderate stringency hybridization is typically performed at about 50 °C in 6 X SSC, and a high stringency hybridization reaction is generally performed at about 60 °C in 1 X SSC.
  • a variant of the indicated NRRL or ATCC Accession Number may also be defined as a strain having a genomic sequence that is greater than 85%, more preferably greater than 90% or more preferably greater than 95% sequence identity to the genome of the indicated NRRL or ATCC Accession Number.
  • a polynucleotide or polynucleotide region (or a polypeptide or polypeptide region) has a certain percentage (for example, 80%, 85%, 90%, or 95%) of “sequence identity” to another sequence means that, when aligned, that percentage of bases (or amino acids) are the same in comparing the two sequences. This alignment and the percent homology or sequence identity can be determined using software programs known in the art, for example, those described in Current Protocols in Molecular Biology (F. M. Ausubel et al., eds., 1987).
  • NRRL is the abbreviation for the Agricultural Research Service Culture Collection, an international depositary authority for the purposes of deposing microorganism strains under the Budapest treaty on the international recognition of the deposit of microorganisms for the purposes of patent procedure, having the address National Center for Agricultural Utilization Research, Agricultural Research service, U.S. Department of Agriculture, 1815 North university Street, Peroira, Illinois 61604 USA.
  • ATCC is the abbreviation for the American Type Culture Collection, an international depositary authority for the purposes of deposing microorganism strains under the Budapest treaty on the international recognition of the deposit of microorganisms for the purposes of patent procedure, having the address ATCC Patent Depository, 10801 University Boulevard., Manassas, VA 10110 USA.
  • biological control agents which may be combined with the compound of formula (I) and the composition comprising at least one compound of formula (I) are:
  • Antibacterial agents selected from the group of:
  • (A1) bacteria such as (A1.1) Bacillus subtilis, in particular strain QST713/AQ713 (available as SERENADE OPTI or SERENADE ASO from Bayer CropScience LP, US, having NRRL Accession No. B21661 , U.S. Patent No. 6,060,051);
  • Bacillus subtilis strain BU1814 (available as VELONDIS ® PLUS, VELONDIS ® FLEX and VELONDIS ® EXTRA from BASF SE); (A1 .7) Bacillus mojavensis strain R3B (Accession No. NCAIM (P) B001389) (WO 2013/034938) from Certis USA LLC, a subsidiary of Mitsui & Co.; (A1 .8) Bacillus subtilis CX-9060 from Certis USA LLC, a subsidiary of Mitsui & Co.; (A1 .9) Paenibacillus polymyxa, in particular strain AC-1 (e.g.
  • Pseudomonas proradix e.g. PRORADIX ® from Sourcon Padena
  • Pantoea agglomerans in particular strain E325 (Accession No. NRRL B-21856) (available as BLOOMTIME BIOLOGICALTM FD BIOPESTICIDE from Northwest Agri Products); and
  • (A2) fungi such as (A2.1) Aureobasidium pullulans, in particular blastospores of strain DSM14940, blastospores of strain DSM 14941 ormixtures of blastospores of strains DSM14940 and DSM14941 (e.g., BOTECTOR ® and BLOSSOM PROTECT ® from bio-ferm, CH); (A2.2) Pseudozyma aphidis (as disclosed in WO2011/151819 by Yissum Research Development Company of the Hebrew University of Jerusalem); (A2.3) Saccharomyces cerevisiae, in particular strains CNCM No. I-3936, CNCM No. I- 3937, CNCM No. I-3938 or CNCM No. I-3939 (WO 2010/086790) from Lesaffre et Compagnie, FR;
  • (B1) bacteria for example (B1.1) Bacillus subtilis, in particular strain QST713/AQ713 (available as SERENADE OPTI or SERENADE ASO from Bayer CropScience LP, US, having NRRL Accession No. B21661 and described in U.S. Patent No. 6,060,051); (B1.2) Bacillus pumilus, in particular strain QST2808 (available as SONATA® from Bayer CropScience LP, US, having Accession No. NRRL B- 30087 and described in U.S. Patent No.
  • Bacillus pumilus in particular strain GB34 (available as Yield Shield® from Bayer AG, DE); (B1 .4) Bacillus pumilus, in particular strain BU F-33, having NRRL Accession No. 50185 (available as part of the CARTISSA product from BASF, EPA Reg. No. 71840-19); (B1.5) Bacillus amyloliquefaciens, in particular strain D747 (available as Double NickelTM from from Kumiai Chemical Industry Co., Ltd., having accession number FERM BP-8234, US Patent No.
  • Bacillus subtilis Y1336 (available as BIOBAC ® WP from Bion-Tech, Taiwan, registered as a biological fungicide in Taiwan under Registration Nos. 4764, 5454, 5096 and 5277); (B1.7) Bacillus subtilis strain MBI 600 (available as SUBTILEX from BASF SE), having Accession Number NRRL B-50595, U.S. Patent No. 5,061 ,495; (B1.8) Bacillus subtilis strain GB03 (available as Kodiak® from Bayer AG, DE); (B1.9) Bacillus subtilis var. amyloliquefaciens strain FZB24 having Accession No.
  • DSM 10271 (available from Novozymes as TAEGRO ® or TAEGRO ® ECO (EPA Registration No. 70127-5)); (B1.10) Bacillus mycoides, isolate J, having Accession No. B-30890 (available as BMJ TGAI ® or WG and LifeGardTM from Certis USA LLC, a subsidiary of Mitsui & Co.); (B1.11) Bacillus licheniformis, in particular strain SB3086, having Accession No. ATCC 55406, WO 2003/000051 (available as ECOGUARD ® Biofungicide and GREEN RELEAFTM from Novozymes); (B1.12) a Paenibacillus sp. strain having Accession No.
  • Bacillus amyloliquefaciens strain FZB42 Bacillus amyloliquefaciens strain FZB42, Accession No. DSM 23117 (available as RHIZOVITAL ® from ABiTEP, DE); (B1.17) Bacillus licheniformis FMCH001 and Bacillus subtilis FMCH002 (QUARTZO ® (WG) and PRESENCE ® (WP) from FMC Corporation); (B1.18) Bacillus mojavensis strain R3B (Accession No.
  • NCAIM (P) B001389) (WO 2013/034938) from Certis USA LLC, a subsidiary of Mitsui & Co.; (B1.19) Paenibacillus polymyxa ssp. plantarum (WO 2016/020371) from BASF SE; (B1.20) Paenibacillus epiphyticus (WO 2016/020371) from BASF SE; (B.1.21) Pseudomonas chlororaphis strain AFS009, having Accession No.
  • NRRL B-50897, WO 2017/019448 e.g., HOWLERTM and ZIO ® from AgBiome Innovations, US
  • B1.22 Pseudomonas chlororaphis, in particular strain MA342 (e.g. CEDOMON ® , CERALL ® , and CEDRESS ® by Bioagri and Koppert);
  • B1.23 Streptomyces lydicus strain WYEC108 (also known as Streptomyces lydicus strain WYCD108US) (ACTINO-IRON ® and ACTI NOVATE ® from Novozymes);
  • B1.24 Agrobacterium radiobacter strain K84 (e.g.
  • GALLTROL- A from AgBioChem, CA); (B1.25) Agrobacterium radiobacter strain K1026 (e.g. NOGALLTM from BASF SE); (B1.26) Bacillus subtilis KTSB strain (FOLIACTIVE ® from Donaghys); (B1.27) Bacillus subtilis IAB/BS03 (AVIVTM from STK Bio-Ag Technologies); (B1.28) Bacillus subtilis strain Y1336 (available as BIOBAC ® WP from Bion-Tech, Taiwan, registered as a biological fungicide in Taiwan under Registration Nos. 4764, 5454, 5096 and 5277); (B1.29) Bacillus amyloliquefaciens isolate B246 (e.g.
  • (B2) fungi for example: (B2.1) Coniothyrium minitans, in particular strain CON/M/91-8 (Accession No. DSM-9660; e.g. Contans ® from Bayer CropScience Biologies GmbH); (B2.2) Metschnikowia fructicola, in particular strain NRRL Y-30752; (B2.3) Microsphaeropsis ochracea] (B2.5) Trichoderma atroviride, in particular strain SC1 (having Accession No. CBS 122089, WO 2009/116106 and U.S. Patent No. 8,431 ,120 (from Bi-PA)), strain 77B (T77 from Andermatt Biocontrol) or strain LU132 (e.g.
  • Trichoderma harzianum strain T-22 e.g. Trianum-P from Andermatt Biocontrol or Koppert
  • strain Cepa Simb-T5 from Simbiose Agro
  • Gliocladium roseum also known as Clonostachys rosea f. rosea
  • strain 321 U from Adjuvants Plus
  • strain ACM941 as disclosed in Xue (Efficacy of Clonostachys rosea strain ACM941 and fungicide seed treatments for controlling the root tot complex of field pea, Can Jour Plant Sci 83(3): 519-524), or strain IK726 (Jensen DF, et al.
  • Trichoderma atroviride strain ATCC 20476 (IMI 206040); (B2.45) Trichoderma atroviride, strain T11 (IMI352941/ CECT20498); (B2.46) Trichoderma harmatum] (B2.47) Trichoderma harzianum] (B2.48) Trichoderma harzianum rifai T39 (e.g. Trichodex® from Makhteshim, US); (B2.49) Trichoderma asperellum, in particular, strain kd (e.g. T-Gro from Andermatt Biocontrol); (B2.50) Trichoderma harzianum, strain ITEM 908 (e.g.
  • Trianum- P from Koppert Trichoderma harzianum, strain TH35 (e.g. Root-Pro by Mycontrol);
  • Trichoderma virens also known as Gliocladium virens
  • strain GL-21 e.g. SoilGard by Certis, US
  • B2.53 Trichoderma viride, strain TV1(e.g. Trianum-P by Koppert);
  • Ampelomyces quisqualis in particular strain AQ 10 (e.g.
  • NM 99/06216 e.g., BOTRY-ZEN ® by Botry-Zen Ltd, New Zealand and BOTRYSTOP ® from BioWorks, Inc.
  • B2.84 Verticillium albo-atrum (formerly V. dahliae), strain WCS850 having Accession No. WCS850, deposited at the Central Bureau for Fungi Cultures (e.g., DUTCH TRIG ® by Tree Care Innovations); (B2.86) Verticillium chlamydosporium ⁇ , (B2.87) mixtures of Trichoderma asperellum strain ICC 012 (also known as Trichoderma harzianum ICC012), having Accession No.
  • CABI CC IMI 392716 and Trichoderma gamsii (formerly T. viride) strain ICC 080 having Accession No. IMI 392151 (e.g., BIO-TAMTM from Isagro USA, Inc. and BIODERMA ® by Agrobiosol de Mexico, S.A. de C.V.); (B2.88) Trichoderma asperelloides JM41R (Accession No. NRRL B-50759) (TRICHO PLUS ® from BASF SE); (B2.89) Aspergillus flavus strain NRRL 21882 (products known as AFLA-GUARD ® from Syngenta/ChemChina); (B2.90) Chaetomium cupreum (Accession No.
  • CABI 353812 (e.g. BIOKUPRUMTM by AgriLife); (B2.91) Saccharomyces cerevisiae, in particular strain LAS02 (from Agro-Levures et Derives), strain LAS117 cell walls (CEREVISANE ® from Lesaffre; ROMEO ® from BASF SE), strains CNCM No. I-3936, CNCM No. I-3937, CNCM No. I-3938, CNCM No. I-3939 (WO 2010/086790) from Lesaffre et Compagnie, FR; (B2.92) Trichoderma virens strain G-41 , formerly known as Gliocladium virens (Accession No.
  • ATCC 20906 (e.g., ROOTSHIELD ® PLUS WP and TURFSHIELD ® PLUS WP from BioWorks, US); (B2.93) Trichoderma hamatum, having Accession No. ATCC 28012; (B2.94) Ampelomyces quisqualis strain AQ10, having Accession No.
  • CNCM I-807 e.g., AQ 10 ® by IntrachemBio Italia
  • B2.95 Phlebiopsis gigantea strain VRA 1992 (ROTSTOP ® C from Danstar Ferment);
  • B2.96 Penicillium steckii (DSM 27859; WO 2015/067800) from BASF SE;
  • B2.97 Chaetomium globosum (available as RIVADIOM ® by Rivale);
  • B2.101 Fusarium oxysporum, strain Fo47 (available as FUSACLEAN ® by Natural Plant Protection);
  • B2.102 Pseudozyma flocculosa, strain PF-A22 UL (available as SPORODEX ® L
  • strain ICC 080 IMI CC 392151 CABI
  • BIODERMA AGROBIOSOL DE MEXICO, S.A. DE C.V.
  • B2.104 Trichoderma fertile (e.g. product TrichoPlus from BASF);
  • B2.105 Muscodor roseus, in particular strain A3-5 (Accession No. NRRL 30548);
  • B2.106 Simplicillium lanosoniveum biological control agents having an effect for improving plant growth and/or plant health which may be combined in the compound combinations according to the invention including
  • C1 bacteria selected from the group consisting of Bacillus pumilus, in particular strain QST2808 (having Accession No. NRRL No. B-30087); Bacillus subtilis, in particular strain QST713/AQ713 (having NRRL Accession No. B-21661and described in U.S. Patent No. 6,060,051 ; available as SERENADE ® OPTI or SERENADE ® ASO from Bayer CropScience LP, US); Bacillus subtilis, in particular strain AQ30002 (having Accession Nos. NRRL B-50421 and described in U.S. Patent Application No.
  • Bacillus subtilis in particular strain AQ30004 (and NRRL B-50455 and described in U.S. Patent Application No. 13/330,576); Sinorhizobium meliloti strain NRG-185-1 (NITRAGIN ® GOLD from Bayer CropScience); Bacillus subtilis strain BU1814, (available as TEQUALIS ® from BASF SE); Bacillus subtilis rm303 (RHIZOMAX ® from Biofilm Crop Protection); Bacillus amyloliquefaciens pm414 (LOLI- PEPTA ® from Biofilm Crop Protection); Bacillus mycoides BT155 (NRRL No.
  • Bacillus mycoides EE118 (NRRL No. B-50918), Bacillus mycoides EE141 (NRRL No. B-50916), Bacillus mycoides BT46-3 (NRRL No. B-50922), Bacillus cereus family member EE128 (NRRL No. B-50917), Bacillus thuringiensis BT013A (NRRL No. B-50924) also known as Bacillus thuringiensis 4Q7, Bacillus cereus family member EE349 (NRRL No.
  • Bacillus amyloliquefaciens SB3281 ATCC # PTA- 7542; WO 2017/205258
  • Bacillus amyloliquefaciens TJ1000 available as QUIKROOTS ® from Novozymes
  • Bacillus ftrmus in particular strain CNMC 1-1582 (e.g. VOTIVO ® from BASF SE); Bacillus pumilus, in particular strain GB34 (e.g. YIELD SHIELD ® from Bayer Crop Science, DE); Bacillus amyloliquefaciens, in particular strain IN937a; Bacillus amyloliquefaciens, in particular strain FZB42 (e.g.
  • RHIZOVITAL ® from ABiTEP, DE
  • Bacillus amyloliquefaciens BS27 (Accession No. NRRL B-5015); a mixture of Bacillus licheniformis FMCH001 and Bacillus subtilis FMCH002 (available as QUARTZO ® (WG), PRESENCE ® (WP) from FMC Corporation); Bacillus cereus, in particular strain BP01 (ATCC 55675; e.g. MEPICHLOR ® from Arysta Lifescience, US); Bacillus subtilis, in particular strain MBI 600 (e.g. SUBTILEX ® from BASF SE); Bradyrhizobium japonicum (e.g.
  • OPTIMIZE ® from Novozymes Mesorhizobium cicer (e.g., NODULATOR from BASF SE); Rhizobium leguminosarium biovar viciae (e.g., NODULATOR from BASF SE); Delftia acidovorans, in particular strain RAY209 (e.g. BIOBOOST ® from Brett Young Seeds); Lactobacillus sp. (e.g. LACTOPLANT ® from LactoPAFI); Paenibacillus polymyxa, in particular strain AC-1 (e.g. TOPSEED ® from Green Biotech Company Ltd.); Pseudomonas proradix (e.g.
  • PRORADIX ® from Sourcon Padena
  • Azospirillum brasilense e.g., VIGOR ® from KALO, Inc.
  • Azospirillum lipoferum e.g., VERTEX-IFTM from TerraMax, Inc.
  • a mixture of Azotobacter vinelandii and Clostridium pasteurianum available as INVIGORATE ® from Agrinos
  • Pseudomonas aeruginosa in particular strain PN1 ; Rhizobium leguminosarum, in particular bv. viceae strain Z25 (Accession No.
  • C2 fungi selected from the group consisting of Purpureocillium lilacinum (previously known as Paecilomyces lilacinus) strain 251 (AGAL 89/030550; e.g. BioAct from Bayer CropScience Biologies Gvr ⁇ bH)Penicillium bilaii, strain ATCC 22348 (e.g. JumpStart ® from Acceleron BioAg), Talaromyces flavus, strain V117b; Trichoderma atroviride strain CNCM 1-1237 (e.g. Esquive® WP from Agrauxine, FR), Trichoderma viride, e.g.
  • Trichoderma atroviride strain LC52 also known as Trichoderma atroviride strain LU132; e.g. Sentinel from Agrimm Technologies Limited
  • Trichoderma atroviride strain SC1 described in International Application No. PCT/IT2008/000196
  • Trichoderma asperellum strain kd e.g. T-Gro from Andermatt Biocontrol
  • Trichoderma asperellum strain Eco-T Plantt Health Products, ZA
  • Trichoderma harzianum strain T-22 e.g.
  • Trianum-P from Andermatt Biocontrol or Koppert Myrothecium verrucaria strain AARC-0255 (e.g. DiTeraTM from Valent Biosciences); PeniciIHum bilaii strain ATCC ATCC20851 ; Pythium oligandrum strain M1 (ATCC 38472; e.g. Polyversum from Bioprepraty, CZ); Trichoderma virens strain GL-21 (e.g. SoilGard® from Certis, USA); Verticillium albo-atrum (formerly V. dahliae) strain WCS850 (CBS 276.92; e.g. Dutch Trig from Tree Care Innovations); Trichoderma atroviride, in particular strain no.
  • AARC-0255 e.g. DiTeraTM from Valent Biosciences
  • PeniciIHum bilaii strain ATCC ATCC20851 e.g. DiTeraTM from Valent Biosciences
  • (D1) bacteria selected from the group consisting of Bacillus thuringiensis subsp. aizawai, in particular strain ABTS-1857 (SD-1372; e.g. XENTARI ® from Valent BioSciences); Bacillus mycoides, isolate J. (e.g. BmJ from Certis USA LLC, a subsidiary of Mitsui & Co.); Bacillus sphaericus, in particular Serotype H5a5b strain 2362 (strain ABTS-1743) (e.g. VECTOLEX ® from Valent BioSciences, US); Bacillus thuringiensis subsp.
  • israelensis strain BMP 144 (e.g.
  • Burkholderia spp. in particular Burkholderia rinojensis strain A396 (also known as Burkholderia rinojensis strain MBI 305) (Accession No. NRRL B-50319; WO 2011/106491 and WO 2013/032693; e.g. MBI-206 TGAI and ZELTO ® from Marrone Bio Innovations); Chromobacterium subtsugae, in particular strain PRAA4-1T (MBI-203; e.g. GRANDEVO ® from Marrone Bio Innovations); Paenibacillus popilliae (formerly Bacillus popilliae; e.g.
  • MILKY SPORE POWDERTM and MILKY SPORE GRANULARTM from St. Gabriel Laboratories Bacillus thuringiensis subsp. israelensis (serotype H-14) strain AM65-52 (Accession No. ATCC 1276) (e.g. VECTOBAC ® by Valent BioSciences, US); Bacillus thuringiensis var. kurstaki strain EVB-113-19 (e.g., BIOPROTEC ® from AEF Global); Bacillus thuringiensis subsp. tenebrionis strain NB 176 (SD-5428; e.g. NOVODOR ® FC from BioFa DE); Bacillus thuringiensis var.
  • INVADE ® by Wrightson Seeds Serratia marcescens, in particular strain SRM (Accession No. MTCC 8708); and Wolbachia pipientis ZAP strain (e.g., ZAP MALES ® from MosquitoMate); and
  • (D2) fungi selected from the group consisting of Isaria fumosorosea (previously known as Paecilomyces fumosoroseus) strain apopka 97; Beauveria bassiana strain ATCC 74040 (e.g. NATURALIS ® from Intrachem Bio Italia); Beauveria bassiana strain GHA (Accession No. ATCC74250; e.g.
  • viruses selected from the group consisting of Adoxophyes orana (summer fruit tortrix) granulosis virus (GV), Cydia pomonella (codling moth) granulosis virus (GV), Helicoverpa armigera (cotton bollworm) nuclear polyhedrosis virus (NPV), Spodoptera exigua (beet armyworm) mNPV, Spodoptera frugiperda (fall armyworm) mNPV, and Spodoptera littoralis (African cotton leafworm) NPV;
  • (F) bacteria and fungi which can be added as 'inoculant' to plants or plant parts or plant organs and which, by virtue of their particular properties, promote plant growth and plant health.
  • Examples are: Agrobacterium spp., Azorhizobium caulinodans, Azospirillum spp., Azotobacter spp., Bradyrhizobium spp., Burkholderia spp., in particular Burkholderia cepacia (formerly known as Pseudomonas cepacia), Gigaspora spp., or Gigaspora monosporum, Glomus spp., Laccaria spp., Lactobacillus buchneri, Paraglomus spp., Pisolithus tinctorus, Pseudomonas spp., Rhizobium spp., in particular Rhizobium trifolii, Rhizopogon spp., Scleroderma spp.
  • G plant extracts and products formed by microorganisms including proteins and secondary metabolites which can be used as biological control agents, such as Allium sativum, Artemisia absinthium, azadirachtin, Biokeeper WP, Cassia nigricans, Celastrus angulatus, Chenopodium anthelminticum, chitin, Armour-Zen, Dryopteris filix-mas, Equisetum arvense, Fortune Aza, Fungastop, Heads Up (Chenopodium quinoa saponin extract), Pyrethrum/Pyrethrins, Quassia amara, Quercus, Quillaja, Regalia, "Requiem TM Insecticide", rotenone, ryanial ryanodine, Symphytum officinale, Tanacetum vulgare, thymol, Triad 70, TriCon, Tropaeulum majus, Urtica dioica, Veratrin, Viscum album
  • the compound of formula (I) and the composition comprising at least one compound of formula (I) be combined with one or more active ingredients selected from insecticides, acaricides and nematicides.
  • Insecticides as well as the term “insecticidal” refers to the ability of a substance to increase mortality or inhibit growth rate of insects. As used herein, the term “insects” comprises all organisms in the class “Insecta”.
  • nematode and “nematicidal” refers to the ability of a substance to increase mortality or inhibit the growth rate of nematodes.
  • nematode comprises eggs, larvae, juvenile and mature forms of said organism.
  • Acaricide and “acaricidal” refers to the ability of a substance to increase mortality or inhibit growth rate of ectoparasites belonging to the class Arachnida, sub-class Acari.
  • insecticides examples include insecticides, acaricides and nematicides, respectively, which could be mixed with the compound of formula (I) and the composition comprising at least one compound of formula (l)are:
  • Acetylcholinesterase (AChE) inhibitors such as, for example, carbamates, for example alanycarb, aldicarb, bendiocarb, benfuracarb, butocarboxim, butoxycarboxim, carbaryl, carbofuran, carbosulfan, ethiofencarb, fenobucarb, formetanate, furathiocarb, isoprocarb, methiocarb, methomyl, metolcarb, oxamyl, pirimicarb, propoxur, thiodicarb, thiofanox, triazamate, trimethacarb, XMC and xylylcarb; or organophosphates, for example acephate, azamethiphos, azinphos-ethyl, azinphos-methyl, cadusafos, chlorethoxyfos, chlorfenvinphos, chlormephos, chlorpyrifo
  • GABA-gated chloride channel blockers such as, for example, cyclodiene-organochlorines, for example chlordane and endosulfan or phenylpyrazoles (fiproles), for example ethiprole and fipronil.
  • Sodium channel modulators such as, for example, pyrethroids, e.g. acrinathrin, allethrin, d-cis-trans allethrin, d-trans allethrin, bifenthrin, bioallethrin, bioallethrin s-cyclopentenyl isomer, bioresmethrin, cycloprothrin, cyfluthrin, beta-cyfluthrin, cyhalothrin, lambda-cyhalothrin, gamma-cyhalothrin, cypermethrin, alpha-cypermethrin, beta-cypermethrin, theta-cypermethrin, zeta-cypermethrin, cyphenothrin [(1 R)-trans-isomer], deltamethrin, empenthrin [(EZ)-(1 R)-i
  • Nicotinic acetylcholine receptor (nAChR) competitive modulators such as, for example, neonicotinoids, e.g. acetamiprid, clothianidin, dinotefuran, imidacloprid, nitenpyram, thiacloprid and thiamethoxam or nicotine or sulfoxaflor or flupyradifurone.
  • neonicotinoids e.g. acetamiprid, clothianidin, dinotefuran, imidacloprid, nitenpyram, thiacloprid and thiamethoxam or nicotine or sulfoxaflor or flupyradifurone.
  • Nicotinic acetylcholine receptor (nAChR) allosteric modulators such as, for example, spinosyns, e.g. spinetoram and spinosad.
  • Glutamate-gated chloride channel (GluCI) allosteric modulators such as, for example, avermectins/milbemycins, for example abamectin, emamectin benzoate, lepimectin and milbemectin.
  • Juvenile hormone mimics such as, for example, juvenile hormone analogues, e.g. hydroprene, kinoprene and methoprene or fenoxycarb or pyriproxyfen.
  • Miscellaneous non-specific (multi-site) inhibitors such as, for example, alkyl halides, e.g. methyl bromide and other alkyl halides; or chloropicrine or sulfuryl fluoride or borax or tartar emetic or methyl isocyanate generators, e.g. diazomet and metam.
  • alkyl halides e.g. methyl bromide and other alkyl halides
  • chloropicrine or sulfuryl fluoride or borax or tartar emetic or methyl isocyanate generators e.g. diazomet and metam.
  • Mite growth inhibitors such as, for example clofentezine, hexythiazox and diflovidazin or etoxazole.
  • Microbial disruptors of the insect gut membrane such as, for example Bacillus thuringiensis subspecies israelensis, Bacillus sphaericus, Bacillus thuringiensis subspecies aizawai, Bacillus thuringiensis subspecies kurstaki, Bacillus thuringiensis subspecies tenebrionis, and B.t. plant proteins: CrylAb, CrylAc, Cryl Fa, Cry1A.105, Cry2Ab, Vip3A, mCry3A, Cry3Ab, Cry3Bb, Cry34Ab1/35Ab1 .
  • Inhibitors of mitochondrial ATP synthase such as, ATP disruptors such as, for example, diafenthiuron or organotin compounds, for example azocyclotin, cyhexatin and fenbutatin oxide or propargite ortetradifon.
  • ATP disruptors such as, for example, diafenthiuron or organotin compounds, for example azocyclotin, cyhexatin and fenbutatin oxide or propargite ortetradifon.
  • Nicotinic acetylcholine receptor channel blockers such as, for example, bensultap, cartap hydrochloride, thiocylam, and thiosultap-sodium.
  • Inhibitors of chitin biosynthesis, type 0, such as, for example, bistrifluron, chlorfluazuron, diflubenzuron, flucycloxuron, flufenoxuron, hexaflumuron, lufenuron, novaluron, noviflumuron, teflubenzuron and triflumuron.
  • Inhibitors of chitin biosynthesis type 1 , for example buprofezin.
  • Moulting disruptor in particular for Diptera, i.e. dipterans, such as, for example, cyromazine.
  • Ecdysone receptor agonists such as, for example, chromafenozide, halofenozide, methoxyfenozide and tebufenozide.
  • Octopamine receptor agonists such as, for example, amitraz.
  • Mitochondrial complex III electron transport inhibitors such as, for example, hydramethylnone or acequinocyl or fluacrypyrim.
  • Mitochondrial complex I electron transport inhibitors such as, for example from the group of the METI acaricides, e.g. fenazaquin, fenpyroximate, pyrimidifen, pyridaben, tebufenpyrad and tolfenpyrad or rotenone (Derris).
  • METI acaricides e.g. fenazaquin, fenpyroximate, pyrimidifen, pyridaben, tebufenpyrad and tolfenpyrad or rotenone (Derris).
  • Voltage-dependent sodium channel blockers such as, for example indoxacarb or metaflumizone.
  • Inhibitors of acetyl CoA carboxylase such as, for example, tetronic and tetramic acid derivatives, e.g. spirodiclofen, spiromesifen and spirotetramat.
  • Mitochondrial complex IV electron transport inhibitors such as, for example, phosphines, e.g. aluminium phosphide, calcium phosphide, phosphine and zinc phosphide or cyanides, e.g. calcium cyanide, potassium cyanide and sodium cyanide.
  • Mitochondrial complex II electron transport inhibitors such as, for example, befa-ketonitrile derivatives, e.g. cyenopyrafen and cyflumetofen and carboxan Hides, such as, for example, pyflubumide.
  • Ryanodine receptor modulators such as, for example, diamides, e.g. chlorantraniliprole, cyantraniliprole and flubendiamide, further active compounds such as, for example, Afidopyropen, Afoxolaner, Azadirachtin, Benclothiaz, Benzoximate, Bifenazate, Broflanilide, Bromopropylate, Chinomethionat, Chloroprallethrin, Cryolite, Cyclaniliprole, Cycloxaprid, Cyhalodiamide, Dicloromezotiaz, Dicofol, epsilon-Metofluthrin, epsilon- Momfluthrin, Flometoquin, Fluazaindolizine, Fluensulfone, Flufenerim, Flufenoxystrobin, Flufiprole, Fluhexafon, Fluopyram, Fluralaner, Fluxamet
  • WO 2011/085575 A1 (CAS 1233882-22-8), 4-[3-[2,6-dichloro-4-[(3,3-dichloro-2-propen-1-yl)oxy] phenoxy]propoxy]-2-methoxy-6-(trifluoromethyl)-pyrimidine (known from CN 101337940 A) (CAS 1108184-52-6); (2 E)- and 2(Z)-2-[2-(4-cyanophenyl)-1-[3-(trifluoromethyl)phenyl]ethylidene]-A/-[4-
  • herbicides which could be mixed with the compound of formula (I) and the composition comprising at least one compound of formula (l)are:
  • plant growth regulators are:
  • nitrification inhibitors wich can be mixed with the compound of formula (I) and the composition comprising at least one compound of formula (l)are selected from the group consisting of 2-(3,4-dimethyl-1 H-pyrazol-1 -yl)succinic acid, 2-(4,5-dimethyl-1 H-pyrazol-1 -yl)succinic acid, 3,4- dimethyl pyrazolium glycolate, 3,4-dimethyl pyrazolium citrate, 3,4-dimethyl pyrazolium lactate, 3,4- dimethyl pyrazolium mandelate, 1 ,2,4-triazole, 4-Chloro-3-methylpyrazole, N-((3(5)-methyl-1 H- pyrazole-1 -yl)methyl)acetamide, N-((3(5)-methyl-1 H-pyrazole-1 -yl)methyl)formamide, N-((3(5),4- dimethylpyrazole-1-yl)methyl)formamide, N-((4-ch
  • the compound of formula (I) and the composition comprising at least one compound of formula (I) may be combined with one or more agriculturally beneficial agents.
  • agriculturally beneficial agents include biostimulants, plant growth regulators, plant signal molecules, growth enhancers, microbial stimulating molecules, biomolecules, soil amendments, nutrients, plant nutrient enhancers, etc., such as lipo-chitooligosaccharides (LCO), chitooligosaccharides (CO), chitinous compounds, flavonoids, jasmonic acid or derivatives thereof (e.g., jasmonates), cytokinins, auxins, gibberellins, absiscic acid, ethylene, brassinosteroids, salicylates, macro- and micro-nutrients, linoleic acid or derivatives thereof, linolenic acid or derivatives thereof, karrikins, and beneficial microorganisms (e.g., Rhizobium spp., Bradyrhizobium spp., Sinorhizobium spp., Azorhizobium spp., Glomus spp., Gigaspora
  • the compound of formula (I) and the composition comprising at least one compound of formula (I) have potent microbicidal activity and/or plant defense modulating potential. They can be used for controlling unwanted microorganisms, such as unwanted fungi and bacteria, on plants. They can be particularly useful in crop protection (they control microorganisms that cause plants diseases) or for protecting materials (e.g. industrial materials, timber, storage goods) as described in more details herein below. More specifically, the compound of formula (I) and the composition comprising at least one compound of formula (I) can be used to protect seeds, germinating seeds, emerged seedlings, plants, plant parts, fruits, harvest goods and/or the soil in which the plants grow from unwanted microorganisms.
  • Control or controlling as used herein encompasses protective, curative and eradicative treatment of unwanted microorganisms.
  • Unwanted microorganisms may be pathogenic bacteria, pathogenic virus, pathogenic oomycetes or pathogenic fungi, more specifically phytopathogenic bacteria, phytopathogenic virus, phytopathogenic oomycetes or phytopathogenic fungi. As detailed herein below, these phytopathogenic microorganims are the causal agents of a broad spectrum of plants diseases.
  • the compound of formula (I) and the composition comprising at least one compound of formula (I) can be used as fungicides.
  • fungicide refers to a compound or composition that can be used in crop protection for the control of unwanted fungi, such as Plasmodiophoromycetes, Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes and Deuteromycetes and/or for the control of Oomycetes.
  • the compound of formula (I) and the composition comprising at least one compound of formula (I) may also be used as antibacterial agent.
  • they may be used in crop protection, for example for the control of unwanted bacteria, such as Pseudomonadaceae, Rhizobiaceae, Xanthomonadaceae, Enterobacteriaceae, Corynebacteriaceae and Streptomycetaceae.
  • the compound of formula (I) and the composition comprising at least one compound of formula (I) may also be used as antiviral agent in crop protection.
  • the compound of formula (I) and the composition comprising at least one compound of formula (I) may have effects on diseases from plant viruses, such as the tobacco mosaic virus (TMV), tobacco rattle virus, tobacco stunt virus (TStuV), tobacco leaf curl virus (VLCV), tobacco nervilia mosaic virus (TVBMV), tobacco necrotic dwarf virus (TNDV), tobacco streak virus (TSV), potato virus X (PVX), potato viruses Y, S, M, and A, potato acuba mosaic virus (PAMV), potato mop-top virus (PMTV), potato leaf-roll virus (PLRV), alfalfa mosaic virus (AMV), cucumber mosaic virus (CMV), cucumber green mottlemosaic virus (CGMMV), cucumber yellows virus (CuYV), watermelon mosaic virus (WMV), tomato spotted wilt virus (TSWV), tomato ringspot virus (TomRSV), sugarcane mosaic virus
  • the present invention also relates to a method for controlling unwanted microorganisms, such as unwanted fungi, oomycetes and bacteria, on plants comprising the step of applying at least one compound of formula (I) or at least one composition comprising at least one compound of formula (I) to the microorganisms and/or their habitat (to the plants, plant parts, seeds, fruits or to the soil in which the plants grow).
  • unwanted microorganisms such as unwanted fungi, oomycetes and bacteria
  • Suitable substrates that may be used for cultivating plants include inorganic based substrates, such as mineral wool, in particular stone wool, perlite, sand or gravel; organic substrates, such as peat, pine bark or sawdust; and petroleum based substrates such as polymeric foams or plastic beads.
  • Effective and plant-compatible amount means an amount that is sufficient to control or destroy the fungi present or liable to appear on the cropland and that does not entail any appreciable symptom of phytotoxicity for said crops. Such an amount can vary within a wide range depending on the fungus to be controlled, the type of crop, the crop growth stage, the climatic conditions and the respective compound of formula (I) or composition used. This amount can be determined by systematic field trials that are within the capabilities of a person skilled in the art.
  • the compound of formula (I) and the composition comprising at least one compound of formula (I) may be applied to any plants or plant parts.
  • Plants mean all plants and plant populations, such as desired and undesired wild plants or crop plants (including naturally occurring crop plants).
  • Crop plants may be plants which can be obtained by conventional breeding and optimization methods or by biotechnological and genetic engineering methods or combinations of these methods, including the genetically modified plants (GMO or transgenic plants) and the plant cultivars which are protectable and non-protectable by plant breeders’ rights.
  • Plant cultivars are understood to mean plants which have new properties ("traits”) and have been obtained by conventional breeding, by mutagenesis or by recombinant DNA techniques. They can be cultivars, varieties, bio- or genotypes.
  • Plant parts are understood to mean all parts and organs of plants above and below the ground, such as shoots, leaves, needles, stalks, stems, flowers, fruit bodies, fruits, seeds, roots, tubers and rhizomes.
  • the plant parts also include harvested material and vegetative and generative propagation material, for example cuttings, tubers, rhizomes, slips and seeds.
  • Plants which may be treated in accordance with the methods of the invention include the following: cotton, flax, grapevine, fruit, vegetables, such as Rosaceae sp. (for example pome fruits such as apples and pears, but also stone fruits such as apricots, cherries, almonds and peaches, and soft fruits such as strawberries), Ribesioidae sp., Juglandaceae sp., Betulaceae sp., Anacardiaceae sp., Fagaceae sp., Moraceae sp., Oleaceae sp., Actinidaceae sp., Lauraceae sp., Musaceae sp.
  • Rosaceae sp. for example pome fruits such as apples and pears, but also stone fruits such as apricots, cherries, almonds and peaches, and soft fruits such as strawberries
  • Rosaceae sp. for example pome fruits such as apples and pears, but also
  • Rubiaceae sp. for example coffee
  • Theaceae sp. Sterculiceae sp.
  • Rutaceae sp. for example lemons, oranges and grapefruit
  • Solanaceae sp. for example tomatoes
  • Liliaceae sp. for example lettuce
  • Umbelliferae sp. for example lettuce
  • Alliaceae sp. for example leek, onion
  • peas for example peas
  • major crop plants such as Gramineae sp. (for example maize, turf, cereals such as wheat, rye, rice, barley, oats, millet and triticale), Asteraceae sp. (for example sunflower), Brassicaceae sp. (for example white cabbage, red cabbage, broccoli, cauliflower, Brussels sprouts, pak choi, kohlrabi, radishes, and oilseed rape, mustard, horseradish and cress), Fabacae sp. (for example bean, peanuts), Papilionaceae sp. (for example soya bean), Solanaceae sp. (for example potatoes), Chenopodiaceae sp. (for example sugar beet, fodder beet, swiss chard, beetroot); useful plants and ornamental plants for gardens and wooded areas; and genetically modified varieties of each of these plants.
  • Plants and plant cultivars which may be treated by the above disclosed methods include plants and plant cultivars which are resistant against one or more biotic stresses, i.e. said plants show a better defense against animal and microbial pests, such as against nematodes, insects, mites, phytopathogenic fungi, bacteria, viruses and/or viroids.
  • Plants and plant cultivars which may be treated by the above disclosed methods include those plants which are resistant to one or more abiotic stresses.
  • Abiotic stress conditions may include, for example, drought, cold temperature exposure, heat exposure, osmotic stress, flooding, increased soil salinity, increased mineral exposure, ozone exposure, high light exposure, limited availability of nitrogen nutrients, limited availability of phosphorus nutrients, shade avoidance.
  • Plants and plant cultivars which may be treated by the above disclosed methods include those plants characterized by enhanced yield characteristics. Increased yield in said plants may be the result of, for example, improved plant physiology, growth and development, such as water use efficiency, water retention efficiency, improved nitrogen use, enhanced carbon assimilation, improved photosynthesis, increased germination efficiency and accelerated maturation. Yield may furthermore be affected by improved plant architecture (under stress and non-stress conditions), including but not limited to, early flowering, flowering control for hybrid seed production, seedling vigor, plant size, internode number and distance, root growth, seed size, fruit size, pod size, pod or ear number, seed number per pod or ear, seed mass, enhanced seed filling, reduced seed dispersal, reduced pod dehiscence and lodging resistance. Further yield traits include seed composition, such as carbohydrate content and composition for example cotton or starch, protein content, oil content and composition, nutritional value, reduction in anti-nutritional compounds, improved processability and better storage stability.
  • Plants and plant cultivars which may be treated by the above disclosed methods include plants and plant cultivars which are hybrid plants that already express the characteristic of heterosis or hybrid vigor which results in generally higher yield, vigor, health and resistance towards biotic and abiotic stresses.
  • the compound according to the invention can be advantageously used to treat transgenic plants, plant cultivars or plant parts that received genetic material which imparts advantageous and/or useful properties (traits) to these plants, plant cultivars or plant parts. Therefore, it is contemplated that the present invention may be combined with one or more recombinant traits or transgenic event(s) or a combination thereof.
  • a transgenic event is created by the insertion of a specific recombinant DNA molecule into a specific position (locus) within the chromosome of the plant genome.
  • the insertion creates a novel DNA sequence referred to as an “event” and is characterized by the inserted recombinant DNA molecule and some amount of genomic DNA immediately adjacent to/flanking both ends of the inserted DNA.
  • trait(s) or transgenic event(s) include, but are not limited to, pest resistance, water use efficiency, yield performance, drought tolerance, seed quality, improved nutritional quality, hybrid seed production, and herbicide tolerance, in which the trait is measured with respect to a plant lacking such trait or transgenic event.
  • Such advantageous and/or useful properties are better plant growth, vigor, stress tolerance, standability, lodging resistance, nutrient uptake, plant nutrition, and/or yield, in particular improved growth, increased tolerance to high or low temperatures, increased tolerance to drought or to levels of water or soil salinity, enhanced flowering performance, easier harvesting, accelerated ripening, higher yields, higher quality and/or a higher nutritional value of the harvested products, better storage life and/or processability of the harvested products, and increased resistance against animal and microbial pests, such as against insects, arachnids, nematodes, mites, slugs and snails.
  • Bt Cry or VIP proteins which include the CrylA, CrylAb, CrylAc, CryllA, CrylllA, CrylllB2, Cry9c Cry2Ab, Cry3Bb and CrylF proteins or toxic fragments thereof and also hybrids or combinations thereof, especially the CrylF protein or hybrids derived from a CrylF protein (e.g. hybrid CrylA-CrylF proteins or toxic fragments thereof), the CrylA-type proteins or toxic fragments thereof, preferably the CrylAc protein or hybrids derived from the CrylAc protein (e.g.
  • hybrid CrylAb-CrylAc proteins or the CrylAb or Bt2 protein or toxic fragments thereof, the Cry2Ae, Cry2Af orCry2Ag proteins or toxic fragments thereof, the CrylA.105 protein or a toxic fragment thereof, the VIP3Aa19 protein, the VIP3Aa20 protein, the VIP3A proteins produced in the COT202 or COT203 cotton events, the VIP3Aa protein or a toxic fragment thereof as described in Estruch et al. (1996), Proc Natl Acad Sci US A.
  • Another and particularly emphasized example of such properties is conferred tolerance to one or more herbicides, for example imidazolinones, sulfonylureas, glyphosate or phosphinothricin.
  • herbicides for example imidazolinones, sulfonylureas, glyphosate or phosphinothricin.
  • DNA sequences encoding proteins which confer properties of tolerance to certain herbicides on the transformed plant cells and plants mention will be particularly be made to the bar or PAT gene or the Streptomyces coelicolor gene described in W02009/152359 which confers tolerance to glufosinate herbicides, a gene encoding a suitable EPSPS (5-Enolpyruwlshikimat-3-phosphat-svnthase) which confers tolerance to herbicides having EPSPS as a target, especially herbicides such as glyphosate and its salts, a gene encoding glyphosate-
  • herbicide tolerance traits include at least one ALS (acetolactate synthase) inhibitor (e.g. W02007/024782), a mutated Arabidopsis ALS/AHAS gene (e.g. U.S. Patent 6,855,533), genes encoding 2,4-D-monooxygenases conferring tolerance to 2,4-D (2,4- dichlorophenoxyacetic acid) and genes encoding Dicamba monooxygenases conferring tolerance to dicamba (3,6-dichloro-2- methoxybenzoic acid).
  • ALS acetolactate synthase
  • W02007/024782 e.g. W02007/024782
  • a mutated Arabidopsis ALS/AHAS gene e.g. U.S. Patent 6,855,533
  • Yet another example of such properties is resistance to one or more phytopathogenic fungi, for example Asian Soybean Rust.
  • DNA sequences encoding proteins which confer properties of resistance to such diseases mention will particularly be made of the genetic material from glycine tomentella, for example from any one of publically available accession lines PI441001 , PI483224, PI583970, PI446958, PI499939, PI505220, PI499933, PI441008, PI505256 or PI446961 as described in W02019/103918.
  • SAR systemic acquired resistance
  • phytoalexins phytoalexins
  • elicitors resistance genes and correspondingly expressed proteins and toxins.
  • Particularly useful transgenic events in transgenic plants or plant cultivars which can be treated with preference in accordance with the invention include Event 531/ PV-GHBK04 (cotton, insect control, described in W02002/040677), Event 1143-14A (cotton, insect control, not deposited, described in W02006/128569); Event 1143-51 B (cotton, insect control, not deposited, described in W02006/128570); Event 1445 (cotton, herbicide tolerance, not deposited, described in US-A 2002- 120964 or W02002/034946); Event 17053 (rice, herbicide tolerance, deposited as PTA-9843, described in WO2010/117737); Event 17314 (rice, herbicide tolerance, deposited as PTA-9844, described in WO2010/117735); Event 281-24-236 (cotton, insect control - herbicide tolerance, deposited as PTA-6233, described in W02005/103266 or US-A 2005-216969); Event 3006-210-23 (cotton, insect control - herb
  • Event BLRI (oilseed rape, restoration of male sterility, deposited as NCIMB 41193, described in W02005/074671), Event CE43-67B (cotton, insect control, deposited as DSM ACC2724, described in US-A 2009-217423 or W02006/128573); Event CE44-69D (cotton, insect control, not deposited, described in US-A 2010- 0024077); Event CE44- 69D (cotton, insect control, not deposited, described in W02006/128571); Event CE46-02A (cotton, insect control, not deposited, described in W02006/128572); Event COT102 (cotton, insect control, not deposited, described in US-A 2006-130175 or W02004/039986); Event COT202 (cotton, insect control, not deposited, described in US-A 2007-067868 or W02005/054479); Event COT203 (cotton, insect control, not deposited,
  • transgenic event(s) is provided by the United States Department of Agriculture’s (USDA) Animal and Plant Health Inspection Service (APHIS) and can be found on their website on the world wide web at aphis.usda.gov. For this application, the status of such list as it is/was on the filing date of this application, is relevant.
  • USDA United States Department of Agriculture
  • APIHIS Animal and Plant Health Inspection Service
  • transgenic plants which may be mentioned are the important crop plants, such as cereals (wheat, rice, triticale, barley, rye, oats), maize, soya beans, potatoes, sugar beet, sugar cane, tomatoes, peas and other types of vegetable, cotton, tobacco, oilseed rape and also fruit plants (with the fruits apples, pears, citrus fruits and grapes), with particular emphasis being given to maize, soya beans, wheat, rice, potatoes, cotton, sugar cane, tobacco and oilseed rape.
  • Traits which are particularly emphasized are the increased resistance of the plants to insects, arachnids, nematodes and slugs and snails, as well as the increased resistance of the plants to one or more herbicides.
  • Non-limiting examples of pathogens of fungal diseases which may be treated in accordance with the invention include: diseases caused by powdery mildew pathogens, for example Blumeria species, for example Blumeria graminis ; Podosphaera species, for example Podosphaera leucotricha ; Sphaerotheca species, for example Sphaerotheca fuliginea ; Uncinula species, for example Uncinula necator, diseases caused by rust disease pathogens, for example Gymnosporangium species, for example Gymnosporangium sabinae ⁇ Hemileia species, for example Hemileia vastatrix ; Phakopsora species, for example Phakopsora pachyrhizi or Phakopsora meibomiae; Puccinia species, for example Puccinia recondite, Puccinia graminis Oder Puccinia striiformis ; Uromyces species, for example Uromyces app
  • Pseudomonas species for example Pseudomonas syringae pv. lachrymans ; Erwinia species, for example Erwinia amylovora ⁇ , Liberibacter species, for example Liberibacter asiaticus ; Xyella species, for example Xylella fastidiosa ; Ralstonia species, for example Ralstonia solanacearunr, Dickeya species, for example Dickeya solani; Clavibacter species, for example Clavibacter michiganensis; Streptomyces species, for example Streptomyces scabies. diseases of soya beans:
  • Altemaria leaf spot Altemaria spec, atrans tenuissima
  • Anthracnose Colletotrichum gloeosporoides dematium var.
  • the compound of formula (I) and the composition comprising at least one compound of formula (I) may reduce the mycotoxin content in the harvested material and the foods and feeds prepared therefrom.
  • Mycotoxins include particularly, but not exclusively, the following: deoxynivalenol (DON), nivalenol, 15-Ac-DON, 3-Ac-DON, T2- and HT2-toxin, fumonisins, zearalenon, moniliformin, fusarin, diaceotoxyscirpenol (DAS), beauvericin, enniatin, fusaroproliferin, fusarenol, ochratoxins, patulin, ergot alkaloids and aflatoxins which can be produced, for example, by the following fungi: Fusarium spec., such as F.
  • Penicillium spec. such as P. verrucosum, P. viridicatum, P. citrinum, P. expansum, P. claviforme, P. roqueforti, Claviceps spec., such as C. purpurea, C. fusiformis, C. paspali, C. africana, Stachybotrys spec, and others.
  • the compound of formula (I) and the composition comprising at least one compound of formula (I) may also be used in the protection of materials, especially for the protection of industrial materials against attack and destruction by phytopathogenic fungi.
  • the compound of formula (I) and the composition comprising at least one compound of formula (I) may be used as antifouling compositions, alone or in combinations with other active ingredients.
  • Industrial materials in the present context are understood to mean inanimate materials which have been prepared for use in industry.
  • industrial materials which are to be protected from microbial alteration or destruction may be adhesives, glues, paper, wallpaper and board/cardboard, textiles, carpets, leather, wood, fibers and tissues, paints and plastic articles, cooling lubricants and other materials which can be infected with or destroyed by microorganisms.
  • Parts of production plants and buildings, for example cooling-water circuits, cooling and heating systems and ventilation and air-conditioning units, which may be impaired by the proliferation of microorganisms may also be mentioned within the scope of the materials to be protected.
  • Industrial materials within the scope of the present invention preferably include adhesives, sizes, paper and card, leather, wood, paints, cooling lubricants and heat transfer fluids, more preferably wood.
  • the compound of formula (I) and the composition comprising at least one compound of formula (I) may prevent adverse effects, such as rotting, decay, discoloration, decoloration or formation of mould.
  • the compound of formula (I) and the composition comprising at least one compound of formula (I) may also be used against fungal diseases liable to grow on or inside timber.
  • Timber means all types of species of wood, and all types of working of this wood intended for construction, for example solid wood, high-density wood, laminated wood, and plywood.
  • the compound of formula (I) and the composition comprising at least one compound of formula (I) may be used to protect objects which come into contact with saltwater or brackish water, especially hulls, screens, nets, buildings, moorings and signalling systems, from fouling.
  • Storage goods are understood to mean natural substances of vegetable or animal origin or processed products thereof which are of natural origin, and for which long-term protection is desired.
  • Storage goods of vegetable origin for example plants or plant parts, such as stems, leaves, tubers, seeds, fruits, grains, may be protected freshly harvested or after processing by (pre)drying, moistening, comminuting, grinding, pressing or roasting.
  • Storage goods also include timber, both unprocessed, such as construction timber, electricity poles and barriers, or in the form of finished products, such as furniture.
  • Storage goods of animal origin are, for example, hides, leather, furs and hairs.
  • the compound of formula (I) and the composition comprising at least one compound of formula (I) may prevent adverse effects, such as rotting, decay, discoloration, decoloration or formation of mould.
  • Microorganisms capable of degrading or altering industrial materials include, for example, bacteria, fungi, yeasts, algae and slime organisms.
  • the compound of formula (I) and the composition comprising at least one compound of formula (l) preferably act against fungi, especially moulds, wood-discoloring and wood- destroying fungi ( Ascomycetes , Basidiomycetes, Deuteromycetes and Zygomycetes), and against slime organisms and algae.
  • Examples include microorganisms of the following genera: Alternaria, such as Alternana tenuis ⁇ Aspergillus, such as Aspergillus niger, Chaetomium, such as Chaetomium globosum; Coniophora, such as Coniophora puetana ⁇ Lentinus, such as Lentinus tigrinus ; Penicillium, such as Penicillium glaucum; Polyporus, such as Polyporus versicolor, Aureobasidium, such as Aureobasidium pullulans ; Sclerophoma, such as Sclerophoma pityophila ; Trichoderma, such as Trichoderma viride ⁇ Ophiostoma spp., Ceratocystis spp., Humicola spp., Petriella spp., Trichurus spp., Coriolus spp., Gloeophyllum spp., Pleurotus spp
  • the compound of formula (I) and the composition comprising at least one compound of formula (I) may also be used to protect seeds from unwanted microorganisms, such as phytopathogenic microorganisms, for instance phytopathogenic fungi or phytopathogenic oomycetes.
  • seed(s) as used herein include dormant seeds, primed seeds, pregerminated seeds and seeds with emerged roots and leaves.
  • the present invention also relates to a method for protecting seeds from unwanted microorganisms which comprises the step of treating the seeds with the compound of formula (I) or the composition.
  • the treatment of seeds with the compound of formula (I) or the composition protects the seeds from phytopathogenic microorganisms, but also protects the germinating seeds, the emerging seedlings and the plants after emergence from the treated seeds. Therefore, the present invention also relates to a method for protecting seeds, germinating seeds and emerging seedlings.
  • the seeds treatment may be performed prior to sowing, at the time of sowing or shortly thereafter.
  • the seeds treatment may be performed as follows: the seeds may be placed into a mixer with a desired amount of the compound of formula (I) or the composition comprising at least one compound of formula (I), the seeds and the compound of formula (I) or the composition comprising at least one compound of formula (I) are mixed until an homogeneous distribution on seeds is achieved. If appropriate, the seeds may then be dried.
  • the invention also relates to seeds coated with the compound of formula (I) or the composition comprising at least one compound of formula (I).
  • the seeds are treated in a state in which it is sufficiently stable for no damage to occur in the course of treatment.
  • seeds can be treated at any time between harvest and shortly after sowing. It is customary to use seeds which have been separated from the plant and freed from cobs, shells, stalks, coats, hairs or the flesh of the fruits. For example, it is possible to use seeds which have been harvested, cleaned and dried down to a moisture content of less than 15% by weight.
  • seeds which, after drying for example, have been treated with water and then dried again, or seeds just after priming, or seeds stored in primed conditions or pre-germinated seeds, or seeds sown on nursery trays, tapes or paper.
  • the amount of the compound of formula (I) or the composition comprising at least one compound of formula (I) applied to the seeds is typically such that the germination of the seed is not impaired, or that the resulting plant is not damaged. This must be ensured particularly in case the the compound of formula (I) would exhibit phytotoxic effects at certain application rates.
  • the intrinsic phenotypes of transgenic plants should also be taken into consideration when determining the amount of the compound of formula (I) to be applied to the seed in orderto achieve optimum seed and germinating plant protection with a minimum amount of compound being employed.
  • the compound of formula (I) can be applied as such, directly to the seeds, i.e. without the use of any other components and without having been diluted. Also the composition comprising at least one compound of formula (I) can be applied to the seeds.
  • the compound of formula (I) and the composition comprising at least one compound of formula (l) are suitable for protecting seeds of any plant variety.
  • Preferred seeds are that of cereals (such as wheat, barley, rye, millet, triticale, and oats), oilseed rape, maize, cotton, soybean, rice, potatoes, sunflower, beans, coffee, peas, beet (e.g. sugar beet and fodder beet), peanut, vegetables (such as tomato, cucumber, onions and lettuce), lawns and ornamental plants. More preferred are seeds of wheat, soybean, oilseed rape, maize and rice.
  • the compound of formula (I) and the composition comprising at least one compound of formula (I) may be used for treating transgenic seeds, in particular seeds of plants capable of expressing a polypeptide or protein which acts against pests, herbicidal damage or abiotic stress, thereby increasing the protective effect.
  • Seeds of plants capable of expressing a polypeptide or protein which acts against pests, herbicidal damage or abiotic stress may contain at least one heterologous gene which allows the expression of said polypeptide or protein.
  • These heterologous genes in transgenic seeds may originate, for example, from microorganisms of the species Bacillus, Rhizobium, Pseudomonas, Serratia, Trichoderma, Clavibacter, Glomus or Gliocladium.
  • These heterologous genes preferably originate from Bacillus sp., in which case the gene product is effective against the European corn borer and/or the Western corn rootworm.
  • the heterologous genes originate from Bacillus thuringiensis.
  • the compound of formula (I) can be applied as such, or for example in the form of as ready-to-use solutions, emulsions, water- or oil-based suspensions, powders, wettable powders, pastes, soluble powders, dusts, soluble granules, granules for broadcasting, suspoemulsion concentrates, natural products impregnated with the compound of formula (I), synthetic substances impregnated with the compound of formula (I), fertilizers or microencapsulations in polymeric substances.
  • Application is accomplished in a customary manner, for example by watering, spraying, atomizing, broadcasting, dusting, foaming or spreading-on. It is also possible to deploy the compound of formula (I) by the ultra-low volume method, via a drip irrigation system or drench application, to apply it in-furrow or to inject it into the soil stem or trunk. It is further possible to apply the compound of formula (I) by means of a wound seal, paint or other wound dressing.
  • the effective and plant-compatible amount of the compound of formula (I) which is applied to the plants, plant parts, fruits, seeds or soil will depend on various factors, such as the compound/composition employed, the subject of the treatment (plant, plant part, fruit, seed or soil), the type of treatment (dusting, spraying, seed dressing), the purpose of the treatment (curative and protective), the type of microorganisms, the development stage of the microorganisms, the sensitivity of the microorganisms, the crop growth stage and the environmental conditions.
  • the application rates can vary within a relatively wide range, depending on the kind of application.
  • the application rate may range from 0.1 to 10 000 g/ha, preferably from 10 to 1000 g/ha, more preferably from 50 to 300 g/ha (in the case of application by watering or dripping, it is even possible to reduce the application rate, especially when inert substrates such as rockwool or perlite are used).
  • the application rate may range from 0.1 to 200 g per 100 kg of seeds, preferably from 1 to 150 g per 100 kg of seeds, more preferably from 2.5 to 25 g per 100 kg of seeds, even more preferably from 2.5 to 12.5 g per 100 kg of seeds.
  • the application rate may range from 0.1 to 10 000 g/ha, preferably from 1 to 5000 g/ha.
  • the compound of formula (I) and the composition comprising at least one compound of formula (I) can be used in combination with models e.g. embedded in computer programs for site specific crop management, satellite farming, precision farming or precision agriculture.
  • models support the site specific management of agricultural sites with data from various sources such as soils, weather, crops (e.g. type, growth stage, plant health), weeds (e.g. type, growth stage), diseases, pests, nutrients, water, moisture, biomass, satellite data, yield etc. with the purpose to optimize profitability, sustainability and protection of the environment.
  • models can help to optimize agronomical decisions, control the precision of pesticide applications and record the work performed.
  • the compound of formula (I) can be applied to a crop plant according to appropriate dose regime if a model models the development of a fungal disease and calculates that a threshold has been reached for which it is recommendable to apply the compound of formula (I) to the crop plant.
  • a model models the development of a fungal disease and calculates that a threshold has been reached for which it is recommendable to apply the compound of formula (I) to the crop plant.
  • Commercially available systems which include agronomic models are e.g. FieldScriptsTM from The climate Corporation, XarvioTM from BASF, AGLogicTM from John Deere, etc.
  • the compound of formula (I) can also be used in combination with smart spraying equipment such as e.g. spot spraying or precision spraying equipment attached to or housed within a farm vehicle such as a tractor, robot, helicopter, airplane, unmanned aerial vehicle (UAV) such as a drone, etc.
  • smart spraying equipment such as e.g. spot spraying or precision spraying equipment attached to or housed within a farm vehicle such as a tractor, robot, helicopter, airplane, unmanned aerial vehicle (UAV) such as a drone, etc.
  • Such an equipment usually includes input sensors (such as e.g. a camera) and a processing unit configured to analyze the input data and configured to provide a decision based on the analysis of the input data to apply the compound of formula (I) to the crop plants (respectively the weeds) in a specific and precise manner.
  • the use of such smart spraying equipment usually also requires positions systems (e.g. GPS receivers) to localize recorded data and to guide or to control farm vehicles; geographic information systems (GIS) to
  • fungal diseases can be detected from imagery acquired by a camera.
  • fungal diseases can be identified and/or classified based on that imagery.
  • identification and/ classification can make use of image processing algorithms.
  • image processing algorithms can utilize machine learning algorithms, such as trained neutral networks, decision trees and utilize artificial intelligence algorithms. In this manner, the compounds described herein can be applied only where needed.
  • the compound of formula (I) and the composition comprising at least one compound of formula (I) may, at particular concentrations or application rates, also be used as herbicides, safeners, growth regulators or agents to improve plant properties, or as microbicides, for example as bactericides, viricides (including compositions against viroids) or as compositions against MLO (Mycoplasma-like organisms) and RLO (Rickettsia-like organisms).
  • the compound of formula (I) and the composition comprising at least one compound of formula (I) may intervene in physiological processes of plants and may therefore also be used as plant growth regulators.
  • Plant growth regulators may exert various effects on plants. The effect of the substances depends essentially on the time of application in relation to the developmental stage of the plant, and also on the amounts of active ingredient applied to the plants or their environment and on the type of application. In each case, growth regulators should have a particular desired effect on the crop plants.
  • Growth regulating effects comprise earlier germination, better emergence, more developed root system and/or improved root growth, increased ability of tillering, more productive tillers, earlier flowering, increased plant height and/or biomass, shorting of stems, improvements in shoot growth, number of kernels/ear, number of ears/m 2 , number of stolons and/or number of flowers, enhanced harvest index, bigger leaves, less dead basal leaves, improved phyllotaxy, earlier maturation / earlier fruit finish, homogenous riping, increased duration of grain filling, better fruit finish, bigger fruit/vegetable size, sprouting resistance and reduced lodging.
  • Increased or improved yield is referring to total biomass per hectare, yield per hectare, kernel/fruit weight, seed size and/or hectolitre weight as well as to improved product quality, comprising: improved processability relating to size distribution (kernel, fruit), homogenous riping, grain moisture, better milling, better vinification, better brewing, increased juice yield, harvestability, digestibility, sedimentation value, falling number, pod stability, storage stability, improved fiber length/strength/uniformity, increase of milk and/or meet quality of silage fed animals, adaptation to cooking and frying; improved marketability relating to improved fruit/grain quality, size distribution (kernel, fruit), increased storage / shelf-life, firmness / softness, taste (aroma, texture), grade (size, shape, number of berries), number of berries/fruits per bunch, crispness, freshness, coverage with wax, frequency of physiological disorders, colour; increased desired ingredients such as e.g.
  • protein content fatty acids, oil content, oil quality, aminoacid composition, sugar content, acid content (pH), sugar/acid ratio (Brix), polyphenols, starch content, nutritional quality, gluten content/index, energy content, taste; decreased undesired ingredients such as e.g. less mycotoxines, less aflatoxins, geosmin level, phenolic aromas, lacchase, polyphenol oxidases and peroxidases, nitrate content.
  • Plant growth-regulating compounds can be used, for example, to slow down the vegetative growth of the plants.
  • Such growth depression is of economic interest, for example, in the case of grasses, since it is thus possible to reduce the frequency of grass cutting in ornamental gardens, parks and sport facilities, on roadsides, at airports or in fruit crops.
  • Also of significance is the inhibition of the growth of herbaceous and woody plants on roadsides and in the vicinity of pipelines or overhead cables, or quite generally in areas where vigorous plant growth is unwanted.
  • growth regulators for inhibition of the longitudinal growth of cereal. This reduces or completely eliminates the risk of lodging of the plants prior to harvest.
  • growth regulators in the case of cereals can strengthen the culm, which also counteracts lodging.
  • the employment of growth regulators for shortening and strengthening culms allows the deployment of higher fertilizer volumes to increase the yield, without any risk of lodging of the cereal crop.
  • vegetative growth depression allows denser planting, and it is thus possible to achieve higher yields based on the soil surface.
  • Another advantage of the smaller plants obtained in this way is that the crop is easier to cultivate and harvest.
  • Reduction of the vegetative plant growth may also lead to increased or improved yields because the nutrients and assimilates are of more benefit to flower and fruit formation than to the vegetative parts of the plants.
  • growth regulators can also be used to promote vegetative growth. This is of great benefit when harvesting the vegetative plant parts.
  • promoting vegetative growth may also promote generative growth in that more assimilates are formed, resulting in more or larger fruits.
  • beneficial effects on growth or yield can be achieved through improved nutrient use efficiency, especially nitrogen (N)-use efficiency, phosphorous (P)-use efficiency, water use efficiency, improved transpiration, respiration and/or CO 2 assimilation rate, better nodulation, improved Ca- metabolism.
  • nitrogen (N)-use efficiency especially nitrogen (N)-use efficiency, phosphorous (P)-use efficiency, water use efficiency, improved transpiration, respiration and/or CO 2 assimilation rate, better nodulation, improved Ca- metabolism.
  • growth regulators can be used to alter the composition of the plants, which in turn may result in an improvement in quality of the harvested products. Under the influence of growth regulators, parthenocarpic fruits may be formed. In addition, it is possible to influence the sex of the flowers. It is also possible to produce sterile pollen, which is of great importance in the breeding and production of hybrid seed.
  • growth regulators can control the branching of the plants.
  • by breaking apical dominance it is possible to promote the development of side shoots, which may be highly desirable particularly in the cultivation of ornamental plants, also in combination with an inhibition of growth.
  • side shoots which may be highly desirable particularly in the cultivation of ornamental plants, also in combination with an inhibition of growth.
  • the amount of leaves on the plants can be controlled such that defoliation of the plants is achieved at a desired time.
  • defoliation plays a major role in the mechanical harvesting of cotton, but is also of interest for facilitating harvesting in other crops, for example in viticulture.
  • Defoliation of the plants can also be undertaken to lower the transpiration of the plants before they are transplanted.
  • growth regulators can modulate plant senescence, which may result in prolonged green leaf area duration, a longer grain filling phase, improved yield quality.
  • Growth regulators can likewise be used to regulate fruit dehiscence. On the one hand, it is possible to prevent premature fruit dehiscence. On the other hand, it is also possible to promote fruit dehiscence or even flower abortion to achieve a desired mass (“thinning”). In addition it is possible to use growth regulators at the time of harvest to reduce the forces required to detach the fruits, in order to allow mechanical harvesting or to facilitate manual harvesting.
  • Growth regulators can also be used to achieve faster or else delayed ripening of the harvested material before or after harvest. This is particularly advantageous as it allows optimal adjustment to the requirements of the market. Moreover, growth regulators in some cases can improve the fruit colour. In addition, growth regulators can also be used to synchronize maturation within a certain period of time. This establishes the prerequisites for complete mechanical or manual harvesting in a single operation, for example in the case of tobacco, tomatoes or coffee. By using growth regulators, it is additionally possible to influence the resting of seed or buds of the plants, such that plants such as pineapple or ornamental plants in nurseries, for example, germinate, sprout or flower at a time when they are normally not inclined to do so. In areas where there is a risk of frost, it may be desirable to delay budding or germination of seeds with the aid of growth regulators, in orderto avoid damage resulting from late frosts.
  • growth regulators can induce resistance of the plants to frost, drought or high salinity of the soil. This allows the cultivation of plants in regions which are normally unsuitable for this purpose.
  • the compound of formula (I) and the composition comprising at least one compound of formula (I) may also exhibit a potent strengthening effect in plants. Accordingly, they may be used for mobilizing the defences of the plant against attack by undesirable microorganisms.
  • Plant-strengthening (resistance-inducing) substances in the present context are substances capable of stimulating the defence system of plants in such a way that the treated plants, when subsequently inoculated with undesirable microorganisms, develop a high degree of resistance to these microorganisms.
  • plant physiology effects comprise the following:
  • Abiotic stress tolerance comprising tolerance to high or low temperatures, drought tolerance and recovery after drought stress, water use efficiency (correlating to reduced water consumption), flood tolerance, ozone stress and UV tolerance, tolerance towards chemicals like heavy metals, salts, pesticides.
  • Biotic stress tolerance comprising increased fungal resistance and increased resistance against nematodes, viruses and bacteria.
  • biotic stress tolerance preferably comprises increased fungal resistance and increased resistance against nematodes and bacteria
  • Increased plant vigor comprising plant health / plant quality and seed vigor, reduced stand failure, improved appearance, increased recovery after periods of stress, improved pigmentation (e.g. chlorophyll content, stay-green effects) and improved photosynthetic efficiency.
  • LogP value is determined by measurement of LC-UV, in an acidic range, with 0.1% formic acid in water and acetonitrile as eluent (linear gradient from 10% acetonitrile to 95% acetonitrile).
  • LogP value is determined by measurement of LC-UV, in a neutral range, with 0.001 molar ammonium acetate solution in water and acetonitrile as eluent (linear gradient from 10% acetonitrile to 95% acetonitrile).
  • LogP value is determined by measurement of LC-UV, in an acidic range, with 0.1% phosphoric acid and acetonitrile as eluent (linear gradient from 10% acetonitrile to 95% acetonitrile).
  • M+H (Apcl+) means the molecular ion peak plus 1 a.m.u. (atomic mass unit) as observed in mass spectroscopy via positive atmospheric pressure chemical ionisation.
  • 1 H-NMR data of selected examples as provided herein are written in form of 1 H-NMR-peak lists. To each signal peak are listed the d-value in ppm and the signal intensity in round brackets. Between the 5-value - signal intensity pairs are semicolons as delimiters.
  • the peak list of an example has therefore the form: ⁇ 1 (intensityi); ⁇ 2 (intensity2); . ; ⁇ i , (intensity,); . ; ⁇ n (intensity n )
  • Intensity of sharp signals correlates with the height of the signals in a printed example of a NMR spectrum in cm and shows the real relations of signal intensities. From broad signals several peaks or the middle of the signal and their relative intensity in comparison to the most intensive signal in the spectrum can be shown.
  • tetramethylsilane For calibrating chemical shift for 1 H spectra, we use tetramethylsilane and/or the chemical shift of the solvent used, especially in the case of spectra measured in DMSO. Therefore in NMR peak lists, tetramethylsilane peak can occur but not necessarily.
  • the 1 H-NMR peak lists are similar to classical 1 H-NMR prints and contains therefore usually all peaks, which are listed at classical NMR-interpretation. Additionally they can show like classical 1 H-NMR prints signals of solvents, stereoisomers of the target compounds, which are also object of the invention, and/or peaks of impurities.
  • the peaks of stereoisomers of the target compounds and/or peaks of impurities have usually on average a lower intensity than the peaks of target compounds (for example with a purity >90%).
  • Such stereoisomers and/or impurities can be typical for the specific preparation process. Therefore their peaks can help to recognize the reproduction of our preparation process via “side-products-fingerprints”.
  • An expert who calculates the peaks of the target compounds with known methods (MestreC, ACD- simulation, but also with empirically evaluated expectation values) can isolate the peaks of the target compounds as needed optionally using additional intensity filters. This isolation would be similar to relevant peak picking at classical 1 H-NMR interpretation.
  • Table 4 illustrates in a non-limiting manner examples of compounds of formula (I) according to the invention:
  • Table 5 illustrates preferred compounds of formula (V), wherein X is a fluorine atom on position 3 of the phenyl moiety and n is 1. Such compounds are represented by formula (Va): wherein the cyclic amine moiety is as defined in table 5. In table 5, the logP values were determined according to method [a] .
  • Table 6 illustrates preferred compounds of formula (VI), wherein X is a fluorine atom on position 3 of the phenyl moiety and n is 1 .
  • Such compounds are represented by formula (Va): wherein the cyclic amine moiety is as defined in table 6.
  • Table 7 illustrates preferred compounds of formula (XIII), wherein X is a fluorine atom on position 3 of the phenyl moiety and n is 1 , and A is a direct bond.
  • Such compounds are represented by formula (Xllla): wherein Hal and the cyclic amine moiety are as defined in table 7.
  • Table 8 provides the NMR data ( 1 H) of a selected number of compounds from tables 4, 5, 6 and 7.
  • Table 8 NMR peak lists
  • Step 1 preparation of 1-(2-nitrophenyl)pyrrolidine
  • Step 3 preparation of 7,8-difluoro-2-methyl-N-[2-(pyrrolidin-1-yl)phenyl]quinolin-3-amine (compound 1.02)
  • Step 1 preparation of 3- ⁇ [1-(2-fluoro-6-nitrophenyl)pyrrolidin-2-yl]methyl ⁇ pyridine (compound VI.14)
  • Step 2 preparation of 3-fluoro-2-[2-(pyridin-3-ylmethyl) pyrrolidin-1 -yl]aniline (compound Va.16)
  • Step 3 preparation of 7,8-difluoro-N- ⁇ 3-fluoro-2-[2-(pyridin-3-ylmethyl)pyrrolidin-1 -yl]-phenyl ⁇ -2-methyl- quinolin-3-amine (compound 1.37)
  • Step 1 preparation of 1-[2-(chloromethyl)-6-fluorophenyl]piperidine (compound Xllla.01)
  • Step 2 preparation of 7,8-difluoro-3-[3-fluoro-2-(piperidin-1-yl)benzyl]-2-methylquinoline (compound 1.43)
  • Example A Pyricularia orvzae in vitro cell test
  • Solvent dimethyl sulfoxide (DMSO)
  • Inoculum spore suspension
  • the tested compounds were solubilized in DMSO and the solution used to prepare the required range of concentrations.
  • the final concentration of DMSO used in the assay was ⁇ 1%.
  • a spore suspension of Pyricularia oryzae was prepared and diluted to the desired spore density.
  • the tested compounds were evaluated for their ability to inhibit spore germination and mycelium growth in liquid culture assay.
  • the compounds were added in the desired concentration to the culture medium with spores. After 5 days incubation, fungi-toxicity of compounds was determined by spectrometric measurement of mycelium growth. Inhibition of fungal growth was determined by comparing the absorbance values in wells containing the tested compound with the absorbance in control wells without tested compound.
  • Example B Botrvtis cinerea in vitro cell test Solvent: dimethyl sulfoxide (DMSO)
  • Culture medium 1 g KH 2 PO 4 (VWR), 1 g K 2 HPO 4 (VWR), 0.5 g Urea (VWR), 3 g KN0 3
  • the tested compounds were solubilized in DMSO and the solution used to prepare the required range of concentrations.
  • the final concentration of DMSO used in the assay was ⁇ 1%.
  • a spore suspension of B. cinerea was prepared and diluted to the desired spore density.
  • the tested compounds were evaluated for their ability to inhibit spore germination and mycelium growth in liquid culture assay.
  • the compounds were added in the desired concentration to the culture medium with spores. After 6 days incubation, fungi-toxicity of compounds was determined by spectrometric measurement of mycelium growth. Inhibition of fungal growth was determined by comparing the absorbance values in wells containing the fungicides with the absorbance in control wells without fungicides.
  • Example C Colletotrichum lindemuthianum in vitro cell test
  • Inoculum spore suspension
  • the tested compounds were solubilized in DMSO and the solution used to prepare the required range of concentrations.
  • the final concentration of DMSO used in the assay was ⁇ 1%.
  • a spore suspension of Colletotrichum lindemuthianum was prepared and diluted to the desired spore density.
  • the tested compounds were evaluated for their ability to inhibit spore germination and mycelium growth in liquid culture assay.
  • the compounds were added in the desired concentration to the culture medium with spores. After 6 days incubation, fungi-toxicity of compounds was determined by spectrometric measurement of mycelium growth. Inhibition of fungal growth was determined by comparing the absorbance values in wells containing the tested compound with the absorbance in control wells without tested compound.
  • Example D in vivo preventive test on Botrvtis cinerea (grey mould)
  • Emulsifier 1 ⁇ L of Tween® 80 per mg of active ingredient
  • the tested compounds were made soluble and homogenized in a mixture of dimethyl sulfoxide/acetone/ /Tween® 80 and then diluted in water to the desired concentration.
  • the young plants of gherkin or cabbage were treated by spraying the tested compounds prepared as described above. Control plants were treated only with an aqueous solution of acetone/dimethyl sulfoxide/Tween® 80. After 24 hours, the plants were contaminated by spraying the leaves with an aqueous suspension of Botrytis cinerea spores. The contaminated gherkin plants were incubated for 4 to 5 days at 17 °C and at 90% relative humidity. The contaminated cabbage plants were incubated for 4 to 5 days at 20 °C and at 100% relative humidity
  • the test was evaluated 4 to 5 days after the inoculation. 0% means an efficacy which corresponds to that of the control plants while an efficacy of 100% means that no disease was observed.
  • Example E in vivo preventive test on Venturia inaequalis (apples)
  • the plants were inoculated with an aqueous conidia suspension of the causal agent of apple scab ( Venturia inaequalis) and then remained for 1 day in an incubation cabinet at approximately 20 °C and a relative atmospheric humidity of 100%.
  • the plants were then placed in a greenhouse at approximately 21 °C and a relative atmospheric humidity of approximately 90%.
  • Example F in vivo preventive test on Pyrenophora teres (barley)
  • Emulsifier 1 part by weight of polyoxyethylene sorbitan monooleate To produce a suitable preparation of active compound, 1 part by weight of the tested compound was mixed with the stated amounts of solvent and emulsifier, and the concentrate was diluted with water to the desired concentration.
  • the plants were sprayed with a spore suspension of Pyrenophora teres.
  • the plants remained for 48 hours in an incubation cabinet at approximately 20 °C and a relative atmospheric humidity of approximately 100%.
  • the plants were placed in the greenhouse at a temperature of approximately 20 °C and a relative atmospheric humidity of approximately 80%.
  • Example G Fusarium viruliforme in vitro cell test - comparitive test Solvent: dimethyl sulfoxide (DMSO)
  • the tested compounds were solubilized in DMSO and the solution used to prepare the required range of concentrations: 20 ppm to 0.0064 ppm.
  • the final concentration of DMSO used in the assay was ⁇ 1%.
  • a spore suspension of Fusarium virguliforme was prepared and diluted to the desired spore density.
  • the tested compounds were evaluated for their ability to inhibit spore germination and mycelium growth in liquid culture assay.
  • the compounds were added in the desired concentration to the culture medium with spores. After 6 days incubation, fungi-toxicity of compounds was determined by spectrometric measurement of mycelium growth. Inhibition of fungal growth was determined by comparing the absorbance values in wells containing the tested compound with the absorbance in control wells without tested compound.
  • the efficacy was expressed as the median effective concentration EC 50 in ppm.
  • the median effective concentration in ppm is the concentration needed to reach 50% of the maximum observed efficacy from the dose response curve.
  • the dose response curve was built by plotting the efficacy at 6 doses ranging from 20 ppm to 0.0064 ppm. pi so is the negative logarithm of the EC 50 expressed in molar.
  • compounds herein below were shown to exhibit better efficacy (i.e. lower EC50) than structurally related compounds CMP308, CMP349 and CMP445 prepared in accordance with the teaching of EP2522658A1 as well as the oxidized form of compound CMP349 encompassed by formula (I) of EP2522658A1. Results are presented in Table 9 below. In the following:
  • CMP308 designates 8-fluoro-3-[3-fluoro-2-(2-methyloxiran-2-yl)phenoxy]quinoline examplified and claimed in EP2522658A1 ,
  • CMP349 designates [2-(1 ,3-dioxolan-2-yl)-3-fluorophenyl](8-fluoroquinolin-3-yl)-methanol exemplified and claimed in EP2522658A1
  • Oxidized form of CMP349 designates [2-(1 ,3-dioxolan-2-yl)-3-fluorophenyl](8-fluoroquinolin-3-yl)- methanone claimed in EP2522658A1 and
  • CMP 445 designates 8-fluoro-3- ⁇ 3-fluoro-2-[1-(pyrrolidin-1-yl)ethyl]phenoxy ⁇ quinoline exemplified and claimed in EP2522658A1.
  • Table 9 :

