WO2006106878A1 - カルシウム及び/又はマグネシウムを含む多孔質粒子からなる粒状物 - Google Patents

カルシウム及び/又はマグネシウムを含む多孔質粒子からなる粒状物 Download PDF

Info

Publication number
WO2006106878A1
WO2006106878A1 PCT/JP2006/306749 JP2006306749W WO2006106878A1 WO 2006106878 A1 WO2006106878 A1 WO 2006106878A1 JP 2006306749 W JP2006306749 W JP 2006306749W WO 2006106878 A1 WO2006106878 A1 WO 2006106878A1
Authority
WO
WIPO (PCT)
Prior art keywords
granular material
mass
range
content
calcium
Prior art date
Application number
PCT/JP2006/306749
Other languages
English (en)
French (fr)
Inventor
Osamu Misumi
Shinichi Yamamoto
Takayuki Watanabe
Takashi Kishimoto
Takashi Watanabe
Fumio Okada
Yoshio Ishihara
Katsumasa Suzuki
Kaoru Sakoda
Original Assignee
Ube Material Industries, Ltd.
Taiyo Nippon Sanso Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Material Industries, Ltd., Taiyo Nippon Sanso Corporation filed Critical Ube Material Industries, Ltd.
Priority to KR1020077025023A priority Critical patent/KR101270921B1/ko
Priority to JP2007512897A priority patent/JP4890444B2/ja
Priority to US11/910,126 priority patent/US7976806B2/en
Priority to EP06730697A priority patent/EP1867620A1/en
Publication of WO2006106878A1 publication Critical patent/WO2006106878A1/ja
Priority to IL186444A priority patent/IL186444A0/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/28Selection of materials for use as drying agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/508Sulfur oxides by treating the gases with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • B01D53/685Halogens or halogen compounds by treating the gases with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/2803Sorbents comprising a binder, e.g. for forming aggregated, agglomerated or granulated products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/02Oxides or hydroxides
    • C01F11/04Oxides or hydroxides by thermal decomposition
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/02Magnesia
    • C01F5/06Magnesia by thermal decomposition of magnesium compounds
    • C01F5/08Magnesia by thermal decomposition of magnesium compounds by calcining magnesium hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/402Alkaline earth metal or magnesium compounds of magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/404Alkaline earth metal or magnesium compounds of calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/42Materials comprising a mixture of inorganic materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]

Definitions

  • Granules made of porous particles containing calcium and z or magnesium
  • the present invention relates to porous particles containing calcium oxide, which are useful as adsorbents for the decomposition products of a hygroscopic material, an acidic gas, and a halogenated hydrocarbon gas, or an oxidized calcium and an oxidized magnesium.
  • the present invention relates to a granular material having a porous particle force and a manufacturing method thereof.
  • Acid calcium and acid magnesium are used as hygroscopic materials because of their high reactivity with water.
  • acid calcium and acid magnesium are both basic oxides and are highly reactive to acids, so hydrogen fluoride gas, hydrogen chloride gas, sulfur dioxide gas, carbon dioxide gas It is used as an adsorbent for acidic gases such as More recently, acid calcium and magnesium oxide are used in semiconductor manufacturing processes, etc., and are used as fluorocarbon gases and fire extinguishing agents to decompose halogenated hydrocarbon gases such as hydrogen gas. Utilization as a product adsorbent is also under consideration.
  • Patent Document 1 as a highly active calcium oxide porous granular material excellent in reactivity with carbon dioxide gas, a hydroxide or calcium hydroxide having a specific surface area of at least 5 m 2 Zg and a particle size of at least 1 mm is used. A calcium carbonate porous granule which is a calcined body of calcium carbonate is disclosed.
  • Patent Document 1 as a method for producing highly active acid calcium calcium porous granules, calcium hydroxide powder granules (granules) having a particle size of 300 ⁇ m or less are applied at 390-480 ° under normal pressure. A method in which the temperature is raised between C for at least 5 minutes, and a calcium carbonate powder granule having a particle size of 300 ⁇ m or less is heated between 700 and 780 ° C in at least 5 minutes. Is described.
  • Patent Document 2 includes, as active ingredients, particulates of a fluorocarbon gas decomposition catalyst (acid-aluminum) and particulates of oxides of alkaline earth metals such as calcium oxide and magnesium oxide.
  • Fluorocarbon gas decomposition treatment materials have been proposed.
  • This fluorocarbon gas decomposition treatment material is a reaction between fluorocarbon gas and aluminum oxide. Since the aluminum fluoride produced by the reaction with alkaline earth metal oxides is regenerated into acid aluminum, it is possible to decompose fluorocarbon gas continuously for a long time. It is supposed to be.
