WO2006107020A1 - 高純度無水塩化アルミニウム及びその製造方法 - Google Patents

高純度無水塩化アルミニウム及びその製造方法 Download PDF

Info

Publication number
WO2006107020A1
WO2006107020A1 PCT/JP2006/307048 JP2006307048W WO2006107020A1 WO 2006107020 A1 WO2006107020 A1 WO 2006107020A1 JP 2006307048 W JP2006307048 W JP 2006307048W WO 2006107020 A1 WO2006107020 A1 WO 2006107020A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
anhydrous
salt
purity
bath
Prior art date
Application number
PCT/JP2006/307048
Other languages
English (en)
French (fr)
Inventor
Shinji Imamura
Original Assignee
Nippon Light Metal Company, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Company, Ltd. filed Critical Nippon Light Metal Company, Ltd.
Priority to JP2007511228A priority Critical patent/JP5125504B2/ja
Priority to US11/887,785 priority patent/US20090028766A1/en
Publication of WO2006107020A1 publication Critical patent/WO2006107020A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/48Halides, with or without other cations besides aluminium
    • C01F7/56Chlorides
    • C01F7/62Purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/48Halides, with or without other cations besides aluminium
    • C01F7/56Chlorides
    • C01F7/58Preparation of anhydrous aluminium chloride
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • This invention is a highly pure anhydrous aluminum chloride which is made of industrially produced crude anhydrous salty aluminum and has an extremely low purity by reducing impurity components (impurity metals) as much as possible. -Um and its manufacturing method. Background art
  • Anhydrous aluminum salt is generally used as a Lewis acid catalyst for petroleum refining and many organic synthesis.
  • ALE Electro Layer Epitaxial
  • EL electroluminescence
  • This anhydrous salted aluminum is industrially manufactured by blowing chlorine gas into a molten metal aluminum and solidifying the vaporized salted aluminum vapor generated by reaction in a condenser. .
  • Anhydrous salted aluminum produced industrially in this way is derived from, for example, metallic aluminum used as a raw material or equipment used as a manufacturing apparatus, such as salty ferric iron (FeCl ) And other metal chlorine compounds are inevitably mixed in as impurities, and the product turns yellow
  • Japanese Patent Laid-Open No. 9-301,714 discloses the temperature of the molten metal aluminum in the reactor.
  • a method for producing high-purity anhydrous salty-aluminum by introducing purified chlorine gas with a carbon dioxide content reduced as much as possible into the molten metal aluminum while maintaining the predetermined range is described. .
  • Japanese Patent Application Laid-Open No. 2002-12993 discloses that a mixed molten salt bath containing 72.8 wt% of aluminum chloride and 7% by weight of aluminum chloride is used to form metallic aluminum and sodium chloride. It has been proposed to produce anhydrous salt and aluminum by electrochemical reaction with chlorine gas.
  • Japanese Patent Laid-Open No. 6-1,607 discloses that a mixed molten salt layer composed of salty aluminum and salty sodium is formed on the surface of a molten metal aluminum so that the metal aluminum and chlorine gas are mixed. It has been proposed that anhydrous aluminum chloride vapor produced by the reaction is brought into contact with the mixed molten salt layer and washed to produce high-purity anhydrous salt-aluminum.
  • the temperature of the molten metal aluminum requires a reaction temperature of 660 ° C or higher, and a mixed molten salt layer is formed on the surface of the molten metal.
  • JP-A-6-263,438 discloses a high-purity anhydrous salt-aluminum having a low temperature of 120 ° C using a mixed molten salt bath of salt-aluminum and onium salt salt. A method of manufacturing is proposed.
  • Japanese Patent Application Laid-Open No. 55-158,121 discloses titanium tetrachloride (TiCl), tetrasalt silicate (SiCl), ferric chloride (FeCl), etc. by fractional distillation using a distillation column.
  • Metal chlorinated compounds TiCl, tetrasalt silicate (SiCl), ferric chloride (FeCl), etc. by fractional distillation using a distillation column.
  • the composition must be 90% by weight or more of aluminum chloride and the liquid temperature must be 191 ° C or more.
  • this state cannot be realized in an open system, and the purification apparatus is limited to a closed system. Therefore, this method is industrially adopted because it is difficult in the laboratory but difficult to mass-produce. Is not appropriate.
  • Patent Document 1 Japanese Patent Laid-Open No. 9-301,417
  • Patent Document 2 JP 2002-12993 A
  • Patent Document 3 Japanese Patent Laid-Open No. 6-1,607
  • Patent Document 4 JP-A-6-263,438
  • Patent Document 5 Japanese Patent Laid-Open No. 55-158, 121
  • Non-Patent Document 1 Agne Technology Center Co., Ltd. Issued on August 10, 1993 "Mixed Salts' Fundamentals of Thermal Technology” pp. 268-269
  • the present inventor has sought to produce highly pure anhydrous aluminum chloride having an extremely high purity by separating and removing impurity components (impurity metals) mixed in anhydrous salt and aluminum as much as possible.
  • impurity metals impurity metals
  • a mixed molten salt bath of aluminum chloride and sodium chloride Is used to control the generation conditions of anhydrous aluminum chloride vapor and the condensation conditions of the generated anhydrous aluminum chloride vapor, thereby producing gallium (Ga) derived from the aluminum raw material used in industrial production of anhydrous aluminum chloride.
  • the purity of the anhydrous salt ⁇ ⁇ aluminum obtained by refining the content of the main impurity components excluding to 1 ppm or less and subtracting the total of the impurity components to 99.99 wt% or more easily industrially, if necessary 99. 9 It was found that the content could be 99 wt% or more, and the present invention was completed.
  • gallium (Ga) belongs to the same group of elements of the periodic table as aluminum (A1), and is an amphoteric metal that is soluble in both acid and alkali like aluminum, and its chemical property is aluminum.
  • this gallium can enter the same lattice as aluminum, so it is judged that there is no influence as an impurity in most applications. In the present invention, it was decided that it would be sufficient to maintain the purity of anhydrous salt-aluminum without determining the individual allowable content.
  • the object of the present invention is to provide the main impurity components (impurity metals) derived from aluminum raw materials used in the production of industrial anhydrous salt and aluminum, namely sodium (Na), potassium (K). , Lithium (Li), magnesium (Mg), silicon (Si), calcium (Ca), beryllium (Be), titanium (Ti), vanadium (V), chromium (Cr), scandium (Sc), manganese (Mn ), Iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), gallium (Ga) and germanium (Ge)
  • the content of major impurity components excluding gallium (Ga) is less than lppm, and the purity of anhydrous aluminum chloride obtained by subtracting the total of impurity components is 99.99% by weight
  • An object of the present invention is to provide a high-purity anhydrous salt-aluminum as described above.
  • Another object of the present invention is anhydrous salt-aluminum in which main impurity components derived from an aluminum raw material used in the production of industrial anhydrous salt-aluminum are reduced as much as possible.
  • the purity of anhydrous salt-aluminum obtained by subtracting the total of impurity components is 999% by weight or more, and all the main impurity components except gallium (Ga) are substantially below the detection limit. It is to provide a salty aluminum.