Abstract

The present disclosure relates to fungicidal active compounds, more specifically to cyclaminephenylaminoquinolines of formula (I), intermediates for their preparation and use thereof as fungicidal active compound, particularly in the form of fungicide compositions. The present disclosure also relates to methods for the control of phytopathogenic fungi of plants using these compounds or compositions comprising thereof.

Description

CYCLAMINEPHENYLAMINOQUINOLINES AS FUNGICIDES
TECHNICAL FIELD
The present disclosure relates to fungicidal active compounds, more specifically to cyclaminephenylaminoquinolines and derivatives thereof, intermediates for their preparation and use thereof as fungicidal active compound, particularly in the form of fungicide compositions. The present disclosure also relates to methods for the control of phytopathogenic fungi of plants using these compounds or compositions comprising thereof.
BACKGROUND
WO 2011/081174, WO 2012/161071 , WO 2013/002205, WO 2013/058256 and JP 2014/166991 disclose nitrogen-containing heterocyle compounds suitable for use as fungicides.
However, the need remains for the development of new fungicidal compounds as such, so as to provide compounds being effective against a broad spectrum of fungi, having lower toxicity, higher selectivity, being used at lower dosage rate to reduce or avoid unfavorable environmental or toxicological effects whilst still allowing effective pest control. It may also be desired to have new compounds to prevent the emergence of fungicides resistances.
The present invention provides new fungicidal compounds which have advantages over known compounds and compositions in at least some of these aspects.
SUMMARY
The present invention relates to compounds of the formula (I):
Figure imgf000002_0001
wherein Q1, Z, Y2, Y3, Y4, Y5, L, A, Q2, Q3, Q4, X, W, n, m and p are as recited herein, as well as their salts, N-oxides and solvates.
The present invention relates to compositions comprising at least one compound of formula (I) as defined herein and at least one agriculturally suitable auxiliary.
The present invention also relates to the use of a compound of formula (I) as defined herein or a composition as defined herein for controlling phytopathogenic microorganisms in agriculture. The present invention also relates to processes and intermediates for preparing compounds of formula (I) as disclosed herein.
DEFINITIONS
The term “halogen” as used herein refers to fluorine, chlorine, bromine or iodine atom.
The term “oxo” as used herein refers to an oxygen atom which is bound to a carbon atom or sulfur atom via a double bound.
The term “C1-C8-alkyl” as used herein refers to a saturated, branched or straight hydrocarbon chain having 1 , 2, 3, 4, 5, 6, 7 or 8 carbon atoms. Examples of C1-C8-alkyl include but are not limited to methyl, ethyl, propyl (n-propyl), 1-methylethyl (iso-propyl), butyl (n-butyl), 1-methylpropyl (sec-butyl), 2- methylpropyl (iso-butyl), 1 ,1-dimethylethyl (tert-butyl), pentyl, 1-methylbutyl, 2-methylbutyl, 3- methylbutyl, 2,2-dimethylpropyl, 1-ethylpropyl, 1 ,1-dimethylpropyl, 1 ,2-dimethylpropyl, hexyl, 1- methylpentyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 1 ,1-dimethylbutyl, 1 ,2-dimethylbutyl, 1 ,3- dimethylbutyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl, 3,3-dimethylbutyl, 1-ethylbutyl, 2-ethylbutyl, 1 ,1 ,2- trimethylpropyl, 1 ,2,2-trimethylpropyl, 1 -ethyl-1 -methylpropyl and 1-ethyl-2-methylpropyl. Particularly, said hydrocarbon chain has 1 , 2, 3 or 4 carbon atoms (“C1-C4-alkyl”), e.g. methyl, ethyl, propyl, iso- propyl, butyl, sec-butyl, iso-butyl or tert-butyl.
The term “C2-C8-alkenyl” as used herein refers to an unsaturated, branched or straight hydrocarbon chain having 2, 3, 4, 5, 6, 7 or 8 carbon atoms and comprising at least one double bond. Examples of C2-C8-alkenyl include but are not limited to ethenyl (or "vinyl"), prop-2-en-1-yl (or "allyl"), prop-1 -en-1-yl, but-3-enyl, but-2-enyl, but-1-enyl, pent-4-enyl, pent-3-enyl, pent-2-enyl, pent-1-enyl, hex-5-enyl, hex-4- enyl, hex-3-enyl, hex-2-enyl, hex-1 -enyl, prop-1 -en-2-yl (or "isopropenyl"), 2-methylprop-2-enyl, 1- methylprop-2-enyl, 2-methylprop-1-enyl, 1 -methylprop-1-enyl, 3-methylbut-3-enyl, 2-methylbut-3-enyl, 1-methylbut-3-enyl, 3-methylbut-2-enyl, 2-methylbut-2-enyl, 1-methylbut-2-enyl, 3-methylbut-1-enyl, 2- methylbut-1-enyl, 1-methylbut-1-enyl, 1 ,1-dimethylprop-2-enyl, 1-ethylprop-1-enyl, 1-propylvinyl, 1- isopropylvinyl, 4-methylpent-4-enyl, 3-methylpent-4-enyl, 2-methylpent-4-enyl, 1-methylpent-4-enyl, 4- methylpent-3-enyl, 3-methylpent-3-enyl, 2-methylpent-3-enyl, 1-methylpent-3-enyl, 4-methylpent-2- enyl, 3-methylpent-2-enyl, 2-methylpent-2-enyl, 1-methylpent-2-enyl, 4-methylpent-1-enyl, 3- methylpent-1-enyl, 2-methylpent-1-enyl, 1-methylpent-1-enyl, 3-ethylbut-3-enyl, 2-ethylbut-3-enyl, 1- ethylbut-3-enyl, 3-ethylbut-2-enyl, 2-ethylbut-2-enyl, 1-ethylbut-2-enyl, 3-ethylbut-1-enyl, 2-ethylbut-1- enyl, 1 -ethylbut-1 -enyl, 2-propylprop-2-enyl, 1-propylprop-2-enyl, 2-isopropylprop-2-enyl, 1- isopropylprop-2-enyl, 2-propylprop-1-enyl, 1-propylprop-1-enyl, 2-isopropylprop-1-enyl, 1- isopropylprop-1-enyl, 3,3-dimethylprop-1-enyl, 1-(1 ,1-dimethylethyl)ethenyl, buta-1 ,3-dienyl, penta-1 ,4- dienyl, hexa-1 ,5-dienyl or methylhexadienyl group.
The term “C2-C8-alkynyl” as used herein refers to a branched or straight hydrocarbon chain having 2, 3, 4, 5, 6, 7 or 8 carbon atoms and comprising at least one triple bond. Examples of C2-C8-alkynyl include but are not limited to ethynyl, prop-1-ynyl, prop-2-ynyl (or "propargyl"), but-1-ynyl, but-2-ynyl, but-3-ynyl, pent-1-ynyl, pent-2-ynyl, pent-3-ynyl, pent-4-ynyl, hex-1 -ynyl, hex-2-ynyl, hex-3-ynyl, hex-4-ynyl, hex-5- ynyl, 1-methylprop-2-ynyl, 2-methylbut-3-ynyl, 1-methylbut-3-ynyl, 1-methylbut-2-ynyl, 3-methylbut-1- ynyl, 1-ethylprop-2-ynyl, 3-methylpent-4-ynyl, 2-methylpent-4-ynyl, 1 -methyl- pent-4-ynyl, 2-methylpent- 3-ynyl, 1-methylpent-3-ynyl, 4-methylpent-2-ynyl, 1 -methyl- pent-2-ynyl, 4-methylpent-1-ynyl, 3- methylpent-1-ynyl, 2-ethylbut-3-ynyl, 1 -ethylbut-3-ynyl, 1 -ethylbut-2-ynyl, 1-propylprop-2-ynyl, 1- isopropylprop-2-ynyl, 2,2-dimethylbut-3-ynyl, 1 ,1-dimethylbut-3-ynyl, 1 ,1-dimethylbut-2-ynyl or 3,3- dimethylbut-1-ynyl group.
The term “C1-C8-halogenoalkyl” as used herein refers to a C1-C8-alkyl group as defined above in which one or more hydrogen atoms are replaced with one or more halogen atoms that may be the same or different. Typically, C1-C8-halogenoalkyl comprises up to 9 halogen atoms that can be the same or different.
The term “C2-C8-halogenoalkenyl” as used herein refers to a C2-C8-alkenyl group as defined above in which one or more hydrogen atoms are replaced with one or more halogen atoms that may be the same or different. Typically, C1-C8-halogenoalkenyl comprises up to 9 halogen atoms that can be the same or different.
The term “C2-C8-halogenoalkynyl” as used herein refers to a C2-C8-alkynyl group as defined above in which one or more hydrogen atoms are replaced with one or more halogen atoms that may be the same or different. Typically, C1-C8-halogenoalkynyl comprises up to 9 halogen atoms that can be the same or different.
The term “C1-C8-alkoxy” as used herein refers to a group of formula (C1-C8-alkyl)-O-, in which the term "C1-C8-alkyl" is as defined herein. Examples of C1-C8-alkoxy include but are not limited to methoxy, ethoxy, n-propoxy, 1-methylethoxy, n-butoxy, 1-methylpropoxy, 2-methylpropoxy, 1 ,1-dimethylethoxy, n-pentoxy, 1-methylbutoxy, 2-methylbutoxy, 3-methylbutoxy, 2,2-dimethylpropoxy, 1-ethylpropoxy, 1 ,1- dimethylpropoxy, 1 ,2-dimethylpropoxy, n-hexyloxy, 1-methylpentoxy, 2-methylpentoxy, 3- methylpentoxy, 4-methylpentoxy, 1 ,1-dimethylbutoxy, 1 ,2-dimethylbutoxy, 1 ,3-dimethylbutoxy, 2,2- dimethylbutoxy, 2,3-dimethylbutoxy, 3,3-dimethylbutoxy, 1-ethylbutoxy, 2-ethylbutoxy, 1 ,1 ,2- trimethylpropoxy, 1 ,2,2-trimethylpropoxy, 1 -ethyl-1 -methylpropoxy and 1-ethyl-2-methylpropoxy.
The term “C1-C8-halogenalkoxy” as used herein refers to a C1-C8-alkoxy group as defined above in which one or more hydrogen atoms are replaced with one or more halogen atoms that may be the same or different. Examples of C1-C8-halogenoalkoxy include but are not limited to ch loro methoxy, bromomethoxy, dichloromethoxy, trichloromethoxy, fluoromethoxy, difluoromethoxy, trifluoromethoxy, chlorofluoromethoxy, dichlorofluoromethoxy, chlorodifluoromethoxy, 1-chloroethoxy, 1-bromoethoxy, 1- fluoroethoxy, 2-fluoroethoxy, 2,2-difluoroethoxy, 2,2,2-trifluoroethoxy, 2-chloro-2-fluoroethoxy, 2-chloro- 2,2-difluoroethoxy, 2,2-dichloro-2-fluoroethoxy, 2,2,2-trichloroethoxy, pentafluoroethoxy and 1 ,1 ,1- trifluoroprop-2-oxy. .he term “C1-C8-alkylsulfanyl” as used herein refers to a saturated, linear or branched group of formula (C1-C8-alkyl)-S-, in which the term "C1-C8-alkyl" is as defined herein. Examples of C1-C8-alkylsulfanyl include but are not limited to methylsulfanyl, ethylsulfanyl, propylsulfanyl, isopropylsulfanyl, butylsulfanyl, sec-butylsulfanyl, isobutylsulfanyl, tert-butylsulfanyl, pentylsulfanyl, isopentylsulfanyl, hexylsulfanyl group.
The term “C1-C8-halogenoalkylsulfanyl” as used herein refers to a C1-C8-alkylsulfanyl as defined above in which one or more hydrogen atoms are replaced with one or more halogen atoms that may be the same or different.
The term “C1-C8-alkylsulfinyl” as used herein refers to a saturated, linear or branched group of formula (C1-C8-alkyl)-S(=O)-, in which the term "C1-C8-alkyl" is as defined herein. Examples of C1-C8-alkylsulfinyl include but are not limited to saturated, straight-chain or branched alkylsulfinyl radicals having 1 to 8, preferably 1 to 6 and more preferably 1 to 4 carbon atoms, for example (but not limited to) methylsulfinyl, ethylsulfinyl, propylsulfinyl, 1-methylethylsulfinyl, butylsulfinyl, 1-methylpropylsulfinyl, 2- methylpropylsulfinyl, 1 ,1-dimethylethylsulfinyl, pentylsulfinyl, 1-methylbutylsulfinyl, 2-methylbutylsulfinyl, 3-methylbutylsulfinyl, 2,2-dimethylpropylsulfinyl, 1-ethylpropylsulfinyl, 1 ,1-dimethylpropylsulfinyl, 1 ,2- dimethylpropylsulfinyl, hexylsulfinyl, 1-methylpentylsulfinyl, 2-methylpentylsulfinyl, 3- methylpentylsulfinyl, 4-methylpentylsulfinyl, 1 ,1-dimethylbutylsulfinyl, 1 ,2-dimethylbutylsulfinyl, 1 ,3- dimethylbutylsulfinyl, 2,2-dimethylbutylsulfinyl, 2,3-dimethylbutylsulfinyl, 3,3-dimethylbutylsulfinyl, 1- ethylbutylsulfinyl, 2-ethylbutylsulfinyl, 1 ,1 ,2-trimethylpropylsulfinyl, 1 ,2,2-trimethylpropylsulfinyl, 1-ethyl- 1-methylpropylsulfinyl and 1-ethyl-2-methylpropylsulfinyl..
The term “C1-C8-halogenoalkylsulfinyl” as used herein refers to a C1-C8-alkylsulfinyl as defined above in which one or more hydrogen atoms are replaced with one or more halogen atoms that may be the same or different.
The term “C1-C8-alkylsulfonyl” as used herein refers to a saturated, linear or branched group of formula (C1-C8-alkyl)-S(=O)2-, in which the term "C1-C8-alkyl" is as defined herein. Examples of C1-C8- alkylsulfonyl include but are not limited to methylsulfonyl, ethylsulfonyl, propylsulfonyl, 1-methyl- ethylsulfonyl, butylsulfonyl, 1-methylpropylsulfonyl, 2-methylpropylsulfonyl, 1 ,1-dimethylethylsulfonyl, pentylsulfonyl, 1-methylbutylsulfonyl, 2-methylbutylsulfonyl, 3-methylbutylsulfonyl, 2,2- dimethylpropylsulfonyl, 1-ethylpropylsulfonyl, 1 ,1-dimethylpropylsulfonyl, 1 ,2-dimethylpropylsulfonyl, hexylsulfonyl, 1-methylpentylsulfonyl, 2-methylpentylsulfonyl, 3-methylpentylsulfonyl, 4- methylpentylsulfonyl, 1 ,1-dimethylbutylsulfonyl, 1 ,2-dimethylbutylsulfonyl, 1 ,3-dimethylbutylsulfonyl, 2,2-dimethylbutylsulfonyl, 2,3-dimethylbutylsulfonyl, 3,3-dimethylbutylsulfonyl, 1-ethylbutylsulfonyl, 2- ethylbutylsulfonyl, 1 ,1 ,2-trimethylpropylsulfonyl, 1 ,2,2-trimethylpropylsulfonyl, 1 -ethyl-1 -methyl- propylsulfonyl and 1-ethyl-2-methylpropylsulfonyl. The term “C1-C8-halogenoalkylsulfonyl” as used herein refers to a C1-C8-alkylsulfonyl as defined above in which one or more hydrogen atoms are replaced with one or more halogen atoms that may be the same or different.
The term “C1-C8-alkylcarbonyl” as used herein refers to a saturated, linear or branched group of formula (C1-C8-alkyl)-C(=O)-, in which the term "C1-C8-alkyl" is as defined herein.
The term “C1-C8-halogenoalkylcarbonyl” as used herein refers to a C1-C8-alkylcarbonyl as defined above in which one or more hydrogen atoms are replaced with one or more halogen atoms that may be the same or different.
The term “C1-C8-alkoxycarbonyl” as used herein refers to a saturated, linear or branched group of formula (C1-C8-alkoxy)-C(=O)-, in which the term "C1-C8-alkoxy" is as defined herein.
The term “C1-C8-halogenoalkoxycarbonyl” as used herein refers to a C1-C8-alkoxycarbonyl as defined above in which one or more hydrogen atoms are replaced with one or more halogen atoms that may be the same or different.
The term “non-aromatic C3-C12-carbocycle” as used herein refers to a non-aromatic, saturated or unsaturated, hydrocarbon ring system in which all of the ring members, which vary from 3 to 12, are carbon atoms. The ring system may be monocyclic or polycyclic (fused, spiro or bridged). Examples of polycyclic non-aromatic C3-C12-carbocycle include non-aromatic bicyclic C7-Ci2-carbocycle. Non- aromatic C3-C12-carbocycles include but are not limited to C3-C12-cycloalkyl (mono or bicyclic), C3-C12- cycloalkenyl (mono or bicyclic), bicylic system comprising an aryl (e.g. phenyl) fused to a monocyclic C3-C7-cycloalkyl (e.g. tetrahydronaphthalenyl, indanyl), bicylic system comprising an aryl (e.g. phenyl) fused to a monocyclic C3-C8-cycloalkenyl (e.g. indenyl, dihydronaphthalenyl) and tricyclic system comprising a cyclopropyl connected through one carbon atom to a bicylic system comprising an aryl (e.g. phenyl) fused to a monocyclic C3-C7-cycloalkyl or to a monocyclic C3-C8-cycloalkenyl. The non- aromatic C3-C12-carbocycle can be attached to the parent molecular moiety through any carbon atom.
The term “C3-C12-cycloalkyl” as used herein refers to a saturated, monovalent, mono- or bicylic hydrocarbon ring which contains 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12 carbon atoms. “C3-C7-cycloalkyl” as used herein designates monocyclic C3-C7-cycloalkyls which include but are not limited to cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl, cycloheptyl. Examples of bicyclic C6-C12-cycloalkyls include but are not limited to bicyclo[3.1.1]heptane, bicyclo[2.2.1]heptane, bicyclo[2.2.2]octane, bicyclo[3.2.2]- nonane, bicyclo[3.3.1]nonane, bicyclo[4.2.0]octyl, octahydropentalenyl and bicyclo[4.2.1]nonane.
The term “C3-C12-cycloalkenyl” as used herein refers to an unsaturated, monovalent, mono- or bicylic hydrocarbon ring which contains 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12 carbon atoms. Examples of monocyclic C3-C8-cycloalkenyl group include but are not limited to cyclobutenyl, cyclopentenyl, cyclohexenyl, cycloheptenyl and cyclooctenyl group. Examples of bicyclic C6-Ci2-cycloalkenyl group include but are not limited to bicyclo[2.2.1]hept-2-enyl or bicyclo[2.2.2]oct-2-enyl.
The term “aromatic C6-C14-carbocycle” or “aryl” as used herein refers to an aromatic hydrocarbon ring system in which all of the ring members, which vary from 6 to 14, preferably from 6 to 10, are carbon atoms. The ring system may be monocyclic or fused polycyclic (e.g. bicyclic or tricyclic). Examples of aryl include but are not limited to phenyl, azulenyl, naphthyl and fluorenyl. The aryl can be attached to the parent molecular moiety through any carbon atom. It is further understood that when said aryl group is substituted with one or more substituents, said substituent(s) may be at any positions on said aryl ring(s). Particularly, in the case of aryl being a phenyl group, said substituent(s) may occupy one or both ortho positions, one or both meta positions, or the para position, or any combination of these positions.
The term “non-aromatic 3- to 10-membered heterocycle” or “heterocyclyl” as used herein refers to a saturated or partially unsaturated non-aromatic ring system comprising 1 to 4, or 1 to 3 heteroatoms independently selected from the group consisting of oxygen, nitrogen and sulfur. If the ring system contains more than one oxygen atoms, they are not directly adjacent. Non aromatic heterocycles include but are not limited to 3- to 7-membered monocyclic non-aromatic heterocycles and 6- to 10-membered polycyclic (e.g. bicyclic or tricyclic) non-aromatic heterocycles. The non-aromatic 3- to 10-membered heterocycle can be connected to the parent molecular moiety through any carbon atom or nitrogen atom contained within the heterocycle.
The term “non-aromatic 3- to 7-membered monocyclic heterocycle” as used herein refers to a 3-, 4-, 5- , 6- or 7-membered monocyclic ring system containing 1 , 2 or 3 heteroatoms independently selected from the group consisting of oxygen, nitrogen and sulfur where the ring system is saturated or unsaturated but not aromatic. For instance, the heterocycle may comprise one to three nitrogen atoms, or one or two oxygen atoms, or one or two sulfur atoms, or one to three nitrogen atoms and one oxygen atom, or one to three nitrogen atoms and a sulfur atom or one sulfur atom and one oxygen atom. Examples of saturated non-aromatic heterocycles include but are not limited to 3-membered ring such as oxiranyl, aziridinyl, 4-membered ring such as azetidinyl, oxetanyl, thietanyl, 5-membered ring such as tetrahydrofuranyl, 1 ,3-dioxolanyl, tetrahydrothienyl, pyrrolidinyl, pyrazolidinyl, imidazolidinyl, triazolidinyl, isoxazolidinyl, oxazolidinyl, oxadiazolidinyl, thiazolidinyl, isothiazolidinyl, thiadiazolidinyl, 6- membered ring such as piperidinyl, hexahydropyridazinyl, hexahydropyrimidinyl, piperazinyl, triazinanyl, hexahydrotriazinyl, tetrahydropyranyl, dioxanyl, tetrahydrothiopyranyl, dithianyl, morpholinyl, 1 ,2- oxazinanyl, oxathianyl, thiomorpholinyl or 7-membered ring such as oxepanyl, azepanyl, 1 ,4-diazepanyl and1 ,4-oxazepanyl. Examples of unsaturated non-aromatic hererocyles include but are not limited to 5- membered ring such as dihydrofuranyl, 1 ,3-dioxolyl, dihydrothienyl, pyrrolinyl, dihydroimidazolyl, dihydropyrazolyl, isoxazolinyl, dihydrooxazolyl, dihydrothiazolyl or 6-membered ring such as pyranyl, thiopyranyl, thiazinyl and thiadiazinyl.
When an amino group or the amino moiety of any other amino-containing group is substituted by two substituents that can be the same or different, the two substituents together with the nitrogen atom to which they are linked can form a heterocyclyl group, preferably a 5- to 7-membered heterocyclyl group, that can be substituted or that can include other hetero atoms, for example a morpholinyl group, a thiomorpholinyl group, a piperazinyl group or piperidinyl group.
The term “non-aromatic 6- to 10-membered polycyclic heterocycle” as used herein refers to a 6-, 7-, 8- , 9-, 10-membered polycyclic (e.g. bicyclic or tricyclic) ring system containing 1 , 2 or 3 heteroatoms independently selected from the group consisting of oxygen, nitrogen and sulfur where the ring system is saturated or unsaturated but not aromatic. Non-aromatic bicyclic heterocycles may consist of a monocyclic heteroaryl as defined herein fused to a monocyclic C3-C7-cycloalkyl, a monocyclic C3-C8- cycloalkenyl or a monocyclic non-aromatic heterocycle or may consist of a monocyclic non-aromatic heterocycle fused either to an aryl (e.g. phenyl), a monocyclic C3-C7-cycloalkyl, a monocyclic C3-C8- cycloalkenyl or a monocyclic non-aromatic heterocycle. When two monocyclic heterocycles (aromatic or non-aromatic) comprising nitrogen atoms are fused, nitrogen atom may be at the bridgehead (e.g. 4,5,6,7-tetrahydropyrazolo[1 ,5-a]pyridinyl, 5,6,7,8-tetrahydro-[1 ,2,4]triazolo[1 ,5-a]pyridinyl, 5, 6,7,8- tetrahydroimidazo[1 ,2-a]pyridinyl). Non-aromatic tricyclic heterocycles may consist of a monocyclic cycloalkyl connected through one common atom to a non-aromatic bicyclic heterocycle.
The term “aromatic 5- to 14-membered heterocycle” or “heteroaryl” as used herein refers to an aromatic ring system comprising 1 to 4 heteroatoms independently selected from the group consisting of oxygen, nitrogen and sulfur. If the ring system contains more than one oxygen atom, they are not directly adjacent. Aromatic heterocycles include aromatic 5- or6-membered monocyclic heterocycles and 6- to 14-membered polycyclic (e.g. bicyclic or tricyclic) aromatic heterocycles. The 5- to 14-membered aromatic heterocycle can be connected to the parent molecular moiety through any carbon atom or nitrogen atom contained within the heterocycle.
The term “aromatic 5- or 6-membered monocyclic heterocycle” or “monocyclic heteroaryl” as used herein refers to a 5- or 6-membered monocyclic ring system containing 1 , 2, 3 or 4 heteroatoms independently selected from the group consisting of oxygen, nitrogen and sulfur. Examples of 5- membered monocyclic heteroaryl include but are not limited to furyl (furanyl), thienyl, pyrrolyl, pyrazolyl, imidazolyl, triazolyl, tetrazolyl, isoxazolyl, oxazolyl, oxadiazolyl, oxatriazolyl, isothiazolyl, thiazolyl, thiadiazolyl and thiatriazolyl. Examples of 6-membered monocyclic heteroaryl include but are not limited to pyridinyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, tetrazinyl.
The term “6- to 14-membered polycyclic aromatic heterocycle” or “polycyclic heteroaryl” as used herein refers to a 6-, 7-, 8-, 9-, 10-, 11-, 12-, 13- or 14-membered polycyclic (e.g. bicyclic or tricyclic) ring system containing 1 , 2 or 3 heteroatoms independently selected from the group consisting of oxygen, nitrogen and sulfur. Aromatic bicyclic heterocycles may consist of a monocyclic heteroaryl as defined herein fused to an aryl (e.g. phenyl) or to a monocyclic heteroaryl. Examples of bicyclic aromatic heterocycle include but are not limited to 9-membered ring such as indolyl, indolizinyl, isoindolyl, benzimadozolyl, imidazopyridinyl, indazolyl, benzotriazolyl, purinyl, benzofuranyl, benzothiophenyl, benzothiazolyl, benzoxazolyl and benzisoxazolyl or 10-membered ring such as quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, quinoxalinyl, phthalazinyl, naphthyridinyl, pteridinal and benzodioxinyl. In 9- or 10- membered aromatic bicyclic heterocycles comprising two fused 5- or 6-membered monocyclic aromatic heterocycles, nitrogen atom may be at the bridgehead (e.g. imidazo[1 ,2-a]pyridinyl, [1 ,2,4]triazolo[4,3- a]pyridinyl, imidazo[1 ,2-a]pyridinyl, imidazo[2,1-b]oxazolyl, furo[2,3-d]isoxazolyl). Examples of tricyclic aromatic heterocyle include but are not limited to carbazolyl, acridinyl and phenazinyl.
The terms “heteroaryloxy”, “aryloxy”, “heterocyclyloxy” as used herein designate a group of formula -O- R wherein R is respectively a heteroaryl, an aryl, a heterocyclyl as defined herein.
As used herein, when a group is said to be “substituted”, the group may be substituted with one or more substituents. The expression “one or more substituents” refers to a number of substituents that ranges from one to the maximum number of substituents possible based on the number of available bonding sites, provided that the conditions of stability and chemical feasibility are met.
The term “leaving group” as used herein is to be understood as meaning a group which is displaced from a compound in a substitution or an elimination reaction, for example a halogen atom, a trifluoromethanesulfonate (“triflate”) group, alkoxy, methanesulfonate, p-toluenesulfonate, etc.
DETAILED DESCRIPTION
Accordingly, the present invention provides cyclaminephenylaminoquinolines and derivatives thereof as described herein below that may be used for controlling phytopathogenic microorganisms, preferably phytopathogenic fungi and oomycetes, in agriculture (e.g. in crop protection).
Active ingredients
The present invention relates to compounds of formula (I):
Figure imgf000009_0001
wherein
Q1 is CY1 or N wherein:
Y1 is selected from the group consisting of hydrogen atom, halogen atom, C1-C8- alkyl, C2-C8-alkenyl, C2-C8-alkynyl, C3-C7-cycloalkyl, C4-C7-cycloalkenyl, hydroxyl, C1-C8-alkoxy, C6-C14-aryl, 3- to 10-membered heterocyclyl, 5- to 14-membered heteroaryl, formyl, C1-C8-alkylcarbonyl, (hydroxyimino)C1-C8-alkyl, carboxyl, (C1- C8-alkoxyimino)C1-C8-alkyl, C1-C8-alkoxycarbonyl, carbamoyl, C1-C8-alkyl- carbamoyl, di-C1-C8-alkylcarbamoyl, amino, C1-C8-alkylamino, di-C1-C8- alkylamino, sulfanyl, C1-C8-alkylsulfanyl, C1-C8-alkylsulfinyl, C1-C8-alkylsulfonyl, tri- C1-C6-alkylsilyl, cyano and nitro, wherein acyclic aliphatic Y1 radicals may be substituted with one or more Ya substituents and wherein cyclic Y1 radicals may be substituted with one or more Yb substituents;
• Y2, Y3, Y4 and Y5 are independently selected from the group consisting of hydrogen atom, halogen atom, C1-C8-alkyl, C2-C8-alkenyl, C2-C8-alkynyl, C3-C7-cycloalkyl, C4-C7-cycloalkenyl, hydroxyl, C1-C8-alkoxy, C6-C14-aryl, 3- to 10-membered heterocyclyl, 5- to 14-membered heteroaryl, formyl, C1-C8-alkylcarbonyl, (hydroxyimino)C1-C8-alkyl, carboxyl, (C1-C8- alkoxyimino)C1-C8-alkyl, C1-C8-alkoxycarbonyl, carbamoyl, C1-C8-alkylcarbamoyl, di-C1-C8- alkylcarbamoyl, amino, C1-C8-alkylamino, di-C1-C8-alkylamino, sulfanyl, C1-C8-alkylsulfanyl, C1- C8-alkylsulfinyl, C1-C8-alkylsulfonyl, tri-C1-C6-alkylsilyl, cyano and nitro, wherein acyclic aliphatic Y2, Y3, Y4 and Y5 radicals may be substituted with one or more Ya substituents and wherein cyclic Y2, Y3, Y4 and Y5 radicals may be substituted with one or more Yb substituents;
• Z is selected from the group consisting of hydrogen atom, halogen atom, hydroxyl, C1-C8-alkyl, C2-C8-alkenyl, C2-C8-alkynyl, C1-C8-alkoxy, C3-C7-cycloalkyl, C4-C7-cycloalkenyl, formyl, C1-C8- alkylcarbonyl, (hydroxyimino)C1-C8-alkyl, (C1-C8-alkoxyimino)C1-C8-alkyl, carboxyl, C1-C8- alkoxycarbonyl, C1-C8-alkylcarbamoyl, di-C1-C8-alkylcarbamoyl, C1-C8-alkylamino, di-C1-C8- alkylamino, sulfanyl, C1-C8-alkylsulfanyl, C1-C8-alkylsulfinyl, C1-C8-alkylsulfonyl, tri-C1-C6- alkylsilyl, cyano and nitro, wherein acyclic aliphatic Z radicals may be substituted with one or more Za substituents and wherein cyclic Z radicals may be substituted with one or more Zb substituents;
• m is 0, 1 or 2;
• n is 0, 1 , 2, 3 or 4;
• p is 1 or 2;
• L is CR1aR1b or NR1c wherein
R1a and R1b are independently selected from the group consisting of hydrogen atom, halogen atom, C1-C8-alkoxy and C1-C8-alkyl;
R1c is selected from the group consisting of hydrogen atom, C1-C8-alkyl, C2-C8- alkenyl, C3-C8-alkynyl, C3-C7-cycloalkyl, C1-C8-alkylcarbonyl, C1-C8- alkoxycarbonyl, C1-C8-alkylsulfonyl, C6-C14-aryl-C1-C8-alkyl and phenylsulfonyl, wherein acyclic aliphatic R1c radicals may be substituted with one or more Ra substituents and wherein cyclic R1c radicals may be substituted with one or more Rb substituents;
• Q2 is CR2aR2b;
• Q3 is CR3aR3b;
• Q4 is O, S, CR4aR4b or NR4c provided that p is 2 when Q4 is O, S or NR4c;
• R2a and R2b are independently selected from the group consisting of hydrogen atom, halogen atom, C1-C8-alkyl, C2-C8-alkenyl, C2-C8-alkynyl, C3-C7-cycloalkyl, C4-C7-cycloalkenyl, C1-C8- alkoxy C1-C8-alkylcarbonyl, C3-C7-cycloalkylcarbonyl, C1-C8-alkoxycarbonyl, C6-C14-aryl, 3- to 10-membered heterocyclyl, 5- to 14-membered heteroaryl, C6-C14-aryl-C1-C8-alkyl, 3- to 10- membered heterocyclyl-C1-C8-alkyl, 5- to 14-membered heteroaryl-C1-C8-alkyl and cyano, wherein acyclic aliphatic R2a and R2b radicals may be substituted with one or more Ra substituents and wherein cyclic R2a and R2b radicals may be substituted with one or more Rb substituents; or
R2a and R2bform, together with the carbon atom to which they are linked, a C3-C7-cycloalkyl, or a 3- to 10-membered heterocyclyl, wherein the C3-C7-cycloalkyl and 3- to 10-membered heterocyclyl may be substituted with one or more Rb substituents;
• R3a and R3b are independently selected from the group consisting of hydrogen atom, halogen atom, C1-C8-alkyl, C2-C8-alkenyl, C2-C8-alkynyl, C3-C7-cycloalkyl, C4-C7-cycloalkenyl, hydroxyl, Ci-Ce-alkoxy, sulfanyl, C1-C8-alkylsulfanyl, C1-C8-alkylsulfinyl, C1-C8-alkylsulfonyl, C1-C8- alkylcarbonyl, C3-C7-cycloalkylcarbonyl, C1-C8-alkoxycarbonyl, C6-C14 aryl, 3- to 10-membered heterocyclyl, 5- to 14-membered heteroaryl, C6-C14-aryloxy, 3- to 10-membered heterocyclyloxy, 5- to 14-membered heteroaryloxy, C6-C14-arylsulfanyl, 3- to 10-membered heterocyclylsulfanyl, 5- to 14-membered heteroaryl-sulfanyl, C6-C14-aryl-C1-C8-alkyl, 3- to 10- membered heterocyclyl-C1-C8-alkyl, 5- to 14-membered heteroaryl-C1-C8-alkyl, C6-C14-aryloxy- C1-C8-alkyl, 3- to 10-membered heterocyclyloxy-C1-C8-alkyl, 5- to 14-membered heteroaryloxy- C1-C8-alkyl, C6-Ci4-arylsulfanyl-C1-C8-alkyl, 3- to 10-membered heterocyclyl-sulfanyl-C1-C8- alkyl, 5- to 14-membered heteroaryl-sulfanyl-C1-C8-alkyl and cyano, wherein acyclic R3a and R3b radicals may be substituted with one or more Ra substituents and wherein cyclic R3a and R3b radicals may be substituted with one or more Rb substituents; or R3a and R3b form, together with the carbon atom to which they are linked, a C3-C7-cycloalkyl, or a 3- to 10-membered heterocyclyl, wherein the C3-C7-cycloalkyl and 3- to 10-membered heterocyclyl may be substituted with one or more Rb substituents;
• R4a and R4b are independently selected from the group consisting of hydrogen atom, halogen atom, C1-C8-alkyl, C2-C8-alkenyl, C2-C8-alkynyl, C3-C7-cycloalkyl, C4-C7-cycloalkenyl, hydroxyl, C1-C8-alkoxy, sulfanyl, C1-C8-alkylsulfanyl, C1-C8-alkylsulfinyl, C1-C8-alkylsulfonyl, C1-C8- alkylcarbonyl, C3-C7-cycloalkylcarbonyl, C1-C8-alkoxycarbonyl, C6-C14-aryl, 3- to 10-membered heterocyclyl, 5- to 14-membered heteroaryl, C6-C14-aryloxy, 3- to 10-membered heterocyclyloxy, 5- to 14-membered heteroaryloxy, C6-C14-arylsulfanyl, 3- to 10-membered heterocyclylsulfanyl, 5- to 14-membered heteroaryl-sulfanyl, C6-C14-aryl-C1-C8-alkyl, 3- to 10- membered heterocyclyl -C1-C8-alkyl, 5- to 14-membered heteroaryl-C1-C8-alkyl, C6-C14-aryloxy- C1-C8-alkyl, 3- to 10-membered heterocyclyloxy-C1-C8-alkyl, 5- to 14-membered heteroaryloxy- C1-C8-alkyl, C6-C14-arylsulfanyl-C1-C8-alkyl, 3- to 10-membered heterocyclyl-sulfanyl-C1-C8- alkyl, 5- to 14-membered heteroaryl-sulfanyl-C1-C8-alkyl, and cyano, wherein acyclic aliphatic R4a and R4b radicals may be substituted with one or more Ra substituents and wherein cyclic R4a and R4b radicals may be substituted with one or more Rb substituents; or
R4a and R4b form, together with the carbon atom to which they are linked, a C3-C7-cycloalkyl, or a 3- to 10-membered heterocyclyl, wherein the C3-C7-cycloalkyl and 3- to 10-membered heterocyclyl may be substituted with one or more Rb substituents; • R4c is selected from the group consisting of hydrogen atom, C1-C8-alkyl, C2-C8-alkenyl, C3-C8- alkynyl, C3-C7-cycloalkyl, C1-C8-alkylcarbonyl, C1-C8-alkoxycarbonyl, C1-C8-alkylsulfonyl, C6- C14-aryl-C1-C8-alkyl and phenylsulfonyl, wherein acyclic aliphatic R4c radicals may be substituted with one or more Ra substituents and wherein cyclic R4c radicals may be substituted with one or more Rb substituents;
• A is a direct bond or CH2,
• each W is independently selected from the group consisting of C1-C8-alkyl, and C1-C8- halogenoalkyl, wherein said C1-C8-alkyl and C1-C8-halogenoalkyl, may be substituted with one or more Wa substituents;
• X is independently selected from the group consisting of halogen atom, hydroxyl, C1-C8-alkyl, Ci-Ce-alkoxy, C2-C8-alkenyl, C2-C8-alkynyl, C3-C7-cycloalkyl, C4-C7-cycloalkenyl, C6-C14-aryl, 3- to 10-membered heterocyclyl, 5- to 14-membered heteroaryl, C1-C8-alkylcarbonyl, (hydroxyimino)-C1-C8-alkyl, (C1-C8-alkoxyimino)C1-C8-alkyl, carboxyl, C1-C8-alkoxycarbonyl, carbamoyl, C1-C8-alkylcarbamoyl, di-C1-C8-alkylcarbamoyl, formyl, amino, C1-C8-alkylamino, di- C1-C8-alkylamino, sulfanyl, C1-C8-alkylsulfanyl, C1-C8-alkylsulfinyl, C1-C8-alkylsulfonyl, tri-C1-C6- alkylsilyl, cyano and nitro, wherein acyclic aliphatic X radicals may be substituted with one or more Xa substituents and wherein cyclic X radicals may be substituted with one or more Xb substituents;
• each Ya, Za, Ra, Wa and Xa is independently selected from the group consisting of halogen atom, nitro, hydroxyl, cyano, carboxyl, amino, sulfanyl, pentafluoro-λ6-sulfanyl, formyl, carbamoyl, carbamate, C3-C7-cycloalkyl, C3-C8-halogenocycloalkyl having 1 to 5 halogen atoms, C2-C8- alkenyl, C2-C8-alkynyl, C1-C8-alkylamino, di-C1-C8-alkylamino, C1-C8-alkoxy, C1-C8- halogenoalkoxy having 1 to 5 halogen atoms, C1-C8-alkylsulfanyl, C1-C8-halogenoalkylsulfanyl having 1 to 5 halogen atoms, C1-C8-alkylcarbonyl, C1-C8-halogenoalkylcarbonyl having 1 to 5 halogen atoms, C1-C8-alkylcarbamoyl, di-C1-C8-alkylcarbamoyl, C1-C8-alkoxycarbonyl, C1-C8- halogenoalkoxycarbonyl having 1 to 5 halogen atoms, C1-C8-alkylcarbonyloxy, C1-C8- halogenoalkylcarbonyloxy having 1 to 5 halogen atoms, C1-C8-alkylcarbonylamino, C1-C8- halogenoalkylcarbonylamino having 1 to 5 halogen atoms, C1-C8-alkylsulfanyl, C1-C8- halogenoalkylsulfanyl having 1 to 5 halogen atoms, C1-C8-alkylsulfinyl, C1-C8- halogenoalkylsulfinyl having 1 to 5 halogen atoms, C1-C8-alkylsulfonyl and C1-C8-halogeno- alkyl-sulfonyl having 1 to 5 halogen atoms;
• each Yb, Zb, Rb and Xb is independently selected from the group consisting of halogen atom, nitro, hydroxyl, cyano, carboxyl, amino, sulfanyl, sulfinyl, sulfonyl, pentafluoro-λ6-sulfanyl, formyl, carbamoyl, carbamate, C1-C8-alkyl, C3-C7-cycloalkyl, C1-C8-halogenoalkyl having 1 to 5 halogen atoms, C3-Cs-halogenocycloalkyl having 1 to 5 halogen atoms, C2-C8-alkenyl, C2-C8- alkynyl, C1-C8-alkylamino, di-C1-C8-alkylamino, C1-C8-alkoxy, C1-C8-halogenoalkoxy having 1 to 5 halogen atoms, C1-C8-alkylsulfanyl, C1-C8-halogenoalkylsulfanyl having 1 to 5 halogen atoms, C1-C8-alkylcarbonyl, C1-C8-halogenoalkylcarbonyl having 1 to 5 halogen atoms, C1-C8- alkylcarbamoyl, di-C1-C8-alkylcarbamoyl, C1-C8-alkoxycarbonyl, C1-C8-halogenoalkoxycarbonyl having 1 to 5 halogen atoms, C1-C8-alkylcarbonyloxy, C1-C8-halogenoalkylcarbonyloxy having 1 to 5 halogen atoms, C1-C8-alkylcarbonylamino, C1-C8-halogenoalkylcarbonylamino having 1 to 5 halogen atoms, C1-C8-alkylsulfanyl, C1-C8-halogenoalkylsulfanyl having 1 to 5 halogen atoms, Ci-Ce-alkylsulfinyl, C1-C8-halogenoalkylsulfinyl having 1 to 5 halogen atoms, C1-C8-alkyl- sulfonyl and C1-C8-halogeno-alkyl-sulfonyl having 1 to 5 halogen atoms; as well as its salts, N-oxides, metal complexes, metalloid complexes and optically active isomers or geometric isomers; provided that the compound of formula (I) is not:
- 3-methyl-N-[2-(morpholin-4-yl)-5-(trifluoromethyl)phenyl]quinoxalin-2-amine [2346412-28-8],
- N-[2-(morpholin-4-yl)-5-(trifluoromethyl)phenyl]quinoxalin-2-amine [2345349-98-4],
- 3-methyl-N-[2-(morpholin-4-yl)phenyl]quinoxalin-2-amine [2344042-01-7],
- N-[2-(morpholin-4-yl)phenyl]quinoxalin-2-amine [2344041-97-8],
- N-[2-(pyrrolidin-1-yl)-5-(trifluoromethyl)phenyl]quinoxalin-2-amine [2344018-17-1],
- 3-methyl-N-[2-(piperidin-1-yl)-5-(trifluoromethyl)phenyl]quinoxalin-2-amine [2341669-46-1],
- N-[2-(4-methylpiperazin-1-yl)-5-(trifluoromethyl)phenyl]quinoxalin-2-amine [2340869-89-6],
- 3-methyl-N-[2-(pyrrolidin-1-yl)-5-(trifluoromethyl)phenyl]quinoxalin-2-amine [2338390-87-5],
- N-[2-(piperidin-1-yl)-5-(trifluoromethyl)phenyl]quinoxalin-2-amine [2334176-38-2] and
- 3-methyl-N-[2-(4-methylpiperazin-1-yl)-5-(trifluoromethyl)phenyl]quinoxalin-2-amine [2332708-93-5],
Not encompassed herein are compounds resulting from combinations which are against natural laws and which the person skilled in the art would therefore exclude based on his/her expert knowledge.
The compounds of fomula (I) can suitably be in their free form, salt form, N-oxide form or solvate form (e.g. hydrate).
The terms “acyclic radicals” as used herein in the expressions “wherein acyclic radicals may be substituted” designate any of the acyclic groups recited in the paragraph before said expressions, or any acyclic moiety of a composite group (e.g. the C1-C8-alkyl moiety of aryl-C1-C8-alkyl).
For instance, the terms “acyclic radicals” in the expression “wherein acyclic Y1 radicals may be substituted with one or more Ya substituents” designate the following: C1-C8-alkyl; C1-C8-halogenoalkyl; C2-C8-alkenyl; C2-C8-halogenoalkenyl; C2-C8-alkynyl; C2-C8-halogenoalkynyl; C1-C8-alkoxy; C1-C8- halogenoalkoxy; C1-C8-alkyl moiety of the following composite groups: C1-C8-alkylcarbonyl, (hydroxyimino)C1-C8-alkyl, (C1-C8-alkoxyimino)C1-C8-alkyl, C1-C8-alkyl-carbamoyl, di-C1-C8- alkylcarbamoyl, C1-C8-alkylamino, di-C1-C8-alkyl-amino, C1-C8-alkylsulfanyl, C1-C8-alkylsulfinyl, C1-C8- alkylsulfonyl, tri-C1-C6-alkylsilyl; C1-C8-alkoxy moiety of C1-C8-alkoxycarbonyl and (C1-C8- alkoxyimino)C1-C8-alkyl.
The terms “cyclic radicals” as used herein in the expressions “wherein cyclic radicals may be substituted” designate any of the cyclic groups, be it alicyclic or aromatic, recited in the paragraph before said expressions, or any cyclic moiety of a composite group (e.g. the aryl moiety of aryl-C1-C8-alkyl).
For instance, the terms “cyclic radicals” in the expression “wherein cyclic Y1 radicals may be substituted” designate the following: C3-C7-cycloalkyl, C4-C7-cycloalkenyl, aryl, heterocyclyl and heteroaryl. In a group containing an acyclic moiety and a cyclic moiety (e.g. aryl-C1-C8-alkyl, aryloxy- C1-C8-alkyl), each of these moieties may be substituted independently of each other. For instance, when R2a is an aryl-Ci-Ce-alkyl, the C1-C8-alkyl moiety of said group may be substituted by one or more Ra substituents and the aryl moiety may be substituted by one or more Rb substituents.
The following compounds are mentioned in chemical databases and/or suppliers' databases without any references or information which enable these to be prepared and separated:
- 3-methyl-N-[2-(morpholin-4-yl)-5-(trifluoromethyl)phenyl]quinoxalin-2-amine [2346412-28-8],
- N-[2-(morpholin-4-yl)-5-(trifluoromethyl)phenyl]quinoxalin-2-amine [2345349-98-4],
- 3-methyl-N-[2-(morpholin-4-yl)phenyl]quinoxalin-2-amine [2344042-01-7],
- N-[2-(morpholin-4-yl)phenyl]quinoxalin-2-amine [2344041-97-8],
- N-[2-(pyrrolidin-1-yl)-5-(trifluoromethyl)phenyl]quinoxalin-2-amine [2344018-17-1],
- 3-methyl-N-[2-(piperidin-1-yl)-5-(trifluoromethyl)phenyl]quinoxalin-2-amine [2341669-46-1],
- N-[2-(4-methylpiperazin-1-yl)-5-(trifluoromethyl)phenyl]quinoxalin-2-amine [2340869-89-6],
- 3-methyl-N-[2-(pyrrolidin-1-yl)-5-(trifluoromethyl)phenyl]quinoxalin-2-amine [2338390-87-5],
- N-[2-(piperidin-1-yl)-5-(trifluoromethyl)phenyl]quinoxalin-2-amine [2334176-38-2] and
- 3-methyl-N-[2-(4-methylpiperazin-1-yl)-5-(trifluoromethyl)phenyl]quinoxalin-2-amine [2332708-93-5]
Depending on the nature of the substituents, compound of formula (I) may be present in the form of different stereoisomers. These stereoisomers are, for example, enantiomers, diastereomers, atropisomers or geometric isomers. Accordingly, the invention encompasses both pure stereoisomers and any mixture of these isomers. Where a compound can be present in two or more tautomer forms in equilibrium, reference to the compound by means of one tautomeric description is to be considered to include all tautomer forms.
Any of the compounds of formula (I) can also exist in one or more geometric isomer forms depending on the number of double bonds in the compound. Geometric isomers by nature of substituents about a double bond or a ring may be present in cis (= Z-) or trans (= E-) form. The invention thus relates equally to all geometric isomers and to all possible mixtures, in all proportions.
Depending on the nature of the substituents, the compound of fomula (I) may be present in the form of the free compound and/or a salt thereof, such as an agrochemically active salt.
Agrochemically active salts include acid addition salts of inorganic and organic acids well as salts of customary bases. Examples of inorganic acids are hydrohalic acids, such as hydrogen fluoride, hydrogen chloride, hydrogen bromide and hydrogen iodide, sulfuric acid, phosphoric acid and nitric acid, and acidic salts, such as sodium bisulfate and potassium bisulfate. Useful organic acids include, for example, formic acid, carbonic acid and alkanoic acids such as acetic acid, trifluoroacetic acid, trichloroacetic acid and propionic acid, and also glycolic acid, thiocyanic acid, lactic acid, succinic acid, citric acid, benzoic acid, cinnamic acid, oxalic acid, saturated or mono- or diunsaturated fatty acids having 6 to 20 carbon atoms, alkylsulfuric monoesters, alkylsulfonic acids (sulfonic acids having straight- chain or branched alkyl radicals having 1 to 20 carbon atoms), arylsulfonic acids or aryldisulfonic acids (aromatic radicals, such as phenyl and naphthyl, which bear one or two sulfonic acid groups), alkylphosphonic acids (phosphonic acids having straight-chain or branched alkyl radicals having 1 to 20 carbon atoms), arylphosphonic acids or aryldiphosphonic acids (aromatic radicals, such as phenyl and naphthyl, which bear one or two phosphonic acid radicals), where the alkyl and aryl radicals may bear further substituents, for example p-toluenesulfonic acid, salicylic acid, p-aminosalicylic acid, 2-phenoxybenzoic acid, 2-acetoxybenzoic acid, etc.
Solvates of the compounds of formula (I) or their salts are stoichiometric compositions of the compounds with solvents.
The compounds of formula (I) may exist in multiple crystalline and/or amorphous forms. Crystalline forms include unsolvated crystalline forms, solvates and hydrates.
Compounds of formula (I) are herein referred to as “active ingredient(s)”.
In the above formula (I), Q1 is preferably CY1 or N wherein Y1 is selected from the group consisting of hydrogen atom, halogen atom, C1-C6-alkyl, C1-C6-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different, C3-C7-cycloalkyl, hydroxyl, C1-C6-alkoxy, C1-C6-halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different, C1-C6-alkoxycarbonyl, formyl and cyano, preferably Y1 is selected from the group consisting of hydrogen, halogen atom (e.g. chlorine) and C1-C6-alkyl (e.g. methyl), more preferably Y1 is a hydrogen atom.
More preferably, Q1 is CY1 or N wherein Y1 is a hydrogen atom.
In the above formula (I), Z is preferably selected from the group consisting of hydrogen atom, halogen atom, C1-C6-alkyl, C1-C6-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different, C1-C6-alkoxy, C1-C6-halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different and cyano.
More preferably Z is a hydrogen atom, a halogen atom (e.g. chlorine), a C1-C6-alkyl (e.g. methyl) or a C1-C6-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different (e.g. difluoromethyl), even more preferably Z is a hydrogen atom or a C1-C6-alkyl (e.g. methyl), most preferably Z is a hydrogen atom or methyl.
In the above formula (I), Y2, Y3, Y4 and Y5 are preferably independently selected from the group consisting of hydrogen atom, halogen atom, C1-C6-alkyl, C1-C6-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different, C3-C7-cycloalkyl, hydroxyl, C1-C6-alkoxy, C1-C6- halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different, C1-C6- alkylcarbonyl, formyl and cyano.
More preferably Y2, Y3, Y4 and Y5 are independently selected from the group consisting of hydrogen atom, halogen atom, C1-C6-alkyl, C1-C6-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different (e.g. trifluoromethyl) and cyano.
Even more preferably Y2, Y3, Y4 and Y5 are independently a hydrogen atom or a halogen atom (preferably fluorine or chlorine).
Most preferably Y2, Y3, Y4 and Y5 are independently a hydrogen atom or a fluorine atom. In the above formula (I), L is preferably CR1aR1b or NR1c wherein:
R1a and R1b are independently selected from the group consisting of hydrogen atom, halogen atom, C1-C6-alkoxy and C1-C6 alkyl;
R1c is selected from the group consisting of hydrogen atom and C1-C6-alkyl.
More preferably, L is CR1aR1b or NR1c wherein R1a, R1b and R1c are hydrogen atoms.
In the above formula (I), n is preferably 0, 1 or 2, more preferably 0 or 1 .
In the above formula (I), m is preferably 0 or 1 , more preferably 0.
In the above formula (I), X is preferably independently selected from the group consisting of halogen atom, C1-C6-alkyl, C1-C6-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different, C3-C7-cycloalkyl, C1-C6-alkoxy and C1-C6-halogenoalkoxy comprising up to 9 halogen atoms that can be the same or different.
More preferably X is a halogen atom (e.g. fluoro or chloro), C1-C6-alkyl (e.g. methyl), C1-C6- halogenoalkyl comprising up to 9 halogen atoms that can be the same or different (e.g. trifluromethyl) or C1-C6-alkoxy comprising up to 9 halogen atoms that can be the same or different (e.g. methoxy). Even more preferably X is fluoro or chloro, most preferably fluoro.
If present, X is preferably attached to the phenyl moiety at position 3, i.e. in ortho position with regard to the carbon atom bearing linker A
In the above formula (I), R2a and R2b are preferably independently selected from the group consisting of hydrogen atom, C1-C6-alkyl, C1-C6-alkoxy-C1-C6-alkyl, C1-C6-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different, C6-C10-aryl, 5- or 6-membered heteroaryl, C6-C10-aryl-C1-C6- alkyl and 5- or 6-membered heteroaryl-C1-C6-alkyl, or R2a and R2b form, together with the carbon atom to which they are linked, a 3- to 10-membered heterocyclyl ring.
More preferably R2a and R2b are independently selected from the group consisting of hydrogen atom, C1-C6-alkyl, C1-C6-alkoxy-C1-C6-alkyl and 5- or 6-membered heteroaryl-C1-C6-alkyl, or R2a and R2b form, together with the carbon atom to which they are linked, a 4-membered heterocyclyl ring, preferably comprising 1 heteroatom selected from the group consisting of oxygen, nitrogen and sulfur (e.g. an oxetanyl ring).
Even more preferably, R2a is selected from the group consisting of hydrogen atom, C1-C6-alkyl, C1-C6- alkoxy-C1-C6-alkyl and 5- or 6-membered heteroaryl-C1-C6-alkyl, and R2b is hydrogen atom or R2a and R2b form, together with the carbon atom to which they are linked, a 4-membered heterocyclyl ring comprising 1 heteroatom selected from the group consisting of oxygen, nitrogen and sulfur (e.g. oxetanyl ring).
In one embodiment, at least one of R2a or R2b is different than a hydrogen atom. In the above formula (I), R3a and R3b are preferably independently selected from the group consisting of hydrogen atom, halogen atom, C1-C6-alkyl, C1-C6-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different, hydroxy, C1-C6-alkoxy, 5- or 6-membered heteroaryloxy and 5- or 6- membered heteroaryl-C1-C6-alkyl or R3a and R3b form, together with the carbon atom to which they are linked, a 3- to 10-membered heterocyclyl ring.
More preferably R3a and R3b are independently selected from the group consisting of hydrogen atom, halogen atom, hydroxy, C1-C6-alkoxy, 5- or 6-membered heteroaryloxy and 5- or 6-membered heteroaryl-C1-C6-alkyl or R3a and R3b form, together with the carbon atom to which they are linked, a 4- membered heterocyclyl ring, preferably comprising 1 heteroatom selected from the group consisting of oxygen, nitrogen and sulfur (e.g. an oxetanyl ring).
Even more preferably, R3a is selected from the group consisting of hydrogen atom, halogen atom, Ci- C6-alkyl, C1-C6-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different, hydroxy, C1-C6-alkoxy, 5- or 6-membered heteroaryloxy and 5- or 6-membered heteroaryl-C1-C6-alkyl and R3b is hydrogen atom or R3a and R3b form, together with the carbon atom to which they are linked, a 4-membered heterocyclyl ring comprising 1 heteroatom selected from the group consisting of oxygen, nitrogen and sulfur (e.g. oxetanyl ring).
In the above formula (I), Q4 is preferably O, CR4aR4b or NR4c wherein:
R4a and R4b are preferably independently selected from the group consisting of hydrogen atom, C1-C6-alkyl, C1-C6-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different, hydroxy, C1-C6-alkoxy, or R4a and R4b form, together with the carbon atom to which they are linked, a 3- to 10-membered heterocyclyl ring.
More preferably R4a and R4b are hydrogen atoms, or R4a and R4b form, together with the carbon atom to which they are linked, a 4-membered heterocyclyl ring, preferably comprising 1 heteroatom selected from the group consisting of oxygen, nitrogen and sulfur (e.g. an oxetanyl ring).
In the above formula (I), R4c is preferably selected from the group consisting of hydrogen atom, C1-C6- alkyl, C1-C6-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different, C3-C7- cycloalkyl-C1-C6-alkyl, C1-C6-alkylcarbonyl, C1-C6-halogenoalkyl-carbonyl, C1-C6-alkoxycarbonyl, C1-C6- halogenoalkoxycarbonyl and C6-C10-aryl-C1-C6-alkyl.
More preferably R4c is selected from the group consisting of hydrogen atom, C1-C6-alkyl and C1-C6- alkoxycarbonyl.
Even more preferably R4c is selected from the group consisting of hydrogen atom, methyl and tert- butoxycarbonyl.
The above-mentioned preferences with regard to the substituents of the compounds according to the invention can be combined in various manners. These combinations of preferred features thus provide sub-classes of compounds according to the invention. Examples of such sub-classes of preferred compounds according to the invention are:
- preferred features of Q1 with one or more preferred features of Y1, Z, Y2, Y3, Y4, Y5, L, R1a, R1b, R1c, n, m, X, W, R2a, R2b, R3a, R3b, R4a, R4b and R4c; - preferred features of Y1 with one or more preferred features of Q1, Z, Y2, Y3, Y4, Y5, L, R1a, R1b, R1c, n, m, X, W, R2a, R2b, R3a, R3b, R4a, R4b and R4c;
- preferred features of Z with one or more preferred features of Q1, Y1, Y2, Y3, Y4, Y5, L, R1a, R1b, R1c, n, m, X, W, R2a, R2b, R3a, R3b, R4a, R4b and R4c;
- preferred features of Y2 with one or more preferred features of Q1, Y1, Z, Y3, Y4, Y5, L, R1a, R1b, R1c, n, m, X, W, R2a, R2b, R3a, R3b, R4a, R4b and R4c;
- preferred features of Y3 with one or more preferred features of Q1, Y1, Z, Y2, Y4, Y5, L, R1a, R1b, R1c, n, m, X, W, R2a, R2b, R3a, R3b, R4a, R4b and R4c;
- preferred features of Y4 with one or more preferred features of Q1, Y1, Z, Y2, Y3, Y5, L, R1a, R1b, R1c, n, m, X, W, R2a, R2b, R3a, R3b, R4a, R4b and R4c;
- preferred features of Y5 with one or more preferred features of Q1, Y1, Z, Y2, Y3, Y4, L, R1a, R1b, R1c, n, m, X, W, R2a, R2b, R3a, R3b, R4a, R4b and R4c;
- preferred features of L with one or more preferred features of Q1, Y1, Z, Y2, Y3, Y4, Y5, R1a, R1b, R1c, n, m, X, W, R2a, R2b, R3a, R3b, R4a, R4b and R4c;
- preferred features of R1a with one or more preferred features of Q1, Y1, Z, Y2, Y3, Y4, Y5, L, R1b, R1c, n, m, X, W, R2a, R2b, R3a, R3b, R4a, R4b and R4c;
- preferred features of R1b with one or more preferred features of Q1, Y1, Z, Y2, Y3, Y4, Y5, L, R1a, R1c, n, m, X, W, R2a, R2b, R3a, R3b, R4a, R4b and R4c;
- preferred features of R1c with one or more preferred features of Q1, Y1, Z, Y2, Y3, Y4, Y5, L, R1a, R1b, n, m, X, W, R2a, R2b, R3a, R3b, R4a, R4b and R4c;
- preferred features of n with one or more preferred features of Q1, Y1, Z, Y2, Y3, Y4, Y5, L, R1a, R1b, R1c, m, X, W, R2a, R2b, R3a, R3b, R4a, R4b and R4c;
- preferred features of m with one or more preferred features of Q1, Y1, Z, Y2, Y3, Y4, Y5, L, R1a, R1b, R1c, n, X, W, R2a, R2b, R3a, R3b, R4a, R4b and R4c;
- preferred features of X with one or more preferred features of Q1, Y1, Z, Y2, Y3, Y4, Y5, L, R1a, R1b, R1c, n, m, W, R2a, R2b, R3a, R3b, R4a, R4b and R4c;
- preferred features ofWwith one or more preferred features of Q1, Y1, Z, Y2, Y3, Y4, Y5, L, R1a, R1b, R1c, n, m, X, R2a, R2b, R3a, R3b, R4a, R4b and R4c;
- preferred features of R2a with one or more preferred features of Q1, Y1, Z, Y2, Y3, Y4, Y5, L, R1a, R1b, R1c, n, m, X, W, R2b, R3a, R3b, R4a, R4b and R4c;
- preferred features of R2b with one or more preferred features of Q1, Y1, Z, Y2, Y3, Y4, Y5, L, R1a, R1b, R1c, n, m, X, W, R2a, R3a, R3b, R4a, R4b and R4c;
- preferred features of R3a with one or more preferred features of Q1, Y1, Z, Y2, Y3, Y4, Y5, L, R1a, R1b, R1c, n, m, X, W, R2a, R2b, R3b, R4a, R4b and R4c;
- preferred features of R3b with one or more preferred features of Q1, Y1, Z, Y2, Y3, Y4, Y5, L, R1a, R1b, R1c, n, m, X, W, R2a, R2b, R3a, R4a, R4b and R4c;
- preferred features of R4a with one or more preferred features of Q1, Y1, Z, Y2, Y3, Y4, Y5, L, R1a, R1b, R1c, n, m, X, W, R2a, R2b, R3a, R3b, R4b and R4c;
- preferred features of R4b with one or more preferred features of Q1, Y1, Z, Y2, Y3, Y4, Y5, L, R1a, R1b, R1c, n, m, X, W, R2a, R2b, R3a, R3b, R4a and R4c; - preferred features of R4c with one or more preferred features of Q1, Y1, Z, Y2, Y3, Y4, Y5, L, R1a, R1b, R1c, n, m, X, W, R2a, R2b, R3a, R3b, R4a and R4b;
In these combinations of preferred features of the substituents of the compounds according to the invention, the said preferred features can also be selected among the more preferred features of each of Q1, Y1, Z, Y2, Y3, Y4, Y5, L, R1a, R1b, R1c, n, m, X, W, R2a, R2b, R3a, R3b, R4a, R4b and R4c so as to form most preferred subclasses of compounds according to the invention.
Particularly preferred are compounds of formula (I): wherein:
Figure imgf000019_0001
Q1 is CY1 or N wherein Y1 is a hydrogen atom;
Y2, Y3, Y4 and Y5 are independently a hydrogen atom or a halogen atom;
Z is selected from the group consisting of hydrogen atom and C1-C6-alkyl, preferably methyl; m is 0; n is 0 or 1 ; p is 1 or 2;
