WO2006106884A1 - 電気浸透流ポンプ及び液体供給装置 - Google Patents

電気浸透流ポンプ及び液体供給装置 Download PDF

Info

Publication number
WO2006106884A1
WO2006106884A1 PCT/JP2006/306757 JP2006306757W WO2006106884A1 WO 2006106884 A1 WO2006106884 A1 WO 2006106884A1 JP 2006306757 W JP2006306757 W JP 2006306757W WO 2006106884 A1 WO2006106884 A1 WO 2006106884A1
Authority
WO
WIPO (PCT)
Prior art keywords
electroosmotic
liquid
pump
electrode
self
Prior art date
Application number
PCT/JP2006/306757
Other languages
English (en)
French (fr)
Inventor
Ichiro Yanagisawa
Masana Nishikawa
Original Assignee
Nano Fusion Technologies, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nano Fusion Technologies, Inc. filed Critical Nano Fusion Technologies, Inc.
Priority to EP06730705A priority Critical patent/EP1873532A1/en
Priority to KR1020077025011A priority patent/KR100930255B1/ko
Priority to US11/887,440 priority patent/US20090136362A1/en
Publication of WO2006106884A1 publication Critical patent/WO2006106884A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/08Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a stream of discrete samples flowing along a tube system, e.g. flow injection analysis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip

Definitions

  • the present invention relates to an electroosmotic flow pump suitable for drive control of liquid inside a microfluidic chip used for biotechnology, analytical science and the like, and drive control of fluid in a portable electronic device, and the like
  • the present invention relates to a liquid supply apparatus using an electroosmotic flow pump.
  • An electroosmotic pump is a pump that transports a fluid using an electroosmosis phenomenon, and is used, for example, as a fluid driving means inside a capillary or a microfluidic chip.
  • the diameter of the single beam is, for example, several hundreds [/ zm] or the flow path in the microfluidic chip is set to, for example, several tens [/ zm] or less, while two electrodes (a positive electrode and a negative electrode) are provided in the first or the flow path.
  • two electrodes a positive electrode and a negative electrode
  • the reservoirs 202 and 204 containing the electrolyte solution are connected by a capillary 206 filled with the electrolyte solution, and the DC power source 208 is connected to the reservoirs 202 and 204, respectively.
  • the electrolyte solution is transported from the reservoir 202 to the reservoir 204 via the capillary 206.
  • FIG. 39 shows an electroosmotic pump 214 in which the electroosmotic pump 200 (see FIG. 38) is miniaturized.
  • the electroosmotic pump 214 includes an electroosmotic material 220 made of an electroosmotic material (hereinafter also referred to as EO material) disposed in a flow path 218 formed in the pump container 216, and the electroosmotic material 220.
  • the electrodes 222 and 224 are arranged on the upstream side and the downstream side, and a plurality of holes are formed in the flow path direction. Note that the above-described electrode structure is not limited to this, and may be configured in a wire shape, for example.
  • the DC voltage applied to the electrodes 210, 212, 222, and 224 from the DC power source 208 requires several tens of kV in the electroosmotic pump 200 (see FIG. 38).
  • the electroosmotic pump 214 can drive the electrolyte solution with a DC voltage of about several [V].
  • a pump is configured by using a small-diameter capillary 206 or a flow path of a microfluidic chip. The restriction is eliminated and the application range of the electroosmotic pump 214 can be expanded.
  • a reservoir 232 for accommodating an electrolyte solution is formed on the upper portion of the electroosmotic flow pump 230, and a lower portion thereof It is directly connected to the flow path 236 of the fluid chip 234.
  • the electrolyte solution is applied at a maximum flow rate of about several tens [LZmin] and a maximum pressure of 100 [kPa] or more. It is possible to supply to the flow path 236 from the reservoir 232.
  • Non-Patent Document 1 US Patent Application Publication No. 2003Z0068229
  • Non-Patent Document 2 U.S. Pat.No. 3,923,426
  • Non-Patent Document 3 US Patent Application Publication No. 2004Z0234378
  • the electroosmotic phenomenon described above is an electrochemical phenomenon
  • gas is generated in the vicinity of the electrodes 222 and 224. Will occur.
  • the gas that cannot be completely dissolved in the electrolyte solution floats in the electrolyte solution as a nozzle, and the floating bubble is unstable in flow in the flow path 236, electroosmotic flow.
  • the malfunction of the pump 214 and various measurements, chemical reactions, and chemical analyzes performed downstream of the flow path 236 are greatly affected.
  • the electroosmotic pump 214 is generally a system in which ion conduction in the electrolyte solution and electron conduction in the electrodes 222 and 224 are mixed, and the electrodes 222, 22 4 Then, gas is generated during charge exchange.
  • the driving liquid is an aqueous solution
  • the zeta potential of the electroosmotic material 220 is a negative potential
  • the upstream electrode 222 is the positive electrode
  • the downstream electrode 224 is the negative electrode
  • the following reactions occur by electrochemical reactions in the vicinity of the electrodes 222 and 224.
  • microfluidic drive control is performed on the microfluidic chip connected to the downstream side using the electroosmotic pump 214
  • the microfluidic fluid is caused by bubbles flowing into the channel of the microfluidic chip. It becomes difficult to control the position accurately.
  • the bubble has a great influence on the sensor actuator disposed in the system.
  • the flow rate of the microfluid is controlled using a thermal flow sensor, accurate flow measurement becomes difficult due to mixing of the bubbles, and as a result, feedback control using the flow sensor can be performed. There is a problem that cannot be done.
  • the diameter of the through hole formed in the electroosmotic material 220 is a size of [ ⁇ m] or less. Therefore, the oxygen gas generated in the vicinity of the electrode 222 covers the surface of the electrode 222 or the electroosmotic material 220 without passing through the electroosmotic material 220. As a result, the contact area between the electrode 222 or the electroosmotic material 220 and the aqueous solution is reduced, and the electric field distribution inside the electroosmotic material 220 is distorted, or the flow of the aqueous electrolyte solution inside the electroosmotic material 220 is inhibited. As a result, deterioration in pump performance such as a decrease in flow rate or stoppage of flow rate occurs.
  • a high-conductivity electrolyte solution (such as a buffer solution) having a high electric conductivity is often used as a driving liquid.
  • a high-conductivity electrolyte solution such as a buffer solution
  • the current flowing between the electrodes 222 and 224 inevitably increases, and as a result, the generation of bubbles is promoted.
  • the electroosmotic flow pump 214 is designed to improve the stability of pump performance and the pump efficiency in consideration of applications to biology, medicine, and microelectronics related equipment. It is necessary to solve the gas generation problem described above.
  • an ion conductive material is used as an electrode, and the ion conductive material is electrically connected to an electronic conductor outside the electroosmotic flow pump 214, so that the gas generating portion is electroosmotic. It is intended to be external to the flow pump 214. In this case, it is possible to avoid the problem of gas generation inside the electroosmotic pump 2 14 because the ionic conductivity must be converted to electronic conduction outside the electroosmotic pumps 200, 214, and 230. The whole system becomes complicated.
  • the flow path of the electroosmotic flow pump 214 is a closed loop flow path, and oxygen gas and hydrogen gas generated by a recombiner using a catalyst V are converted into water.
  • the electroosmotic pump 214 targeted by the present invention has a size of several [mm] to several [cm] that can be accommodated in a small portable device and can be mounted on a microfluidic chip.
  • the adoption of the recombiner increases the size of the pump and complicates the structure.
  • an electrolyte solution is supplied to the electroosmotic material 220 on the upstream side of the electroosmotic pump 214.
  • Tanks and cartridges are connected.
  • the electrolyte solution is surely supplied to the electroosmotic material 220, and the electrolyte solution is supplied to each device downstream of the electroosmotic material 220. It must be possible to discharge.
  • the electroosmotic material 220 described above is a material having permeability, and when the electrolyte solution as the driving liquid reaches the upstream surface, the electrolyte solution is spontaneously absorbed and discharged downstream. It has a so-called self-filling performance.
  • the electroosmotic flow pump 214 when the driving liquid flows from the upstream side, the upstream side of the electroosmotic material 220 in the channel 218 is narrow (several [mm] or less). In this case, it is difficult for the driving liquid to expel the gas in the vicinity of the electrode 222 and completely fill the upstream side, and the gas is confined in the upstream side. As a result, the driving liquid does not reach the surfaces of the electrode 222 and the electroosmotic material 220, and there is a problem that the electroosmotic flow pump 214 does not operate and the pump performance is reduced.
  • the present invention has been made to solve the above-described problem, and provides an electroosmotic pump that can prevent gas generated in the vicinity of an electrode from flowing downstream. With the goal.
  • Another object of the present invention is to provide an electroosmotic flow pump that can reliably supply a driving liquid to an electroosmotic material.
  • an object of the present invention is to provide a liquid supply device that can supply liquid filled in a liquid container to the outside with a simpler configuration.
  • the electroosmotic flow pump includes a first electrode disposed upstream of an electroosmotic material provided in a flow path and a second electrode disposed downstream, and the first electrode and the In the electroosmotic pump that circulates the driving liquid in the flow path via the electroosmotic material when a voltage is applied to the second electrode, when the voltage is applied to the downstream side of the flow path
  • a downstream liquid passage member that prevents passage of the gas generated in the vicinity of the second electrode to the downstream side, while allowing the driving liquid to pass therethrough is disposed downstream of the second electrode. It is characterized by being.
  • the gas is caused in the vicinity of the second electrode by the application of the voltage. Even if it produces
  • a downstream degassing member for releasing the gas is disposed outside the flow path between the electroosmotic material and the downstream liquid passage member.
  • the gas generated in the vicinity of the second electrode is discharged to the outside through the downstream degassing member. Therefore, when the electroosmotic pump is operated for a long time, the second electrode and the electric It is possible to suppress a decrease in pump performance due to bubble adhering to the osmotic material.
  • even a part of the gas generated in the vicinity of the first electrode passes through the electroosmotic material, it can be discharged to the outside through the downstream degassing member.
  • an upstream liquid passage member that prevents foreign matter from flowing into the electroosmotic material, and is capable of passing the driving liquid when the voltage is applied. It is preferable that it is disposed upstream of the electroosmotic material. As a result, adhesion of the foreign matter, bubbles and the like to the surface of the electropermeable material is prevented, so that the pump performance of the electroosmotic flow pump can be ensured.
  • an upstream gas vent member that releases the gas generated in the vicinity of the first electrode to the outside when the voltage is applied. Is preferably arranged. Thereby, the adhesion of the gas on the upstream side of the electroosmotic material can be prevented, and deterioration of the pump performance of the electroosmotic flow pump can be suppressed.
  • an upstream liquid self-filling mechanism capable of self-filling the driving liquid is disposed on the upstream side of the flow path in contact with the electroosmotic material or the first electrode. Is preferred. This makes it possible to reliably supply the driving liquid to the electroosmotic material.
  • a downstream liquid self-filling mechanism capable of self-filling the driving liquid is disposed in contact with the electroosmotic material or the second electrode. It is preferable. As a result, the driving liquid discharged from the electroosmotic material can be reliably supplied to various fluid devices connected to the downstream side of the flow path.
  • the electroosmotic pump according to the present invention includes a first electrode disposed on the upstream side of the electroosmotic material provided in the flow path and a second electrode disposed on the downstream side, and the first electrode And an electroosmotic pump that causes the driving liquid to flow through the electroosmotic material through the electroosmotic material when a voltage is applied to the second electrode.
  • An upstream liquid self-filling mechanism capable of self-filling is disposed in contact with the electroosmotic material or the first electrode.
  • the upstream side liquid passage member capable of passing the driving liquid when the voltage is applied Is preferably disposed upstream of the electroosmotic material. As a result, adhesion of the foreign matter and bubbles to the surface of the electroosmotic material is prevented, and the pump performance of the electroosmotic flow pump can be ensured.
  • an upstream gas vent that releases gas generated in the vicinity of the first electrode to the outside when the voltage is applied. It is preferable that the components are arranged. Thereby, on the upstream side of the electroosmotic material It is possible to prevent the gas from adhering and to prevent deterioration of the pump performance of the electroosmotic flow pump.
  • a downstream liquid self-filling mechanism capable of self-filling the driving liquid is disposed in contact with the electroosmotic material or the second electrode.
  • the driving liquid discharged from the electroosmotic material can be reliably supplied to various fluid devices connected to the downstream side of the electroosmotic flow pump via the downstream liquid self-charging mechanism. It becomes.
  • the liquid self-filling mechanisms are arranged on the upstream side and the downstream side, respectively, the driving liquid is discharged from the upstream side to the downstream side, and the driving liquid is sucked from the downstream side to the upstream side. It can be done efficiently.
  • a downstream liquid passage member that blocks the passage of the gas to the downstream side, and is capable of passing the driving liquid is downstream of the second electrode. It is preferable to arrange on the side.
  • the downstream liquid passage member disposed on the downstream side of the electroosmotic material passes the driving liquid, while And blocking the passage of the gas.
  • a downstream gas vent that releases gas generated in the vicinity of the second electrode when the voltage is applied to the outside.
  • the members are arranged.
  • the gas generated in the vicinity of the second electrode is discharged to the outside through the downstream degassing member. Therefore, when the electroosmotic pump is operated for a long time, the second electrode or the electroosmosis is It is possible to suppress a decrease in pump performance due to the attachment of bubbles to the material.
  • generated near the first electrode Even if a part of the gas passed through the electroosmotic material, it can be discharged to the outside through the downstream degassing member.
  • the liquid passing member described above has a hydrophilic material force, and the gas pressure required for the gas to pass through the liquid passing member is l [kPa] or more, and the direction of the flow path Preferably, the thickness of the liquid passing member along 3 is 3 [mm] or less.
  • the degassing member is made of a hydrophobic material formed on a side portion of the flow path, and the passing pressure of the driving liquid with respect to the degassing member is a maximum during operation of the driving liquid. It is preferable that the thickness of the degassing member along the gas passage direction smaller than the pressure is 3 [mm] or less.
  • the liquid self-filling mechanism includes a self-filling portion disposed in the vicinity of the electroosmotic material along the flow path, a side portion of the self-filling portion, and a permeation with the self-filling portion.
  • the self-filling unit self-fills the drive liquid and supplies the electro-osmotic material to the electroosmotic material
  • the air-bleeding unit penetrates the self-filling unit and the air-bleeding unit. It is preferable to discharge the air remaining on the upstream side of the electroosmotic material to the outside based on the pressure difference.
  • the self-filling portion has a hydrophilic material force and the air vent portion also has a hydrophobic material force! /.
  • an interval between the electroosmotic material or the first electrode and the upstream liquid passing member along the direction of the flow path is 3 [mm] or less, and Z or the flow
  • the distance between the electroosmotic material or the second electrode and the downstream liquid passage member along the direction of the path is preferably 3 [mm] or less. That is, the distance between the electroosmotic material or the first electrode and the upstream liquid passing member, and Z or the distance between the electroosmotic material or the second electrode and the downstream liquid passing member are determined by the electroosmosis.
  • the upper limit is 3 [mm] and the lower limit is 1 [; zm] (1 [ ⁇ !] To 3 [mm] This is because it is preferable from the viewpoint of the characteristics of the electroosmotic flow pump to appropriately set the interval in step (1).
  • the upstream liquid passage member or the upstream degassing member is disposed facing the electroosmotic material or the first electrode, the electroosmotic material or the first electrode and the upstream It is desirable to set the interval between the side liquid passage member and the interval between the electroosmotic material or the first electrode and the upstream side liquid passage member within the above-described range.
  • the electroosmotic material or the second electrode and the downstream side are also disposed. It is desirable to set the interval between the liquid passage member and the interval between the electroosmotic material or the second electrode and the downstream liquid passage member within the above-described range.
  • the upstream liquid self-filling mechanism and the electroosmotic material or the first electrode can be in close contact with each other.
  • a driving liquid absorbing member having a hydrophilic material force is disposed, and Z or the downstream liquid self-filling mechanism between the downstream liquid self-filling mechanism and the electroosmotic material or the second electrode. It is preferable that a driving liquid absorbing member that can be in close contact with the electroosmotic material or the second electrode and is made of a hydrophilic material is disposed.
  • the upstream liquid self-filling mechanism when configured using a rigid material, the surface of the upstream liquid self-filling mechanism and the surface of the electroosmotic material or the first electrode are formed.
  • the drive liquid absorbing member is in close contact with the upstream liquid self-filling mechanism, so that the drive liquid self-filled by the upstream liquid self-filling mechanism is efficiently absorbed by the drive liquid absorbing member and quickly supplied to the electroosmotic material. It becomes possible.
  • a water absorbing material having flexibility and water retention is adopted as the driving liquid absorbing member, and the driving liquid absorbing member is sandwiched between the upstream liquid self-filling mechanism and the electroosmotic material or the first electrode.
  • the drive liquid absorbing member also functions as a cushion for the upstream liquid self-filling mechanism and the electroosmotic material or the first electrode, so that the assemblability is improved.
  • the driving liquid absorbing member is disposed between the downstream liquid self-filling mechanism and the electroosmotic material or the second electrode, a rigid material is used to form the downstream side.
  • the driving liquid absorbing member is in close contact with the surface of the downstream liquid self-filling mechanism and the surface of the electroosmotic material or the second electrode. Therefore, the driving liquid self-filled in the downstream liquid self-filling mechanism can be efficiently absorbed by the driving liquid absorbing member and supplied promptly to the electroosmotic material.
  • the driving liquid absorbing member a water absorbing material having flexibility and water retention is adopted as the driving liquid absorbing member, and the driving liquid absorbing member is sandwiched between the downstream liquid self-filling mechanism and the electropermeable material or the second electrode. This is desirable for improving the adhesion of the driving liquid absorbing member. Further, the drive liquid absorbing member also functions as a cushion for the downstream liquid self-filling mechanism and the electroosmotic material or the second electrode, so that the assemblability is improved.
  • the flow path is formed in a pump container that houses the electroosmotic material, the first electrode, and the second electrode, and the flow path in the pump container
  • the upstream inlet and the downstream outlet of the flow path are preferably provided on the same surface.
  • the attachment property of the electroosmotic flow pump to the installation surface such as the substrate is improved, and the height of the entire pump can be reduced.
  • the inlet and the outlet on the same surface, it is also possible to provide each of the gas venting members on the opposite surface. Therefore, the electroosmotic flow pump according to the present invention is suitable, for example, as a small-sized pump for planar mounting in an electronic device.
  • a liquid supply apparatus includes the above-described electroosmotic flow pump and a liquid container filled with a liquid, and the liquid in the liquid container is passed through the electroosmotic flow pump. It is characterized by being supplied to the outside. Accordingly, if a voltage is applied to the first electrode and the second electrode of the electroosmotic flow pump, the liquid filled in the liquid container can be supplied to the outside via the electroosmotic flow pump. Thus, the liquid can be supplied with a simple configuration. In particular, if a voltage is applied to the first electrode and the second electrode while the liquid is self-filled by the upstream liquid self-filling mechanism, the electroosmotic material is removed from the upstream liquid self-filling mechanism.
  • the liquid can be supplied to the outside, so that the liquid can be supplied efficiently.
  • the liquid if the liquid is methanol water diluted with methanol or water, it is suitable as a liquid fuel supply force cartridge for supplying the methanol or the methanol water to the fuel cell system.
  • FIG. 1 is a cross-sectional view of an electroosmotic pump according to a first embodiment.
  • FIG. 2 is a cross-sectional view of a main part for explaining a self-filling function by the self-filling mechanism of FIG.
  • FIG. 3 is a cross-sectional view of an electroosmotic pump according to a second embodiment.
  • FIG. 4 is a partially enlarged sectional view showing a fitting state of the large diameter portion and the small diameter portion of FIG.
  • FIG. 5 is a partially enlarged cross-sectional view showing a joined state of the large diameter portion and the small diameter portion of FIG.
  • FIG. 6 is a cross-sectional view of an electroosmotic pump according to a third embodiment.
  • FIG. 7 is a cross-sectional view of an electroosmotic pump according to a fourth embodiment.
  • FIG. 8 is a cross-sectional view of a principal part showing the configuration of the gas vent member of FIG.
  • FIG. 9 is a longitudinal sectional view taken along line IX-IX in FIG.
  • FIG. 10 is a longitudinal sectional view taken along line XX in FIG.
  • FIG. 11 is a cross-sectional view of a principal part showing another configuration of the gas vent member of FIG.
  • FIG. 12 is a cross-sectional view of a principal part showing another configuration of the gas vent member of FIG.
  • FIG. 13 is a cross-sectional view of a principal part showing another configuration of the bubble isolation member of FIG.
  • FIG. 14 is a cross-sectional view of a principal part showing another configuration of the bubble isolating member of FIG.
  • FIG. 15 is a cross-sectional view of an electroosmotic pump according to a fifth embodiment.
  • FIG. 16 is a cross-sectional view of an electroosmotic flow pump according to a sixth embodiment.
  • FIG. 17 is a cross-sectional view of an electroosmotic pump according to a seventh embodiment.
  • FIG. 18 is a cross-sectional view of a principal part showing another configuration of the self-charging mechanism of FIG.
  • FIG. 19 is a cross-sectional view of a principal part showing another configuration of the self-charging mechanism of FIG.
  • FIG. 20 is a cross-sectional view of a principal part showing another configuration of the self-filling mechanism of FIG.
  • FIG. 21 is a longitudinal sectional view taken along line XXI—XXI in FIG.
  • FIG. 22 is a cross-sectional view of an electroosmotic pump according to an eighth embodiment.
  • FIG. 23 is a cross-sectional view showing another configuration of FIG.
  • FIG. 24 is a cross-sectional view of an electroosmotic pump according to a ninth embodiment.
  • FIG. 25 is a cross-sectional view of the electroosmotic pump according to the tenth embodiment.
  • FIG. 26 is a cross-sectional view of an electroosmotic flow pump according to an eleventh embodiment.
  • FIG. 27 is a cross-sectional view of an electroosmotic pump according to a twelfth embodiment.
  • FIG. 28 is a cross-sectional view showing another configuration of FIG.
  • FIG. 29 is a cross-sectional view of an electroosmotic flow pump according to a thirteenth embodiment.
  • FIG. 30 is a cross-sectional view showing another configuration of FIG. 28.
  • FIG. 31 is a cross-sectional view of an electroosmotic pump according to a fourteenth embodiment.
  • FIG. 32 is a cross-sectional view showing another configuration of FIG. 31.
  • FIG. 33 is a cross-sectional view showing another configuration of FIG. 31.
  • FIG. 34 is a cross-sectional view showing another configuration of FIG. 31.
  • FIG. 35 is a cross-sectional view of an electroosmotic pump according to a fifteenth embodiment.
  • FIG. 36 is a cross-sectional view of an electroosmotic flow pump according to a sixteenth embodiment.
  • FIG. 37 is a cross-sectional view of a liquid supply apparatus to which an electroosmotic pump according to a fifteenth embodiment is applied.
  • FIG. 38 is a cross-sectional view of a principal part showing an electroosmotic pump according to the prior art.
  • FIG. 39 is a cross-sectional view of a principal part showing another electroosmotic pump according to the prior art.
  • FIG. 40 is a cross-sectional view of a principal part showing an electroosmotic flow pump devised by the present applicant. BEST MODE FOR CARRYING OUT THE INVENTION
  • the electroosmotic pump 10A is about several [mm] to several [cm] that can be mounted on a microfluidic chip or a small electronic device used in biotechnology or analytical science.
  • the pump is basically a pump container 12, an electroosmotic material 16 disposed in a flow path 14 formed in the pump container 12, and an inlet electrode. (First electrode) 18 and outlet side electrode (second electrode) 20.
  • the pump container 12 is made of a plastic material having resistance to a driving liquid such as an electrolyte solution passing through the flow path 14, or a ceramic material, glass, or a metal material whose surface is electrically insulated, and is electroosmotic.
  • a driving liquid such as an electrolyte solution passing through the flow path 14, or a ceramic material, glass, or a metal material whose surface is electrically insulated, and is electroosmotic.
  • the electrolyte solution is from the right side (large diameter portion 22 side) to the left side of FIG. Passes through the flow path 14 in the direction of the (small diameter portion 24).
  • the electroosmotic material 16 is disposed so as to partition the flow path 14, and as a result, the upstream side (right side in FIG. 1) of the electroosmotic material 16 in the flow path 14 is formed as an inlet side chamber 26. On the other hand, the downstream side is formed as an outlet side chamber 28.