  • the alkaline earth metal oxide granular material is produced by pressure-forming an alkaline earth metal oxide powder.
  • Non-patent document 1 discloses that halogenation is carried out at a temperature of about 900 ° C. (1173 K) for each of acid calcium, acid magnesium, and a mixture of acid calcium and acid magnesium.
  • hydrocarbon gas Natural 1301 gas
  • a mixture of acid calcium and acid magnesium is more halogenated hydrocarbon than calcium oxide and magnesium oxide alone. It is reported that the adsorption efficiency of gas decomposition products (fluorine, bromine) is high.
  • the mixture of acid calcium and acid magnesium is formed by kneading a mixture of calcium hydroxide and magnesium hydroxide with pure water and molding it. Manufactured by firing in an electric furnace at a temperature of about 1000 ° C (1273K).
  • Patent Document 1 JP-A-7-149580
  • Patent Document 2 Japanese Patent Laid-Open No. 2002-224565
  • Non-patent document 1 Akihiro Takeuchi et al., 3 “Influence of solid adsorbent composition on adsorption of halon decomposition gas”, Journal of the Society of Inorganic Materials, Japan, 12, 97-105 (2005)
  • a hygroscopic material, or a granular material containing acid calcium used as a gas adsorbent such as a decomposition product of acid gas or halogenated hydrocarbon gas, or acid calcium and acid magnesium It is preferable that the particulate matter containing the material has a large contact area with the target gas (that is, BET specific surface area).
  • the granular material used as a gas adsorbent is generally often used after being packed in a gas processing device such as a column. In such a case, the gas processing device is filled with gas! If the gas adsorbent is pulverized (collapsed) during operation (when the gas treatment material and target gas are in contact), the pressure loss of the gas treatment device will increase. For this reason, the granular materials used as gas adsorbents have a shape that is strong against physical impact. It is desired that the state stability is high.
  • the object of the present invention is to have a large BET specific surface area and a high strength against physical impact! Granules containing acid calcium and particles containing acid calcium and magnesium hydroxide Is to provide things.
  • the present invention is a porous particle comprising calcium carbonate and calcium hydroxide, wherein the content of calcium oxide relative to the total amount of calcium oxide content and calcium hydroxide content is The ratio is in the range of 30 to 80% by mass, and the BET specific surface area is 40m 2 Zg or more. It is in a granular material with porous particle force (hereinafter referred to as porous containing acid calcium and hydroxide calcium hydroxide). (Particulate matter having a particle force may be referred to as particulate matter containing calcium carbonate).
  • Preferred embodiments of the granular material containing calcium carbonate in accordance with the present invention are as follows.
  • the specific surface area of all pores in which the pore diameter determined by the BJH method is in the range of 2 to 9 nm is in the range of 20 to 100 m 2 Zg.
  • the specific surface area of all pores having a pore diameter in the range of 2 to 9 nm determined by the BJH method is in the range of 20 to 1 OOm 2 Zg and the pore diameter is in the range of 10 to lOOnm.
  • the pore volume is in the range of 0.1 to 0.6 mLZg.
  • the total amount of calcium oxide content and calcium hydroxide content is 85% by mass or more based on the total amount of the granular material.
  • the present invention also provides a granular material comprising calcium hydroxide porous particles having a BET specific surface area of 10 m 2 / g or more at a temperature of 315 to 500 ° C under a pressure of 300 Pa or less.
  • the granule containing the calcium carbonate of the present invention which is fired until the mass of the granule is reduced by 8.8 to 20% by mass relative to the mass of calcium hydroxide in the granule
  • the present invention is further porous particles containing calcium oxide, magnesium oxide, calcium hydroxide and magnesium hydroxide, wherein the mass ratio of the magnesium content to the total amount of the calcium content and the magnesium content is In the range of 0. 05-0. 80, grains There is also a granular material having a porous particle force having a BET specific surface area of 50 m 2 Zg or more with a total hydroxyl group content in the range of 1 to 20% by mass (hereinafter referred to as “acid calcium”, “acid calcium”). Porous particles containing “magnesium”, “calcium hydroxide” and “hydrated magnesium” may be referred to as “particles containing acid calcium and acid magnesium”.
  • Preferred embodiments of the granular material containing the calcium carbonate and magnesium oxide according to the present invention are as follows.
  • the specific surface area force of all pores having a pore diameter determined by the BJH method in the range of 2 to 9 nm is in the range of 0 to 200 m 2 Zg.