  • Another object of the present invention is to provide a method for producing high-purity anhydrous salt-aluminum that can easily produce such high-purity anhydrous salt-aluminum industrially. It is in.
  • the present invention relates to anhydrous salt aluminum in which main impurity components (impurity metals) derived from aluminum raw materials used in the production of industrial anhydrous salt aluminum are reduced as much as possible.
  • the content of major impurity components excluding gallium (Ga) is 1 ppm or less, and the purity of anhydrous sodium chloride obtained by subtracting the total of impurity components is 99.99% by weight or more.
  • the high purity anhydrous salty aluminum characterized in that the purity of the anhydrous salty aluminum obtained by subtracting the total of the impurity components is 99.999% by weight or more.
  • the present invention provides a temperature controllable sublimation furnace for sublimating an anhydrous salt-aluminum vapor and a molten salt bath power of salt-aluminum and salt-sodium and an anhydrous salt connected to the sublimation furnace.
  • a temperature controllable sublimation furnace for sublimating an anhydrous salt-aluminum vapor and a molten salt bath power of salt-aluminum and salt-sodium and an anhydrous salt connected to the sublimation furnace.
  • the ambient temperature of the condenser is controlled to 160 ° C or higher, and the bath temperature of the mixed molten salt bath is 170 to 185 ° C.
  • the atmospheric temperature of the condenser is controlled to 40 to 80 ° C, and purified anhydrous aluminum chloride is recovered in the condenser, and the mixed molten salt bath with a bath temperature exceeding 185 ° C is left as the residue in the sublimation furnace.
  • High purity anhydrous chloride Miniu is a non-manufacturing method of.
  • the chlorine compound of the impurity metal has a boiling point lower than that of anhydrous salt-aluminum, such as salt-cathenium, salt-titanium, vanadium chloride, etc.
  • anhydrous salt-aluminum such as salt-cathenium, salt-titanium, vanadium chloride, etc.
  • the high boiling point metal chlorine compound include salt sodium, magnesium chloride, salt calcium, salt ferric iron and the like.
  • purity of anhydrous salt-aluminum obtained by subtracting the sum of impurity components means an impurity component that can be detected by an analysis method usually provided It means that everything except the (impurity metal) concentration is regarded as pure! This means that the purity of this anhydrous aluminum chloride is 99.99% by weight or more, preferably 99.999% by weight or more.
  • the weight composition ratio of aluminum chloride in the mixed molten salt bath is 90 wt% or more and 98 wt% or less, preferably 93 wt% or more and 97 wt% or less.
  • the bath temperature of the mixed molten salt bath is less than 170 ° C, preferably less than 175 ° C
  • the ambient temperature of the condenser is 160 ° C or higher, preferably 1 70 ° C or higher and 175 ° C.
  • the condenser ambient temperature is 40 ° C or higher and 80 ° C or lower.
  • purified anhydrous sodium chloride aluminum is recovered in a condenser by controlling to 50 ° C or higher and 70 ° C or lower, and sublimation is performed using a mixed molten salt bath having a bath temperature of 185 ° C, preferably 183 ° C, as the residue. It must be left in the furnace.
  • the temperature of the condenser when the temperature of the condenser is lower than 160 ° C when the bath temperature is lower than 170 ° C, impurity components having a boiling point lower than that of aluminum chloride such as salty titanium and salty vanadium are contained in the purified anhydrous salty aluminum. If the ambient temperature of the condenser is lower than 40 ° C when the bath temperature is 170 to 185 ° C, the purified anhydrous aluminum chloride becomes powdery and bulky. As a result, the volume production efficiency of the condenser is increased. It falls and is no longer suitable for industrial production.
  • the condenser ambient temperature at a bath temperature of 170 to 185 ° C exceeds 80 ° C, the purified anhydrous salt-aluminum becomes hard and takes time to recover the vessel power, and the condensation efficiency (Recovery rate) decreases significantly. Furthermore, sublimation of anhydrous salt-aluminum stops when the bath temperature when recovering purified anhydrous aluminum chloride in the condenser is lower than 170 ° C, and anhydrous salt-aluminum when higher than 185 ° C. The problem arises that the impurities with higher boiling points increase.
  • a salt having a vapor pressure close to that of aluminum chloride is preferably obtained by adding a metal reducing agent such as metal aluminum or metal magnesium, preferably metal aluminum, into the mixed molten salt bath.
  • a metal reducing agent such as metal aluminum or metal magnesium, preferably metal aluminum
  • Metallic aluminum used as a metal reducing agent Is charged into a sublimation furnace having a purity of 99% by weight or more, preferably 99.9% by weight or more, and having a powdery, thin-film, or thin-plate shape, preferably a powdery shape. It is usually in the range of 1 to 3% by weight, preferably 1.5 to 2.5% by weight, based on the aluminum chloride.
  • salt-aluminum is newly supplied to the residue of the unmixed molten salt remaining in the sublimation furnace, and repeatedly purified anhydrous salt-aluminum is recovered.
  • unmixed molten salt remaining in the sublimation furnace repeatedly in this way, the recovery rate of anhydrous salt-aluminum with respect to salt-sodium and metal reducing agent is increased and the basic unit is improved! There is.
  • the high-purity anhydrous salt-aluminum of the present invention is a major impurity component derived from an aluminum raw material used in the production of industrial anhydrous salt-aluminum, namely sodium (Na), potassium (K), lithium ( Li), magnesium (Mg), silicon (Si), calcium (Ca), beryllium (Be), titanium (Ti), vanadium (V), chromium (Cr), scandium (Sc), manganese (Mn), Anhydrous salt aluminum that has reduced iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), gallium (Ga) and germanium (Ge) as much as possible.
  • the purity of anhydrous aluminum chloride obtained by subtracting the total of impurity components is 99.99% by weight or more, and the content of major impurity components excluding gallium (Ga) is 1ppm or less.
  • the total of impurity components Anhydrous salt obtained by subtracting the purity of aluminum is 99.999% by weight or more.
  • FIG. 1 is an explanatory diagram for explaining a sublimation purification apparatus to which a method for producing high purity anhydrous aluminum chloride of the present invention is applied.
  • the sublimation purification apparatus used in the following examples and comparative examples includes a sublimation furnace 1 that has a heating device la and can be controlled in temperature, and a thermal insulation treatment in the sublimation furnace 1.
  • the condenser 2 is connected to the heat pipe 3 and has a heating / cooling device 2a and the temperature can be controlled.
  • the condenser 2 traps low-boiling impurity components (not shown).
  • the apparatus is provided with a pipe 4 that guides this low-boiling impurity component.
  • the sublimation furnace 1 was charged with 622 g (96.1 wt%) of crude anhydrous aluminum chloride with a purity of 99 wt% and 25 g (3.9 wt%) of sodium chloride with a purity of 99 wt%.
  • a mixed molten salt bath (salt-aluminum weight composition ratio 96. lwt%) was prepared by melting aluminum and salt sodium.