L is CR1aR1b or NR1c wherein R1a, R1b and R1c are hydrogen atoms;
Q2 is CR2aR2b;
Q3 is CR3aR3b;
Q4 is O, CR4aR4b or NR4c provided that p is 2 when Q4 is O or NR4c;
R2a and R2b are independently selected from the group consisting of hydrogen atom, C1-C6- alkyl, C1-C6-alkoxy-C1-C6-alkyl and 5- or 6-membered heteroaryl-C1-C6-alkyl, or
R2a and R2b form, together with the carbon atom to which they are linked, a 4-membered heterocyclyl ring, preferably comprising 1 heteroatom selected from the group consisting of oxygen, nitrogen and sulfur (e.g. an oxetanyl ring);
R3a and R3b are independently selected from the group consisting of hydrogen atom, halogen atom, C1-C6-alkyl, C1-C6-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different, hydroxy, C1-C6-alkoxy, 5- or 6-membered heteroaryloxy and 5- or 6-membered heteroaryl-C1- C6-alkyl or
R3a and R3b form, together with the carbon atom to which they are linked, a 4-membered heterocyclyl ring, preferably comprising 1 heteroatom selected from the group consisting of oxygen, nitrogen and sulfur (e.g. an oxetanyl ring).
R4a and R4b are hydrogen atoms, or R4a and R4b form a 4-membered heterocyclyl ring, preferably comprising 1 heteroatom selected from the group consisting of oxygen, nitrogen and sulfur (e.g. an oxetanyl ring);
R4c is selected from the group consisting of hydrogen atom, C1-C6-alkyl and C1-C6- alkoxycarbonyl;
A is a direct bond or CH2 and X is a halogen atom.
The present invention also relates to any compounds of formula (I) disclosed in table 4 below.
Compounds of formula (I) may be used for controlling phytopathogenic microorganisms, preferably phytopathogenic fungi and oomycetes, in agriculture (e.g. in crop protection).
Processes for the preparation of the active ingredients
The present invention also relates to processes for the preparation of compounds of formula (I). Unless indicated otherwise, the variables Q1, Y1, Y2, Y3, Y4, Y5, Z, L, A, n, m, p, X, W, Q2, Q3 and Q4 have the meanings given above for the compounds of formula (I). These definitions apply not only to the end products of the formula (I) but likewise to all intermediates.
Compounds of formula (la) as herein-defined, i.e. compounds of formula (I) wherein A is a bond, can be prepared by a process P1 which comprises the step of reacting a halogeno derivative of formula (II) with a cyclic amine of formula (III):
Figure imgf000020_0001
Process P1 can be performed in the presence of a transition metal catalyst such as palladium and if appropriate in the presence of a phosphine ligand or a N-heterocyclic carbene ligand, if appropriate in the presence of a base and if appropriate in the presence of a solvent according to known processes.
Intermediates of formula (II) can be made by diazotation of an aniline according to known processes. Cyclic amines of formula (III) are commercially available or can be made by methods known by the person skilled in the art.
Process P1 can be carried out in the presence of a catalyst, such as a palladium salt or complex. Suitable palladium salts or complexes for this purpose are for example, palladium chloride, palladium acetate, tetrakis(triphenylphosphine)palladium(0), bis(dibenzylideneacetone)palladium(0), tris(dibenzylideneacetone)dipalladium(0), bis(triphenylphosphine)palladium(ll) dichloride, [1 ,1 - bis(diphenylphosphino)ferrocene]dichloropalladium(ll), bis(cinnamyl)dichlorodipalladium(ll), bis(allyl)- dichlorodipalladium(ll) or [1 ,1 ’-Bis(di-tert-butylphosphino)ferrocene]dichloropalladium(ll).
It is also possible to generate a palladium complex in the reaction mixture by separate addition to the reaction of a palladium salt and a ligand or salt, such as triethylphosphine, tri-tert-butylphosphine, tri- tert-butylphosphonium tetrafluoroborate, tricyclohexylphosphine, 2-(dicyclohexylphosphino)biphenyl, 2- (di-tert-butylphosphino)biphenyl, 2-(dicyclohexylphosphino)-2'-(N,N-dimethylamino)biphenyl, 2-(tert- butylphosphino)-2'-(N,N-dimethylamino)biphenyl, 2-di-tert-butylphosphino-2’,4’,6’-triisopropylbiphenyl 2-dicyclohexylphosphino-2’,4’,6’-triisopropylbiphenyl, 2-dicyclohexylphosphino-2,6’-dimethoxybiphenyl, 2-dicyclohexylphosphino-2’,6’-diisopropoxybiphenyl, triphenyl-phosphine, tris-(o-tolyl)phosphine, sodium 3-(diphenylphosphino)benzenesulfonate, tris-2-(methoxy-phenyl)phosphine, 2,2'- bis(diphenylphosphino)-1 ,1 '-binaphthyl, 1 ,4-bis(diphenylphosphino)butane, 1 ,2-bis(diphenylphosphino) ethane, 1 ,4-bis(dicyclohexylphosphino)butane, 1 ,2-bis(dicyclohexylphosphino)-ethane, 2-
(dicyclohexylphosphino)-2'-(N,N-dimethylamino)-biphenyl, 1 ,1 ’-bis(diphenylphosphino)-ferrocene, (R)- (-)-1-[(S)-2-diphenyl-phosphino)ferrocenyl]ethyldicyclohexylphosphine, tris-(2,4-tert-butyl-phenyl)- phosphite, di(1-adamantyl)-2-morpholinophenylphosphine or 1 ,3-bis(2,4,6-trimethylphenyl)imidazolium chloride.
It is also advantageous to choose the appropriate catalyst and/or ligand from commercial catalogues such as “Metal Catalysts for Organic Synthesis” by Strem Chemicals or “Phosphorous Ligands and Compounds” by Strem Chemicals.
Suitable bases for carrying out Process P1 can be inorganic and organic bases which are customary for such reactions. Preference is given to using alkaline earth metal or alkali metal hydroxides, such as sodium hydroxide, calcium hydroxide, potassium hydroxide or other ammonium hydroxide derivatives; alkaline earth metal, alkali metal or ammonium fluorides such as potassium fluoride, caesium fluoride or tetrabutylammonium fluoride; alkaline earth metal or alkali metal carbonates, such as sodium carbonate, potassium carbonate, potassium bicarbonate, sodium bicarbonate or caesium carbonate; alkali metal or alkaline earth metal acetates, such as sodium acetate, lithium acetate, potassium acetate or calcium acetate; alkali metal or alkaline earth metal phosphate, such as tripotassium phosphate alkali; alkali metal alcoholates, such as potassium tert-butoxide or sodium tert-butoxide; tertiary amines, such as trimethylamine, triethylamine, tributylamine, N,N-dimethylaniline, N,N-dicyclohexylmethylamine, N,N-diisopropylethylamine, N methylpiperidine, N,N-dimethylaminopyridine, diazabicyclooctane (DABCO), diazabicyclononene (DBN) or diazabicycloundecene (DBU); and also aromatic bases, such as pyridine, picolines, lutidines or collidines. Suitable solvents for carrying out process P1 can be customary inert organic solvents. Preference is given to using optionally halogenated, aliphatic, alicyclic or aromatic hydrocarbons, such as petroleum ether, pentane, hexane, heptane, cyclohexane, methylcyclohexane, benzene, toluene, xylene or decalin; chlorobenzene, dichlorobenzene, dichloromethane, chloroform, carbon tetrachloride, dichloroethane or trichloroethane; ethers, such as diethyl ether, diisopropyl ether, methyl t-butyl ether, methyl t-amyl ether, dioxane, tetrahydrofuran, 2-methyltetrahydrofuran, 1 ,2-dimethoxyethane, 1 ,2- diethoxyethane or anisole; nitriles, such as acetonitrile, propionitrile, n- or i-butyronitrile or benzonitrile; amides, such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methylformanilide, N- methylpyrrolidone or hexamethylphosphoric triamide; ureas, such as 1 ,3-dimethyl-3,4,5,6-tetrahydro- 2(1 H)-pyrimidinone; esters, such as methyl acetate or ethyl acetate, sulfoxides, such as dimethyl sulfoxide, or sulfones, such as sulfolane; and a mixture thereof.
Alternatively, process P1 may be carried out in presence of a catalyst such as copper(l) iodide and a ligand such as a diamine, an amino alcohol, an amino acid or a phosphine may also be used. The reation is usually carried out in presence of a base such as potassium phosphate, potassium carbonate or sodium carbonate. As for the solvent, polar aprotic solvents such as N,N-dimethylformamide or dimethylsulfoxide may be used.
Process P1 may be performed in an inert atmosphere such as argon or nitrogen atmosphere. When carrying out process P1 , 1 mole or an excess of compound of formula (III) and from 1 to 5 moles of base and from 0.01 to 20 mole percent of a palladium complex can be employed per mole of compound of formula (II). It is also possible to employ the reaction components in other ratios. Work-up is carried out by known methods.
Compounds of formula (lb) as herein-defined, i.e. compounds of formula (I) wherein L is NH and A is a direct bond, can be prepared by a process P2 which comprises the step of reacting a compound of formula (IV) with a compound of formula (V):
Figure imgf000022_0001
Process P2 can be performed in the presence of a transition metal catalyst such as palladium and if appropriate in the presence of a phosphine ligand or a N-heterocyclic carbene ligand, if appropriate in the presence of a base and if appropriate in the presence of a solvent according to known processes.
Intermediates of formula (IV) are commercially available or can be made by methods known by the person skilled in the art.
Anilines of formula (V) can be prepared by reduction of the nitro group of derivatives of formula (VI) according to known processes (Patai's Chemistry of Functional Groups - Amino, Nitroso, Nitro and Related Groups - 1996).
Figure imgf000023_0001
Nitro derivatives of formula (VI) can be prepared by condensation of a cyclic amine of formula (III) on a fluoronitrobenzene of formula (VII) in the presence of a base according to known processes [SNAr condensation]
Figure imgf000023_0002
Fluoronitrobenzene derivatives of formula (VII) are commercially available or can be prepared by known processes.
Suitable catalysts, bases and solvents for carrying out process P2 can be those as disclosed in connection with process P1 .
Process P2 may be performed in an inert atmosphere such as argon or nitrogen atmosphere. When carrying out process P2, 1 mole or an excess of compound of formula (V) and from 1 to 5 moles of base and from 0.01 to 20 mole percent of a palladium complex can be employed per mole of compound of formula (IV). It is also possible to employ the reaction components in other ratios. Work-up is carried out by known methods.
Compounds of formula (lc) as herein-defined, i.e. compounds of formula (I) wherein A is CH2, can be prepared by a process P3 which comprises the step of reacting a compound of formula (VIII) with a cyclic amine of formula (III):
Figure imgf000024_0001
Process P3 can be performed in the presence of a base and if appropriate in the presence of a solvent according to known processes.
Intermediates of formula (VIII) can be made by methods known by the person skilled in the art.
Cyclic amines of formula (III) are commercially available or can be made by methods known by the person skilled in the art.
Suitable bases and solvents for carrying out process P3 can be as disclosed in connection with process P1.
When carrying out process P3, 1 mole or an excess of cyclic amine of formula (III) and from 1 to 5 moles of base can be employed per mole of compound of formula (VIII). It is also possible to employ the reaction components in other ratios. Work-up is carried out by known methods.
Compounds of formula (Id) as herein-defined, i.e. compounds of formula (I) wherein L is NH and A is CH2, can be prepared by a process P4 which comprises the step of reacting a compound of formula (IV) with a compound of formula (IX):
Figure imgf000025_0001
Process P4 can be performed in the presence of a transition metal catalyst such as palladium and if appropriate in the presence of a phosphine ligand or a N-heterocyclic carbene ligand, if appropriate in the presence of a base and if appropriate in the presence of a solvent according to known processes.
Intermediates of formula (IV) are commercially available or can be made by methods known by the person skilled in the art.
Anilines of formula (IX) can be prepared by reduction of the nitro group of derivatives of formula (X) according to known processes (Patai's Chemistry of Functional Groups - Amino, Nitroso, Nitro and Related Groups - 1996).
Figure imgf000025_0002
Nitro derivatives of formula (X) can be prepared by condensation of a cyclic amine of formula (III) on a halogeno benzylic derivative of formula (XI) wherein Hal is Cl, Br, I; preferably Cl or Br, in the presence of a base according to known processes.
Figure imgf000025_0003
Halogeno benzylic derivatives of formula (XI) are commercially available or can be prepared by known processes. Suitable catalysts, bases and solvents for carrying out process P4 can be as disclosed in connection with process P1 .
Process P4 may be performed in an inert atmosphere such as argon or nitrogen atmosphere. When carrying out process P4, 1 mole or an excess of compound of formula (IX) and from 1 to 5 moles of base and from 0.01 to 20 mole percent of a palladium complex can be employed per mole of compound of formula (IV). It is also possible to employ the reaction components in other ratios. Work-up is carried out by known methods.
Compounds of formula (le) as herein-defined, i.e. compounds of formula (I) wherein L is CH2, can be prepared by a process P5 which comprises the step of reacting a boronic derivative of formula (XII) with a compound of formula (XIII):
Figure imgf000026_0001
Process P5 can be performed in the presence of a transition metal catalyst such as palladium and if appropriate in the presence of a phosphine ligand or a N-heterocyclic carbene ligand, if appropriate in the presence of a base and if appropriate in the presence of a solvent according to known processes.
Boronic acid or boronic ester derivatives of formula (XII) can be prepared from halogeno derivatives (IV) using a reagent such as bis(pinacolato)diboron in presence of a transition metal catalyst such as palladium and if appropriate in presence of a phosphine ligand or a N-heterocyclic carbene ligand, if appropriate in presence of a base and if appropriate in presence of a solvent according to known processes.
Halides of formula (XIII) are commercially available or can be made by methods known by the person skilled in the art such as halogenation of alcohols of formula (XIV) according to known processes:
Figure imgf000027_0001
Alcohols of formula (XIV) are commercially available or can be made by methods known by the person skilled in the art such as reduction of an aldehyde or an ester.
Suitable catalysts, bases and solvents for carrying out process P5 can be those as disclosed in connection with process P1 .
Process P5 may be performed in an inert atmosphere such as argon or nitrogen atmosphere. When carrying out process P5, 1 mole or an excess of compound of formula (XII) and from 1 to 5 moles of base and from 0.01 to 20 mole percent of a palladium complex can be employed per mole of compound of formula (XIII). It is also possible to employ the reaction components in other ratios. Work-up is carried out by known methods.
Compounds of formula (lb) or (Id) may be used for the preparation of compounds of formula (If) according to process P6:
Figure imgf000027_0002
Compounds of formula (lb) made according to processes P1 and P2 and compounds of formula (Id) made according to processes P3 and P4 can be used to make compounds of formula (If).
Typically, compounds of formula (lb) or formula (Id) are treated with a base such as sodium hydride and an alkyl halide, preferentially an iodoalkyl such as iodomethane. The reaction is usually carried out in polar aprotic solvents such as dimethylformamide. When carrying out process P6, 1 mole or an excess of an alkyl halide and from 1 to 5 moles of base can be employed per mole of compound of formula (lb) or formula (Id). It is also possible to employ the reaction components in other ratios. Work-up is carried out by known methods.
Processes P1 , P2, P3, P4, P5 and P6 are generally carried out under atmospheric pressure. It is also possible to operate under elevated or reduced pressure.
When carrying out processes P1 , P2, P3, P4, P5 and P6, the reaction temperatures can be varied within a relatively wide range. In general, these processes are carried out at temperatures from - 78 °C to 200 °C, preferably from - 78 °C to 150 °C. A way to control the temperature for the processes is to use microwave technology.
In general, the reaction mixture is concentrated under reduced pressure. The residue that remains can be freed by known methods, such as chromatography or crystallization, from any impurities that can still be present.
Work-up is carried out by customary methods. Generally, the reaction mixture is treated with water and the organic phase is separated off and, after drying, concentrated under reduced pressure. If appropriate, the remaining residue can, be freed by customary methods, such as chromatography, crystallization or distillation, from any impurities that may still be present.
The compounds of formula (I) can be prepared according to the general processes of preparation described above. It will nevertheless be understood that, on the basis of his general knowledge and of available publications, the skilled worker will be able to adapt the methods according to the specifics of each compound, which it is desired to synthesize.
Intermediates for the preparation of the active ingredients
The present invention also relates to intermediates for the preparation of compounds of formula (I). Some of the said intermediates are represented by formula (I’):
Figure imgf000028_0001
wherein U is selected from the group consisting of amino and nitro and X, n, W, m, p, Q2, Q3 and Q4 have the definitions given above.
Preferably, said intermediates of formula (I’) are chosen from intermediates wherein X is a fluorine atom at position 3 of phenyl moiety and n is 1 , represented by formula (I’a):
Figure imgf000029_0004
wherein U, W, m, p, Q2, Q3 and Q4 have the definitions given above. As outlined above some of the useful intermediates for the synthesis of compounds of formula (I), are chosen from intermediates of formula (I') wherein U is an amino group, represented by formula (V):
Figure imgf000029_0001
wherein X, n, W, m, p, Q2, Q3 and Q4 have the definitions given above. Preferably, the said intermediates of formula (V) are chosen from intermediates wherein X is a fluorine atom at position 3 of phenyl moiety and n is 1 , represented by formula (Va):
Figure imgf000029_0002
wherein, W, m, p, Q2, Q3 and Q4 have the definitions given above.
As outlined above other useful intermediates for the synthesis of compounds of formula (I), are chosen from intermediates of formula (I') wherein U is a nitro group, represented by formula (VI):
Figure imgf000029_0003
wherein X, n, W, m, p, Q2, Q3 and Q4 have the definitions given above. Preferably, the said intermediates of formula (VI) are chosen from intermediates wherein X is a fluorine atom at position 3 of phenyl moiety and n is 1 , represented by formula (Via):
Figure imgf000030_0001
wherein, W, m, p, Q2, Q3 and Q4 have the definitions given above.
Preferably, in the above formulae (I'), (I’a), (V), (Va), (VI) or (VIa), the cyclic amine defined by variables W, p, m, Q2, Q3 and Q4 is chosen from one of the moieties disclosed in table 1 below: Table 1
Figure imgf000030_0002
Figure imgf000031_0001
Even more preferably, in the above formulae (V) or (Va), the cyclic amine defined by variables W, p, m, Q2, Q3 and Q4 is chosen from one of the moieties disclosed in table 2 below:
Table 2
Figure imgf000031_0002
1 .20 2-(pyridin-2-ylmethyl)piperidin-1-yl
Other useful intermediates for the synthesis of compounds of formula (I), are represented by formula (XIII):
Figure imgf000032_0001
(XI II)
5 wherein Hal is chosen from chloro, bromo or iodo atom and A, X, n, W, m, p, Q2, Q3 and Q4 have the definitions given above.
Preferably, the said intermediates of formula (XIII) are chosen from intermediates wherein X is a fluorine atom at position 3 of phenyl moiety and n is 1 , and A is direct bond, represented by formula (Xllla):
Figure imgf000032_0002
10 (XI 11 a) wherein Hal, W, m, p, Q2, Q3 and Q4 have the definitions given above.
Preferably, the compound of formula (XIII) or (XII la) does not represent: 1-[2-(chloromethyl)-6-fluoro-phenyl]piperidine,
15 4-[2-(chloromethyl)-6-fluorophenyl]thiomorpholine [1700236-18-5], 4-[2-(bromomethyl)-6-fluorophenyl]morpholine [1699110-77-4], 4-[2-(chloromethyl)-6-fluorophenyl]morpholine [1698166-29-8], 1-[2-(chloromethyl)-6-fluorophenyl]pyrrolidine [1697705-30-8], 1-[2-(bromomethyl)-6-fluorophenyl]piperidine [1697534-42-1],
20 1-[2-(bromomethyl)-6-fluorophenyl]pyrrolidine [1696268-86-6], 1-[2-(chloromethyl)-6-fluorophenyl]piperidine [1695790-48-7] and 4-[2-(bromomethyl)-6-fluorophenyl]thiomorpholine [1694399-34-2],
Preferably, in the above formulae (XIII) or (Xllla), the cyclic amine defined by variables W, p, m, Q2, Q3 25 and Q4 is chosen from one of the moieties disclosed in table 3 below: Table 3
Figure imgf000033_0001
In one embodiment, in the above formulae (I'), (I’a), (V), (Va), (VI), (VIa), (XIII) or (Xllla), Q2 is CR2a R2b wherein at least one of R2a or R2b is different than a hydrogen atom. Compositions and formulations
The present invention further relates to compositions, in particular compositions for controlling unwanted microorganisms. The composition may be applied to the microorganisms and/or in their habitat.
The composition comprises at least one compound of formula (I) and at least one agriculturally suitable auxiliary, e.g. carrier(s) and/or surfactant(s).
A carrier is a solid or liquid, natural or synthetic, organic or inorganic substance that is generally inert. The carrier generally improves the application of the compounds, for instance, to plants, plants parts or seeds. Examples of suitable solid carriers include, but are not limited to, ammonium salts, in particular ammonium sulfates, ammonium phosphates and ammonium nitrates, natural rock flours, such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite and diatomaceous earth, silica gel and synthetic rock flours, such as finely divided silica, alumina and silicates. Examples of typically useful solid carriers for preparing granules include, but are not limited to crushed and fractionated natural rocks such as calcite, marble, pumice, sepiolite and dolomite, synthetic granules of inorganic and organic flours and granules of organic material such as paper, sawdust, coconut shells, maize cobs and tobacco stalks. Examples of suitable liquid carriers include, but are not limited to, water, organic solvents and combinations thereof. Examples of suitable solvents include polar and nonpolar organic chemical liquids, for example from the classes of aromatic and nonaromatic hydrocarbons (such as cyclohexane, paraffins, alkylbenzenes, xylene, toluene, tetrahydronaphthalene, alkylnaphthalenes, chlorinated aromatics or chlorinated aliphatic hydrocarbons such as chlorobenzenes, chloroethylenes or methylene chloride), alcohols and polyols (which may optionally also be substituted, etherified and/or esterified, such as ethanol, propanol, butanol, benzylalcohol, cyclohexanol or glycol), ketones (such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone), esters (including fats and oils) and (poly)ethers, unsubstituted and substituted amines, amides (such as dimethylformamide or fatty acid amides) and esters thereof, lactams (such as N- alkylpyrrolidones, in particular N-methylpyrrolidone) and lactones, sulfones and sulfoxides (such as dimethyl sulfoxide), oils of vegetable or animal origin. The carrier may also be a liquefied gaseous extender, i.e. liquid which is gaseous at standard temperature and under standard pressure, for example aerosol propellants such as halohydrocarbons, butane, propane, nitrogen and carbon dioxide.
Preferred solid carriers are selected from clays, talc and silica.
Preferred liquid carriers are selected from water, fatty acid amides and esters thereof, aromatic and nonaromatic hydrocarbons, lactams and carbonic acid esters.
The amount of carrier typically ranges from 1 to 99.99%, preferably from 5 to 99.9%, more preferably from 10 to 99.5%, and most preferably from 20 to 99% by weight of the composition.
Liquid carriers are typically present in a range of from 20 to 90%, for example 30 to 80% by weight of the composition. Solid carriers are typically present in a range of from 0 to 50%, preferably 5 to 45%, for example 10 to 30% by weight of the composition.
If the composition comprises two or more carriers, the outlined ranges refer to the total amount of carriers.
The surfactant can be an ionic (cationic or anionic), amphoteric or non-ionic surfactant, such as ionic or non-ionic emulsifier(s), foam formers), dispersant(s), wetting agent(s), penetration enhancer(s) and any mixtures thereof. Examples of suitable surfactants include, but are not limited to, salts of polyacrylic acid, salts of lignosulfonic acid (such as sodium lignosulfonate), salts of phenolsulfonic acid or naphthalenesulfonic acid, polycondensates of ethylene oxide and/or propylene oxide with fatty alcohols, fatty acids or fatty amines (for example, polyoxyethylene fatty acid esters such as castor oil ethoxylate, polyoxyethylene fatty alcohol ethers, for example alkylaryl polyglycol ethers), substituted phenols (preferably alkylphenols or arylphenols) and ethoxylates thereof (such as tristyrylphenol ethoxylate), salts of sulfosuccinic esters, taurine derivatives (preferably alkyl taurates), phosphoric esters of polyethoxylated alcohols or phenols, fatty esters of polyols (such a fatty acid esters of glycerol, sorbitol or sucrose), sulfates (such as alkyl sulfates and alkyl ether sulfates), sulfonates (for example, alkylsulfonates, arylsulfonates and alkylbenzene sulfonates), phosphate esters, protein hydrolysates, lignosulfite waste liquors and methylcellulose. Any reference to salts in this paragraph refers preferably to the respective alkali, alkaline earth and ammonium salts.
Preferred surfactants are selected from polyoxyethylene fatty alcohol ethers, polyoxyethylene fatty acid esters, alkylbenzene sulfonates, such as calcium dodecylbenzenesulfonate, castor oil ethoxylate, sodium lignosulfonate and arylphenol ethoxylates, such as tristyrylphenol ethoxylate.
The amount of surfactants typically ranges from 5 to 40%, for example 10 to 20%, by weight of the composition.
Further examples of suitable auxiliaries include water repellents, siccatives, binders (adhesive, tackifier, fixing agent, such as carboxymethylcellulose, natural and synthetic polymers in the form of powders, granules or latices, such as gum arabic, polyvinyl alcohol and polyvinyl acetate, natural phospholipids such as cephalins and lecithins and synthetic phospholipids, polyvinylpyrrolidone and tylose), thickeners and secondary thickeners (such as cellulose ethers, acrylic acid derivatives, xanthan gum, modified clays, e.g. the products available under the name Bentone, and finely divided silica), stabilizers (e.g. cold stabilizers, preservatives (e.g. dichlorophene and benzyl alcohol hemiformal), antioxidants, light stabilizers, in particular UV stabilizers, or other agents which improve chemical and/or physical stability), dyes or pigments (such as inorganic pigments, e.g. iron oxide, titanium oxide and Prussian Blue; organic dyes, e.g. alizarin, azo and metal phthalocyanine dyes), antifoams (e.g. silicone antifoams and magnesium stearate), antifreezes, stickers, gibberellins and processing auxiliaries, mineral and vegetable oils, perfumes, waxes, nutrients (including trace nutrients, such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc), protective colloids, thixotropic substances, penetrants, sequestering agents and complex formers. The choice of the auxiliaries depends on the intended mode of application of the compound of formula (I) and/or on the physical properties of the compound(s). Furthermore, the auxiliaries may be chosen to impart particular properties (technical, physical and/or biological properties) to the compositions or use forms prepared therefrom. The choice of auxiliaries may allow customizing the compositions to specific needs.
The composition may be provided to the end user as ready-for-use formulation, i.e. the compositions may be directly applied to the plants or seeds by a suitable device, such as a spraying or dusting device. Alternatively, the compositions may be provided to the end user in the form of concentrates which have to be diluted, preferably with water, prior to use.
The composition can be prepared in conventional manners, for example by mixing the compound of formula (I) with one or more suitable auxiliaries, such as disclosed herein above.
The composition comprises a fungicidally effective amount of the compound(s) of formula (I) The term "effective amount" denotes an amount, which is sufficient for controlling harmful fungi on cultivated plants or in the protection of materials and which does not result in a substantial damage to the treated plants. Such an amount can vary in a broad range and is dependent on various factors, such as the fungal species to be controlled, the treated cultivated plant or material, the climatic conditions and the specific compound of formula (I) used. Usually, the composition comprising at least one compound of formula (I) contains from 0.01 to 99% by weight, preferably from 0.05 to 98% by weight, more preferred from 0.1 to 95% by weight, even more preferably from 0.5 to 90% by weight, most preferably from 1 to 80% by weight of the compound of formula (I). It is possible that a composition comprises two or more compounds of the invention. In such case the outlined ranges refer to the total amount of compounds of the present invention.
The composition comprising at least one compound of formula (I) may be in any customary composition type, such as solutions (e.g aqueous solutions), emulsions, water- and oil-based suspensions, powders (e.g. wettable powders, soluble powders), dusts, pastes, granules (e.g. soluble granules, granules for broadcasting), suspoemulsion concentrates, natural or synthetic products impregnated with the compound compound of formula (I), fertilizers and also microencapsulations in polymeric substances. The compound of formula (I) may be present in a suspended, emulsified or dissolved form. Examples of particular suitable composition types are solutions, watersoluble concentrates (e.g. SL, LS), dispersible concentrates (DC), suspensions and suspension concentrates (e.g. SC, OD, OF, FS), emulsifiable concentrates (e.g. EC), emulsions (e.g. EW, EO, ES, ME, SE), capsules (e.g. CS, ZC), pastes, pastilles, wettable powders or dusts (e.g. WP, SP, WS, DP, DS), pressings (e.g. BR, TB, DT), granules (e.g. WG, SG, GR, FG, GG, MG), insecticidal articles (e.g. LN), as well as gel formulations for the treatment of plant propagation materials such as seeds (e.g. GW, GF). These and further compositions types are defined by the Food and Agriculture Organization of the United Nations (FAO). An overview is given in the "Catalogue of pesticide formulation types and international coding system", Technical Monograph No. 2, 6th Ed. May 2008, Croplife International. Preferably, the composition is in form of one of the following types: EC, SC, FS, SE, OD and WG, more preferred EC, SC, OD and WG.
Further details about examples of composition types and their preparation are given below. If two or more compounds of the invention are present, the outlined amount of compound of formula (I) refers to the total amount of compounds of the present invention. This applies mutatis mutandis for any further component of the composition, if two or more representatives of such component, e.g. wetting agent, binder, are present. i) Water-soluble concentrates (SL, LS)
10-60 % by weight of at least one compound of formula (I) and 5-15 % by weight surfactant (e.g. polyoxyethylene fatty alcohol ether) are dissolved in such amount of water and/or water-soluble solvent (e.g. alcohols such as propylene glycol or carbonates such as propylene carbonate) to result in a total amount of 100 % by weight. Before application the concentrate is diluted with water. ii) Dispersible concentrates (DC)
5-25 % by weight of at least one compound of formula (I) and 1-10 % by weight surfactant and/or binder (e.g. polyvinylpyrrolidone) are dissolved in such amount of organic solvent (e.g. cyclohexanone) to result in a total amount of 100 % by weight. Dilution with water gives a dispersion. iii) Emulsifiable concentrates (EC)
15-70 % by weight of at least one compound of formula (I) and 5-10 % by weight surfactant (e.g. a mixture of calcium dodecylbenzenesulfonate and castor oil ethoxylate) are dissolved in such amount of water- insoluble organic solvent (e.g. aromatic hydrocarbon or fatty acid amide) and if needed additional water- soluble solvent to result in a total amount of 100 % by weight. Dilution with water gives an emulsion. iv) Emulsions (EW, EO, ES)
5-40 % by weight of at least one compound of formula (I) and 1-10 % by weight surfactant (e.g. a mixture of calcium dodecylbenzenesulfonate and castor oil ethoxylate) are dissolved in 20-40 % by weight water- insoluble organic solvent (e.g. aromatic hydrocarbon). This mixture is added to such amount of water by means of an emulsifying machine to result in a total amount of 100 % by weight. The resulting composition is a homogeneous emulsion. Before application the emulsion may be further diluted with water. v) Suspensions and suspension concentrates v-1) Water-based (SC, FS)
In a suitable grinding equipment, e.g. an agitated ball mill, 20-60 % by weight of at least one compound of formula (I) are comminuted with addition of 2-10 % by weight surfactant (e.g. sodium lignosulfonate and polyoxyethylene fatty alcohol ether), 0.1-2 % by weight thickener (e.g. xanthan gum) and waterto give a fine active substance suspension. The water is added in such amount to result in a total amount of 100 % by weight. Dilution with water gives a stable suspension of the active substance. For FS type compositions up to 40 % by weight binder (e.g. polyvinylalcohol) is added. v-2) Oil-based (OD, OF)
In a suitable grinding equipment, e.g. an agitated ball mill, 20-60 % by weight of at least one compound of formula (I) are comminuted with addition of 2-10 % by weight surfactant (e.g. sodium lignosulfonate and polyoxyethylene fatty alcohol ether), 0.1-2 % by weight thickener (e.g. modified clay, in particular Bentone, or silica) and an organic carrier to give a fine active substance oil suspension. The organic carrier is added in such amount to result in a total amount of 100 % by weight. Dilution with water gives a stable dispersion of the active substance. vi) Water-dispersible granules and water-soluble granules (WG, SG)
50-80 % by weight of at least one compound of formula (I) are ground finely with addition of surfactant (e.g. sodium lignosulfonate and polyoxyethylene fatty alcohol ether) and converted to water-dispersible or water- soluble granules by means of technical appliances (e. g. extrusion, spray tower, fluidized bed). The surfactant is used in such amount to result in a total amount of 100 % by weight. Dilution with water gives a stable dispersion or solution of the active substance. vii) Water-dispersible powders and water-soluble powders (WP, SP, WS)
50-80 % by weight of at least one compound of formula (I) are ground in a rotor-stator mill with addition of 1-8 % by weight surfactant (e.g. sodium lignosulfonate, polyoxyethylene fatty alcohol ether) and such amount of solid carrier, e.g. silica gel, to result in a total amount of 100 % by weight. Dilution with water gives a stable dispersion or solution of the active substance. viii) Gel (GW, GF)
In an agitated ball mill, 5-25 % by weight of at least one compound of formula (I) are comminuted with addition of 3-10 % by weight surfactant (e.g. sodium lignosulfonate), 1-5 % by weight binder (e.g. carboxymethylcellulose) and such amount of water to result in a total amount of 100 % by weight. This results in a fine suspension of the active substance. Dilution with water gives a stable suspension of the active substance. ix) Microemulsion (ME)
5-20 % by weight of at least one compound of formula (I) are added to 5-30 % by weight organic solvent blend (e.g. fatty acid dimethylamide and cyclohexanone), 10-25 % by weight surfactant blend (e.g. polyoxyethylene fatty alcohol ether and arylphenol ethoxylate), and such amount of waterto result in a total amount of 100 % by weight. This mixture is stirred for 1 h to produce spontaneously a thermodynamically stable microemulsion. x) Microcapsules (CS) An oil phase comprising 5-50 % by weight of at least one compound of formula (I), 0-40 % by weight water- insoluble organic solvent (e.g. aromatic hydrocarbon), 2-15 % by weight acrylic monomers (e.g. methylmethacrylate, methacrylic acid and a di- or triacrylate) are dispersed into an aqueous solution of a protective colloid (e.g. polyvinyl alcohol). Radical polymerization initiated by a radical initiator results in the formation of poly(meth)acrylate microcapsules. Alternatively, an oil phase comprising 5-50 % by weight of at least one compound of formula (I), 0-40 % by weight water-insoluble organic solvent (e.g. aromatic hydrocarbon), and an isocyanate monomer (e.g. diphenylmethene-4,4'-diisocyanatae) are dispersed into an aqueous solution of a protective colloid (e.g. polyvinyl alcohol). The addition of a polyamine (e.g. hexamethylenediamine) results in the formation of polyurea microcapsules. The monomers amount to 1-10 % by weight of the total CS composition. xi) Dustable powders (DP, DS)
1-10 % by weight of at least one compound of formula (I) are ground finely and mixed intimately with such amount of solid carrier, e.g. finely divided kaolin, to result in a total amount of 100 % by weight. xii) Granules (GR, FG)
0.5-30 % by weight of at least one compound of formula (I) are ground finely and associated with such amount of solid carrier (e.g. silicate) to result in a total amount of 100 % by weight. Granulation is achieved by extrusion, spray-drying or the fluidized bed. xiii) Ultra-low volume liquids (UL)
1-50 % by weight of at least one compound of formula (I) are dissolved in such amount of organic solvent, e.g. aromatic hydrocarbon, to result in a total amount of 100 % by weight.
The compositions types i) to xiii) may optionally comprise further auxiliaries, such as 0.1-1 % by weight preservatives, 0.1-1 % by weight antifoams, 0.1-1 % by weight dyes and/or pigments, and 5-10% by weight antifreezes.
Mixtures/Combinations
The compound of formula (I) and the composition comprising at least one compound of formula (I) can be mixed with other active ingredients like fungicides, bactericides, acaricides, nematicides, insecticides, biological control agents or herbicides. Mixtures with fertilizers, growth regulators, safeners, nitrification inhibitors, semiochemicals and/or other agriculturally beneficial agents are also possible. This may allow to broaden the activity spectrum or to prevent development of resistance. Examples of known fungicides, insecticides, acaricides, nematicides and bactericides are disclosed in the Pesticide Manual, 17th Edition. The active ingredients specified herein by their Common Name are known and described, for example, in The Pesticide Manual (16th Ed. British Crop Protection Council) or can be searched on the internet (e.g. www.alanwood.net/pesticides).
Where a compound (A) or a compound (B) can be present in tautomeric form, such a compound is understood herein above and herein below also to include, where applicable, corresponding tautomeric forms, even when these are not specifically mentioned in each case.
Examples of fungicides which could be mixed with the compound of formula (I) and the composition comprising at least one compound of formula (I) are:
1) Inhibitors of the ergosterol biosynthesis, for example (1.001) cyproconazole, (1.002) difenoconazole, (1.003) epoxiconazole, (1.004) fenbuconazole, (1.005) fenhexamid, (1.006) fenpropidin, (1.007) fenpropimorph, (1.008) fenpyrazamine, (1.009) Fluoxytioconazole, (1.010) fluquinconazole, (1.011) flutriafol, (1.012) hexaconazole, (1.013) imazalil, (1.014) imazalil sulfate, (1.015) ipconazole, (1.016) ipfentrifluconazole, (1.017) mefentrifluconazole, (1.018) metconazole, (1.019) myclobutanil, (1.020) paclobutrazol, (1 .021) penconazole, (1 .022) prochloraz, (1 .023) propiconazole, (1 .024) prothioconazole, (1.025) pyrisoxazole, (1.026) spiroxamine, (1.027) tebuconazole, (1.028) tetraconazole, (1.029) triadimenol, (1.030) tridemorph, (1.031) triticonazole, (1.032) (1 R,2S,5S)-5-(4-chlorobenzyl)-2- (chloromethyl)-2-methyl-1 -(1 H-1 ,2,4-triazol-1 -ylmethyl)cyclopentanol, (1 .033) (1 S,2R,5R)-5-(4- chlorobenzyl)-2-(chloromethyl)-2-methyl-1 -(1 H-1 ,2,4-triazol-1 -ylmethyl)cyclopentanol, (1 .034) (2R)-2- (1 -chlorocyclopropyl)-4-[(1 R)-2,2-dichlorocyclopropyl]-1 -(1 H-1 ,2,4-triazol-1 -yl)butan-2-ol, (1 .035) (2R)- 2-(1 -chlorocyclopropyl)-4-[(1 S)-2,2-dichlorocyclopropyl]-1 -(1 H-1 ,2,4-triazol-1 -yl)butan-2-ol, (1 .036) (2R)-2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1 -(1 H-1 ,2,4-triazol-1 -yl)propan-2-ol, (1 .037) (2S)-2-(1 -chlorocyclopropyl)-4-[(1 R)-2,2-dichlorocyclopropyl]-1 -(1 H-1 ,2,4-triazol-1 -yl)butan-2-ol,
(1 .038) (2S)-2-(1 -chlorocyclopropyl)-4-[(1 S)-2,2-dichlorocyclopropyl]-1 -(1 H-1 ,2,4-triazol-1 -yl)butan-2- ol, (1 .039) (2S)-2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1 -(1 H-1 ,2,4-triazol-1 -yl)propan-2-ol, (1 .040) (R)-[3-(4-chloro-2-fluorophenyl)-5-(2,4-difluorophenyl)-1 ,2-oxazol-4-yl](pyridin-3-yl)methanol, (1 .041) (S)-[3-(4-chloro-2-fluorophenyl)-5-(2,4-difluorophenyl)-1 ,2-oxazol-4-yl](pyridin-3-yl)methanol, (1 .042) [3-(4-chloro-2-fluorophenyl)-5-(2,4-difluorophenyl)-1 ,2-oxazol-4-yl](pyridin-3-yl)methanol, (1 .043) 1 -({(2R,4S)-2-[2-chloro-4-(4-chlorophenoxy)phenyl]-4-methyl-1 ,3-dioxolan-2-yl}methyl)-1 H-
1 .2.4-triazole, (1 .044) 1 -({(2S,4S)-2-[2-chloro-4-(4-chlorophenoxy)phenyl]-4-methyl-1 ,3-dioxolan-2- yl}methyl)-1 H-1 ,2,4-triazole, (1 .045) 1 -{[3-(2-chlorophenyl)-2-(2,4-difluorophenyl)oxiran-2-yl]methyl}- 1 H-1 ,2,4-triazol-5-yl thiocyanate, (1.046) 1-{[rel(2R,3R)-3-(2-chlorophenyl)-2-(2,4- difluorophenyl)oxiran-2-yl]methyl}-1 H-1 ,2,4-triazol-5-yl thiocyanate, (1 .047) 1-{[rel(2R,3S)-3-(2- chlorophenyl)-2-(2,4-difluorophenyl)oxiran-2-yl]methyl}-1 H-1 ,2,4-triazol-5-yl thiocyanate, (1 .048) 2- [(2R,4R,5R)-1-(2,4-dichlorophenyl)-5-hydroxy-2,6,6-trimethylheptan-4-yl]-2,4-dihydro-3H-1 ,2,4- triazole-3-thione, (1 .049) 2-[(2R,4R,5S)-1 -(2,4-dichlorophenyl)-5-hydroxy-2,6,6-trimethylheptan-4-yl]-
2.4-dihydro-3H-1 ,2,4-triazole-3-thione, (1 .050) 2-[(2R,4S,5R)-1-(2,4-dichlorophenyl)-5-hydroxy-2,6,6- trimethylheptan-4-yl]-2,4-dihydro-3H-1 ,2,4-triazole-3-thione, (1 .051) 2-[(2R,4S,5S)-1-(2,4- dichlorophenyl)-5-hydroxy-2,6,6-trimethylheptan-4-yl]-2,4-dihydro-3H-1 ,2,4-triazole-3-thione, (1 .052) 2- [(2S,4R,5R)-1-(2,4-dichlorophenyl)-5-hydroxy-2,6,6-trimethylheptan-4-yl]-2,4-dihydro-3H-1 ,2,4- triazole-3-thione, (1 .053) 2-[(2S,4R,5S)-1 -(2,4-dichlorophenyl)-5-hydroxy-2,6,6-trimethylheptan-4-yl]-
2,4-dihydro-3H-1 ,2,4-triazole-3-thione, (1 .054) 2-[(2S,4S,5R)-1-(2,4-dichlorophenyl)-5-hydroxy-2,6,6- trimethylheptan-4-yl]-2,4-dihydro-3H-1 ,2,4-triazole-3-thione, (1 .055) 2-[(2S,4S,5S)-1-(2,4- dichlorophenyl)-5-hydroxy-2,6,6-trimethylheptan-4-yl]-2,4-dihydro-3H-1 ,2,4-triazole-3-thione, (1 .056) 2- [1-(2,4-dichlorophenyl)-5-hydroxy-2,6,6-trimethylheptan-4-yl]-2,4-dihydro-3H-1 ,2,4-triazole-3-thione,
(1 .057) 2-[6-(4-bromophenoxy)-2-(trifluoromethyl)-3-pyridyl]-1-(1 ,2,4-triazol-1-yl)propan-2-ol, (1 .058) 2- [6-(4-chlorophenoxy)-2-(trifluoromethyl)-3-pyridyl]-1-(1 ,2,4-triazol-1-yl)propan-2-ol, (1 .059) 2-{[3-(2- chlorophenyl)-2-(2,4-difluorophenyl)oxiran-2-yl]methyl}-2,4-dihydro-3H-1 ,2,4-triazole-3-thione, (1 .060) 2-{[rel(2R,3R)-3-(2-chlorophenyl)-2-(2,4-difluorophenyl)oxiran-2-yl]methyl}-2,4-dihydro-3H-1 ,2,4- triazole-3-thione, (1 .061) 2-{[rel(2R,3S)-3-(2-chlorophenyl)-2-(2,4-difluorophenyl)oxiran-2-yl]methyl}-
2.4-dihydro-3H-1 ,2,4-triazole-3-thione, (1 .062) 3-[2-(1-chlorocyclopropyl)-3-(3-chloro-2-fluoro-phenyl)- 2-hydroxy-propyl]imidazole-4-carbonitrile, (1 .063) 5-(4-chlorobenzyl)-2-(chloromethyl)-2-methyl-1 -(1 H-
1 .2.4-triazol-1-ylmethyl)cyclopentanol, (1 .064) 5-(allylsulfanyl)-1-{[3-(2-chlorophenyl)-2-(2,4- difluorophenyl)oxiran-2-yl]methyl}-1 H-1 ,2,4-triazole, (1 .065) 5-(allylsulfanyl)-1-{[rel(2R,3R)-3-(2- chlorophenyl)-2-(2,4-difluorophenyl)oxiran-2-yl]methyl}-1 H-1 ,2,4-triazole, (1 .066) 5-(allylsulfanyl)-1 - {[rel(2R,3S)-3-(2-chlorophenyl)-2-(2,4-difluorophenyl)oxiran-2-yl]methyl}-1 H-1 ,2,4-triazole, (1 .067) methyl 2-[2-chloro-4-(4-chlorophenoxy)phenyl]-2-hydroxy-3-(1 H-1 ,2,4-triazol-1 -yl)propanoate, (1 .068) N'-(2-chloro-5-methyl-4-phenoxyphenyl)-N-ethyl-N-methylimidoformamide, (1 .069) N'-[2-chloro-4-(2- fluorophenoxy)-5-methylphenyl]-N-ethyl-N-methylimidoformamide, (1 .070) N'-[5-bromo-6-(2,3-dihydro- 1 H-inden-2-yloxy)-2-methylpyridin-3-yl]-N-ethyl-N-methylimidoformamide, (1 .071) N'-{4-[(4,5-dichloro- 1 ,3-thiazol-2-yl)oxy]-2,5-dimethylphenyl}-N-ethyl-N-methylimidoformamide, (1 .072) N'-{5-bromo-2- methyl-6-[(1 -propoxypropan-2-yl)oxy]pyridin-3-yl}-N-ethyl-N-methylimidoformamide, (1 .073) N'-{5- bromo-6-[(1 R)-1-(3,5-difluorophenyl)ethoxy]-2-methylpyridin-3-yl}-N-ethyl-N-methylimidoformamide,
(1 .074) N'-{5-bromo-6-[(1 S)-1 -(3,5-difluorophenyl)ethoxy]-2-methylpyridin-3-yl}-N-ethyl-N- methylimidoformamide, (1 .075) N'-{5-bromo-6-[(cis-4-isopropylcyclohexyl)oxy]-2-methylpyridin-3-yl}-N- ethyl-N-methylimidoformamide, (1 .076) N'-{5-bromo-6-[(trans-4-isopropylcyclohexyl)oxy]-2- methylpyridin-3-yl}-N-ethyl-N-methylimidoformamide, (1 .077) N'-{5-bromo-6-[1-(3,5- difluorophenyl)ethoxy]-2-methylpyridin-3-yl}-N-ethyl-N-methylimidoformamide, (1 .078) N-isopropyl-N'- [5-methoxy-2-methyl-4-(2, 2, 2-trifluoro-1 -hydroxy-1 -phenylethyl)phenyl]-N-methylimidoformamide.
2) Inhibitors of the respiratory chain at complex I or II, for example (2.001) benzovindiflupyr, (2.002) bixafen, (2.003) boscalid, (2.004) carboxin, (2.005) cyclobutrifluram, (2.006) flubeneteram, (2.007) fluindapyr, (2.008) fluopyram, (2.009) flutolanil, (2.010) fluxapyroxad, (2.011) furametpyr, (2.012) inpyrfluxam, (2.013) Isofetamid, (2.014) isoflucypram, (2.015) isopyrazam, (2.016) penflufen, (2.017) penthiopyrad, (2.018) pydiflumetofen, (2.019) pyrapropoyne, (2.020) pyraziflumid, (2.021) sedaxane, (2.022) Thifluxamide, (2.023) 1 ,3-dimethyl-N-(1 ,1 ,3-trimethyl-2, 3-dihydro- 1 H-inden-4-yl)-1 H-pyrazole- 4-carboxamide, (2.024) 1 ,3-dimethyl-N-[(3R)-1 ,1 ,3-trimethyl-2, 3-dihydro- 1 H-inden-4-yl]-1 H-pyrazole-4- carboxamide, (2.025) 1 ,3-dimethyl-N-[(3S)-1 ,1 ,3-trimethyl-2, 3-dihydro- 1 H-inden-4-yl]-1 H-pyrazole-4- carboxamide, (2.026) 1-methyl-3-(trifluoromethyl)-N-[2'-(trifluoromethyl)biphenyl-2-yl]-1 H-pyrazole-4- carboxamide, (2.027) 2-fluoro-6-(trifluoromethyl)-N-(1 ,1 ,3-trimethyl-2, 3-dihydro- 1 H-inden-4- yl)benzamide, (2.028) 3-(difluoromethyl)-1 -methyl-N-(1 ,1 ,3-trimethyl-2, 3-dihydro- 1 H-inden-4-yl)-1 H- pyrazole-4-carboxamide, (2.029) 3-(difluoromethyl)-1-methyl-N-[(3S)-1 ,1 ,3-trimethyl-2,3-dihydro-1 H- inden-4-yl]-1 H-pyrazole-4-carboxamide, (2.030) 3-(difluoromethyl)-N-[(3R)-7-fluoro-1 ,1 ,3-trimethyl-2,3- dihydro-1 H-inden-4-yl]-1 -methyl-1 H-pyrazole-4-carboxamide, (2.031) 3-(difluoromethyl)-N-[(3S)-7- fluoro-1 ,1 ,3-trimethyl-2, 3-dihydro- 1 H-inden-4-yl]-1 -methyl-1 H-pyrazole-4-carboxamide, (2.032) 5,8- difluoro-N-[2-(2-fluoro-4-{[4-(trifluoromethyl)pyridin-2-yl]oxy}phenyl)ethyl]quinazolin-4-amine, (2.033) N- [(1 R,4S)-9-(dichloromethylene)-1 ,2,3,4-tetrahydro-1 ,4-methanonaphthalen-5-yl]-3-(difluoromethyl)-1 - methyl-1 H-pyrazole-4-carboxamide, (2.034) N-[(1 S,4R)-9-(dichloromethylene)-1 ,2,3,4-tetrahydro-1 ,4- methanonaphthalen-5-yl]-3-(difluoromethyl)-1 -methyl-1 H-pyrazole-4-carboxamide, (2.035) N-[1-(2,4- dichlorophenyl)-1-methoxypropan-2-yl]-3-(difluoromethyl)-1 -methyl-1 H-pyrazole-4-carboxamide,
(2.036) N-[rac-(1S,2S)-2-(2,4-dichlorophenyl)cyclobutyl]-2-(trifluoromethyl)nicotinamide.
3) Inhibitors of the respiratory chain at complex III, for example (3.001) ametoctradin, (3.002) amisulbrom, (3.003) azoxystrobin, (3.004) coumethoxystrobin, (3.005) coumoxystrobin, (3.006) cyazofamid, (3.007) dimoxystrobin, (3.008) enoxastrobin, (3.009) famoxadone, (3.010) fenamidone, (3.011) fenpicoxamid, (3.012) florylpicoxamid, (3.013) flufenoxystrobin, (3.014) fluoxastrobin, (3.015) kresoxim-methyl, (3.016) mandestrobin, (3.017) metarylpicoxamid, (3.018) metominostrobin, (3.019) metyltetraprole, (3.020) orysastrobin, (3.021) picoxystrobin, (3.022) pyraclostrobin, (3.023) pyrametostrobin, (3.024) pyraoxystrobin, (3.025) trifloxystrobin, (3.026) (2E)-2-{2-[({[(1 E)-1-(3-{[(E)-1- fluoro-2-phenylvinyl]oxy}phenyl)ethylidene]amino}oxy)methyl]phenyl}-2-(methoxyimino)-N- methylacetamide, (3.027) (2E,3Z)-5-{[1-(4-chlorophenyl)-1 H-pyrazol-3-yl]oxy}-2-(methoxyimino)-N,3- dimethylpent-3-enamide, (3.028) (2R)-2-{2-[(2,5-dimethylphenoxy)methyl]phenyl}-2-methoxy-N- methylacetamide, (3.029) (2S)-2-{2-[(2,5-dimethylphenoxy)methyl]phenyl}-2-methoxy-N- methylacetamide, (3.030) N-(3-ethyl-3,5,5-trimethylcyclohexyl)-3-formamido-2-hydroxybenzamide, (3.031) (2E,3Z)-5-{[1-(4-chloro-2-fluorophenyl)-1 H-pyrazol-3-yl]oxy}-2-(methoxyimino)-N,3- dimethylpent-3-enamide, (3.032) methyl {5-[3-(2,4-dimethylphenyl)-1 H-pyrazol-1-yl]-2- methylbenzyljcarbamate.
4) Inhibitors of the mitosis and cell division, for example (4.001) carbendazim, (4.002) diethofencarb,
(4.003) ethaboxam, (4.004) fluopicolide, (4.005) fluopimomide, (4.006) metrafenone, (4.007) pencycuron, (4.008) pyridachlometyl, (4.009) pyriofenone (chlazafenone), (4.010) thiabendazole, (4.011) thiophanate-methyl, (4.012) zoxamide, (4.013) 3-chloro-5-(4-chlorophenyl)-4-(2,6- difluorophenyl)-6-methylpyridazine, (4.014) 3-chloro-5-(6-chloropyridin-3-yl)-6-methyl-4-(2,4,6- trifluorophenyl)pyridazine, (4.015) 4-(2-bromo-4-fluorophenyl)-N-(2,6-difluorophenyl)-1 ,3-dimethyl-1 H- pyrazol-5-amine, (4.016) 4-(2-bromo-4-fluorophenyl)-N-(2-bromo-6-fluorophenyl)-1 ,3-dimethyl-1 H- pyrazol-5-amine, (4.017) 4-(2-bromo-4-fluorophenyl)-N-(2-bromophenyl)-1 ,3-dimethyl-1 H-pyrazol-5- amine, (4.018) 4-(2-bromo-4-fluorophenyl)-N-(2-chloro-6-fluorophenyl)-1 ,3-dimethyl-1 H-pyrazol-5- amine, (4.019) 4-(2-bromo-4-fluorophenyl)-N-(2-chlorophenyl)-1 ,3-dimethyl-1 H-pyrazol-5-amine, (4.020) 4-(2-bromo-4-fluorophenyl)-N-(2-fluorophenyl)-1 ,3-dimethyl-1 H-pyrazol-5-amine, (4.021) 4-(2- chloro-4-fluorophenyl)-N-(2,6-difluorophenyl)-1 ,3-dimethyl-1 H-pyrazol-5-amine, (4.022) 4-(2-chloro-4- fluorophenyl)-N-(2-chloro-6-fluorophenyl)-1 ,3-dimethyl-1 H-pyrazol-5-amine, (4.023) 4-(2-chloro-4- fluorophenyl)-N-(2-chlorophenyl)-1 ,3-dimethyl-1 H-pyrazol-5-amine, (4.024) 4-(2-chloro-4-fluorophenyl)- N-(2-fluorophenyl)-1 ,3-dimethyl-1 H-pyrazol-5-amine, (4.025) 4-(4-chlorophenyl)-5-(2,6-difluorophenyl)- 3,6-dimethylpyridazine, (4.026) N-(2-bromo-6-fluorophenyl)-4-(2-chloro-4-fluorophenyl)-1 ,3-dimethyl- 1 H-pyrazol-5-amine, (4.027) N-(2-bromophenyl)-4-(2-chloro-4-fluorophenyl)-1 ,3-dimethyl-1 H-pyrazol- 5-amine, (4.028) N-(4-chloro-2,6-difluorophenyl)-4-(2-chloro-4-fluorophenyl)-1 ,3-dimethyl-1 H-pyrazol- 5-amine.
5) Compounds capable to have a multisite action, for example (5.001) bordeaux mixture, (5.002) captafol, (5.003) captan, (5.004) chlorothalonil, (5.005) copper hydroxide, (5.006) copper naphthenate, (5.007) copper oxide, (5.008) copper oxychloride, (5.009) copper(2+) sulfate, (5.010) dithianon, (5.011) dodine, (5.012) folpet, (5.013) mancozeb, (5.014) maneb, (5.015) metiram, (5.016) metiram zinc, (5.017) oxine-copper, (5.018) propineb, (5.019) sulfur and sulfur preparations including calcium polysulfide, (5.020) thiram, (5.021) zineb, (5.022) ziram, (5.023) 6-ethyl-5,7-dioxo-6,7-dihydro-5H- pyrrolo[3',4':5,6][1 ,4]dithiino[2,3-c][1 ,2]thiazole-3-carbonitrile.
6) Compounds capable to induce a host defence, for example (6.001) acibenzolar-S-methyl, (6.002) fosetyl-aluminium, (6.003) fosetyl-calcium, (6.004) fosetyl-sodium, (6.005) isotianil, (6.006) phosphorous acid and its salts, (6.007) probenazole, (6.008) tiadinil.
7) Inhibitors of the amino acid and/or protein biosynthesis, for example (7.001) cyprodinil, (7.002) kasugamycin, (7.003) kasugamycin hydrochloride hydrate, (7.004) oxytetracycline, (7.005) pyrimethanil
8) Inhibitors of the ATP production, for example (8.001) silthiofam.
9) Inhibitors of the cell wall synthesis, for example (9.001) benthiavalicarb, (9.002) dimethomorph, (9.003) flumorph, (9.004) iprovalicarb, (9.005) mandipropamid, (9.006) pyrimorph, (9.007) valifenalate, (9.008) (2E)-3-(4-tert-butylphenyl)-3-(2-chloropyridin-4-yl)-1-(morpholin-4-yl)prop-2-en-1-one, (9.009) (2Z)-3-(4-tert-butylphenyl)-3-(2-chloropyridin-4-yl)-1-(morpholin-4-yl)prop-2-en-1-one.