  • the specific surface area of all pores having a pore diameter of less than 2 nm determined by the BJH method is in the range of 20 to 200 m 2 Zg.
  • the ratio of the total amount of calcium content and magnesium content to the total amount of granular material is 50% by mass or more.
  • the present invention further includes a porous particle comprising a calcium hydroxide particle having a BET specific surface area of 10 m 2 / g or more and a magnesium hydroxide particle having a BET specific surface area of 10 m 2 / g or more. And a granular material having a porous particle force in which the mass ratio of the magnesium content to the total amount of the calcium content and the magnesium content is in the range of 0.05-0.80, under a pressure of 300 Pa or less, There is also a method for producing a granular material containing calcium oxide and magnesium oxide according to the present invention, which comprises firing at a temperature of 315 to 500 ° C.
  • the granular material having a porous particle force containing acid calcium and calcium hydroxide according to the present invention has a high BET specific surface area of 40 m 2 Zg or more, and has a strong shape stability. In other words, it has a high gas adsorbability and is less likely to cause powdering. It can be advantageously used as a gas treatment material for filling a gas treatment device.
  • a porous particle force containing a high BET specific surface area, a strong strength, and excellent shape stability is obtained. Granules can be advantageously produced industrially.
  • the granular material having a porous particle force containing calcium oxide, magnesium oxide, calcium hydroxide, and magnesium hydroxide of the present invention has a high BET specific surface area of 50 m 2 / g or more, but has a high strength. It has excellent shape stability and strong shape stability.
  • calcium oxide, magnesium oxide, hydroxylation power and magnesium hydroxide having high BET specific surface area, high strength and excellent shape stability can be obtained.
  • a granular material having a porous particle force can be advantageously produced industrially.
  • the granular material containing calcium oxide according to the present invention is a porous particle containing calcium oxide and calcium hydroxide, and the amount of the calcium oxide content relative to the total amount of calcium oxide content and calcium hydroxide content.
  • a porous particle force having a calcium content in the range of 30 to 80% by mass and a BET specific surface area force of S40 m 2 / g or more is also obtained.
  • the porous particles are formed by agglomeration or bonding of fine particles of calcium oxide, fine particles of calcium hydroxide, and fine particles of a mixture of oxidizing power lucium and calcium hydroxide.
  • the ratio of the content of calcium oxide to the total amount of calcium oxide and calcium hydroxide [100 X CaOZ (Ca (OH) + CaO)] is in the range of 30 to 80% by mass, preferably 40
  • the BET specific surface area is 40 m 2 Zg or more, preferably in the range of 60 to: LOOm 2 Zg.
  • the BET specific surface area means a value measured using nitrogen gas.
  • Granules containing calcium oxide of the present invention include calcium oxide and calcium hydroxide. It may contain other calcium compounds (eg, calcium carbonate). However, the ratio of the total amount of calcium carbonate and calcium hydroxide to the total amount of the granular material is preferably 85% by mass or more, more preferably 90% by mass or more.
  • the granular material containing calcium carbonate in accordance with the present invention has pore diameters of 2 to 9 nm in the pore distribution determined by the BJH method from the desorption isotherm measured using nitrogen gas. And the pore diameter is 10 ⁇ : It is preferable that the distribution is made with two peaks divided into LOOnm pores. Specifically, in the pore diameter distribution curve Ds (logd) based on the specific surface area obtained using the BJH method, the pore diameter ranges from 2 to 9 nm and the pore diameter ranges from 10 to: LOOnm. I prefer to see at least one peak.
  • the pore diameter means the diameter of the pore.
  • the pores having a pore diameter of 2 to 9 nm correspond to the pores formed on the surface of the fine particles constituting the porous particles. Accordingly, when the specific surface area of all the pores having a pore diameter in the range of 2 to 9 nm is increased, the gas adsorption ability of the fine particles constituting the porous particles is improved.
  • the specific surface area of all pores whose pore diameters determined by the BJH method are in the range of 2-9 nm is preferably in the range of 20-: L00m 2 Zg, and in the range of 30-75 m 2 Zg. Particularly preferred.
  • the pore diameter is 10 or more: LOOnm pores correspond to pores formed as gaps between fine particles constituting the porous particles. Therefore, when the volume of all pores in the pore diameter range of 10 to: LOOnm is increased, the gas to be treated easily enters between the fine particles constituting the porous particles and the gas adsorption capacity of the porous particles. Will improve. It is preferable that the volume of all pores whose pore diameters determined by the BJH method are in the range of 10 to 100 nm is in the range of 0.1 to 0.6 mLZg, and in the range of 0.2 to 0.5 mLZg. Is more preferably in the range of 0.35 to 0.5 mLZg.