  • the heating device la is set to 195 ° C. Set the bath temperature to rise, observe the rise in bath temperature, further set the heating device la to 225 ° C and raise the bath temperature, and when this bath temperature exceeds 183 ° C, the heating device Heating with la was stopped.
  • the atmospheric temperature of the condenser 2 is controlled to 160 ° C by the heating and cooling device 2a, and the bath temperature is 170 ° C.
  • the temperature of the condenser 2 was controlled to 50 ° C. by the heating / cooling device 2a until reaching 183 ° C. from the time when it reached ° C.
  • nitrogen gas was introduced from pipe 4 and the exhaust gas was guided to an abatement device (not shown) by an aspirator.
  • the purified anhydrous salt-aluminum recovered in the condenser 2 in this way is 185 g, its powder shape is toothpick, and the impurity component (impurity metal) concentration is shown in Table 1. It was as shown in.
  • the recovery time of purified anhydrous sodium chloride aluminum was 1 hour.
  • Example 2 200 g of the same crude anhydrous aluminum chloride as in Example 1 was charged into the residual molten molten salt remaining in the sublimation furnace 1 in Example 1 above, and the mixed aluminum salt weight composition ratio was 96.2% by weight. In the same manner as in Example 1 above, crude anhydrous sodium chloride was purified.
  • the purified anhydrous salt-aluminum recovered in the condenser 2 in Example 2 was 180 g, the powder shape was toothpick, and the impurity component (impurity metal) concentration was As shown in 1.
  • the recovery time of purified anhydrous sodium chloride aluminum was 1 hour.
  • sublimation furnace 1 was charged with 630 g (9 6.5 wt%) of the same crude anhydrous salt-aluminum as Example 1 and 23 g (3.5 wt%) of the same salt salt sodium as Example 1. Further, 12 g of a 99.9 wt% metal aluminum sheet (1.9 wt% with respect to anhydrous aluminum chloride) was added to form a mixed molten salt bath, and the heating operation of the sublimation furnace 1 and the condenser as in Example 1 were performed. The heating and cooling operations of 2 were performed, and the crude anhydrous salt-aluminum was purified.
  • the purified anhydrous salt-aluminum recovered in the condenser 2 in Example 3 was 190 g, the powder shape was toothpick, and the impurity component (impurity metal) concentration was As shown in 1.
  • the recovery time of purified anhydrous sodium chloride aluminum was 1 hour.
  • the atmospheric temperature of condenser 2 is controlled to 170 ° C by heating and cooling device 2a, and the bath temperature is adjusted to 175 ° C. From the point of arrival, until the temperature reaches 183 ° C, the atmospheric temperature of the condenser 2 is controlled to 50 ° C by the heating and cooling device 2a. Purification was performed.
  • the purified anhydrous salt-aluminum recovered in the condenser 2 in this way is 185 g, its powder shape is toothpick, and the impurity component (impurity metal) concentration is shown in Table 1. It was as shown in.
  • the recovery time of purified anhydrous sodium chloride aluminum was 1 hour.
  • Example 4 200 g of the same crude water-free aluminum chloride as in Example 4 is charged into the residual molten molten salt remaining in the sublimation furnace 1 in Example 4 above, and the mixed molten salt bath has an aluminum chloride weight composition ratio of 96.2% by weight.
  • the crude anhydrous salt-aluminum was purified.
  • the purified anhydrous salt-aluminum recovered in the condenser 2 in Example 5 was 180 g, the powder shape was toothpick, and the impurity component (impurity metal) concentration was It was as shown in 1.
  • the recovery time of purified anhydrous sodium chloride aluminum was 1 hour.
  • sublimation furnace 1 was charged with 630 g (9 6.5 wt%) of the same crude anhydrous salt-aluminum as in Example 1 and 23 g (3.5 wt%) of the same salt as sodium salt as in Example 1. Further, 12 g of 99.9% by weight pure metal aluminum sheet (1.9 wt% with respect to anhydrous aluminum chloride) was added to form a mixed molten salt bath, and the heating operation and condenser of the sublimation furnace 1 as in Example 4 were performed. The heating and cooling operations of No. 2 were performed to purify the crude anhydrous salt-aluminum.
  • the purified anhydrous salt-aluminum recovered in the condenser 2 in Example 6 was 190 g, the powder shape was toothpick, and the impurity component (impurity metal) concentration was As shown in 1.
  • the recovery time of purified anhydrous sodium chloride aluminum was 1 hour.
  • Sublimation furnace 1 was charged with 495 g (94.3 wt%) of the same crude anhydrous salt-aluminum as in Example 1 and 30 g (5.7 wt%) of the same salt-sodium as in Example 1, and further with the same metal aluminum powder as in Example 1. 9 g (1.8 wt% with respect to anhydrous salt-aluminum) was added, and a mixed molten salt bath (salt-aluminum weight composition ratio 94.3 wt%) was prepared in the same manner as in Example 1.
  • Example 2 As for the heating operation, the same operation as in Example 1 was performed, and for the condenser 2, the temperature inside the condenser reached normal temperature (20 ° C) by air cooling and increased to 80 ° C, and the crude anhydrous salt solution was heated. ⁇ Aluminum was refined.
  • the purified anhydrous salt-aluminum recovered in the condenser 2 in Comparative Example 1 was 55 g, the powder shape was toothpick, and the impurity component (impurity metal) concentration was As shown in 1.
  • the recovery time of purified anhydrous sodium chloride aluminum was 1 hour.
  • Sublimation furnace 1 was charged with 580 g (95.7 wt%) of the same crude anhydrous salt-aluminum as in Example 1 and 26 g (4.3 wt%) of the same salt-sodium as in Example 1, and mixed molten salt as in Example 1.
  • a bath (aluminum chloride weight composition ratio 95.7 wt%) was prepared, and in the same manner as in Example 1, crude anhydrous salt aluminum was prepared. Purification was performed.
  • the purified anhydrous salt-aluminum recovered in the condenser 2 in Comparative Example 2 is 165 g, the powder shape is toothpick, and the impurity component (impurity metal) concentration is As shown in 1.
  • the recovery time of purified anhydrous sodium chloride aluminum was 1 hour.
  • Sublimation furnace 1 was charged with 595 g (95.5 wt%) of the same crude anhydrous salt-aluminum as in Example 1 and 28 g (4.5 wt%) of the same salt-sodium as in Example 1, and further with the same metal aluminum powder as in Example 1. 10 g (1.7 wt% with respect to anhydrous salt-aluminum) was added, and a mixed molten salt bath (salt-aluminum weight composition ratio 95.5 wt%) was prepared in the same manner as in Example 1.
  • the crude anhydrous salt film was purified in the same manner as in Example 1 except that the heating with the heating device la was stopped when the temperature exceeded 190 ° C.
  • the purified anhydrous salt-aluminum recovered in the condenser 2 in Comparative Example 3 is 250 g, the powder shape is toothpick, and the impurity component (impurity metal) concentration is As shown in 1.
  • the recovery time of purified anhydrous salt-aluminum was 1.5 hours.
  • the high-purity anhydrous salt-aluminum of the present invention is obtained by reducing as much as possible the impurity components derived from the aluminum raw materials found in the special grade reagents sold and subtracting the total of the impurity components.
  • the purity of anhydrous aluminum chloride is 99.99% by weight or higher, preferably 99.999% by weight or higher, so that it can be used for chemical vapor deposition (CV D) and EL devices in the manufacture of fuel cells, semiconductors, ICs, etc. High purity, starting with applications such as Al O insulating film by ALE method etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