10) Inhibitors of the lipid synthesis or transport, or membrane synthesis, for example (10.001) fluoxapiprolin, (10.002) natamycin, (10.003) oxathiapiprolin, (10.004) propamocarb, (10.005) propamocarb hydrochloride, (10.006) propamocarb-fosetylate, (10.007) tolclofos-methyl, (10.008) 1-(4- {4-[(5R)-5-(2,6-difluorophenyl)-4,5-dihydro-1 ,2-oxazol-3-yl]-1 ,3-thiazol-2-yl}piperidin-1-yl)-2-[5-methyl- 3-(trifluoromethyl)-1 H-pyrazol-1 -yl]ethanone, (10.009) 1 -(4-{4-[(5S)-5-(2,6-difluorophenyl)-4,5-dihydro- 1 ,2-oxazol-3-yl]-1 ,3-thiazol-2-yl}piperidin-1 -yl)-2-[5-methyl-3-(trifluoromethyl)-1 H-pyrazol-1 - yl]ethanone, (10.010) 2-[3,5-bis(difluoromethyl)-1 H-pyrazol-1 -yl]-1 -[4-(4-{5-[2-(prop-2-yn-1 - yloxy)phenyl]-4,5-dihydro-1 ,2-oxazol-3-yl}-1 ,3-thiazol-2-yl)piperidin-1 -yl]ethanone, (10.011) 2-[3,5- bis(difluoromethyl)-1 H-pyrazol-1 -yl]-1 -[4-(4-{5-[2-chloro-6-(prop-2-yn-1 -yloxy)phenyl]-4, 5-dihydro- 1 ,2- oxazol-3-yl}-1 ,3-thiazol-2-yl)piperidin-1-yl]ethanone, (10.012) 2-[3,5-bis(difluoromethyl)-1 H-pyrazol-1 - yl]-1 -[4-(4-{5-[2-fluoro-6-(prop-2-yn-1 -yloxy)phenyl]-4, 5-dihydro- 1 ,2-oxazol-3-yl}-1 ,3-thiazol-2- yl)piperidin-1 -yl]e]hanone, (10.013) 2-{(5R)-3-[2-(1 -{[3,5-bis(difluoromethyl)-1 H-pyrazol-1 - yl]acetyl}piperidin-4-yl)-1 ,3-thiazol-4-yl]-4,5-dihyd ro-1 ,2-oxazol-5-yl}-3-chlorophenyl methanesulfonate, (10.014) 2-{(5S)-3-[2-(1 -{[3,5-bis(difluoromethyl)-1 H-pyrazol-1 -yl]acetyl}piperidin-4-yl)-1 ,3-thiazol-4-yl]- 4,5-dihydro-1 ,2-oxazol-5-yl}-3-chlorophenyl methanesulfonate, (10.015) 2-{3-[2-(1 -{[3,5- bis(difluoromethyl)-1 H-pyrazol-1 -yl]acetyl}piperidin-4-yl)-1 ,3-thiazol-4-yl]-4,5-dihydro-1 ,2-oxazol-5- yl}phenyl methanesulfonate, (10.016) 3-[2-(1-{[5-methyl-3-(trifluoromethyl)-1 H-pyrazol-1 - yl]acetyl}piperidin-4-yl)-1 ,3-thiazol-4-yl]-1 ,5-dihydro-2,4-benzodioxepin-6-yl methanesulfonate, (10.017) 9-fluoro-3-[2-(1 -{[5-methyl-3-(trifluoromethyl)-1 H-pyrazol-1 -yl]acetyl}piperidin-4-yl)-1 ,3-thiazol-4-yl]-1 ,5- dihydro-2,4-benzodioxepin-6-yl methanesulfonate, (10.018) 3-[2-(1 -{[3,5-bis(difluoromethyl)-1 H- pyrazol-1 -yl]acetyl}piperidin-4-yl)-1 ,3-thiazol-4-yl]-1 ,5-dihydro-2,4-benzodioxepin-6-yl methanesulfonate, (10.019) 3-[2-(1 -{[3,5-bis(difluoromethyl)-1 H-pyrazol-1 -yl]acetyl}piperidin-4-yl)-1 ,3- thiazol-4-yl]-9-fluoro-1 ,5-dihydro-2,4-benzodioxepin-6-yl methanesulfonate.
11) Inhibitors of the melanin biosynthesis, for example (11 .001) tolprocarb, (11 .002) tricyclazole.
12) Inhibitors of the nucleic acid synthesis, for example (12.001) benalaxyl, (12.002) benalaxyl-M (kiralaxyl), (12.003) metalaxyl, (12.004) metalaxyl-M (mefenoxam).
13) Inhibitors of the signal transduction, for example (13.001) fludioxonil, (13.002) iprodione, (13.003) procymidone, (13.004) proquinazid, (13.005) quinoxyfen, (13.006) vinclozolin.
14) Compounds capable to act as an uncoupler, for example (14.001) fluazinam, (14.002) meptyldinocap.
15) Further compounds, for example (15.001) abscisic acid, (15.002) aminopyrifen, (15.003) benthiazole, (15.004) bethoxazin, (15.005) capsimycin, (15.006) carvone, (15.007) chinomethionat, (15.008) chloroinconazide, (15.009) cufraneb, (15.010) cyflufenamid, (15.011) cymoxanil, (15.012) cyprosulfamide, (15.013) dipymetitrone, (15.014) flutianil, (15.015) flufenoxadiazam, (15.016) flumetylsulforim, (15.017) ipflufenoquin, (15.018) methyl isothiocyanate, (15.019) mildiomycin, (15.020) nickel dimethyldithiocarbamate, (15.021) nitrothal-isopropyl, (15.022) oxyfenthiin, (15.023) pentachlorophenol and salts, (15.024) picarbutrazox, (15.025) quinofumelin, (15.026) D-tagatose, (15.027) tebufloquin, (15.028) tecloftalam, (15.029) tolnifanide, (15.030) 2-(6-benzylpyridin-2- yl)quinazoline, (15.031) 2-[6-(3-fluoro-4-methoxyphenyl)-5-methylpyridin-2-yl]quinazoline, (15.032) 2- phenylphenol and salts, (15.033) 4-amino-5-fluoropyrimidin-2-ol (tautomeric form: 4-amino-5- fluoropyrimidin-2(1 H)-one), (15.034) 4-oxo-4-[(2-phenylethyl)amino]butanoic acid, (15.035) 5-amino- 1 ,3,4-thiadiazole-2-thiol, (15.036) 5-chloro-N'-phenyl-N'-(prop-2-yn-1-yl)thiophene-2-sulfonohydrazide, (15.037) 5-fluoro-2-[(4-fluorobenzyl)oxy]pyrimidin-4-amine, (15.038) 5-fluoro-2-[(4- methylbenzyl)oxy]pyrimidin-4-amine, (15.039) but-3-yn-1-yl {6-[({[(Z)-(1 -methyl-1 H-tetrazol-5- yl)(phenyl)methylene]amino}oxy)methyl]pyridin-2-yl}carbamate, (15.040) ethyl (2Z)-3-amino-2-cyano-3- phenylacrylate, (15.041) phenazine-1 -carboxylic acid, (15.042) propyl 3,4,5-trihydroxybenzoate, (15.043) quinolin-8-ol, (15.044) quinolin-8-ol sulfate (2:1), (15.045) 1-(4,5-dimethyl-1 H-benzimidazol-1- yl)-4,4-difluoro-3,3-dimethyl-3,4-dihydroisoquinoline, (15.046) 1-(5-(fluoromethyl)-6-methyl-pyridin-3- yl)-4,4-difluoro-3,3-dimethyl-3,4-dihydroisoquinoline, (15.047) 1-(5,6-dimethylpyridin-3-yl)-4,4-difluoro- 3,3-dimethyl-3,4-dihydroisoquinoline, (15.048) 1-(6-(difluoromethyl)-5-methoxy-pyridin-3-yl)-4,4- difluoro-3,3-dimethyl-3,4-dihydroisoquinoline, (15.049) 1-(6-(difluoromethyl)-5-methyl-pyridin-3-yl)-4,4- difluoro-3,3-dimethyl-3,4-dihydroisoquinoline, (15.050) 1-(6,7-dimethylpyrazolo[1 ,5-a]pyridin-3-yl)-4,4- difluoro-3,3-dimethyl-3,4-dihydroisoquinoline, (15.051) 2-{2-fluoro-6-[(8-fluoro-2-methylquinolin-3- yl)oxy]phenyl}propan-2-ol, (15.052) 3-(4,4,5-trifluoro-3,3-dimethyl-3,4-dihydroisoquinolin-1-yl)quinoline, (15.053) 3-(4,4-difluoro-3,3-dimethyl-3,4-dihydroisoquinolin-1 -yl)-8-fluoroquinoline, (15.054) 3-(4,4- difluoro-5,5-dimethyl-4,5-dihydrothieno[2,3-c]pyridin-7-yl)quinoline, (15.055) 3-(5-fluoro-3, 3,4,4- tetramethyl-3,4-dihydroisoquinolin-1-yl)quinoline, (15.056) 5-bromo-1-(5,6-dimethylpyridin-3-yl)-3,3- dimethyl-3,4-dihydroisoquinoline, (15.057) 8-fluoro-3-(5-fluoro-3,3,4,4-tetramethyl-3,4- dihydroisoquinolin-1 -yl)-quinoline, (15.058) 8-fluoro-3-(5-fluoro-3,3-dimethyl-3,4-dihydroisoquinolin-1- yl)-quinoline, (15.059) 8-fluoro-N-(4,4,4-trifluoro-2-methyl-1-phenylbutan-2-yl)quinoline-3-carboxamide, (15.060) 8-fluoro-N-[(2S)-4,4,4-trifluoro-2-methyl-1-phenylbutan-2-yl]quinoline-3-carboxamide, (15.061) 9-fluoro-2,2-dimethyl-5-(quinolin-3-yl)-2,3-dihydro-1 ,4-benzoxazepine, (15.062) N-(2,4-dimethyl-1- phenylpentan-2-yl)-8-fluoroquinoline-3-carboxamide, (15.063) N-[(2S)-2,4-dimethyl-1-phenylpentan-2- yl]-8-fluoroquinoline-3-carboxamide, (15.064) 1 ,1-diethyl-3-[[4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3- yl]phenyl]methyl]urea, (15.065) 1 ,3-dimethoxy-1 -[[4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3- yl]phenyl]methyl]urea, (15.066) 1-[[3-fluoro-4-(5-(trifluoromethyl)-1 ,2,4-oxadiazol-3- yl)phenyl]methyl]azepan-2-one, (15.067) 1-[[4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3- yl]phenyl]methyl]piperidin-2-one, (15.068) 1-methoxy-1-methyl-3-[[4-[5-(trifluoromethyl)-1 ,2,4- oxadiazol-3-yl]phenyl]methyl]urea, (15.069) 1 -methoxy-3-methyl-1 -[[4-[5-(trifluoromethyl)-1 ,2,4- oxadiazol-3-yl]phenyl]methyl]urea, (15.070) 1 -methoxy-3-methyl-1 -[[4-[5-(trifluoromethyl)-1 ,2,4- oxadiazol-3-yl]phenyl]methyl]urea, (15.071) 2,2-difluoro-N-methyl-2-[4-[5-(trifluoromethyl)-1 ,2,4- oxadiazol-3-yl]phenyl]acetamide, (15.072) 3,3-dimethyl-1 -[[4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3- yl]phenyl]methyl]piperidin-2-one, (15.073) 3-ethyl-1-methoxy-1-[[4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol- 3-yl]phenyl]methyl]urea, (15.074) 4,4-dimethyl-1-[[4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3- yl]phenyl]methyl]pyrrolidin-2-one, (15.075) 4,4-dimethyl-2-[[4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3- yl]phenyl]methyl]isoxazolidin-3-one, (15.076) 4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3-yl]phenyl dimethylcarbamate, (15.077) 5,5-dimethyl-2-[[4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3- yl]phenyl]methyl]isoxazolidin-3-one, (15.078) 5-methyl-1-[[4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3- yl]phenyl]methyl]pyrrolidin-2-one, (15.079) ethyl 1-{4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3-yl]benzyl}- 1 H-pyrazole-4-carboxylate, (15.080) methyl {4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3- yl]phenyl}carbamate, (15.081) N-(1-methylcyclopropyl)-4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3- yl]benzamide, (15.082) N-(2,4-difluorophenyl)-4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3-yl]benzamide, (15.083) N,2-dimethoxy-N-[[4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3-yl]phenyl]methyl]propanamide, (15.084) N,N-dimethyl-1-{4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3-yl]benzyl}-1 H-1 ,2,4-triazol-3-amine, (15.085) N-[(E)-methoxyiminomethyl]-4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3-yl]benzamide, (15.086) N-[(E)-N-methoxy-C-methyl-carbonimidoyl]-4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3-yl]benzamide, (15.087) N-[(Z)-methoxyiminomethyl]-4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3-yl]benzamide, (15.088) N- [(Z)-N-methoxy-C-methyl-carbonimidoyl]-4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3-yl]benzamide,
(15.089) N-[[2,3-difluoro-4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3-yl]phenyl]methyl]-3,3,3-trifluoro- propanamide, (15.090) N-[[4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3-yl]phenyl]methyl]propanamide, (15.091) N-[4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3-yl]phenyl]cyclopropanecarboxamide, (15.092) N- {2,3-difluoro-4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3-yl]benzyl}butanamide, (15.093) N-{4-[5- (trifluoromethyl)-l ,2,4-oxadiazol-3-yl]benzyl}cyclopropanecarboxamide, (15.094) N-{4-[5-
(trifluoromethyl)-l ,2,4-oxadiazol-3-yl]phenyl}propanamide, (15.095) N-allyl-N-[[4-[5-(trifluoromethyl)- 1 ,2,4-oxadiazol-3-yl]phenyl]methyl]acetamide, (15.096) N-allyl-N-[[4-[5-(trifluoromethyl)-1 ,2,4- oxadiazol-3-yl]phenyl]methyl]propanamide, (15.097) N-ethyl-2-methyl-N-[[4-[5-(trifluoromethyl)-1 ,2,4- oxadiazol-3-yl]phenyl]methyl]propanamide, (15.098) N-methoxy-N-[[4-[5-(trifluoromethyl)-1 ,2,4- oxadiazol-3-yl]phenyl]methyl]cyclopropanecarboxamide, (15.099) N-methyl-4-[5-(trifluoromethyl)-1 ,2,4- oxadiazol-3-yl]benzamide, (15.100) N-methyl-4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3- yl]benzenecarbothioamide, (15.101) N-methyl-N-phenyl-4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3- yl]]enzamide.
All named mixing partners of the classes (1) to (15) as described here above can be present in the form of the free compound or, if their functional groups enable this, an agrochemically active salt thereof.
The compound of formula (I) and the composition may also be combined with one or more biological control agents.
As used herein, the term“biological control” is defined as control of harmful organisms such as a phytopathogenic fungi and/or insects and/or acarids and/or nematodes by the use or employment of a biological control agent.
As used herein, the term “biological control agent” is defined as an organism other than the harmful organisms and / or proteins or secondary metabolites produced by such an organism for the purpose of biological control. Mutants of the second organism shall be included within the definition of the biological control agent. The term “mutant” refers to a variant of the parental strain as well as methods for obtaining a mutant or variant in which the pesticidal activity is greater than that expressed by the parental strain. The ’’parent strain" is defined herein as the original strain before mutagenesis. To obtain such mutants the parental strain may be treated with a chemical such as N-methyl-N'-nitro-N-nitrosoguanidine, ethylmethanesulfone, or by irradiation using gamma, x-ray, or UV-irradiation, or by other means well known to those skilled in the art. Known mechanisms of biological control agents comprise enteric bacteria that control root rot by out-competing fungi for space on the surface of the root. Bacterial toxins, such as antibiotics, have been used to control pathogens. The toxin can be isolated and applied directly to the plant or the bacterial species may be administered so it produces the toxin in situ.
A ’’variant” is a strain having all the identifying characteristics of the NRRL or ATCC Accession Numbers as indicated in this text and can be identified as having a genome that hybridizes under conditions of high stringency to the genome of the NRRL or ATCC Accession Numbers.
“Hybridization” refers to a reaction in which one or more polynucleotides react to form a complex that is stabilized via hydrogen bonding between the bases of the nucleotide residues. The hydrogen bonding may occur by Watson-Crick base pairing, Hoogstein binding, or in any other sequence-specific manner. The complex may comprise two strands forming a duplex structure, three or more strands forming a multi-stranded complex, a single self-hybridizing strand, or any combination of these. Hybridization reactions can be performed under conditions of different “stringency”. In general, a low stringency hybridization reaction is carried out at about 40 °C in 10 X SSC or a solution of equivalent ionic strength/temperature. A moderate stringency hybridization is typically performed at about 50 °C in 6 X SSC, and a high stringency hybridization reaction is generally performed at about 60 °C in 1 X SSC.
A variant of the indicated NRRL or ATCC Accession Number may also be defined as a strain having a genomic sequence that is greater than 85%, more preferably greater than 90% or more preferably greater than 95% sequence identity to the genome of the indicated NRRL or ATCC Accession Number. A polynucleotide or polynucleotide region (or a polypeptide or polypeptide region) has a certain percentage (for example, 80%, 85%, 90%, or 95%) of “sequence identity” to another sequence means that, when aligned, that percentage of bases (or amino acids) are the same in comparing the two sequences. This alignment and the percent homology or sequence identity can be determined using software programs known in the art, for example, those described in Current Protocols in Molecular Biology (F. M. Ausubel et al., eds., 1987).
NRRL is the abbreviation for the Agricultural Research Service Culture Collection, an international depositary authority for the purposes of deposing microorganism strains under the Budapest treaty on the international recognition of the deposit of microorganisms for the purposes of patent procedure, having the address National Center for Agricultural Utilization Research, Agricultural Research service, U.S. Department of Agriculture, 1815 North university Street, Peroira, Illinois 61604 USA.
ATCC is the abbreviation for the American Type Culture Collection, an international depositary authority for the purposes of deposing microorganism strains under the Budapest treaty on the international recognition of the deposit of microorganisms for the purposes of patent procedure, having the address ATCC Patent Depository, 10801 University Blvd., Manassas, VA 10110 USA.
Examples of biological control agents which may be combined with the compound of formula (I) and the composition comprising at least one compound of formula (I) are:
(A) Antibacterial agents selected from the group of:
(A1) bacteria, such as (A1.1) Bacillus subtilis, in particular strain QST713/AQ713 (available as SERENADE OPTI or SERENADE ASO from Bayer CropScience LP, US, having NRRL Accession No. B21661 , U.S. Patent No. 6,060,051); (A1.2) Bacillus sp., in particular strain D747 (available as DOUBLE NICKEL® from Kumiai Chemical Industry Co., Ltd.), having Accession No. FERM BP-8234, U.S. Patent No. 7,094,592; (A1.3) Bacillus pumilus, in particular strain BU F-33, having NRRL Accession No. 50185 (available as part of the CARTISSA® product from BASF, EPA Reg. No. 71840-19); (A1.4) Bacillus subtilis var. amyloliquefaciens strain FZB24 having Accession No. DSM 10271 (available from Novozymes as TAEGRO® or TAEGRO® ECO (EPA Registration No. 70127-5)); (A1.5) a Paenibacillus sp. strain having Accession No. NRRL B-50972 or Accession No. NRRL B-67129, WO 2016/154297; (A1.6) Bacillus subtilis strain BU1814, (available as VELONDIS® PLUS, VELONDIS® FLEX and VELONDIS® EXTRA from BASF SE); (A1 .7) Bacillus mojavensis strain R3B (Accession No. NCAIM (P) B001389) (WO 2013/034938) from Certis USA LLC, a subsidiary of Mitsui & Co.; (A1 .8) Bacillus subtilis CX-9060 from Certis USA LLC, a subsidiary of Mitsui & Co.; (A1 .9) Paenibacillus polymyxa, in particular strain AC-1 (e.g. TOPSEED® from Green Biotech Company Ltd.); (A1.10) Pseudomonas proradix (e.g. PRORADIX® from Sourcon Padena); (A1.11) Pantoea agglomerans, in particular strain E325 (Accession No. NRRL B-21856) (available as BLOOMTIME BIOLOGICAL™ FD BIOPESTICIDE from Northwest Agri Products); and
(A2) fungi, such as (A2.1) Aureobasidium pullulans, in particular blastospores of strain DSM14940, blastospores of strain DSM 14941 ormixtures of blastospores of strains DSM14940 and DSM14941 (e.g., BOTECTOR® and BLOSSOM PROTECT®from bio-ferm, CH); (A2.2) Pseudozyma aphidis (as disclosed in WO2011/151819 by Yissum Research Development Company of the Hebrew University of Jerusalem); (A2.3) Saccharomyces cerevisiae, in particular strains CNCM No. I-3936, CNCM No. I- 3937, CNCM No. I-3938 or CNCM No. I-3939 (WO 2010/086790) from Lesaffre et Compagnie, FR;
(B) biological fungicides selected from the group of:
(B1) bacteria, for example (B1.1) Bacillus subtilis, in particular strain QST713/AQ713 (available as SERENADE OPTI or SERENADE ASO from Bayer CropScience LP, US, having NRRL Accession No. B21661 and described in U.S. Patent No. 6,060,051); (B1.2) Bacillus pumilus, in particular strain QST2808 (available as SONATA® from Bayer CropScience LP, US, having Accession No. NRRL B- 30087 and described in U.S. Patent No. 6,245,551); (B1.3) Bacillus pumilus, in particular strain GB34 (available as Yield Shield® from Bayer AG, DE); (B1 .4) Bacillus pumilus, in particular strain BU F-33, having NRRL Accession No. 50185 (available as part of the CARTISSA product from BASF, EPA Reg. No. 71840-19); (B1.5) Bacillus amyloliquefaciens, in particular strain D747 (available as Double Nickel™ from from Kumiai Chemical Industry Co., Ltd., having accession number FERM BP-8234, US Patent No. 7,094,592); (B1.6) Bacillus subtilis Y1336 (available as BIOBAC® WP from Bion-Tech, Taiwan, registered as a biological fungicide in Taiwan under Registration Nos. 4764, 5454, 5096 and 5277); (B1.7) Bacillus subtilis strain MBI 600 (available as SUBTILEX from BASF SE), having Accession Number NRRL B-50595, U.S. Patent No. 5,061 ,495; (B1.8) Bacillus subtilis strain GB03 (available as Kodiak® from Bayer AG, DE); (B1.9) Bacillus subtilis var. amyloliquefaciens strain FZB24 having Accession No. DSM 10271 (available from Novozymes as TAEGRO® or TAEGRO® ECO (EPA Registration No. 70127-5)); (B1.10) Bacillus mycoides, isolate J, having Accession No. B-30890 (available as BMJ TGAI® or WG and LifeGard™ from Certis USA LLC, a subsidiary of Mitsui & Co.); (B1.11) Bacillus licheniformis, in particular strain SB3086, having Accession No. ATCC 55406, WO 2003/000051 (available as ECOGUARD® Biofungicide and GREEN RELEAF™ from Novozymes); (B1.12) a Paenibacillus sp. strain having Accession No. NRRL B-50972 or Accession No. NRRL B- 67129, WO 2016/154297; (B1.13) Bacillus subtilis strain BU1814, (available as VELONDIS® PLUS, VELONDIS® FLEX and VELONDIS® EXTRA from BASF SE); (B1.14) Bacillus subtilis CX-9060 from Certis USA LLC, a subsidiary of Mitsui & Co.; (B1.15) Bacillus amyloliquefaciens strain F727 (also known as strain MBI110) (NRRL Accession No. B-50768; WO 2014/028521) (STARGUS® from Marrone Bio Innovations); (B1 .16) Bacillus amyloliquefaciens strain FZB42, Accession No. DSM 23117 (available as RHIZOVITAL® from ABiTEP, DE); (B1.17) Bacillus licheniformis FMCH001 and Bacillus subtilis FMCH002 (QUARTZO® (WG) and PRESENCE® (WP) from FMC Corporation); (B1.18) Bacillus mojavensis strain R3B (Accession No. NCAIM (P) B001389) (WO 2013/034938) from Certis USA LLC, a subsidiary of Mitsui & Co.; (B1.19) Paenibacillus polymyxa ssp. plantarum (WO 2016/020371) from BASF SE; (B1.20) Paenibacillus epiphyticus (WO 2016/020371) from BASF SE; (B.1.21) Pseudomonas chlororaphis strain AFS009, having Accession No. NRRL B-50897, WO 2017/019448 (e.g., HOWLER™ and ZIO® from AgBiome Innovations, US); (B1.22) Pseudomonas chlororaphis, in particular strain MA342 (e.g. CEDOMON®, CERALL®, and CEDRESS® by Bioagri and Koppert); (B1.23) Streptomyces lydicus strain WYEC108 (also known as Streptomyces lydicus strain WYCD108US) (ACTINO-IRON® and ACTI NOVATE® from Novozymes); (B1.24) Agrobacterium radiobacter strain K84 (e.g. GALLTROL- A® from AgBioChem, CA); (B1.25) Agrobacterium radiobacter strain K1026 (e.g. NOGALL™ from BASF SE); (B1.26) Bacillus subtilis KTSB strain (FOLIACTIVE® from Donaghys); (B1.27) Bacillus subtilis IAB/BS03 (AVIV™ from STK Bio-Ag Technologies); (B1.28) Bacillus subtilis strain Y1336 (available as BIOBAC® WP from Bion-Tech, Taiwan, registered as a biological fungicide in Taiwan under Registration Nos. 4764, 5454, 5096 and 5277); (B1.29) Bacillus amyloliquefaciens isolate B246 (e.g. AVOGREEN™ from University of Pretoria); (B1.30) Bacillus methylotrophicus strain BAC-9912 (from Chinese Academy of Sciences’ Institute of Applied Ecology); (B1.31) Pseudomonas proradix (e.g. PRORADIX® from Sourcon Padena); (B1.32) Streptomyces griseoviridis strain K61 (also known as Streptomyces galbus strain K61) (Accession No. DSM 7206) (MYCOSTOP® from Verdera; PREFENCE® from BioWorks; cf. Crop Protection 2006, 25, 468-475); (B1.33) Pseudomonas fluorescens strain A506 (e.g. BLIGHTBAN® A506 by NuFarm); and
(B2) fungi, for example: (B2.1) Coniothyrium minitans, in particular strain CON/M/91-8 (Accession No. DSM-9660; e.g. Contans ® from Bayer CropScience Biologies GmbH); (B2.2) Metschnikowia fructicola, in particular strain NRRL Y-30752; (B2.3) Microsphaeropsis ochracea] (B2.5) Trichoderma atroviride, in particular strain SC1 (having Accession No. CBS 122089, WO 2009/116106 and U.S. Patent No. 8,431 ,120 (from Bi-PA)), strain 77B (T77 from Andermatt Biocontrol) or strain LU132 (e.g. Sentinel from Agrimm Technologies Limited); (B2.6) Trichoderma harzianum strain T-22 (e.g. Trianum-P from Andermatt Biocontrol or Koppert) or strain Cepa Simb-T5 (from Simbiose Agro); (B2.14) Gliocladium roseum (also known as Clonostachys rosea f. rosea), in particular strain 321 U from Adjuvants Plus, strain ACM941 as disclosed in Xue (Efficacy of Clonostachys rosea strain ACM941 and fungicide seed treatments for controlling the root tot complex of field pea, Can Jour Plant Sci 83(3): 519-524), or strain IK726 (Jensen DF, et al. Development of a biocontrol agent for plant disease control with special emphasis on the near commercial fungal antagonist Clonostachys rosea strain ΊK726’; Australas Plant Pathol. 2007;36:95-101); (B2.35) Talaromyces flavus, strain V117b; (B2.36) Trichoderma viride, in particular strain B35 (Pietr et al., 1993, Zesz. Nauk. A R w Szczecinie 161 : 125-137); (B2.37) Trichoderma asperellum, in particular strain SKT-1 , having Accession No. FERM P-16510 (e.g. ECO- HOPE® from Kumiai Chemical Industry), strain T34 (e.g. T34 Biocontrol by Biocontrol Technologies S.L., ES) or strain ICC 012 from Isagro; (B2.38) Trichoderma atroviride, strain CNCM 1-1237 (e.g. Esquive® WP from Agrauxine, FR); (B2.39) Trichoderma atroviride, strain no. V08/002387; (B2.40) Trichoderma atroviride, strain NMI no. V08/002388; (B2.41) Trichoderma atroviride, strain NMI no. V08/002389; (B2.42) Trichoderma atroviride, strain NMI no. V08/002390; (B2.43) Trichoderma atroviride, strain LC52 (e.g. Tenet by Agrimm Technologies Limited); (B2.44) Trichoderma atroviride, strain ATCC 20476 (IMI 206040); (B2.45) Trichoderma atroviride, strain T11 (IMI352941/ CECT20498); (B2.46) Trichoderma harmatum] (B2.47) Trichoderma harzianum] (B2.48) Trichoderma harzianum rifai T39 (e.g. Trichodex® from Makhteshim, US); (B2.49) Trichoderma asperellum, in particular, strain kd (e.g. T-Gro from Andermatt Biocontrol); (B2.50) Trichoderma harzianum, strain ITEM 908 (e.g. Trianum- P from Koppert); (B2.51) Trichoderma harzianum, strain TH35 (e.g. Root-Pro by Mycontrol); (B2.52) Trichoderma virens (also known as Gliocladium virens), in particular strain GL-21 (e.g. SoilGard by Certis, US); (B2.53) Trichoderma viride, strain TV1(e.g. Trianum-P by Koppert); (B2.54) Ampelomyces quisqualis, in particular strain AQ 10 (e.g. AQ 10® by IntrachemBio Italia); (B2.56) Aureobasidium pullulans, in particular blastospores of strain DSM14940; (B2.57 ) Aureobasidium pullulans, in particular blastospores of strain DSM 14941 ; (B2.58) Aureobasidium pullulans, in particular mixtures of blastospores of strains DSM14940 and DSM 14941 (e.g. Botector® by bio-ferm, CH); (B2.64) Cladosporium cladosporioides, strain H39, having Accession No. CBS122244, US 2010/0291039 (by Stichting Dienst Landbouwkundig Onderzoek); (B2.69) Gliocladium catenulatum (Synonym: Clonostachys rosea f. catenuiate) strain J1446 (e.g. Prestop ® by Lallemand); (B2.70) Lecanicillium lecanii (formerly known as Verticillium lecanii ) conidia of strain KV01 (e.g. Vertalec® by Koppert/Arysta); (B2.71) Penicillium vermiculatum ; (B2.72) Pichia anomala, strain WRL-076 (NRRL Y-30842), U.S. Patent No. 7,579,183; (B2.75) Trichoderma atroviride, strain SKT-1 (FERM P-16510), JP Patent Publication (Kokai) 11-253151 A; (B2.76) Trichoderma atroviride, strain SKT-2 (FERM P-16511), JP Patent Publication (Kokai) 11-253151 A; (B2.77) Trichoderma atroviride, strain SKT-3 (FERM P-17021), JP Patent Publication (Kokai) 11-253151 A; (B2.78) Trichoderma gamsii (formerly T viride), strain ICC080 (IMI CC 392151 CABI, e.g. BioDerma by AGROBIOSOL DE MEXICO, S.A. DE C.V.); (B2.79) Trichoderma harzianum, strain DB 103 (available as T-GRO® 7456 by Dagutat Biolab); (B2.80) Trichoderma polysporum, strain IMI 206039 (e.g. Binab TF WP by BINAB Bio-Innovation AB, Sweden); (B2.81) Trichoderma stromaticum, having Accession No. Ts3550 (e.g. Tricovab by CEPLAC, Brazil); (B2.83) Ulocladium oudemansii strain U3, having Accession No. NM 99/06216 (e.g., BOTRY-ZEN® by Botry-Zen Ltd, New Zealand and BOTRYSTOP® from BioWorks, Inc.)·, (B2.84) Verticillium albo-atrum (formerly V. dahliae), strain WCS850 having Accession No. WCS850, deposited at the Central Bureau for Fungi Cultures (e.g., DUTCH TRIG® by Tree Care Innovations); (B2.86) Verticillium chlamydosporium·, (B2.87) mixtures of Trichoderma asperellum strain ICC 012 (also known as Trichoderma harzianum ICC012), having Accession No. CABI CC IMI 392716 and Trichoderma gamsii (formerly T. viride) strain ICC 080, having Accession No. IMI 392151 (e.g., BIO-TAM™ from Isagro USA, Inc. and BIODERMA® by Agrobiosol de Mexico, S.A. de C.V.); (B2.88) Trichoderma asperelloides JM41R (Accession No. NRRL B-50759) (TRICHO PLUS® from BASF SE); (B2.89) Aspergillus flavus strain NRRL 21882 (products known as AFLA-GUARD® from Syngenta/ChemChina); (B2.90) Chaetomium cupreum (Accession No. CABI 353812) (e.g. BIOKUPRUM™ by AgriLife); (B2.91) Saccharomyces cerevisiae, in particular strain LAS02 (from Agro-Levures et Derives), strain LAS117 cell walls (CEREVISANE® from Lesaffre; ROMEO® from BASF SE), strains CNCM No. I-3936, CNCM No. I-3937, CNCM No. I-3938, CNCM No. I-3939 (WO 2010/086790) from Lesaffre et Compagnie, FR; (B2.92) Trichoderma virens strain G-41 , formerly known as Gliocladium virens (Accession No. ATCC 20906) (e.g., ROOTSHIELD® PLUS WP and TURFSHIELD® PLUS WP from BioWorks, US); (B2.93) Trichoderma hamatum, having Accession No. ATCC 28012; (B2.94) Ampelomyces quisqualis strain AQ10, having Accession No. CNCM I-807 (e.g., AQ 10® by IntrachemBio Italia); (B2.95) Phlebiopsis gigantea strain VRA 1992 (ROTSTOP® C from Danstar Ferment); (B2.96) Penicillium steckii (DSM 27859; WO 2015/067800) from BASF SE; (B2.97) Chaetomium globosum (available as RIVADIOM® by Rivale); (B2.98) Cryptococcus flavescens, strain 3C (NRRL Y-50378); (B2.99) Dactylaria Candida·, (B2.100) Dilophosphora alopecuri (available as TWIST FUNGUS®); (B2.101) Fusarium oxysporum, strain Fo47 (available as FUSACLEAN® by Natural Plant Protection); (B2.102) Pseudozyma flocculosa, strain PF-A22 UL (available as SPORODEX® L by Plant Products Co., CA); (B2.103) Trichoderma gamsii (formerly T. Wide), strain ICC 080 (IMI CC 392151 CABI) (available as BIODERMA® by AGROBIOSOL DE MEXICO, S.A. DE C.V.); (B2.104) Trichoderma fertile (e.g. product TrichoPlus from BASF); (B2.105) Muscodor roseus, in particular strain A3-5 (Accession No. NRRL 30548); (B2.106) Simplicillium lanosoniveum biological control agents having an effect for improving plant growth and/or plant health which may be combined in the compound combinations according to the invention including
(C1) bacteria selected from the group consisting of Bacillus pumilus, in particular strain QST2808 (having Accession No. NRRL No. B-30087); Bacillus subtilis, in particular strain QST713/AQ713 (having NRRL Accession No. B-21661and described in U.S. Patent No. 6,060,051 ; available as SERENADE® OPTI or SERENADE® ASO from Bayer CropScience LP, US); Bacillus subtilis, in particular strain AQ30002 (having Accession Nos. NRRL B-50421 and described in U.S. Patent Application No. 13/330,576); Bacillus subtilis, in particular strain AQ30004 (and NRRL B-50455 and described in U.S. Patent Application No. 13/330,576); Sinorhizobium meliloti strain NRG-185-1 (NITRAGIN® GOLD from Bayer CropScience); Bacillus subtilis strain BU1814, (available as TEQUALIS® from BASF SE); Bacillus subtilis rm303 (RHIZOMAX® from Biofilm Crop Protection); Bacillus amyloliquefaciens pm414 (LOLI- PEPTA® from Biofilm Crop Protection); Bacillus mycoides BT155 (NRRL No. B-50921), Bacillus mycoides EE118 (NRRL No. B-50918), Bacillus mycoides EE141 (NRRL No. B-50916), Bacillus mycoides BT46-3 (NRRL No. B-50922), Bacillus cereus family member EE128 (NRRL No. B-50917), Bacillus thuringiensis BT013A (NRRL No. B-50924) also known as Bacillus thuringiensis 4Q7, Bacillus cereus family member EE349 (NRRL No. B-50928), Bacillus amyloliquefaciens SB3281 (ATCC # PTA- 7542; WO 2017/205258), Bacillus amyloliquefaciens TJ1000 (available as QUIKROOTS® from Novozymes); Bacillus ftrmus, in particular strain CNMC 1-1582 (e.g. VOTIVO® from BASF SE); Bacillus pumilus, in particular strain GB34 (e.g. YIELD SHIELD® from Bayer Crop Science, DE); Bacillus amyloliquefaciens, in particular strain IN937a; Bacillus amyloliquefaciens, in particular strain FZB42 (e.g. RHIZOVITAL®from ABiTEP, DE); Bacillus amyloliquefaciens BS27 (Accession No. NRRL B-5015); a mixture of Bacillus licheniformis FMCH001 and Bacillus subtilis FMCH002 (available as QUARTZO® (WG), PRESENCE® (WP) from FMC Corporation); Bacillus cereus, in particular strain BP01 (ATCC 55675; e.g. MEPICHLOR® from Arysta Lifescience, US); Bacillus subtilis, in particular strain MBI 600 (e.g. SUBTILEX® from BASF SE); Bradyrhizobium japonicum (e.g. OPTIMIZE® from Novozymes); Mesorhizobium cicer (e.g., NODULATOR from BASF SE); Rhizobium leguminosarium biovar viciae (e.g., NODULATOR from BASF SE); Delftia acidovorans, in particular strain RAY209 (e.g. BIOBOOST® from Brett Young Seeds); Lactobacillus sp. (e.g. LACTOPLANT® from LactoPAFI); Paenibacillus polymyxa, in particular strain AC-1 (e.g. TOPSEED®from Green Biotech Company Ltd.); Pseudomonas proradix (e.g. PRORADIX® from Sourcon Padena); Azospirillum brasilense (e.g., VIGOR® from KALO, Inc.); Azospirillum lipoferum (e.g., VERTEX-IF™ from TerraMax, Inc.); a mixture of Azotobacter vinelandii and Clostridium pasteurianum (available as INVIGORATE® from Agrinos); Pseudomonas aeruginosa, in particular strain PN1 ; Rhizobium leguminosarum, in particular bv. viceae strain Z25 (Accession No. CECT 4585); Azorhizobium caulinodans, in particular strain ZB-SK-5; Azotobacter chroococcum, in particular strain H23; Azotobacter vinelandii, in particular strain ATCC 12837; Bacillus siamensis, in particular strain KCTC 13613T; Bacillus tequilensis, in particular strain Nil-0943; Serratia marcescens, in particular strain SRM (Accession No. MTCC 8708); Thiobacillus sp. (e.g. CROPAID® from Cropaid Ltd UK); and
(C2) fungi selected from the group consisting of Purpureocillium lilacinum (previously known as Paecilomyces lilacinus) strain 251 (AGAL 89/030550; e.g. BioAct from Bayer CropScience Biologies Gvr\bH)Penicillium bilaii, strain ATCC 22348 (e.g. JumpStart® from Acceleron BioAg), Talaromyces flavus, strain V117b; Trichoderma atroviride strain CNCM 1-1237 (e.g. Esquive® WP from Agrauxine, FR), Trichoderma viride, e.g. strain B35 (Pietr et al., 1993, Zesz. Nauk. A R w Szczecinie 161 : 125-137); Trichoderma atroviride strain LC52 (also known as Trichoderma atroviride strain LU132; e.g. Sentinel from Agrimm Technologies Limited); Trichoderma atroviride strain SC1 described in International Application No. PCT/IT2008/000196); Trichoderma asperellum strain kd (e.g. T-Gro from Andermatt Biocontrol); Trichoderma asperellum strain Eco-T (Plant Health Products, ZA); Trichoderma harzianum strain T-22 (e.g. Trianum-P from Andermatt Biocontrol or Koppert); Myrothecium verrucaria strain AARC-0255 (e.g. DiTera™ from Valent Biosciences); PeniciIHum bilaii strain ATCC ATCC20851 ; Pythium oligandrum strain M1 (ATCC 38472; e.g. Polyversum from Bioprepraty, CZ); Trichoderma virens strain GL-21 (e.g. SoilGard® from Certis, USA); Verticillium albo-atrum (formerly V. dahliae) strain WCS850 (CBS 276.92; e.g. Dutch Trig from Tree Care Innovations); Trichoderma atroviride, in particular strain no. V08/002387, strain no. NMI No. V08/002388, strain no. NMI No. V08/002389, strain no. NMI No. V08/002390; Trichoderma harzianum strain ITEM 908; Trichoderma harzianum, strain TSTh20; Trichoderma harzianum strain 1295-22; Pythium oligandrum strain DV74; Rhizopogon amylopogon (e.g. comprised in Myco-Sol from Helena Chemical Company); Rhizopogon fulvigleba (e.g. comprised in Myco-Sol from Helena Chemical Company); and Trichoderma virens strain GI-3; insecticidally active biological control agents selected from
(D1) bacteria selected from the group consisting of Bacillus thuringiensis subsp. aizawai, in particular strain ABTS-1857 (SD-1372; e.g. XENTARI® from Valent BioSciences); Bacillus mycoides, isolate J. (e.g. BmJ from Certis USA LLC, a subsidiary of Mitsui & Co.); Bacillus sphaericus, in particular Serotype H5a5b strain 2362 (strain ABTS-1743) (e.g. VECTOLEX® from Valent BioSciences, US); Bacillus thuringiensis subsp. kurstaki strain BMP 123 from Becker Microbial Products, IL; Bacillus thuringiensis subsp. aizawai, in particular serotype H-7 (e.g. FLORBAC® WG from Valent BioSciences, US); Bacillus thuringiensis subsp. kurstaki strain HD-1 (e.g. DIPEL® ES from Valent BioSciences, US); Bacillus thuringiensis subsp. kurstaki strain BMP 123 by Becker Microbial Products, IL; Bacillus thuringiensis israelensis strain BMP 144 (e.g. AQUABAC® by Becker Microbial Products IL); Burkholderia spp., in particular Burkholderia rinojensis strain A396 (also known as Burkholderia rinojensis strain MBI 305) (Accession No. NRRL B-50319; WO 2011/106491 and WO 2013/032693; e.g. MBI-206 TGAI and ZELTO® from Marrone Bio Innovations); Chromobacterium subtsugae, in particular strain PRAA4-1T (MBI-203; e.g. GRANDEVO® from Marrone Bio Innovations); Paenibacillus popilliae (formerly Bacillus popilliae; e.g. MILKY SPORE POWDER™ and MILKY SPORE GRANULAR™ from St. Gabriel Laboratories); Bacillus thuringiensis subsp. israelensis (serotype H-14) strain AM65-52 (Accession No. ATCC 1276) (e.g. VECTOBAC® by Valent BioSciences, US); Bacillus thuringiensis var. kurstaki strain EVB-113-19 (e.g., BIOPROTEC® from AEF Global); Bacillus thuringiensis subsp. tenebrionis strain NB 176 (SD-5428; e.g. NOVODOR®FC from BioFa DE); Bacillus thuringiensis var. japonensis strain Buibui; Bacillus thuringiensis subsp. kurstaki strain ABTS 351 ; Bacillus thuringiensis subsp. kurstaki strain PB 54; Bacillus thuringiensis subsp. kurstaki strain SA 11 ; Bacillus thuringiensis subsp. kurstaki strain SA 12; Bacillus thuringiensis subsp. kurstaki strain EG 2348; Bacillus thuringiensis var. Colmeri (e.g. TIANBAOBTC by Changzhou Jianghai Chemical Factory); Bacillus thuringiensis subsp. aizawai strain GC-91 ; Serratia entomophila (e.g. INVADE® by Wrightson Seeds); Serratia marcescens, in particular strain SRM (Accession No. MTCC 8708); and Wolbachia pipientis ZAP strain (e.g., ZAP MALES® from MosquitoMate); and
(D2) fungi selected from the group consisting of Isaria fumosorosea (previously known as Paecilomyces fumosoroseus) strain apopka 97; Beauveria bassiana strain ATCC 74040 (e.g. NATURALIS® from Intrachem Bio Italia); Beauveria bassiana strain GHA (Accession No. ATCC74250; e.g. BOTANIGUARD® ES and MYCONTROL-O® from Laverlam International Corporation); Zoophtora radicans ; Metarhizium robertsii 15013-1 (deposited under NRRL accession number 67073), Metarhizium robertsii 23013-3 (deposited under NRRL accession number 67075), and Metarhizium anisopliae 3213-1 (deposited under NRRL accession number 67074) (WO 2017/066094; Pioneer Hi- Bred International); Beauveria bassiana strain ATP02 (Accession No. DSM 24665). Among these, Isaria fumosorosea (previously known as Paecilomyces fumosoroseus) strain apopka 97 is particularly preferred;
(E) viruses selected from the group consisting of Adoxophyes orana (summer fruit tortrix) granulosis virus (GV), Cydia pomonella (codling moth) granulosis virus (GV), Helicoverpa armigera (cotton bollworm) nuclear polyhedrosis virus (NPV), Spodoptera exigua (beet armyworm) mNPV, Spodoptera frugiperda (fall armyworm) mNPV, and Spodoptera littoralis (African cotton leafworm) NPV;
(F) bacteria and fungi which can be added as 'inoculant' to plants or plant parts or plant organs and which, by virtue of their particular properties, promote plant growth and plant health. Examples are: Agrobacterium spp., Azorhizobium caulinodans, Azospirillum spp., Azotobacter spp., Bradyrhizobium spp., Burkholderia spp., in particular Burkholderia cepacia (formerly known as Pseudomonas cepacia), Gigaspora spp., or Gigaspora monosporum, Glomus spp., Laccaria spp., Lactobacillus buchneri, Paraglomus spp., Pisolithus tinctorus, Pseudomonas spp., Rhizobium spp., in particular Rhizobium trifolii, Rhizopogon spp., Scleroderma spp., Suillus spp., and Streptomyces spp.; and
(G) plant extracts and products formed by microorganisms including proteins and secondary metabolites which can be used as biological control agents, such as Allium sativum, Artemisia absinthium, azadirachtin, Biokeeper WP, Cassia nigricans, Celastrus angulatus, Chenopodium anthelminticum, chitin, Armour-Zen, Dryopteris filix-mas, Equisetum arvense, Fortune Aza, Fungastop, Heads Up (Chenopodium quinoa saponin extract), Pyrethrum/Pyrethrins, Quassia amara, Quercus, Quillaja, Regalia, "Requiem ™ Insecticide", rotenone, ryanial ryanodine, Symphytum officinale, Tanacetum vulgare, thymol, Triad 70, TriCon, Tropaeulum majus, Urtica dioica, Veratrin, Viscum album, Brassicaceae extract, in particular oilseed rape powder or mustard powder, as well as bioinsecticidal / acaricidal active substances obtained from olive oil, in particular unsaturated fatty/carboxylic acids having carbon chain lengths C16-C20 as active ingredients, such as, for example, contained in the product with the trade name FLiPPER®.
The compound of formula (I) and the composition comprising at least one compound of formula (I) be combined with one or more active ingredients selected from insecticides, acaricides and nematicides.
“Insecticides” as well as the term “insecticidal” refers to the ability of a substance to increase mortality or inhibit growth rate of insects. As used herein, the term “insects” comprises all organisms in the class “Insecta”.
“Nematicide” and “nematicidal” refers to the ability of a substance to increase mortality or inhibit the growth rate of nematodes. In general, the term “nematode” comprises eggs, larvae, juvenile and mature forms of said organism.
“Acaricide” and “acaricidal” refers to the ability of a substance to increase mortality or inhibit growth rate of ectoparasites belonging to the class Arachnida, sub-class Acari.
Examples of insecticides, acaricides and nematicides, respectively, which could be mixed with the compound of formula (I) and the composition comprising at least one compound of formula (l)are:
(1) Acetylcholinesterase (AChE) inhibitors, such as, for example, carbamates, for example alanycarb, aldicarb, bendiocarb, benfuracarb, butocarboxim, butoxycarboxim, carbaryl, carbofuran, carbosulfan, ethiofencarb, fenobucarb, formetanate, furathiocarb, isoprocarb, methiocarb, methomyl, metolcarb, oxamyl, pirimicarb, propoxur, thiodicarb, thiofanox, triazamate, trimethacarb, XMC and xylylcarb; or organophosphates, for example acephate, azamethiphos, azinphos-ethyl, azinphos-methyl, cadusafos, chlorethoxyfos, chlorfenvinphos, chlormephos, chlorpyrifos-methyl, coumaphos, cyanophos, demeton- S-methyl, diazinon, dichlorvos/DDVP, dicrotophos, dimethoate, dimethylvinphos, disulfoton, EPN, ethion, ethoprophos, famphur, fenamiphos, fenitrothion, fenthion, fosthiazate, heptenophos, imicyafos, isofenphos, isopropyl O-(methoxyaminothiophosphoryl) salicylate, isoxathion, malathion, mecarbam, methamidophos, methidathion, mevinphos, monocrotophos, naled, omethoate, oxydemeton-methyl, parathion-methyl, phenthoate, phorate, phosalone, phosmet, phosphamidon, phoxim, pirimiphos- methyl, profenofos, propetamphos, prothiofos, pyraclofos, pyridaphenthion, quinalphos, sulfotep, tebupirimfos, temephos, terbufos, tetrachlorvinphos, thiometon, triazophos, triclorfon and vamidothion.
(2) GABA-gated chloride channel blockers, such as, for example, cyclodiene-organochlorines, for example chlordane and endosulfan or phenylpyrazoles (fiproles), for example ethiprole and fipronil.
(3) Sodium channel modulators, such as, for example, pyrethroids, e.g. acrinathrin, allethrin, d-cis-trans allethrin, d-trans allethrin, bifenthrin, bioallethrin, bioallethrin s-cyclopentenyl isomer, bioresmethrin, cycloprothrin, cyfluthrin, beta-cyfluthrin, cyhalothrin, lambda-cyhalothrin, gamma-cyhalothrin, cypermethrin, alpha-cypermethrin, beta-cypermethrin, theta-cypermethrin, zeta-cypermethrin, cyphenothrin [(1 R)-trans-isomer], deltamethrin, empenthrin [(EZ)-(1 R)-isomer], esfenvalerate, etofenprox, fenpropathrin, fenvalerate, flucythrinate, flumethrin, tau-fluvalinate, halfenprox, imiprothrin, kadethrin, momfluorothrin, permethrin, phenothrin [(1 R)-trans-isomer], prallethrin, pyrethrins (pyrethrum), resmethrin, silafluofen, tefluthrin, tetramethrin, tetramethrin [(1 R)- isomer)], tralomethrin and transfluthrin or DDT or methoxychlor.
(4) Nicotinic acetylcholine receptor (nAChR) competitive modulators, such as, for example, neonicotinoids, e.g. acetamiprid, clothianidin, dinotefuran, imidacloprid, nitenpyram, thiacloprid and thiamethoxam or nicotine or sulfoxaflor or flupyradifurone.
(5) Nicotinic acetylcholine receptor (nAChR) allosteric modulators, such as, for example, spinosyns, e.g. spinetoram and spinosad.
(6) Glutamate-gated chloride channel (GluCI) allosteric modulators, such as, for example, avermectins/milbemycins, for example abamectin, emamectin benzoate, lepimectin and milbemectin.
(7) Juvenile hormone mimics, such as, for example, juvenile hormone analogues, e.g. hydroprene, kinoprene and methoprene or fenoxycarb or pyriproxyfen.
(8) Miscellaneous non-specific (multi-site) inhibitors, such as, for example, alkyl halides, e.g. methyl bromide and other alkyl halides; or chloropicrine or sulfuryl fluoride or borax or tartar emetic or methyl isocyanate generators, e.g. diazomet and metam.
(9) Modulators of Chordotonal Organs, such as, for example pymetrozine or flonicamid.
(10) Mite growth inhibitors, such as, for example clofentezine, hexythiazox and diflovidazin or etoxazole.
(11) Microbial disruptors of the insect gut membrane, such as, for example Bacillus thuringiensis subspecies israelensis, Bacillus sphaericus, Bacillus thuringiensis subspecies aizawai, Bacillus thuringiensis subspecies kurstaki, Bacillus thuringiensis subspecies tenebrionis, and B.t. plant proteins: CrylAb, CrylAc, Cryl Fa, Cry1A.105, Cry2Ab, Vip3A, mCry3A, Cry3Ab, Cry3Bb, Cry34Ab1/35Ab1 .
(12) Inhibitors of mitochondrial ATP synthase, such as, ATP disruptors such as, for example, diafenthiuron or organotin compounds, for example azocyclotin, cyhexatin and fenbutatin oxide or propargite ortetradifon.
(13) Uncouplers of oxidative phosphorylation via disruption of the proton gradient, such as, for example, chlorfenapyr, DNOC and sulfluramid.
(14) Nicotinic acetylcholine receptor channel blockers, such as, for example, bensultap, cartap hydrochloride, thiocylam, and thiosultap-sodium. (15) Inhibitors of chitin biosynthesis, type 0, such as, for example, bistrifluron, chlorfluazuron, diflubenzuron, flucycloxuron, flufenoxuron, hexaflumuron, lufenuron, novaluron, noviflumuron, teflubenzuron and triflumuron.
(16) Inhibitors of chitin biosynthesis, type 1 , for example buprofezin.
(17) Moulting disruptor (in particular for Diptera, i.e. dipterans), such as, for example, cyromazine.
(18) Ecdysone receptor agonists, such as, for example, chromafenozide, halofenozide, methoxyfenozide and tebufenozide.
(19) Octopamine receptor agonists, such as, for example, amitraz.
(20) Mitochondrial complex III electron transport inhibitors, such as, for example, hydramethylnone or acequinocyl or fluacrypyrim.
(21) Mitochondrial complex I electron transport inhibitors, such as, for example from the group of the METI acaricides, e.g. fenazaquin, fenpyroximate, pyrimidifen, pyridaben, tebufenpyrad and tolfenpyrad or rotenone (Derris).
(22) Voltage-dependent sodium channel blockers, such as, for example indoxacarb or metaflumizone.
(23) Inhibitors of acetyl CoA carboxylase, such as, for example, tetronic and tetramic acid derivatives, e.g. spirodiclofen, spiromesifen and spirotetramat.
(24) Mitochondrial complex IV electron transport inhibitors, such as, for example, phosphines, e.g. aluminium phosphide, calcium phosphide, phosphine and zinc phosphide or cyanides, e.g. calcium cyanide, potassium cyanide and sodium cyanide.
(25) Mitochondrial complex II electron transport inhibitors, such as, for example, befa-ketonitrile derivatives, e.g. cyenopyrafen and cyflumetofen and carboxan Hides, such as, for example, pyflubumide.
(28) Ryanodine receptor modulators, such as, for example, diamides, e.g. chlorantraniliprole, cyantraniliprole and flubendiamide, further active compounds such as, for example, Afidopyropen, Afoxolaner, Azadirachtin, Benclothiaz, Benzoximate, Bifenazate, Broflanilide, Bromopropylate, Chinomethionat, Chloroprallethrin, Cryolite, Cyclaniliprole, Cycloxaprid, Cyhalodiamide, Dicloromezotiaz, Dicofol, epsilon-Metofluthrin, epsilon- Momfluthrin, Flometoquin, Fluazaindolizine, Fluensulfone, Flufenerim, Flufenoxystrobin, Flufiprole, Fluhexafon, Fluopyram, Fluralaner, Fluxametamide, Fufenozide, Guadipyr, Heptafluthrin, Imidaclothiz, Iprodione, kappa-Bifenthrin, kappa-Tefluthrin, Lotilaner, Meperfluthrin, Paichongding, Pyridalyl, Pyrifluquinazon, Pyriminostrobin, Spirobudiclofen, Tetramethylfluthrin, Tetraniliprole, Tetrachlorantraniliprole, Tigolaner, Tioxazafen, Thiofluoximate, Triflumezopyrim and iodomethane; furthermore preparations based on Bacillus firmus (1-1582, BioNeem, Votivo), and also the following compounds: 1-{2-fluoro-4-methyl-5-[(2,2,2-trifluoroethyl)sulfinyl]phenyl}-3-(trifluoromethyl)-1 H-1 ,2,4- triazole-5-amine (known from W02006/043635) (CAS 885026-50-6), {1'-[(2E)-3-(4-chlorophenyl)prop- 2-en-1 -yl]-5-fluorospiro[indol-3,4'-piperidin]-1 (2H)-yl}(2-chloropyridin-4-yl)methanone (known from W02003/106457) (CAS 637360-23-7), 2-chloro-N-[2-{1-[(2E)-3-(4-chlorophenyl)prop-2-en-1- yl]piperidin-4-yl}-4-(trifluoromethyl)phenyl]isonicotinamide (known from W02006/003494) (CAS 872999-66-1), 3-(4-chloro-2,6-dimethylphenyl)-4-hydroxy-8-methoxy-1 ,8-diazaspiro[4.5]dec-3-en-2- one (known from WO 2010052161) (CAS 1225292-17-0), 3-(4-chloro-2,6-dimethylphenyl)-8-methoxy-
2-oxo-l ,8-diazaspiro[4.5]dec-3-en-4-yl ethyl carbonate (known from EP2647626) (CAS 1440516-42-6),
4-(but-2-yn-1 -yloxy)-6-(3,5-dimethylpiperidin-1 -yl)-5-fluoropyrimidine (known from W02004/099160) (CAS 792914-58-0), PF1364 (known from JP2010/018586) (CAS 1204776-60-2), N-[(2E)-1-[(6- chloropyridin-3-yl)methyl]pyridin-2(1 H)-ylidene]-2,2,2-trifluoroacetamide (known from WO2012/029672) (CAS 1363400-41-2), (3E)-3-[1-[(6-chloro-3-pyridyl)methyl]-2-pyridylidene]-1 ,1 ,1-trifluoro-propan-2-one (known from WO2013/144213) (CAS 1461743-15-6), A/-[3-(benzylcarbamoyl)-4-chlorophenyl]-1- methyl-3-(pentafluoroethyl)-4-(trifluoromethyl)-1 /-/-pyrazole-5-carboxamide (known from
WO2010/051926) (CAS 1226889-14-0), 5-bromo-4-chloro-A/-[4-chloro-2-methyl-6- (methylcarbamoyl)phenyl]-2-(3-chloro-2-pyridyl)pyrazole-3-carboxamide (known from CN103232431) (CAS 1449220-44-3), 4-[5-(3,5-dichlorophenyl)-4,5-dihydro-5-(trifluoromethyl)-3-isoxazolyl]-2-methyl- A/-(c/s-1-oxido-3-thietanyl)-benzamide, 4-[5-(3,5-dichlorophenyl)-4,5-dihydro-5-(trifluoromethyl)-3- isoxazolyl]-2-methyl-A/-(trans-1-oxido-3-thietanyl)-benzamide and 4-[(5S)-5-(3,5-dichlorophenyl)-4,5- dihydro-5-(trifluoromethyl)-3-isoxazolyl]-2-methyl-A/-(c/s-1-oxido-3-thietanyl)benzamide (known from WO 2013/050317 A1) (CAS 1332628-83-7), A/-[3-chloro-1-(3-pyridinyl)-1H-pyrazol-4-yl]-A/-ethyl-3-[(3,3,
3-trifluoropropyl)sulfinyl]-propanamide, (+)-A/-[3-chloro-1-(3-pyridinyl)-1H-pyrazol-4-yl]-A/-ethyl-3-[(3,3,
3-trifluoropropyl)sulfinyl]-propanamide and (-)-A/-[3-chloro-1 -(3-pyridinyl)-1 H-pyrazol-4-yl]-A/-ethyl-3-[(3, 3,3-trifluoropropyl)sulfinyl]-propanamide (known from WO 2013/162715 A2, WO 2013/162716 A2, US 2014/0213448 A1) (CAS 1477923-37-7), 5-[[(2E)-3-chloro-2-propen-1-yl]amino]-1-[2,6-dichloro-4- (trifluoromethyl)phenyl]-4-[(trifluoromethyl)sulfinyl]-1H-pyrazole-3-carbonitrile (known from CN 101337937 A) (CAS 1105672-77-2), 3-bromo-A/-[4-chloro-2-methyl-6-[(methylamino)thioxomethyl] phenyl]-1-(3-chloro-2-pyridinyl)-1/-/-pyrazole-5-carboxamide, (Liudaibenjiaxuanan, known from CN 103109816 A) (CAS 1232543-85-9); A/-[4-chloro-2-[[(1 ,1-dimethylethyl)amino]carbonyl]-6- methylphenyl]-1 -(3-chloro-2-pyridinyl)-3-(fluoromethoxy)-1 /-/-Pyrazole-5-carboxamide (known from WO 2012/034403 A1) (CAS 1268277-22-0), A/-[2-(5-amino-1 ,3,4-thiadiazol-2-yl)-4-chloro-6- methylphenyl]-3-bromo-1 -(3-chloro-2-pyridinyl)-1 /-/-pyrazole-5-carboxamide (known from
WO 2011/085575 A1) (CAS 1233882-22-8), 4-[3-[2,6-dichloro-4-[(3,3-dichloro-2-propen-1-yl)oxy] phenoxy]propoxy]-2-methoxy-6-(trifluoromethyl)-pyrimidine (known from CN 101337940 A) (CAS 1108184-52-6); (2 E)- and 2(Z)-2-[2-(4-cyanophenyl)-1-[3-(trifluoromethyl)phenyl]ethylidene]-A/-[4-
(difluoromethoxy)phenyl]-hydrazinecarboxamide (known from CN 101715774 A) (CAS 1232543-85-9); 3-(2,2-dichloroethenyl)-2,2-dimethyl-4-(1H-benzimidazol-2-yl)phenyl-cyclopropanecarboxylic acid ester (known from CN 103524422 A) (CAS 1542271-46-4); (4aS)-7-chloro-2,5-dihydro-2-[[(methoxycarbonyl) [4-[(trifluoromethyl)thio]phenyl]amino]carbonyl]-indeno[1 ,2-e][1 ,3,4]oxadiazine-4a(3H)-carboxylic acid methyl ester (known from CN 102391261 A) (CAS 1370358-69-2); 6-deoxy-3-0-ethyl-2,4-di-0-methyl-, 1 -[N-[4-[1 -[4-(1 , 1 ,2,2,2-pentafluoroethoxy)phenyl]-1 H- 1 ,2,4-triazol-3-yl]phenyl]carbamate]-a-L- mannopyranose (known from US 2014/0275503 A1) (CAS 1181213-14-8); 8-(2-cyclopropylmethoxy-4- trifluoromethyl-phenoxy)-3-(6-trifluoromethyl-pyridazin-3-yl)-3-aza-bicyclo[3.2.1 ]octane (CAS 1253850- 56-4), (8-anti)-8-(2-cyclopropylmethoxy-4-trifluoromethyl-phenoxy)-3-(6-trifluoromethyl-pyridazin-3-yl)-
3-aza-bicyclo[3.2.1 ]octane (CAS 933798-27-7), (8-syn)-8-(2-cyclopropylmethoxy-4-trifluoromethyl- phenoxy)-3-(6-trifluoromethyl-pyridazin-3-yl)-3-aza-bicyclo[3.2.1]octane (known from
WO 2007040280 A1 , WO 2007040282 A1) (CAS 934001-66-8), N-[3-chloro-1-(3-pyridinyl)-1 H-pyrazol-
4-yl]-N-ethyl-3-[(3,3,3-trifluoropropyl)thio]-propanamide (known from WO 2015/058021 A1 , WO
2015/058028 A1) (CAS 1477919-27-9) and N-[4-(aminothioxomethyl)-2-methyl-6-
[(methylamino)carbonyl]phenyl]-3-bromo-1-(3-chloro-2-pyridinyl)-1/-/-pyrazole-5-carboxamide (known from CN 103265527 A) (CAS 1452877-50-7), 5-(1 ,3-dioxan-2-yl)-4-[[4-(trifluoromethyl)phenyl]methoxy] -pyrimidine (known from WO 2013/115391 A1) (CAS 1449021-97-9), 3-(4-chloro-2,6-dimethylphenyl)- 4-hydroxy-8-methoxy-1 -methyl-1 ,8-diazaspiro[4.5]dec-3-en-2-one (known from WO 2010/066780 A1 , WO 2011/151146 A1) (CAS 1229023-34-0), 3-(4-chloro-2,6-dimethylphenyl)-8-methoxy-1 -methyl-1 ,8- diazaspiro[4.5]decane-2,4-dione (known from WO 2014/187846 A1) (CAS 1638765-58-8), 3-(4-chloro- 2,6-dimethylphenyl)-8-methoxy-1 -methyl-2-oxo-1 ,8-diazaspiro[4.5]dec-3-en-4-yl-carbonic acid ethyl ester (known from WO 2010/066780 A1 , WO 2011151146 A1) (CAS 1229023-00-0), N-[1-[(6-chloro-3- pyridinyl)methyl]-2(1/-/)-pyridinylidene]-2,2,2-trifluoro-acetamide (known from DE 3639877 A1 , WO 2012029672 A1) (CAS 1363400-41-2), [N(E)]-N-[1-[(6-chloro-3-pyridinyl)methyl]-2(1 H)-pyridinylidene]- 2,2,2-trifluoro-acetamide, (known from WO 2016005276 A1) (CAS 1689566-03-7), [N(Z)]-N-[1-[(6- chloro-3-pyridinyl)methyl]-2(1 H)-pyridinylidene]-2,2,2-trifluoro-acetamide, (CAS 1702305-40-5), 3- enc/o-3-[2-propoxy-4-(trifluoromethyl)phenoxy]-9-[[5-(trifluoromethyl)-2-pyridinyl]oxy]-9- azabicyclo[3.3.1]nonane (known from WO 2011/105506 A1 , WO 2016/133011 A1) (CAS 1332838-17- 1)·
Examples of herbicides which could be mixed with the compound of formula (I) and the composition comprising at least one compound of formula (l)are:
Acetochlor, acifluorfen, acifluorfen-sodium, aclonifen, alachlor, allidochlor, alloxydim, alloxydim-sodium, ametryn, amicarbazone, amidochlor, amidosulfuron, 4-amino-3-chloro-5-fluoro-6-(7-fluoro-1 H-indol-6- yl)pyridine-2-carboxylic acid, aminocyclopyrachlor, aminocyclopyrachlor-potassium, aminocyclopyrachlor-methyl, aminopyralid, amitrole, ammoniumsulfamate, anilofos, asulam, atrazine, azafenidin, azimsulfuron, beflubutamid, benazolin, benazolin-ethyl, benfluralin, benfuresate, bensulfuron, bensulfuron-methyl, bensulide, bentazone, benzobicyclon, benzofenap, bicyclopyron, bifenox, bilanafos, bilanafos-sodium, bispyribac, bispyribac-sodium, bixlozone, bromacil, bromobutide, bromofenoxim, bromoxynil, bromoxynil-butyrate, -potassium, -heptanoate, and -octanoate, busoxinone, butachlor, butafenacil, butamifos, butenachlor, butralin, butroxydim, butylate, cafenstrole, carbetamide, carfentrazone, carfentrazone-ethyl, chloramben, chlorbromuron, 1-{2-chloro-3-[(3-cyclopropyl-5- hydroxy-1 -methyl-1 H-pyrazol-4-yl)carbonyl]-6-(trifluormethyl)phenyl}piperidin-2-on, 4-{2-chloro-3-[(3,5- dimethyl-1 H-pyrazol-1-yl)methyl]-4-(methylsulfonyl)benzoyl}-1 ,3-dimethyl-1 H-pyrazol-5-yl-1 ,3- dimethyl-1 H-pyrazol-4-carboxylat, chlorfenac, chlorfenac-sodium, chlorfenprop, chlorflurenol, chlorflurenol-methyl, chloridazon, chlorimuron, chlorimuron-ethyl, 2-[2-chloro-4-(methylsulfonyl)-3- (morpholin-4-ylmethyl)benzoyl]-3-hydroxycyclohex-2-en-1-on, 4-{2-chloro-4-(methylsulfonyl)-3-[(2,2,2- trifluorethoxy)methyl]benzoyl}-1 -ethyl-1 H-pyrazol-5-yl-1 ,3-dimethyl-1 H-pyrazol-4-carboxylat, chlorophthalim, chlorotoluron, chlorthal-dimethyl, 3-[5-chloro-4-(trifluormethyl)pyridine-2-yl]-4-hydroxy- 1-methylimidazolidine-2-on, chlorsulfuron, cinidon, cinidon-ethyl, cinmethylin, cinosulfuron, clacyfos, clethodim, clodinafop, clodinafop-propargyl, clomazone, clomeprop, clopyralid, cloransulam, cloransulam-methyl, cumyluron, cyanamide, cyanazine, cycloate, cyclopyranil, cyclopyrimorate, cyclosulfamuron, cycloxydim, cyhalofop, cyhalofop-butyl, cyprazine, 2,4-D, 2,4-D-butotyl, -butyl, - dimethylammonium, -diolamin, -ethyl, -2-ethylhexyl, -isobutyl, -isooctyl, -isopropylammonium, - potassium, -triisopropanolammonium, and -trolamine, 2,4-DB, 2,4-DB-butyl, -dimethylammonium, - isooctyl, -potassium, and -sodium, daimuron (dymron), dalapon, dazomet, n-decanol, desmedipham, detosyl-pyrazolate (DTP), dicamba, dichlobenil, dichlorprop, dichlorprop-P, diclofop, diclofop-methyl, diclofop-P-methyl, diclosulam, difenzoquat, diflufenican, diflufenzopyr, diflufenzopyr-sodium, dimefuron, dimepiperate, dimethachlor, dimethametryn, dimethenamid, dimethenamid-P, 3-(2,6-dimethylphenyl)-6- [(2-hydroxy-6-oxocyclohex-1-en-1-yl)carbonyl]-1-methylchinazolin-2,4(1 H,3H)-dion, 1 ,3-dimethyl-4-[2- (methylsulfonyl)-4-(trifluormethyl)benzoyl]-1 H-pyrazol-5-yl-1 ,3-dimethyl-1 H-pyrazol-4-carboxylat, dimetrasulfuron, dinitramine, dinoterb, diphenamid, diquat, diquat-dibromid, dithiopyr, diuron, DMPA, DNOC, endothal, EPTC, esprocarb, ethalfluralin, ethametsulfuron, ethametsulfuron-methyl, ethiozin, ethofumesate, ethoxyfen, ethoxyfen-ethyl, ethoxysulfuron, etobenzanid, ethyl-[(3-{2-chloro-4-fluoro-5- [3-methyl-2,6-dioxo-4-(trifluormethyl)-3,6-dihydropyrimidin-1 (2H)-yl]phenoxy}pyridin-2-yl)oxy]acetat, F- 9960, F-5231 , i.e. N-{2-chloro-4-fluoro-5-[4-(3-fluoropropyl)-5-oxo-4,5-dihydro-1 H-tetrazol-1- yl]phenyl}ethanesulfonamide, F-7967, i. e. 3-[7-chloro-5-fluoro-2-(trifluoromethyl)-1 H-benzimidazol-4- yl]-1-methyl-6-(trifluoromethyl)pyrimidine-2,4(1 H,3H)-dione, fenoxaprop, fenoxaprop-P, fenoxaprop- ethyl, fenoxaprop-P-ethyl, fenoxasulfone, fenquinotrione, fentrazamide, flamprop, flamprop-M- isopropyl, flamprop-M-methyl, flazasulfuron, florasulam, fluazifop, fluazifop-P, fluazifop-butyl, fluazifop- P-butyl, flucarbazone, flucarbazone-sodium, flucetosulfuron, fluchloralin, flufenacet, flufenpyr, flufenpyr- ethyl, flumetsulam, flumiclorac, flumiclorac-pentyl, flumioxazin, fluometuron, flurenol, flurenol-butyl, - dimethylammonium and -methyl, fluoroglycofen, fluoroglycofen-ethyl, flupropanate, flupyrsulfuron, flupyrsulfuron-methyl-sodium, fluridone, flurochloridone, fluroxypyr, fluroxypyr-meptyl, flurtamone, fluthiacet, fluthiacet-methyl, fomesafen, fomesafen-sodium, foramsulfuron, fosamine, glufosinate, glufosinate-ammonium, glufosinate-P-sodium, glufosinate-P-ammonium, glufosinate-P-sodium, glyphosate, glyphosate-ammonium, -isopropylammonium, -diammonium, -dimethylammonium, - potassium, -sodium, and -trimesium, H-9201 , i.e. 0-(2,4-dimethyl-6-nitrophenyl) O-ethyl isopropylphosphoramidothioate, halauxifen, halauxifen-methyl .halosafen, halosulfuron, halosulfuron- methyl, haloxyfop, haloxyfop-P, haloxyfop-ethoxyethyl, haloxyfop-P-ethoxyethyl, haloxyfop-methyl, haloxyfop-P-methyl, hexazinone, HW-02, i.e. l-(dimethoxyphosphoryl) ethyl-(2,4- dichlorophenoxy)acetate, 4-hydroxy-1-methoxy-5-methyl-3-[4-(trifluormethyl)pyridine-2- yl]imidazolidine-2-on, 4-hydroxy-1-methyl-3-[4-(trifluormethyl)pyridine-2-yl]imidazolidine-2-on, (5- hydroxy-1 -methyl-1 H-pyrazol-4-yl)(3, 3, 4-trimethyl-1 ,1-dioxido-2, 3-dihydro-1-benzothiophen-5- yl)methanon, 6-[(2-hydroxy-6-oxocyclohex-1-en-1-yl)carbonyl]-1 ,5-dimethyl-3-(2- methylphenyl)chinazolin-2,4(1 H,3H)-dion, imazamethabenz, imazamethabenz-methyl, imazamox, imazamox-ammonium, imazapic, imazapic-ammonium, imazapyr, imazapyr-isopropylammonium, imazaquin, imazaquin-ammonium, imazethapyr, imazethapyr-immonium, imazosulfuron, indanofan, indaziflam, iodosulfuron, iodosulfuron-methyl-sodium, ioxynil, ioxynil-octanoate, -potassium and -sodium, ipfencarbazone, isoproturon, isouron, isoxaben, isoxaflutole, karbutilate, KUH-043, i.e. 3- ({[5-(difluoromethyl)-1-methyl-3-(trifluoromethyl)-1 H-pyrazol-4-yl]methyl}sulfonyl)-5,5-dimethyl-4,5- dihydro-1 ,2-oxazole, ketospiradox, lactofen, lenacil, linuron, MCPA, MCPA-butotyl, dimethylammonium, -2-ethylhexyl, -isopropylammonium, -potassium, and -sodium, MCPB, MCPB- methyl, -ethy,l and -sodium, mecoprop, mecoprop-sodium, and -butotyl, mecoprop-P, mecoprop-P- butotyl, -dimethylammonium, -2-ethylhexyl, and -potassium, mefenacet, mefluidide, mesosulfuron, mesosulfuron-methyl, mesotrione, methabenzthiazuron, metam, metamifop, metamitron, metazachlor, metazosulfuron, methabenzthiazuron, methiopyrsulfuron, methiozolin, 2-({2-[(2- methoxyethoxy)methyl]-6-(trifluormethyl)pyridin-3-yl}carbonyl)cyclohexan-1 ,3-dion, methyl isothiocyanate, 1-methyl-4-[(3,3,4-trimethyl-1 ,1-dioxido-2,3-dihydro-1-benzothiophen-5-yl)carbonyl]- 1 H-pyrazol-5-ylpropan-1-sulfonat, metobromuron, metolachlor, S-metolachlor, metosulam, metoxuron, metribuzin, metsulfuron, metsulfuron-methyl, molinat, monolinuron, monosulfuron, monosulfuron-ester, MT-5950, i.e. N-(3-chloro-4-isopropylphenyl)-2-methylpentan amide, NGGC-011 , napropamide, NC- 310, i.e. [5-(benzyloxy)-1 -methyl-1 H-pyrazol-4-yl](2,4-dichlorophenyl)methanone, neburon, nicosulfuron, nonanoic acid (pelargonic acid), norflurazon, oleic acid (fatty acids), orbencarb, orthosulfamuron, oryzalin, oxadiargyl, oxadiazon, oxasulfuron, oxaziclomefon, oxyfluorfen, paraquat, paraquat dichloride, pebulate, pendimethalin, penoxsulam, pentachlorphenol, pentoxazone, pethoxamid, petroleum oils, phenmedipham, picloram, picolinafen, pinoxaden, piperophos, pretilachlor, primisulfuron, primisulfuron-methyl, prodiamine, profoxydim, prometon, prometryn, propachlor, propanil, propaquizafop, propazine, propham, propisochlor, propoxycarbazone, propoxycarbazone-sodium, propyrisulfuron, propyzamide, prosulfocarb, prosulfuron, pyraclonil, pyraflufen, pyraflufen-ethyl, pyrasulfotole, pyrazolynate (pyrazolate), pyrazosulfuron, pyrazosulfuron-ethyl, pyrazoxyfen, pyribambenz, pyribambenz-isopropyl, pyribambenz-propyl, pyribenzoxim, pyributicarb, pyridafol, pyridate, pyriftalid, pyriminobac, pyriminobac-methyl, pyrimisulfan, pyrithiobac, pyrithiobac-sodium, pyroxasulfone, pyroxsulam, quinclorac, quinmerac, quinoclamine, quizalofop, quizalofop-ethyl, quizalofop-P, quizalofop-P-ethyl, quizalofop-P-tefuryl, QYM-201 , QYR-301 , rimsulfuron, saflufenacil, sethoxydim, siduron, simazine, simetryn, SL-261 , sulcotrion, sulfentrazone, sulfometuron, sulfometuron- methyl, sulfosulfuron, SYN-523, SYP-249, i.e. 1-ethoxy-3-methyl-1-oxobut-3-en-2-yl 5-[2-chloro-4- (trifluoromethyl)phenoxy]-2-nitrobenzoate, SYP-300, i.e. 1 -[7-fluoro-3-oxo-4-(prop-2-yn-1 -yl)-3,4- dihydro-2H-1 ,4-benzoxazin-6-yl]-3-propyl-2-thioxoimidazolidine-4,5-dione, 2,3,6-TBA, TCA (trichloroacetic acid), TCA-sodium, tebuthiuron, tefuryltrione, tembotrione, tepraloxydim, terbacil, terbucarb, terbumeton, terbuthylazin, terbutryn, tetflupyrolimet, thenylchlor, thiazopyr, thiencarbazone, thiencarbazone-methyl, thifensulfuron, thifensulfuron-methyl, thiobencarb, tiafenacil, tolpyralate, topra- mezone, tralkoxydim, triafamone, tri-allate, triasulfuron, triaziflam, tribenuron, tribenuron-methyl, triclopyr, trietazine, trifloxysulfuron, trifloxysulfuron-sodium, trifludimoxazin, trifluralin, triflusulfuron, triflusulfuron-methyl, tritosulfuron, urea sulfate, vernolate, ZJ-0862, i.e. 3,4-dichloro-N-{2-[(4,6- dimethoxypyrimidin-2-yl)oxy]benzyl}aniline.
Examples for plant growth regulators are:
Acibenzolar, acibenzolar-S-methyl, 5-aminolevulinic acid, ancymidol, 6-benzylaminopurine, Brassinolid, catechine, chlormequat chloride, cloprop, cyclanilide, 3-(cycloprop-1-enyl) propionic acid, daminozide, dazomet, n-decanol, dikegulac, dikegulac-sodium, endothal, endothal-dipotassium, -disodium, and - mono(N,N-dimethylalkylammonium), ethephon, flumetralin, flurenol, flurenol-butyl, flurprimidol, forchlorfenuron, gibberellic acid, inabenfide, indol-3-acetic acid (IAA), 4-indol-3-ylbutyric acid, isoprothiolane, probenazole, jasmonic acid, maleic hydrazide, mepiquat chloride, 1-methyl- cyclopropene, methyl jasmonate, 2-(1-naphthyl)acetamide, 1-naphthylacetic acid, 2- naphthyloxyacetic acid, nitrophenolate-mixture, paclobutrazol, N-(2-phenylethyl)-beta-alanine, N-phenylphthalamic acid, prohexadione, prohexadione-calcium, prohydrojasmone, salicylic acid, strigolactone, tecnazene, thidiazuron, triacontanol, trinexapac, trinexapac-ethyl, tsitodef, uniconazole, uniconazole-P.
Examples of safeners which could be mixed with the compound of formula (I) and the composition comprising at least one compound of formula (l)are, for example, benoxacor, cloquintocet (-mexyl), cyometrinil, cyprosulfamide, dichlormid, fenchlorazole (-ethyl), fenclorim, flurazole, fluxofenim, furilazole, isoxadifen (-ethyl), mefenpyr
(-diethyl), naphthalic anhydride, oxabetrinil, 2-methoxy-N-({4-[(methylcarbamoyl)amino]phenyl}- sulfonyl)benzamide (CAS 129531-12-0), 4-(dichloroacetyl)-1-oxa-4-azaspiro[4.5]decane (CAS 71526- 07-3), 2,2,5-trimethyl-3-(dichloroacetyl)-1 ,3-oxazolidine (CAS 52836-31-4).
Examples of nitrification inhibitors wich can be mixed with the compound of formula (I) and the composition comprising at least one compound of formula (l)are selected from the group consisting of 2-(3,4-dimethyl-1 H-pyrazol-1 -yl)succinic acid, 2-(4,5-dimethyl-1 H-pyrazol-1 -yl)succinic acid, 3,4- dimethyl pyrazolium glycolate, 3,4-dimethyl pyrazolium citrate, 3,4-dimethyl pyrazolium lactate, 3,4- dimethyl pyrazolium mandelate, 1 ,2,4-triazole, 4-Chloro-3-methylpyrazole, N-((3(5)-methyl-1 H- pyrazole-1 -yl)methyl)acetamide, N-((3(5)-methyl-1 H-pyrazole-1 -yl)methyl)formamide, N-((3(5),4- dimethylpyrazole-1-yl)methyl)formamide, N-((4-chloro-3(5)-methyl-pyrazole-1-yl)methyl)formamide; reaction adducts of dicyandiamide, urea and formaldehyde, triazonyl- formaldehyde-dicyandiamide adducts, 2-cyano-1 -((4-oxo-1 ,3,5-triazinan-1 -yl)methyl)guanidine, 1 -((2-cyanoguanidino)methyl)urea, 2-cyano-1-((2-cyanoguanidino)methyl)guanidine, 2-chloro-6-(trichloromethyl)-pyridine (nitrapyrin or N- serve), dicyandiamide, 3,4-dimethyl pyrazole phosphate, 4,5-dimethyl pyrazole phosphate, 3,4- dimethylpyrazole, 4,5-dimethyl pyrazole, ammoniumthiosulfate, neem, products based on ingredients of neem, linoleic acid, alpha-linolenic acid, methyl p-coumarate, methyl ferulate, methyl 3-(4- hydroxyphenyl) propionate, karanjin, brachialacton, p-benzoquinone sorgoleone, 4-amino-1 ,2,4-triazole hydrochloride, 1-amido-2-thiourea, 2-amino-4-chloro-6-methylpyrimidine, 2-mercapto-benzothiazole, 5- ethoxy-3-trichloromethyl-1 ,2,4-thiodiazole (terrazole, etridiazole), 2-sulfanilamidothiazole, 3-methyl- pyrazol, 1 ,2, 4-triazol thiourea, cyan amide, melamine, zeolite powder, catechol, benzoquinone, sodium tetraborate, allylthiourea, chlorate salts, and zinc sulfate.
The compound of formula (I) and the composition comprising at least one compound of formula (I) may be combined with one or more agriculturally beneficial agents.
Examples of agriculturally beneficial agents include biostimulants, plant growth regulators, plant signal molecules, growth enhancers, microbial stimulating molecules, biomolecules, soil amendments, nutrients, plant nutrient enhancers, etc., such as lipo-chitooligosaccharides (LCO), chitooligosaccharides (CO), chitinous compounds, flavonoids, jasmonic acid or derivatives thereof (e.g., jasmonates), cytokinins, auxins, gibberellins, absiscic acid, ethylene, brassinosteroids, salicylates, macro- and micro-nutrients, linoleic acid or derivatives thereof, linolenic acid or derivatives thereof, karrikins, and beneficial microorganisms (e.g., Rhizobium spp., Bradyrhizobium spp., Sinorhizobium spp., Azorhizobium spp., Glomus spp., Gigaspora spp., Hymenoscyphous spp., Oidiodendron spp., Laccaria spp., Pisolithus spp., Rhizopogon spp., Scleroderma spp., Rhizoctonia spp., Acinetobacter spp., Arthrobacter spp., Arthrobotrys spp., Aspergillus spp., Azospirillum spp., Bacillus spp., Burkholderia spp., Candida spp., Chryseomonas spp., Enterobacter spp., Eupenicillium spp., Exiguobacterium spp., Klebsiella spp., Kluyvera spp., Microbacterium spp., Mucor spp., Paecilomyces spp., Paenibacillus spp., PeniciIHum spp., Pseudomonas spp., Serratia spp., Stenotrophomonas spp., Streptomyces spp., Streptosporangium spp., Swaminathania spp., Thiobacillus spp., Torulospora spp., Vibrio spp., Xanthobacter spp., Xanthomonas spp., etc.), and combinations thereof.
Methods and uses
The compound of formula (I) and the composition comprising at least one compound of formula (I) have potent microbicidal activity and/or plant defense modulating potential. They can be used for controlling unwanted microorganisms, such as unwanted fungi and bacteria, on plants. They can be particularly useful in crop protection (they control microorganisms that cause plants diseases) or for protecting materials (e.g. industrial materials, timber, storage goods) as described in more details herein below. More specifically, the compound of formula (I) and the composition comprising at least one compound of formula (I) can be used to protect seeds, germinating seeds, emerged seedlings, plants, plant parts, fruits, harvest goods and/or the soil in which the plants grow from unwanted microorganisms.
Control or controlling as used herein encompasses protective, curative and eradicative treatment of unwanted microorganisms. Unwanted microorganisms may be pathogenic bacteria, pathogenic virus, pathogenic oomycetes or pathogenic fungi, more specifically phytopathogenic bacteria, phytopathogenic virus, phytopathogenic oomycetes or phytopathogenic fungi. As detailed herein below, these phytopathogenic microorganims are the causal agents of a broad spectrum of plants diseases.
More specifically, the compound of formula (I) and the composition comprising at least one compound of formula (I) can be used as fungicides. For the purpose of the specification, the term “fungicide” refers to a compound or composition that can be used in crop protection for the control of unwanted fungi, such as Plasmodiophoromycetes, Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes and Deuteromycetes and/or for the control of Oomycetes.
The compound of formula (I) and the composition comprising at least one compound of formula (I) may also be used as antibacterial agent. In particular, they may be used in crop protection, for example for the control of unwanted bacteria, such as Pseudomonadaceae, Rhizobiaceae, Xanthomonadaceae, Enterobacteriaceae, Corynebacteriaceae and Streptomycetaceae.
The compound of formula (I) and the composition comprising at least one compound of formula (I) may also be used as antiviral agent in crop protection. For example the compound of formula (I) and the composition comprising at least one compound of formula (I) may have effects on diseases from plant viruses, such as the tobacco mosaic virus (TMV), tobacco rattle virus, tobacco stunt virus (TStuV), tobacco leaf curl virus (VLCV), tobacco nervilia mosaic virus (TVBMV), tobacco necrotic dwarf virus (TNDV), tobacco streak virus (TSV), potato virus X (PVX), potato viruses Y, S, M, and A, potato acuba mosaic virus (PAMV), potato mop-top virus (PMTV), potato leaf-roll virus (PLRV), alfalfa mosaic virus (AMV), cucumber mosaic virus (CMV), cucumber green mottlemosaic virus (CGMMV), cucumber yellows virus (CuYV), watermelon mosaic virus (WMV), tomato spotted wilt virus (TSWV), tomato ringspot virus (TomRSV), sugarcane mosaic virus (SCMV), rice drawf virus, rice stripe virus, rice black- streaked drawf virus, strawberry mottle virus (SMoV), strawberry vein banding virus (SVBV), strawberry mild yellow edge virus (SMYEV), strawberry crinkle virus (SCrV), broad beanwilt virus (BBWV), and melon necrotic spot virus (MNSV).
The present invention also relates to a method for controlling unwanted microorganisms, such as unwanted fungi, oomycetes and bacteria, on plants comprising the step of applying at least one compound of formula (I) or at least one composition comprising at least one compound of formula (I) to the microorganisms and/or their habitat (to the plants, plant parts, seeds, fruits or to the soil in which the plants grow).
Typically, when the compound of formula (I) and the composition comprising at least one compound of formula (l)are used in curative or protective methods for controlling phytopathogenic fungi and/or phytopathogenic oomycetes, an effective and plant-compatible amount thereof is applied to the plants, plant parts, fruits, seeds or to the soil or substrates in which the plants grow. Suitable substrates that may be used for cultivating plants include inorganic based substrates, such as mineral wool, in particular stone wool, perlite, sand or gravel; organic substrates, such as peat, pine bark or sawdust; and petroleum based substrates such as polymeric foams or plastic beads. Effective and plant-compatible amount means an amount that is sufficient to control or destroy the fungi present or liable to appear on the cropland and that does not entail any appreciable symptom of phytotoxicity for said crops. Such an amount can vary within a wide range depending on the fungus to be controlled, the type of crop, the crop growth stage, the climatic conditions and the respective compound of formula (I) or composition used. This amount can be determined by systematic field trials that are within the capabilities of a person skilled in the art.
Plants and plant parts
The compound of formula (I) and the composition comprising at least one compound of formula (I) may be applied to any plants or plant parts.
Plants mean all plants and plant populations, such as desired and undesired wild plants or crop plants (including naturally occurring crop plants). Crop plants may be plants which can be obtained by conventional breeding and optimization methods or by biotechnological and genetic engineering methods or combinations of these methods, including the genetically modified plants (GMO or transgenic plants) and the plant cultivars which are protectable and non-protectable by plant breeders’ rights. Plant cultivars are understood to mean plants which have new properties ("traits") and have been obtained by conventional breeding, by mutagenesis or by recombinant DNA techniques. They can be cultivars, varieties, bio- or genotypes.
Plant parts are understood to mean all parts and organs of plants above and below the ground, such as shoots, leaves, needles, stalks, stems, flowers, fruit bodies, fruits, seeds, roots, tubers and rhizomes. The plant parts also include harvested material and vegetative and generative propagation material, for example cuttings, tubers, rhizomes, slips and seeds.
Plants which may be treated in accordance with the methods of the invention include the following: cotton, flax, grapevine, fruit, vegetables, such as Rosaceae sp. (for example pome fruits such as apples and pears, but also stone fruits such as apricots, cherries, almonds and peaches, and soft fruits such as strawberries), Ribesioidae sp., Juglandaceae sp., Betulaceae sp., Anacardiaceae sp., Fagaceae sp., Moraceae sp., Oleaceae sp., Actinidaceae sp., Lauraceae sp., Musaceae sp. (for example banana trees and plantations), Rubiaceae sp. (for example coffee), Theaceae sp., Sterculiceae sp., Rutaceae sp. (for example lemons, oranges and grapefruit); Solanaceae sp. (for example tomatoes), Liliaceae sp., Asteraceae sp. (for example lettuce), Umbelliferae sp., Cruciferae sp., Chenopodiaceae sp., Cucurbitaceae sp. (for example cucumber), Alliaceae sp. (for example leek, onion), Papilionaceae sp. (for example peas); major crop plants, such as Gramineae sp. (for example maize, turf, cereals such as wheat, rye, rice, barley, oats, millet and triticale), Asteraceae sp. (for example sunflower), Brassicaceae sp. (for example white cabbage, red cabbage, broccoli, cauliflower, Brussels sprouts, pak choi, kohlrabi, radishes, and oilseed rape, mustard, horseradish and cress), Fabacae sp. (for example bean, peanuts), Papilionaceae sp. (for example soya bean), Solanaceae sp. (for example potatoes), Chenopodiaceae sp. (for example sugar beet, fodder beet, swiss chard, beetroot); useful plants and ornamental plants for gardens and wooded areas; and genetically modified varieties of each of these plants.
Plants and plant cultivars which may be treated by the above disclosed methods include plants and plant cultivars which are resistant against one or more biotic stresses, i.e. said plants show a better defense against animal and microbial pests, such as against nematodes, insects, mites, phytopathogenic fungi, bacteria, viruses and/or viroids.
Plants and plant cultivars which may be treated by the above disclosed methods include those plants which are resistant to one or more abiotic stresses. Abiotic stress conditions may include, for example, drought, cold temperature exposure, heat exposure, osmotic stress, flooding, increased soil salinity, increased mineral exposure, ozone exposure, high light exposure, limited availability of nitrogen nutrients, limited availability of phosphorus nutrients, shade avoidance.
Plants and plant cultivars which may be treated by the above disclosed methods include those plants characterized by enhanced yield characteristics. Increased yield in said plants may be the result of, for example, improved plant physiology, growth and development, such as water use efficiency, water retention efficiency, improved nitrogen use, enhanced carbon assimilation, improved photosynthesis, increased germination efficiency and accelerated maturation. Yield may furthermore be affected by improved plant architecture (under stress and non-stress conditions), including but not limited to, early flowering, flowering control for hybrid seed production, seedling vigor, plant size, internode number and distance, root growth, seed size, fruit size, pod size, pod or ear number, seed number per pod or ear, seed mass, enhanced seed filling, reduced seed dispersal, reduced pod dehiscence and lodging resistance. Further yield traits include seed composition, such as carbohydrate content and composition for example cotton or starch, protein content, oil content and composition, nutritional value, reduction in anti-nutritional compounds, improved processability and better storage stability.
Plants and plant cultivars which may be treated by the above disclosed methods include plants and plant cultivars which are hybrid plants that already express the characteristic of heterosis or hybrid vigor which results in generally higher yield, vigor, health and resistance towards biotic and abiotic stresses.
Transgenic plants, seed treatment and integration events
The compound according to the invention can be advantageously used to treat transgenic plants, plant cultivars or plant parts that received genetic material which imparts advantageous and/or useful properties (traits) to these plants, plant cultivars or plant parts. Therefore, it is contemplated that the present invention may be combined with one or more recombinant traits or transgenic event(s) or a combination thereof. For the purposes of this application, a transgenic event is created by the insertion of a specific recombinant DNA molecule into a specific position (locus) within the chromosome of the plant genome. The insertion creates a novel DNA sequence referred to as an “event” and is characterized by the inserted recombinant DNA molecule and some amount of genomic DNA immediately adjacent to/flanking both ends of the inserted DNA. Such trait(s) or transgenic event(s) include, but are not limited to, pest resistance, water use efficiency, yield performance, drought tolerance, seed quality, improved nutritional quality, hybrid seed production, and herbicide tolerance, in which the trait is measured with respect to a plant lacking such trait or transgenic event. Concrete examples of such advantageous and/or useful properties (traits) are better plant growth, vigor, stress tolerance, standability, lodging resistance, nutrient uptake, plant nutrition, and/or yield, in particular improved growth, increased tolerance to high or low temperatures, increased tolerance to drought or to levels of water or soil salinity, enhanced flowering performance, easier harvesting, accelerated ripening, higher yields, higher quality and/or a higher nutritional value of the harvested products, better storage life and/or processability of the harvested products, and increased resistance against animal and microbial pests, such as against insects, arachnids, nematodes, mites, slugs and snails.
Among DNA sequences encoding proteins which confer properties of tolerance to such animal and microbial pests, in particular insects, mention will particularly be made of the genetic material from Bacillus thuringiensis encoding the Bt proteins widely described in the literature and well known to those skilled in the art. Mention will also be made of proteins extracted from bacteria such as Photorhabdus (W097/17432 and WO98/08932). In particular, mention will be made of the Bt Cry or VIP proteins which include the CrylA, CrylAb, CrylAc, CryllA, CrylllA, CrylllB2, Cry9c Cry2Ab, Cry3Bb and CrylF proteins or toxic fragments thereof and also hybrids or combinations thereof, especially the CrylF protein or hybrids derived from a CrylF protein (e.g. hybrid CrylA-CrylF proteins or toxic fragments thereof), the CrylA-type proteins or toxic fragments thereof, preferably the CrylAc protein or hybrids derived from the CrylAc protein (e.g. hybrid CrylAb-CrylAc proteins) or the CrylAb or Bt2 protein or toxic fragments thereof, the Cry2Ae, Cry2Af orCry2Ag proteins or toxic fragments thereof, the CrylA.105 protein or a toxic fragment thereof, the VIP3Aa19 protein, the VIP3Aa20 protein, the VIP3A proteins produced in the COT202 or COT203 cotton events, the VIP3Aa protein or a toxic fragment thereof as described in Estruch et al. (1996), Proc Natl Acad Sci US A. 28;93(11):5389-94, the Cry proteins as described in WO2001/47952, the insecticidal proteins from Xenorhabdus (as described in WO98/50427), Serratia (particularly from S. entomophila) or Photorhabdus species strains, such as Tc-proteins from Photorhabdus as described in WO98/08932. Also any variants or mutants of any one of these proteins differing in some amino acids (1-10, preferably 1-5) from any of the above named sequences, particularly the sequence of their toxic fragment, or which are fused to a transit peptide, such as a plastid transit peptide, or another protein or peptide, is included herein.
Another and particularly emphasized example of such properties is conferred tolerance to one or more herbicides, for example imidazolinones, sulfonylureas, glyphosate or phosphinothricin. Among DNA sequences encoding proteins which confer properties of tolerance to certain herbicides on the transformed plant cells and plants, mention will be particularly be made to the bar or PAT gene or the Streptomyces coelicolor gene described in W02009/152359 which confers tolerance to glufosinate herbicides, a gene encoding a suitable EPSPS (5-Enolpyruwlshikimat-3-phosphat-svnthase) which confers tolerance to herbicides having EPSPS as a target, especially herbicides such as glyphosate and its salts, a gene encoding glyphosate-n-acetyltransferase, or a gene encoding glyphosate oxidoreductase. Further suitable herbicide tolerance traits include at least one ALS (acetolactate synthase) inhibitor (e.g. W02007/024782), a mutated Arabidopsis ALS/AHAS gene (e.g. U.S. Patent 6,855,533), genes encoding 2,4-D-monooxygenases conferring tolerance to 2,4-D (2,4- dichlorophenoxyacetic acid) and genes encoding Dicamba monooxygenases conferring tolerance to dicamba (3,6-dichloro-2- methoxybenzoic acid).
Yet another example of such properties is resistance to one or more phytopathogenic fungi, for example Asian Soybean Rust. Among DNA sequences encoding proteins which confer properties of resistance to such diseases, mention will particularly be made of the genetic material from glycine tomentella, for example from any one of publically available accession lines PI441001 , PI483224, PI583970, PI446958, PI499939, PI505220, PI499933, PI441008, PI505256 or PI446961 as described in W02019/103918.
Further and particularly emphasized examples of such properties are increased resistance against bacteria and/or viruses owing, for example, to systemic acquired resistance (SAR), systemin, phytoalexins, elicitors and also resistance genes and correspondingly expressed proteins and toxins.
Particularly useful transgenic events in transgenic plants or plant cultivars which can be treated with preference in accordance with the invention include Event 531/ PV-GHBK04 (cotton, insect control, described in W02002/040677), Event 1143-14A (cotton, insect control, not deposited, described in W02006/128569); Event 1143-51 B (cotton, insect control, not deposited, described in W02006/128570); Event 1445 (cotton, herbicide tolerance, not deposited, described in US-A 2002- 120964 or W02002/034946); Event 17053 (rice, herbicide tolerance, deposited as PTA-9843, described in WO2010/117737); Event 17314 (rice, herbicide tolerance, deposited as PTA-9844, described in WO2010/117735); Event 281-24-236 (cotton, insect control - herbicide tolerance, deposited as PTA-6233, described in W02005/103266 or US-A 2005-216969); Event 3006-210-23 (cotton, insect control - herbicide tolerance, deposited as PTA-6233, described in US-A 2007- 143876 orW02005/103266); Event 3272 (corn, quality trait, deposited as PTA-9972, described in W02006/098952 or US-A 2006-230473); Event 33391 (wheat, herbicide tolerance, deposited as PTA-2347, described in W02002/027004), Event 40416 (corn, insect control - herbicide tolerance, deposited as ATCC PTA-11508, described in WO 11/075593); Event 43A47 (corn, insect control - herbicide tolerance, deposited as ATCC PTA-11509, described in WO2011/075595); Event 5307 (corn, insect control, deposited as ATCC PTA-9561 , described in WO2010/077816); Event ASR- 368 (bent grass, herbicide tolerance, deposited as ATCC PTA-4816, described in US-A 2006- 162007 or W02004/053062); Event B16 (corn, herbicide tolerance, not deposited, described in US- A 2003-126634); Event BPS-CV127- 9 (soybean, herbicide tolerance, deposited as NCIMB No. 41603, described in WO2010/080829); Event BLRI (oilseed rape, restoration of male sterility, deposited as NCIMB 41193, described in W02005/074671), Event CE43-67B (cotton, insect control, deposited as DSM ACC2724, described in US-A 2009-217423 or W02006/128573); Event CE44-69D (cotton, insect control, not deposited, described in US-A 2010- 0024077); Event CE44- 69D (cotton, insect control, not deposited, described in W02006/128571); Event CE46-02A (cotton, insect control, not deposited, described in W02006/128572); Event COT102 (cotton, insect control, not deposited, described in US-A 2006-130175 or W02004/039986); Event COT202 (cotton, insect control, not deposited, described in US-A 2007-067868 or W02005/054479); Event COT203 (cotton, insect control, not deposited, described in W02005/054480); ); Event DAS21606-3 / 1606 (soybean, herbicide tolerance, deposited as PTA-11028, described in WO2012/033794), Event DAS40278 (corn, herbicide tolerance, deposited as ATCC PTA-10244, described in WO2011/022469); Event DAS-44406-6 / pDAB8264.44.06.l (soybean, herbicide tolerance, deposited as PTA-11336, described in WO2012/075426), Event DAS-14536-7 /pDAB8291 .45.36.2 (soybean, herbicide tolerance, deposited as PTA-11335, described in WO2012/075429), Event DAS-59122-7 (corn, insectcontrol - herbicide tolerance, deposited as ATCC PTA 11384, described in US-A 2006-070139); Event DAS-59132 (corn, insect control - herbicide tolerance, not deposited, described in W02009/100188); Event DAS68416 (soybean, herbicide tolerance, deposited as ATCC PTA-10442, described in WO2011/066384 or WO2011/066360); Event DP-098140-6 (corn, herbicide tolerance, deposited as ATCC PTA-8296, described in US-A 2009- 137395 or WO 08/112019); Event DP-305423-1 (soybean, quality trait, not deposited, described in US-A 2008-312082 or W02008/054747); Event DP-32138-1 (corn, hybridization system, deposited as ATCC PTA-9158, described in US-A 2009-0210970 or W02009/103049); Event DP-356043-5 (soybean, herbicide tolerance, deposited as ATCC PTA-8287, described in US-A 2010-0184079 or W02008/002872); EventEE-l (brinjal, insect control, not deposited, described in WO 07/091277); Event Fil 17 (corn, herbicide tolerance, deposited as ATCC 209031 , described in US-A 2006- 059581 or WO 98/044140); Event FG72 (soybean, herbicide tolerance, deposited as PTA-11041 , described in WO2011/063413), Event GA21 (corn, herbicide tolerance, deposited as ATCC 209033, described in US-A 2005-086719 or WO 98/044140); Event GG25 (corn, herbicide tolerance, deposited as ATCC 209032, described in US-A 2005-188434 or W098/044140); Event GHB119 (cotton, insect control - herbicide tolerance, deposited as ATCC PTA-8398, described in W02008/151780); Event GHB614 (cotton, herbicide tolerance, deposited as ATCC PTA-6878, described in US-A 2010-050282 or W02007/017186); Event GJ11 (corn, herbicide tolerance, deposited as ATCC 209030, described in US-A 2005-188434 or W098/044140); Event GM RZ13 (sugar beet, virus resistance, deposited as NCIMB-41601 , described in WO2010/076212); Event H7-I (sugar beet, herbicide tolerance, deposited as NCIMB 41158 or NCIMB 41159, described in US-A 2004-172669 or WO 2004/074492); Event JOPLINI (wheat, disease tolerance, not deposited, described in US-A 2008-064032); Event LL27 (soybean, herbicide tolerance, deposited as NCIMB41658, described in W02006/108674 or US-A 2008-320616); Event LL55 (soybean, herbicide tolerance, deposited as NCIMB 41660, described in WO 2006/108675 or US-A 2008- 196127); Event LLcotton25 (cotton, herbicide tolerance, deposited as ATCC PTA-3343, described in W02003/013224 or US- A 2003-097687); Event LLRICE06 (rice, herbicide tolerance, deposited as ATCC 203353, described in US 6,468,747 or W02000/026345); Event LLRice62 ( rice, herbicide tolerance, deposited as ATCC 203352, described in W02000/026345), Event LLRICE601 (rice, herbicide tolerance, deposited as ATCC PTA-2600, described in US-A 2008-2289060 or W02000/026356); Event LY038 (corn, quality trait, deposited as ATCC PTA-5623, described in US-A 2007-028322 or W02005/061720); Event MIR162 (corn, insect control, deposited as PTA- 8166, described in US-A 2009-300784 or W02007/142840); Event MIR604 (corn, insect control, not deposited, described in US-A 2008-167456 or W02005/103301); Event MON15985 (cotton, insect control, deposited as ATCC PTA-2516, described in US-A 2004-250317 or W02002/100163); Event MON810 (corn, insect control, not deposited, described in US-A 2002- 102582); Event MON863 (corn, insect control, deposited as ATCC PTA-2605, described in W02004/011601 or US-A 2006-095986); Event MON87427 (corn, pollination control, deposited as ATCC PTA-7899, described in WO2011/062904); Event MON87460 (corn, stress tolerance, deposited as ATCC PTA-8910, described in W02009/111263 or US-A 2011-0138504); Event MON87701 (soybean, insect control, deposited as ATCC PTA- 8194, described in US-A 2009- 130071 or W02009/064652); Event MON87705 (soybean, quality trait - herbicide tolerance, deposited as ATCC PTA-9241 , described in US-A 2010-0080887 or WO2010/037016); Event MON87708 (soybean, herbicide tolerance, deposited as ATCC PTA-9670, described in WO2011/034704); Event MON87712 (soybean, yield, deposited as PTA-10296, described in WO2012/051199), Event MON87754 (soybean, quality trait, deposited as ATCC PTA-9385, described in WO2010/024976); Event MON87769 (soybean, quality trait, deposited as ATCC PTA- 8911 , described in US-A 2011-0067141 or W02009/102873); Event MON88017 (corn, insect control - herbicide tolerance, deposited as ATCC PTA-5582, described in US-A 2008-028482 or W02005/059103); Event MON88913 (cotton, herbicide tolerance, deposited as ATCC PTA-4854, described in W02004/072235 or US-A 2006-059590); Event MON88302 (oilseed rape, herbicide tolerance, deposited as PTA-10955, described in WO2011/153186), Event MON88701 (cotton, herbicide tolerance, deposited as PTA-11754, described in WO2012/134808), Event MON89034 (corn, insect control, deposited as ATCC PTA-7455, described in WO 07/140256 or US-A 2008- 260932); Event MON89788 (soybean, herbicide tolerance, deposited as ATCC PTA-6708, described in US-A 2006-282915 or W02006/130436); Event MS1 1 (oilseed rape, pollination control - herbicide tolerance, deposited as ATCC PTA-850 or PTA-2485, described in W02001/031042); Event MS8 (oilseed rape, pollination control - herbicide tolerance, deposited as ATCC PTA-730, described in W02001/041558 or US-A 2003-188347); Event NK603 (corn, herbicide tolerance, deposited as ATCC PTA-2478, described in US-A 2007-292854); Event PE-7 (rice, insect control, not deposited, described in W02008/114282); Event RF3 (oilseed rape, pollination control - herbicide tolerance, deposited as ATCC PTA-730, described in W02001/041558 or US-A 2003- 188347); Event RT73 (oilseed rape, herbicide tolerance, not deposited, described in W02002/036831 or US-A 2008-070260); Event SYHT0H2 / SYN-000H2-5 (soybean, herbicide tolerance, deposited as PTA-11226, described in WO2012/082548), Event T227-1 (sugar beet, herbicide tolerance, not deposited, described in W02002/44407 or US-A 2009-265817); Event T25 (corn, herbicide tolerance, not deposited, described in US-A 2001-029014 or W02001/051654); Event T304-40 (cotton, insect control - herbicide tolerance, deposited as ATCC PTA-8171 , described in US-A 2010-077501 or W02008/122406); Event T342-142 (cotton, insect control, not deposited, described in W02006/128568); Event TC1507 (corn, insect control - herbicide tolerance, not deposited, described in US-A 2005-039226 or W02004/099447); Event VIP1034 (corn, insect control - herbicide tolerance, deposited as ATCC PTA-3925, described in W02003/052073), Event 32316 (corn, insect control-herbicide tolerance, deposited as PTA-11507, described in WO2011/084632), Event 4114 (corn, insect control-herbicide tolerance, deposited as PTA-11506, described in W02011/084621), event EE-GM3 / FG72 (soybean, herbicide tolerance, ATCC Accession N° PTA-11041) optionally stacked with event EE-GM1/LL27 or event EE- GM2/LL55 (WO2011/063413A2), event DAS-68416-4 (soybean, herbicide tolerance, ATCC Accession N° PTA-10442, WO2011/066360AI), event DAS-68416-4 (soybean, herbicide tolerance, ATCC Accession N° PTA-10442, WO2011/066384AI), event DP-040416-8 (corn, insect control, ATCC Accession N° PTA-11508, WO2011/075593AI), event DP-043A47-3 (corn, insect control, ATCC Accession N° PTA-11509, WO2011/075595AI), event DP- 004114-3 (corn, insect control, ATCC Accession N° PTA-11506, WO2011/084621 Al), event DP-032316-8 (corn, insect control, ATCC Accession N° PTA-11507, WO2011/084632AI), event MON-88302-9 (oilseed rape, herbicide tolerance, ATCC Accession N° PTA-10955, WO2011/153186AI), event DAS-21606-3 (soybean, herbicide tolerance, ATCC Accession No. PTA-11028, WO2012/033794A2), event MON-87712-4 (soybean, quality trait, ATCC Accession N°. PTA-10296, WO2012/051199A2), event DAS-44406-6 (soybean, stacked herbicide tolerance, ATCC Accession N°. PTA-11336, WO2012/075426AI), event DAS-14536-7 (soybean, stacked herbicide tolerance, ATCC Accession N°. PTA-11335, WO2012/075429AI), event SYN-000H2-5 (soybean, herbicide tolerance, ATCC Accession N°. PTA-11226, WO2012/082548A2), event DP-061061 -7 (oilseed rape, herbicide tolerance, no deposit N° available, W02012071039AI), event DP-073496-4 (oilseed rape, herbicide tolerance, no deposit N° available, US2012131692), event 8264.44.06.1 (soybean, stacked herbicide tolerance, Accession N° PTA-11336, WO2012075426A2), event 8291.45.36.2 (soybean, stacked herbicide tolerance, Accession N°. PTA-11335, WO2012075429A2), event SYHT0H2 (soybean, ATCC Accession N°. PTA-11226, WO2012/082548A2), event MON88701 (cotton, ATCC Accession N° PTA-11754, WO2012/134808AI), event KK179-2 (alfalfa, ATCC Accession N° PTA-11833, W02013/003558AI), event pDAB8264.42.32.1 (soybean, stacked herbicide tolerance, ATCC Accession N° PTA-11993, W02013/010094AI), event MZDT09Y (corn, ATCC Accession N° PTA-13025, WO2013/012775AI).
Further, a list of such transgenic event(s) is provided by the United States Department of Agriculture’s (USDA) Animal and Plant Health Inspection Service (APHIS) and can be found on their website on the world wide web at aphis.usda.gov. For this application, the status of such list as it is/was on the filing date of this application, is relevant.
The genes/events which impart the desired traits in question may also be present in combinations with one another in the transgenic plants. Examples of transgenic plants which may be mentioned are the important crop plants, such as cereals (wheat, rice, triticale, barley, rye, oats), maize, soya beans, potatoes, sugar beet, sugar cane, tomatoes, peas and other types of vegetable, cotton, tobacco, oilseed rape and also fruit plants (with the fruits apples, pears, citrus fruits and grapes), with particular emphasis being given to maize, soya beans, wheat, rice, potatoes, cotton, sugar cane, tobacco and oilseed rape. Traits which are particularly emphasized are the increased resistance of the plants to insects, arachnids, nematodes and slugs and snails, as well as the increased resistance of the plants to one or more herbicides.
Commercially available examples of such plants, plant parts or plant seeds that may be treated with preference in accordance with the invention include commercial products, such as plant seeds, sold or distributed under the GENUITY®, DROUGHTGARD®, SMARTSTAX®, RIB COMPLETE®, ROUNDUP READY®, VT DOUBLE PRO®, VT TRIPLE PRO®, BOLLGARD II®, ROUNDUP READY 2 YIELD®, YIELDGARD®, ROUNDUP READY® 2 XTEND™, INTACTA RR2 PRO®, VISTIVE GOLD®, and/or XTENDFLEX™ trade names.
Pathogens
Non-limiting examples of pathogens of fungal diseases which may be treated in accordance with the invention include: diseases caused by powdery mildew pathogens, for example Blumeria species, for example Blumeria graminis ; Podosphaera species, for example Podosphaera leucotricha ; Sphaerotheca species, for example Sphaerotheca fuliginea ; Uncinula species, for example Uncinula necator, diseases caused by rust disease pathogens, for example Gymnosporangium species, for example Gymnosporangium sabinae\ Hemileia species, for example Hemileia vastatrix ; Phakopsora species, for example Phakopsora pachyrhizi or Phakopsora meibomiae; Puccinia species, for example Puccinia recondite, Puccinia graminis Oder Puccinia striiformis ; Uromyces species, for example Uromyces appendiculatus ; diseases caused by pathogens from the group of the Oomycetes, for example Albugo species, for example Albugo Candida ; Bremia species, for example Bremia lactucae ; Peronospora species, for example Peronospora pisi or P. brassicae\ Phytophthora species, for example Phytophthora infestans ; Plasmopara species, for example Plasmopara viticola ; Pseudoperonospora species, for example Pseudoperonospora humuli or Pseudoperonospora cubensis ; Pythium species, for example Pythium ultimum ; leaf blotch diseases and leaf wilt diseases caused, for example, by Alternaria species, for example Altemaria solanr, Cercospora species, for example Cercospora beticola ; Cladiosporium species, for example Cladiosporium cucumerinum\ Cochliobolus species, for example Cochliobolus sativus (conidial form: Drechslera, syn: Helminthosporium) or Cochliobolus miyabeanus\ Colletotrichum species, for example Colletotrichum lindemuthanium·, Corynespora species, for example Corynespora cassiicola·, Cycloconium species, for example Cycloconium oieaginum\ Diaporthe species, for example Diaporthe citri ; Elsinoe species, for example Elsinoe fawcettir, Gloeosporium species, for example Gloeosporium laeticolor, Glomerella species, for example Glomerella cingulata ; Guignardia species, for example Guignardia bidwellr, Leptosphaeria species, for example Leptosphaeria macuians\ Magnaporthe species, for example Magnaporthe grisea ; Microdochium species, for example Microdochium nivale ; Mycosphaerella species, for example Mycosphaerella graminicola, Mycosphaerella arachidicola or Mycosphaerella Hjiensis ; Phaeosphaeria species, for example Phaeosphaeria nodorum\ Pyrenophora species, for example Pyrenophora teres or Pyrenophora tritici repentis ; Ramularia species, for example Ramularia collo-cygni or Ramularia areola ; Rhynchosporium species, for example Rhynchosporium secalis ; Septoria species, for example Septoria apii or Septoria lycopersicr, Stagonospora species, for example Stagonospora nodorum\ Typhula species, for example Typhula incarnata\ Venturia species, for example Venturia inaequalis ; root and stem diseases caused, for example, by Corticium species, for example Corticium graminearum\ Fusarium species, for example Fusarium oxysporum\ Gaeumannomyces species, for example Gaeumannomyces graminis ; Plasmodiophora species, for example Plasmodiophora brassicae ; Rhizoctonia species, for example Rhizoctonia solanr, Sarocladium species, for example Sarocladium oryzae\ Sclerotium species, for example Sclerotium oryzae\ Tapesia species, for example Tapesia acuformis ; Thielaviopsis species, for example Thielaviopsis basicoia\ ear and panicle diseases (including corn cobs) caused, for example, by Alternaria species, for example Altemaria spp Aspergillus species, for example Aspergillus flavus ; Cladosporium species, for example Cladosporium cladosporioides; Claviceps species, for example Claviceps purpurea ; Fusarium species, for example Fusarium culmorum·, Gibberella species, for example Gibberella zeae\ Monographella species, for example Monographella nivalis ; Stagnospora species, for example Stagnospora nodorum\ diseases caused by smut fungi, for example Sphacelotheca species, for example Sphacelotheca reiliana ; Tilletia species, for example Tilletia caries or Tilletia controversa, Urocystis species, for example Urocystis occulta ; Ustilago species, for example Ustilago nuda ; fruit rot caused, for example, by Aspergillus species, for example Aspergillus flavus\ Botrytis species, for example Botrytis cinerea; Monilinia species, for example Monilinia iaxa\ PeniciIHum species, for example PeniciIHum expansum or PeniciIHum purpurogenum\ Rhizopus species, for example Rhizopus stolonifer, Sclerotinia species, for example Sclerotinia scierotiorum\ Verticilium species, for example Verticilium alboatrum·, seed- and soil-borne rot and wilt diseases, and also diseases of seedlings, caused, for example, by Aiternaria species, for example Alternaria brassicicola ; Aphanomyces species, for example Aphanomyces euteiches ; Ascochyta species, for example Ascochyta lentis ; Aspergillus species, for example Aspergillus flavus ; Cladosporium species, for example Cladosporium herbarum; Cochliobolus species, for example Cochliobolus sativus (conidial form: Drechslera, Bipolaris Syn: Helminthosporium)·, Colletotrichum species, for example Colletotrichum coccodes ; Fusarium species, for example Fusarium culmorum\ Gibberella species, for example Gibberella zeae\ Macrophomina species, for example Macrophomina phaseolina\ Microdochium species, for example Microdochium nivale ; Monographella species, for example Monographella nivalis ; PeniciIHum species, for example PeniciIHum expansum\ Phoma species, for example Phoma lingam ; Phomopsis species, for example Phomopsis sojae ; Phytophthora species, for example Phytophthora cactorum\ Pyrenophora species, for example Pyrenophora graminea ; Pyricularia species, for example Pyricularia oryzae\ Pythium species, for example Pythium ultimum ; Rhizoctonia species, for example Rhizoctonia solanr, Rhizopus species, for example Rhizopus oryzae\ Sclerotium species, for example Sclerotium rolfsir, Septoria species, for example Septoria nodorum\ Typhula species, for example Typhula incarnata\ Verticillium species, for example Verticillium dahliae ; cancers, galls and witches’ broom caused, for example, by Nectria species, for example Nectria galligena ; wilt diseases caused, for example, by Verticillium species, for example Verticillium iongisporum\ Fusarium species, for example Fusarium oxysporum; deformations of leaves, flowers and fruits caused, for example, by Exobasidium species, for example Exobasidium vexans ; Taphrina species, for example Taphrina deformans ; degenerative diseases in woody plants, caused, for example, by Esca species, for example Phaeomoniella chlamydospora, Phaeoacremonium aleophilum or Fomitiporia mediterranea\ Ganoderma species, for example Ganoderma boninense\ diseases of plant tubers caused, for example, by Rhizoctonia species, for example Rhizoctonia solanr, Helminthosporium species, for example Helminthosporium solanr, diseases caused by bacterial pathogens, for example Xanthomonas species, for example Xanthomonas campestris pv. oryzae\ Pseudomonas species, for example Pseudomonas syringae pv. lachrymans ; Erwinia species, for example Erwinia amylovora·, Liberibacter species, for example Liberibacter asiaticus ; Xyella species, for example Xylella fastidiosa ; Ralstonia species, for example Ralstonia solanacearunr, Dickeya species, for example Dickeya solani; Clavibacter species, for example Clavibacter michiganensis; Streptomyces species, for example Streptomyces scabies. diseases of soya beans:
Fungal diseases on leaves, stems, pods and seeds caused, for example, by Altemaria leaf spot (Altemaria spec, atrans tenuissima), Anthracnose ( Colletotrichum gloeosporoides dematium var. truncation), brown spot ( Septoria glycines), cercospora leaf spot and blight ( Cercospora kikuchii), choanephora leaf blight (' Choanephora infundibulifera trispora (Syn.)), dactuliophora leaf spot ( Dactuliophora glycines), downy mildew ( Peronospora manshurica), drechslera blight ( Drechslera glycini), frogeye leaf spot ( Cercospora sojina), leptosphaerulina leaf spot ( Leptosphaerulina trifolii), phyllostica leaf spot ( Phyllosticta sojaecola), pod and stem blight ( Phomopsis sojae), powdery mildew ( Microsphaera diffusa), pyrenochaeta leaf spot (, Pyrenochaeta glycines), rhizoctonia aerial, foliage, and web blight ( Rhizoctonia solani), rust ( Phakopsora pachyrhizi, Phakopsora meibomiae), scab ( Sphaceloma glycines), stemphylium leaf blight ( Stemphylium botryosum), sudden death syndrome ( Fusarium virguliforme), target spot ( Corynespora cassiicola).
Fungal diseases on roots and the stem base caused, for example, by black root rot ( Calonectria crotalariae), charcoal rot ( Macrophomina phaseolina), fusarium blight or wilt, root rot, and pod and collar rot ( Fusarium oxysporum, Fusarium orthoceras, Fusarium semitectum, Fusarium equiseti), mycoleptodiscus root rot (Mycoleptodiscus terrestris), neocosmospora ( Neocosmospora vasinfecta), pod and stem blight ( Diaporthe phaseolorum), stem canker ( Diaporthe phaseolorum var. caulivora), phytophthora rot ( Phytophthora megasperma), brown stem rot ( Phialophora gregata), pythium rot ( Pythium aphanidermatum, Pythium irregulare, Pythium debaryanum, Pythium myriotylum, Pythium ultimum), rhizoctonia root rot, stem decay, and damping-off ( Rhizoctonia solani), sclerotinia stem decay ( Sclerotinia sclerotiorum), sclerotinia southern blight (Sclerotinia rolfsii), thielaviopsis root rot (Thielaviopsis basicola).
Mvcotoxins
In addition, the compound of formula (I) and the composition comprising at least one compound of formula (I) may reduce the mycotoxin content in the harvested material and the foods and feeds prepared therefrom. Mycotoxins include particularly, but not exclusively, the following: deoxynivalenol (DON), nivalenol, 15-Ac-DON, 3-Ac-DON, T2- and HT2-toxin, fumonisins, zearalenon, moniliformin, fusarin, diaceotoxyscirpenol (DAS), beauvericin, enniatin, fusaroproliferin, fusarenol, ochratoxins, patulin, ergot alkaloids and aflatoxins which can be produced, for example, by the following fungi: Fusarium spec., such as F. acuminatum, F. asiaticum, F. avenaceum, F. crookwellense, F. culmorum, F. graminearum ( Gibberella zeae), F. equiseti, F. fujikoroi, F. musarum, F. oxysporum, F. proliferatum, F. poae, F. pseudograminearum, F. sambucinum, F. scirpi, F. semitectum, F. solani, F. sporotrichoides, F. langsethiae, F. subglutinans, F. tricinctum, F. verticillioides, and also by Aspergillus spec., such as A. flavus, A. parasiticus, A. nomius, A. ochraceus, A. clavatus, A. terreus, A. versicolor, Penicillium spec., such as P. verrucosum, P. viridicatum, P. citrinum, P. expansum, P. claviforme, P. roqueforti, Claviceps spec., such as C. purpurea, C. fusiformis, C. paspali, C. africana, Stachybotrys spec, and others. Material Protection