  • the electroosmotic material 16 also has a force such as porous ceramics or glass fiber. When the driving liquid is supplied to the inlet-side chamber 26, the electroosmotic material 16 absorbs the driving liquid and penetrates into the inside, and further penetrates the driving liquid. This is a hydrophilic member that can discharge liquid to the outlet side chamber 28.
  • the inlet side electrode 18 is disposed in contact with the surface of the electroosmotic material 16 in the inlet side chamber 26, and a plurality of holes 30 are formed along the axial direction of the flow path 14.
  • the outlet-side electrode 20 is disposed in contact with the surface of the electroosmotic material 16 in the outlet-side chamber 28, and a plurality of holes 32 are formed along the axial direction of the flow path 14.
  • the inlet side electrode 18 and the outlet side electrode 20 are electrically connected to a DC power source 34.
  • the force when the inlet electrode 18 is a positive electrode and the outlet electrode 20 is a negative electrode is positively charged.
  • the inlet side electrode 18 may be a negative electrode
  • the outlet side electrode 20 may be a positive electrode.
  • the force with which the electrodes 18 and 20 are disposed on the surface of the electroosmotic material 16 is not limited to such an arrangement.
  • the electrodes 18 and 20 are not in contact with each other in the vicinity of the electroosmotic material 16. It may be arranged in the state. Further, in FIG.
  • the DC power source 34 is electrically connected to the inlet side electrode 18 and the outlet side electrode 20, and a force in which a DC voltage is applied to each electrode 18, 20 is applied to each electrode 18, 20.
  • a pulse power supply (not shown) may be arranged, and the pulse voltage may be applied to the electrodes 18 and 20 from the pulse power supply.
  • the outlet side chamber 28 has a bubble separating member (downstream).
  • Side liquid passage member 40 is disposed downstream of the outlet side electrode 20, and a gas vent member (downstream gas vent member) 42 is disposed on the side of the pump container 12 in the vicinity of the outlet side electrode 20.
  • a degassing member (upstream degassing member) 44 is disposed on the side of the pump container 12 in the vicinity of the inlet side electrode 18.
  • the bubble separating member 40 is a hydrophilic film made of a polyamide synthetic polymer material such as glass fiber or hydrophilic nylon (registered trademark), and has pores 32 formed from the electroosmotic material 16. It is possible to pass the driving liquid discharged to the downstream side, while preventing the passage of gas and foreign matter in the outlet side chamber 28.
  • the gas vent member 42 is made of a hydrophobic and gas permeable membrane or sheet such as tetrafluoroethylene rubber (PTFE), and discharges the gas in the outlet side chamber 28 to the outside.
  • the gas vent member 44 is formed of a hydrophobic and gas permeable film similar to the gas vent member 42, and discharges the gas in the inlet side chamber 26 to the outside.
  • the electroosmotic flow pump 10A when a driving liquid such as an electrolyte solution (aqueous solution) has permeated the electroosmotic material 16 and a DC voltage is applied to the electrodes 18 and 20 from the DC power supply 34, the driving is performed as described above.
  • the electrochemical reaction in the vicinity of the liquid electrodes 18 and 20 generates hydrogen gas in the vicinity of the outlet side electrode 20, while oxygen gas is generated in the vicinity of the inlet side electrode 18.
  • the current flowing between the electrodes 18 and 20 is l [mA]
  • the amount of hydrogen gas generated is 7.86 [/ ⁇
  • the amount of oxygen gas generated is 3.93 [/ z LZmin].
  • the solubility of oxygen gas at the temperature of the aqueous solution (or water) of 20 [° C.] is 0.031
  • the solubility of hydrogen gas is 0.018.
  • the ratio of the gas generation amount (volume at 1 atm) to the aqueous solution flow rate is 3.1 [%] (oxygen) and 1.
  • the concentration exceeds 8% (hydrogen) the gas concentration in the aqueous solution exceeds the solubility.
  • oxygen gas bubbles are generated in the inlet chamber 26 in the vicinity of the inlet electrode 18, while in the vicinity of the electrode 20. Hydrogen gas bubbles are generated in the outlet side chamber 28 of the engine.
  • the inlet electrode 18 generates oxygen gas bubbles when a current of 790 [/ z A] or more flows
  • the outlet electrode 20 generates a hydrogen gas bubble when a current of 229 [A] or more flows. To be born.
  • the minimum bubble point of the bubble separating member 40 and the minimum water breakthrough point of the gas venting members 42 and 44 are set sufficiently larger than the driving pressure of the aqueous solution. is doing.
  • the minimum bubble point is the minimum pressure value required for the bubble (the hydrogen gas or the oxygen gas) to pass through the bubble isolation member 40 wet with the aqueous solution, and the bubble Of course, this differs from the hydrogen gas or the oxygen gas depending on the type of driving liquid to be handled.
  • the minimum water breakthrough point is the minimum pressure value required for the aqueous solution to leak out from the chambers 26 and 28 through the gas vent members 42 and 44 to the outside.
  • the pressure in the outlet side chamber 28 has a differential pressure (positive pressure) of several [kPa] to several hundred [kPa] compared to the outside. For this reason, the bubbles accumulated in the outlet side chamber 28 are discharged to the outside of the electroosmotic flow pump 10A through the gas vent member 42. On the other hand, a slight pressure loss occurs when the aqueous solution passes through the bubble separating member 40, but the pressure loss can be suppressed by appropriately setting the flow path resistance.
  • the relationship between the outlet side pressure during pump operation and its lowest bubble point and flow path resistance is as follows: (1) The lowest bubble point is the maximum amount of aqueous solution discharged from the electroosmotic material 16. Greater than pressure (electrosmotic flow pump 10A outlet side maximum pressure) (2) The pressure loss at the bubble isolation member 40 at the maximum flow rate of the aqueous solution is sufficiently higher than the maximum pressure of the aqueous solution discharged from the electroosmotic material 16. Design to satisfy the following two conditions: small (pressure loss of aqueous solution ⁇ maximum pressure of aqueous solution).
  • the bubble isolating member 40 As the bubble isolating member 40, a hydrophilic nylon (registered trademark) film (pore diameter: 0.2 [; zm], film thickness: 127 [/ ⁇ ⁇ ]) is used. The minimum bubble point is 340 [kPa], and the passing amount of the aqueous solution is 170 [17 (1 ⁇ 11 '. 111 2 ' 1 ⁇ 1 ⁇ 2)]. PTFE membranes (pore diameter: 0.2 [m], film thickness: I 39 [m]) are used as the gas vent members 42 and 44. The water breakthrough point is 280 [kPa] and the gas passage is 28 [mlZ (min 'cm 2 ' kPa)].
  • a hydrophilic nylon (registered trademark) film pore diameter: 0.2 [; zm], film thickness: 127 [/ ⁇ ⁇ ]
  • the minimum bubble point is 340 [kPa]
  • the passing amount of the aqueous solution is 170 [17 (1 ⁇ 11 '.
  • the diameter of the electroosmotic material 16 is 7 [mm]
  • the flow rate of the aqueous solution is 200 [L / min]
  • the generation amount of hydrogen gas is lOOC / z LZminL
  • the pressure in the outlet side chamber 28 is Assuming 50 [kPa]
  • the pressure loss of the aqueous solution by the bubble separating member 40 is 3 [kPa]
  • the cross-sectional area of the degassing member 42 is 0.007 [mm 2 ].
  • the pressure loss of the aqueous solution in the electroosmotic pump 10A is about several [kPa], and there is no particular problem even when considering the general pump characteristic force of the electroosmotic pump. is there.
  • the gas vent member 42 can discharge hydrogen gas to the outside with a passage cross-sectional area of about 0.007 [mm 2 ]. If this cross-sectional area is small, loss due to evaporation of the aqueous solution of the internal force of the electroosmotic pump 10A can be suppressed.
  • the thickness of both the publishing separating member 40 and the gas venting member 42 is about 150 [m] or less, so even if these members are added, the size of the electroosmotic pump 10A hardly changes. .
  • the electroosmotic flow pump 10A is not affected by the gravity regardless of the posture. It can be in a free state.
  • the bubble isolation member 40 is externally connected via the gas venting members 42 and 44 when the pressure of the aqueous solution is lowered on the downstream side of the system including the electroosmotic pump 10A and the microfluidic chip. It plays the role of preventing air from flowing back to the inlet chamber 26 and outlet chamber 28 and preventing foreign matter flowing into the electroosmotic pump 10A from being discharged downstream.
  • the electroosmotic pump 10A is a small pump that can be mounted on a microfluidic chip (not shown) or a small electronic device.
  • the inner diameter of the inlet-side chamber 26 is about several mm or less. Therefore, since the force due to the surface tension acts greatly on the electrolyte solution flowing through the flow path 14, simply connecting the electrolyte solution supply line to the inlet side (right side in FIG. 1) of the electroosmotic pump 10A, Alternatively, simply connecting a cartridge or tank pre-filled with an electrolyte solution causes air to remain in the inlet chamber 26 when supplying the electrolyte solution, and the electroosmotic flow pump 10A cannot be started normally. It is assumed that
  • the self-charging mechanism 50 is disposed in the inlet side chamber 26.
  • the self-filling mechanism 50 includes a liquid drawing member (self-filling portion) 52 whose tip is in contact with the electroosmotic material 16 via the inlet-side electrode 18, a surrounding member 54 surrounding the liquid drawing member 52, and a pump. It is composed of an air bleeding nose (air bleeding portion) 56 formed between the inner wall of the container 12.
  • the liquid drawing member 52 also has a hydrophilic material force such as porous ceramics and glass fibers having a high permeation performance with respect to the electrolyte solution.
  • the surrounding member 54 having the same material force as that of the pump container 12 is a side wall for preventing the glass fiber from being deformed when the liquid drawing member 52 has glass fiber force.
  • materials that do not collapse even when placed in the pump container 12 such as porous ceramics.
  • the air vent path 56 is configured as a passage in which the osmotic pressure of the electrolyte solution is smaller than that of the liquid drawing member 52, and even a simple gas vent passage is a hydrophilic material having lower permeability. Or it may be filled with hydrophobic material.
  • the liquid drawing-in part from the outside The drive fluid is supplied to the material 52.
  • the supplied driving liquid penetrates into the liquid drawing member 52 and wets the surface of the electroosmotic material 16 that contacts the liquid drawing member 52 via the electrode 18.
  • the drive liquid spontaneously penetrates into the electroosmotic material 16 by capillary action and penetrates to the surface of the outlet side electrode 20 on the outlet side member 28 side. Thereby, the start-up preparation of the electroosmotic flow pump 10A is completed.
  • the self-filling mechanism 50 can (1) be able to wet the surface of the electroosmotic material 16 with the driving liquid S, and (2) be able to discharge the air inside the inlet-side chamber 26 to the outside. 3) It is necessary to satisfy the three conditions that the time required for (1) and (2) is within the start-up time required for the electroosmotic pump 10A.
  • FIG. 2 is a schematic cross-sectional view for explaining the principle of supplying the driving liquid from the self-filling mechanism 50 to the electroosmotic material 16.
  • the pump container 12, the inlet-side electrode 18, the outlet-side electrode 20, and the surrounding member 46 Is omitted.
  • a description will be given of a case where the proximal end portions of the liquid drawing member 52 and the air removal path 56 are immersed in a container 62 filled with an electrolyte solution 60 as a driving liquid.
  • the permeation characteristics of the electrolyte solution 60 in the porous medium constituting the liquid drawing member 52 and the air vent path 56 are the surface energy ⁇ of the porous medium, the porous medium and the electrolyte solution.
  • the internal surface area of the porous medium is assumed that a plurality of holes (diameter D) are formed at a certain density in the direction toward the electroosmotic material 16 from the liquid surface of the electrolyte solution 60.
  • the osmotic pressure ⁇ of the electrolyte solution 60 in the liquid drawing member 52 is determined by the amount of decrease in surface energy per unit length, and is given by equation (2).
  • the electrolyte solution 60 penetrates upward into the liquid drawing member 52 and the air vent path 56, and the pressure in the liquid draw member 52 and the air vent path 56 rises due to the permeation.
  • the electrolyte solution 60 penetrating the liquid drawing member 52 is allowed to pass
  • the electrolyte solution 60 penetrating through the inside 56 is extruded through air, and reaches the surface of the electropermeable material 16 first.
  • air near the surface of the electroosmotic material 16 flows into the air vent path 56, and the pressure inside the air vent path 56 becomes a positive pressure of about 3 kPa.
  • the electrolyte is applied to the surface of the electro-osmotic material 16 on the inlet side chamber 26 side by the liquid drawing member 52 having a large penetration pressure P.
  • the solution 60 arrives, (2) the air existing in the inlet chamber 26 in advance is discharged to the outside of the inlet chamber 26 from the air vent path 56 with a small osmotic pressure P (3 [kPa]), (3 )
  • the inside of the air vent path 56 is in a state where a positive pressure determined by a small osmotic pressure P (3 [kPa]) is applied.
  • the electrolytic solution 60 can be supplied to the electroosmotic material 16 by (1), and the electrolytic solution is continuously applied to the surface of the electroosmotic material 16 at the start of operation of the electroosmotic flow pump 10A. Can supply 60. Further, by (2), the surface of the electroosmotic material 16 can be wetted without the permeation of the electrolyte solution 60 being blocked by the air inside the inlet side chamber 26.
  • the self-charging mechanism 50 generates the pressure required to discharge the gas generated in the inlet-side chamber 26 (including oxygen gas generated in the vicinity of the electrode 18) to the outside of the pump container 12 by (3). As a result, the pressure required to discharge the oxygen gas generated at the electrode 18 from the gas vent member 44 to the outside can be generated during self-charging.
  • F 2 ⁇ R ⁇ cos 0, R: diameter of the liquid drawing member 52
  • the viscous friction term in the capillary tube and the pressure generated by gravity.
  • t is the moving time of the electrolyte solution 60 inside the liquid drawing member 52
  • r? Is the viscosity coefficient of the liquid drawing member 52.
  • the electroosmotic pump 10A according to the first embodiment is configured as described above. Next, the operational effects of the electroosmotic pump 10A will be described with reference to FIGS. Light up.
  • the upstream side of the electroosmotic flow pump 10A is connected to a tank or cartridge (not shown), and the electrolyte solution 60 is supplied from the tank or cartridge to the self-charging mechanism 50.
  • the upstream side of the liquid drawing member 52 protrudes from the pump container 12, when the tank or the cartridge and the upstream side of the electroosmotic pump 10A are connected, the upstream side of the liquid drawing member 52 is And immersed in the electrolyte solution 60 of the tank or the cartridge.
  • the electrolyte solution 60 penetrates into the liquid drawing member 52 and proceeds to the downstream side of the liquid drawing member 52 and also enters the air vent path 56.
  • the electrolyte solution 60 in the liquid drawing member 52 reaches the surface of the electrode 18 before the electrolyte solution 60 traveling in the air vent path 56, the electrolyte solution 60 in the liquid drawing member 52 is removed from the pores of the electrode 18. 30 penetrates into the electroosmotic material 16, while the electrolyte chamber 60 in the inlet chamber 2 6 pressure rises.
  • the osmotic pressure of the liquid drawing member 52 is set higher than the osmotic pressure of the air vent path 56, the air in the vicinity of the electrode 18 enters the air vent path 56, and the electrolyte in the air vent path 56
  • the solution 60 is discharged to the outside while pushing out, or is discharged to the outside through the degassing member 44.
  • the electrolyte solution 60 that has permeated the electroosmotic material 16 quickly permeates from the inlet electrode 18 side to the outlet electrode 20 side, and is filled with the electrolyte solution 60 inside the electroosmotic material 16. .
  • the electrolyte solution 60 discharged to the outlet side chamber 28 is supplied to a fluid device such as a microfluidic chip (not shown) connected to the downstream side of the flow path 14 via the bubble isolation member 40.
  • a fluid device such as a microfluidic chip (not shown) connected to the downstream side of the flow path 14 via the bubble isolation member 40.
  • the force that the upstream side of the liquid drawing member 52 protrudes from the pump container 12 is the upstream side of the liquid drawing member 52 even if the liquid drawing member 52 and the upstream side of the pump container 12 are at the same position.
  • the electrolyte solution 60 can be supplied from the tank or cartridge described above even when the side is the inside of the pump container 12.
  • the electroosmotic flow pump 10A is arranged on the downstream side of the electroosmotic material 16 even if hydrogen gas is generated in the vicinity of the outlet side electrode 20 by the application of a DC voltage.
  • the arranged bubble separating member 40 allows the driving liquid and the electrolyte solution 60 to pass therethrough while preventing the hydrogen gas from passing therethrough. Accordingly, the hydrogen gas can be prevented from being mixed into various fluid devices such as a microfluidic chip connected to the downstream side. For example, the position control of the liquid passing through the fluid device can be controlled by electroosmotic flow. Pump 10A makes it possible to carry out accurately.
  • the gas vent member 44 By arranging the gas vent member 44, it is possible to prevent the oxygen gas from adhering to the upstream side of the electroosmotic material 16 and the inlet side electrode 18, and the pump performance of the electroosmotic flow pump 10 is deteriorated. Can be suppressed.
  • the liquid drawing member 52 of the self-filling mechanism 50 and the electroosmotic material 16 are in contact with each other, when the liquid drawing member 52 is filled with the electrolyte solution 60 from the outside, the filled electrolyte solution 60 is liquid.
  • the lead member 52 quickly penetrates into the electroosmotic material 16.
  • the driving liquid and the electrolyte solution 60 can be surely discharged to the downstream side of the flow path 14 from the electroosmotic material 16.
  • the self-filling property of the electroosmotic pump 10A can be maintained.
  • the liquid drawing member 52 may be in contact with the electroosmotic material 16 to drive the liquid.
  • the electroosmotic material 16 and the liquid drawing member 52 with the inlet-side electrode 18 interposed therebetween can be brought into contact with each other. Furthermore, the electroosmotic material 16 and the inlet electrode 18 can be brought into contact with the liquid drawing member 52.
  • the bubble isolation member 40 is made of a hydrophilic material
  • the gas pressure (minimum bubble point) required for the gas to pass through the bubble isolation member 40 is 1 [kPa] or more
  • the thickness of the bubble isolation member 40 along the axial direction of the flow path 14 is 3 [mm] or less, a practical method is considered in light of the pump characteristics (dimensions and pressure characteristics) targeted by this embodiment. As a result, it is possible to prevent the hydrogen gas generated in the vicinity of the electrode 20 from flowing out downstream of the flow path 14.
  • the gas vent member 42 is made of a hydrophobic material, and the gas vent member 42 is The passage pressure of the driving liquid is set smaller than the maximum pressure during operation of the driving liquid, and the flow path
  • the hydrogen gas generated in the vicinity of the electrode 20 can be efficiently discharged.
  • the electrolyte solution 60 is mainly described as the driving liquid, but other liquids may be used as the driving liquid! is there.
  • the driving liquid when a DC voltage is applied to the electrodes 18 and 20, bubbles of gas components peculiar to the other liquids are generated in the vicinity of the electrodes 18 and 20.
  • the electrodes 18 and 20 have electrodes 30 and 32 formed therein.
  • the electrodes are formed by depositing metal on the surface of a wire-shaped electrode or a porous body.
  • the prepared electrodes are also possible to use the prepared electrodes.
  • the electrodes 18 and 20 described above are preferably made of a conductive material such as platinum, vigorous Bonn or silver.
  • the force with the electrode 18 as a positive electrode and the electrode 20 as a negative electrode is assumed because the electroosmotic material 16 is negatively charged.
  • the electrode 18 is charged as a negative electrode and the electrode 20 as a positive electrode, the above-described effects can be obtained.
  • a force pulse voltage in which a DC voltage is applied to the electrodes 18 and 20 may be applied! ⁇ .
  • the force in which the pump container 12 is formed in the order of the large-diameter portion 22 and the small-diameter portion 24 from the upstream side is limited to the shape described above. Of course, it is not done.
  • the pump container 12 may be entirely straight, or may be configured in the order of a small diameter portion and a large diameter portion from the upstream side.
  • the bubble separating member 40 is disposed in the outlet side chamber 28, and the gas venting members 42, 44 and the self-charging mechanism 50 are arranged. Is different from the electroosmotic flow pump 10A according to the first embodiment (see FIG. 1 and FIG. 2).
  • the electroosmotic flow pump 10B has a countermeasure against gas generation in the inlet chamber 26 and a case where the upstream inlet diameter is sufficiently large (for example, 5 mm or more), and the outlet chamber is operated even if it is operated for a short time. Used when hydrogen gas generation at 28 is not so noticeable.
  • the electroosmotic flow pump 10B by disposing the bubble isolation member 40 in the outlet side chamber 28, it is possible to avoid the inflow of bubbles into various fluid devices connected to the downstream side of the flow path 14. . In this case, bubbles accumulate in the outlet side chamber 28. However, if the electroosmotic pump 1OB has a short operation time and a small amount of gas is generated, the gas has a large influence on the pump operation. None give. Further, the bubble isolating member 40 also has an effect of preventing foreign matters other than the bubbles described above from flowing into various fluid devices. In this way, in the electroosmotic flow pump 10B, since it is possible to prevent the discharge of bubbles and foreign matters to the downstream side with fewer components, it is possible to manufacture the device at a lower cost.
  • the electroosmotic flow pump 10B can be reliably operated by increasing the volume of the outlet side chamber 28 as compared with the predicted bubble generation amount. Further, in the electroosmotic pump 10B, even if a direct current voltage is applied to the electrodes 18 and 20, the driving liquid having a low electrical conductivity that does not generate gas from the vicinity of the electrodes 18 and 20 flows through the flow path 14.
  • driving liquids include, for example, alcohols and organic solvents.
  • the large diameter portion 22 and the small diameter portion 24 are separated, and the large diameter portion 22 and the small diameter portion 24 hold the bubble isolation member 40 therebetween. It is preferable that the large-diameter portion 22 and the small-diameter portion 24 are fitted in this state. In this case, if a non-illustrated hydrophobic packing, sheet, or O-ring is inserted in the fitting portion between the large diameter portion 22 and the small diameter portion 24, leakage of the electrolyte solution from the fitting portion can be prevented. it can.
  • the large-diameter portion 22 and the small-diameter portion 24 are separated from each other, and the large-diameter portion 22 or the small-diameter portion 24 is secured to the bubble-separating member 40 in a large state.
  • Diameter 22 and small diameter It is also preferable to weld or bond the portion 24.
  • the pump container 12 is formed in the order of the small-diameter portion 70, the small-diameter portion 24, and the large-diameter portion 22 from the upstream side.
  • the pump container 12 is formed in the order of the small-diameter portion 70, the small-diameter portion 24, and the large-diameter portion 22 from the upstream side.
  • it is not limited to the shape described above.
  • the electroosmotic pump 10C according to the third embodiment is that the large-diameter portion 22 and the small-diameter portion 70 in the inlet-side chamber 26 are partitioned by a bubble isolation member (upstream liquid passage member) 72. This is different from the electroosmotic pump 10B according to the second embodiment (see FIG. 3).
  • the bubble isolating member 72 has substantially the same configuration as the bubble isolating member 40, and the generation of gas in the vicinity of the inlet side electrode 18 and the generation of gas in the vicinity of the outlet side electrode 20 are not significant. Used when 10C operation time is short.
  • the electroosmotic flow pump 10D according to the fourth embodiment is the electric osmotic pump according to the second embodiment in that a gas vent member 42 is provided on the side of the pump container 12 in the vicinity of the outlet side electrode 20. Unlike osmotic pump 10B (see Figure 3).
  • the bubble can be discharged from the inlet chamber 26 by its own weight. Used in some cases.
  • a reservoir for supplying the driving liquid to the flow path 14 can be connected to the upstream side of the electroosmotic flow pump 10D.
  • the gas can be discharged to the outside from the degassing member 42. It is possible to prevent the discharge of bubbles and to continue the long-term operation of the electroosmotic pump 10D.
  • a plurality of holes 74 communicating with the outside are formed in the side portion of the outlet side chamber 28 in the pump container 12, and each of the holes is formed on the pump container 12.
  • the gas vent member 42 may be disposed so as to close the hole 74.
  • FIGS. 9 and 10 when the holes 74 are formed at equal intervals along the circumferential direction of the pump container 12, the electroosmotic flow pump 10D is arranged in any posture. However, it is preferable because the gas inside the outlet side chamber 28 can be reliably discharged to the outside through the hole 74 and the gas vent member 42.
  • FIG. 9 shows the case where four holes 74 are formed in the side of the pump container 12 at intervals of 90 [°]
  • FIG. 10 shows 6 in the side of the pump container 12 at intervals of 60 [°]. The case where two holes 74 are formed is shown.
  • the gas venting member 42 may be closed by a plurality of gas venting members 42 corresponding to the holes 74, or each side of the pump container 12 may be wound to form each hole 74. It may be occluded.