明 細 書
高純度無水塩化アルミニウム及びその製造方法
技術分野
[0001] この発明は、工業的に製造された粗無水塩ィ匕アルミニウムを原料にして、不純物成 分 (不純物金属)を可及的に低減せしめた極めて純度に優れた高純度無水塩化ァ ルミ-ゥム及びその製造方法に関する。 背景技術
[0002] 無水塩ィ匕アルミニウムは、一般的用途としては、ルイス酸触媒として石油精製や多 くの有機合成等に使用されている。しかし、近年では、燃料電池や半導体等の用途 や、 IC等の製造における化学的気相成長(CVD)及び EL (エレクト口ルミネッセンス) 素子用に ALE (電子層ェピタキシャル)法等による Al O絶縁膜の製造原料として使
2 3
用されるようになり、不純物成分の含有量を可及的に低減せしめた無水塩化アルミ- ゥムの純度要求が高くなつている力、市販の特級試薬でもこの要求を満足するものは 見当たらない。
[0003] この無水塩ィ匕アルミニウムは、工業的には、金属アルミニウムの溶湯に塩素ガスを 吹き込み、反応して生成し気化した塩ィ匕アルミニウム蒸気を凝縮器で固化させること により製造されている。
[0004] そして、このようにして工業的に製造された無水塩ィ匕アルミニウムには、原料として 用いた金属アルミニウムや製造装置として用いた機器等に由来する、例えば塩ィ匕第 二鉄 (FeCl )等の金属塩素化合物が不純物として不可避的に混入し、製品を黄色に
3
着色させたり、この無水塩ィヒアルミニウムを原料とする二次製品中に有害な不純物成 分を混入させる等の様々な問題を引き起こす。
[0005] そこで、従来にお!、ても、高純度の無水塩ィ匕アルミニウムを得るために、予め原料と して使用する金属アルミニウム及び塩素ガスの精製を行うこと、製造方法それ自体を 改良すること、工業的に製造した無水塩化アルミニウムを精製すること、等の方法が 行われている。
[0006] 例えば、特開平 9-301,714号公報には、反応炉内の金属アルミニウム溶湯の温度を 所定の範囲に維持すると共に、この金属アルミニウム溶湯中に炭酸ガス含有量を可 及的に低減せしめた精製塩素ガスを導入して高純度の無水塩ィ匕アルミニウムを製造 する方法が記載されている。
[0007] しかしながら、この方法にお!、ては、不純物成分の少な!/、高純度の無水塩化アルミ -ゥムを製造するためには、不純物成分の含有量が極めて低!、金属アルミニウムを 原料として使用する必要があり、極めてその製造コストが高くなるという問題がある。
[0008] また、特開 2002-12,993号公報には、塩化アルミニウムの重量組成比率が 72. 8重 量%の塩ィ匕アルミニウムと塩ィ匕ナトリウムとの混合溶融塩浴を用いて金属アルミニウム と塩素ガスとを電気化学的に反応させて無水塩ィ匕アルミニウムを製造することが提案 されている。
[0009] し力しながら、この方法においては、製造原料を安価にすることはできても、製造装 置やその運転管理が極めて複雑であってそれだけ製造コストが嵩むほ力、製造され る無水塩ィ匕アルミニウムの純度も 99. 9重量 %程度であって必ずしも高くない。
[0010] 更に、特開平 6-1,607号公報には、金属アルミニウム溶湯の表面に塩ィ匕アルミニゥ ムと塩ィ匕ナトリウムとからなる混合溶融塩層を形成せしめ、金属アルミニウムと塩素ガ スとの反応で生成した無水塩化アルミニウム蒸気を上記混合溶融塩層に接触させて 洗浄することにより高純度の無水塩ィ匕アルミニウムを製造することが提案されている。
[0011] しかしながら、この方法においては、金属アルミニウムの溶湯の温度は 660°C以上 の反応温度を必要とし、この溶湯表面に混合溶融塩層を形成させるので、比較的蒸 気圧の高い例えば塩ィ匕アルミニウムナトリウム (NaA :i )等の金属塩素化合物由来の
4
不純物成分が混入することは避けられず、例えば燃料電池や半導体等の用途には 好ましくな ヽと ヽぅ問題がある。
[0012] 更にまた、特開平 6-263,438号公報には、塩ィ匕アルミニウムとォニゥム塩ィ匕物との混 合溶融塩浴を用い、 120°Cという低温で高純度の無水塩ィ匕アルミニウムを製造する 方法が提案されている。
[0013] し力しながら、この方法においては、ォ-ゥム塩ィ匕物に由来する有機性排ガスの浄 化が必要になり、粗塩ィ匕アルミニウムに対する精製無水塩ィ匕アルミニウムの回収率が 低ぐしかも、ナトリウムや鉄等の不純物成分の濃度もそれぞれ 2ppm及び lppm程度 と必ずしも高純度とは 、えな 、。
[0014] 更にまた、特開昭 55-158,121号公報には、蒸留カラムを使用した分別蒸留により四 塩化チタン (TiCl )、四塩ィ匕ケィ素(SiCl )、塩化第二鉄 (FeCl )等の金属塩素化合物
4 4 3
由来の不純物成分を精製する方法が提案されている。
[0015] し力しながら、この方法では、装置が複雑になるだけでなぐ不純物成分の混入は 避けられず、例えば燃料電池や半導体等の用途に用いることができる程度の高純度 の無水塩ィ匕アルミニウムを得ることは難し 、。
[0016] 更にまた、株式会社ァグネ技術センター 1993年 8月 10日発行「溶融塩'熱技術の基 礎」第 268〜269頁には、略純粋な塩ィ匕アルミニウム溶融塩の上層と塩ィ匕ナトリウム' 塩ィ匕アルミニウム混合溶融塩の下層とからなる 2層の混合溶融塩浴力も無水塩ィ匕ァ ルミ-ゥムを昇華させて精製する方法が記載されて 、る。
[0017] し力しながら、 2層の混合溶融塩浴状態にするための条件として、組成が塩化アル ミニゥム 90重量%以上であって液温度が 191°C以上である必要があり、圧力的に開 放系でこの状態を実現することはできず、精製装置が密閉系に制限されるため、この 方法は、実験室的には容易であっても量産が難しぐ工業的に採用するには適当で ない。
[0018] 特許文献 1 :特開平 9-301,417号公報
特許文献 2:特開 2002-12,993号公報
特許文献 3:特開平 6-1,607号公報
特許文献 4:特開平 6-263,438号公報
特許文献 5:特開昭 55-158, 121号公報
非特許文献 1:株式会社ァグネ技術センター 1993年 8月 10日発行「溶融塩'熱技術の 基礎」第 268〜269頁
発明の開示
発明が解決しょうとする課題
[0019] そこで、本発明者は、無水塩ィ匕アルミニウム中に混入する不純物成分 (不純物金属 )を可及的に分離除去し、極めて純度の高い高純度無水塩化アルミニウムを製造す ること〖こつ 、て鋭意検討した結果、塩化アルミニウムと塩化ナトリウムの混合溶融塩浴 を用い、無水塩化アルミニウム蒸気の発生条件とこの発生した無水塩化アルミニウム 蒸気の凝縮条件とを制御することにより、工業的に無水塩化アルミニウムを製造する 際に用いられるアルミニウム原料に由来するガリウム(Ga)を除く主要な不純物成分の 含有量を lppm以下に精製し、不純物成分の合計を差し引いて求められる無水塩ィ匕 アルミニウムの純度を工業的に容易に 99. 99重量 %以上とすること、必要により 99. 9 99重量 %以上とすることができることを見出し、本発明を完成した。
[0020] なお、ガリウム(Ga)については、アルミニウム (A1)と同じ周期表 ΠΙΒ族元素に属し、 アルミニウムと同様に酸とアルカリの両方に溶ける両性金属であって、その化学的性 質がアルミニウムと非常によく似ており、例えば半導体ィ匕合物としてもこのガリウムは アルミニウムと同じ格子に入ることが可能なため、ほとんどの用途において不純物とし ての影響は無 、と判断されるので、本発明にお 、てはその個別の許容含有量を定め ることなぐ無水塩ィ匕アルミニウムの純度を維持できればよいことにした。
[0021] 従って、本発明の目的は、工業的な無水塩ィ匕アルミニウムの製造に用いられるアル ミニゥム原料由来の主要な不純物成分 (不純物金属)、すなわちナトリウム (Na)、カリ ゥム(K)、リチウム(Li)、マグネシウム(Mg)、ケィ素(Si)、カルシウム(Ca)、ベリリウム( Be)、チタン(Ti)、バナジウム(V)、クロム(Cr)、スカンジウム(Sc)、マンガン(Mn)、鉄 (Fe)、コバルト(Co)、ニッケル (Ni)、銅(Cu)、亜鉛(Zn)、ガリウム(Ga)及びゲルマ二 ゥム(Ge)の全てを可及的に低減せしめた無水塩ィ匕アルミニウムであって、ガリウム(G a)を除く主要な不純物成分の含有量が lppm以下であり、かつ、不純物成分の合計 を差し引いて求められる無水塩化アルミニウムの純度が 99. 99重量%以上である高 純度無水塩ィ匕アルミニウムを提供することにある。