The compound of formula (I) and the composition comprising at least one compound of formula (I) may also be used in the protection of materials, especially for the protection of industrial materials against attack and destruction by phytopathogenic fungi.
In addition, the compound of formula (I) and the composition comprising at least one compound of formula (I) may be used as antifouling compositions, alone or in combinations with other active ingredients.
Industrial materials in the present context are understood to mean inanimate materials which have been prepared for use in industry. For example, industrial materials which are to be protected from microbial alteration or destruction may be adhesives, glues, paper, wallpaper and board/cardboard, textiles, carpets, leather, wood, fibers and tissues, paints and plastic articles, cooling lubricants and other materials which can be infected with or destroyed by microorganisms. Parts of production plants and buildings, for example cooling-water circuits, cooling and heating systems and ventilation and air-conditioning units, which may be impaired by the proliferation of microorganisms may also be mentioned within the scope of the materials to be protected. Industrial materials within the scope of the present invention preferably include adhesives, sizes, paper and card, leather, wood, paints, cooling lubricants and heat transfer fluids, more preferably wood.
The compound of formula (I) and the composition comprising at least one compound of formula (I) may prevent adverse effects, such as rotting, decay, discoloration, decoloration or formation of mould.
In the case of treatment of wood the compound of formula (I) and the composition comprising at least one compound of formula (I) may also be used against fungal diseases liable to grow on or inside timber.
Timber means all types of species of wood, and all types of working of this wood intended for construction, for example solid wood, high-density wood, laminated wood, and plywood. In addition, the compound of formula (I) and the composition comprising at least one compound of formula (I) may be used to protect objects which come into contact with saltwater or brackish water, especially hulls, screens, nets, buildings, moorings and signalling systems, from fouling.
The compound of formula (I) and the composition comprising at least one compound of formula (I) may also be employed for protecting storage goods. Storage goods are understood to mean natural substances of vegetable or animal origin or processed products thereof which are of natural origin, and for which long-term protection is desired. Storage goods of vegetable origin, for example plants or plant parts, such as stems, leaves, tubers, seeds, fruits, grains, may be protected freshly harvested or after processing by (pre)drying, moistening, comminuting, grinding, pressing or roasting. Storage goods also include timber, both unprocessed, such as construction timber, electricity poles and barriers, or in the form of finished products, such as furniture. Storage goods of animal origin are, for example, hides, leather, furs and hairs. The compound of formula (I) and the composition comprising at least one compound of formula (I) may prevent adverse effects, such as rotting, decay, discoloration, decoloration or formation of mould. Microorganisms capable of degrading or altering industrial materials include, for example, bacteria, fungi, yeasts, algae and slime organisms. The compound of formula (I) and the composition comprising at least one compound of formula (l)preferably act against fungi, especially moulds, wood-discoloring and wood- destroying fungi ( Ascomycetes , Basidiomycetes, Deuteromycetes and Zygomycetes), and against slime organisms and algae. Examples include microorganisms of the following genera: Alternaria, such as Alternana tenuis\ Aspergillus, such as Aspergillus niger, Chaetomium, such as Chaetomium globosum; Coniophora, such as Coniophora puetana\ Lentinus, such as Lentinus tigrinus ; Penicillium, such as Penicillium glaucum; Polyporus, such as Polyporus versicolor, Aureobasidium, such as Aureobasidium pullulans ; Sclerophoma, such as Sclerophoma pityophila ; Trichoderma, such as Trichoderma viride\ Ophiostoma spp., Ceratocystis spp., Humicola spp., Petriella spp., Trichurus spp., Coriolus spp., Gloeophyllum spp., Pleurotus spp., Poria spp., Serpula spp. and Tyromyces spp., Cladosporium spp., Paecilomyces spp. Mucorspp., Escherichia, such as Escherichia coir, Pseudomonas, such as Pseudomonas aeruginosa ; Staphylococcus, such as Staphylococcus aureus, Candida spp. and Saccharomyces spp., such as Saccharomyces cerevisae.
Seed Treatment
The compound of formula (I) and the composition comprising at least one compound of formula (I) may also be used to protect seeds from unwanted microorganisms, such as phytopathogenic microorganisms, for instance phytopathogenic fungi or phytopathogenic oomycetes. The term seed(s) as used herein include dormant seeds, primed seeds, pregerminated seeds and seeds with emerged roots and leaves.
Thus, the present invention also relates to a method for protecting seeds from unwanted microorganisms which comprises the step of treating the seeds with the compound of formula (I) or the composition.
The treatment of seeds with the compound of formula (I) or the composition protects the seeds from phytopathogenic microorganisms, but also protects the germinating seeds, the emerging seedlings and the plants after emergence from the treated seeds. Therefore, the present invention also relates to a method for protecting seeds, germinating seeds and emerging seedlings.
The seeds treatment may be performed prior to sowing, at the time of sowing or shortly thereafter.
When the seeds treatment is performed prior to sowing (e.g. so-called on-seed applications), the seeds treatment may be performed as follows: the seeds may be placed into a mixer with a desired amount of the compound of formula (I) or the composition comprising at least one compound of formula (I), the seeds and the compound of formula (I) or the composition comprising at least one compound of formula (I) are mixed until an homogeneous distribution on seeds is achieved. If appropriate, the seeds may then be dried.
The invention also relates to seeds coated with the compound of formula (I) or the composition comprising at least one compound of formula (I). Preferably, the seeds are treated in a state in which it is sufficiently stable for no damage to occur in the course of treatment. In general, seeds can be treated at any time between harvest and shortly after sowing. It is customary to use seeds which have been separated from the plant and freed from cobs, shells, stalks, coats, hairs or the flesh of the fruits. For example, it is possible to use seeds which have been harvested, cleaned and dried down to a moisture content of less than 15% by weight. Alternatively, it is also possible to use seeds which, after drying, for example, have been treated with water and then dried again, or seeds just after priming, or seeds stored in primed conditions or pre-germinated seeds, or seeds sown on nursery trays, tapes or paper.
The amount of the compound of formula (I) or the composition comprising at least one compound of formula (I) applied to the seeds is typically such that the germination of the seed is not impaired, or that the resulting plant is not damaged. This must be ensured particularly in case the the compound of formula (I) would exhibit phytotoxic effects at certain application rates. The intrinsic phenotypes of transgenic plants should also be taken into consideration when determining the amount of the compound of formula (I) to be applied to the seed in orderto achieve optimum seed and germinating plant protection with a minimum amount of compound being employed.
The compound of formula (I) can be applied as such, directly to the seeds, i.e. without the use of any other components and without having been diluted. Also the composition comprising at least one compound of formula (I) can be applied to the seeds.
The compound of formula (I) and the composition comprising at least one compound of formula (l)are suitable for protecting seeds of any plant variety. Preferred seeds are that of cereals (such as wheat, barley, rye, millet, triticale, and oats), oilseed rape, maize, cotton, soybean, rice, potatoes, sunflower, beans, coffee, peas, beet (e.g. sugar beet and fodder beet), peanut, vegetables (such as tomato, cucumber, onions and lettuce), lawns and ornamental plants. More preferred are seeds of wheat, soybean, oilseed rape, maize and rice.
The compound of formula (I) and the composition comprising at least one compound of formula (I) may be used for treating transgenic seeds, in particular seeds of plants capable of expressing a polypeptide or protein which acts against pests, herbicidal damage or abiotic stress, thereby increasing the protective effect. Seeds of plants capable of expressing a polypeptide or protein which acts against pests, herbicidal damage or abiotic stress may contain at least one heterologous gene which allows the expression of said polypeptide or protein. These heterologous genes in transgenic seeds may originate, for example, from microorganisms of the species Bacillus, Rhizobium, Pseudomonas, Serratia, Trichoderma, Clavibacter, Glomus or Gliocladium. These heterologous genes preferably originate from Bacillus sp., in which case the gene product is effective against the European corn borer and/or the Western corn rootworm. Particularly preferably, the heterologous genes originate from Bacillus thuringiensis.
Application
The compound of formula (I) can be applied as such, or for example in the form of as ready-to-use solutions, emulsions, water- or oil-based suspensions, powders, wettable powders, pastes, soluble powders, dusts, soluble granules, granules for broadcasting, suspoemulsion concentrates, natural products impregnated with the compound of formula (I), synthetic substances impregnated with the compound of formula (I), fertilizers or microencapsulations in polymeric substances.
Application is accomplished in a customary manner, for example by watering, spraying, atomizing, broadcasting, dusting, foaming or spreading-on. It is also possible to deploy the compound of formula (I) by the ultra-low volume method, via a drip irrigation system or drench application, to apply it in-furrow or to inject it into the soil stem or trunk. It is further possible to apply the compound of formula (I) by means of a wound seal, paint or other wound dressing.
The effective and plant-compatible amount of the compound of formula (I) which is applied to the plants, plant parts, fruits, seeds or soil will depend on various factors, such as the compound/composition employed, the subject of the treatment (plant, plant part, fruit, seed or soil), the type of treatment (dusting, spraying, seed dressing), the purpose of the treatment (curative and protective), the type of microorganisms, the development stage of the microorganisms, the sensitivity of the microorganisms, the crop growth stage and the environmental conditions.
When the compound of formula (I) is used as a fungicide, the application rates can vary within a relatively wide range, depending on the kind of application. For the treatment of plant parts, such as leaves, the application rate may range from 0.1 to 10 000 g/ha, preferably from 10 to 1000 g/ha, more preferably from 50 to 300 g/ha (in the case of application by watering or dripping, it is even possible to reduce the application rate, especially when inert substrates such as rockwool or perlite are used). Forthe treatment of seeds, the application rate may range from 0.1 to 200 g per 100 kg of seeds, preferably from 1 to 150 g per 100 kg of seeds, more preferably from 2.5 to 25 g per 100 kg of seeds, even more preferably from 2.5 to 12.5 g per 100 kg of seeds. For the treatment of soil, the application rate may range from 0.1 to 10 000 g/ha, preferably from 1 to 5000 g/ha.
These application rates are merely examples and are not intended to limit the scope of the present invention.
The compound of formula (I) and the composition comprising at least one compound of formula (I) can be used in combination with models e.g. embedded in computer programs for site specific crop management, satellite farming, precision farming or precision agriculture. Such models support the site specific management of agricultural sites with data from various sources such as soils, weather, crops (e.g. type, growth stage, plant health), weeds (e.g. type, growth stage), diseases, pests, nutrients, water, moisture, biomass, satellite data, yield etc. with the purpose to optimize profitability, sustainability and protection of the environment. In particular, such models can help to optimize agronomical decisions, control the precision of pesticide applications and record the work performed.
As an example, the compound of formula (I) can be applied to a crop plant according to appropriate dose regime if a model models the development of a fungal disease and calculates that a threshold has been reached for which it is recommendable to apply the compound of formula (I) to the crop plant. Commercially available systems which include agronomic models are e.g. FieldScripts™ from The Climate Corporation, Xarvio™ from BASF, AGLogic™ from John Deere, etc.
The compound of formula (I) can also be used in combination with smart spraying equipment such as e.g. spot spraying or precision spraying equipment attached to or housed within a farm vehicle such as a tractor, robot, helicopter, airplane, unmanned aerial vehicle (UAV) such as a drone, etc. Such an equipment usually includes input sensors (such as e.g. a camera) and a processing unit configured to analyze the input data and configured to provide a decision based on the analysis of the input data to apply the compound of formula (I) to the crop plants (respectively the weeds) in a specific and precise manner. The use of such smart spraying equipment usually also requires positions systems (e.g. GPS receivers) to localize recorded data and to guide or to control farm vehicles; geographic information systems (GIS) to represent the information on intelligible maps, and appropriate farm vehicles to perform the required farm action such as the spraying.
In an example, fungal diseases can be detected from imagery acquired by a camera. In an example fungal diseases can be identified and/or classified based on that imagery. Such identification and/ classification can make use of image processing algorithms. Such image processing algorithms can utilize machine learning algorithms, such as trained neutral networks, decision trees and utilize artificial intelligence algorithms. In this manner, the compounds described herein can be applied only where needed.
Plant Growth Regulation
The compound of formula (I) and the composition comprising at least one compound of formula (I) may, at particular concentrations or application rates, also be used as herbicides, safeners, growth regulators or agents to improve plant properties, or as microbicides, for example as bactericides, viricides (including compositions against viroids) or as compositions against MLO (Mycoplasma-like organisms) and RLO (Rickettsia-like organisms).
The compound of formula (I) and the composition comprising at least one compound of formula (I) may intervene in physiological processes of plants and may therefore also be used as plant growth regulators. Plant growth regulators may exert various effects on plants. The effect of the substances depends essentially on the time of application in relation to the developmental stage of the plant, and also on the amounts of active ingredient applied to the plants or their environment and on the type of application. In each case, growth regulators should have a particular desired effect on the crop plants.
Growth regulating effects, comprise earlier germination, better emergence, more developed root system and/or improved root growth, increased ability of tillering, more productive tillers, earlier flowering, increased plant height and/or biomass, shorting of stems, improvements in shoot growth, number of kernels/ear, number of ears/m2, number of stolons and/or number of flowers, enhanced harvest index, bigger leaves, less dead basal leaves, improved phyllotaxy, earlier maturation / earlier fruit finish, homogenous riping, increased duration of grain filling, better fruit finish, bigger fruit/vegetable size, sprouting resistance and reduced lodging. Increased or improved yield is referring to total biomass per hectare, yield per hectare, kernel/fruit weight, seed size and/or hectolitre weight as well as to improved product quality, comprising: improved processability relating to size distribution (kernel, fruit), homogenous riping, grain moisture, better milling, better vinification, better brewing, increased juice yield, harvestability, digestibility, sedimentation value, falling number, pod stability, storage stability, improved fiber length/strength/uniformity, increase of milk and/or meet quality of silage fed animals, adaptation to cooking and frying; improved marketability relating to improved fruit/grain quality, size distribution (kernel, fruit), increased storage / shelf-life, firmness / softness, taste (aroma, texture), grade (size, shape, number of berries), number of berries/fruits per bunch, crispness, freshness, coverage with wax, frequency of physiological disorders, colour; increased desired ingredients such as e.g. protein content, fatty acids, oil content, oil quality, aminoacid composition, sugar content, acid content (pH), sugar/acid ratio (Brix), polyphenols, starch content, nutritional quality, gluten content/index, energy content, taste; decreased undesired ingredients such as e.g. less mycotoxines, less aflatoxins, geosmin level, phenolic aromas, lacchase, polyphenol oxidases and peroxidases, nitrate content.
Plant growth-regulating compounds can be used, for example, to slow down the vegetative growth of the plants. Such growth depression is of economic interest, for example, in the case of grasses, since it is thus possible to reduce the frequency of grass cutting in ornamental gardens, parks and sport facilities, on roadsides, at airports or in fruit crops. Also of significance is the inhibition of the growth of herbaceous and woody plants on roadsides and in the vicinity of pipelines or overhead cables, or quite generally in areas where vigorous plant growth is unwanted.
Also important is the use of growth regulators for inhibition of the longitudinal growth of cereal. This reduces or completely eliminates the risk of lodging of the plants prior to harvest. In addition, growth regulators in the case of cereals can strengthen the culm, which also counteracts lodging. The employment of growth regulators for shortening and strengthening culms allows the deployment of higher fertilizer volumes to increase the yield, without any risk of lodging of the cereal crop.
In many crop plants, vegetative growth depression allows denser planting, and it is thus possible to achieve higher yields based on the soil surface. Another advantage of the smaller plants obtained in this way is that the crop is easier to cultivate and harvest.
Reduction of the vegetative plant growth may also lead to increased or improved yields because the nutrients and assimilates are of more benefit to flower and fruit formation than to the vegetative parts of the plants. Alternatively, growth regulators can also be used to promote vegetative growth. This is of great benefit when harvesting the vegetative plant parts. However, promoting vegetative growth may also promote generative growth in that more assimilates are formed, resulting in more or larger fruits.
Furthermore, beneficial effects on growth or yield can be achieved through improved nutrient use efficiency, especially nitrogen (N)-use efficiency, phosphorous (P)-use efficiency, water use efficiency, improved transpiration, respiration and/or CO2 assimilation rate, better nodulation, improved Ca- metabolism.
Likewise, growth regulators can be used to alter the composition of the plants, which in turn may result in an improvement in quality of the harvested products. Under the influence of growth regulators, parthenocarpic fruits may be formed. In addition, it is possible to influence the sex of the flowers. It is also possible to produce sterile pollen, which is of great importance in the breeding and production of hybrid seed.
Use of growth regulators can control the branching of the plants. On the one hand, by breaking apical dominance, it is possible to promote the development of side shoots, which may be highly desirable particularly in the cultivation of ornamental plants, also in combination with an inhibition of growth. On the other hand, however, it is also possible to inhibit the growth of the side shoots. This effect is of particular interest, for example, in the cultivation of tobacco or in the cultivation of tomatoes.
Under the influence of growth regulators, the amount of leaves on the plants can be controlled such that defoliation of the plants is achieved at a desired time. Such defoliation plays a major role in the mechanical harvesting of cotton, but is also of interest for facilitating harvesting in other crops, for example in viticulture. Defoliation of the plants can also be undertaken to lower the transpiration of the plants before they are transplanted.
Furthermore, growth regulators can modulate plant senescence, which may result in prolonged green leaf area duration, a longer grain filling phase, improved yield quality.
Growth regulators can likewise be used to regulate fruit dehiscence. On the one hand, it is possible to prevent premature fruit dehiscence. On the other hand, it is also possible to promote fruit dehiscence or even flower abortion to achieve a desired mass (“thinning”). In addition it is possible to use growth regulators at the time of harvest to reduce the forces required to detach the fruits, in order to allow mechanical harvesting or to facilitate manual harvesting.
Growth regulators can also be used to achieve faster or else delayed ripening of the harvested material before or after harvest. This is particularly advantageous as it allows optimal adjustment to the requirements of the market. Moreover, growth regulators in some cases can improve the fruit colour. In addition, growth regulators can also be used to synchronize maturation within a certain period of time. This establishes the prerequisites for complete mechanical or manual harvesting in a single operation, for example in the case of tobacco, tomatoes or coffee. By using growth regulators, it is additionally possible to influence the resting of seed or buds of the plants, such that plants such as pineapple or ornamental plants in nurseries, for example, germinate, sprout or flower at a time when they are normally not inclined to do so. In areas where there is a risk of frost, it may be desirable to delay budding or germination of seeds with the aid of growth regulators, in orderto avoid damage resulting from late frosts.
Finally, growth regulators can induce resistance of the plants to frost, drought or high salinity of the soil. This allows the cultivation of plants in regions which are normally unsuitable for this purpose.
Plant Defense Modulators
The compound of formula (I) and the composition comprising at least one compound of formula (I) may also exhibit a potent strengthening effect in plants. Accordingly, they may be used for mobilizing the defences of the plant against attack by undesirable microorganisms.
Plant-strengthening (resistance-inducing) substances in the present context are substances capable of stimulating the defence system of plants in such a way that the treated plants, when subsequently inoculated with undesirable microorganisms, develop a high degree of resistance to these microorganisms.
Further, in context with the present invention plant physiology effects comprise the following:
Abiotic stress tolerance, comprising tolerance to high or low temperatures, drought tolerance and recovery after drought stress, water use efficiency (correlating to reduced water consumption), flood tolerance, ozone stress and UV tolerance, tolerance towards chemicals like heavy metals, salts, pesticides.
Biotic stress tolerance, comprising increased fungal resistance and increased resistance against nematodes, viruses and bacteria. In context with the present invention, biotic stress tolerance preferably comprises increased fungal resistance and increased resistance against nematodes and bacteria
Increased plant vigor, comprising plant health / plant quality and seed vigor, reduced stand failure, improved appearance, increased recovery after periods of stress, improved pigmentation (e.g. chlorophyll content, stay-green effects) and improved photosynthetic efficiency.
Aspects of the present teaching may be further understood in light of the following examples, which should not be construed as limiting the scope of the present teaching in anyway. EXAMPLES
Generality
Measurement of LoqP values
Measurement of LogP values as provided herein was performed according to EEC directive 79/831 Annex V.A8 by HPLC (High Performance Liquid Chromatography) on reversed phase columns with the following methods:
[a] LogP value is determined by measurement of LC-UV, in an acidic range, with 0.1% formic acid in water and acetonitrile as eluent (linear gradient from 10% acetonitrile to 95% acetonitrile).
[b] LogP value is determined by measurement of LC-UV, in a neutral range, with 0.001 molar ammonium acetate solution in water and acetonitrile as eluent (linear gradient from 10% acetonitrile to 95% acetonitrile).
[c] LogP value is determined by measurement of LC-UV, in an acidic range, with 0.1% phosphoric acid and acetonitrile as eluent (linear gradient from 10% acetonitrile to 95% acetonitrile).
If more than one LogP value is available within the same method, all the values are given and separated by “+”.
Calibration was done with straight-chain alkan2-ones (with 3 to 16 carbon atoms) with known LogP values (measurement of LogP values using retention times with linear interpolation between successive alkanones). Lambda-max-values were determined using UV-spectra from 200 nm to 400 nm and the peak values of the chromatographic signals
Mass analysis
Unless otherwise specified, M+H (Apcl+) means the molecular ion peak plus 1 a.m.u. (atomic mass unit) as observed in mass spectroscopy via positive atmospheric pressure chemical ionisation.
1H-NMR data
1H-NMR data of selected examples as provided herein are written in form of 1H-NMR-peak lists. To each signal peak are listed the d-value in ppm and the signal intensity in round brackets. Between the 5-value - signal intensity pairs are semicolons as delimiters.
The peak list of an example has therefore the form: δ1 (intensityi); δ2 (intensity2); . ; δi, (intensity,); . ; δn (intensityn)
Intensity of sharp signals correlates with the height of the signals in a printed example of a NMR spectrum in cm and shows the real relations of signal intensities. From broad signals several peaks or the middle of the signal and their relative intensity in comparison to the most intensive signal in the spectrum can be shown.
For calibrating chemical shift for 1H spectra, we use tetramethylsilane and/or the chemical shift of the solvent used, especially in the case of spectra measured in DMSO. Therefore in NMR peak lists, tetramethylsilane peak can occur but not necessarily.
The 1H-NMR peak lists are similar to classical 1H-NMR prints and contains therefore usually all peaks, which are listed at classical NMR-interpretation. Additionally they can show like classical 1H-NMR prints signals of solvents, stereoisomers of the target compounds, which are also object of the invention, and/or peaks of impurities.
To show compound signals in the delta-range of solvents and/or water the usual peaks of solvents, for example peaks of DMSO in DMSO-D6 and the peak of water are shown in our 1H-NMR peak lists and have usually on average a high intensity .
The peaks of stereoisomers of the target compounds and/or peaks of impurities have usually on average a lower intensity than the peaks of target compounds (for example with a purity >90%).
Such stereoisomers and/or impurities can be typical for the specific preparation process. Therefore their peaks can help to recognize the reproduction of our preparation process via “side-products-fingerprints”. An expert, who calculates the peaks of the target compounds with known methods (MestreC, ACD- simulation, but also with empirically evaluated expectation values) can isolate the peaks of the target compounds as needed optionally using additional intensity filters. This isolation would be similar to relevant peak picking at classical 1H-NMR interpretation.
Further details of NMR-data description with peak lists you find in the publication “Citation of NMR Peaklist Data within Patent Applications” of the Research Disclosure Database Number 564025.
The following examples illustrate in a non-limiting manner the preparation and biological activity of the compounds of formula (I) according to the invention.
SYNTHESIS OF COMPOUNDS OF FORMULA (I) AND INTERMEDIATES
Table 4 illustrates in a non-limiting manner examples of compounds of formula (I) according to the invention:
Figure imgf000083_0001
The compounds of formula (I) which are mentioned in table 4 herein below were prepared in accordance with the procedures detailed herein below in connection with specific examples and with the general description of the processes herein disclosed.
In table 4, the logP values were determined according to method [a].
In table 4, the point of attachment of the (X)n residue to the phenyl ring is based on the herein above numbering (in italics) of the phenyl ring. Table 4:
Figure imgf000084_0001
Figure imgf000085_0001
Figure imgf000086_0001
86
Figure imgf000087_0001
Table 5 illustrates preferred compounds of formula (V), wherein X is a fluorine atom on position 3 of the phenyl moiety and n is 1. Such compounds are represented by formula (Va):
Figure imgf000088_0001
wherein the cyclic amine moiety is as defined in table 5. In table 5, the logP values were determined according to method [a].
Table 5:
Figure imgf000088_0002
Figure imgf000089_0002
Table 6 illustrates preferred compounds of formula (VI), wherein X is a fluorine atom on position 3 of the phenyl moiety and n is 1 . Such compounds are represented by formula (Va):
Figure imgf000089_0001
wherein the cyclic amine moiety is as defined in table 6.
In table 6, the logP values were determined according to method [a].
Table 6:
Figure imgf000089_0003
Figure imgf000090_0002
Table 7 illustrates preferred compounds of formula (XIII), wherein X is a fluorine atom on position 3 of the phenyl moiety and n is 1 , and A is a direct bond. Such compounds are represented by formula (Xllla):
Figure imgf000090_0001
wherein Hal and the cyclic amine moiety are as defined in table 7.
In table 7, the logP values were determined according to method [a].
Table 7:
Figure imgf000090_0003
Table 8 provides the NMR data (1H) of a selected number of compounds from tables 4, 5, 6 and 7. Table 8: NMR peak lists
Figure imgf000091_0001
Figure imgf000092_0001
Figure imgf000093_0001
Figure imgf000094_0001
Figure imgf000095_0001
Figure imgf000096_0001
Figure imgf000097_0001
Figure imgf000098_0001
Figure imgf000099_0001
Figure imgf000100_0001
Figure imgf000101_0001
Figure imgf000102_0001
Figure imgf000103_0001
Figure imgf000104_0001
Figure imgf000105_0001
PREPARATION EXAMPLES
In the following examples, the logP values were determined according to method [a].
Preparation example 1 : preparation of N-[2-(piperidin-1-yl)phenyl]quinolin-3-amine (compound 1.01)
In a 20 ml_ microwave tube, were added to a solution of 500 mg (1.67 mmol) of N-(2-bromophenyl)- quinolin-3-amine in 10 mL of degassed 1 ,4-dioxane, 228 mg (2.67 mmol) of piperidine and 289 mg (3 mmol) of sodium tert-butoxide followed by 80 mg (0.16 mmol) of 2-dicyclohexylphosphino-2’,4’,6’- triisopropylbiphenyl [XPhos] and 18 mg (0.084 mmol) of palladium (II) acetate. The reaction mixture was heated overnight at 100 °C. The cooled suspension was filtered over a pad of Celite™ and rinsed with ethyl acetate. The solvent was removed under reduced pressure. The residue was purified by preparative HPLC (gradient acetonitrile / water + 0.1% HCO2H) to yield 106 mg (20%) of N-[2-(piperidin- 1-yl)phenyl]quinolin-3-amine. LogP = 4.83. Together with the expected product, were also isolated 27 mg (4%) of 5-(quinolin-3-yl)-2,3,4,5-tetrahydro-1 H-pyrido[1 ,2-a][3,1]benzimidazol-10-ium bromide. LogP = 1.17. Mass (M+H) = 300.
Preparation example 2: preparation of 7,8-difluoro-2-methyl-N-[2-(pyrrolidin-1-yl)phenyl]quinolin-3- amine (compound 1.02)
Step 1 : preparation of 1-(2-nitrophenyl)pyrrolidine
A mixture of 500 mg (3.54 mmol) of 1-fluoro-2-nitrobenzene and 302 mg (4.25 mmol) of pyrrolidine in 5 mL of N,N-dimethylformamide [DMF], together with 549 mg (4.25 mmol) of N,N-diisopropylethylamine, was heated at 80 °C for 1 hour. The reaction mixture was poured into 40 mL of water and extracted three times by ethyl acetate. The combined organic phases were washed with brine, filtered over a silicon paper filter and concentrated in vacuo to yield 698 mg (97%) of 1-(2-nitrophenyl)pyrrolidine as an orange liquid, used as such in the next step. LogP = 3.07. Mass (M+H) = 193.
Step 2: preparation of 2-(pyrrolidin-1-yl)aniline
A 0.05 mol/L solution of 698 mg (3.45 mmol) of 1 -(2-nitrophenyl)pyrrolidine in ethanol was hydrogenated at 50 °C on Pd/C with a H-Cube™ apparatus. The obtained yellow solution was concentrated in vacuo to give 540 mg of residue as a brown liquid. The residue was purified by column chromatography on silica gel (25 g cartridge - gradient n-heptane/ethyl acetate) to yield 445 mg (75%) of 2-(pyrrolidin-1- yl)aniline as a colourless liquid. GC Mass (M) = 162.
Step 3: preparation of 7,8-difluoro-2-methyl-N-[2-(pyrrolidin-1-yl)phenyl]quinolin-3-amine (compound 1.02)
In a 20 mL microwave tube, 38 mg (0.066 mmol) of 9,9-dimethyl-9H-xanthene-4,5-diyl)bis-(diphenyl- phosphane [Xantphos] and 17 mg (0.033 mmol) of palladium(Pi-cinnamyl) chloride dimer, together with 640 mg (1 .96 mmol) of cesium carbonate, were stirred in 10 mL of degassed 1 ,4-dioxane for 30 minutes. 200 mg (0.65 mmol) of 7,8-difluoro-3-iodo-2-methylquinoline and 106 mg (0.065 mmol) of 2-(pyrrolidin- 1-yl)aniline were then added. The reaction mixture was heated under microwave at 100 °C for 20 hours. The cooled reaction mixture was filtered over a pad of Celite™ and the pad washed by ethyl acetate. The solvent was remove under reduced pressure and the residue was purified by column chromatography on silica gel (25 g cartridge - gradient n-heptane/ethyl acetate) to yield 167 mg (71 %) of 7,8-difluoro-2-methyl-N-[2-(pyrrolidin-1-yl)phenyl]quinolin-3-amine. LogP = 3.14. Mass (M+H) = 340.
Preparation example 3: preparation of 7,8-difluoro-N-{3-fluoro-2-[2-(pyridin-3-ylmethyl)pyrrolidin-1-yl]- phenyl}-2-methylquinolin-3-amine (compound 1.37)
Step 1 : preparation of 3-{[1-(2-fluoro-6-nitrophenyl)pyrrolidin-2-yl]methyl}pyridine (compound VI.14)
A mixture of 300 mg (1.79 mmol) of 1 ,2-difluoro-3-nitrobenzene and 532 mg (2.15 mmol) of 3- (pyrrolidin-2-ylmethyl)pyridine dihydrochloride together with 833 mg (6.45 mmol) of N,N-diisopropyl- ethylamine in 8 mL of DMF, was heated at 90 °C for about 5 hours. The reaction mixture was poured into 50 mL of water and extracted by ethyl acetate. The combined organic phases were washed with brine and dried over magnesium sulfate. The solvent was remove in vacuo to give 502 mg of residue as a dark orange oil. The residue was purified by column chromatography on silica gel (40 g cartridge - n- heptane/ethyl acetate: 60/40) to yield 407 mg (75%) of 3-{[1-(2-fluoro-6-nitrophenyl)pyrrolidin-2- yl]methyl}pyridine as an orange oil. LogP = 1.71. Mass (M+H) = 302.
Step 2: preparation of 3-fluoro-2-[2-(pyridin-3-ylmethyl) pyrrolidin-1 -yl]aniline (compound Va.16)
In a 100 mL round-bottom flask, 386 mg (1.28 mmol) of 3-{[1-(2-fluoro-6-nitrophenyl)pyrrolidin-2-yl]- methyl}pyridine were dissolved in 35 mL of methanol. 688 mg (12.8 mmol) of ammonium chloride in solution in 4 mL of water were added and the reaction mixture was heated at 70 °C for 30 minutes. 722 mg (12.8 mmol) of iron were then added and the reaction mixture was further heated under vigourous stirring at 70 °C for 4 hours. After more addition of 688 mg of ammonium chloride and 722 mg of iron, the reaction mixture was heated again under vigourous stirring at 70 °C for 7 hours. The reaction mixture was filtered over a pad of sand and silica gel and the methanol was removed in vacuo. The residue was redissolved in ethyl acetate. The organic phase was washed by water and dried over magnesium sulfate. The solvent was remove in vacuo to give 321 mg of residue as an orange oil. The residue was purified by column chromatography on silica gel (40 g cartridge - gradient n-heptane/ethyl acetate) to yield 89 mg (24%) of 3-fluoro-2-[2-(pyridin-3-ylmethyl)pyrrolidin-1-yl]aniline as an orange solid. LogP = 1 .37. Mass (M+H) = 272.
Step 3: preparation of 7,8-difluoro-N-{3-fluoro-2-[2-(pyridin-3-ylmethyl)pyrrolidin-1 -yl]-phenyl}-2-methyl- quinolin-3-amine (compound 1.37)
In a 5 mL microwave tube, 146 mg (0.44 mmol) of 7,8-difluoro-3-iodo-2-methylquinoline and 81 mg (0.29 mmol) of 3-fluoro-2-[2-(pyridin-3-ylmethyl) pyrrolidin-1 -yl]aniline were dissolved in 5 mL of 1 ,4- dioxan, together with 294 mg (0.89 mmol) of cesium carbonate. The solvent was degassed with argon for 5 minutes. 17 mg (0.06 mmol) of Xantphos and 8 mg (0.02 mmol) of palladium(Pi-cinnamyl) chloride dimer were added and the reaction mixture was heated under microwave at 130 °C for 10 hours. The cooled reaction mixture was filtered over a pad of sand and silica gel and the solvent was removed in vacuo to give 223 mg of residue as a dark brown oil. The residue was purified by column chromatography on silica gel (40 g cartridge - gradient n-heptane/ethyl acetate) to yield 63 mg (47%) of 7,8-difluoro-N-{3-fluoro-2-[2-(pyridin-3-ylmethyl)pyrrolidin-1-yl]-phenyl}-2-methylquinolin-3-amine as an orange oil. LogP = 2.92. Mass (M+H) = 449.
Preparation example 4: 7,8-difluoro-3-[3-fluoro-2-(piperidin-1 -yl)benzyl]-2-methylquinoline (compound 1.43)
Step 1 : preparation of 1-[2-(chloromethyl)-6-fluorophenyl]piperidine (compound Xllla.01)
To a solution of 100 mg (0.45 mmol) of [3-fluoro-2-(piperidin-1-yl)phenyl]methanol in 5 mL of chloroform, were added 0.04 mL (0.49 mmol) of pyridine and 175 mg (0.91 mmol) of 4-toluenesulfonyl chloride. The reaction mixture was stirred for 4 days at room temperature. The reaction mixture was poured over 50 mL of water and reextracted by dichloromethane. The organic phase was dried over magnesium sulfate and the solvent was removed in vacuo to give 234 mg of residue as a light orange oil. The residue was purified by column chromatography on silica gel (40 g cartridge - gradient n-heptane/ethyl acetate) to yield 67 mg (64%) of 1-[2-(chloromethyl)-6-fluorophenyl]piperidine as an orange oil. GC Mass (M) = 226.
Step 2: preparation of 7,8-difluoro-3-[3-fluoro-2-(piperidin-1-yl)benzyl]-2-methylquinoline (compound 1.43)
In a 5 mL microwave tube, 62 mg (0.26 mmol) of (7,8-difluoro-2-methylquinolin-3-yl)boronic acid and 67 mg (0.29 mmol) of 1-[2-(chloromethyl)-6-fluorophenyl]piperidine were dissolved in 4 mL of 1 ,4- dioxan. 112 mg (0.80 mmol) of potassium carbonate and 1 mL of water were added and the reaction mixture was degassed with argon for 5 minutes. 15 mg (0.013 mmol) of tetrakis(triphenylphosphine)- palladium(O) were added and the reaction mixture was heated under microwave at 100 °C for 20 minutes. The cooled reaction mixture was poured over water and reextracted by ethyl acetate. The organic phase was dried over magnesium sulfate and the solvent was removed in vacuo to give 100 mg of residue as an orange oil. The residue was purified by column chromatography on silica gel (40 g cartridge - n-heptane/ethyl acetate 95/5) to yield 75 mg (75%) of 7,8-difluoro-3-[3-fluoro-2-(piperidin-1- yl)benzyl]-2-methylquinoline as a yellow solid. LogP = 5.77. Mass (M+H) = 371.
BIOLOGICAL EXAMPLES
Example A: Pyricularia orvzae in vitro cell test Solvent: dimethyl sulfoxide (DMSO)
Culture medium: 14.6 g anhydrous D-glucose (VWR),
7.1 g Mycological Peptone (Oxoid),
1 .4 g granulated Yeast Extract (Merck), QSP 1 liter
Inoculum: spore suspension The tested compounds were solubilized in DMSO and the solution used to prepare the required range of concentrations. The final concentration of DMSO used in the assay was < 1%.
A spore suspension of Pyricularia oryzae was prepared and diluted to the desired spore density.
The tested compounds were evaluated for their ability to inhibit spore germination and mycelium growth in liquid culture assay. The compounds were added in the desired concentration to the culture medium with spores. After 5 days incubation, fungi-toxicity of compounds was determined by spectrometric measurement of mycelium growth. Inhibition of fungal growth was determined by comparing the absorbance values in wells containing the tested compound with the absorbance in control wells without tested compound.
In this test the following compounds according to the invention showed efficacy between 70% and 79% at a concentration of 20 ppm of active ingredient: 1.47.
In this test the following compounds according to the invention showed efficacy between 80% and 89% at a concentration of 20 ppm of active ingredient: 1.06; 1.22; I.23; 1.25; 1.39.
In this test the following compounds according to the invention showed efficacy between 90% and 100% at a concentration of 20 ppm of active ingredient: 1.01 ; 1.02; 1.03; 1.07; 1.13; 1.16; 1.18; 1.19; 1.20; 1.21 ; I.24; 1.28; 1.30; 1.31 ; 1.32; I.33; I.34; 1.35; I.36; 1.37; 1.38; 1.41 ; I.45.
Example B: Botrvtis cinerea in vitro cell test Solvent: dimethyl sulfoxide (DMSO)
Culture medium: 1 g KH2PO4 (VWR), 1 g K2HPO4 (VWR), 0.5 g Urea (VWR), 3 g KN03
(Prolabo), 10 g saccharose (VWR), 0.5 g MgSO4, 7 H2O (Sigma), 0.07 g CaCI2, 2 H2O (Prolabo), 0.2 mg MnSO4, H2O (Sigma), 0.6 mg CuSO4, 5 H2O (Sigma), 7.9 mg ZnSO4, 7 H2O (Sigma), 0.1 mg H3BO3 (Merck), 0.14 mg NaMoO4, 2 H2O (Sigma), 2 mg thiamine (Sigma), 0.1 mg biotine (VWR), 4 mg FeSO4, 7 H2O (Sigma), QSP 1 liter Inoculum: spore suspension
The tested compounds were solubilized in DMSO and the solution used to prepare the required range of concentrations. The final concentration of DMSO used in the assay was < 1%.
A spore suspension of B. cinerea was prepared and diluted to the desired spore density.
The tested compounds were evaluated for their ability to inhibit spore germination and mycelium growth in liquid culture assay. The compounds were added in the desired concentration to the culture medium with spores. After 6 days incubation, fungi-toxicity of compounds was determined by spectrometric measurement of mycelium growth. Inhibition of fungal growth was determined by comparing the absorbance values in wells containing the fungicides with the absorbance in control wells without fungicides.
In this test the following compounds according to the invention showed efficacy between 70% and 79% at a concentration of 20 ppm of active ingredient: 1.15.
In this test the following compounds according to the invention showed efficacy between 80% and 89% at a concentration of 20 ppm of active ingredient: 1.17; 1.40. In this test the following compounds according to the invention showed efficacy between 90% and 100% at a concentration of 20 ppm of active ingredient: I.02; I.03; I.04; I.05; I.06; I.07; I.08; I.10; I.11 ; I.13; I.16; 1.18; 1.19; I.20; 1.21 ; I.22; I.23; I.24; I.26; I.27; I.28; I.29; I.30; 1.31 ; 1.32; 1.33; I.34; I.35; I.36; 1.37; I.38; 1.39; 1.41 ; I.44; I.45; I.46; I.47.
Example C: Colletotrichum lindemuthianum in vitro cell test
Solvent: dimethyl sulfoxide (DMSO)
Culture medium: 14.6 g anhydrous D-glucose (VWR),
7.1 g Mycological Peptone (Oxoid),
1 .4 g granulated Yeast Extract (Merck), QSP 1 liter
Inoculum: spore suspension
The tested compounds were solubilized in DMSO and the solution used to prepare the required range of concentrations. The final concentration of DMSO used in the assay was < 1%.
A spore suspension of Colletotrichum lindemuthianum was prepared and diluted to the desired spore density.
The tested compounds were evaluated for their ability to inhibit spore germination and mycelium growth in liquid culture assay. The compounds were added in the desired concentration to the culture medium with spores. After 6 days incubation, fungi-toxicity of compounds was determined by spectrometric measurement of mycelium growth. Inhibition of fungal growth was determined by comparing the absorbance values in wells containing the tested compound with the absorbance in control wells without tested compound.
In this test the following compounds according to the invention showed efficacy between 70% and 79% at a concentration of 20 ppm of active ingredient: I.03; I.04; 1I 38.
In this test the following compounds according to the invention showed efficacy between 80% and 89% at a concentration of 20 ppm of active ingredient: I.02; I.06; I.08; I.13; I.28.
In this test the following compounds according to the invention showed efficacy between 90% and 100% at a concentration of 20 ppm of active ingredient: I.05; I.07; I.11 ; I.12; I.16; I.17; I.18; I.19; I.21 ; I.23; I.24; I .29; 1.30; 1.31 ; I.32; I.33; 1.35; 1.36; I.37; 1.41 ; I.44; I.45; I.47.
Example D: in vivo preventive test on Botrvtis cinerea (grey mould)
Solvent: 5% by volume of dimethyl sulfoxide
10% by volume of acetone
Emulsifier: 1 μL of Tween® 80 per mg of active ingredient
The tested compounds were made soluble and homogenized in a mixture of dimethyl sulfoxide/acetone/ /Tween® 80 and then diluted in water to the desired concentration.
The young plants of gherkin or cabbage were treated by spraying the tested compounds prepared as described above. Control plants were treated only with an aqueous solution of acetone/dimethyl sulfoxide/Tween® 80. After 24 hours, the plants were contaminated by spraying the leaves with an aqueous suspension of Botrytis cinerea spores. The contaminated gherkin plants were incubated for 4 to 5 days at 17 °C and at 90% relative humidity. The contaminated cabbage plants were incubated for 4 to 5 days at 20 °C and at 100% relative humidity
The test was evaluated 4 to 5 days after the inoculation. 0% means an efficacy which corresponds to that of the control plants while an efficacy of 100% means that no disease was observed.
In this test the following compounds according to the invention showed efficacy between 70% and 79% at a concentration of 500 ppm of active ingredient: I.07.
In this test the following compounds according to the invention showed efficacy between 80% and 89% at a concentration of 500 ppm of active ingredient: I.06; I.20; I.27.
In this test the following compounds according to the invention showed efficacy between 90% and 100% at a concentration of 500 ppm of active ingredient: I.02; I.03; I.04; I.05; I.10; I.11 ; I.15; I.16; I.17; I.18; I.19; 1.21 ; I.23; I.24; I.25; I.28; 1.30; 1.31 ; I.32; I.33; I.34; I.35; I.36; I.37; I.38; I.39; I.41 ; I.44; I.45; I.46; I.47.
Example E: in vivo preventive test on Venturia inaequalis (apples)
Solvent: 24.5 parts by weight of acetone
24.5 parts by weight of dimethylacetamide Emulsifier: 1 part by weight of alkylaryl polyglycol ether
To produce a suitable preparation of the tested compound, 1 part by weight of the tested compound was mixed with the stated amounts of solvent and emulsifier, and the concentrate was diluted with water to the desired concentration.
To test for preventive activity, young plants were sprayed with the preparation of the tested compound at the stated rate of application.
After the spray coating had dried on, the plants were inoculated with an aqueous conidia suspension of the causal agent of apple scab ( Venturia inaequalis) and then remained for 1 day in an incubation cabinet at approximately 20 °C and a relative atmospheric humidity of 100%.
The plants were then placed in a greenhouse at approximately 21 °C and a relative atmospheric humidity of approximately 90%.
The test was evaluated 10 days after the inoculation. 0% means an efficacy which corresponds to that of the untreated control, while an efficacy of 100% means that no disease was observed.
In this test the following compounds according to the invention showed efficacy between 70% and 79% at a concentration of 100 ppm of active ingredient: 1.05.
In this test the following compounds according to the invention showed efficacy between 90% and 100% at a concentration of 100 ppm of active ingredient: 1.16; 1.34; 1.36.
Example F : in vivo preventive test on Pyrenophora teres (barley)
Solvent: 24.5 parts by weight of acetone
24.5 parts by weight of dimethylsulfoxide
Emulsifier: 1 part by weight of polyoxyethylene sorbitan monooleate To produce a suitable preparation of active compound, 1 part by weight of the tested compound was mixed with the stated amounts of solvent and emulsifier, and the concentrate was diluted with water to the desired concentration.
To test for preventive activity, young plants were sprayed with the preparation of the tested compound at the stated rate of application.
After the spray coating had been dried, the plants were sprayed with a spore suspension of Pyrenophora teres. The plants remained for 48 hours in an incubation cabinet at approximately 20 °C and a relative atmospheric humidity of approximately 100%.
The plants were placed in the greenhouse at a temperature of approximately 20 °C and a relative atmospheric humidity of approximately 80%.
The test was evaluated 8 days after the inoculation. 0% means an efficacy which corresponds to that of the untreated control, while an efficacy of 100% means that no disease was observed.
In this test the following compounds according to the invention showed efficacy between 80% and 89% at a concentration of 500 ppm of active ingredient: 1.11 , I.45.
Example G: Fusarium viruliforme in vitro cell test - comparitive test Solvent: dimethyl sulfoxide (DMSO)
Culture medium: 14.6 g anhydrous D-glucose (VWR),
7.1 g Mycological Peptone (Oxoid),
1 .4 g granulated Yeast Extract (Merck), QSP 1 liter Inoculum: spore suspension
The tested compounds were solubilized in DMSO and the solution used to prepare the required range of concentrations: 20 ppm to 0.0064 ppm. The final concentration of DMSO used in the assay was < 1%.
A spore suspension of Fusarium virguliforme was prepared and diluted to the desired spore density. The tested compounds were evaluated for their ability to inhibit spore germination and mycelium growth in liquid culture assay. The compounds were added in the desired concentration to the culture medium with spores. After 6 days incubation, fungi-toxicity of compounds was determined by spectrometric measurement of mycelium growth. Inhibition of fungal growth was determined by comparing the absorbance values in wells containing the tested compound with the absorbance in control wells without tested compound.
The efficacy was expressed as the median effective concentration EC50 in ppm. The median effective concentration in ppm is the concentration needed to reach 50% of the maximum observed efficacy from the dose response curve. The dose response curve was built by plotting the efficacy at 6 doses ranging from 20 ppm to 0.0064 ppm. pi so is the negative logarithm of the EC50 expressed in molar. In this test, compounds herein below were shown to exhibit better efficacy (i.e. lower EC50) than structurally related compounds CMP308, CMP349 and CMP445 prepared in accordance with the teaching of EP2522658A1 as well as the oxidized form of compound CMP349 encompassed by formula (I) of EP2522658A1. Results are presented in Table 9 below. In the following:
CMP308 designates 8-fluoro-3-[3-fluoro-2-(2-methyloxiran-2-yl)phenoxy]quinoline examplified and claimed in EP2522658A1 ,
CMP349 designates [2-(1 ,3-dioxolan-2-yl)-3-fluorophenyl](8-fluoroquinolin-3-yl)-methanol exemplified and claimed in EP2522658A1 , Oxidized form of CMP349 designates [2-(1 ,3-dioxolan-2-yl)-3-fluorophenyl](8-fluoroquinolin-3-yl)- methanone claimed in EP2522658A1 and
CMP 445 designates 8-fluoro-3-{3-fluoro-2-[1-(pyrrolidin-1-yl)ethyl]phenoxy}quinoline exemplified and claimed in EP2522658A1. Table 9:
Figure imgf000112_0001