  • the gas vent member 42 is made of a plastic material that is hydrophobic and can pass gas (for example, a gas-permeable heat-shrinkable tube having PTFE force).
  • gas for example, a gas-permeable heat-shrinkable tube having PTFE force.
  • a block of porous ceramics having higher mechanical strength may be used. In this case, the porous ceramic is welded or adhered to the side of the pump container 12 after a hydrophobic treatment is performed in advance so as to provide a sufficiently large minimum water breakthrough point for the driving liquid.
  • the porous material sheet or film shown in FIG. 12 may be used instead of the porous ceramic block shown in FIG. . In this case, if the sheet or film is disposed inside the pump container 12, the fixing strength of the sheet or film to the pump container 12 can be ensured.
  • the electroosmotic pump 10E according to the fifth embodiment is such that the bubble separating member 72 is arranged in the inlet-side chamber 26, and therefore the electroosmotic pump 10D according to the fourth embodiment (see Fig. 7). ) Is different.
  • the electroosmotic pump 10E has the same function and effect as the electroosmotic pumps 10C and 10D (see Figs. 6 and 7) according to the third and fourth embodiments described above. This is used when the generation of gas in the interior does not cause a problem, and the inflow of foreign matter or bubbles on the upstream side of the flow path 14 can be blocked by the bubble isolating member 72.
  • the electroosmotic pump 10F according to the sixth embodiment is the electric osmotic pump according to the fifth embodiment in that the degassing member 44 is arranged on the side of the inlet side chamber 26 in the pump container 12. Different from osmotic pump 10E (see Fig. 15).
  • the electroosmotic pump 10F has the same effects as the electroosmotic pumps 10A and 10E (see Figs. 1 and 15) according to the first and fifth embodiments described above. This is used when the generation of gas and the generation of gas from the outlet electrode 20 are remarkable. In this case, if the pressure in the inlet chamber 26 is higher than the external pressure of the electroosmotic pump 10E (internal pressure of the electroosmotic pump 10> external pressure), the gas is released from the gas by the pressure difference. It becomes possible to discharge to the outside through 44.
  • the electroosmotic flow pump 10G according to the seventh embodiment is related to the sixth embodiment in that a self-charging mechanism 50 is disposed in the inlet-side chamber 26 instead of the bubble separating member 72. Different from electroosmotic pump 10F (see Fig. 16).
  • the self-charging mechanism 50 includes a liquid drawing member 52 and an air vent path 56.
  • the electroosmotic pump 10G has the same effects as the electroosmotic pumps 10A and 10F (see Figs. 1 and 16) according to the first and sixth embodiments described above, and is near the inlet side electrode 18 This is used when the generation of gas and the generation of gas in the vicinity of the outlet electrode 20 are remarkable and the self-filling function for the electroosmotic material 16 is required.
  • the pressure inside the inlet side chamber 26 can be controlled by these osmotic pressures. It is not necessary to pressurize the inlet side chamber 26 from the outside of the osmotic pump 10G, and the air in the inlet side chamber 26 and the gas generated near the electrode 18 can be efficiently discharged to the outside.
  • the air vent path 56 is a simple gap, but as shown in Fig. 18, it is made of a porous material (for example, glass fiber) having a lower osmotic pressure than the liquid drawing member 52. May be.
  • a porous material for example, glass fiber
  • the osmotic force of the driving liquid in the liquid drawing member 52 is set to be larger than the osmotic force of the driving liquid in the air extraction path 56, when the driving liquid is supplied to the liquid drawing member 52, The driving liquid quickly penetrates into the liquid drawing member 52 and further rapidly penetrates into the electroosmotic material 16 through the hole 30 of the electrode 18.
  • the porous material may be hydrophobic or hydrophilic.
  • the air vent path 56 is constituted by a material having hydrophobicity and gas permeability (for example, plastic fiber material) shown in FIG. 19 instead of the material having a low osmotic pressure shown in FIG. May be.
  • a material having hydrophobicity and gas permeability for example, plastic fiber material
  • a liquid drawing member 52 is disposed so as to be in contact with the inner wall of the small diameter portion 70, and the liquid drawing member 52 is arranged along the axial direction of the flow path 14.
  • a plurality of air vent paths 56 may be formed.
  • the air vent path 56 is a material force having hydrophobicity and gas permeability. This will restart the electroosmotic pump 10G
  • the inside of the liquid drawing member 52 is locally dried, the air in the dried portion can be discharged to the outside through the air vent path 56.
  • the electroosmotic pump 10H according to the eighth embodiment is different from the electric osmotic pump according to the seventh embodiment in that the protrusion 76 of the liquid drawing member 52 partitions the upstream side of the flow path 14 and the inlet side chamber 26. Different from osmotic pump 10G (see Fig. 17).
  • a protrusion 76 protruding in the radial direction is formed on the side of the liquid drawing member 52, and the protrusion 76 partitions the large diameter portion 22 and the small diameter portion 70 in the inlet side chamber 26.
  • a protrusion 76 is formed so as to protrude from the inner wall of the small diameter portion 70.
  • the liquid drawing member 52 and the protrusion 76 are made of a hydrophilic material having a large osmotic pressure with respect to the driving liquid, and also have a function as the bubble isolating member 72 (FIGS. 6 and 15).
  • the liquid drawing member 52 and the protrusion 76 function as an upstream liquid self-filling mechanism and an upstream liquid passage member. Therefore, it is possible to prevent foreign matters and bubbles from flowing into the electroosmotic flow pump 10 and to prevent air from flowing backward from the inlet side chamber 26 due to pressure reduction on the upstream side of the self-charging mechanism 50. Is possible
  • the electroosmotic flow pump 101 according to the ninth embodiment is that a self-filling mechanism (downstream fluid self-filling mechanism) 80 similar to the self-filling mechanism 50 is also formed on the downstream side of the flow path 14. This is different from the electroosmotic pump 10H according to the eighth embodiment (see FIGS. 22 and 23).
  • the self-filling mechanism 80 has a liquid drawing member 82 that contacts the outlet-side electrode 20, and a projection 84 that partitions the outlet-side chamber 28 is formed on the side of the liquid drawing member 82.
  • the liquid drawing member 82 is made of a hydrophilic material having a large osmotic pressure with respect to the driving liquid, and the protrusion 84 is formed by the bubble isolation member 40 (FIGS. 1, 3, 6, and 5). 7, also functions as Fig. 15-17, Fig. 22 and Fig. 23).
  • the liquid drawing member 82 and the protrusion 84 function as a downstream liquid self-filling mechanism and a downstream liquid passage member.
  • the gas inside the inlet side chamber 26 is discharged to the outside through the gas vent member 44, while the gas inside the outlet side chamber 28 is discharged to the outside via the gas vent member 42.
  • self-filling mechanisms 50 and 80 are arranged on the upstream side and downstream side, respectively, so that it is efficient to discharge the drive liquid from the upstream side to the downstream side and to suck the drive liquid from the downstream side to the upstream side. Can be done well.
  • the liquid drawing member 82 is in contact with the electroosmotic material 16 from the viewpoint of self-filling of the driving liquid.
  • the outlet side electrode 20 it is also possible to bring the electroosmotic material 16 and the liquid drawing member 82 into contact with each other with 20 interposed therebetween, that is, to bring the liquid drawing member 82 and the outlet side electrode 20 into contact with each other. Further, the electroosmotic material 16 and the outlet electrode 20 can be brought into contact with the liquid drawing member 52.
  • the electroosmotic flow pump 10J according to the tenth embodiment is different in that the protrusions 76, 84 are formed on the liquid drawing members 52, 82, and the electroosmotic flow pump 101 according to the ninth embodiment (Fig. (See 24).
  • the electroosmotic pump 10K according to the eleventh embodiment is different from the electroosmotic pump 10D according to the fourth embodiment in that a liquid drawing member 52 is formed in the inlet chamber 26 (see FIG. 7). ) Is different.
  • the electroosmotic pump 10K has the same function and effect as the electroosmotic pumps 10D and 10G (see Figs. 7 and 17) according to the fourth and seventh embodiments, and is generated near the inlet side electrode 18 It is possible to discharge the gas from the air vent path 56 to the outside. This will turn the pump
  • the structure on the mouth side is simplified. That is, in the normal pump, the size of the reservoir of the driving liquid is reduced by downsizing, and as a result, it is difficult to fill the driving liquid from the outside.
  • the liquid drawing member 52 having good driving liquid permeability, the driving liquid can be easily filled, and the reservoir can be downsized. .
  • FIG. 27 An electroosmotic pump 10L according to a twelfth embodiment will be described with reference to FIGS. 27 and 28.
  • FIG. 27 An electroosmotic pump 10L according to a twelfth embodiment will be described with reference to FIGS. 27 and 28.
  • the electroosmotic pump 10L according to the twelfth embodiment is different from the electroosmotic pump 10K according to the eleventh embodiment (see Fig. 26) in that the gas vent member 42 is not formed.
  • the electroosmotic flow pump 10L has the same function and effect as the electroosmotic flow pump 10K according to the eleventh embodiment (see Fig. 26), and is used when degassing is unnecessary.
  • FIG. 29 An electroosmotic pump 10M according to a thirteenth embodiment will be described with reference to FIGS. 29 and 30.
  • FIG. 29 An electroosmotic pump 10M according to a thirteenth embodiment will be described with reference to FIGS. 29 and 30.
  • the electroosmotic pump 10M according to the thirteenth embodiment is different from the electroosmotic pump 10L according to the twelfth embodiment (see FIGS. 27 and 28) in that the bubble isolation member 40 is not formed. .
  • the electroosmotic flow pump 10M (see Fig. 29) is used when degassing is not necessary, similar to the electroosmotic flow pump 1 OL (see Figs. 27 and 28) according to the twelfth embodiment. Further, if the protrusion 76 is formed on the liquid drawing member 52 (see FIG. 30), the foreign matter to the inlet side chamber 26 is the same as in the electroosmotic pump 10H according to the eighth embodiment (see FIG. 22). And the inflow of pubs can be reliably prevented.
  • the electroosmotic flow pump ION according to the fourteenth embodiment is that the self-charging mechanism 80 is also provided in the outlet side chamber 28, so that the electroosmotic flow pump 10M according to the thirteenth embodiment (Fig. 29 and Figure 30).
  • FIG. 31 similarly to the electroosmotic pumps 10L and 10M (see FIGS. 27 to 30) according to the twelfth and thirteenth embodiments, the degassing is used. Further, if the protrusion 76 is formed on the liquid drawing member 52 (see FIG. 32), the foreign matter to the inlet side chamber 26 is the same as in the electroosmotic flow pump 10H according to the eighth embodiment (see FIG. 22). And the inflow of bubbles can be reliably prevented. Further, if the protrusion 84 is formed on the liquid drawing member 82 (see FIG. 33), the bubble to the downstream side of the flow path 14 is the same as the electroosmotic pump 10H according to the ninth embodiment (see FIG. 24). Can be surely prevented.
  • the electroosmotic pump 10O according to the fifteenth embodiment is a more specific configuration of the electroosmotic pump 10K (see Fig. 26) according to the eleventh embodiment.
  • the pump container 12 includes a first portion 12a including a large diameter portion 22 and a second portion 12b including a small diameter portion 24.
  • the first portion 12a side is a second portion from the upstream side.
  • the self-filling mechanism 50, the inlet-side electrode 18, the electroosmotic material 16 and the outlet-side electrode 20 are arranged in this order toward the 12b, and the second portion 12b is opposed to the electroosmotic material 16 and the outlet-side electrode 20.
  • a bubble separating member 40 and a gas venting member 42 are arranged.
  • the first part 12a and the second part 12b by fitting the first part 12a and the second part 12b, the electroosmotic material 16 and the outlet electrode 20, the bubble isolation member 40 and the gas venting member 42, the first part 12a and the second part A closed space partitioned by 12b is formed as the outlet chamber 28.
  • the driving liquid absorbing member 86 is disposed between the liquid drawing member 52 of the self-filling mechanism 50 and the inlet side electrode 18 or the electroosmotic material 16.
  • the drive liquid absorbing member 86 is configured to receive the drive liquid that is self-filled by the liquid draw-in member 52 when the liquid draw-in member 52 is also made of a rigid material such as porous ceramics (for example, alumina). It is provided for the purpose of being able to supply the electroosmotic material 16 promptly.
  • the driving liquid absorbing member 86 is a hydrophilic sponge-like porous body (pore diameter: about 10 [m] to about LOO [m]), a sheet of paper pulp or a sheet of synthetic fiber, It is made of a material that has flexibility, water absorption, hydrophilicity, and water retention, and has good adhesion to the surface of the electroosmotic material 16 and the surface of the liquid drawing member 52.
  • the driving liquid absorbing member 86 is composed of a hydrophilic sheet having a thickness of 1 [mm], a liquid drawing member 52 (pore diameter of the porous ceramic: about several tens [m]), and an electric The sheet is sandwiched between the penetrating material 16 (pore diameter of porous ceramics: about several tens [nm] to several [m]), and the sheet is crushed, whereby the adhesion of the sheet to the surface of the liquid drawing member 52 and the electroosmotic material The adhesion of the sheet to the surface of 16 is improved, and the liquid drawing member 52 and the electroosmotic material 16 are securely connected via the driving liquid absorbing member 86.
  • the drive liquid absorbing member 86 also functions as a cushion for the liquid drawing member 52 and the electroosmotic material 16 or the inlet side electrode 18, so that the assemblability is improved.
  • the material force driving liquid absorbing member 86 having good adhesion to the inlet side electrode 18 is formed, and the inlet side electrode 18 is interposed.
  • the electroosmotic material 16 and the driving liquid absorbing member 86 are brought into contact with each other, that is, the driving liquid absorbing member 86 and the inlet side electrode 18 are sandwiched between the inlet side electrode 18 and the liquid drawing member 52. Can also be brought into contact with each other. Even in this case, it is possible to supply the driving liquid from the liquid drawing member 52 to the electroosmotic material 16 through the driving liquid absorbing member 86.
  • a material force having good adhesion to the inlet side electrode 18 and the liquid drawing member 52 also constitutes the driving liquid absorbing member 86, and the electroosmotic material 16 and the inlet side electrode 18 are provided with the inlet side electrode 18 interposed therebetween.
  • the driving liquid absorbing member 86 that is, the driving liquid absorbing member 86 and the electroosmotic material 16 are sandwiched between the electroosmotic material 16 and the inlet electrode 18 and the liquid drawing member 52. It is also possible to contact the inlet side electrode 18. Even in this case, the electric immersion is performed from the liquid drawing member 52 through the driving liquid absorbing member 86. It is possible to supply driving liquid to the permeable material 16.
  • the inlet side electrode 18 is made of a material that does not wet well with the driving liquid, such as platinum-supported carbon, carbon fiber, and stainless steel mesh, the inlet side electrode It is desirable that the hole diameter of the 18 holes 30 is made large and the electroosmotic material 16 and the driving liquid absorbing member 86 are brought into direct contact via the holes 30.
  • the central portion where the flow path 14 is formed is formed as a convex portion 90 that protrudes toward the outlet-side electrode 20
  • the bubble isolation member 40 described above is disposed on the convex portion 90.
  • a portion adjacent to the convex portion 90 among the opposed portions is formed as a concave portion 88, and the gas vent member 42 is disposed in the concave portion 88.
  • a plurality of holes 74 are formed from the gas vent member 42 toward the downstream side of the drive liquid (left side in FIG. 35).
  • the portion of the second portion 12b, which is essentially flush with the second portion 12b, facing the outlet-side electrode 20 is formed as a concave portion 88 so that the central portion is formed as the convex portion 90.
  • the bubble separating member 40 when, for example, a hydrophilic polyethersulfone membrane (pore diameter 0.2 [m]) is employed as the bubble separating member 40, a minimum bubble point of about 300 [kPa] is obtained.
  • the bubble separating member 40 is bonded onto the convex portion 90 so as to block between the outlet side chamber 28 and the small diameter portion 24 side of the flow path 14 (downstream side of the flow path 14). .
  • a PTFE porous membrane (pore diameter 0.1 [ ⁇ m]) is employed as the gas vent member 42, for example, a minimum water breakthrough point of 300 [kPa] or more can be obtained.
  • the gas vent member 42 is bonded onto the recess 88 so as to block the outlet side chamber 28 and the plurality of holes 74.
  • the method of bonding the bubble separating member 40 to the convex portion 90 and the method of bonding the gas venting member 42 to the concave portion 88 include ultrasonic welding, heat welding, adhesive, laser welding and the like.
  • the gas discharged from the outlet side chamber 28 through the gas vent member 42 is predetermined.
  • the size is sufficient to allow the amount to pass, and the circular shape is a slit shape so that the tensile load of the PTFE membrane (gas vent member 42) based on the pressure in the outlet side chamber 28 is not excessive.
  • the gap between the outlet side chambers 28 along the direction of the flow path 14, in other words, the gap (interval) between the electroosmotic material 16 or the outlet side electrode 20 and the gas venting member 42, or electroosmosis is an important parameter in terms of the characteristics of the electroosmotic pump 10O. These gaps are 1 [/ ⁇ ⁇ ] to 3 [ ⁇ m] is desirable.
  • each gap is appropriately set within the above-mentioned range with 3 [mm] as the upper limit and 1 [ ⁇ m] as the lower limit (for example, l [mm] This is because the electroosmotic pump 10O is preferred in terms of the characteristics.
  • the gap by reducing the gap to some extent within the above-mentioned range, the size of bubbles generated in the electroosmotic flow pump 10O can be limited, so that the pump operation is stable. In addition, it is possible to suppress fluctuations in the pump flow rate when gas is discharged from the outlet side chamber 28 through the gas vent member 42 and the hole 74 to the outside. Furthermore, the dead volume inside the electroosmotic flow pump 10O can be reduced. Furthermore, by setting the size of the gap within the above-mentioned range, the influence of gravity on the gas discharge is reduced, so that the pump characteristics can be obtained no matter which direction the electroosmotic pump 10O is arranged. As a result, the orientation of the pump can be made free. For example, the downstream side (small diameter portion 24 side) of the electroosmotic pump 10O can be arranged upward.
  • the flow of the driving liquid in the flow path 14 may be blocked, or the flow rate of the driving liquid may fluctuate.
  • the vent member 42 By disposing the vent member 42, bubbles that are more likely to accumulate in the concave portion 88 than the convex portion 90 can be efficiently discharged to the outside from the gas vent member 42 through the hole 74. That is, Since the bubble cannot pass through the bubble separating member 40 on the convex portion 90, the bubble moves to the region of the concave portion 88 provided on the side portion of the convex portion 90, and the gas vent member is caused by the internal pressure of the outlet side member 28. It is discharged from 42 through the hole 74 to the outside.
  • the driving liquid that is self-filled in the liquid drawing member 52 is efficiently absorbed by the driving liquid absorbing member 86, and promptly absorbed by the electroosmotic material 16.
  • the driving liquid in the electroosmotic material 16 is discharged from the outlet-side chamber 28 through the bubble isolation member 40. Supplied externally. Further, the bubbles in the outlet side chamber 28 are discharged from the gas vent member 42 to the outside through the hole 74.
  • the liquid drawing member 52, the electroosmotic material 16, and the electroosmotic material 16 on the upstream side of the electroosmotic material 16 or the first electrode 18 in the flow path 14 The force described in the case where the driving liquid absorbing member 86 is sandwiched between Z or the first electrode 18 Instead of (or in addition to) this configuration, on the downstream side of the electroosmotic material 16 or the second electrode 20
  • the driving liquid absorbing member 86 is sandwiched between the liquid drawing member 82 (see FIGS. 24, 25, and 31 to 34) and the electropermeable material 16 and Z or the second electrode 20
  • the above-described effects are achieved.
  • the liquid drawing member 82 see FIGS. 24, 25, and 31 to 34
  • the gap between the electroosmotic material 16 or the outlet electrode 20 and the gas vent member 42 along the direction of the flow path 14 The force described in the case where the gap between the material 16 or the outlet electrode 20 and the bubble separating member 40 is 1 [ ⁇ m] to 3 [mm] instead of this configuration (or in consideration of this configuration)
  • the gap between the electroosmotic material 16 or the inlet side electrode 18 and the gas vent member 44 see FIGS. 1, 16, 17, 17 and 22 to 25
  • the electroosmotic material 16 or the inlet side electrode 18 and the bubble isolating member 72 Of course, the above-described effect can be obtained in the same manner even when the gap with respect to (see FIGS. 6, 15 and 16) is set to 1 [/ ⁇ ⁇ ] to 3 [ ⁇ ].
  • the electroosmotic pump 10P according to the sixteenth embodiment has both the upstream side (inlet 87) and the downstream side (outlet 89) of the flow path 14 on one side 91 side (right side in Fig. 36).
  • the opposite other side 93 side This is different from the electro-osmotic pump 10A according to the first to fifteenth embodiments: LOP (see FIGS. 1 to 35) in that a gas vent member 42 and a plurality of holes 74 are provided on the left side of FIG. .
  • the mounting property (connectivity) of the electroosmotic pump 10P to the installation surface of the substrate and the like is improved, and the height of the entire pump is increased. Can be lowered. Therefore, the electroosmotic flow pump 10P is suitable as a small-sized pump for planar mounting in, for example, an elect port apparatus.
  • the liquid supply apparatus 110 is configured such that methanol or water diluted with methanol or water in a cylindrical liquid container 92 having a closed bottom and an open top (for example, a depth of 15 [cm]).
  • a liquid fuel 94 is filled, and the electroosmotic pump 10O is disposed on the upper side with the downstream side (small diameter portion 24 side) facing upward.
  • a liquid fuel absorbing member 96 that has good absorbability with respect to the liquid fuel 94 and is connected to the liquid drawing member 52 is disposed.
  • the liquid fuel absorbing member 96 is a porous material that is hydrophilic and has a high porosity. It is desirable that the liquid fuel absorbing member 96 is a fibrous material (for example, a water retention material made of natural pulp fiber).
  • the liquid bow I insertion member 52 may be made of the same material, and it is also preferable that the liquid bow I insertion member 52 is made of a material having a larger water retention amount than the material employed.
  • the liquid fuel 94 absorbed by the liquid fuel absorbing member 96 is self-filled into the liquid drawing member 52 via the liquid fuel absorbing member 96, and further electroosmotic via the driving liquid absorbing member 86. Supplied to material 16.
  • the liquid fuel 94 in the electroosmotic material 16 is supplied from the outlet side chamber 28 to the outside through the bubble isolation member 40. Then, the bubbles in the outlet side chamber 28 are discharged to the outside from the gas vent member 42 through the hole 74.
  • liquid fuel 94 such as methanol or methanol water described above is used as a fuel of the fuel cell system
  • the liquid fuel 94 in the liquid container 92 can be supplied to the fuel cell system with a simpler configuration. Can do.
  • the liquid fuel 94 can be supplied in any posture, and is suitable for use in mono equipment and the like. Further, by disposing the liquid fuel absorbing member 96 inside the liquid container 92, all of the liquid fuel 94 filled in the liquid container 92 can be supplied to the outside.
  • the electroosmotic pump 10O and the liquid fuel absorbing member 96 are detachable from the liquid container 92, they are incorporated into the electroosmotic pump 10O and the liquid fuel absorbing member 96 on the fuel cell system side. By replacing only the liquid container 92, the liquid fuel 94 can be easily replenished.
  • the force described in the case of applying the electropermeable pump 10O according to the fifteenth embodiment is described.
  • the electroosmotic pump 10A ⁇ according to the embodiment: L0N, 10P can be used to supply the liquid fuel 94 in the liquid container 92 to the outside. It is a theory.
  • the electroosmotic pump and the liquid supply device according to the present invention are not limited to the above-described embodiments, and various configurations can be adopted without departing from the gist of the present invention.
  • the downstream liquid passage member disposed on the downstream side of the electroosmotic material is driven. Allow the liquid to pass while blocking the passage of the gas. This prevents the gas from flowing into various fluid devices such as a microfluidic chip connected to the downstream side. For example, the position of the liquid passing through the fluid device can be accurately controlled.
  • the upstream liquid self-filling mechanism and the electroosmotic material are in contact with each other.
  • the filled driving liquid quickly penetrates into the electroosmotic material from the upstream liquid self-filling mechanism.
  • the driving liquid can be reliably discharged downstream of the electroosmotic material in the flow path.
  • the liquid supply device of the present invention when a voltage is applied to the first electrode and the second electrode of the electroosmotic flow pump, the liquid filled in the liquid container is removed from the electroosmotic flow pump. Therefore, the liquid can be supplied with a simple configuration.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • General Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Reciprocating Pumps (AREA)