  • the granular material containing acid-calcium of the present invention is a granular material having a BET specific surface area of 10 m 2 Zg or more and also having a calcium hydroxide porous particle force, usually under a pressure of 300 Pa or less.
  • a method comprising calcining at a temperature of 5 to 500 ° C. until the mass of the granules is reduced by a range of 8.8 to 20% by mass relative to the mass of calcium hydroxide in the granules. Can be produced industrially advantageous.
  • the granular material consisting of calcium hydroxide and calcium hydroxide particles has agglomerated hydroxide calcium powder. Or it is a granular material formed by bonding.
  • the BET specific surface area of the calcium hydroxide porous granule is preferably in the range of 40-60m 2 Zg.
  • Granules having a calcium hydroxide porous particle force can be produced, for example, by a method (wet granulation method) in which water is added to calcium hydroxide powder and mixed and granulated.
  • a method wet granulation method
  • the water used for granulation should be mixed with a water-soluble organic binder such as carboxymethyl cellulose or polypyrrole alcohol 0.5-5 mass 0 Addition may be made within the range of / 0 .
  • the calcium hydroxide powder can be produced by mixing the calcium carbonate powder and water and subjecting the calcium hydroxide powder to a hydration reaction (digestion reaction).
  • a hydration reaction for water (digestion water) used to hydrate the calcium carbonate powder, a known reaction retarder such as diethylene glycol or sorbitol is added in the range of 1.0 to 10% by mass. May be.
  • the calcium hydroxide powder used as a raw material for calcium hydroxide is preferably 70% by mass or more, preferably 50% by mass or more under a sieve having a mesh size of 74 ⁇ m (200 mesh sieve). Is more preferable.
  • the calcium hydroxide porous granule obtained by the wet granulation method contains water! / Wrinkle, it is put into a dryer and dried until its moisture content is 1% by mass or less. It is preferably used in the next firing step. Drying of the hydrous calcium hydroxide porous granule is carried out in order to prevent the formation of calcium carbonate by the reaction between calcium hydroxide and carbon dioxide in the air. It is preferable to carry out the process while introducing an inert gas or the like, or degassing the inside of the dryer using a vacuum pump.
  • the drying temperature is usually in the range of 100 to 250 ° C, preferably in the range of 150 to 200 ° C.
  • the obtained calcium hydroxide / porous calcium particulate material is preferably aligned using a classifier so as to have a particle diameter in the range of 1 to LOmm.
  • the calcium hydroxide porous granule is usually calcined at 300 Pa or less, preferably in the range of 1 to 200 Pa, more preferably 1 to 150 Pa. Under pressure in the range, usually 315-500. C, preferably 350-450. Perform at C temperature. In the firing of this calcium hydroxide porous granule, the mass of the granule decreases in the range of 8.8 to 20% by mass with respect to the mass of calcium hydroxide in the granule. Do until you do.
  • the granular material containing acid calcium and acid magnesium according to the present invention is porous particles containing acid calcium, magnesium oxide, calcium hydroxide and magnesium hydroxide,
  • the mass ratio of the magnesium content to the total of the calcium content and the magnesium content is in the range of 0.05 to 0.80, and the content of all hydroxyl groups in the particles is in the range of 1 to 20% by mass.
  • a porous particle force having a BET specific surface area of 50 m 2 / g or more is also obtained.
  • Porous particles include acid calcium fine particles, calcium hydroxide fine particles, fine particles of calcium oxide mixed with calcium hydroxide, fine particles of acid magnesium, fine particles of hydroxy magnesium, and Aggregates of fine particles mixed with magnesium oxide and magnesium hydroxide are formed by bonding.
  • the mass ratio [Mg / (Ca + Mg)] of the magnesium content to the total amount of the calcium content and the magnesium content is in the range of 0.05 to 0.80. If the magnesium content is less than the above range, the BET specific surface area of the granular material tends to be low. On the other hand, when the proportion of the magnesium content is larger than the above range, the strength of the granular material tends to decrease.
  • the total amount of the calcium content and the magnesium content is preferably 50% by mass or more, particularly 52 to 68% by mass with respect to the total amount of the granular material.
  • the total content of calcium hydroxide and magnesium hydroxide is in the range of 1 to 20% by mass as the total hydroxyl (OH) content.
  • the total hydroxyl group content is less than the above range, the strength of the granular material tends to decrease.