[0022] また、本発明の目的は、工業的な無水塩ィ匕アルミニウムの製造に用いられるアルミ ニゥム原料由来の主要な不純物成分を可及的に低減せしめた無水塩ィ匕アルミニウム であって、不純物成分の合計を差し引 、て求められる無水塩ィ匕アルミニウムの純度 力 999重量%以上であり、ガリウム(Ga)を除く主要な不純物成分の全てが実質的 に検出限界以下である高純度無水塩ィ匕アルミニウムを提供することにある。
[0023] 更に、本発明の他の目的は、このような高純度の無水塩ィ匕アルミニウムを工業的に 容易に製造することができる高純度無水塩ィ匕アルミニウムの製造方法を提供すること にある。
課題を解決するための手段
[0024] すなわち、本発明は、工業的な無水塩ィ匕アルミニウムの製造に用いられるアルミ- ゥム原料由来の主要な不純物成分 (不純物金属)を可及的に低減せしめた無水塩ィ匕 アルミニウムであって、ガリウム(Ga)を除く主要な不純物成分の含有量が lppm以下 であり、かつ、不純物成分の合計を差し引いて求められる無水塩ィヒアルミニウムの純 度が 99. 99重量 %以上であること、好ましくは不純物成分の合計を差し引いて求めら れる無水塩ィ匕アルミニウムの純度が 99. 999重量%以上であることを特徴とする高純 度無水塩ィ匕アルミニウムである。
[0025] また、本発明は、塩ィ匕アルミニウムと塩ィ匕ナトリウムの混合溶融塩浴力も無水塩ィ匕ァ ルミニゥム蒸気を昇華させる温度制御可能な昇華炉とこの昇華炉に接続されて無水 塩ィ匕アルミニウム蒸気を凝縮させる温度制御可能な凝縮器とを備えた昇華精製装置 を用いて高純度無水塩ィ匕アルミニウムを製造するに際し、混合溶融塩浴における塩 化アルミニウムの重量組成比率を 90〜98重量%の範囲に保ち、上記混合溶融塩浴 の浴温度が 170°C未満の時には凝縮器の雰囲気温度を 160°C以上に制御し、混合 溶融塩浴の浴温度が 170〜 185°Cの時に凝縮器の雰囲気温度を 40〜80°Cに制御 して精製無水塩化アルミニウムを凝縮器に回収し、浴温度が 185°Cを超える混合溶 融塩浴を釜残として昇華炉に残留させることを特徴とする高純度無水塩化アルミニゥ ムの製造方法である。
[0026] 本発明にお 、て、不純物金属の塩素化合物が、無水塩ィ匕アルミニウムの沸点より 低沸点の金属塩素化合物としては、例えば塩ィ匕ケィ素、塩ィ匕チタン、塩化バナジゥ ム等を挙げることができ、また、高沸点の金属塩素化合物としては、例えば塩ィ匕ナトリ ゥム、塩化マグネシウム、塩ィ匕カルシウム、塩ィ匕第二鉄等を挙げることができる。
[0027] また、本発明の高純度無水塩ィ匕アルミニウムにおいて、「不純物成分の合計を差し 引いて求められる無水塩ィ匕アルミニウムの純度」とは通常提供される分析法において 検出可能な不純物成分 (不純物金属)濃度以外は全て純分とみなすと!、う意味であ り、この無水塩化アルミニウムの純度は 99. 99重量%以上、好ましくは 99. 999重量% 以上である。 [0028] 本発明の高純度無水塩化アルミニウムの製造方法においては、混合溶融塩浴中 の塩化アルミニウムの重量組成比率を 90重量%以上 98重量%以下、好ましくは 93重 量 %以上 97重量 %以下の範囲に保ち、同時に、混合溶融塩浴の浴温度が 170°C未 満、好ましくは 175°C未満の時には凝縮器の雰囲気温度を 160°C以上、好ましくは 1 70°C以上 175°C以下に制御し、混合溶融塩浴の浴温度が 170°C以上 185°C以下、 好ましくは 180°C以上 183°C以下の時に凝縮器の雰囲気温度を 40°C以上 80°C以 下、好ましくは 50°C以上 70°C以下に制御して精製無水塩ィ匕アルミニウムを凝縮器に 回収し、浴温度が 185°C、好ましくは 183°Cを超える混合溶融塩浴を釜残として昇華 炉に残留させる必要がある。
[0029] 混合溶融塩浴中の塩ィ匕アルミニウムの重量組成比率が 90重量 %より低いと、浴温 度を 200°C以上にしても無水塩ィ匕アルミニウム蒸気の発生速度の急激な低下が生じ 、生産速度が著しく低下して、工業的な製造方法としては好ましくなぐ反対に、 98重 量%を超えると、固相に比して液相を形成する塩ィ匕アルミニウムナトリウムが少なぐ伝 熱効率が悪くなつて工業生産に適する反応速度が達成されない。また、浴温度 170 °C未満の時に凝縮器の温度が 160°Cより低いと塩ィ匕チタンや塩ィ匕バナジウム等の塩 化アルミニウムより低沸点の不純物成分が精製無水塩ィ匕アルミニウム中に混入し、浴 温度 170〜185°Cの時の凝縮器の雰囲気温度が 40°Cより低いと精製無水塩化アル ミニゥムが粉状になって嵩高くなり、その結果、凝縮器の体積生産効率が落ちて工業 生産に適さなくなる。また、浴温度 170〜185°Cの時の凝縮器の雰囲気温度が 80°C を超えると精製無水塩ィ匕アルミニウムが板状に硬くなつて容器力 の回収に手間取る ようになると共に、凝縮効率(回収率)が大幅に低下する。更に、精製無水塩化アルミ -ゥムを凝縮器に回収する際の浴温度が 170°Cより低いと無水塩ィ匕アルミニウムの 昇華が停止し、また、 185°Cより高くなると無水塩ィ匕アルミニウムより高沸点の不純物 成分が増加するという問題が生じる。
[0030] 本発明の製造方法においては、好ましくは混合溶融塩浴中に金属アルミニウムや 金属マグネシウム等の、好ましくは金属アルミニウム力 なる金属還元剤を添加し、塩 化アルミニウムに近い蒸気圧を有する塩ィ匕第二鉄 (FeCl )を塩ィ匕第一鉄 (FeCl )に
3 2 還元して分離し易くするのがよ 、。金属還元剤として用いる金属アルミニウムにつ ヽ ては、純度が 99重量 %以上、好ましくは 99. 9重量 %以上であって、粉体状、薄膜状、 又は薄板状、好ましくは粉体状の形状を有するものがよぐ昇華炉に仕込まれる塩化 アルミニウムに対して通常 1重量%以上 3重量%以下、好ましくは 1. 5重量%以上 2. 5 重量%以下の範囲である。
[0031] 更に、本発明の製造方法においては、好ましくは昇華炉に残留した無混合溶融塩 の釜残中に新たに塩ィ匕アルミニウムを供給し、繰り返し精製無水塩ィ匕アルミニウムを 回収する。このように繰り返して昇華炉中に残留した無混合溶融塩を用いることにより 、塩ィ匕ナトリウム及び金属還元剤に対する無水塩ィ匕アルミニウムの回収率が増加して 原単位がよくなると!、う利点がある。
発明の効果
[0032] 本発明の高純度無水塩ィ匕アルミニウムは、工業的な無水塩ィ匕アルミニウムの製造 に用いられるアルミニウム原料由来の主要な不純物成分、すなわちナトリウム (Na)、 カリウム(K)、リチウム(Li)、マグネシウム(Mg)、ケィ素(Si)、カルシウム(Ca)、ベリリウ ム(Be)、チタン(Ti)、バナジウム(V)、クロム(Cr)、スカンジウム(Sc)、マンガン(Mn) 、鉄(Fe)、コバルト(Co)、ニッケル (Ni)、銅(Cu)、亜鉛 (Zn)、ガリウム(Ga)及びゲル マニウム(Ge)の全てを可及的に低減せしめた無水塩ィ匕アルミニウムであって、ガリウ ム(Ga)を除く主要な不純物成分の含有量が lppm以下であり、かつ、不純物成分の 合計を差し引いて求められる無水塩化アルミニウムの純度が 99. 99重量%以上という 高純度であり、また、必要により不純物成分の合計を差し引いて求められる無水塩ィ匕 アルミニウムの純度が 99. 999重量%以上という高純度である。
また、本発明の高純度無水塩ィ匕アルミニウムの製造方法によれば、このような高純 度の無水塩ィ匕アルミニウムを工業的に容易に製造することができる。
図面の簡単な説明
[0033] [図 1]図 1は、本発明の高純度無水塩化アルミニウムの製造方法が適用される昇華精 製装置を説明するための説明図である。
符号の説明
[0034] 1…昇華炉、 la…加熱装置、 2…凝縮器、 2a…加熱 ·冷却装置、 3…断熱配管、 Φ ·· 配管。 発明を実施するための最良の形態
[0035] 以下、実施例及び比較例に基づいて、本発明の好適な実施の形態を具体的に説 明する。
なお、以下の実施例及び比較例で使用した昇華精製装置は、図 1に示すように、 加熱装置 laを有して温度制御可能な昇華炉 1と、この昇華炉 1に断熱処理された断 熱配管 3で接続され、加熱 ·冷却装置 2aを有して温度制御可能な凝縮器 2とを備えて おり、上記凝縮器 2には低沸点の不純物成分をトラップするための図示外の除害装 置にこの低沸点の不純物成分を導く配管 4が設けられている。
[0036] 〔実施例 1〕