Abstract

 電気浸透流ポンプ(10A)では、出口側チェンバー(28)にバブル隔離部材(40)が出口側電極(20)より離間して配置され、出口側電極(20)近傍におけるポンプ容器(12)の側部にガス抜き部材(42)が配設され、入口側電極(18)近傍におけるポンプ容器(12)の側部にガス抜き部材(44)が配設されている。また、入口側チェンバー(26)には自己充填機構(50)が配設され、この自己充填機構(50)は、入口側電極(18)を介して電気浸透材(16)に接触する液体引込部材(52)と、該液体引込部材(52)側部を囲繞する囲繞部材(54)とポンプ容器(12)の内壁との間で形成されたエア抜きパス(56)とから構成される。

Description

明 細 書
電気浸透流ポンプ及び液体供給装置
技術分野
[0001] 本発明は、バイオテクノロジーや分析ィ匕学等に用いられるマイクロ流体チップ内部 の液体の駆動制御や、携帯型エレクトロニクス機器内の流体の駆動制御に好適な電 気浸透流ポンプ及び、この電気浸透流ポンプを用いた液体供給装置に関する。 背景技術
[0002] 電気浸透流ポンプは、電気浸透現象を用いて流体を輸送するポンプであり、例え ば、キヤピラリーやマイクロ流体チップの内部における流体の駆動手段として用いら れている。
[0003] この場合、前記電気浸透現象が、数百 [ m]以下の非常に狭幅の流路において 顕著になるという特性を利用して、前記キヤビラリ一の直径を、例えば、数百 [ /z m]以 下にし、あるいは、前記マイクロ流体チップ内の流路を、例えば、数十 [ /z m]以下に 設定する一方で、前記キヤビラリ一又は前記流路内に 2つの電極 (正極及び負極)を 配置することにより、前記キヤビラリ一又は前記流路自体をポンプとしている。
[0004] 図 38に示す電気浸透流ポンプ 200では、電解質溶液が収容されたリザーバ 202、 204間を電解質溶液が充填されたキヤピラリー 206で連結し、直流電源 208よりリザ ーノ 202、 204に各々配置された電極 210、 212に対して直流電圧を印加すること により、リザーバ 202よりキヤピラリー 206を介してリザーバ 204に前記電解質溶液を 輸送する。
[0005] また、電気浸透流ポンプ 200では、(1)前記電解質溶液の駆動時に脈動が発生し ない、(2)リザーバ 202、 204に電極 210、 212を挿入して直流電圧を印加するだけ で前記電解質溶液の駆動が可能であるため操作性が良好である、(3)機械的な可 動部分がなく構造が簡単である等の特長があることから、狭幅な流路だけで構成され た数 [mm]程度のさらにマクロな領域でこれらのポンプを活用することも検討されて いる。
[0006] 図 39は、電気浸透流ポンプ 200 (図 38参照)を小型化した電気浸透流ポンプ 214 であり、この電気浸透流ポンプ 214は、ポンプ容器 216内に形成された流路 218に 配設された電気浸透材料 (以下 EO材料ともいう。)からなる電気浸透材 220、該電気 浸透材 220の上流側及び下流側に配置され且つ複数の孔が流路方向に形成され た電極 222、 224で構成される。なお、上記した電極構造は、これに限定されるもの ではなぐ例えば、ワイヤ形状で構成することも可能である。
[0007] この場合、前記 EO材料として電気浸透現象を示す多孔質体や微細粒子、ファイバ 一等の充填構造を用いることにより、前述したキヤピラリー 206 (図 38参照)や前記マ イク口流体チップ内の流路を用いなくても、 [ LZmin]〜[mLZmin]あるいはそれ 以上のオーダの流量の電解質溶液を輸送することが可能となる(非特許文献 1〜3参 照)。
[0008] また、直流電源 208より電極 210、 212、 222、 224に印カロされる直流電圧につい ても、電気浸透流ポンプ 200 (図 38参照)では数十 [kV]必要であるのに対して、電 気浸透流ポンプ 214では、数 [V]程度の直流電圧で電解質溶液を駆動することが可 能である。
[0009] このように、低電圧で大流量且つ所望の駆動圧力の電解質溶液を輸送することが 可能となれば、細径のキヤピラリー 206やマイクロ流体チップの流路を用いてポンプ を構成するという制約がなくなり、電気浸透流ポンプ 214の応用範囲を拡大すること が可能となる。
[0010] 例えば、図 40に示す本出願人が案出した電気浸透流ポンプ 230の場合、この電気 浸透流ポンプ 230の上部には電解質溶液を収容するリザーバ 232が形成され、その 下部は、マイクロ流体チップ 234の流路 236に直接接続されている。ここで、数 [V] 〜30 [V]程度の直流電圧を電極 222、 224に印加すれば、数十 [ LZmin]程度 の最大流量で且つ 100 [kPa]以上の最大圧力で前記電解質溶液をリザーバ 232よ り流路 236に供給することが可能となる。
[0011] 非特許文献 1:米国特許出願公開第 2003Z0068229号明細書
非特許文献 2 :米国特許第 3923426号公報
非特許文献 3:米国特許出願公開第 2004Z0234378号明細書
発明の開示 発明が解決しょうとする課題
[0012] し力しながら、前述した電気浸透現象は電気化学的現象であるので、直流電源 20 8より電極 222、 224に直流電圧を印カロしたときに、該電極 222、 224の近傍にガス が発生する。発生した前記ガスのうち電解質溶液に溶解しきれないガスは、ノ《ブルと して前記電解質溶液内に浮遊し、浮遊する前記バブルは、流路 236内での流動の 不安定性、電気浸透流ポンプ 214の動作不良、該流路 236の下流側で行われる各 種計測や化学反応や化学分析に大きな影響を及ぼす。
[0013] より具体的に説明すると、電気浸透流ポンプ 214は、一般に、電解質溶液中でのィ オン電気伝導と電極 222、 224での電子伝導が混在する系であり、該電極 222、 22 4では電荷交換の際にガス発生を伴う。
[0014] 例えば、図 39において、駆動液体を水溶液とし、電気浸透材 220のゼータ電位を 負電位とし、上流側の電極 222を正極とする一方で、下流側の電極 224を負極とし た場合、直流電源 208より電極 222、 224に直流電圧を印加すると、該電極 222、 2 24近傍では、電気化学反応によって下記の反応が発生する。
[0015] 2H 0→2H +0 (1)
2 2 2
この結果、電極 224 (負極)では水素ガスが発生し、一方で、電極 222 (正極)では 酸素ガスが発生する。電極 224近傍での水素発生量が前記水溶液の溶解度を越え る場合には、前記水素ガスによるバブルが生成され、電気浸透流ポンプ 214の下流 側の系統に流れていく。
[0016] この場合、電気浸透流ポンプ 214を用いて下流側に接続されたマイクロ流体チップ に対する微小流体の駆動制御を行う際に、前記マイクロ流体チップのチャンネル内 に流入したバブルによって、前記微小流体の正確な位置制御が困難になる。
[0017] また、前記バブルは、前記系統内に配置されたセンサーゃァクチユエータに対して も大きな影響を及ぼす。例えば、熱方式の流量センサーを用いて前記微小流体の流 量を制御する際に、前記バブルの混入によって正確な流量計測が困難となり、この 結果、前記流量センサーを用いたフィードバック制御を行うことができな 、と 、う問題 がある。
[0018] 一方、電気浸透材 220に形成された貫通孔の直径は、 [ μ m]オーダ以下のサイズ であるので、電極 222近傍に発生した酸素ガスは、電気浸透材 220を通過することな ぐ電極 222あるいは電気浸透材 220の表面を覆うことになる。この結果、電極 222あ るいは電気浸透材 220と前記水溶液との接触領域が小さくなつて、電気浸透材 220 内部の電界分布が歪んだり、電気浸透材 220内部の電解質水溶液の流れが阻害さ れるので、流量低下や流量停止等のポンプ性能の劣化が発生する。
[0019] さらに、ポンプ流量を増やす目的で電極 222、 224間の電界強度を高めると、前記 電界強度の増大によってバブルの発生がより顕著となる。
[0020] また、電気浸透流ポンプ 214では、電気浸透現象の安定化を図る目的で、電気伝 導度の高 ヽ電解質溶液 (緩衝溶液等)を駆動液体として用いることが多ぐ直流電圧 を電極 222、 224に印カロしたときに電極 222、 224間を流れる電流は、必然的に大き くなり、この結果、バブルの発生が促進される。
[0021] このように、電気浸透流ポンプ 214では、バイオロジーや医療、さらにマイクロエレク トロ-タス関連機器への応用を考慮した場合、ポンプ性能の安定性やポンプ効率の 向上を図るために、前述したガス発生の問題を解決する必要がある。
[0022] 上述したガス発生に関し、従来より、いくつかの対策が検討されている。すなわち、 第 1の対策としては、イオン導電性材料を電極として用い、電気浸透流ポンプ 214外 部で前記イオン導電性材料が電子導体に電気的に接続することにより、ガス発生箇 所を電気浸透流ポンプ 214の外部とするものである。この場合、電気浸透流ポンプ 2 14の内部におけるガス発生の問題を回避することが可能となる力 電気浸透流ボン プ 200、 214、 230の外部でイオン伝導力も電子伝導へ変換する必要があるので、シ ステム全体が複雑となる。
[0023] 第 2の対策としては、電気浸透流ポンプ 214の流路を閉ループ流路とし、触媒を用 Vヽた再結合器によって発生した酸素ガス及び水素ガスを水に変換するものである。こ の場合、本発明が対象としている電気浸透流ポンプ 214の寸法は、小型の携帯機器 に収容可能で且つマイクロ流体チップ上に搭載可能な数 [mm]〜数 [cm]のサイズ であるので、前記再結合器の採用によってポンプの寸法が大型化し且つ構造が複 雑ィ匕するという問題がある。
[0024] 一方、電気浸透流ポンプ 214の上流側には電解質溶液を電気浸透材 220に供給 するためのタンクやカートリッジが接続されている。ここで、電気浸透流ポンプ 214を 汎用機器として幅広く応用する場合には、電気浸透材 220に電解質溶液を確実に 供給して、該電気浸透材 220より前記下流側の各機器に前記電解質溶液を排出で きることが必要がある。この場合、前述した電気浸透材 220は、浸透性を有する材料 であり、駆動液体としての前記電解質溶液が上流側の表面に到達すれば、自発的に 前記電解質溶液を吸収して下流側に排出する、いわゆる自己充填性能を有する。
[0025] し力しながら、電気浸透流ポンプ 214では、上流側より駆動液体が流れてきても、 流路 218における電気浸透材 220の上流側が狭幅である場合 (数 [mm]以下)には 、前記駆動液体が電極 222近傍の気体を追い出して完全に前記上流側を充填する ことは困難であり、前記気体が前記上流側に閉じ込められた状態となる。これにより、 電極 222や電気浸透材 220の表面に前記駆動液体が到達せず、電気浸透流ボン プ 214が動作しな力つたり、ポンプ性能が低下するという問題がある。
[0026] 本発明は、上述した課題を解決するためになされたものであり、電極近傍で発生し たガスが下流側に流れることを阻止することが可能な電気浸透流ポンプを提供するこ とを目的とする。
[0027] また、本発明は、電気浸透材に駆動液体を確実に供給することを可能とする電気 浸透流ポンプを提供することを目的とする。
[0028] さらに、本発明は、より簡単な構成で液体容器内に充填された液体を外部に供給 可能な液体供給装置を提供することを目的とする。
課題を解決するための手段
[0029] 本発明に係る電気浸透流ポンプは、流路内に設けられた電気浸透材の上流側に 第 1電極を配置し且つ下流側に第 2電極を配置し、前記第 1電極及び前記第 2電極 に電圧を印加したときに前記電気浸透材を介して前記流路内に駆動液体を流通さ せる電気浸透流ポンプにおいて、前記流路の下流側には、前記電圧を印加したとき に前記第 2電極近傍に生成されるガスの前記下流側への通過を阻止し、一方で、前 記駆動液体を通過可能な下流側液体通過部材が前記第 2電極より下流側に配置さ れていることを特徴とする。
[0030] 上記した構成によれば、前記電圧の印加によって前記第 2電極近傍に前記ガスが 生成しても、前記電気浸透材の下流側に配置された前記下流側液体通過部材は、 前記駆動液体を通過させ、一方で、前記ガスの通過を阻止する。これにより、前記下 流側に接続されたマイクロ流体チップ等の各種流体機器に前記ガスが流入すること を阻止することが可能となり、例えば、前記流体機器内を通過する液体の位置制御 を正確に行うことが可能となる。
[0031] ここで、前記電気浸透材と前記下流側液体通過部材との間には、前記流路より外 部に前記ガスを放出する下流側ガス抜き部材が配置されて 、ることが好ま 、。この 場合、前記第 2電極近傍で発生した前記ガスを前記下流側ガス抜き部材を介して外 部に排出するので、前記電気浸透流ポンプを長時間運転した際に、前記第 2電極や 前記電気浸透材へのバブルの付着によるポンプ性能の低下を抑制することができる 。一方、前記第 1電極近傍で生成されたガスの一部が、前記電気浸透材を通過して も、前記下流側ガス抜き部材を介して外部に排出することができる。
[0032] また、前記流路の上流側には、前記電気浸透材への異物の流入を阻止し、一方で 、前記電圧を印加したときに前記駆動液体を通過可能な上流側液体通過部材が前 記電気浸透材より上流側に配置されていることが好ましい。これにより、前記電気浸 透材表面への前記異物やバブル等の付着が阻止されるので、前記電気浸透流ボン プのポンプ性能を確保することが可能となる。
[0033] さらに、前記電気浸透材と前記上流側液体通過部材との間には、前記電圧を印加 したときに前記第 1電極の近傍に生成されるガスを外部に放出する上流側ガス抜き 部材が配置されていることが好ましい。これにより、前記電気浸透材の上流側におけ る前記ガスの付着を阻止することができ、前記電気浸透流ポンプのポンプ性能の劣 化を抑制することができる。
[0034] さらにまた、前記流路の上流側には、前記駆動液体を自己充填可能な上流側液体 自己充填機構が前記電気浸透材又は前記第 1電極と接触した状態で配置されて 、 ることが好ましい。これにより、前記駆動液体を前記電気浸透材に確実に供給するこ とが可能となる。
[0035] さらにまた、前記流路の下流側には、前記駆動液体を自己充填可能な下流側液体 自己充填機構が前記電気浸透材又は前記第 2電極と接触した状態で配置されて 、 ることが好ましい。これにより、前記電気浸透材より排出された前記駆動液体を、前記 流路の下流側に接続された各種流体機器に対して確実に供給することが可能となる
[0036] なお、前記上流側液体自己充填機構は、前記電気浸透材及び前記第 1電極と接 触した状態で配置されている場合でも上述した効果が得られる。また、前記下流側液 体自己充填機構は、前記電気浸透材及び前記第 2電極と接触した状態で配置され て 、る場合でも上述した効果が得られる。
[0037] また、本発明に係る電気浸透流ポンプは、流路内に設けられた電気浸透材の上流 側に第 1電極を配置し且つ下流側に第 2電極を配置し、前記第 1電極及び前記第 2 電極に電圧を印加したときに前記電気浸透材を介して前記流路内に駆動液体を流 通させる電気浸透流ポンプにおいて、前記流路の上流側には、前記駆動液体を自 己充填可能な上流側液体自己充填機構が前記電気浸透材又は前記第 1電極と接 触した状態で配置されて 、ることを特徴とする。
[0038] 上記した構成によれば、前記上流側液体自己充填機構と前記電気浸透材とが接 触しているので、外部より前記上流側液体自己充填機構に前記駆動液体を充填す ると、充填された前記駆動液体が前記上流側液体自己充填機構より前記電気浸透 材の内部に速やかに浸透する。この状態で、前記電圧を前記各電極に印加すると、 前記電気浸透材より前記流路の下流側に前記駆動液体を確実に排出することが可 能となる。この結果、前記第 1電極近傍に気体が存在する場合であっても、前記電気 浸透流ポンプの自己充填性を確保することが可能となる。
[0039] ここで、前記流路の上流側には、前記電気浸透材への異物の流入を阻止し、一方 で、前記電圧を印加したときに前記駆動液体を通過可能な上流側液体通過部材が 前記電気浸透材より上流側に配置されていることが好ましい。これにより、前記電気 浸透材表面への前記異物やバブル等の付着が阻止され、前記電気浸透流ポンプの ポンプ性能を確保することが可能となる。
[0040] また、前記電気浸透材と前記上流側液体通過部材との間には、前記電圧を印加し たときに前記第 1電極の近傍に生成されるガスを外部に放出する上流側ガス抜き部 材が配置されていることが好ましい。これにより、前記電気浸透材の上流側における 前記ガスの付着を阻止することができ、前記電気浸透流ポンプのポンプ性能の劣化 を防止することが可能となる。
[0041] さらに、前記流路の下流側には、前記駆動液体を自己充填可能な下流側液体自 己充填機構が前記電気浸透材又は前記第 2電極と接触した状態で配置されている ことが好ましい。これにより、前記電気浸透材より排出された前記駆動液体を、前記 下流側液体自己充填機構を介して前記電気浸透流ポンプの下流側に接続された各 種流体機器に確実に供給することが可能となる。この場合、上流側と下流側とに液体 自己充填機構がそれぞれ配置されているので、上流側から下流側への前記駆動液 体の排出や、下流側から上流側への前記駆動液体の吸入を効率よく行うことができ る。
[0042] なお、前記上流側液体自己充填機構は、前記電気浸透材及び前記第 1電極と接 触した状態で配置されている場合でも上述した効果が得られる。また、前記下流側液 体自己充填機構は、前記電気浸透材及び前記第 2電極と接触した状態で配置され て 、る場合でも上述した効果が得られる。
[0043] さらにまた、前記流路の下流側には、前記ガスの前記下流側への通過を阻止し、 一方で、前記駆動液体を通過可能な下流側液体通過部材が前記第 2電極より下流 側に配置されていることが好ましい。これにより、前記電圧の印加によって前記第 2電 極近傍に前記ガスが生成しても、前記電気浸透材の下流側に配置された前記下流 側液体通過部材は、前記駆動液体を通過させ、一方で、前記ガスの通過を阻止する 。この結果、前記下流側に接続されたマイクロ流体チップ等の各種流体機器に前記 ガスが流入することを防止することが可能となり、例えば、前記流体機器内を通過す る液体の位置制御を正確に行うことが可能となる。
[0044] さらにまた、前記電気浸透材と前記下流側液体通過部材との間には、前記電圧を 印加したときに前記第 2電極の近傍に生成されるガスを外部に放出する下流側ガス 抜き部材が配置されていることが好ましい。この場合、前記第 2電極近傍で発生した 前記ガスを前記下流側ガス抜き部材を介して外部に排出するので、前記電気浸透 流ポンプを長時間運転した際に、前記第 2電極や前記電気浸透材へのバブルの付 着によるポンプ性能の低下を抑制することができる。一方、前記第 1電極近傍で生成 されたガスの一部が、前記電気浸透材を通過しても、前記下流側ガス抜き部材を介 して外部に排出することができる。
[0045] そして、上述した液体通過部材は、親水性材料力 なり、前記液体通過部材内をガ スが通過するために必要なガス圧は、 l [kPa]以上であり、前記流路の方向に沿った 前記液体通過部材の厚みは、 3 [mm]以下であることが好まし 、。
[0046] また、前記ガス抜き部材は、前記流路の側部に形成された疎水性材料からなり、前 記ガス抜き部材に対する前記駆動液体の通過圧力が、前記駆動液体の運転時の最 大圧力よりも小さぐ前記ガスの通過方向に沿った前記ガス抜き部材の厚みは、 3 [m m]以下であることが好ま U、。
[0047] さらに、前記液体自己充填機構は、前記流路に沿って前記電気浸透材の近傍に 配置された自己充填部と、前記自己充填部の側部に形成され且つ前記自己充填部 と浸透圧の異なるエア抜き部とから構成され、前記自己充填部は、前記駆動液体を 自己充填して前記電気浸透材に供給し、前記エア抜き部は、前記自己充填部及び 前記エア抜き部の浸透圧差に基づいて、前記電気浸透材の上流側に残存するエア を外部に排出することが好ましい。
[0048] さらにまた、前記自己充填部は、親水性材料力 なり、前記エア抜き部は、疎水性 材料力もなることが好まし!/、。
[0049] さらにまた、前記流路の方向に沿った前記電気浸透材又は前記第 1電極と前記上 流側液体通過部材との間隔は、 3 [mm]以下であり、及び Z又は、前記流路の方向 に沿った前記電気浸透材又は前記第 2電極と前記下流側液体通過部材との間隔は 、 3 [mm]以下であることが好ましい。すなわち、前記電気浸透材又は前記第 1電極 と前記上流側液体通過部材との間隔、及び Z又は、前記電気浸透材又は前記第 2 電極と前記下流側液体通過部材との間隔は、前記電気浸透流ポンプの特性上、重 要なパラメータであるが、表面張力が重力に比べて支配的となるときの前記間隔が 3 [mm]程度であり、一方で、前記流路における流路抵抗が著しく大となる前記間隔が 1 [ m]未満程度であるので、 3 [mm]を上限値とし、 1 [; z m]を下限値とした所定の 範囲内(1 [ π!]〜 3 [mm])で前記間隔を適宜設定することが前記電気浸透流ボン プの特性上好まし 、からである。 [0050] 特に、前記電気浸透材又は前記第 1電極に対向して前記上流側液体通過部材ゃ 前記上流側ガス抜き部材を配置した場合には、前記電気浸透材又は前記第 1電極と 前記上流側液体通過部材との間隔や、前記電気浸透材又は前記第 1電極と前記上 流側液体通過部材との間隔を、上述した範囲内に設定することが望ましい。さらに、 前記電気浸透材又は前記第 2電極に対向して前記下流側液体通過部材ゃ前記下 流側ガス抜き部材を配置した場合にも、前記電気浸透材又は前記第 2電極と前記下 流側液体通過部材との間隔や、前記電気浸透材又は前記第 2電極と前記下流側液 体通過部材との間隔を、上述した範囲内に設定することが望ましい。
[0051] さらに、前記上流側液体自己充填機構と前記電気浸透材又は前記第 1電極との間 には、前記上流側液体自己充填機構と前記電気浸透材又は前記第 1電極とに密着 可能で、且つ親水性材料力 なる駆動液体吸収部材が配置され、及び Z又は、前 記下流側液体自己充填機構と前記電気浸透材又は前記第 2電極との間には、前記 下流側液体自己充填機構と前記電気浸透材又は前記第 2電極とに密着可能で、且 つ親水性材料からなる駆動液体吸収部材が配置されて 、ることが好ま 、。
[0052] これにより、剛性のある材料を用いて前記上流側液体自己充填機構を構成した場 合に、前記上流側液体自己充填機構の表面と前記電気浸透材又は前記第 1電極の 表面とに対して前記駆動液体吸収部材が密着するので、前記上流側液体自己充填 機構に自己充填された前記駆動液体を、前記駆動液体吸収部材で効率よく吸収し て、前記電気浸透材に速やかに供給することが可能となる。この場合、前記駆動液 体吸収部材として柔軟性及び保水性を有する吸水材を採用し、この駆動液体吸収 部材を前記上流側液体自己充填機構と前記電気浸透材又は前記第 1電極とで挟み 込むことが前記駆動液体吸収部材の密着性を高める上で望ましい。また、前記駆動 液体吸収部材は、前記上流側液体自己充填機構と前記電気浸透材又は前記第 1電 極とに対するクッションとしての機能も果たすので、組み立て性が向上する。
[0053] また、前記下流側液体自己充填機構と前記電気浸透材又は前記第 2電極との間に は、前記駆動液体吸収部材を配置した場合にも、剛性のある材料を用いて前記下流 側液体自己充填機構を構成した際に、前記下流側液体自己充填機構の表面と前記 電気浸透材又は前記第 2電極の表面とに対して前記駆動液体吸収部材が密着する ので、前記下流側液体自己充填機構に自己充填された前記駆動液体を、前記駆動 液体吸収部材で効率よく吸収して、前記電気浸透材に速やかに供給することが可能 となる。この場合も、前記駆動液体吸収部材として柔軟性及び保水性を有する吸水 材を採用し、この駆動液体吸収部材を前記下流側液体自己充填機構と前記電気浸 透材又は前記第 2電極とで挟み込むことが前記駆動液体吸収部材の密着性を高め る上で望ましい。また、前記駆動液体吸収部材は、前記下流側液体自己充填機構と 前記電気浸透材又は前記第 2電極とに対するクッションとしての機能も果たすので、 組み立て性が向上する。
[0054] またさらに、上述した各発明において、前記流路は、前記電気浸透材、前記第 1電 極、前記第 2電極を収容するポンプ容器内に形成され、前記ポンプ容器における前 記流路の上流側の入口と、前記流路の下流側の出口とは、同一面側に設けられて いることが好ましい。これにより、基板等の設置面に対する前記電気浸透流ポンプの 取付性が向上すると共に、ポンプ全体の高さを低くすることができる。また、前記同一 面に前記入口と前記出口とを設けることにより、その反対面に前記各ガス抜き部材を 設けることも可能である。従って、本発明に係る電気浸透流ポンプは、例えば、エレク トロ-タス機器における平面実装用の小型ポンプとして好適である。
[0055] さらに、本発明に係る液体供給装置は、上述した電気浸透流ポンプと、液体が充填 された液体容器とを有し、前記液体容器内の前記液体を前記電気浸透流ポンプを 介して外部に供給することを特徴とする。これにより、前記電気浸透流ポンプの第 1 電極及び第 2電極に電圧を印加すれば、前記液体容器に充填された前記液体を前 記電気浸透流ポンプを介して外部に供給することができるので、簡単な構成で前記 液体を供給することが可能となる。特に、前記液体を前記上流側液体自己充填機構 にて自己充填した状態で、前記第 1電極及び前記第 2電極に電圧を印加すれば、前 記上流側液体自己充填機構から前記電気浸透材を介して外部に前記液体を供給 することができるので、効率よく前記液体を供給することが可能となる。なお、この液 体供給装置では、前記液体をメタノールや水で希釈したメタノール水とすれば、燃料 電池システムに前記メタノール又は前記メタノール水を供給する液体燃料供給用力 ートリッジとして好適である。 図面の簡単な説明
[図 1]図 1は、第 1実施形態に係る電気浸透流ポンプの断面図である。
[図 2]図 2は、図 1の自己充填機構による自己充填機能を説明するための要部断面 図である。
[図 3]図 3は、第 2実施形態に係る電気浸透流ポンプの断面図である。
[図 4]図 4は、図 3の大径部分と小径部分との嵌合状態を示す部分拡大断面図である
[図 5]図 5は、図 3の大径部分と小径部分との接合状態を示す部分拡大断面図である
[図 6]図 6は、第 3実施形態に係る電気浸透流ポンプの断面図である。
[図 7]図 7は、第 4実施形態に係る電気浸透流ポンプの断面図である。
[図 8]図 8は、図 7のガス抜き部材の構成を示す要部断面図である。
[図 9]図 9は、図 8の IX— IX線に沿った縦断面図である。
[図 10]図 10は、図 8の X— X線に沿った縦断面図である。
[図 11]図 11は、図 7のガス抜き部材の他の構成を示す要部断面図である。
[図 12]図 12は、図 7のガス抜き部材の他の構成を示す要部断面図である。
[図 13]図 13は、図 7のバブル隔離部材の他の構成を示す要部断面図である。
[図 14]図 14は、図 7のバブル隔離部材の他の構成を示す要部断面図である。
[図 15]図 15は、第 5実施形態に係る電気浸透流ポンプの断面図である。
[図 16]図 16は、第 6実施形態に係る電気浸透流ポンプの断面図である。
[図 17]図 17は、第 7実施形態に係る電気浸透流ポンプの断面図である。
[図 18]図 18は、図 17の自己充填機構の他の構成を示す要部断面図である。
[図 19]図 19は、図 17の自己充填機構の他の構成を示す要部断面図である。
[図 20]図 20は、図 17の自己充填機構の他の構成を示す要部断面図である。
[図 21]図 21は、図 20の XXI— XXI線に沿った縦断面図である。
[図 22]図 22は、第 8実施形態に係る電気浸透流ポンプの断面図である。
[図 23]図 23は、図 22の他の構成を示す断面図である。
[図 24]図 24は、第 9実施形態に係る電気浸透流ポンプの断面図である。 [図 25]図 25は、第 10実施形態に係る電気浸透流ポンプの断面図である。
[図 26]図 26は、第 11実施形態に係る電気浸透流ポンプの断面図である。
[図 27]図 27は、第 12実施形態に係る電気浸透流ポンプの断面図である。
[図 28]図 28は、図 27の他の構成を示す断面図である。
[図 29]図 29は、第 13実施形態に係る電気浸透流ポンプの断面図である。
[図 30]図 30は、図 28の他の構成を示す断面図である。
[図 31]図 31は、第 14実施形態に係る電気浸透流ポンプの断面図である。
[図 32]図 32は、図 31の他の構成を示す断面図である。
[図 33]図 33は、図 31の他の構成を示す断面図である。
[図 34]図 34は、図 31の他の構成を示す断面図である。
[図 35]図 35は、第 15実施形態に係る電気浸透流ポンプの断面図である。
[図 36]図 36は、第 16実施形態に係る電気浸透流ポンプの断面図である。
[図 37]図 37は、第 15実施形態に係る電気浸透流ポンプが適用された液体供給装置 の断面図である。
[図 38]図 38は、従来技術に係る電気浸透流ポンプを示す要部断面図である。
[図 39]図 39は、従来技術に係る他の電気浸透流ポンプを示す要部断面図である。
[図 40]図 40は、本出願人が案出した電気浸透流ポンプを示す要部断面図である。 発明を実施するための最良の形態
[0057] 第 1実施形態に係る電気浸透流ポンプ 10Aは、バイオテクノロジーや分析ィ匕学に おいて用いられるマイクロ流体チップや小型エレクトロニクス機器に搭載可能な数 [m m]〜数 [cm]程度のサイズの小型ポンプであり、図 1に示すように、基本的には、ポ ンプ容器 12と、該ポンプ容器 12内に形成された流路 14に配置された電気浸透材 1 6、入口側電極 (第 1電極) 18及び出口側電極 (第 2電極) 20とを有する。
[0058] ポンプ容器 12は、流路 14を通過する電解質溶液等の駆動液体に対して耐液性を 有するプラスチック材料あるいは、セラミックス、ガラス、表面が電気絶縁処理された 金属材料からなり、電気浸透材 16、入口側電極 18及び出口側電極 20が配置される 大径部分 22と、図示しな 、マイクロ流体チップ等の流体機器に接続可能な小径部分 24とで構成される。なお、前記電解質溶液は、図 1の右側(大径部分 22側)から左側 (小径部分 24)の方向に流路 14内を通過する。
[0059] 電気浸透材 16は、流路 14を仕切るように配設され、この結果、該流路 14における 電気浸透材 16の上流側(図 1の右側)は、入口側チェンバー 26として形成され、一 方で、その下流側は、出口側チェンバー 28として形成される。また、電気浸透材 16 は、多孔質セラミックスやガラス繊維等力もなり、入口側チェンバー 26に駆動液体が 供給された際に、該駆動液体を吸収して内部に浸透し、さらに、浸透した前記駆動 液体を出口側チ ンバー 28に排出可能な親水性を有する部材である。
[0060] 入口側電極 18は、入口側チ ンバー 26内において電気浸透材 16の表面と接触し て配置され、複数の孔 30が流路 14の軸線方向に沿って形成されている。一方、出 口側電極 20は、出口側チェンバー 28内において電気浸透材 16の表面と接触して 配置され、複数の孔 32が流路 14の軸線方向に沿って形成されている。そして、入口 側電極 18と出口側電極 20とは直流電源 34と電気的に接続されている。