Claims

1. A compound of formula (I)
Figure imgf000113_0001
wherein
Q1 is CY1 or N wherein:
Y1 is selected from the group consisting of hydrogen atom, halogen atom, C1-C8- alkyl, C2-C8-alkenyl, C2-C8-alkynyl, C3-C7-cycloalkyl, C4-C7-cycloalkenyl, hydroxyl, C1-C8-alkoxy, C6-C14-aryl, 3- to 10-membered heterocyclyl, 5- to 14-membered heteroaryl, formyl, C1-C8-alkylcarbonyl, (hydroxyimino)C1-C8-alkyl, carboxyl, (Ci- C8-alkoxyimino)C1-C8-alkyl, C1-C8-alkoxycarbonyl, carbamoyl, C1-C8-alkyl- carbamoyl, di-C1-C8-alkylcarbamoyl, amino, C1-C8-alkylamino, di-C1-C8- alkylamino, sulfanyl, C1-C8-alkylsulfanyl, C1-C8-alkylsulfinyl, C1-C8-alkylsulfonyl, tri- C1-C6-alkylsilyl, cyano and nitro, wherein acyclic aliphatic Y1 radicals may be substituted with one or more Ya substituents and wherein cyclic Y1 radicals may be substituted with one or more Yb substituents;
• Y2, Y3, Y4 and Y5 are independently selected from the group consisting of hydrogen atom, halogen atom, C1-C8-alkyl, C2-C8-alkenyl, C2-C8-alkynyl, C3-C7-cycloalkyl, C4-C7-cycloalkenyl, hydroxyl, C1-C8-alkoxy, C6-C14-aryl, 3- to 10-membered heterocyclyl, 5- to 14-membered heteroaryl, formyl, C1-C8-alkylcarbonyl, (hydroxyimino)C1-C8-alkyl, carboxyl, (C1-C8- alkoxyimino)C1-C8-alkyl, C1-C8-alkoxycarbonyl, carbamoyl, C1-C8-alkylcarbamoyl, di-C1-C8- alkylcarbamoyl, amino, C1-C8-alkylamino, di-C1-C8-alkylamino, sulfanyl, C1-C8-alkylsulfanyl, C1- C8-alkylsulfinyl, C1-C8-alkylsulfonyl, tri-C1-C6-alkylsilyl, cyano and nitro, wherein acyclic aliphatic Y2, Y3, Y4 and Y5 radicals may be substituted with one or more Ya substituents and wherein cyclic Y2, Y3, Y4 and Y5 radicals may be substituted with one or more Yb substituents;
• Z is selected from the group consisting of hydrogen atom, halogen atom, hydroxyl, C1-C8-alkyl, C2-C8-alkenyl, C2-C8-alkynyl, C1-C8-alkoxy, C3-C7-cycloalkyl, C4-C7-cycloalkenyl, formyl, C1-C8- alkylcarbonyl, (hydroxyimino)C1-C8-alkyl, (C1-C8-alkoxyimino)C1-C8-alkyl, carboxyl, C1-C8- alkoxycarbonyl, C1-C8-alkylcarbamoyl, di-C1-C8-alkylcarbamoyl, C1-C8-alkylamino, di- C1-C8- alkylamino, sulfanyl, C1-C8-alkylsulfanyl, C1-C8-alkylsulfinyl, C1-C8-alkylsulfonyl, tri-C1-C6- alkylsilyl, cyano and nitro, wherein acyclic aliphatic Z radicals may be substituted with one or more Za substituents and wherein cyclic Z radicals may be substituted with one or more Zb substituents;
• m is 0, 1 or 2;
• n is 0, 1 , 2, 3 or 4;
• p is 1 or 2;
• L is CR1aR1b or NR1c wherein
R1a and R1b are independently selected from the group consisting of hydrogen atom, halogen atom, C1-C8-alkoxy and C1-C8-alkyl;
R1c is selected from the group consisting of hydrogen atom, C1-C8-alkyl, C2-C8- alkenyl, C3-C8-alkynyl, C3-C7-cycloalkyl, C1-C8-alkylcarbonyl, C1-C8- alkoxycarbonyl, C1-C8-alkylsulfonyl, C6-C14-aryl-C1-C8-alkyl and phenylsulfonyl, wherein acyclic aliphatic R1c radicals may be substituted with one or more Ra substituents and wherein cyclic R1c radicals may be substituted with one or more Rb substituents;
• Q2 is CR2aR2b;
• Q3 is CR3aR3b;
• Q4 is O, S, CR4aR4b or NR4c provided that p is 2 when Q4 is O, S or NR4c;
• R2a and R2b are independently selected from the group consisting of hydrogen atom, halogen atom, C1-C8-alkyl, C2-C8-alkenyl, C2-C8-alkynyl, C3-C7-cycloalkyl, C4-C7-cycloalkenyl, C1-C8- alkoxy C1-C8-alkylcarbonyl, C3-C7-cycloalkylcarbonyl, C1-C8-alkoxycarbonyl, C6-C14-aryl, 3- to 10-membered heterocyclyl, 5- to 14-membered heteroaryl, C6-C14-aryl-C1-C8-alkyl, 3- to 10- membered heterocyclyl-C1-C8-alkyl, 5- to 14-membered heteroaryl-C1-C8-alkyl and cyano, wherein acyclic aliphatic R2a and R2b radicals may be substituted with one or more Ra substituents and wherein cyclic R2a and R2b radicals may be substituted with one or more Rb substituents; or
R2a and R2bform, together with the carbon atom to which they are linked, a C3-C7-cycloalkyl, or a 3- to 10-membered heterocyclyl, wherein the C3-C7-cycloalkyl and 3- to 10-membered heterocyclyl may be substituted with one or more Rb substituents;
• R3a and R3b are independently selected from the group consisting of hydrogen atom, halogen atom, C1-C8-alkyl, C2-C8-alkenyl, C2-C8-alkynyl, C3-C7-cycloalkyl, C4-C7-cycloalkenyl, hydroxyl, Ci-Ce-alkoxy, sulfanyl, C1-C8-alkylsulfanyl, C1-C8-alkylsulfinyl, C1-C8-alkylsulfonyl, C1-C8- alkylcarbonyl, C3-C7-cycloalkylcarbonyl, C1-C8-alkoxycarbonyl, C6-C14-aryl, 3- to 10-membered heterocyclyl, 5- to 14-membered heteroaryl, C6-C14-aryloxy, 3- to 10-membered heterocyclyloxy, 5- to 14-membered heteroaryloxy, C6-C14-arylsulfanyl, 3- to 10-membered heterocyclylsulfanyl, 5- to 14-membered heteroaryl-sulfanyl, C6-C14-aryl-C1-C8-alkyl, 3- to 10- membered heterocyclyl-C1-C8-alkyl, 5- to 14-membered heteroaryl-C1-C8-alkyl, C6-C14-aryloxy- C1-C8-alkyl, 3- to 10-membered heterocyclyloxy-C1-C8-alkyl, 5- to 14-membered heteroaryloxy- C1-C8-alkyl, C6-C14-arylsulfanyl-C1-C8-alkyl, 3- to 10-membered heterocyclyl-sulfanyl-C1-C8- alkyl, 5- to 14-membered heteroaryl-sulfanyl-C1-C8-alkyl and cyano, wherein acyclic R3a and R3b radicals may be substituted with one or more Ra substituents and wherein cyclic R3a and R3b radicals may be substituted with one or more Rb substituents; or R3a and R3b form, together with the carbon atom to which they are linked, a C3-C7-cycloalkyl, or a 3- to 10-membered heterocyclyl, wherein the C3-C7-cycloalkyl and 3- to 10-membered heterocyclyl may be substituted with one or more Rb substituents;
• R4a and R4b are independently selected from the group consisting of hydrogen atom, halogen atom, C1-C8-alkyl, C2-C8-alkenyl, C2-C8-alkynyl, C3-C7-cycloalkyl, C4-C7-cycloalkenyl, hydroxyl, Ci-Ce-alkoxy, sulfanyl, C1-C8-alkylsulfanyl, C1-C8-alkylsulfinyl, C1-C8-alkylsulfonyl, C1-C8- alkylcarbonyl, C3-C7-cycloalkylcarbonyl, C1-C8-alkoxycarbonyl, C6-C14-aryl, 3- to 10-membered heterocyclyl, 5- to 14-membered heteroaryl, C6-C14-aryloxy, 3- to 10-membered heterocyclyloxy, 5- to 14-membered heteroaryloxy, C6-C14-arylsulfanyl, 3- to 10-membered heterocyclylsulfanyl, 5- to 14-membered heteroaryl-sulfanyl, C6-C14-aryl-C1-C8-alkyl, 3- to 10- membered heterocyclyl -C1-C8-alkyl, 5- to 14-membered heteroaryl-C1-C8-alkyl, C6-C14-aryloxy- C1-C8-alkyl, 3- to 10-membered heterocyclyloxy-C1-C8-alkyl, 5- to 14-membered heteroaryloxy- C1-C8-alkyl, C6-Ci4-arylsulfanyl-C1-C8-alkyl, 3- to 10-membered heterocyclyl-sulfanyl-C1-C8- alkyl, 5- to 14-membered heteroaryl-sulfanyl-C1-C8-alkyl, and cyano, wherein acyclic aliphatic R4a and R4b radicals may be substituted with one or more Ra substituents and wherein cyclic R4a and R4b radicals may be substituted with one or more Rb substituents; or
R4a and R4b form, together with the carbon atom to which they are linked, a C3-C7-cycloalkyl, or a 3- to 10-membered heterocyclyl, wherein the C3-C7-cycloalkyl and 3- to 10-membered heterocyclyl may be substituted with one or more Rb substituents;
• R4c is selected from the group consisting of hydrogen atom, C1-C8-alkyl, C2-C8-alkenyl, C3-C8- alkynyl, C3-C7-cycloalkyl, C1-C8-alkylcarbonyl, C1-C8-alkoxycarbonyl, C1-C8-alkylsulfonyl, C6- C14-aryl-C1-C8-alkyl and phenylsulfonyl, wherein acyclic aliphatic R4c radicals may be substituted with one or more Ra substituents and wherein cyclic R4c radicals may be substituted with one or more Rb substituents;
• A is a direct bond or CH2,
• each W is independently selected from the group consisting of C1-C8-alkyl, and C1-C8- halogenoalkyl, wherein said C1-C8-alkyl and C1-C8-halogenoalkyl, may be substituted with one or more Wa substituents;
• X is independently selected from the group consisting of halogen atom, hydroxyl, C1-C8-alkyl, Ci-Ce-alkoxy, C2-C8-alkenyl, C2-C8-alkynyl, C3-C7-cycloalkyl, C4-C7-cycloalkenyl, C6-C14-aryl, 3- to 10-membered heterocyclyl, 5- to 14-membered heteroaryl, C1-C8-alkylcarbonyl, (hydroxyimino)-C1-C8-alkyl, (C1-C8-alkoxyimino)C1-C8-alkyl, carboxyl, C1-C8-alkoxycarbonyl, carbamoyl, C1-C8-alkylcarbamoyl, di-C1-C8-alkylcarbamoyl, formyl, amino, C1-C8-alkylamino, di- C1-C8-alkylamino, sulfanyl, C1-C8-alkylsulfanyl, C1-C8-alkylsulfinyl, C1-C8-alkylsulfonyl, tri-C1-C6- alkylsilyl, cyano and nitro, wherein acyclic aliphatic X radicals may be substituted with one or more Xa substituents and wherein cyclic X radicals may be substituted with one or more Xb substituents; • each Ya, Za, Ra, Wa and Xa is independently selected from the group consisting of halogen atom, nitro, hydroxyl, cyano, carboxyl, amino, sulfanyl, pentafluoro-λ6-sulfanyl, formyl, carbamoyl, carbamate, C3-C7-cycloalkyl, C3-C8-halogenocycloalkyl having 1 to 5 halogen atoms, C2-C8- alkenyl, C2-C8-alkynyl, C1-C8-alkylamino, di-C1-C8-alkylamino, C1-C8-alkoxy, C1-C8- halogenoalkoxy having 1 to 5 halogen atoms, C1-C8-alkylsulfanyl, C1-C8-halogenoalkylsulfanyl having 1 to 5 halogen atoms, C1-C8-alkylcarbonyl, C1-C8-halogenoalkylcarbonyl having 1 to 5 halogen atoms, C1-C8-alkylcarbamoyl, di-C1-C8-alkylcarbamoyl, C1-C8-alkoxycarbonyl, C1-C8- halogenoalkoxycarbonyl having 1 to 5 halogen atoms, C1-C8-alkylcarbonyloxy, C1-C8- halogenoalkylcarbonyloxy having 1 to 5 halogen atoms, C1-C8-alkylcarbonylamino, C1-C8- halogenoalkylcarbonylamino having 1 to 5 halogen atoms, C1-C8-alkylsulfanyl, C1-C8- halogenoalkylsulfanyl having 1 to 5 halogen atoms, C1-C8-alkylsulfinyl, C1-C8- halogenoalkylsulfinyl having 1 to 5 halogen atoms, C1-C8-alkylsulfonyl and C1-C8-halogeno- alkyl-sulfonyl having 1 to 5 halogen atoms;
• each Yb, Zb, Rb and Xb is independently selected from the group consisting of halogen atom, nitro, hydroxyl, cyano, carboxyl, amino, sulfanyl, sulfinyl, sulfonyl, pentafluoro-λ6-sulfanyl, formyl, carbamoyl, carbamate, C1-C8-alkyl, C3-C7-cycloalkyl, C1-C8-halogenoalkyl having 1 to 5 halogen atoms, C3-C8-halogenocycloalkyl having 1 to 5 halogen atoms, C2-C8-alkenyl, C2-C8- alkynyl, C1-C8-alkylamino, di-C1-C8-alkylamino, C1-C8-alkoxy, C1-C8-halogenoalkoxy having 1 to 5 halogen atoms, C1-C8-alkylsulfanyl, C1-C8-halogenoalkylsulfanyl having 1 to 5 halogen atoms, C1-C8-alkylcarbonyl, C1-C8-halogenoalkylcarbonyl having 1 to 5 halogen atoms, C1-C8- alkylcarbamoyl, di-C1-C8-alkylcarbamoyl, C1-C8-alkoxycarbonyl, C1-C8-halogenoalkoxycarbonyl having 1 to 5 halogen atoms, C1-C8-alkylcarbonyloxy, C1-C8-halogenoalkylcarbonyloxy having 1 to 5 halogen atoms, C1-C8-alkylcarbonylamino, C1-C8-halogenoalkylcarbonylamino having 1 to 5 halogen atoms, C1-C8-alkylsulfanyl, C1-C8-halogenoalkylsulfanyl having 1 to 5 halogen atoms, C1-C8-alkylsulfinyl, C1-C8-halogenoalkylsulfinyl having 1 to 5 halogen atoms, C1-C8-alkyl- sulfonyl and C1-C8-halogeno-alkyl-sulfonyl having 1 to 5 halogen atoms; as well as its salts, N-oxides, metal complexes, metalloid complexes and optically active isomers or geometric isomers; provided that the compound of formula (I) is not:
- 3-methyl-N-[2-(morpholin-4-yl)-5-(trifluoromethyl)phenyl]quinoxalin-2-amine [2346412-28-8],
- N-[2-(morpholin-4-yl)-5-(trifluoromethyl)phenyl]quinoxalin-2-amine [2345349-98-4],
- 3-methyl-N-[2-(morpholin-4-yl)phenyl]quinoxalin-2-amine [2344042-01-7],
- N-[2-(morpholin-4-yl)phenyl]quinoxalin-2-amine [2344041-97-8],
- N-[2-(pyrrolidin-1-yl)-5-(trifluoromethyl)phenyl]quinoxalin-2-amine [2344018-17-1],
- 3-methyl-N-[2-(piperidin-1-yl)-5-(trifluoromethyl)phenyl]quinoxalin-2-amine [2341669-46-1],
- N-[2-(4-methylpiperazin-1-yl)-5-(trifluoromethyl)phenyl]quinoxalin-2-amine [2340869-89-6],
- 3-methyl-N-[2-(pyrrolidin-1-yl)-5-(trifluoromethyl)phenyl]quinoxalin-2-amine [2338390-87-5],
- N-[2-(piperidin-1-yl)-5-(trifluoromethyl)phenyl]quinoxalin-2-amine [2334176-38-2] and
- 3-methyl-N-[2-(4-methylpiperazin-1-yl)-5-(trifluoromethyl)phenyl]quinoxalin-2-amine [2332708-93-5],
2. The compound of formula (I) according to claim 1 wherein A is CH2.
3. The compound of formula (I) according to claim 1 wherein A is a direct bond.
4. The compound of formula (I) according to any one of the preceding claims wherein X is a halogen atom.
5. The compound of formula (I) according to any one of the preceding claims wherein p is 1.
6. The compound of formula (I) according to any one of claims 1 to 4 wherein p is 2.
7. The compound of formula (I) according to any one of the preceding claims wherein n is 1.
8. The compound of formula (I) according to any one of the preceding claims wherein m is 0.
9. The compound of formula (I) according to any one of the preceding claims wherein at least one of Y2, Y3, Y4, Y5 is a halogen atom.
10. The compound of formula (I) according to any one of the preceding claims wherein Q1 is CY1 and Y1 is a hydrogen atom.
11. The compound of formula (I) according to any one of claims 1 to 9 wherein Q1 is N.
12. The compound of formula (I) according to any one of the preceding claims wherein L is CR1aR1b or NR1c wherein R1a, R1b and R1c are hydrogen atoms.
13. The compound of formula (I) according to any one of the preceding claims wherein Z is a hydrogen atom or a C1-C8-alkyl.
14. The compound of formula (I) according to any one of the preceding claims wherein R2a and R2b are independently selected from the group consisting of hydrogen atom, C1-C6-alkyl, C1-C6- alkoxy-C1-C6-alkyl, C1-C6-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different, C6-C10-aryl, 5- or 6-membered heteroaryl, C6-C10-aryl-C1-C6-alkyl and 5- or 6- membered heteroaryl-C1-C6-alkyl, or R2a and R2b form, together with the carbon atom to which they are linked, a 3- to 10-membered heterocyclyl ring.
15. The compound of formula (I) according to any one of the preceding claims wherein R3a and R3b are independently selected from the group consisting of hydrogen atom, halogen atom, C1-C6- alkyl, C1-C6-halogenoalkyl comprising up to 9 halogen atoms that can be the same or different, hydroxy, C1-C6-alkoxy, 5- or 6-membered heteroaryloxy and 5- or 6-membered heteroaryl-Ci- C6-alkyl or R3a and R3b form, together with the carbon atom to which they are linked, a 3- to 10- membered heterocyclyl ring.
16. The compound of formula (I) according to any one of the preceding claims wherein Q4 is O, CR4aR4b or NR4c.
17. The compound of formula (I) according to any one of the preceding claims wherein R4a and R4b are independently selected from the group consisting of hydrogen atom, C1-C6-alkyl, C1-C6- halogenoalkyl comprising up to 9 halogen atoms that can be the same or different, hydroxy, C1- C6-alkoxy, or R4a and R4b form, together with the carbon atom to which they are linked, a 3- to 10-membered heterocyclyl ring.
18. A composition comprising at least one compound of formula (I) according to any one of claims 1 to 17 and at least one agriculturally suitable auxiliary.
19. A method for controlling unwanted phytopathogenic microorganism which comprises the step of applying one or more compounds of formula (I) according to any one of claims 1 to 17 or a composition according to claim 18 to a plant, plant part, seed, fruit or to the soil in which the plant grow.
20. An intermediate for the preparation of compounds of formula (I) according to any one of claims 1 to 17, represented by formula (I’a):
Figure imgf000118_0001
wherein:
• U is selected from the group consisting of amino and nitro; o when U represents a nitro, the cyclic amine defined by variables W, p, m, Q2, Q3 and Q4 is chosen from one of the following moieties:
Figure imgf000118_0002
Figure imgf000119_0001
and when U represents an amino, the cyclic amine defined by variables W, p, m, Q2, Q3 and Q4 is chosen from one of the following moieties:
Figure imgf000119_0002
Figure imgf000120_0002
21. An intermediate for the synthesis of compounds of formula (I), represented by formula (Xllla):
Figure imgf000120_0001
wherein Hal is selected from the group consisting of chloro, bromo and iodo atom, and W, m, p, Q2, Q3 and Q4 have the definitions given in anyone of claims 1 to 17.
PCT/EP2021/059634 2020-04-16 2021-04-14 Cyclaminephenylaminoquinolines as fungicides WO2021209490A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP20169882 2020-04-16
EP20169882.6 2020-04-16

Publications (1)

Publication Number Publication Date
WO2021209490A1 true WO2021209490A1 (en) 2021-10-21

Family

ID=70292889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/059634 WO2021209490A1 (en) 2020-04-16 2021-04-14 Cyclaminephenylaminoquinolines as fungicides

Country Status (1)

Country Link
WO (1) WO2021209490A1 (en)