  • the total hydroxyl group content is larger than the above range, the content of acid calcium and acid magnesium tends to be too low and the gas adsorbability tends to decrease.
  • BET specific surface area 50 m 2 Zg above, preferably in the range of 60 ⁇ 400m 2 Zg.
  • the granular material containing calcium carbonate and magnesium oxide of the present invention may contain a small amount of carbonate (calcium carbonate, magnesium carbonate).
  • the content of the carbonate is preferably 5% by mass or less, more preferably 3% by mass or less as the carbon dioxide content.
  • the granular material containing acid calcium and acid magnesium according to the present invention has a pore distribution determined using a desorption isotherm BJH method measured using nitrogen gas, and Pore size It is preferable that the distribution is made with three peaks divided into pores of less than 2 nm, pores with a pore diameter of 2 to 9 nm, and pores with a pore diameter of 10 to 100 nm. Specifically, in the pore diameter distribution curve Ds (logd) based on the specific surface area obtained using the BJH method, peaks are observed in the pore diameter range of 2 to 9 nm and the pore diameter range of 10 to 100 nm. It is preferable to have one or more peaks at a pore diameter of 2 nm or less, or a curve that rises rapidly as the pore diameter decreases by 2 nm.
  • a pore having a pore diameter of less than 2 nm corresponds to a pore formed on the surface of a fine particle (in particular, a fine particle containing magnesium oxide) forming a porous particle. Therefore, when the specific surface area of all the pores having a pore diameter of less than 2 nm is increased, the gas adsorption ability of the fine particles constituting the porous particles is improved.
  • the specific surface area of all pores having a pore diameter determined by the BJH method of less than 2 nm is preferably in the range of 20 to 400 m 2 / g, particularly preferably in the range of 100 to 200 m 2 / g.
  • the pores having a pore diameter of 2 to 9 nm correspond to pores formed on the surface of fine particles forming porous particles (particularly fine particles containing calcium oxide). Therefore, when the specific surface area of all the pores in the pore diameter range of 2 to 9 nm is increased, the gas adsorption ability of the fine particles constituting the porous particles is improved.
  • the specific surface area of all pores pore diameter determined by the BJH method is in the range of 2 ⁇ 9nm, especially that in the range of 40 to 200 m 2 Zg in the range of preferably instrument 60 ⁇ 150m 2 Zg preferable.
  • Pore diameter 10 ⁇ The pores of LOOnm correspond to pores formed as a gap between fine particles constituting the porous particles. Therefore, when the volume of all pores in the range of pore diameter 10 to: LOOnm is increased, the gas to be treated can easily enter between the fine particles constituting the porous particles, and gas adsorption of the porous particles can be achieved. Performance is improved.
  • the volume of all pores determined by the BJH method is in the range of 10 to 100 nm and the volume of all pores is preferably in the range of 0.1 to 0.6 mLZg, preferably in the range of 0.2 to 0.5 mL / g. It is particularly preferable that
  • the granular material containing acid calcium and magnesium oxide according to the present invention comprises a calcium hydroxide particle having a BET specific surface area of 1 Om 2 / g or more and a BET specific surface area of 10 m 2 / g or more. Porous particles composed of magnesium hydroxide particles, and the mass ratio of the magnesium content to the total amount of calcium content and magnesium content is in the range of 0.05 to 80.
  • the granular material having the porous particle force in the surroundings can be advantageously produced industrially by a method comprising firing at a temperature of 315 to 500 ° C under a pressure of 300 Pa or less. .
  • the granular material consisting of the porous particle force of hydroxide-calcium particles and hydroxide-magnesium particles is mixed by adding water to the mixed powder of hydroxide-calcium powder and hydroxide-magnesium powder. It can be produced by a method of granulation (wet granulation method).
  • the BET specific surface area of calcium hydroxide powder and magnesium hydroxide powder used as raw materials is preferably in the range of 20 to 60 m 2 / g.
  • a water-soluble organic bind Zehnder a 0.5 to 5 mass 0/0 in the range such as carboxymethyl cellulose and poly Bulle alcohol in water for granulation ⁇ Ka You may hesitate.
  • the granular material obtained by the wet granulation method contains water, it is put into a drier and dried until the water content becomes 1% by mass or less, and then used in the next firing step. Preferred. Drying of the water-containing mixed granule is carried out in order to prevent the formation of calcium carbonate and magnesium carbonate by the reaction of calcium carbonate and magnesium hydroxide with carbon dioxide in the air. It is preferable to carry out the process while introducing an inert gas such as gas or argon gas or degassing the inside of the dryer using a vacuum pump.