[0061] 図 1では、電気浸透材 16が負に帯電すると仮定して入口側電極 18を正極とし、一 方で、出口側電極 20を負極としている力 電気浸透材 16が正に帯電する場合には、 これに代えて、該入口側電極 18を負極とし、一方で、出口側電極 20を正極としても よいことは勿論である。また、図 1では、電気浸透材 16の表面に電極 18、 20が配置 されている力 このような配置に限定されることはなぐ例えば、電極 18、 20は、電気 浸透材 16近傍において非接触の状態で配置されていても構わない。さらに、図 1で は、直流電源 34と入口側電極 18及び出口側電極 20が電気的に各々接続され、各 電極 18、 20に直流電圧が印加されている力 各電極 18、 20に印加される電圧は直 流電圧に限定されることはなぐ例えば、直流電源 34に代えて図示しないパルス電 源を配置し、該パルス電源より各電極 18、 20にパルス電圧を印加してもよいことは勿 論である。
[0062] ここで、入口側チェンバー 26に供給された駆動液体が孔 30を介して電気浸透材 1 6に浸透した状態で、直流電源 34より各電極 18、 20に直流電圧を印加すると、電気 浸透材 16内の前記駆動液体が入口側電極 18より出口側電極 20の方向に移動し、 孔 32を介して出口側チ ンバー 28に排出される。
[0063] また、電気浸透流ポンプ 10Aでは、出口側チェンバー 28にバブル隔離部材(下流 側液体通過部材) 40が出口側電極 20より下流側に配置され、出口側電極 20近傍に おけるポンプ容器 12の側部にはガス抜き部材(下流側ガス抜き部材) 42が配設され ている。さらに、入口側電極 18近傍におけるポンプ容器 12の側部にはガス抜き部材 (上流側ガス抜き部材) 44が配設されて 、る。
[0064] バブル隔離部材 40は、例えば、ガラス繊維や親水性ナイロン (登録商標)等のポリ アミド系合成高分子材料カゝらなる親水性を有する膜であり、電気浸透材 16より孔 32 を介して下流側に排出された駆動液体を通過可能である一方で、出口側チェンバー 28内のガスや異物の通過を阻止する。また、ガス抜き部材 42は、四フッ化工チレン 榭脂 (PTFE)等の疎水性且つガス透過性を有する膜やシートからなり、出口側チェ ンバー 28内のガスを外部に排出する。さらに、ガス抜き部材 44は、ガス抜き部材 42 と同様の疎水性且つガス透過性を有する膜からなり、入口側チ ンバー 26内のガス を外部に排出する。
[0065] 電気浸透流ポンプ 10Aでは、電気浸透材 16に電解質溶液 (水溶液)等の駆動液 体が浸透した状態で、直流電源 34より各電極 18、 20に直流電圧を印加すると、前 記駆動液体の各電極 18、 20近傍における電気化学反応によって、出口側電極 20 近傍では水素ガスが発生し、一方で、入口側電極 18近傍では酸素ガスが発生する。 例えば、電極 18、 20間を流れる電流が l [mA]であれば、水素ガスの発生量は、 7. 86 [ /ζ
Figure imgf000017_0001
となり、酸素ガスの発生量は、 3. 93[ /z LZmin]となる。
[0066] ここで、前記水溶液 (あるいは水)の温度が 20 [°C]における酸素ガスの溶解度は 0 . 031であり、水素ガスの溶解度は 0. 018であるので、電気浸透流ポンプ 10Aの駆 動時における前記水溶液に対する酸素ガス及び水素ガスの溶解量が 0である場合 でも、前記水溶液流量に対するガス発生量(1気圧における体積)の比率が 3. 1 [%] (酸素)及び 1. 8[%] (水素)を越えると、前記水溶液中のガス濃度が溶解度を越え、 この結果、入口側電極 18近傍の入口側チェンバー 26に酸素ガスのバブルが発生し 、一方で、電極 20近傍の出口側チェンバー 28に水素ガスのバブルが発生する。より 具体的な数値を示すと、ポンプ流量が lOO^ LZmin]であれば、前記入口側電極 18では、 790 [ /z A]以上の電流が流れると酸素ガスのバブルが発生し、一方で、前 記出口側電極 20では、 229 [ A]以上の電流が流れると、水素ガスのバブルが発 生する。
[0067] このようなバブルが電極 18、 20や電気浸透材 16の表面に付着すると、電気浸透 材 16に対する水溶液の供給や排出が妨げられ、さらに、電気浸透材 16周辺の電界 分布が歪み、この結果、電気浸透流ポンプ 10Aのポンプ性能が低下する。また、前 記バブルが流路 14の下流側に流れると、前記下流側に接続された図示しな!、マイク 口流体チップ等の各種流体機器に前記バブルが流入し、この結果、該電気浸透流ポ ンプ 10Aによる前記流体機器内部の微小流体の適切な駆動制御を行うことができな いか、あるいは、下流側での各種センサの動作に悪影響を及ぼす。
[0068] そこで、電気浸透流ポンプ 10Aでは、バブル隔離部材 40の最低バブルポイントと ガス抜き部材 42、 44の最低ウォーターブレークスルーポイントとを、前記水溶液の駆 動圧力と比較して十分に大きく設定している。ここで、前記最低バブルポイントとは、 前記水溶液で濡れたバブル隔離部材 40に対して前述したバブル (前記水素ガス又 は前記酸素ガス)が通り抜けるために必要な最低の圧力値であり、前記バブルは、取 り扱う駆動液体の種類によって前記水素ガス又は前記酸素ガスと異なってくることは 勿論である。また、最低ウォーターブレークスルーポイントとは、各チェンバー 26、 28 よりガス抜き部材 42、 44を介して外部に前記水溶液が漏出するために必要な最低 の圧力値である。
[0069] この場合、ポンプ運転時には、出口側チェンバー 28内の圧力は、外部と比較して 数 [kPa]から数百 [kPa]程度の差圧 (正圧)を生じている。このため、出口側チェン バー 28内に蓄積したバブルはガス抜き部材 42を介して電気浸透流ポンプ 10Aの外 部に排出される。一方、バブル隔離部材 40を前記水溶液が通過する際に若干の圧 力損失が発生するが、その流路抵抗を適宜設定することにより、前記圧力損失を抑 制することが可能である。
[0070] これ〖こより、電気浸透流ポンプ 10Aの下流側に前述したバブルを通過させることな ぐガス抜き部材 42、 44よりポンプ外部に排出することが可能となる。
[0071] そして、バブル隔離部材 40では、ポンプ運転時の出口側圧力とその最低バブルポ イント及び流路抵抗との関係において、(1)最低バブルポイントが電気浸透材 16から 排出される水溶液の最大圧力(電気浸透流ポンプ 10Aの出口側最大圧力)よりも大 きいこと(最低バブルポイント〉水溶液の最大圧力)、(2)前記水溶液の最大流量に おけるバブル隔離部材 40での圧力損失が電気浸透材 16から排出される水溶液の 最大圧力と比較して十分に小さいこと (水溶液の圧力損失《水溶液の最大圧力)の 2つの条件を満足するように設計する。
[0072] ここで、具体的な構成例を示す。
[0073] バブル隔離部材 40として親水性ナイロン (登録商標)の膜 (孔径 : 0. 2 [; z m]、膜 厚: 127[ /ζ πι])を使用する。その最低バブルポイントは、 340[kPa]、前記水溶液の 通過量は、 170[ 17 (1^11 '。1112'1^½) ]でぁる。ガス抜き部材 42、 44として PTFE 膜 (孔径 : 0. 2 [ m]、膜厚: I39 [ m])を使用する。そのウォーターブレークスル 一ポイントは、 280 [kPa]、ガス通過量は、 28 [mlZ (min' cm2'kPa) ]である。
[0074] 次に、バブル隔離部材 40による前記水溶液の圧力損失及び水素ガスの排出に必 要なガス抜き部材 42の断面積について具体的に説明する。
[0075] ここで、電気浸透材 16の直径を 7 [mm]、前記水溶液の流量を 200 [ L/min]、 水素ガスの発生量を lOOC /z LZminLさらに、出口側チェンバー 28内の圧力を 50 [kPa]と仮定すれば、バブル隔離部材 40による前記水溶液の圧力損失は 3 [kPa]と なり、一方で、ガス抜き部材 42の断面積は 0. 007[mm2]となる。
[0076] このように、電気浸透流ポンプ 10Aにおける前記水溶液の圧力損失は数 [kPa]程 度であり、電気浸透流ポンプの一般的なポンプ特性力 考えても特に問題の無 、数 値である。
[0077] また、ガス抜き部材 42は、 0. 007 [mm2]程度の通過断面積で水素ガスを外部に 排出することが可能である。この断面積が小さければ、電気浸透流ポンプ 10A内部 力 の水溶液の蒸発による損失を抑制することができる。上述した具体例では、パブ ル隔離部材 40及びガス抜き部材 42の厚さは共に 150 [ m]程度以下であるので、 これらの部材を増設しても電気浸透流ポンプ 10Aのサイズはほとんど変化しない。
[0078] さらに、バブル隔離部材 40と電気浸透材 16とポンプ容器 12の内壁とによって形成 された空間(出力側チ ンバー 28)の直径が 2〜3 [mm]程度以下になると、前記水 溶液に作用する力は、重力よりも表面張力が支配的となる。これにより、電気浸透流 ポンプ 10Aは、どのような姿勢になっても前記重力の影響を受けないオリエンテーシ ヨンフリーの状態とすることができる。
[0079] さらにまた、バブル隔離部材 40は、電気浸透流ポンプ 10Aやマイクロ流体チップを 含む系統の下流側における前記水溶液の圧力が低下した際に、外部よりガス抜き部 材 42、 44を介して入口側チェンバー 26や出口側チェンバー 28にエアが逆流するこ とを防止したり、電気浸透流ポンプ 10Aに流入した異物を下流側に排出することを防 止する役割を果たす。
[0080] 電気浸透流ポンプ 10Aは、前述したように、図示しないマイクロ流体チップや小型 エレクトロニクス機器に搭載可能な小型ポンプであり、入口側チェンバー 26の内径は 、数 [mm]程度以下である。そのため、流路 14を流通する電解質溶液には表面張力 による力が大きく作用するので、単に、電気浸透流ポンプ 10Aの入口側(図 1の右側 )に前記電解質溶液の供給ラインを接続したり、あるいは、予め電解質溶液が充填さ れたカートリッジやタンクを接続しただけでは、前記電解質溶液の供給時に入口側チ ェンバー 26にエアが残ってしまい、電気浸透流ポンプ 10Aを正常に起動することが できないことが想定される。
[0081] そこで、電気浸透流ポンプ 10Aでは、入口側チェンバー 26に自己充填機構 50を 配設している。この自己充填機構 50は、先端部が入口側電極 18を介して電気浸透 材 16に接触する液体引込部材(自己充填部) 52と、該液体引込部材 52側部を囲繞 する囲繞部材 54とポンプ容器 12の内壁との間で形成されたエア抜きノ ス (エア抜き 部) 56とから構成される。
[0082] 液体引込部材 52は、電解質溶液に対する透過性能が大きな多孔質セラミックスや ガラス繊維等の親水性の材料力もなる。また、ポンプ容器 12と同じ材料力もなる囲繞 部材 54は、液体引込部材 52がガラス繊維力もなる場合、該ガラス繊維の形状が崩 れな 、ようにするための側壁であり、該液体引込部材 52が多孔質セラミックのように ポンプ容器 12内に配置しても形状が崩れない材料では不要である。
[0083] エア抜きパス 56は、液体引込部材 52と比較して前記電解質溶液の浸透圧力が小 さな通路として構成され、単なるガス抜きの通路であっても、より浸透性の低い親水性 材料や疎水性を有する材料を充填しても構わな 、。
[0084] 自己充填機構 50では、電気浸透流ポンプ 10Aの起動時に、外部より液体引込部 材 52に駆動液体を供給する。これにより、供給された前記駆動液体は、液体引込部 材 52内を浸透して電極 18を介して該液体引込部材 52に接触する電気浸透材 16の 表面を濡らす。この結果、前記駆動液体は毛細管現象によって該電気浸透材 16の 内部に自発的に浸透し、出口側チ ンバー 28側の出口側電極 20表面にまで浸透 する。これにより、電気浸透流ポンプ 10Aの起動準備が完了する。
[0085] そして、自己充填機構 50は、(1)電気浸透材 16表面を前記駆動液体で濡らすこと 力 Sできること、(2)入口側チェンバー 26内部のエアを外部に排出することができること 、 (3) (1)及び(2)に要する時間を電気浸透流ポンプ 10Aに要求される起動時間以 内とすることの 3つの条件を満足することが必要である。
[0086] 図 2は、自己充填機構 50から電気浸透材 16に対する駆動液体の供給原理を説明 するための概略断面図であり、ポンプ容器 12、入口側電極 18、出口側電極 20及び 囲繞部材 46の図示を省略したものである。なお、ここでは、液体引込部材 52及びェ ァ抜きパス 56の基端部分が、駆動液体としての電解質溶液 60で満たされた容器 62 内に浸漬して 、る場合にっ 、て説明する。
[0087] 液体引込部材 52及びエア抜きパス 56を構成する多孔質媒体における電解質溶液 60の浸透特性は、前記多孔質媒体の表面エネルギー γ 、多孔質媒体と電解質溶
SO
液 60との界面における表面エネルギー γ 、電解質溶液 60の表面エネルギー γ及
sし
び前記多孔質媒体の内部表面積によって決定される。ここでは、前記多孔質媒体に おいて、電解質溶液 60の液面より電気浸透材 16に向カゝぅ方向に複数の孔(直径 D) がー様な密度で形成されて ヽるとすれば、液体引込部材 52における電解質溶液 60 の浸透圧力 Ρは、単位長当りの表面エネルギーの減少量によって決まり、(2)式で与 えられる。
[0088] Ρ = 4 γ Χ ( γ - y ) /D = 4 y cos 0 /D (2)
SL SO
ここで、 cos θ = ( y ― y )である。
SL SO
[0089] 水(電解質溶液)の表面張力を γ = 73 [mNZm]とし、 ϋ= 10[ /ζ πι]とし、 0 =0と すれば、その浸透圧力 Ρは、 28 [kPa]程度になる。また、 ϋ= 100 /ζ πιとすれば、 Ρ = 3 [kPa]となる。
[0090] 図 2において、入口側チェンバー 26 (図 1参照)に配置された液体引込部材 52を D = 10 [ m]の孔を有する多孔質体で構成し、一方で、エア抜きパス 56を D= 100 [ μ m]の孔を有する多孔質体で構成して、これらの多孔質体の下部を電解質溶液 60 で充填された容器 62に浸漬する。
[0091] この場合、液体引込部材 52及びエア抜きパス 56には電解質溶液 60が上方に向か つて浸透し、浸透によって液体引込部材 52及びエア抜きパス 56内の圧力が上昇す る。ところが、液体引込部材 52の浸透圧力(28 [kPa])とエア抜きパス 56の浸透圧力 (3 [kPa])との差異によって、液体引込部材 52を浸透する電解質溶液 60が、エア抜 きパス 56内を浸透する電解質溶液 60をエアを介して押し出す形となり、先に電気浸 透材 16の表面に到達する。結果として、エア抜きパス 56には電気浸透材 16表面近 傍のエアが流入して、エア抜きパス 56内部の圧力は 3kPa程度の正圧になる。
[0092] 従って、自己充填機構 50では、自己充填性能及びエアの排出の観点より、(1)浸 透圧力 Pの大きな液体引込部材 52により電気浸透材 16における入口側チェンバー 26側の表面に電解質溶液 60が到達すること、(2)予め入口側チェンバー 26内部に 存在するエアを浸透圧力 P (3 [kPa] )の小さなエア抜きパス 56から入口側チェンバ 一 26外部に排出すること、(3)エア抜きパス 56内部を小さい浸透圧力 P (3 [kPa]) で決まる正圧が加わった状態とすることの 3つの条件を兼ね備えている。
[0093] この場合、(1)によって電気浸透材 16に電解質溶液 60を供給することが可能となり 、電気浸透流ポンプ 10Aの運転開始時に電気浸透材 16表面に対して継続的に電 解質溶液 60を供給できる。また、(2)によって入口側チェンバー 26内部のエアで電 解質溶液 60の浸透が阻止されることなく電気浸透材 16表面を濡らすことができる。さ らに、 (3)によって入口側チェンバー 26で発生するガス (電極 18近傍で発生する酸 素ガスを含む)をポンプ容器 12外部に排出するために必要な圧力を自己充填機構 5 0により作り出すことが可能となり、電極 18で発生した酸素ガスをガス抜き部材 44から 外部に排出するために必要な圧力が自己充填時に作り出せる。
[0094] 電気浸透流ポンプ 10Aの起動時における自己充填機構 50の動作速さについて説 明すると、電気浸透材 16の入口側チェンバー 26側の表面が電解質溶液 60で濡れ るまでの時間がその目安となる。
[0095] ここで、毛細管としての液体引込部材 52内の電解質溶液 60の運動は、表面張力 による駆動力 F (F = 2 π R γ cos 0、 R:液体引込部材 52の直径)、前記毛細管内の 粘性摩擦項及び重力により生じる圧力により決まる。前記毛細管中の浸透距離が小 さ 、場合や水平におかれた場合等、重力による圧力項が表面張力による駆動力と比 較して十分に小さい場合 (浸透圧力を十分に大きく設計した場合)には、重力の項を 無視できるので、液体引込部材 52の内部における電解質溶液 60の移動距離 Zと移 動時間 tとの関係は(3)式で与えられる。
[0096] Z2= y Rcos 0 X t/ (2 r? ) (3)
ここで、 tは、液体引込部材 52の内部における電解質溶液 60の移動時間であり、 r?は、液体引込部材 52の粘性係数である。
[0097] (3)式において、 Z = 20[mm] (電気浸透流ポンプ 10Aの上流側の接続口力 電 気浸透材 16表面までの距離とする。)、 γ = 73 [ηιΝ/ιη] , Κ= 10 [ ^ ιη] , θ =0、 η =0. 001 [Pa' s]とすれば、 t^ l [s]となる。また、 Rを小さくすると tが長くなるので 、自己充填機構 50の動作速さと液体引込部材 52の浸透圧力との間にはトレードォ フが必要である。
[0098] 第 1実施形態に係る電気浸透流ポンプ 10Aは、以上のように構成されるものであり 、次に、電気浸透流ポンプ 10Aの作用効果について、図 1及び図 2を参照しながら説 明する。
[0099] 先ず、電気浸透流ポンプ 10Aの上流側と図示しないタンク又はカートリッジとを接 続し、前記タンク又は前記カートリッジより自己充填機構 50に電解質溶液 60を供給 する。この場合、液体引込部材 52の上流側はポンプ容器 12よりも突出しているので 、前記タンク又は前記カートリッジと電気浸透流ポンプ 10Aの上流側とを連結した際 に、液体引込部材 52の上流側は、前記タンク又は前記カートリッジの電解質溶液 60 に浸漬される。
[0100] これにより、電解質溶液 60は、液体引込部材 52の内部に浸透し、該液体引込部材 52の下流側に進行すると共に、エア抜きパス 56にも進入する。液体引込部材 52内 部の電解質溶液 60が、エア抜きパス 56内を進行する電解質溶液 60よりも先に電極 18表面に到達すると、液体引込部材 52内の電解質溶液 60は、該電極 18の孔 30を 介して電気浸透材 16に浸透し、一方で、電解質溶液 60によって入口側チェンバー 2 6の圧力が上昇する。この場合、液体引込部材 52の浸透圧力がエア抜きパス 56の 浸透圧力よりも高く設定されているので、電極 18近傍のエアがエア抜きパス 56に進 入し、該エア抜きパス 56内の電解質溶液 60を押し出しながら外部に排出され、ある いは、ガス抜き部材 44を介して外部に排出される。
[0101] 一方、電気浸透材 16に浸透した電解質溶液 60は、入口側電極 18側より出口側電 極 20側に速やかに浸透し、該電気浸透材 16内部では、電解質溶液 60で充填され る。
[0102] このような状態で、直流電源 34より各電極 18、 20に直流電圧を印加すると、各電 極 18、 20間に形成される電界に基づいて電気浸透材 16内の電解質溶液 60が電極 20側に移動し、電極 20の孔 32を介して出口側チェンバー 28に排出される。
[0103] 出口側チェンバー 28に排出された電解質溶液 60は、バブル隔離部材 40を介して 流路 14の下流側に接続された図示しないマイクロ流体チップ等の流体機器に供給さ れる。
[0104] また、前記直流電圧を印加した際に、電気化学反応によって電極 18近傍で生成さ れた酸素ガスのバブルは、ガス抜き部材 44を介して外部に排出され、一方で、電極 20近傍で生成された水素ガスのバブルは、ガス抜き部材 42を介して外部に排出さ れる。
[0105] なお、図 1では、液体引込部材 52の上流側がポンプ容器 12よりも突出している力 液体引込部材 52及びポンプ容器 12の上流側が同一位置であっても、該液体引込 部材 52の上流側が該ポンプ容器 12の内方であっても、上記したタンク又はカートリツ ジより電解質溶液 60が供給可能であることは勿論である。
[0106] このように、第 1実施形態に係る電気浸透流ポンプ 10Aは、直流電圧の印加によつ て出口側電極 20近傍に水素ガスが生成しても、電気浸透材 16の下流側に配置され たバブル隔離部材 40が駆動液体や電解質溶液 60を通過させる一方で、前記水素 ガスの通過を阻止する。これにより、下流側に接続されたマイクロ流体チップ等の各 種流体機器に前記水素ガスが混入することを防止することができ、例えば、前記流体 機器内を通過する液体の位置制御を電気浸透流ポンプ 10Aによって正確に行うこと が可能となる。 [0107] また、出口側電極 20近傍で発生した水素ガスをガス抜き部材 42を介して外部に排 出するので、電気浸透流ポンプ 10Aを長時間運転した際に、出口側電極 20や電気 浸透材 16へのバブルの付着によるポンプ性能の低下を抑制することができる。一方 、入口側電極 18近傍で生成された酸素ガスの一部が、電気浸透材 16を通過しても 、ガス抜き部材 42を介して外部に排出することができる。
[0108] さらに、ガス抜き部材 44を配置することにより、電気浸透材 16及び入口側電極 18 の上流側における酸素ガスの付着を阻止することができ、電気浸透流ポンプ 10のポ ンプ性能の劣化を抑制することができる。
[0109] また、自己充填機構 50の液体引込部材 52と電気浸透材 16とが接触しているので 、外部より液体引込部材 52に電解質溶液 60を充填すると、充填された電解質溶液 6 0が液体引込部材 52より電気浸透材 16の内部に速やかに浸透する。この状態で、 前記直流電圧を電極 18、 20に印加すると、電気浸透材 16より流路 14の下流側に駆 動液体や電解質溶液 60を確実に排出することが可能となる。この結果、入口側電極 18近傍にエアが存在する場合であっても、電気浸透流ポンプ 10Aの自己充填性を ½保することができる。
[0110] 上記した説明では、液体引込部材 52は、電気浸透材 16と接触することが駆動液体
(電解質溶液 60)の自己充填の観点から望ましいが、電解質溶液 60に対する入口 側電極 18の濡れ性が良好であれば、入口側電極 18を介在させる形で電気浸透材 1 6と液体引込部材 52とを接触させること、すなわち、液体引込部材 52と入口側電極 1 8とを接触させることも可能である。さらに、液体引込部材 52に対して電気浸透材 16 及び入口側電極 18を接触させることも可能である。
[0111] さらにまた、バブル隔離部材 40を親水性材料カゝら構成し、バブル隔離部材 40をガ スが通過するために必要なガス圧 (最低バブルポイント)を 1 [kPa]以上とし、且つバ ブル隔離部材 40における流路 14の軸線方向に沿った厚みを 3 [mm]以下とすること により、本実施形態の対象とするポンプ特性 (寸法や圧力特性)に照らして、実際的 な方法として、電極 20近傍で発生する水素ガスの流路 14下流側への流出を阻止す ることがでさる。
[0112] さらにまた、ガス抜き部材 42を疎水性材料で構成し、該ガス抜き部材 42に対する 駆動液体の通過圧力を前記駆動液体の運転時の最大圧力よりも小さく設定し、流路
14におけるガスの通過方向に沿ったガス抜き部材 42の厚みを 3 [mm]以下とするこ とにより、電極 20近傍で発生する水素ガスの排出を効率よく行うことができる。
[0113] 上述した第 1実施形態に係る電気浸透流ポンプ 10Aでは、駆動液体として電解質 溶液 60を主に説明したが、他の液体を駆動液体として使用してもよ!/、ことは勿論であ る。この場合、直流電圧を電極 18、 20に印加すると、該電極 18、 20近傍には、前記 他の液体に特有のガス成分のバブルが発生する。
[0114] また、電気浸透流ポンプ 10Aでは、電極 18、 20の形状として孔 30、 32が形成され た電極としているが、ワイヤ形状の電極や多孔質体の表面に金属を蒸着して構成さ れた電極を用いてもよいことは勿論である。なお、上記した電極 18、 20は、白金や力 一ボンや銀等の導電性材料から構成すると好適である。
[0115] さらに、電極 18、 20では、電極 18を正極とし、電極 20を負極としている力 これは 、電気浸透材 16が負に帯電する場合を想定したためであり、該電気浸透材 16が正 に帯電する場合には、電極 18を負極とし、電極 20を正極としても上述した作用効果 が得られることは勿論である。
[0116] さらにまた、電極 18、 20に対して直流電圧を印加している力 パルス電圧を印加し てちよいことは勿!^である。
[0117] さらにまた、電気浸透流ポンプ 10Aでは、ポンプ容器 12が上流側より大径部分 22 及び小径部分 24の順で形成されている力 該ポンプ容器 12の形状は、上述した形 状に限定されるものではないことは勿論である。例えば、ポンプ容器 12を全体的にス トレート形状としたり、あるいは、上流側より小径部分及び大径部分の順で構成するこ とも可能である。
[0118] 次に、第 2実施形態に係る電気浸透流ポンプ 10Bについて、図 3〜図 5を参照しな 力 説明する。なお、図 1及び図 2に示した第 1実施形態に係る電気浸透流ポンプ 10 Aの各構成要素と同じ構成要素については、同一の符号を付けて説明し、以下同様 とする。
[0119] 第 2実施形態に係る電気浸透流ポンプ 10Bは、図 3に示すように、バブル隔離部材 40が出口側チェンバー 28に配置され、ガス抜き部材 42、 44及び自己充填機構 50 が配設されて ヽな ヽ点で、第 1実施形態に係る電気浸透流ポンプ 10A (図 1及び図 2 参照)とは異なる。
[0120] 電気浸透流ポンプ 10Bは、入口側チェンバー 26においてガス発生への対策及び 上流側の入口径が充分に大きい場合 (例えば、 5mm以上)であって、短時間運転し ても出口側チェンバー 28における水素ガスの発生がそれ程顕著とならない場合に用 いられる。
[0121] 電気浸透流ポンプ 10Bでは、出口側チェンバー 28にバブル隔離部材 40を配置す ることにより、流路 14の下流側に接続された各種流体機器へのバブルの流入を回避 することができる。この場合、出口側チェンバー 28内部にバブルが蓄積することにな るが、電気浸透流ポンプ 1 OBの運転時間が短く且つガスの発生量が少な 、場合に は、前記ガスがポンプ動作に大きな影響を与えることはない。さらに、バブル隔離部 材 40は、上記したバブル以外の異物を各種流体機器に流入することを防止する効 果も奏する。このように、電気浸透流ポンプ 10Bでは、より少ない構成要素で下流側 へのバブルや異物の排出を防止することができるので、より低コストで装置を製造す ることが可能である。
[0122] なお、出口側チェンバー 28の容積を予測されるバブル発生量と比較して大きくする ことにより、電気浸透流ポンプ 10Bを確実に動作することができることは勿論である。 また、電気浸透流ポンプ 10Bでは、直流電圧を電極 18、 20〖こ印カロしても、該電極 18 、 20近傍からガスが顕著に発生しない電気伝導度の低い駆動液体を流路 14に流す ことも可能であり、このような駆動液体としては、例えば、アルコールや有機溶媒があ る。
[0123] また、電気浸透流ポンプ 10Bでは、図 4に示すように、大径部分 22と小径部分 24と を別体とし、大径部分 22と小径部分 24とでバブル隔離部材 40を狭持した状態で大 径部分 22と小径部分 24とを嵌合させると好適である。この場合、大径部分 22と小径 部分 24との嵌合部分に図示しない疎水性のパッキン、シート又は Oリング等を介挿さ せると、該嵌合部分からの電解質溶液の漏出を防止することができる。
[0124] また、図 5に示すように、大径部分 22と小径部分 24とを別体とし、該大径部分 22又 は小径部分 24に対してバブル隔離部材 40を固着した状態で、大径部分 22と小径 部分 24とを溶着又は接着しても好適である。
[0125] 上述した電気浸透流ポンプ 10Bでは、ポンプ容器 12が上流側より小径部分 70、小 径部分 24及び大径部分 22の順で形成されているが、該ポンプ容器 12の形状は、上 述した形状に限定されるものではないことは勿論である。
[0126] 次に、第 3実施形態に係る電気浸透流ポンプ 10Cについて、図 6を参照しながら説 明する。
[0127] 第 3実施形態に係る電気浸透流ポンプ 10Cは、入口側チェンバー 26における大径 部分 22と小径部分 70とがバブル隔離部材 (上流側液体通過部材) 72で仕切られて いる点で、第 2実施形態に係る電気浸透流ポンプ 10B (図 3参照)とは異なる。
[0128] バブル隔離部材 72は、バブル隔離部材 40と略同一の構成を有し、入口側電極 18 近傍におけるガスの発生及び出口側電極 20近傍におけるガスの発生が顕著ではな ぐ電気浸透流ポンプ 10Cの運転時間が短時間である場合に用いられる。
[0129] 電気浸透流ポンプ 10Cでは、第 2実施形態に係る電気浸透流ポンプ 10B (図 3参 照)の作用効果に加え、流路 14の上流側より電気浸透流ポンプ 10Cに異物やパブ ルが流入しても、バブル隔離部材 72において、前記異物や前記バブルの入口側チ ェンバー 26内部への流入を阻止する。この結果、電気浸透流ポンプ 10Cのポンプ性 能を確保することが可能となる。
[0130] 次に、第 4実施形態に係る電気浸透流ポンプ 10Dについて、図 7〜図 14を参照し ながら説明する。
[0131] 第 4実施形態に係る電気浸透流ポンプ 10Dは、出口側電極 20近傍のポンプ容器 12の側部にガス抜き部材 42が配設されて ヽる点で、第 2実施形態に係る電気浸透 流ポンプ 10B (図 3参照)とは異なる。
[0132] 電気浸透流ポンプ 10Dは、入口側チェンバー 26においてガスの発生が大きな問 題とならない場合や、前記ガスの発生があってもバブルが自重によって入口側チェン バー 26より外部に排出可能である場合に用いられる。この場合、電気浸透流ポンプ 10Dの上流側には、駆動液体を流路 14に供給するリザーバが接続可能である。
[0133] 電気浸透流ポンプ 10Dでは、電極 20近傍においてガスが大量に発生しても、該ガ スをガス抜き部材 42より外部に排出することが可能となるので、流路 14の下流側へ のバブルの排出を阻止すると共に、電気浸透流ポンプ 10Dの長期運転を継続するこ とがでさる。
[0134] また、電気浸透流ポンプ 10Dでは、図 8に示すように、ポンプ容器 12における出口 側チェンバー 28の側部に外部と連通する複数の孔 74を形成し、該ポンプ容器 12上 で各孔 74を閉塞するようにガス抜き部材 42を配設しても構わな 、。
[0135] この場合、孔 74は、図 9及び図 10に示すように、ポンプ容器 12の円周方向に沿つ て等間隔に形成すると、電気浸透流ポンプ 10Dをどのような姿勢で配置しても出口 側チェンバー 28内部のガスを孔 74及びガス抜き部材 42を介して確実に外部へと排 出することができるので好適である。なお、図 9は、ポンプ容器 12の側部に 90 [° ]間 隔で 4つの孔 74を形成した場合を示し、図 10は、ポンプ容器 12の側部に 60 [° ]間 隔で 6つの孔 74を形成した場合を示して 、る。
[0136] また、ガス抜き部材 42についても、各孔 74に対応して複数個のガス抜き部材 42で 各々閉塞してもよいし、あるいは、ポンプ容器 12側部を卷回して各孔 74を閉塞しても よい。