Citations (159)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2009A (en) 1841-03-18 Improvement in machines for boring war-rockets
US137395A (en) 1873-04-01 Improvement in nuts
DE3639877A1 (en) 1986-11-21 1988-05-26 Bayer Ag HETARYLALKYL SUBSTITUTED 5- AND 6-RINGHETEROCYCLES
US5061495A (en) 1988-03-07 1991-10-29 Agricultural Genetics Company Limited Antibiotic derived from b. subtilis
WO1997017432A1 (en) 1995-11-06 1997-05-15 Wisconsin Alumni Research Foundation Insecticidal protein toxins from photorhabdus
WO1998008932A1 (en) 1996-08-29 1998-03-05 Dow Agrosciences Llc Insecticidal protein toxins from $i(photorhabdus)
WO1998044140A1 (en) 1997-04-03 1998-10-08 Dekalb Genetics Corporation Glyphosate resistant maize lines
WO1998050427A1 (en) 1997-05-05 1998-11-12 Dow Agrosciences Llc INSECTICIDAL PROTEIN TOXINS FROM $i(XENORHABDUS)
JPH11253151A (en) 1997-11-13 1999-09-21 Kumiai Chem Ind Co Ltd Disease injury controlling agent in raising of seedling of rice
US6060051A (en) 1997-05-09 2000-05-09 Agraquest, Inc. Strain of bacillus for controlling plant diseases and corn rootworm
WO2000026345A1 (en) 1998-11-03 2000-05-11 Aventis Cropscience N.V. Glufosinate tolerant rice
WO2000026356A1 (en) 1998-11-03 2000-05-11 Aventis Cropscience N. V. Glufosinate tolerant rice
WO2001031042A2 (en) 1999-10-29 2001-05-03 Aventis Cropscience N.V. Male-sterile brassica plants and methods for producing same
US6245551B1 (en) 1999-03-30 2001-06-12 Agraquest, Inc. Strain of Bacillus pumilus for controlling plant diseases caused by fungi
WO2001041558A1 (en) 1999-12-08 2001-06-14 Aventis Cropscience N.V. Hybrid winter oilseed rape and methods for producing same
WO2001047952A2 (en) 1999-12-28 2001-07-05 Bayer Cropscience N.V. Insecticidal proteins from bacillus thuringiensis
WO2001051654A2 (en) 2000-01-11 2001-07-19 Bayer Cropscience N.V. Methods and kits for identifying elite event gat-zm1 in biological samples
WO2002027004A2 (en) 2000-09-29 2002-04-04 Monsanto Technology Llc Glyphosate tolerant wheat plant 33391 and compositions and methods for detection thereof
WO2002034946A2 (en) 2000-10-25 2002-05-02 Monsanto Technology Llc Cotton event pv-ghgt07(1445) and compositions and methods for detection thereof
WO2002036831A2 (en) 2000-10-30 2002-05-10 Monsanto Technology Llc Canola event pv-bngt04(rt73) and compositions and methods for detection thereof
WO2002040677A2 (en) 2000-11-20 2002-05-23 Monsanto Technology Llc Cotton event pv-ghbk04 (531) and compositions and methods for detection thereof
WO2002044407A2 (en) 2000-11-30 2002-06-06 Ses Europe N.V. Glyphosate resistant transgenic sugar beet characterised by a specific transgene insertion (t227-1), methods and primers for the detection of said insertion
US20020102582A1 (en) 2000-09-13 2002-08-01 Levine Elaine B. Corn event MON810 and compositions and methods for detection thereof
WO2002100163A2 (en) 2001-06-11 2002-12-19 Monsanto Technology Llc Cotton event moni5985 and compositions and methods for detection
WO2003000051A2 (en) 2001-06-22 2003-01-03 Drahos David J Novel biofungicide
WO2003013224A2 (en) 2001-08-06 2003-02-20 Bayer Bioscience N.V. Herbicide tolerant cotton plants and methods for producing and identifying same
WO2003052073A2 (en) 2001-12-17 2003-06-26 Syngenta Participations Ag Novel corn event
US20030126634A1 (en) 1990-08-09 2003-07-03 Dekalb Genetics Corporation Methods and compositions for the increase of yield in plants
WO2003106457A1 (en) 2002-06-14 2003-12-24 Syngenta Limited Spiroindolinepiperidine derivatives
WO2004011601A2 (en) 2002-07-29 2004-02-05 Monsanto Technology, Llc Corn event pv-zmir13 (mon863) plants and compositions and methods for detection thereof
WO2004039986A1 (en) 2002-10-29 2004-05-13 Syngenta Participations Ag Cot102 insecticidal cotton
WO2004053062A2 (en) 2002-12-05 2004-06-24 Monsanto Technology Llc Bentgrass event asr-368 and compositions and methods for detection thereof
WO2004072235A2 (en) 2003-02-12 2004-08-26 Monsanto Technology Llc Cotton event mon 88913 and compositions and methods for detection thereof
WO2004074492A1 (en) 2003-02-20 2004-09-02 Kws Saat Ag Glyphosate tolerant sugar beet
US20040172669A1 (en) 2003-02-28 2004-09-02 Josef Kraus Glyphosate tolerant sugar beet
WO2004099447A2 (en) 2003-05-02 2004-11-18 Dow Agrosciences Llc Corn event tc1507 and methods for detection thereof
WO2004099160A1 (en) 2003-05-12 2004-11-18 Sumitomo Chemical Company, Limited Pyrimidine compounds and pests controlling composition containing the same
US6855533B2 (en) 1995-04-20 2005-02-15 Basf Corporation Structure-based designed herbicide resistant products
WO2005054480A2 (en) 2003-12-01 2005-06-16 Syngenta Participations Ag Insect resistant cotton plants and methods of detecting the same
WO2005054479A1 (en) 2003-12-01 2005-06-16 Syngenta Participations Ag Insect resistant cotton plants and methods of detecting the same
WO2005059103A2 (en) 2003-12-15 2005-06-30 Monsanto Technology Llc Corn plant mon88017 and compositions and methods for detection thereof
WO2005061720A2 (en) 2003-12-11 2005-07-07 Monsanto Technology Llc High lysine maize compositions and methods for detection thereof
WO2005074671A1 (en) 2004-01-30 2005-08-18 Syngenta Participations Ag Improved fertility restoration for ogura cytoplasmic male sterile brassica and method
US20050216969A1 (en) 2004-03-26 2005-09-29 Dow Agrosciences Llc Cry1F and Cry1AC transgenic cotton lines and event-specific identification thereof
WO2005103301A2 (en) 2004-03-25 2005-11-03 Syngenta Participations Ag Corn event mir604
WO2006003494A2 (en) 2004-06-28 2006-01-12 Syngenta Participations Ag Piperidine derivatives and their use as insecticides, acaricides, molluscicides or nematicides
US20060070139A1 (en) 2004-09-29 2006-03-30 Pioneer Hi-Bred International, Inc. Corn event DAS-59122-7 and methods for detection thereof
WO2006043635A1 (en) 2004-10-20 2006-04-27 Kumiai Chemical Industry Co., Ltd. 3-triazolylphenyl sulfide derivative and insecticide/acaricide/nematicide containing the same as active ingredient
US7094592B2 (en) 2001-11-26 2006-08-22 Kumiai Chemical Industry Co., Ltd. Bacillus sp. D747 strain, plant disease controlling agents and insect pest controlling agents using the same and control method using the agents
WO2006098952A2 (en) 2005-03-16 2006-09-21 Syngenta Participations Ag Corn event 3272 and methods of detection thereof
WO2006108674A2 (en) 2005-04-08 2006-10-19 Bayer Bioscience N.V. Elite event a2704-12 and methods and kits for identifying such event in biological samples
WO2006108675A2 (en) 2005-04-11 2006-10-19 Bayer Bioscience N.V. Elite event a5547-127 and methods and kits for identifying such event in biological samples
WO2006128573A2 (en) 2005-06-02 2006-12-07 Syngenta Participations Ag Ce43- 67b, insecticidal transgenic cotton expressing cry1ab
WO2006128569A2 (en) 2005-06-02 2006-12-07 Syngenta Participations Ag 1143-14a, insecticidal transgenic cotton expressing cry1ab
WO2006128568A2 (en) 2005-06-02 2006-12-07 Syngenta Participations Ag T342-142, insecticidal transgenic cotton expressing cry1ab
WO2006128570A1 (en) 2005-06-02 2006-12-07 Syngenta Participations Ag 1143-51b insecticidal cotton
WO2006130436A2 (en) 2005-05-27 2006-12-07 Monsanto Technology Llc Soybean event mon89788 and methods for detection thereof
WO2006128572A1 (en) 2005-06-02 2006-12-07 Syngenta Participations Ag Ce46-02a insecticidal cotton
WO2006128571A2 (en) 2005-06-02 2006-12-07 Syngenta Participations Ag Ce44-69d , insecticidal transgenic cotton expressing cry1ab
WO2007017186A1 (en) 2005-08-08 2007-02-15 Bayer Bioscience N.V. Herbicide tolerant cotton plants and methods for identifying same
WO2007024782A2 (en) 2005-08-24 2007-03-01 Pioneer Hi-Bred International, Inc. Compositions providing tolerance to multiple herbicides and methods of use thereof
WO2007040280A1 (en) 2005-10-06 2007-04-12 Nippon Soda Co., Ltd. Cyclic amine compound and pest control agent
WO2007091277A2 (en) 2006-02-10 2007-08-16 Maharashtra Hybrid Seeds Company Limited (Mahyco) TRANSGENIC BRINJAL (SOLANUM MELONGENA) EXPRESSING THE CRYlAC GENE
WO2007140256A1 (en) 2006-05-26 2007-12-06 Monsanto Technology, Llc Corn plant and seed corresponding to transgenic event mon89034 and methods for detection and use thereof
WO2007142840A2 (en) 2006-06-03 2007-12-13 Syngenta Participations Ag Corn event mir162
US20070292854A1 (en) 2000-06-22 2007-12-20 Behr Carl F Corn event PV-ZMGT32(nk603) and compositions and methods for detection thereof
WO2008002872A2 (en) 2006-06-28 2008-01-03 Pioneer Hi-Bred International, Inc. Soybean event 3560.4.3.5 and compositions and methods for the identification and/or detection thereof
US20080064032A1 (en) 2006-09-13 2008-03-13 Syngenta Participations Ag Polynucleotides and uses thereof
WO2008054747A2 (en) 2006-10-31 2008-05-08 E. I. Du Pont De Nemours And Company Soybean event dp-305423-1 and compositions and methods for the identification and/or detection thereof
WO2008112019A2 (en) 2006-10-30 2008-09-18 Pioneer Hi-Bred International, Inc. Maize event dp-098140-6 and compositions and methods for the identification and/or detection thereof
WO2008114282A2 (en) 2007-03-19 2008-09-25 Maharashtra Hybrid Seeds Company Limited Transgenic rice (oryza sativa) comprising pe-7 event and method of detection thereof
WO2008122406A1 (en) 2007-04-05 2008-10-16 Bayer Bioscience N.V. Insect resistant cotton plants and methods for identifying same
US20080289060A1 (en) 2006-08-24 2008-11-20 Bayer Bioscience N.V. Herbicide tolerant rice plants and methods for identifying same
WO2008151780A1 (en) 2007-06-11 2008-12-18 Bayer Bioscience N.V. Insect resistant cotton plants comprising elite event ee-gh6 and methods for identifying same
CN101337940A (en) 2008-08-12 2009-01-07 国家农药创制工程技术研究中心 Nitrogen heterocyclic ring dichlorin allyl ether compounds with insecticidal activity
CN101337937A (en) 2008-08-12 2009-01-07 国家农药创制工程技术研究中心 N-benz-3-substituted amino pyrazoles compounds with insecticidal activity
US20090130071A1 (en) 2007-11-15 2009-05-21 Ai-Guo Gao Soybean Plant And Seed Corresponding To Transgenic Event MON87701 And Methods For Detection Thereof
WO2009100188A2 (en) 2008-02-08 2009-08-13 Dow Agrosciences Llc Methods for detection of corn event das-59132
US20090210970A1 (en) 2008-02-14 2009-08-20 Pioneer Hi-Bred International, Inc. Plant Genomic DNA Flanking SPT Event and Methods for Identifying SPT Event
WO2009102873A1 (en) 2008-02-15 2009-08-20 Monsanto Technology Llc Soybean plant and seed corresponding to transgenic event mon87769 and methods for detection thereof
US7579183B1 (en) 2006-12-01 2009-08-25 The United States Of America As Represented By The Secretary Of Agriculture Saprophytic yeast, Pichia anomala
WO2009111263A1 (en) 2008-02-29 2009-09-11 Monsanto Technology Llc Corn plant event mon87460 and compositions and methods for detection thereof
WO2009116106A1 (en) 2008-03-21 2009-09-24 Trentino Sviluppo S.P.A. Trichoderma atroviride sc1 for biocontrol of fungal diseases in plants
WO2009152359A2 (en) 2008-06-11 2009-12-17 Dow Agrosciences Llc Constructs for expressing herbicide tolerance genes, related plants, and related trait combinations
JP2010018586A (en) 2008-07-14 2010-01-28 Meiji Seika Kaisha Ltd Substance pf1364, its manufacturing method, producing strain and agricultural/horticultural insecticide having the substance as active ingredient
WO2010024976A1 (en) 2008-08-29 2010-03-04 Monsanto Technology Llc Soybean plant and seed corresponding to transgenic event mon87754 and methods for detection thereof
US20100080887A1 (en) 2008-09-29 2010-04-01 Monsanto Technology Llc Soybean Transgenic Event MON87705 and Methods for Detection Thereof
WO2010052161A2 (en) 2008-11-06 2010-05-14 Syngenta Participations Ag Herbicidal compositions
WO2010051926A2 (en) 2008-11-05 2010-05-14 Bayer Cropscience Aktiengesellschaft New halogen-substituted bonds
CN101715774A (en) 2008-10-09 2010-06-02 浙江化工科技集团有限公司 Preparation and use of compound having insecticidal activity
WO2010066780A1 (en) 2008-12-12 2010-06-17 Syngenta Participations Ag Spiroheterocyclic n-oxypiperidines as pesticides
WO2010076212A1 (en) 2008-12-19 2010-07-08 Syngenta Participations Ag Transgenic sugar beet event gm rz13
WO2010077816A1 (en) 2008-12-16 2010-07-08 Syngenta Participations Ag Corn event 5307
WO2010080829A1 (en) 2009-01-07 2010-07-15 Basf Agrochemical Products B.V. Soybean event 127 and methods related thereto
WO2010086790A1 (en) 2009-01-27 2010-08-05 Lesaffre Et Compagnie Saccharomyces cerevisiae strains with phytosanitary capabilities
WO2010117735A1 (en) 2009-03-30 2010-10-14 Monsanto Technology Llc Transgenic rice event17314 and methods of use thereof
WO2010117737A1 (en) 2009-03-30 2010-10-14 Monsanto Technology Llc Rice transgenic event17053 and methods of use thereof
US20100291039A1 (en) 2007-12-14 2010-11-18 Kohl Jurgen Anton Novel micro-organisms controlling plant pathogens
WO2011022469A2 (en) 2009-08-19 2011-02-24 Dow Agrosciences Llc Aad-1 event das-40278-9, related transgenic corn lines, and event-specific identification thereof
WO2011034704A1 (en) 2009-09-17 2011-03-24 Monsanto Technology Llc Soybean transgenic event mon 87708 and methods of use thereof
WO2011063413A2 (en) 2009-11-23 2011-05-26 Bayer Bioscience N.V. Herbicide tolerant soybean plants and methods for identifying same
WO2011062904A1 (en) 2009-11-23 2011-05-26 Monsanto Technology Llc Transgenic maize event mon 87427 and the relative development scale
WO2011066384A1 (en) 2009-11-24 2011-06-03 Dow Agrosciences Llc Aad-12 event 416, related transgenic soybean lines, and event-specific identification thereof
WO2011066360A1 (en) 2009-11-24 2011-06-03 Dow Agrosciences Llc Detection of aad-12 soybean event 416
WO2011075593A1 (en) 2009-12-17 2011-06-23 Pioneer Hi-Bred International, Inc. Maize event dp-040416-8 and methods for detection thereof
WO2011075595A1 (en) 2009-12-17 2011-06-23 Pioneer Hi-Bred International, Inc. Maize event dp-043a47-3 and methods for detection thereof
WO2011081174A1 (en) 2010-01-04 2011-07-07 日本曹達株式会社 Nitrogen-containing heterocyclic compound and agricultural/horticultural germicide
WO2011084621A1 (en) 2009-12-17 2011-07-14 Pioneer Hi-Bred International, Inc. Maize event dp-004114-3 and methods for detection thereof
WO2011084632A1 (en) 2009-12-17 2011-07-14 Pioneer Hi-Bred International, Inc. Maize event dp-032316-8 and methods for detection thereof
WO2011085575A1 (en) 2010-01-15 2011-07-21 江苏省农药研究所股份有限公司 Ortho-heterocyclyl formanilide compounds, their synthesis methods and use
WO2011105506A1 (en) 2010-02-25 2011-09-01 日本曹達株式会社 Cyclic amine compound and miticide
WO2011106491A2 (en) 2010-02-25 2011-09-01 Marrone Bio Innovations, Inc. Isolated bacterial strain of the genus burkholderia and pesticidal metabolites therefrom
WO2011153186A1 (en) 2010-06-04 2011-12-08 Monsanto Technology Llc Transgenic brassica event mon 88302 and methods of use thereof
WO2011151146A1 (en) 2010-05-31 2011-12-08 Syngenta Participations Ag Method of crop enhancement
WO2011151819A2 (en) 2010-06-01 2011-12-08 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Pseudozyma aphidis as a biocontrol agent against various plant pathogens
WO2012029672A1 (en) 2010-08-31 2012-03-08 Meiji Seikaファルマ株式会社 Noxious organism control agent
WO2012033794A2 (en) 2010-09-08 2012-03-15 Dow Agrosciences Llc Aad-12 event 1606 and related transgenic soybean lines
WO2012034403A1 (en) 2010-09-14 2012-03-22 中化蓝天集团有限公司 Fluoromethoxypyrazole anthranilamide compounds, synthesization methods and uses thereof
CN102391261A (en) 2011-10-14 2012-03-28 上海交通大学 N-substituted dioxazine compound as well as preparation method and application thereof
WO2012051199A2 (en) 2010-10-12 2012-04-19 Monsanto Technology Llc Soybean plant and seed corresponding to transgenic event mon87712 and methods for detection thereof
US20120131692A1 (en) 2010-11-24 2012-05-24 Pioneer Hi-Bred International, Inc. Brassica gat event dp-073496-4 and compositions and methods for the identification and/or detection thereof
WO2012071039A1 (en) 2010-11-24 2012-05-31 Pioner Hi-Bred International, Inc. Brassica gat event dp-061061-7 and compositions and methods for the identification and/or detection thereof
WO2012075429A1 (en) 2010-12-03 2012-06-07 Dow Agrosciences Llc Stacked herbicide tolerance event 8291.45.36.2, related transgenic soybean lines, and detection thereof
WO2012075426A1 (en) 2010-12-03 2012-06-07 Dow Agrosciences Llc Stacked herbicide tolerance event 8264.44.06.1, related transgenic soybean lines, and detection thereof
WO2012082548A2 (en) 2010-12-15 2012-06-21 Syngenta Participations Ag Soybean event syht0h2 and compositions and methods for detection thereof
WO2012134808A1 (en) 2011-03-30 2012-10-04 Monsanto Technology Llc Cotton transgenic event mon 88701 and methods of use thereof
WO2012161071A1 (en) 2011-05-20 2012-11-29 日本曹達株式会社 Nitrogenated heterocyclic compound and agricultural or horticultural bactericidal agent
WO2013002205A1 (en) 2011-06-28 2013-01-03 日本曹達株式会社 Nitrogen-containing heterocyclic compound and bactericide for agricultural or horticultural use
WO2013003558A1 (en) 2011-06-30 2013-01-03 Monsanto Technology Llc Alfalfa plant and seed corresponding to transgenic event kk 179-2 and methods for detection thereof
WO2013010094A1 (en) 2011-07-13 2013-01-17 Dow Agrosciences Llc Stacked herbicide tolerance event 8264.42.32.1, related transgenic soybean lines, and detection thereof
WO2013012775A1 (en) 2011-07-15 2013-01-24 Syngenta Participations Ag Corn event mzdt09y
WO2013032693A2 (en) 2011-08-27 2013-03-07 Marrone Bio Innovations, Inc. Isolated bacterial strain of the genus burkholderia and pesticidal metabolites therefrom-formulations and uses
WO2013034938A2 (en) 2011-09-08 2013-03-14 Szegedi Tudományegyetem A copper resistant, fengycin-producing bacillus mojavensis strain for controlling vegetable pathogens, its use and compositions containing it
WO2013050317A1 (en) 2011-10-03 2013-04-11 Syngenta Limited Polymorphs of an isoxazoline derivative
WO2013058256A1 (en) 2011-10-17 2013-04-25 日本曹達株式会社 Nitrogenated heterocyclic compound, and bactericidal agent for agricultural and horticultural purposes
CN103109816A (en) 2013-01-25 2013-05-22 青岛科技大学 Thiobenzamide compounds and application thereof
CN103232431A (en) 2013-01-25 2013-08-07 青岛科技大学 Dihalogenated pyrazole amide compound and its use
WO2013115391A1 (en) 2012-02-01 2013-08-08 日本農薬株式会社 Arylalkyloxy pyrimidine derivative, pesticide for agricultural and horticultural use containing arylalkyloxy pyrimidine derivative as active ingredient, and use of same
CN103265527A (en) 2013-06-07 2013-08-28 江苏省农用激素工程技术研究中心有限公司 Anthranilamide compound as well as preparation method and application thereof
WO2013144213A1 (en) 2012-03-30 2013-10-03 Basf Se N-substituted pyridinylidene compounds and derivatives for combating animal pests
EP2647626A1 (en) 2012-04-03 2013-10-09 Syngenta Participations AG. 1-Aza-spiro[4.5]dec-3-ene and 1,8-diaza-spiro[4.5]dec-3-ene derivatives as pesticides
WO2013162716A2 (en) 2012-04-27 2013-10-31 Dow Agrosciences Llc Pesticidal compositions and processes related thereto
CN103524422A (en) 2013-10-11 2014-01-22 中国农业科学院植物保护研究所 Benzimidazole derivative, and preparation method and purpose thereof
WO2014028521A1 (en) 2012-08-14 2014-02-20 Marrone Bio Innovations, Inc. Bacillus sp. strain with antifungal, antibacterial and growth promotion activity
US20140213448A1 (en) 2012-04-27 2014-07-31 Dow Agrosciences Llc Pesticidal compositions and processes related thereto
JP2014166991A (en) 2013-01-31 2014-09-11 Nippon Soda Co Ltd Nitrogen-containing heterocyclic compound and agricultural and horticultural bactericidal agent
US20140275503A1 (en) 2013-03-13 2014-09-18 Dow Agrosciences Llc Process for the preparation of certain triaryl rhamnose carbamates
WO2014187846A1 (en) 2013-05-23 2014-11-27 Syngenta Participations Ag Tank-mix formulations
WO2015058021A1 (en) 2013-10-17 2015-04-23 Dow Agrosciences Llc Processes for the preparation of pesticidal compounds
WO2015058028A1 (en) 2013-10-17 2015-04-23 Dow Agrosciences Llc Processes for the preparation of pesticidal compounds
WO2015067800A1 (en) 2013-11-11 2015-05-14 Basf Se Antifungal penicillium strains, fungicidal extrolites thereof, and their use
WO2016005276A1 (en) 2014-07-07 2016-01-14 Bayer Cropscience Aktiengesellschaft Process for preparing fluorinated iminopyridine compounds
WO2016020371A1 (en) 2014-08-04 2016-02-11 Basf Se Antifungal paenibacillus strains, fusaricidin-type compounds, and their use
WO2016133011A1 (en) 2015-02-17 2016-08-25 日本曹達株式会社 Agrochemical composition
WO2016154297A1 (en) 2015-03-26 2016-09-29 Bayer Cropscience Lp A novel paenibacillus strain, antifungal compounds, and methods for their use
WO2017019448A1 (en) 2015-07-24 2017-02-02 AgBiome, Inc. Modified biological control agents and their uses
WO2017066094A1 (en) 2015-10-12 2017-04-20 Pioneer Hi-Bred International, Inc. Biologicals and their use in plants
WO2017205258A1 (en) 2016-05-26 2017-11-30 Novozymes Bioag A/S Bacillus and lipochitooligosaccharide for improving plant growth
WO2019103918A1 (en) 2017-11-21 2019-05-31 Syngenta Participations Ag Novel resistance genes associated with disease resistance in soybeans

Patent Citations (202)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2009A (en) 1841-03-18 Improvement in machines for boring war-rockets
US137395A (en) 1873-04-01 Improvement in nuts
DE3639877A1 (en) 1986-11-21 1988-05-26 Bayer Ag HETARYLALKYL SUBSTITUTED 5- AND 6-RINGHETEROCYCLES
US5061495A (en) 1988-03-07 1991-10-29 Agricultural Genetics Company Limited Antibiotic derived from b. subtilis
US20030126634A1 (en) 1990-08-09 2003-07-03 Dekalb Genetics Corporation Methods and compositions for the increase of yield in plants
US6855533B2 (en) 1995-04-20 2005-02-15 Basf Corporation Structure-based designed herbicide resistant products
WO1997017432A1 (en) 1995-11-06 1997-05-15 Wisconsin Alumni Research Foundation Insecticidal protein toxins from photorhabdus
WO1998008932A1 (en) 1996-08-29 1998-03-05 Dow Agrosciences Llc Insecticidal protein toxins from $i(photorhabdus)
WO1998044140A1 (en) 1997-04-03 1998-10-08 Dekalb Genetics Corporation Glyphosate resistant maize lines
US20060059581A1 (en) 1997-04-03 2006-03-16 Dekalb Genetics Corporation Method of breeding glyphosate resistant plants
US20050188434A1 (en) 1997-04-03 2005-08-25 Michael Spencer Method for plant breeding
US20050086719A1 (en) 1997-04-03 2005-04-21 Michael Spencer Glyphosate resistant maize lines
WO1998050427A1 (en) 1997-05-05 1998-11-12 Dow Agrosciences Llc INSECTICIDAL PROTEIN TOXINS FROM $i(XENORHABDUS)
US6060051A (en) 1997-05-09 2000-05-09 Agraquest, Inc. Strain of bacillus for controlling plant diseases and corn rootworm
JPH11253151A (en) 1997-11-13 1999-09-21 Kumiai Chem Ind Co Ltd Disease injury controlling agent in raising of seedling of rice
WO2000026345A1 (en) 1998-11-03 2000-05-11 Aventis Cropscience N.V. Glufosinate tolerant rice
WO2000026356A1 (en) 1998-11-03 2000-05-11 Aventis Cropscience N. V. Glufosinate tolerant rice
US6468747B1 (en) 1998-11-03 2002-10-22 Plant Genetic System, N.V. Glufosinate tolerant rice
US6245551B1 (en) 1999-03-30 2001-06-12 Agraquest, Inc. Strain of Bacillus pumilus for controlling plant diseases caused by fungi
WO2001031042A2 (en) 1999-10-29 2001-05-03 Aventis Cropscience N.V. Male-sterile brassica plants and methods for producing same
WO2001041558A1 (en) 1999-12-08 2001-06-14 Aventis Cropscience N.V. Hybrid winter oilseed rape and methods for producing same
US20030188347A1 (en) 1999-12-08 2003-10-02 Both Greta De Hybrid winter oilseed rape and methods for producing same
WO2001047952A2 (en) 1999-12-28 2001-07-05 Bayer Cropscience N.V. Insecticidal proteins from bacillus thuringiensis
WO2001051654A2 (en) 2000-01-11 2001-07-19 Bayer Cropscience N.V. Methods and kits for identifying elite event gat-zm1 in biological samples
US20010029014A1 (en) 2000-01-11 2001-10-11 Beuckeleer Marc De Methods and kits for identifying elite event GAT-ZM1 in biological samples
US20070292854A1 (en) 2000-06-22 2007-12-20 Behr Carl F Corn event PV-ZMGT32(nk603) and compositions and methods for detection thereof
US20020102582A1 (en) 2000-09-13 2002-08-01 Levine Elaine B. Corn event MON810 and compositions and methods for detection thereof
WO2002027004A2 (en) 2000-09-29 2002-04-04 Monsanto Technology Llc Glyphosate tolerant wheat plant 33391 and compositions and methods for detection thereof
US20020120964A1 (en) 2000-10-25 2002-08-29 Rangwala Tasneem S. Cotton event PV-GHGT07(1445) and compositions and methods for detection thereof
WO2002034946A2 (en) 2000-10-25 2002-05-02 Monsanto Technology Llc Cotton event pv-ghgt07(1445) and compositions and methods for detection thereof
US20080070260A1 (en) 2000-10-30 2008-03-20 Rachel Krieb Canola event PV-BNGT04(RT73) and compositions and methods for detection thereof
WO2002036831A2 (en) 2000-10-30 2002-05-10 Monsanto Technology Llc Canola event pv-bngt04(rt73) and compositions and methods for detection thereof
WO2002040677A2 (en) 2000-11-20 2002-05-23 Monsanto Technology Llc Cotton event pv-ghbk04 (531) and compositions and methods for detection thereof
WO2002044407A2 (en) 2000-11-30 2002-06-06 Ses Europe N.V. Glyphosate resistant transgenic sugar beet characterised by a specific transgene insertion (t227-1), methods and primers for the detection of said insertion
US20090265817A1 (en) 2000-11-30 2009-10-22 Ses Europe N.V./S.A. T227-1 flanking sequence
US20040250317A1 (en) 2001-06-11 2004-12-09 Huber Scott A Cotton event moni5985 and compositions and methods for detection thereof
WO2002100163A2 (en) 2001-06-11 2002-12-19 Monsanto Technology Llc Cotton event moni5985 and compositions and methods for detection
WO2003000051A2 (en) 2001-06-22 2003-01-03 Drahos David J Novel biofungicide
WO2003013224A2 (en) 2001-08-06 2003-02-20 Bayer Bioscience N.V. Herbicide tolerant cotton plants and methods for producing and identifying same
US20030097687A1 (en) 2001-08-06 2003-05-22 Linda Trolinder Herbicide tolerant cotton plants and methods for producing and identifying same
US7094592B2 (en) 2001-11-26 2006-08-22 Kumiai Chemical Industry Co., Ltd. Bacillus sp. D747 strain, plant disease controlling agents and insect pest controlling agents using the same and control method using the agents
WO2003052073A2 (en) 2001-12-17 2003-06-26 Syngenta Participations Ag Novel corn event
WO2003106457A1 (en) 2002-06-14 2003-12-24 Syngenta Limited Spiroindolinepiperidine derivatives
US20060095986A1 (en) 2002-07-29 2006-05-04 Cavato Tracey A Corn event pv-zmir13 (mon863) plants and compositions and methods for detection thereof
WO2004011601A2 (en) 2002-07-29 2004-02-05 Monsanto Technology, Llc Corn event pv-zmir13 (mon863) plants and compositions and methods for detection thereof
WO2004039986A1 (en) 2002-10-29 2004-05-13 Syngenta Participations Ag Cot102 insecticidal cotton
US20060130175A1 (en) 2002-10-29 2006-06-15 Ellis Daniel M Cot102 insecticidal cotton
WO2004053062A2 (en) 2002-12-05 2004-06-24 Monsanto Technology Llc Bentgrass event asr-368 and compositions and methods for detection thereof
US20060162007A1 (en) 2002-12-05 2006-07-20 Monsanto Technology Llc Bentgrass event asr-368 and compositions and methods for detection thereof
US20060059590A1 (en) 2003-02-12 2006-03-16 Monsanto Technology Llc Cotton event mon 88913 and compositions and methods for detection thereof
WO2004072235A2 (en) 2003-02-12 2004-08-26 Monsanto Technology Llc Cotton event mon 88913 and compositions and methods for detection thereof
WO2004074492A1 (en) 2003-02-20 2004-09-02 Kws Saat Ag Glyphosate tolerant sugar beet
US20040172669A1 (en) 2003-02-28 2004-09-02 Josef Kraus Glyphosate tolerant sugar beet
WO2004099447A2 (en) 2003-05-02 2004-11-18 Dow Agrosciences Llc Corn event tc1507 and methods for detection thereof
US20050039226A1 (en) 2003-05-02 2005-02-17 Dow Agrosciences Llc Corn event TC1507 and methods for detection thereof
WO2004099160A1 (en) 2003-05-12 2004-11-18 Sumitomo Chemical Company, Limited Pyrimidine compounds and pests controlling composition containing the same
US20070067868A1 (en) 2003-12-01 2007-03-22 Negrotto David V Insect resistant cotton plants and methods of detecting the same
WO2005054479A1 (en) 2003-12-01 2005-06-16 Syngenta Participations Ag Insect resistant cotton plants and methods of detecting the same
WO2005054480A2 (en) 2003-12-01 2005-06-16 Syngenta Participations Ag Insect resistant cotton plants and methods of detecting the same
WO2005061720A2 (en) 2003-12-11 2005-07-07 Monsanto Technology Llc High lysine maize compositions and methods for detection thereof
US20070028322A1 (en) 2003-12-11 2007-02-01 Dizigan Mark A High lysine maize compositions and methods for detection thereof
US20080028482A1 (en) 2003-12-15 2008-01-31 Beazley Kim A Corn Plant Mon88017 and Compositions and Methods for Detection Thereof
WO2005059103A2 (en) 2003-12-15 2005-06-30 Monsanto Technology Llc Corn plant mon88017 and compositions and methods for detection thereof
WO2005074671A1 (en) 2004-01-30 2005-08-18 Syngenta Participations Ag Improved fertility restoration for ogura cytoplasmic male sterile brassica and method
US20080167456A1 (en) 2004-03-25 2008-07-10 Syngenta Participations Ag Corn Event MIR604
WO2005103301A2 (en) 2004-03-25 2005-11-03 Syngenta Participations Ag Corn event mir604
WO2005103266A1 (en) 2004-03-26 2005-11-03 Dow Agrosciences Llc Cry1f and cry1ac transgenic cotton lines and event-specific identification thereof
US20070143876A1 (en) 2004-03-26 2007-06-21 Dow Agrosciences Llc Cry1F and Cry1Ac transgenic cotton lines and event-specific identification thereof
US20050216969A1 (en) 2004-03-26 2005-09-29 Dow Agrosciences Llc Cry1F and Cry1AC transgenic cotton lines and event-specific identification thereof
WO2006003494A2 (en) 2004-06-28 2006-01-12 Syngenta Participations Ag Piperidine derivatives and their use as insecticides, acaricides, molluscicides or nematicides
US20060070139A1 (en) 2004-09-29 2006-03-30 Pioneer Hi-Bred International, Inc. Corn event DAS-59122-7 and methods for detection thereof
WO2006043635A1 (en) 2004-10-20 2006-04-27 Kumiai Chemical Industry Co., Ltd. 3-triazolylphenyl sulfide derivative and insecticide/acaricide/nematicide containing the same as active ingredient
US20060230473A1 (en) 2005-03-16 2006-10-12 Syngenta Participations Ag Corn event 3272 and methods for detection thereof
WO2006098952A2 (en) 2005-03-16 2006-09-21 Syngenta Participations Ag Corn event 3272 and methods of detection thereof
US20080320616A1 (en) 2005-04-08 2008-12-25 Bayer Bioscience N.V. Elite Event A2407-12 and Methods and Kits for Identifying Such Event in Biological Samples
WO2006108674A2 (en) 2005-04-08 2006-10-19 Bayer Bioscience N.V. Elite event a2704-12 and methods and kits for identifying such event in biological samples
US20080196127A1 (en) 2005-04-11 2008-08-14 Bayer Bioscience N.V. Elite Event A5547-127 and Methods and Kits For Identifying Such Event in Biological Samples
WO2006108675A2 (en) 2005-04-11 2006-10-19 Bayer Bioscience N.V. Elite event a5547-127 and methods and kits for identifying such event in biological samples
WO2006130436A2 (en) 2005-05-27 2006-12-07 Monsanto Technology Llc Soybean event mon89788 and methods for detection thereof
US20060282915A1 (en) 2005-05-27 2006-12-14 Monsanto Technology Llc Soybean event MON89788 and methods for detection thereof
WO2006128568A2 (en) 2005-06-02 2006-12-07 Syngenta Participations Ag T342-142, insecticidal transgenic cotton expressing cry1ab
WO2006128571A2 (en) 2005-06-02 2006-12-07 Syngenta Participations Ag Ce44-69d , insecticidal transgenic cotton expressing cry1ab
WO2006128573A2 (en) 2005-06-02 2006-12-07 Syngenta Participations Ag Ce43- 67b, insecticidal transgenic cotton expressing cry1ab
WO2006128569A2 (en) 2005-06-02 2006-12-07 Syngenta Participations Ag 1143-14a, insecticidal transgenic cotton expressing cry1ab
US20090217423A1 (en) 2005-06-02 2009-08-27 Cayley Patricia J Ce43-67b insecticidal cotton
US20100024077A1 (en) 2005-06-02 2010-01-28 Syngenta Participations Ag Ce44-69d insecticidal cotton
WO2006128570A1 (en) 2005-06-02 2006-12-07 Syngenta Participations Ag 1143-51b insecticidal cotton
WO2006128572A1 (en) 2005-06-02 2006-12-07 Syngenta Participations Ag Ce46-02a insecticidal cotton
US20100050282A1 (en) 2005-08-08 2010-02-25 Bayer Bioscience N.V. Herbicide Tolerant Cotton Plants and Methods for Identifying the Same
WO2007017186A1 (en) 2005-08-08 2007-02-15 Bayer Bioscience N.V. Herbicide tolerant cotton plants and methods for identifying same
WO2007024782A2 (en) 2005-08-24 2007-03-01 Pioneer Hi-Bred International, Inc. Compositions providing tolerance to multiple herbicides and methods of use thereof
WO2007040282A1 (en) 2005-10-06 2007-04-12 Nippon Soda Co., Ltd. Bridged cyclic amine compound and pest control agent
WO2007040280A1 (en) 2005-10-06 2007-04-12 Nippon Soda Co., Ltd. Cyclic amine compound and pest control agent
WO2007091277A2 (en) 2006-02-10 2007-08-16 Maharashtra Hybrid Seeds Company Limited (Mahyco) TRANSGENIC BRINJAL (SOLANUM MELONGENA) EXPRESSING THE CRYlAC GENE
US20080260932A1 (en) 2006-05-26 2008-10-23 Anderson Heather M Corn Plant and Seed Corresponding to Transgenic Event MON89034 and Methods For Detection and Use Thereof
WO2007140256A1 (en) 2006-05-26 2007-12-06 Monsanto Technology, Llc Corn plant and seed corresponding to transgenic event mon89034 and methods for detection and use thereof
WO2007142840A2 (en) 2006-06-03 2007-12-13 Syngenta Participations Ag Corn event mir162
US20090300784A1 (en) 2006-06-03 2009-12-03 Syngenta Participations Ag Corn event mir162
US20100184079A1 (en) 2006-06-28 2010-07-22 Pioneer Hi-Bred International, Inc. Soybean event 3560.4.3.5 and compositions and methods for the identification and detection thereof
WO2008002872A2 (en) 2006-06-28 2008-01-03 Pioneer Hi-Bred International, Inc. Soybean event 3560.4.3.5 and compositions and methods for the identification and/or detection thereof
US20080289060A1 (en) 2006-08-24 2008-11-20 Bayer Bioscience N.V. Herbicide tolerant rice plants and methods for identifying same
US20080064032A1 (en) 2006-09-13 2008-03-13 Syngenta Participations Ag Polynucleotides and uses thereof
WO2008112019A2 (en) 2006-10-30 2008-09-18 Pioneer Hi-Bred International, Inc. Maize event dp-098140-6 and compositions and methods for the identification and/or detection thereof
US20080312082A1 (en) 2006-10-31 2008-12-18 Kinney Anthony J Soybean event dp-305423-1 and compositions and methods for the identification and/or detection thereof
WO2008054747A2 (en) 2006-10-31 2008-05-08 E. I. Du Pont De Nemours And Company Soybean event dp-305423-1 and compositions and methods for the identification and/or detection thereof
US7579183B1 (en) 2006-12-01 2009-08-25 The United States Of America As Represented By The Secretary Of Agriculture Saprophytic yeast, Pichia anomala
WO2008114282A2 (en) 2007-03-19 2008-09-25 Maharashtra Hybrid Seeds Company Limited Transgenic rice (oryza sativa) comprising pe-7 event and method of detection thereof
WO2008122406A1 (en) 2007-04-05 2008-10-16 Bayer Bioscience N.V. Insect resistant cotton plants and methods for identifying same
US20100077501A1 (en) 2007-04-05 2010-03-25 Bayer Bioscience N.V. Insect resistant cotton plants and methods for identifying same
WO2008151780A1 (en) 2007-06-11 2008-12-18 Bayer Bioscience N.V. Insect resistant cotton plants comprising elite event ee-gh6 and methods for identifying same
WO2009064652A1 (en) 2007-11-15 2009-05-22 Monsanto Technology Llc Soybean plant and seed corresponding to transgenic event mon87701 and methods for detection thereof
US20090130071A1 (en) 2007-11-15 2009-05-21 Ai-Guo Gao Soybean Plant And Seed Corresponding To Transgenic Event MON87701 And Methods For Detection Thereof
US20100291039A1 (en) 2007-12-14 2010-11-18 Kohl Jurgen Anton Novel micro-organisms controlling plant pathogens
WO2009100188A2 (en) 2008-02-08 2009-08-13 Dow Agrosciences Llc Methods for detection of corn event das-59132
US20090210970A1 (en) 2008-02-14 2009-08-20 Pioneer Hi-Bred International, Inc. Plant Genomic DNA Flanking SPT Event and Methods for Identifying SPT Event
WO2009103049A2 (en) 2008-02-14 2009-08-20 Pioneer Hi-Bred International, Inc. Plant genomic dna flanking spt event and methods for identifying spt event
WO2009102873A1 (en) 2008-02-15 2009-08-20 Monsanto Technology Llc Soybean plant and seed corresponding to transgenic event mon87769 and methods for detection thereof
US20110067141A1 (en) 2008-02-15 2011-03-17 Byron Froman Soybean plant and seed corresponding to transgenic event mon87769 and methods for detection thereof
WO2009111263A1 (en) 2008-02-29 2009-09-11 Monsanto Technology Llc Corn plant event mon87460 and compositions and methods for detection thereof
US20110138504A1 (en) 2008-02-29 2011-06-09 Monsanto Technology Llc Corn plant event mon87460 and compositions and methods for detection thereof
WO2009116106A1 (en) 2008-03-21 2009-09-24 Trentino Sviluppo S.P.A. Trichoderma atroviride sc1 for biocontrol of fungal diseases in plants
US8431120B2 (en) 2008-03-21 2013-04-30 Trentino Sviluppo S.P.A. Trichoderma atroviride SC1 for biocontrol of fungal diseases in plants
WO2009152359A2 (en) 2008-06-11 2009-12-17 Dow Agrosciences Llc Constructs for expressing herbicide tolerance genes, related plants, and related trait combinations
JP2010018586A (en) 2008-07-14 2010-01-28 Meiji Seika Kaisha Ltd Substance pf1364, its manufacturing method, producing strain and agricultural/horticultural insecticide having the substance as active ingredient
CN101337937A (en) 2008-08-12 2009-01-07 国家农药创制工程技术研究中心 N-benz-3-substituted amino pyrazoles compounds with insecticidal activity
CN101337940A (en) 2008-08-12 2009-01-07 国家农药创制工程技术研究中心 Nitrogen heterocyclic ring dichlorin allyl ether compounds with insecticidal activity
WO2010024976A1 (en) 2008-08-29 2010-03-04 Monsanto Technology Llc Soybean plant and seed corresponding to transgenic event mon87754 and methods for detection thereof
WO2010037016A1 (en) 2008-09-29 2010-04-01 Monsanto Technology Llc Soybean transgenic event mon87705 and methods for detection thereof
US20100080887A1 (en) 2008-09-29 2010-04-01 Monsanto Technology Llc Soybean Transgenic Event MON87705 and Methods for Detection Thereof
CN101715774A (en) 2008-10-09 2010-06-02 浙江化工科技集团有限公司 Preparation and use of compound having insecticidal activity
WO2010051926A2 (en) 2008-11-05 2010-05-14 Bayer Cropscience Aktiengesellschaft New halogen-substituted bonds
WO2010052161A2 (en) 2008-11-06 2010-05-14 Syngenta Participations Ag Herbicidal compositions
WO2010066780A1 (en) 2008-12-12 2010-06-17 Syngenta Participations Ag Spiroheterocyclic n-oxypiperidines as pesticides
WO2010077816A1 (en) 2008-12-16 2010-07-08 Syngenta Participations Ag Corn event 5307
WO2010076212A1 (en) 2008-12-19 2010-07-08 Syngenta Participations Ag Transgenic sugar beet event gm rz13
WO2010080829A1 (en) 2009-01-07 2010-07-15 Basf Agrochemical Products B.V. Soybean event 127 and methods related thereto
WO2010086790A1 (en) 2009-01-27 2010-08-05 Lesaffre Et Compagnie Saccharomyces cerevisiae strains with phytosanitary capabilities
WO2010117735A1 (en) 2009-03-30 2010-10-14 Monsanto Technology Llc Transgenic rice event17314 and methods of use thereof
WO2010117737A1 (en) 2009-03-30 2010-10-14 Monsanto Technology Llc Rice transgenic event17053 and methods of use thereof
WO2011022469A2 (en) 2009-08-19 2011-02-24 Dow Agrosciences Llc Aad-1 event das-40278-9, related transgenic corn lines, and event-specific identification thereof
WO2011034704A1 (en) 2009-09-17 2011-03-24 Monsanto Technology Llc Soybean transgenic event mon 87708 and methods of use thereof
WO2011063413A2 (en) 2009-11-23 2011-05-26 Bayer Bioscience N.V. Herbicide tolerant soybean plants and methods for identifying same
WO2011062904A1 (en) 2009-11-23 2011-05-26 Monsanto Technology Llc Transgenic maize event mon 87427 and the relative development scale
WO2011066384A1 (en) 2009-11-24 2011-06-03 Dow Agrosciences Llc Aad-12 event 416, related transgenic soybean lines, and event-specific identification thereof
WO2011066360A1 (en) 2009-11-24 2011-06-03 Dow Agrosciences Llc Detection of aad-12 soybean event 416
WO2011075593A1 (en) 2009-12-17 2011-06-23 Pioneer Hi-Bred International, Inc. Maize event dp-040416-8 and methods for detection thereof
WO2011084621A1 (en) 2009-12-17 2011-07-14 Pioneer Hi-Bred International, Inc. Maize event dp-004114-3 and methods for detection thereof
WO2011084632A1 (en) 2009-12-17 2011-07-14 Pioneer Hi-Bred International, Inc. Maize event dp-032316-8 and methods for detection thereof
WO2011075595A1 (en) 2009-12-17 2011-06-23 Pioneer Hi-Bred International, Inc. Maize event dp-043a47-3 and methods for detection thereof
WO2011081174A1 (en) 2010-01-04 2011-07-07 日本曹達株式会社 Nitrogen-containing heterocyclic compound and agricultural/horticultural germicide
EP2522658A1 (en) 2010-01-04 2012-11-14 Nippon Soda Co., Ltd. Nitrogen-containing heterocyclic compound and agricultural/horticultural germicide
WO2011085575A1 (en) 2010-01-15 2011-07-21 江苏省农药研究所股份有限公司 Ortho-heterocyclyl formanilide compounds, their synthesis methods and use
WO2011105506A1 (en) 2010-02-25 2011-09-01 日本曹達株式会社 Cyclic amine compound and miticide
WO2011106491A2 (en) 2010-02-25 2011-09-01 Marrone Bio Innovations, Inc. Isolated bacterial strain of the genus burkholderia and pesticidal metabolites therefrom
WO2011151146A1 (en) 2010-05-31 2011-12-08 Syngenta Participations Ag Method of crop enhancement
WO2011151819A2 (en) 2010-06-01 2011-12-08 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Pseudozyma aphidis as a biocontrol agent against various plant pathogens
WO2011153186A1 (en) 2010-06-04 2011-12-08 Monsanto Technology Llc Transgenic brassica event mon 88302 and methods of use thereof
WO2012029672A1 (en) 2010-08-31 2012-03-08 Meiji Seikaファルマ株式会社 Noxious organism control agent
WO2012033794A2 (en) 2010-09-08 2012-03-15 Dow Agrosciences Llc Aad-12 event 1606 and related transgenic soybean lines
WO2012034403A1 (en) 2010-09-14 2012-03-22 中化蓝天集团有限公司 Fluoromethoxypyrazole anthranilamide compounds, synthesization methods and uses thereof
WO2012051199A2 (en) 2010-10-12 2012-04-19 Monsanto Technology Llc Soybean plant and seed corresponding to transgenic event mon87712 and methods for detection thereof
US20120131692A1 (en) 2010-11-24 2012-05-24 Pioneer Hi-Bred International, Inc. Brassica gat event dp-073496-4 and compositions and methods for the identification and/or detection thereof
WO2012071039A1 (en) 2010-11-24 2012-05-31 Pioner Hi-Bred International, Inc. Brassica gat event dp-061061-7 and compositions and methods for the identification and/or detection thereof
WO2012075429A1 (en) 2010-12-03 2012-06-07 Dow Agrosciences Llc Stacked herbicide tolerance event 8291.45.36.2, related transgenic soybean lines, and detection thereof
WO2012075426A1 (en) 2010-12-03 2012-06-07 Dow Agrosciences Llc Stacked herbicide tolerance event 8264.44.06.1, related transgenic soybean lines, and detection thereof
WO2012082548A2 (en) 2010-12-15 2012-06-21 Syngenta Participations Ag Soybean event syht0h2 and compositions and methods for detection thereof
WO2012134808A1 (en) 2011-03-30 2012-10-04 Monsanto Technology Llc Cotton transgenic event mon 88701 and methods of use thereof
WO2012161071A1 (en) 2011-05-20 2012-11-29 日本曹達株式会社 Nitrogenated heterocyclic compound and agricultural or horticultural bactericidal agent
WO2013002205A1 (en) 2011-06-28 2013-01-03 日本曹達株式会社 Nitrogen-containing heterocyclic compound and bactericide for agricultural or horticultural use
WO2013003558A1 (en) 2011-06-30 2013-01-03 Monsanto Technology Llc Alfalfa plant and seed corresponding to transgenic event kk 179-2 and methods for detection thereof
WO2013010094A1 (en) 2011-07-13 2013-01-17 Dow Agrosciences Llc Stacked herbicide tolerance event 8264.42.32.1, related transgenic soybean lines, and detection thereof
WO2013012775A1 (en) 2011-07-15 2013-01-24 Syngenta Participations Ag Corn event mzdt09y
WO2013032693A2 (en) 2011-08-27 2013-03-07 Marrone Bio Innovations, Inc. Isolated bacterial strain of the genus burkholderia and pesticidal metabolites therefrom-formulations and uses
WO2013034938A2 (en) 2011-09-08 2013-03-14 Szegedi Tudományegyetem A copper resistant, fengycin-producing bacillus mojavensis strain for controlling vegetable pathogens, its use and compositions containing it
WO2013050317A1 (en) 2011-10-03 2013-04-11 Syngenta Limited Polymorphs of an isoxazoline derivative
CN102391261A (en) 2011-10-14 2012-03-28 上海交通大学 N-substituted dioxazine compound as well as preparation method and application thereof
WO2013058256A1 (en) 2011-10-17 2013-04-25 日本曹達株式会社 Nitrogenated heterocyclic compound, and bactericidal agent for agricultural and horticultural purposes
WO2013115391A1 (en) 2012-02-01 2013-08-08 日本農薬株式会社 Arylalkyloxy pyrimidine derivative, pesticide for agricultural and horticultural use containing arylalkyloxy pyrimidine derivative as active ingredient, and use of same
WO2013144213A1 (en) 2012-03-30 2013-10-03 Basf Se N-substituted pyridinylidene compounds and derivatives for combating animal pests
EP2647626A1 (en) 2012-04-03 2013-10-09 Syngenta Participations AG. 1-Aza-spiro[4.5]dec-3-ene and 1,8-diaza-spiro[4.5]dec-3-ene derivatives as pesticides
WO2013162715A2 (en) 2012-04-27 2013-10-31 Dow Agrosciences Llc Pesticidal compositions and processes related thereto
US20140213448A1 (en) 2012-04-27 2014-07-31 Dow Agrosciences Llc Pesticidal compositions and processes related thereto
WO2013162716A2 (en) 2012-04-27 2013-10-31 Dow Agrosciences Llc Pesticidal compositions and processes related thereto
WO2014028521A1 (en) 2012-08-14 2014-02-20 Marrone Bio Innovations, Inc. Bacillus sp. strain with antifungal, antibacterial and growth promotion activity
CN103109816A (en) 2013-01-25 2013-05-22 青岛科技大学 Thiobenzamide compounds and application thereof
CN103232431A (en) 2013-01-25 2013-08-07 青岛科技大学 Dihalogenated pyrazole amide compound and its use
JP2014166991A (en) 2013-01-31 2014-09-11 Nippon Soda Co Ltd Nitrogen-containing heterocyclic compound and agricultural and horticultural bactericidal agent
US20140275503A1 (en) 2013-03-13 2014-09-18 Dow Agrosciences Llc Process for the preparation of certain triaryl rhamnose carbamates
WO2014187846A1 (en) 2013-05-23 2014-11-27 Syngenta Participations Ag Tank-mix formulations
CN103265527A (en) 2013-06-07 2013-08-28 江苏省农用激素工程技术研究中心有限公司 Anthranilamide compound as well as preparation method and application thereof
CN103524422A (en) 2013-10-11 2014-01-22 中国农业科学院植物保护研究所 Benzimidazole derivative, and preparation method and purpose thereof
WO2015058021A1 (en) 2013-10-17 2015-04-23 Dow Agrosciences Llc Processes for the preparation of pesticidal compounds
WO2015058028A1 (en) 2013-10-17 2015-04-23 Dow Agrosciences Llc Processes for the preparation of pesticidal compounds
WO2015067800A1 (en) 2013-11-11 2015-05-14 Basf Se Antifungal penicillium strains, fungicidal extrolites thereof, and their use
WO2016005276A1 (en) 2014-07-07 2016-01-14 Bayer Cropscience Aktiengesellschaft Process for preparing fluorinated iminopyridine compounds
WO2016020371A1 (en) 2014-08-04 2016-02-11 Basf Se Antifungal paenibacillus strains, fusaricidin-type compounds, and their use
WO2016133011A1 (en) 2015-02-17 2016-08-25 日本曹達株式会社 Agrochemical composition
WO2016154297A1 (en) 2015-03-26 2016-09-29 Bayer Cropscience Lp A novel paenibacillus strain, antifungal compounds, and methods for their use
WO2017019448A1 (en) 2015-07-24 2017-02-02 AgBiome, Inc. Modified biological control agents and their uses
WO2017066094A1 (en) 2015-10-12 2017-04-20 Pioneer Hi-Bred International, Inc. Biologicals and their use in plants
WO2017205258A1 (en) 2016-05-26 2017-11-30 Novozymes Bioag A/S Bacillus and lipochitooligosaccharide for improving plant growth
WO2019103918A1 (en) 2017-11-21 2019-05-31 Syngenta Participations Ag Novel resistance genes associated with disease resistance in soybeans

Non-Patent Citations (16)

* Cited by examiner, † Cited by third party
Title
"Current Protocols in Molecular Biology", 1987, BRITISH CROP PROTECTION COUNCIL
"Technical Monograph", May 2008, CROPLIFE INTERNATIONAL, article "Catalogue of pesticide formulation types and international coding system"
CAS , no. 1332838-17-1
CAS, no. 1108184-52-6
CROP PROTECTION, vol. 25, 2006, pages 468 - 475
DATABASE REGISTRY [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; 1 March 2019 (2019-03-01), XP002803311, Database accession no. 2276571-48-1 *
DATABASE REGISTRY [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; 20 December 2017 (2017-12-20), XP002803316, Database accession no. 2161701-40-0 *
DATABASE REGISTRY [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; 22 November 2019 (2019-11-22), XP002803314, Database accession no. 2380779-21-3 *
DATABASE REGISTRY [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; 3 April 2019 (2019-04-03), XP002803312, Database accession no. 2300147-09-3 *
DATABASE REGISTRY [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; 4 April 2019 (2019-04-04), XP002803313, Database accession no. 2300288-03-1 *
DATABASE REGISTRY [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; 5 December 2017 (2017-12-05), XP002803318, Database accession no. 2151489-24-4 *
DATABASE REGISTRY [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; 9 November 2017 (2017-11-09), XP002803317, Database accession no. 2139563-89-4 *
DATABASE REGISTRY [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; XP002803315, Database accession no. 2271851-65-9 *
ESTRUCH ET AL., PROC NATL ACAD SCI US A., vol. 93, no. 11, 1996, pages 5389 - 94
JENSEN DF ET AL.: "Development of a biocontrol agent for plant disease control with special emphasis on the near commercial fungal antagonist Clonostachys rosea strain 'IK726", AUSTRALAS PLANT PATHOL, vol. 36, 2007, pages 95 - 101
XUE: "Efficacy of Clonostachys rosea strain ACM941 and fungicide seed treatments for controlling the root tot complex of field pea", CAN JOUR PLANT SCI, vol. 83, no. 3, pages 519 - 524

Similar Documents

Publication Publication Date Title
WO2020127974A1 (en) 1,3,4-oxadiazoles and their derivatives as new antifungal agents
EP4165038A1 (en) Azabicyclyl-substituted heterocycles as fungicides
EP4153566A1 (en) Azabicyclic(thio)amides as fungicidal compounds
WO2022129190A1 (en) (hetero)aryl substituted 1,2,4-oxadiazoles as fungicides
WO2021228734A1 (en) Triazine and pyrimidine (thio)amides as fungicidal compounds
EP4146628A1 (en) Pyridine (thio)amides as fungicidal compounds
EP4161914A1 (en) Heterocyclyl pyridines as novel fungicides
WO2020182929A1 (en) Substituted ureas and derivatives as new antifungal agents
EP3708565A1 (en) Pyrimidinyloxyphenylamidines and the use thereof as fungicides
WO2021255091A1 (en) 1,3,4-oxadiazoles and their derivatives as fungicides
WO2021245087A1 (en) Heterocyclyl pyrimidines and triazines as novel fungicides
WO2021255089A1 (en) 1,3,4-oxadiazole pyrimidines and 1,3,4-oxadiazole pyridines as fungicides
WO2021255170A1 (en) 1,3,4-oxadiazole pyrimidines as fungicides
CA3187296A1 (en) 3-(pyridazin-4-yl)-5,6-dihydro-4h-1,2,4-oxadiazine derivatives as fungicides for crop protection
WO2021239766A1 (en) Active compound combinations
WO2021209490A1 (en) Cyclaminephenylaminoquinolines as fungicides
WO2021255169A1 (en) 1,3,4-oxadiazole pyrimidines as fungicides
WO2022058327A1 (en) Substituted ureas and derivatives as new antifungal agents
WO2022129188A1 (en) 1,2,4-oxadiazol-3-yl pyrimidines as fungicides
WO2022129196A1 (en) Heterobicycle substituted 1,2,4-oxadiazoles as fungicides
WO2023099445A1 (en) Bis(hetero)aryl thioether oxadiazines as fungicidal compounds
WO2023078915A1 (en) Bis(hetero)aryl thioether (thio)amides as fungicidal compounds
EP3915971A1 (en) Phenyl-s(o)n-phenylamidines and the use thereof as fungicides

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21717899

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21717899

Country of ref document: EP

Kind code of ref document: A1