  • the drying temperature is usually in the range of 100 to 250 ° C, preferably in the range of 150 to 200 ° C.
  • a classifier Before using the obtained granular material in the firing step, it is preferable to use a classifier to align the particle size within the range of 1 to LOmm.
  • the mixed powder granular material is usually fired at a pressure of 300 Pa or less, preferably in the range of 1 to 200 Pa, more preferably in the range of 1 to 150 Pa, usually 3 15. It is carried out at a temperature of ⁇ 500 ° C., preferably 330-450 ° C.
  • the firing time varies depending on conditions such as the firing temperature, but is generally 30 minutes to 2 hours.
  • the granular material containing calcium oxide and the granular material containing calcium oxide and magnesium oxide of the present invention can be used as a hygroscopic agent.
  • the granular material containing calcium oxide and the granular material containing calcium oxide and magnesium oxide of the present invention can be used as an adsorbent for acidic gas.
  • acid gases include hydrogen fluoride gas, hydrogen chloride gas, sulfur dioxide gas and carbon dioxide gas. wear.
  • the granular material containing calcium oxide and the granular material containing calcium oxide and magnesium oxide of the present invention can be used as an adsorbent for the decomposition product of halogenated hydrocarbon gas.
  • the halogenated hydrocarbon gas includes a compound gas in which a part or all of the hydrogen of the hydrocarbon is substituted with halogen (especially fluorine or bromine).
  • Examples of the halogenated hydrocarbon gas include fluorocarbon gas (including perfluorocarbon gas) and halogen gas.
  • a plasma decomposition type exhaust gas treatment apparatus is known as an apparatus for decomposing a halogenated hydrocarbon gas to generate a decomposition product of a halogenated hydrocarbon gas.
  • the granular material containing calcium oxide and the granular material containing calcium oxide and magnesium oxide of the present invention are mixed with a decomposition catalyst for a fluorocarbon gas to obtain a fluorocarbon gas (perfluorocarbon gas).
  • a decomposition catalyst for a fluorocarbon gas an alumina catalyst containing 80% acid aluminum, 80% acid aluminum and 20% acid nickel (NiO) can be used.
  • the monobon gas decomposition catalyst is capable of decomposing fluorocarbon gas in the presence of water vapor, usually at a temperature of 300 to 1000 ° C. (particularly 700 to 1000 ° C.).
  • the decomposition catalyst for fluorocarbon gas is preferably a porous granular material.
  • the compounding ratio of the fluorocarbon gas decomposition catalyst in the fluorocarbon gas decomposition treatment material, the granular material containing the oxidizing power of the present invention, and the granular material containing acid calcium and acid magnesium is mass. The ratio is preferably in the range of 10:90 to 90:10.
  • the granular material containing calcium oxide and the granular material containing calcium oxide and magnesium oxide of the present invention can be used by appropriately adjusting the particle size according to the application.
  • the content of particles having a particle size of 1 mm or less is less than 5% by mass (particularly 1% by mass or less), and the content of particles having a particle size of 10 mm or more is 5%.
  • U preferably less than mass% (especially 1 mass% or less).
  • Example 1 Granular material having porous particle force containing calcium carbonate
  • the above hydrous calcium hydroxide porous granular material is put into a shelf-type vacuum dryer, and moisture is 1 mass at a temperature of 180 ° C while degassing the dryer with a vacuum pump. It dried until it became less than%. Subsequently, the dried granule was classified with a circular vibrating sieve to obtain a calcium hydroxide calcium porous granule having a particle size of 2.0 to 5.6 mm.
  • the obtained calcium hydroxide porous granule has a calcium oxide content of 3.53% by mass, a calcium hydroxide content of 90.42% by mass, and a calcium carbonate content of 2.48% by mass.
  • the BET specific surface area was 49.1 m 2 Zg, and the powdering rate (10 minute value) was 0.22% by mass. Methods for measuring the composition of chemical components, BET ratio table area and powdering rate will be described later.
  • the calcium hydroxide porous granular material (particle size: 2.0 to 5.6 mm) obtained in (1) above is placed in a vacuum firing electric furnace, and the furnace pressure is 50 Pa or less using a vacuum pump. After the furnace The internal temperature was raised from normal temperature to 375 ° C at a rate of 1.5 ° CZ, and the firing temperature was maintained for the firing time shown in Table 11 below. Next, after the inside of the furnace was cooled to the take-out temperature shown in Table 11 below, it was taken out from a vacuum firing electric furnace to produce fired bodies No. 1-1 to No. 18. During firing, the vacuum firing electric furnace was always evacuated with a vacuum pump so that the furnace pressure did not exceed 150 Pa. The fired body was taken out after adjusting the furnace pressure to atmospheric pressure with nitrogen gas.