[0137] さらに、図 7及び図 8では、ガス抜き部材 42を疎水性を有し且つガスを通過すること が可能なプラスチック材料 (例えば、 PTFE力 なるガス透過性の熱収縮チューブ)で 構成しているが、図 11に示すように、機械的強度がより大きい多孔質セラミックスのブ ロックを用いてもよい。この場合、前記多孔質セラミックスは、駆動液体に対して十分 に大きな最低ウォータブレークスルーポイントを備えるように予め疎水性処理を行つ た後に、ポンプ容器 12の側部に溶着又は接着される。
[0138] また、ガス抜き部材 42に対する剛性が要求されない場合には、図 11に示す多孔質 セラミックスのブロックに代えて、図 12に示す多孔質材のシート又は膜を用 V、てもよ い。この場合、ポンプ容器 12の内側に前記シート又は膜を配置すれば、ポンプ容器 12に対する前記シート又は前記膜の固着強度を確保することができる。
[0139] さらに、バブル隔離部材 40についても、図 13及び図 14に示すように、出口側電極 20と接触させると、バブル隔離部材 40、大径部分 22及び電極 20で仕切られた空間 は、電極 20近傍で発生したガスをガス抜き部材 42を介して外部に排出するためのガ ス抜き流路となり、前記ガスをガス抜き部材 42を介して迅速に外部に排出することが 可能となる。また、出口側電極 20とバブル隔離部材 40とが接触しているので、電気 浸透材 16より孔 32を介して排出された駆動液体をそのままバブル隔離部材 40に浸 透させて、流路 14の下流側に接続された各種流体機器に供給することが可能となる
[0140] 次に、第 5実施形態に係る電気浸透流ポンプ 10Eについて、図 15を参照しながら 説明する。
[0141] 第 5実施形態に係る電気浸透流ポンプ 10Eは、入口側チェンバー 26にバブル隔 離部材 72が配置されて 、る点で、第 4実施形態に係る電気浸透流ポンプ 10D (図 7 参照)とは異なる。
[0142] 電気浸透流ポンプ 10Eは、上述した第 3及び第 4実施形態に係る電気浸透流ボン プ 10C、 10D (図 6及び図 7参照)と同様の作用効果を有し、入口側チェンバー 26内 部でのガスの発生が問題とならない場合に用いられるものであり、流路 14の上流側 力もの異物やバブルの流入をバブル隔離部材 72で阻止することができる。
[0143] 次に、第 6実施形態に係る電気浸透流ポンプ 10Fについて、図 16を参照しながら 説明する。
[0144] 第 6実施形態に係る電気浸透流ポンプ 10Fは、ポンプ容器 12における入口側チェ ンバー 26側の側部にガス抜き部材 44が配置されて ヽる点で、第 5実施形態に係る 電気浸透流ポンプ 10E (図 15参照)とは異なる。
[0145] 電気浸透流ポンプ 10Fは、上述した第 1及び第 5実施形態に係る電気浸透流ボン プ 10A、 10E (図 1及び図 15参照)と同様の作用効果を奏し、入口側電極 18からの ガスの発生及び出口側電極 20からのガスの発生が顕著な場合に用いられるもので ある。この場合、入口側チェンバー 26内の圧力が電気浸透流ポンプ 10Eの外部圧 力よりも高ければ (電気浸透流ポンプ 10の内部圧力 >外部圧力)、その圧力差によ つて前記ガスをガス抜き部材 44を介して外部に排出することが可能となる。
[0146] 次に、第 7実施形態に係る電気浸透流ポンプ 10Gについて、図 17〜図 21を参照 しながら説明する。
[0147] 第 7実施形態に係る電気浸透流ポンプ 10Gは、入口側チェンバー 26にバブル隔 離部材 72の代わりに自己充填機構 50が配置されている点で、第 6実施形態に係る 電気浸透流ポンプ 10F (図 16参照)とは異なる。なお、電気浸透流ポンプ 10Gにお いて、自己充填機構 50は、液体引込部材 52とエア抜きパス 56とから構成されている
[0148] 電気浸透流ポンプ 10Gは、上述した第 1及び第 6実施形態に係る電気浸透流ボン プ 10A、 10F (図 1及び図 16参照)と同様の作用効果を奏し、入口側電極 18近傍で のガスの発生及び出口側電極 20近傍でのガスの発生が顕著で且つ電気浸透材 16 に対する自己充填機能が要求される場合に用いられる。
[0149] この場合、浸透圧力の大きな液体引込部材 52と浸透圧力の小さなエア抜きパス 56 とを組み合わせることにより、これらの浸透圧力によって入口側チェンバー 26内部の 圧力を制御することができるので、電気浸透流ポンプ 10Gの外部から入口側チェン バー 26に対する加圧が不要となり、入口側チェンバー 26内のエアや電極 18近傍で 発生するガスを効率よく外部に排出することが可能となる。
[0150] また、図 17では、エア抜きパス 56を単なる空隙としているが、図 18に示すように、 液体引込部材 52よりも低い浸透圧力を有する多孔質材料 (例えば、ガラス繊維)から 構成してもよい。この場合、液体引込部材 52における駆動液体の浸透力力 エア抜 きパス 56における前記駆動液体の浸透力よりも大きく設定されているので、液体引 込部材 52に駆動液体が供給されると、該駆動液体は、液体引込部材 52内に速やか に浸透し、さらに、電極 18の孔 30を介して電気浸透材 16に迅速に浸透する。なお、 前記多孔質材料は、疎水性であっても、親水性であってもよい。
[0151] さらに、エア抜きパス 56について、図 18に示す浸透圧力の低い材料に代えて、図 19に示す疎水性を有し且つガス透過性を有する材料 (例えば、プラスチック繊維材 料)から構成してもよい。この場合、液体引込部材 52に駆動液体が充填されると、入 口側チェンバー 26内部の圧力が上昇し、該入口側チェンバー 26内部のエアは、ェ ァ抜きパス 56を介して外部に排出される。
[0152] さらにまた、図 20及び図 21に示すように、小径部分 70の内壁と接触するように液 体引込部材 52を配置し、該液体引込部材 52内部に流路 14の軸線方向に沿って複 数のエア抜きパス 56を形成してもよい。この場合、エア抜きパス 56は、疎水性を有し 且つガス透過性を有する材料力 なる。これにより、電気浸透流ポンプ 10Gの再起動 時に液体引込部材 52内部が局部的に乾燥していれば、乾燥部分のエアをエア抜き パス 56を介して外部に排出することが可能となる。
[0153] 次に、第 8実施形態に係る電気浸透流ポンプ 10Hについて、図 22及び図 23を参 照しながら説明する。
[0154] 第 8実施形態に係る電気浸透流ポンプ 10Hは、液体引込部材 52の突起 76が流路 14の上流側と入口側チェンバー 26とを仕切っている点で、第 7実施形態に係る電気 浸透流ポンプ 10G (図 17参照)とは異なる。
[0155] 図 22では、液体引込部材 52の側部に径方向に突出する突起 76が形成され、この 突起 76が入口側チェンバー 26における大径部分 22と小径部分 70とを仕切っている 。一方、図 23は、小径部分 70の内壁に当接するように突起 76が突出形成されてい る。
[0156] この場合、液体引込部材 52及び突起 76は、駆動液体に対する浸透圧力が大きい 親水性材料で構成し、バブル隔離部材 72 (図 6及び図 15)としての機能も兼ね備え ている。換言すれば、液体引込部材 52及び突起 76は、上流側液体自己充填機構 及び上流側液体通過部材として機能する。そのため、電気浸透流ポンプ 10内部へ の異物やバブルの流入を防止すると共に、自己充填機構 50の上流側の減圧によつ て入口側チェンバー 26より上流側にエアが逆流することを阻止することが可能となる
[0157] 次に、第 9実施形態に係る電気浸透流ポンプ 101について、図 24を参照しながら説 明する。
[0158] 第 9実施形態に係る電気浸透流ポンプ 101は、流路 14の下流側にも自己充填機構 50と同様の自己充填機構 (下流側流体自己充填機構) 80が形成されている点で、 第 8実施形態に係る電気浸透流ポンプ 10H (図 22及び図 23参照)とは異なる。
[0159] この場合、自己充填機構 80は、出口側電極 20に接触する液体引込部材 82を有し 、該液体引込部材 82の側部には、出口側チェンバー 28を仕切る突起 84が形成され ている。ここで、液体引込部材 82は、液体引込部材 52と同様に、駆動液体に対する 浸透圧力が大きい親水性材料で構成し、突起 84は、バブル隔離部材 40 (図 1、図 3 、図 6、図 7、図 15〜図 17、図 22及び図 23参照)としての機能も兼ね備えている。換 言すれば、液体引込部材 82及び突起 84は、下流側液体自己充填機構及び下流側 液体通過部材として機能する。そのため、流路 14の下流側への異物やバブルの流 出を防止することが可能となる。また、入口側チェンバー 26内部のガスは、ガス抜き 部材 44を介して外部に排出され、一方で、出口側チェンバー 28内部のガスは、ガス 抜き部材 42を介して外部に排出される。さらに、上流側と下流側とに自己充填機構 5 0、 80がそれぞれ配置されているので、上流側から下流側への駆動液体の排出や、 下流側から上流側への駆動液体の吸入を効率よく行うことができる。さらにまた、液 体引込部材 82は、電気浸透材 16と接触することが駆動液体の自己充填の観点から 望ましいが、駆動液体に対する出口側電極 20の濡れ性が良好であれば、出口側電 極 20を介在させる形で電気浸透材 16と液体引込部材 82とを接触させること、すなわ ち、液体引込部材 82と出口側電極 20とを接触させることも可能である。さらに、液体 引込部材 52に対して電気浸透材 16及び出口側電極 20を接触させることも可能であ る。
[0160] 次に、第 10実施形態に係る電気浸透流ポンプ 10Jについて、図 25を参照しながら 説明する。
[0161] 第 10実施形態に係る電気浸透流ポンプ 10Jは、液体引込部材 52、 82に突起 76、 84が形成されて ヽな ヽ点で、第 9実施形態に係る電気浸透流ポンプ 101 (図 24参照 )とは異なる。
[0162] この場合でも、上流側から下流側への駆動液体の排出や、下流側から上流側への 駆動液体の吸入を効率よく行うことができる。
[0163] 次に、第 11実施形態に係る電気浸透流ポンプ 10Kについて、図 26を参照しなが ら説明する。
[0164] 第 11実施形態に係る電気浸透流ポンプ 10Kは、入口側チェンバー 26に液体引込 部材 52が形成されて ヽる点で、第 4実施形態に係る電気浸透流ポンプ 10D (図 7参 照)とは異なる。
[0165] 電気浸透流ポンプ 10Kは、第 4及び第 7実施形態に係る電気浸透流ポンプ 10D、 10G (図 7及び図 17参照)と同様の作用効果を有し、入口側電極 18近傍で発生した ガスを、エア抜きパス 56から外部に排出することが可能である。これにより、ポンプ入 口側の構成が簡素化される。すなわち、通常のポンプでは、小型化によって駆動液 体のリザーバのサイズが小さくなり、この結果、外部より前記駆動液体を充填すること が困難となる。これに対して、本実施形態では、駆動液体の浸透性が良好な液体引 込部材 52を配置することにより、該駆動液体の充填が容易となって、リザーバの小型 化を実現することができる。
[0166] 次に、第 12実施形態に係る電気浸透流ポンプ 10Lについて、図 27及び図 28を参 照しながら説明する。
[0167] 第 12実施形態に係る電気浸透流ポンプ 10Lは、ガス抜き部材 42が形成されてい な 、点で、第 11実施形態に係る電気浸透流ポンプ 10K (図 26参照)とは異なる。
[0168] 電気浸透流ポンプ 10Lは、第 11実施形態に係る電気浸透流ポンプ 10K (図 26参 照)と同様の作用効果を有し、ガス抜きが不要の場合に用いられる。
[0169] また、液体引込部材 52に突起 76が形成されていれば、第 8実施形態に係る電気 浸透流ポンプ 10H (図 22参照)と同様に、入口側チェンバー 26への異物やバブル の流入を確実に阻止することができる。
[0170] 次に、第 13実施形態に係る電気浸透流ポンプ 10Mについて、図 29及び図 30を 参照しながら説明する。
[0171] 第 13実施形態に係る電気浸透流ポンプ 10Mは、バブル隔離部材 40が形成され ていない点で、第 12実施形態に係る電気浸透流ポンプ 10L (図 27及び図 28参照) とは異なる。
[0172] 電気浸透流ポンプ 10M (図 29参照)は、第 12実施形態に係る電気浸透流ポンプ 1 OL (図 27及び図 28参照)と同様に、ガス抜きが不要の場合に用いられる。また、液 体引込部材 52に突起 76が形成されていれば(図 30参照)、第 8実施形態に係る電 気浸透流ポンプ 10H (図 22参照)と同様に、入口側チェンバー 26への異物やパブ ルの流入を確実に阻止することができる。
[0173] 次に、第 14実施形態に係る電気浸透流ポンプ IONについて、図 31〜図 34を参照 しながら説明する。
[0174] 第 14実施形態に係る電気浸透流ポンプ IONは、出口側チェンバー 28にも自己充 填機構 80が配設されている点で、第 13実施形態に係る電気浸透流ポンプ 10M (図 29及び図 30参照)とは異なる。
[0175] 図 31では、第 12及び第 13実施形態に係る電気浸透流ポンプ 10L、 10M (図 27 〜図 30参照)と同様に、ガス抜きが不要の場合に用いられる。また、液体引込部材 5 2に突起 76が形成されていれば(図 32参照)、第 8実施形態に係る電気浸透流ボン プ 10H (図 22参照)と同様に、入口側チェンバー 26への異物やバブルの流入を確 実に阻止することができる。さらに、液体引込部材 82に突起 84が形成されていれば ( 図 33参照)、第 9実施形態に係る電気浸透流ポンプ 10H (図 24参照)と同様に、流 路 14の下流側へのバブルの流出を確実に阻止することができる。
[0176] さらにまた、液体引込部材 52、 82に突起 76、 84が形成されていれば(図 34参照) 、入口側チェンバー 26への異物やバブルの流入や、流路 14の下流側へのバブル の流出を確実に阻止することができる。
[0177] 次に、第 15実施形態に係る電気浸透流ポンプ 10Oについて、図 35を参照しなが ら説明する。
[0178] 第 15実施形態に係る電気浸透流ポンプ 10Oは、第 11実施形態に係る電気浸透 流ポンプ 10K (図 26参照)のより具体的な構成である。
[0179] すなわち、ポンプ容器 12は、大径部分 22を含む第 1部分 12aと、小径部分 24を含 む第 2部分 12bとで構成され、第 1部分 12a側は、上流側より第 2部分 12bに向かつ て自己充填機構 50、入口側電極 18、電気浸透材 16及び出口側電極 20の順番で 配置され、第 2部分 12b側には、電気浸透材 16及び出口側電極 20に対向して、バ ブル隔離部材 40及びガス抜き部材 42が配置されている。この場合、第 1部分 12aと 第 2部分 12bとを嵌合することにより、電気浸透材 16及び出口側電極 20と、バブル 隔離部材 40及びガス抜き部材 42と、第 1部分 12a及び第 2部分 12bとで区画された 閉空間が出口側チェンバー 28として形成される。
[0180] ここで、自己充填機構 50の液体引込部材 52と入口側電極 18又は電気浸透材 16 との間には、駆動液体吸収部材 86が配置されている。この駆動液体吸収部材 86は 、液体引込部材 52が多孔質セラミックス (例えば、アルミナ)のような剛性を有する材 料力も構成されている場合に、液体引込部材 52にて自己充填された駆動液体を電 気浸透材 16に速やかに供給できることを目的として設けられている。 [0181] すなわち、駆動液体吸収部材 86は、親水性のスポンジ状の多孔質体 (孔径: 10 [ m]〜: LOO [ m]程度)、紙パルプのシート又は合成繊維のシートのような、柔軟性 、吸水性、親水性及び保水性を有し、電気浸透材 16の表面や、液体引込部材 52の 表面に対する密着性が良好な材料から構成される。この場合、駆動液体吸収部材 8 6は、一例として、 1 [mm]の厚みを有する親水性のシートを、液体引込部材 52 (多 孔質セラミックスの孔径:数十 [ m]程度)と、電気浸透材 16 (多孔質セラミックスの 孔径:数十 [nm]〜数 [ m]程度)とで挟み込み、該シートを押しつぶすことにより、 液体引込部材 52の表面に対する前記シートの密着性と、電気浸透材 16の表面に対 する該シートの密着性とをそれぞれ高め、駆動液体吸収部材 86を介して液体引込 部材 52と電気浸透材 16とを確実に接続するようにして 、る。
[0182] これにより、液体引込部材 52にて自己充填された前記駆動液体を駆動液体吸収 部材 86を介して電気浸透材 16に速やかに供給することが可能となり、ポンプ性能を 向上することができる。
[0183] また、駆動液体吸収部材 86は、液体引込部材 52と電気浸透材 16又は入口側電 極 18とに対するクッションとしての機能も果たすので、組み立て性が向上する。
[0184] なお、駆動液体に対する入口側電極 18の濡れ性が良好であれば、入口側電極 18 に対する密着性が良好な材料力 駆動液体吸収部材 86を構成し、入口側電極 18を 介在させる形で電気浸透材 16と駆動液体吸収部材 86とを接触させること、すなわち 、入口側電極 18と液体引込部材 52とで駆動液体吸収部材 86を挟み込んで、駆動 液体吸収部材 86と入口側電極 18とを接触させることも可能である。この場合でも、液 体引込部材 52から駆動液体吸収部材 86を介して電気浸透材 16に駆動液体を供給 することが可能である。
[0185] さらに、入口側電極 18及び液体引込部材 52に対する密着性が良好な材料力も駆 動液体吸収部材 86を構成し、入口側電極 18を介在させる形で電気浸透材 16及び 入口側電極 18と駆動液体吸収部材 86とを接触させること、すなわち、電気浸透材 1 6及び入口側電極 18と液体引込部材 52とで駆動液体吸収部材 86を挟み込んで、 駆動液体吸収部材 86と電気浸透材 16及び入口側電極 18とを接触させることも可能 である。この場合でも、液体引込部材 52から駆動液体吸収部材 86を介して電気浸 透材 16に駆動液体を供給することが可能である。
[0186] また、入口側電極 18が、白金担持カーボン、カーボン繊維、ステンレススチール製 のメッシュ等の前記駆動液体に対する濡れが良好でな 、材料から構成されて 、る場 合には、入口側電極 18の孔 30の孔径を大きく取り、該孔 30を介して電気浸透材 16 と駆動液体吸収部材 86とを直接接触させることが望ましい。
[0187] 一方、第 2部分 12bにおける出口側電極 20への対向部分のうち、流路 14が形成さ れる中央部分は、該出口側電極 20に向力つて突出する凸部 90として形成され、この 凸部 90に前述したバブル隔離部材 40が配置されている。また、前記対向部分のうち 凸部 90の隣接部分は、凹部 88として形成され、この凹部 88にガス抜き部材 42が配 置されている。さらに、ガス抜き部材 42から前記駆動液体の下流側(図 35の左側)に 向力つて複数の孔 74が形成されて 、る。
[0188] なお、図 35では、本来は面一である第 2部分 12bにおける出口側電極 20への対向 部分について、その一部を凹部 88とすることにより、前記中央部分を凸部 90として形 成しているが、バブル隔離部材 40が配置されている部分の周囲を凹部 88として形成 し、この凹部 88にガス抜き部材 42を配置することも可能である。すなわち、バブル隔 離部材 40が配置される前記中央部分は、少なくとも、凹部 88となっていないことが望 ましい。
[0189] ここで、バブル隔離部材 40として、例えば、親水性ポリエーテルスルホン膜 (孔径 0 . 2 [ m])を採用すると、 300 [kPa]程度の最低バブルポイントが得られる。この場 合、バブル隔離部材 40は、出口側チ ンバー 28と流路 14の小径部分 24側(流路 1 4の下流側)との間を遮るように、凸部 90上に接着されている。
[0190] また、ガス抜き部材 42として、例えば、 PTFE多孔質膜 (孔径 0. 1 [ μ m])を採用す ると、 300 [kPa]以上の最低ウォータブレークスルーポイントが得られる。この場合、 ガス抜き部材 42は、出口側チェンバー 28と複数の孔 74とを遮るように、凹部 88上に 接着されている。
[0191] なお、凸部 90に対するバブル隔離部材 40の接着方法や、凹部 88に対するガス抜 き部材 42の接着方法には、超音波溶着、熱溶着、接着剤、レーザ溶接等がある。
[0192] 孔 74は、出口側チェンバー 28からガス抜き部材 42を介して排出されるガスが所定 量通過できる程度の大きさで十分であり、出口側チ ンバー 28内の圧力に基づく前 記 PTFE膜 (ガス抜き部材 42)の引っ張り荷重が過大とならないように、円形状ゃスリ ット状 (例えば、孔径 0. l [mn!]〜 2 [mm]程度)に加工することが望ましい。また、前 記 PTFE膜に対するダメージを防止するために、孔 74と前記 PTFE膜との接触箇所 (孔 74の上流側)を面取りすることも好ま 、。
[0193] さらに、流路 14の方向に沿った出口側チ ンバー 28のギャップ、換言すれば、電 気浸透材 16又は出口側電極 20とガス抜き部材 42とのギャップ(間隔)や、電気浸透 材 16又は出口側電極 20とバブル隔離部材 40とのギャップ(間隔)は、電気浸透流ポ ンプ 10Oの特性上、重要なパラメータである力 これらのギャップは、 1 [ /ζ πι]〜3 [πι m]とすることが望ましい。すなわち、表面張力が重力に比べて支配的となるときの前 記ギャップが 3 [mm]程度であり、一方で、流路 14における流路抵抗が著しく大とな る前記ギャップの大きさが 1 [ μ m]未満程度であるので、 3 [mm]を上限値とし、 1 [ μ m]を下限値とした前述の範囲内で、前記各ギャップを適宜設定 (例えば、 l [mm]程 度)することが電気浸透流ポンプ 10Oの特性上好ま 、からである。
[0194] このように、前記ギャップを前述した範囲内にて、ある程度小さくすることにより、電 気浸透流ポンプ 10O内に発生したバブルの大きさを制限することができるので、ボン プ動作が安定化すると共に、出口側チェンバー 28からガス抜き部材 42及び孔 74を 介して外部にガスが排出されたときのポンプ流量の変動を抑制することが可能となる 。さらに、電気浸透流ポンプ 10O内部のデッドボリュームを小さくすることもできる。さ らにまた、前記ギャップの大きさを前述した範囲内に設定することにより、ガスの排出 に対する重力の影響が小さくなるので、電気浸透流ポンプ 10Oをどの方向に向けて 配置してもポンプ特性は変化せず、この結果、ポンプ性能に関してオリエンテーショ ンフリーとすることが可能となる。例えば、電気浸透流ポンプ 10Oの下流側(小径部 分 24側)を上向きに配置することも可能である。
[0195] また、出口側チェンバー 28内にバブルがあると流路 14内の駆動液体の流れが閉 塞化したり、前記駆動液体の流量が変動するという問題が発生するが、凹部 88上に ガス抜き部材 42を配置することにより、凸部 90よりも凹部 88に溜まりやすいバブルを 効率よくガス抜き部材 42から孔 74を介して外部に排出することができる。すなわち、 前記バブルは、凸部 90上のバブル隔離部材 40を通り抜けることができないので、該 凸部 90の側部に設けられた凹部 88の領域に移動し、出口側チ ンバー 28の内圧 によりガス抜き部材 42から孔 74を介して外部に排出される。
[0196] 従って、第 15実施形態に係る電気浸透流ポンプ 10Oでは、液体引込部材 52に自 己充填された駆動液体が駆動液体吸収部材 86で効率よく吸収されて、電気浸透材 16に速やかに供給され、この状態において、直流電源 34から入口側電極 18及び出 口側電極 20に直流電圧を印加すると、電気浸透材 16内の前記駆動液体が出口側 チェンバー 28からバブル隔離部材 40を介して外部に供給される。また、出口側チヱ ンバー 28内のバブルは、ガス抜き部材 42から孔 74を介して外部に排出される。
[0197] なお、上記の第 15実施形態に係る電気浸透流ポンプ 10Oでは、流路 14における 電気浸透材 16又は第 1電極 18の上流側にて、液体引込部材 52と、電気浸透材 16 及び Z又は第 1電極 18とで駆動液体吸収部材 86を挟み込む場合について説明し た力 この構成に代えて (あるいは、この構成に加えて)、電気浸透材 16又は第 2電 極 20の下流側にて、液体引込部材 82 (図 24、図 25、図 31〜図 34参照)と、電気浸 透材 16及び Z又は第 2電極 20とで駆動液体吸収部材 86を挟み込む場合でも、上 述した効果が同様に得られることは勿論である。
[0198] また、上記の第 15実施形態に係る電気浸透流ポンプ 10Oでは、流路 14の方向に 沿った電気浸透材 16又は出口側電極 20とガス抜き部材 42とのギャップや、電気浸 透材 16又は出口側電極 20とバブル隔離部材 40とのギャップを、 1 [ μ m]〜3 [mm] とした場合について説明した力 この構成に代えて(あるいは、この構成にカ卩えて)、 電気浸透材 16又は入口側電極 18とガス抜き部材 44 (図 1、図 16、図 17及び図 22 〜図 25参照)とのギャップや、電気浸透材 16又は入口側電極 18とバブル隔離部材 72 (図 6、図 15及び図 16参照)とのギャップを、 1 [ /ζ πι]〜3 [πιπι]とした場合でも、 上述した効果が同様に得られることは勿論である。
[0199] 次に、第 16実施形態に係る電気浸透流ポンプ 10Pについて、図 36を参照しながら 説明する。
[0200] 第 16実施形態に係る電気浸透流ポンプ 10Pは、流路 14の上流側 (入口 87)と、下 流側(出口 89)とを共に一面 91側(図 36の右側)に設け、その対向する他面 93側( 図 36の左側)にガス抜き部材 42及び複数の孔 74を設けた点で、第 1〜第 15実施形 態に係る電気浸透流ポンプ 10A〜: LOP (図 1〜図 35参照)とは異なる。
[0201] これにより、第 16実施形態に係る電気浸透流ポンプ 10Pでは、基板等の設置面に 対する該電気浸透流ポンプ 10Pの取付性 (接続性)が向上すると共に、ポンプ全体 の高さを低くすることができる。従って、電気浸透流ポンプ 10Pは、例えば、エレクト口 -クス機器における平面実装用の小型ポンプとして好適である。
[0202] 次に、第 15実施形態に係る電気浸透流ポンプ 10O (図 35参照)が適用された液体 供給装置 110について、図 37を参照しながら説明する。
[0203] この液体供給装置 110は、底部が閉塞され且つ上部が開放された筒状の液体容 器 92 (例えば、深さ 15 [cm])内にメタノール又は水で希釈されたメタノール水等の液 体燃料 94が充填され、前記上部に電気浸透流ポンプ 10Oが下流側(小径部分 24 側)を上向きに配置したものである。この場合、液体容器 92内には、液体燃料 94〖こ 対する吸収性が良好で且つ液体引込部材 52に連結された液体燃料吸収部材 96が 配置されている。
[0204] 液体燃料吸収部材 96は、親水性で且つ気孔率の大きな多孔質材、ある!/、は、繊 維状の材料 (例えば、天然パルプ繊維による保水材)であることが望ましいが、液体 弓 I込部材 52と同一材料で構成してもよ 、し、該液体引込部材 52に採用されて 、る 材料よりも保水量の大きな材料で構成することも好ましい。
[0205] ここで、液体燃料吸収部材 96に吸収された液体燃料 94は、該液体燃料吸収部材 96を介して液体引込部材 52に自己充填され、さらに、駆動液体吸収部材 86を介し て電気浸透材 16に供給される。この状態において、直流電源 34から入口側電極 18 及び出口側電極 20に直流電圧を印加すると、電気浸透材 16内の液体燃料 94が出 口側チェンバー 28からバブル隔離部材 40を介して外部に供給され、出口側チェン バー 28内のバブルは、ガス抜き部材 42から孔 74を介して外部に排出される。
[0206] 前述したメタノール又はメタノール水等の液体燃料 94は、燃料電池システムの燃料 として使用されるので、より簡単な構成で、液体容器 92内の液体燃料 94を前記燃料 電池システムに供給することができる。
[0207] また、メタノール 100 [%]の溶液の液体燃料 94では、供給時に電気浸透流ポンプ 10O内にバルブが発生しても、前記メタノールでの溶解度が大きく全て溶解されてし まうので、前述したガス抜き構造 (ガス抜き部材 42及び孔 74)は特に設けなくても構 わない。これに対して、前記メタノール水の液体燃料 94では、水の存在によってボン プ電流が大きくなり、また、ガスの溶解度も小さいことから、バブルの発生を回避する ことはできな 、が、電気浸透流ポンプ 10Oにガス抜き部材 42及び孔 74のガス抜き構 造が設けられて 、るので、発生した前記バブルを効率よく電気浸透流ポンプ 10Oか ら外部に排出することができる。
[0208] さらに、電気浸透流ポンプ 10Oがオリエンテーションフリーのポンプであるので、ど のような姿勢でも液体燃料 94の供給が可能であり、モノ ィル機器等の使用にも適し ている。また、液体燃料吸収部材 96を液体容器 92内部に配置することにより、該液 体容器 92に充填されている液体燃料 94を全て外部に供給することができる。
[0209] なお、液体容器 92に対して電気浸透流ポンプ 10O及び液体燃料吸収部材 96を 着脱可能にしておけば、前記燃料電池システム側に電気浸透流ポンプ 10O及び液 体燃料吸収部材 96に組み込み、液体容器 92のみを取り替えることにより、液体燃料 94の補充が容易となる。
[0210] また、上述した液体供給装置 110では、一例として、第 15実施形態に係る電気浸 透流ポンプ 10O (図 35参照)を適用した場合について説明した力 第 1〜第 14、第 1 6実施形態に係る電気浸透流ポンプ 10A〜: L0N、 10P (図 1〜図 34及び図 36参照) を用いて、液体容器 92内の液体燃料 94を外部に供給することも可能であることは勿 論である。
[0211] なお、本発明に係る電気浸透流ポンプ及び液体供給装置は、上述の実施の形態 に限らず、本発明の要旨を逸脱することなぐ種々の構成を採り得ることは勿論である
産業上の利用可能性
[0212] 本発明に係る電気浸透流ポンプによれば、電圧の印加によって第 2電極近傍にガ スが生成しても、電気浸透材の下流側に配置された下流側液体通過部材は、駆動 液体を通過させ、一方で、前記ガスの通過を阻止する。これにより、前記下流側に接 続されたマイクロ流体チップ等の各種流体機器に前記ガスが流入することを阻止す ることが可能となり、例えば、前記流体機器内を通過する液体の位置制御を正確に 行うことが可能となる。
[0213] また、本発明に係る電気浸透流ポンプによれば、上流側液体自己充填機構と電気 浸透材とが接触しているので、外部より前記上流側液体自己充填機構に駆動液体を 充填すると、充填された前記駆動液体が前記上流側液体自己充填機構より前記電 気浸透材の内部に速やかに浸透する。この状態で、電圧を各電極に印加すると、前 記電気浸透材より流路の下流側に前記駆動液体を確実に排出することが可能となる 。この結果、第 1電極近傍に気体が存在する場合であっても、前記電気浸透流ボン プの自己充填性を確保することが可能となる。
[0214] さらに、本発明に係る液体供給装置によれば、電気浸透流ポンプの第 1電極及び 第 2電極に電圧を印加すれば、液体容器に充填された液体を前記電気浸透流ボン プを介して外部に供給することができるので、簡単な構成で前記液体を供給すること が可能となる。