図 1に示す昇華精製装置を用い、その昇華炉 1に純度 99重量 %の粗無水塩化アル ミニゥム 622g (96.1wt%)と純度 99重量%の塩化ナトリウム 25g (3.9wt%)とを仕込み、更 に純度 99. 9重量%の金属アルミニウム粉体 10g (無水塩ィ匕アルミニウムに対して 1. 6 wt%)を添カ卩し、加熱装置 laを 160°Cに設定して加熱し、塩ィ匕アルミニウムと塩ィ匕ナトリ ゥムを溶融させて混合溶融塩浴 (塩ィ匕アルミニウム重量組成比率 96. lwt%)を調製し た。
[0037] 混合溶融塩浴の浴温度が 130°C以上になって塩ィ匕アルミニウムと塩ィ匕ナトリウムと が十分に溶融して液相を形成してから、加熱装置 laを 195°Cに設定して浴温度を上 昇させ、浴温度の上昇を観察しながら更に加熱装置 laを 225°Cに設定して浴温度を 上昇させ、この浴温度が 183°Cを超えた時点で加熱装置 laによる加熱を停止した。
[0038] この間、凝縮器 2については、昇華炉 1の浴温度が 170°Cに到達するまでは加熱' 冷却装置 2aにより凝縮器 2の雰囲気温度を 160°Cに制御し、浴温度が 170°Cに到達 した時点から 183°Cになるまでは加熱'冷却装置 2aにより凝縮器 2の雰囲気温度を 5 0°Cに制御した。また、配管 4からは、窒素ガスを導入しながらァスピレーダーで図示 外の除害装置へと排ガスを導くようにした。
[0039] このようにして凝縮器 2に回収された精製後の無水塩ィ匕アルミニウムは、 185gであ つて、その粉体形状は榭枝状であり、不純物成分 (不純物金属)濃度は表 1に示す通 りであった。また、精製無水塩ィ匕アルミニウムの回収時間は 1時間であった。
[0040] 〔実施例 2〕 上記実施例 1で昇華炉 1中に残留した釜残の混合溶融塩中に実施例 1と同じ粗無 水塩化アルミニウム 200gを仕込み、塩化アルミニウム重量組成比率が 96. 2重量%の 混合溶融塩浴とし、上記実施例 1と同様にして粗無水塩ィ匕アルミニウムの精製を行つ た。
[0041] この実施例 2で凝縮器 2に回収された精製後の無水塩ィ匕アルミニウムは、 180gであ つて、その粉体形状は榭枝状であり、不純物成分 (不純物金属)濃度は表 1に示す通 りであった。また、精製無水塩ィ匕アルミニウムの回収時間は 1時間であった。
[0042] 〔実施例 3〕
上記実施例 1と同様に、昇華炉 1に実施例 1と同じ粗無水塩ィ匕アルミニウム 630g (9 6.5wt%)と実施例 1と同じ塩ィ匕ナトリウム 23g(3.5wt%)とを仕込み、更に純度 99. 9重 量%の金属アルミニウム薄板 12g (無水塩化アルミニウムに対して 1. 9wt%)を添加して 混合溶融塩浴とし、実施例 1と同様の昇華炉 1の加熱操作と凝縮器 2の加熱 ·冷却操 作とを行い、粗無水塩ィ匕アルミニウムの精製を行った。
[0043] この実施例 3で凝縮器 2に回収された精製後の無水塩ィ匕アルミニウムは、 190gであ つて、その粉体形状は榭枝状であり、不純物成分 (不純物金属)濃度は表 1に示す通 りであった。また、精製無水塩ィ匕アルミニウムの回収時間は 1時間であった。
[0044] 〔実施例 4〕
凝縮器 2につ 、て、昇華炉 1の浴温度が 175°Cに到達するまでは加熱 ·冷却装置 2a により凝縮器 2の雰囲気温度を 170°Cに制御し、浴温度が 175°Cに到達した時点か ら 183°Cになるまでは加熱'冷却装置 2aにより凝縮器 2の雰囲気温度を 50°Cに制御 した以外は、上記実施例 1と同様にして、粗無水塩ィ匕アルミニウムの精製を行った。
[0045] このようにして凝縮器 2に回収された精製後の無水塩ィ匕アルミニウムは、 185gであ つて、その粉体形状は榭枝状であり、不純物成分 (不純物金属)濃度は表 1に示す通 りであった。また、精製無水塩ィ匕アルミニウムの回収時間は 1時間であった。
[0046] 〔実施例 5〕
上記実施例 4で昇華炉 1中に残留した釜残の混合溶融塩中に実施例 4と同じ粗無 水塩化アルミニウム 200gを仕込み、塩化アルミニウム重量組成比率が 96. 2重量% の混合溶融塩浴とし、上記実施例 4と同様にして粗無水塩ィ匕アルミニウムの精製を行 つた o
[0047] この実施例 5で凝縮器 2に回収された精製後の無水塩ィ匕アルミニウムは、 180gで あって、その粉体形状は榭枝状であり、不純物成分 (不純物金属)濃度は表 1に示す 通りであった。また、精製無水塩ィ匕アルミニウムの回収時間は 1時間であった。
[0048] 〔実施例 6〕
上記実施例 4と同様に、昇華炉 1に実施例 1と同じ粗無水塩ィ匕アルミニウム 630g (9 6.5wt%)と実施例 1と同じ塩ィ匕ナトリウム 23g (3.5wt%)とを仕込み、更に純度 99. 9重 量%の金属アルミニウム薄板 12g (無水塩化アルミニウムに対して 1. 9wt%)を添加して 混合溶融塩浴とし、実施例 4と同様の昇華炉 1の加熱操作と凝縮器 2の加熱'冷却操 作とを行い、粗無水塩ィ匕アルミニウムの精製を行った。
[0049] この実施例 6で凝縮器 2に回収された精製後の無水塩ィ匕アルミニウムは、 190gであ つて、その粉体形状は榭枝状であり、不純物成分 (不純物金属)濃度は表 1に示す通 りであった。また、精製無水塩ィ匕アルミニウムの回収時間は 1時間であった。
[0050] 〔比較例 1〕
昇華炉 1に実施例 1と同じ粗無水塩ィ匕アルミニウム 495g (94.3wt%)と実施例 1と同じ 塩ィ匕ナトリウム 30g (5.7wt%)とを仕込み、更に実施例 1と同じ金属アルミニウム粉体 9g (無水塩ィ匕アルミニウムに対して 1. 8wt%)を添加し、実施例 1と同様に混合溶融塩浴 (塩ィ匕アルミニウム重量組成比率 94.3wt%)を調製し、昇華炉 1の加熱操作については 上記実施例 1と同様の操作を行い、また、凝縮器 2については空冷により凝縮器内温 度を常温 (20°C)で成り行きとし、 80°Cまで上昇し粗無水塩ィ匕アルミニウムの精製を 行った。
[0051] この比較例 1で凝縮器 2に回収された精製後の無水塩ィ匕アルミニウムは、 55gであ つて、その粉体形状は榭枝状であり、不純物成分 (不純物金属)濃度は表 1に示す通 りであった。また、精製無水塩ィ匕アルミニウムの回収時間は 1時間であった。
[0052] 〔比較例 2〕
昇華炉 1に実施例 1と同じ粗無水塩ィ匕アルミニウム 580g (95.7wt%)と実施例 1と同じ 塩ィ匕ナトリウム 26g (4.3wt%)とを仕込み、実施例 1と同様に混合溶融塩浴 (塩化アルミ ユウム重量組成比率 95.7wt%)を調製し、実施例 1と同様にして粗無水塩ィ匕アルミ-ゥ ムの精製を行った。
[0053] この比較例 2で凝縮器 2に回収された精製後の無水塩ィ匕アルミニウムは、 165gであ つて、その粉体形状は榭枝状であり、不純物成分 (不純物金属)濃度は表 1に示す通 りであった。また、精製無水塩ィ匕アルミニウムの回収時間は 1時間であった。
[0054] 〔比較例 3〕
昇華炉 1に実施例 1と同じ粗無水塩ィ匕アルミニウム 595g (95.5wt%)と実施例 1と同じ 塩ィ匕ナトリウム 28g (4.5wt%)とを仕込み、更に実施例 1と同じ金属アルミニウム粉体 10 g (無水塩ィ匕アルミニウムに対して 1. 7wt%)を添加し、実施例 1と同様に混合溶融塩 浴 (塩ィ匕アルミニウム重量組成比率 95.5wt%)を調製し、浴温度が 190°Cを超えた時 点で加熱装置 laによる加熱を停止した以外は、実施例 1と同様にして粗無水塩ィ匕ァ ルミ-ゥムの精製を行った。
[0055] この比較例 3で凝縮器 2に回収された精製後の無水塩ィ匕アルミニウムは、 250gであ つて、その粉体形状は榭枝状であり、不純物成分 (不純物金属)濃度は表 1に示す通 りであった。また、精製無水塩ィ匕アルミニウムの回収時間は 1. 5時間であった。
[0056] [表 1]
Figure imgf000013_0001
産業上の利用可能性
本発明の高純度無水塩ィ匕アルミニウムは、巿販特級試薬にみられるアルミニウム原 料由来の不純物成分を可及的に低減せしめて不純物成分の合計を差し引いて求め られる無水塩化アルミニウムの純度を 99. 99重量%以上、好ましくは 99. 999重量% 以上としているので、燃料電池、半導体、 IC等の製造における化学的気相成長 (CV D)及び EL素子用に ALE法等による Al O絶縁膜等の用途を始めとして、高純度化
2 3
が求められる多くの用途において工業的に有用である。