  • each particle of the obtained fired body No. 1- 1 to No. 1-8 is almost the same size as the hydroxy hydroxide porous particulate material before firing, and contains particles of 1 mm or less The amount was 0.1% by mass or less, and the content of granular materials of 10 mm or more was 0.1% by mass or less.
  • composition (calcium oxide content, calcium hydroxide content and calcium carbonate content), BET specific surface area and powdering rate of the calcined product of the obtained calcium hydroxide porous particles were measured by the following methods.
  • the measurement results of the chemical composition are shown in Table 12, and the measurement results of the BET specific surface area and the powdering rate (10 minutes value) are shown in Table 13, respectively.
  • Adhered moisture content [% by mass]: Measured with a ket moisture meter.
  • Total amount of carbon dioxide Carbon dioxide produced by heating the measurement sample to a temperature of 1250 ° C in an oxygen stream using CARBONZSULFER—ANA LYZER EMIA—820 manufactured by HORIBA, Ltd. And the amount of carbon monoxide is measured by the infrared absorption method. The total value of the measured value of carbon dioxide and the value obtained by converting the measured value of carbon monoxide to the amount of carbon dioxide is defined as the total amount of carbon dioxide.
  • the amount of the sample to be measured is 0.2 to 0.3 g, and the BET 5-point method is used for measurement.
  • a measuring device a fully automatic gas adsorption amount measuring device (Autosorb-3B) manufactured by Quantachrome Co., Ltd. is used.
  • Autosorb-3B fully automatic gas adsorption amount measuring device manufactured by Quantachrome Co., Ltd.
  • Pulverization rate (10 minutes value) [mass%] sample weight under sieve [g] Z60 [g] X 100
  • Fig. 1 shows the content of calcium carbonate (100 X CaO / (Ca (OH)) with respect to the total amount of calcium oxide and calcium hydroxide in the porous calcium hydroxide particles and the calcined product.
  • the calcined body of hydroxy-calcium porous granular material having an acid-calcium content of 30 to 80% by mass has a high BET specific surface area and a low powder ratio. I know.
  • Example 2 A granular material having a porous particle force containing calcium carbonate, magnesium oxide, calcium hydroxide, and magnesium hydroxide
  • the obtained water-containing mixed powder was formed into a cylindrical shape with a diameter of 3 mm using an extrusion molding machine.
  • the obtained water-containing cylindrical granular material is put into a shelf-type vacuum dryer, and the pressure inside the machine is reduced to 50 Pa or less. And dried at a temperature of 150 ° C. until the water content became 1% by mass or less. Subsequently, the dried cylindrical granular material was classified with a circular vibrating sieve to obtain mixed powder granular materials A to G having a particle size of 2.0 to 5.6 mm.
  • the obtained fired body was allowed to cool until the furnace temperature reached 200 ° C., and then the furnace pressure was adjusted to atmospheric pressure with nitrogen gas, and then taken out from the furnace.
  • Each particle of the obtained fired body is a columnar granular material of approximately the same size as the mixed powder granular material before firing, and the content of the granular material of 1 mm or less is 1% by mass or less and the granular material of 10 mm or more. The content was 0.1% by mass or less.
  • all of the fired bodies No. 2-1 to No. 2-7 were calcium oxide, magnesium oxide, calcium hydroxide. X-ray peaks caused by hum and magnesium hydroxide were confirmed.
  • Table 2-2 shows the mixed powder granules used in the production of fired bodies No. 2-l to No. 2-7, furnace pressure during firing, firing temperature, firing time, and removal of the fired body from the furnace. Show temperature together.
  • each particle of the obtained fired body is a columnar granular material having approximately the same size as the mixed powder granular material before firing, and the content of the granular material of 1 mm or less is 1% by mass or less and the granular material of 10 mm or more. The content was 0.1% by mass or less. Further, when the X-ray diffraction pattern of the obtained fired body was measured, all of the fired bodies No. 2-8 to No. 2-14 were calcium oxide, magnesium oxide, calcium hydroxide and hydroxide. An X-ray peak due to magnesium was confirmed.
  • Table 2-2 shows the mixed powder granules used in the production of fired bodies No. 2-8 to No. 2-14, furnace pressure during firing, firing temperature, firing time, fired body from inside the furnace. The extraction temperature is shown together.
  • Each particle of the obtained calcined product is a cylindrical granule of approximately the same size as the mixed powder granule before calcining, the content of the granular material of 1 mm or less is 1 mass% or less, the content of the granular material of 10 mm or more The amount was not more than 0.1% by mass.