Claims

請求の範囲
[1] 流路(14)内に設けられた電気浸透材(16)の上流側に第 1電極(18)を配置し且 つ下流側に第 2電極(20)を配置し、前記第 1電極(18)及び前記第 2電極(20)に電 圧を印加したときに前記電気浸透材(16)を介して前記流路(14)内に駆動液体 (60 、 94)を流通させる電気浸透流ポンプ(10A〜 101、 10K、 10L、 ION〜: LOP)〖こお いて、
前記流路(14)の下流側には、前記電圧を印加したときに前記第 2電極 (20)近傍 に生成されるガスの前記下流側への通過を阻止し、一方で、前記駆動液体 (60、 94 )を通過可能な下流側液体通過部材 (40、 84)が前記第 2電極(20)より下流側に配 置されている
ことを特徴とする電気浸透流ポンプ。
[2] 請求項 1記載の電気浸透流ポンプ(10A、 10D〜: L0I、 10Κ、 100、 10Ρ)におい て、
前記電気浸透材(16)と前記下流側液体通過部材 (40、 84)との間には、前記流 路(14)より外部に前記ガスを放出する下流側ガス抜き部材 (42)が配置されて 、る ことを特徴とする電気浸透流ポンプ。
[3] 請求項 1又は 2記載の電気浸透流ポンプ(10C、 10E、 10F、 10H、 101、 10L、 10
N)において、
前記流路(14)の上流側には、前記電気浸透材(16)への異物の流入を阻止し、一 方で、前記電圧を印加したときに前記駆動液体 (60)を通過可能な上流側液体通過 部材(72、 76)が前記電気浸透材(16)より上流側に配置されている
ことを特徴とする電気浸透流ポンプ。
[4] 請求項 3記載の電気浸透流ポンプ(10F、 10H、 101)にお!/ヽて、
前記電気浸透材(16)と前記上流側液体通過部材 (72、 76)との間には、前記電 圧を印カロしたときに前記第 1電極(18)の近傍に生成されるガスを外部に放出する上 流側ガス抜き部材 (44)が配置されて 、る
ことを特徴とする電気浸透流ポンプ。
[5] 請求項 1〜4のいずれ力 1項に記載の電気浸透流ポンプ(10A、 10G〜10I、 10K 、 10L、 10N〜10P)【こお!/ヽて、
前記流路(14)の上流側には、前記駆動液体 (60、 94)を自己充填可能な上流側 液体自己充填機構 (50)が前記電気浸透材(16)又は前記第 1電極(18)と接触した 状態で配置されている
ことを特徴とする電気浸透流ポンプ。
[6] 請求項 1〜5のいずれ力 1項に記載の電気浸透流ポンプ(101、 10N)において、 前記流路(14)の下流側には、前記駆動液体 (60)を自己充填可能な下流側液体 自己充填機構 (80)が前記電気浸透材(16)又は前記第 2電極 (20)と接触した状態 で配置されている
ことを特徴とする電気浸透流ポンプ。
[7] 流路(14)内に設けられた電気浸透材(16)の上流側に第 1電極(18)を配置し且 つ下流側に第 2電極(20)を配置し、前記第 1電極(18)及び前記第 2電極(20)に電 圧を印加したときに前記電気浸透材(16)を介して前記流路(14)内に駆動液体 (60 、 94)を流通させる電気浸透流ポンプ(10A、 10G〜: LOP)において、
前記流路(14)の上流側には、前記駆動液体 (60、 94)を自己充填可能な上流側 液体自己充填機構 (50)が前記電気浸透材(16)又は前記第 1電極(18)と接触した 状態で配置されている
ことを特徴とする電気浸透流ポンプ。
[8] 請求項 7記載の電気浸透流ポンプ(10H、 101、 10L〜10N)において、
前記流路(14)の上流側には、前記電気浸透材(16)への異物の流入を阻止し、一 方で、前記電圧を印加したときに前記駆動液体 (60)を通過可能な上流側液体通過 部材(76)が前記電気浸透材(16)より上流側に配置されて!ヽる
ことを特徴とする電気浸透流ポンプ。
[9] 請求項 8記載の電気浸透流ポンプ(10H、 101)にお!/、て、
前記電気浸透材(16)と前記上流側液体通過部材 (76)との間には、前記電圧を印 カロしたときに前記第 1電極(18)の近傍に生成されるガスを外部に放出する上流側ガ ス抜き部材 (44)が配置されて 、る
ことを特徴とする電気浸透流ポンプ。
[10] 請求項 7〜9のいずれ力 1項に記載の電気浸透流ポンプ(101、 10J、 ION)〖こおい て、
前記流路(14)の下流側には、前記駆動液体 (60)を自己充填可能な下流側液体 自己充填機構 (80)が前記電気浸透材(16)又は前記第 2電極 (20)と接触した状態 で配置されている
ことを特徴とする電気浸透流ポンプ。
[11] 請求項 7〜10のいずれ力 1項に記載の電気浸透流ポンプ(10A、 10G〜10I、 10 K:、 10L、 10N〜10P)【こお!/ヽて、
前記流路(14)の下流側には、前記ガスの前記下流側への通過を阻止し、一方で 、前記駆動液体 (60、 94)を通過可能な下流側液体通過部材 (40、 84)が前記第 2 電極(20)より下流側に配置されている
ことを特徴とする電気浸透流ポンプ。
[12] 請求項 11記載の電気浸透流ポンプ(10A、 10G〜: L0I、 10Κ、 100、 ΙΟΡ)におい て、
前記電気浸透材(16)と前記下流側液体通過部材 (40、 84)との間には、前記電 圧を印カロしたときに前記第 2電極 (20)の近傍に生成されるガスを外部に放出する下 流側ガス抜き部材 (42)が配置されて 、る
ことを特徴とする電気浸透流ポンプ。
[13] 請求項 1〜6、 8、 9、 11、 12のいずれ力 1項に記載の電気浸透流ポンプ(10A〜1 01、 10K:〜 10P)【こお!/ヽて、
前記液体通過部材 (40、 84、 72、 76)は、親水性材料からなり、
前記液体通過部材 (40、 84、 72、 76)内をガスが通過するために必要なガス圧は 、 l [kPa]以上であり、
前記流路(14)の方向に沿った前記液体通過部材 (40、 72、 76、 84)の厚みは、 3 [mm]以下である
ことを特徴とする電気浸透流ポンプ。
[14] 請求項 2、 4、 9、 12のいずれ力 1項に記載の電気浸透流ポンプ(10A、 10D〜10 K:、 100、 10Ρ)【こお!/ヽて、 前記ガス抜き部材 (42、 44)は、前記流路(14)の側部に形成された疎水性材料か らなり、
前記ガス抜き部材 (42、 44)に対する前記駆動液体 (60、 94)の通過圧力が、前記 駆動液体 (60、 94)の運転時の最大圧力よりも小さぐ
前記ガスの通過方向に沿った前記ガス抜き部材 (42、 44)の厚みは、 3 [mm]以下 である
ことを特徴とする電気浸透流ポンプ。
[15] 請求項 5〜12のいずれ力 1項に記載の電気浸透流ポンプ(10A、 10G〜10P)に おいて、
前記液体自己充填機構 (50、 80)は、前記流路(14)に沿って前記電気浸透材(1 6)の近傍に配置された自己充填部(52、 82)と、前記自己充填部(52、 82)の側部 に形成され且つ前記自己充填部(52、 82)と浸透圧の異なるエア抜き部(14、 56)と から構成され、
前記自己充填部(52、 82)は、前記駆動液体 (60、 94)を自己充填して前記電気 浸透材(16)に供給し、前記エア抜き部(14、 56)は、前記自己充填部(52、 82)及 び前記エア抜き部(14、 56)の浸透圧差に基づいて、前記電気浸透材(16)の上流 側に残存するエアを外部に排出する
ことを特徴とする電気浸透流ポンプ。
[16] 請求項 15記載の電気浸透流ポンプ(10G)において、
前記自己充填部(52、 82)は、親水性材料力もなり、前記エア抜き部(56)は、疎水 性材料からなる
ことを特徴とする電気浸透流ポンプ。
[17] 請求項 1〜6、 8、 9、 11のいずれ力 1項に記載の電気浸透流ポンプ(10A〜10I、 1 OK:〜 10P)【こお!/ヽて、
前記流路(14)の方向に沿った前記電気浸透材(16)又は前記第 1電極(18)と前 記上流側液体通過部材(72、 76)との間隔は、 3 [mm]以下であり、及び Z又は、前 記流路(14)の方向に沿った前記電気浸透材(16)又は前記第 2電極 (20)と前記下 流側液体通過部材 (40、 84)との間隔は、 3 [mm]以下である ことを特徴とする電気浸透流ポンプ。
[18] 請求項 5〜12、 15、 16のいずれ力 1項に記載の電気浸透流ポンプ(10O)におい て、
前記上流側液体自己充填機構 (50)と前記電気浸透材(16)又は前記第 1電極(1 8)との間には、前記上流側液体自己充填機構 (50)と前記電気浸透材(16)又は前 記第 1電極(18)とに密着可能で、且つ親水性材料からなる駆動液体吸収部材 (86) が配置され、及び Z又は、前記下流側液体自己充填機構 (80)と前記電気浸透材 ( 16)又は前記第 2電極 (20)との間には、前記下流側液体自己充填機構 (80)と前記 電気浸透材(16)又は前記第 2電極 (20)とに密着可能で、且つ親水性材料からなる 駆動液体吸収部材 (86)が配置されて 、る
ことを特徴とする電気浸透流ポンプ。
[19] 請求項 1〜18のいずれ力 1項に記載の電気浸透流ポンプ(10P)において、
前記流路(14)は、前記電気浸透材(16)、前記第 1電極(18)、前記第 2電極 (20) を収容するポンプ容器(12)内に形成され、
前記ポンプ容器(12)における前記流路(14)の上流側の入口(87)と、前記流路( 14)の下流側の出口(89)とは、同一面(91)側に設けられている
ことを特徴とする電気浸透流ポンプ。
[20] 請求項 1〜19のいずれ力 1項に記載の電気浸透流ポンプ(10A〜10P)と、
液体 (94)が充填された液体容器 (92)とを有し、
前記液体容器 (92)内の前記液体(94)を前記電気浸透流ポンプ(10A〜10P)を 介して外部に供給する
ことを特徴とする液体供給装置(110)。
PCT/JP2006/306757 2005-03-30 2006-03-30 電気浸透流ポンプ及び液体供給装置 WO2006106884A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06730705A EP1873532A1 (en) 2005-03-30 2006-03-30 Electroosmosis pump and liquid feeding device
KR1020077025011A KR100930255B1 (ko) 2005-03-30 2006-03-30 전기 침투류 펌프 및 액체 공급 장치
US11/887,440 US20090136362A1 (en) 2005-03-30 2006-03-30 Electroosmosis Pump and Liquid Feeding Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005099555 2005-03-30
JP2005-099555 2005-03-30

Publications (1)

Publication Number Publication Date
WO2006106884A1 true WO2006106884A1 (ja) 2006-10-12

Family

ID=37073439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306757 WO2006106884A1 (ja) 2005-03-30 2006-03-30 電気浸透流ポンプ及び液体供給装置

Country Status (6)

Country Link
US (1) US20090136362A1 (ja)
EP (1) EP1873532A1 (ja)
JP (1) JP4593507B2 (ja)
KR (1) KR100930255B1 (ja)
CN (1) CN101213457A (ja)
WO (1) WO2006106884A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8042928B2 (en) * 2007-01-23 2011-10-25 Kabushiki Kaisha Toshiba Liquid container, fuel cell system and method for controlling fuel cell system

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4285518B2 (ja) 2006-03-28 2009-06-24 カシオ計算機株式会社 接続構造体、流路制御部、燃料電池型発電装置及び電子機器
JP5360519B2 (ja) * 2006-09-22 2013-12-04 西川 正名 電気浸透材及びその製造方法と電気浸透流ポンプ
JP4893195B2 (ja) * 2006-09-27 2012-03-07 カシオ計算機株式会社 送液装置の接続構造体、燃料電池型発電装置及び電子機器
JP5061666B2 (ja) * 2007-03-13 2012-10-31 カシオ計算機株式会社 送液装置、燃料電池型発電装置、及び電子機器
JP5061682B2 (ja) * 2007-03-27 2012-10-31 カシオ計算機株式会社 流体機器、発電装置、電子機器及び下流部構造
GB0802450D0 (en) * 2008-02-08 2008-03-19 Osmotex As Electro-osmotic pump
JP5082979B2 (ja) * 2008-03-27 2012-11-28 カシオ計算機株式会社 電気浸透流ポンプの制御方法及び制御装置並びに燃料電池システム
FR2937690B1 (fr) * 2008-10-28 2010-12-31 Commissariat Energie Atomique Micropome a actionnement par gouttes
CA2881741C (en) 2008-11-26 2018-04-03 Illumina, Inc Electroosmotic pump with improved gas management
DE102009012347A1 (de) * 2009-03-09 2010-09-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Filteranordnung und ein Verfahren zur Herstellung einer Filteranordnung
WO2011091345A2 (en) * 2010-01-25 2011-07-28 Cornell University Electro-osmotic apparatus, method, and applications
WO2012012896A1 (en) * 2010-07-24 2012-02-02 Clayton Hoffarth Downhole pump with a pressure sequencing valve
WO2012070431A1 (ja) * 2010-11-22 2012-05-31 国立大学法人北海道大学 ポータブルな液体クロマトグラフ及び液体クロマトグラフィー
US9103331B2 (en) * 2011-12-15 2015-08-11 General Electric Company Electro-osmotic pump
KR101952445B1 (ko) * 2012-05-10 2019-04-26 리쿠아비스타 비.브이. 전기 습윤 표시장치
WO2014112726A1 (ko) 2013-01-15 2014-07-24 서강대학교산학협력단 가역적 전극반응을 이용한 전기삼투펌프 및 이를 이용한 유체 펌핑 시스템

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0989840A (ja) * 1995-09-27 1997-04-04 Olympus Optical Co Ltd 小型電気泳動装置
WO2000062039A1 (en) * 1999-04-09 2000-10-19 Northeastern University System and method for high throughput mass spectrometric analysis
US6406605B1 (en) * 1999-06-01 2002-06-18 Ysi Incorporated Electroosmotic flow controlled microfluidic devices
JP2002191905A (ja) * 2000-12-28 2002-07-10 Nipro Corp 液循環回路用エアートラップ
WO2003029731A2 (en) * 2001-09-28 2003-04-10 Board Of Trustees Of The Leland Stanford Junior University Electroosmotic microchannel cooling system
WO2004007348A1 (en) * 2002-07-15 2004-01-22 Osmotex As Actuator in a microfluidic system for inducing electroosmotic liquid movement in a micro channel
WO2004050243A1 (en) * 2002-12-02 2004-06-17 Epocal Inc. Integrated solid-phase hydrophilic matrix circuits and micro-arrays
US20040234378A1 (en) * 2003-01-31 2004-11-25 James Lovette Method and apparatus for low-cost electrokinetic pump manufacturing
US20050003842A1 (en) * 2003-07-02 2005-01-06 Nokia Corporation Network survey in radio telecommunications network
JP2006022807A (ja) * 2004-06-07 2006-01-26 Science Solutions International Laboratory Inc 電気浸透流ポンプシステム及び電気浸透流ポンプ

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US661925A (en) * 1900-03-08 1900-11-13 James H Woodard Traveling oiler for elevator-guides.
US3893904A (en) * 1973-07-02 1975-07-08 Albert F Hadermann Electroosmotic pressure cell
US3923426A (en) * 1974-08-15 1975-12-02 Alza Corp Electroosmotic pump and fluid dispenser including same
JP3161635B2 (ja) * 1991-10-17 2001-04-25 ソニー株式会社 インクジェットプリントヘッド及びインクジェットプリンタ
US5560811A (en) * 1995-03-21 1996-10-01 Seurat Analytical Systems Incorporated Capillary electrophoresis apparatus and method
US5872010A (en) * 1995-07-21 1999-02-16 Northeastern University Microscale fluid handling system
JP2924815B2 (ja) * 1996-09-27 1999-07-26 日本電気株式会社 ゼータ電位測定装置
US6090251A (en) * 1997-06-06 2000-07-18 Caliper Technologies, Inc. Microfabricated structures for facilitating fluid introduction into microfluidic devices
US6013164A (en) * 1997-06-25 2000-01-11 Sandia Corporation Electokinetic high pressure hydraulic system
US5989402A (en) * 1997-08-29 1999-11-23 Caliper Technologies Corp. Controller/detector interfaces for microfluidic systems
US6167910B1 (en) * 1998-01-20 2001-01-02 Caliper Technologies Corp. Multi-layer microfluidic devices
US6103199A (en) * 1998-09-15 2000-08-15 Aclara Biosciences, Inc. Capillary electroflow apparatus and method
US6416642B1 (en) * 1999-01-21 2002-07-09 Caliper Technologies Corp. Method and apparatus for continuous liquid flow in microscale channels using pressure injection, wicking, and electrokinetic injection
US6729383B1 (en) * 1999-12-16 2004-05-04 The United States Of America As Represented By The Secretary Of The Navy Fluid-cooled heat sink with turbulence-enhancing support pins
US6698798B2 (en) * 2000-04-13 2004-03-02 California Institute Of Technology Micromachined rubber O-ring microfluidic couplers
US6537437B1 (en) * 2000-11-13 2003-03-25 Sandia Corporation Surface-micromachined microfluidic devices
US7147441B2 (en) * 2000-12-20 2006-12-12 Board Of Trustees Of The University Of Arkansas, N.A. Microfluidics and small volume mixing based on redox magnetohydrodynamics methods
DE10106996C2 (de) * 2001-02-15 2003-04-24 Merck Patent Gmbh Einrichtung zur Verbindung von Mikrokomponenten
US6491684B1 (en) * 2001-05-22 2002-12-10 Durect Corporation Fluid delivery device having a water generating electrochemical/chemical pump and associated method
US6770183B1 (en) * 2001-07-26 2004-08-03 Sandia National Laboratories Electrokinetic pump
JP3692381B2 (ja) * 2001-08-29 2005-09-07 株式会社タクミナ ガス排出機構および往復動ポンプ
US20040247450A1 (en) * 2001-10-02 2004-12-09 Jonatan Kutchinsky Sieve electrooosmotic flow pump
WO2003028861A1 (en) * 2001-10-02 2003-04-10 Sophion Bioscience A/S Corbino disc electroosmotic flow pump
US6619925B2 (en) * 2001-10-05 2003-09-16 Toyo Technologies, Inc. Fiber filled electro-osmotic pump
US7470267B2 (en) * 2002-05-01 2008-12-30 Microlin, Llc Fluid delivery device having an electrochemical pump with an anionic exchange membrane and associated method
US7235164B2 (en) * 2002-10-18 2007-06-26 Eksigent Technologies, Llc Electrokinetic pump having capacitive electrodes
US7086839B2 (en) * 2002-09-23 2006-08-08 Cooligy, Inc. Micro-fabricated electrokinetic pump with on-frit electrode
JP2005061391A (ja) * 2003-07-30 2005-03-10 Aisin Seiki Co Ltd ポンプ装置
US7231839B2 (en) * 2003-08-11 2007-06-19 The Board Of Trustees Of The Leland Stanford Junior University Electroosmotic micropumps with applications to fluid dispensing and field sampling
US7204914B2 (en) * 2003-08-13 2007-04-17 Metso Automation Usa Inc. System and method for controlling a processor including a digester utilizing time-based assessments
US7465381B2 (en) * 2004-01-22 2008-12-16 Stc.Unm Electrokinetic molecular separation in nanoscale fluidic channels
KR100777172B1 (ko) * 2004-06-07 2007-11-28 나노 퓨전 가부시키가이샤 전기 침투류 펌프 시스템 및 전기 침투류 펌프

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0989840A (ja) * 1995-09-27 1997-04-04 Olympus Optical Co Ltd 小型電気泳動装置
WO2000062039A1 (en) * 1999-04-09 2000-10-19 Northeastern University System and method for high throughput mass spectrometric analysis
US6406605B1 (en) * 1999-06-01 2002-06-18 Ysi Incorporated Electroosmotic flow controlled microfluidic devices
JP2002191905A (ja) * 2000-12-28 2002-07-10 Nipro Corp 液循環回路用エアートラップ
WO2003029731A2 (en) * 2001-09-28 2003-04-10 Board Of Trustees Of The Leland Stanford Junior University Electroosmotic microchannel cooling system
WO2004007348A1 (en) * 2002-07-15 2004-01-22 Osmotex As Actuator in a microfluidic system for inducing electroosmotic liquid movement in a micro channel
WO2004050243A1 (en) * 2002-12-02 2004-06-17 Epocal Inc. Integrated solid-phase hydrophilic matrix circuits and micro-arrays
US20040234378A1 (en) * 2003-01-31 2004-11-25 James Lovette Method and apparatus for low-cost electrokinetic pump manufacturing
US20050003842A1 (en) * 2003-07-02 2005-01-06 Nokia Corporation Network survey in radio telecommunications network
JP2006022807A (ja) * 2004-06-07 2006-01-26 Science Solutions International Laboratory Inc 電気浸透流ポンプシステム及び電気浸透流ポンプ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8042928B2 (en) * 2007-01-23 2011-10-25 Kabushiki Kaisha Toshiba Liquid container, fuel cell system and method for controlling fuel cell system

Also Published As

Publication number Publication date
US20090136362A1 (en) 2009-05-28
CN101213457A (zh) 2008-07-02
KR20080005380A (ko) 2008-01-11
JP4593507B2 (ja) 2010-12-08
KR100930255B1 (ko) 2009-12-09
JP2006311796A (ja) 2006-11-09
EP1873532A1 (en) 2008-01-02

Similar Documents

Publication Publication Date Title
JP4593507B2 (ja) 電気浸透流ポンプ及び液体供給装置
JP2006275016A (ja) 液体輸送装置及び液体輸送システム
US7976286B2 (en) Method and apparatus for pumping liquids using directional growth and elimination bubbles
JP2022519575A (ja) 閉じ込められた電解質を有する電気化学システム
JP4563344B2 (ja) 直接液体燃料電池の気液分離装置
US7709130B2 (en) Fuel cell
JP2006522434A (ja) 燃料電池用燃料カートリッジ
JP4285518B2 (ja) 接続構造体、流路制御部、燃料電池型発電装置及び電子機器
JP2008181701A (ja) 液体容器、燃料電池システム及びその運転方法
JP4893195B2 (ja) 送液装置の接続構造体、燃料電池型発電装置及び電子機器
JP2010146810A (ja) 燃料電池システム
JP5061666B2 (ja) 送液装置、燃料電池型発電装置、及び電子機器
KR102501721B1 (ko) 수전해 장치
JP2007095400A (ja) 燃料カートリッジ
JP2005524952A (ja) 燃料供給システム及びその使用方法
US20060046123A1 (en) Passive fluid pump and its application to liquid-feed fuel cell system
US8703358B2 (en) Fuel cell feed systems
JP2005238217A (ja) 気液分離器および燃料電池
JP2006278130A (ja) 燃料電池システム
JP2009080964A (ja) 燃料電池
JP5268095B2 (ja) 表面に流路が形成された部材ならびにこれを用いたバイオチップ、燃料電池および燃料電池システム
US9515333B1 (en) Flow management in fuel cell configurations
US6793462B2 (en) Fluidic pump
JP2009245851A (ja) 燃料電池システム
US20080081241A1 (en) Liquid cartridge for storing liquid, electricity generating apparatus which generates electricity by liquid supplied from the liquid cartridge, and electronic device having the electricity generating apparatus as an electricity supply source

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680018437.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006730705

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11887440

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077025011

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006730705

Country of ref document: EP