Claims

請求の範囲
[1] 工業的な無水塩ィ匕アルミニウムの製造に用いられるアルミニウム原料由来の主要な 不純物成分 (不純物金属)を可及的に低減せしめた無水塩ィヒアルミニウムであって、 ガリウム (Ga)を除く主要な不純物成分の含有量が lppm以下であり、かつ、不純物成 分の合計を差し引 、て求められる無水塩ィ匕アルミニウムの純度が 99. 99重量%以上 であることを特徴とする高純度無水塩ィ匕アルミニウム。
[2] 不純物成分の合計を差し引いて求められる無水塩ィ匕アルミニウムの純度が 99. 99 9重量%以上である請求項 1に記載の高純度無水塩ィヒアルミニウム。
[3] 塩ィ匕アルミニウムと塩ィ匕ナトリウムの混合溶融塩浴力 無水塩ィ匕アルミニウム蒸気を 昇華させる温度制御可能な昇華炉とこの昇華炉に接続されて無水塩化アルミニウム 蒸気を凝縮させる温度制御可能な凝縮器とを備えた昇華精製装置を用いて高純度 無水塩ィ匕アルミニウムを製造するに際し、混合溶融塩浴における塩化アルミニウムの 重量組成比率を 90〜98重量 %の範囲に保ち、上記混合溶融塩浴の浴温度が 170 °C未満の時には凝縮器の雰囲気温度を 160°C以上に制御し、混合溶融塩浴の浴温 度が 170〜 185°Cの時に凝縮器の雰囲気温度を 40〜80°Cに制御して精製無水塩 化アルミニウムを凝縮器に回収し、浴温度が 185°Cを超える混合溶融塩浴を釜残と して昇華炉に残留させることを特徴とする高純度無水塩化アルミニウムの製造方法。
[4] 混合溶融塩浴には金属還元剤が添加されて ヽる請求項 3に記載の高純度無水塩 化アルミニウムの製造方法。
[5] 金属還元剤が金属アルミニウム又は金属マグネシウムである請求項 4に記載の高 純度無水塩化アルミニウムの製造方法。
[6] 金属還元剤は、その形状が粉末状、薄膜状又は薄板状である請求項 5に記載の高 純度無水塩化アルミニウムの製造方法。
[7] 昇華炉に残留した無混合溶融塩の釜残中に塩ィ匕アルミニウムを供給し、繰り返し精 製無水塩ィヒアルミニウムを回収する請求項 3〜6のいずれかに記載の高純度無水塩 化アルミニウムの製造方法。
PCT/JP2006/307048 2005-04-04 2006-04-03 高純度無水塩化アルミニウム及びその製造方法 WO2006107020A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007511228A JP5125504B2 (ja) 2005-04-04 2006-04-03 高純度無水塩化アルミニウムの製造方法
US11/887,785 US20090028766A1 (en) 2005-04-04 2006-04-03 High Purity Anhydrous Aluminium Chloride and Process for Production Thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005107719 2005-04-04
JP2005-107719 2005-04-04

Publications (1)

Publication Number Publication Date
WO2006107020A1 true WO2006107020A1 (ja) 2006-10-12

Family

ID=37073565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/307048 WO2006107020A1 (ja) 2005-04-04 2006-04-03 高純度無水塩化アルミニウム及びその製造方法

Country Status (5)

Country Link
US (1) US20090028766A1 (ja)
JP (1) JP5125504B2 (ja)
CN (1) CN101155759A (ja)
TW (1) TW200702304A (ja)
WO (1) WO2006107020A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9368848B2 (en) * 2011-07-21 2016-06-14 Nippon Soda Ltd., Co. Aluminum-halogen fuel cell
CN102557097B (zh) * 2011-10-20 2014-04-16 常州亚环环保科技有限公司 一种饮用水级聚合氯化铝中铁离子的去除方法
CN103365952B (zh) * 2012-04-06 2017-04-12 东芝医疗系统株式会社 医疗信息检索装置
US9449068B2 (en) * 2012-06-13 2016-09-20 Oracle International Corporation Information retrieval and navigation using a semantic layer and dynamic objects
CN103708518B (zh) * 2012-09-29 2015-04-29 贵阳铝镁设计研究院有限公司 一种无水氯化铝制备方法
CN103803621A (zh) * 2012-11-06 2014-05-21 贵阳铝镁设计研究院有限公司 一种复盐法由结晶氯化铝脱水制备无水氯化铝的方法
CN103351012A (zh) * 2013-06-27 2013-10-16 中国铝业股份有限公司 一种氧化铝粉体的制备方法
CN103818942B (zh) * 2014-01-22 2015-03-18 中国科学院上海硅酸盐研究所 一种高纯无水碘化锶的制备方法
CN103942266A (zh) * 2014-03-27 2014-07-23 上海巨数信息科技有限公司 一种基于olap能自定义复杂业务计算逻辑的数据分析方法
CN104402032A (zh) * 2014-11-17 2015-03-11 宁夏中远天宇科技有限公司 一种新型的无水三氯化铝的生产方法
CN107311213A (zh) * 2017-07-13 2017-11-03 中国恩菲工程技术有限公司 高纯无三水氯化铝的制备方法
CN112357885A (zh) * 2020-12-02 2021-02-12 中国科学院上海应用物理研究所 一种氯化物熔盐中单一组分的提纯方法
CN112915575A (zh) * 2021-01-22 2021-06-08 华融化学股份有限公司 一种三氯化铝的捕集方法
US11996281B1 (en) 2023-06-07 2024-05-28 Applied Materials, Inc. System and method for introducing aluminum to an ion source

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH061607A (ja) * 1992-06-22 1994-01-11 Mitsubishi Materials Corp 高純度塩化アルミニウムの製造方法
JPH06263438A (ja) * 1993-03-09 1994-09-20 Mitsubishi Petrochem Co Ltd 高純度無水塩化アルミニウムの製造方法
JPH09301714A (ja) * 1996-05-09 1997-11-25 Nippon Light Metal Co Ltd 高純度無水塩化アルミニウムの製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3378338A (en) * 1965-05-27 1968-04-16 Imp Smelting Corp Ltd Production of high-purity aluminium chloride
US3694170A (en) * 1970-03-30 1972-09-26 Nippon Soda Co Process for production of spherical granules or lumps of anhydrous aluminum chloride
JPS63112416A (ja) * 1986-10-31 1988-05-17 Toshiba Corp 高純度アルミニウム化合物の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH061607A (ja) * 1992-06-22 1994-01-11 Mitsubishi Materials Corp 高純度塩化アルミニウムの製造方法
JPH06263438A (ja) * 1993-03-09 1994-09-20 Mitsubishi Petrochem Co Ltd 高純度無水塩化アルミニウムの製造方法
JPH09301714A (ja) * 1996-05-09 1997-11-25 Nippon Light Metal Co Ltd 高純度無水塩化アルミニウムの製造方法

Also Published As

Publication number Publication date
JPWO2006107020A1 (ja) 2008-09-25
JP5125504B2 (ja) 2013-01-23
TW200702304A (en) 2007-01-16
CN101155759A (zh) 2008-04-02
US20090028766A1 (en) 2009-01-29

Similar Documents

Publication Publication Date Title
WO2006107020A1 (ja) 高純度無水塩化アルミニウム及びその製造方法
AU2005289105B2 (en) Process for the production of Ge by reduction of GeCI4, with liquid metal
AU2014293663A1 (en) Synthesis of hydrogen bis(fluorosulfonyl)imide
CN104195355B (zh) 制备锆的方法
CN109941998B (zh) 一种相分离去合金化提纯硅的方法
KR20190098139A (ko) 산화리튬을 제조하기 위한 방법
US9764961B2 (en) Cyclohexasilane
TWI542705B (zh) Production method of high purity calcium
CN110612269B (zh) 用于生产商业级硅的方法
JP4900600B2 (ja) 高純度シリコンの製造方法
TWI275653B (en) High purity hafnium, target and thin film comprising said high purity hafnium, and method for producing high purity hafnium
Li et al. An approach to prepare high-purity TiSi 2 for clean utilization of Ti-bearing blast furnace slag
JP5925384B2 (ja) 高純度マンガンの製造方法及び高純度マンガン
JP4295823B2 (ja) マグネトロン容量結合型プラズマによる気化性金属化合物からの高純度金属の還元精製方法及びそのための装置
JP2009269815A (ja) 三塩化シランの精製方法
JPH06263438A (ja) 高純度無水塩化アルミニウムの製造方法
KR101451777B1 (ko) 마그네슘 증기를 이용한 고순도 바나듐의 제조 방법 및 이를 위한 제조장치
CN105016329A (zh) 石墨烯的制备方法
CN117615870A (zh) 用于过渡金属氧化物还原的方法
RU2394769C2 (ru) Способ получения особо чистого мышьяка
RU2174950C1 (ru) Способ получения силана
Bogdanovych National Science Center “Kharkiv Institute of Physics and Technology” Kharkiv, Ukraine
WO2017047798A1 (ja) 純度が向上したシリコンの製造方法
JP4672264B2 (ja) SiOの精製方法及び得られたSiOを用いる高純度シリコンの製造方法
RU2393254C1 (ru) Способ получения марганца (варианты)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680011057.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007511228

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 11887785

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 06730996

Country of ref document: EP

Kind code of ref document: A1