  • Table 2-2 shows the mixed powder granules used in the production of fired bodies No. 2-15 to No. 2-21, furnace pressure during firing, firing temperature, firing time, fired body from inside the furnace. The extraction temperature is shown together.
  • No. 2--1 A 1 5 0 Pa or less 1 time 2 0 Ot;
  • Ca content (% by mass) Total calcium oxide content (% by mass) X (Atomic weight of calcium Z Molecular weight of calcium oxide)
  • the magnesium oxide content is measured according to JIS-R-9011 (1993) “6.8 Chemical Analysis Method of Lime (Quantitative Determination Method of Magnesium Oxide)” and the Mg content is calculated from the following formula.
  • Mg content (mass%) magnesium oxide content (mass%) X (magnesium atomic weight Z magnesium oxide molecular weight)
  • the measuring method of the amount of adhering water, ignition loss, and total carbon dioxide is as follows.
  • Ignition loss (mass%): JIS-R-901 K1993) “Chemical analysis of lime 6.1 (quantitative method of ignition loss) Measured by a method according to J:
  • Total amount of carbon dioxide (mass%): Using a CORBONZSULFUR—ANA LYZER EMIA—820 manufactured by HORIBA, Ltd., the measurement sample was heated to a temperature of 1250 ° C in an oxygen stream, and the amount of carbon dioxide produced. And the amount of carbon monoxide is measured by the infrared absorption method. The total value of the measured value of carbon dioxide and the value obtained by converting the measured value of carbon monoxide to the amount of carbon dioxide is defined as the total amount of carbon dioxide.
  • the amount of the sample to be measured is 0.2 to 0.3 g, and the BET 5-point method is used for measurement. Qua A fully automatic gas adsorption measuring device (Autosorb-3B) manufactured by ntachrome is used. In addition
  • No. 2- 15 (Reference example) 7 0. 7 1 0. i 2 0. 0 0 5 0. 1 or less 0. 1 or less
  • No. 2- 18 (Reference example) 3 6. 04 2 9. 3 1 0. 449 0. 1 or less ⁇ . 1 or less
  • No.2-8 (Reference example) 8 8. 2 3. 0
  • Fig. 2 shows the relationship between Mg / (Ca + Mg), BET specific surface area, and load bearing strength of sintered bodies No.2-1 to No.2-7.
  • Fig. 3 shows the relationship between MgZ (Ca + Mg), BET specific surface area, and load bearing strength of sintered bodies No.2-8 to No.2-14.
  • Fig. 4 shows the relationship between MgZ (Ca + Mg), BET specific surface area, and load bearing strength of sintered bodies No.2-15 to No.2-21.
  • a desorption isotherm was measured by a nitrogen gas adsorption method using a fully automated gas adsorption measuring device (Autosorb-3B) manufactured by Quantachrome Co., Ltd. From the desorption isotherm data, the pore diameter distribution curve Ds (logd), the pore specific surface area distribution curve, and the pore volume distribution curve based on the specific surface area were determined by the BJH method.
  • the amount of the sample to be measured is 0.1 to 0.2 g, and a sample with a measured sample adhering water content of 0.2% by mass or more is used as a pretreatment with a vacuum pump. Then, it was dried at a temperature of 200 ° C for 1 hour while degassing.
  • FIG. 5 shows a pore size distribution curve Ds (logd) based on the specific surface area determined by the BJH method. From the results shown in FIG. 5, the calcined product No. 1-3 and the calcined product No. 1-5 according to the present invention have a pore diameter of 2 compared to the granular material of calcium hydroxide porous particles used as the raw material. It can be seen that the pore specific surface area of ⁇ 9 nm pores is increasing.
  • Fig. 6 shows a distribution curve of the pore specific surface area obtained by the BJH method
  • Fig. 7 shows a distribution curve of the pore volume obtained by the BJH method.
  • Table 3 shows the specific surface area of all pores with pore diameters in the range of 2 to 9 nm and the volume of all pores with pore diameters in the range of 10 to 100 nm, obtained from the results of Figs. Show.
  • Porous particulate matter 1 3. 6 0. 285
  • FIG. 8 shows a pore size distribution curve Ds (logd) based on the specific surface area obtained by the BJH method. From the results of Fig. 8, it can be seen that calcined product No. 2-3 and calcined product No. 2-10 according to the present invention have a pore diameter of 2 to 9 nm and a pore diameter of 2 nm as compared with the raw material granular material C. It can be seen that the area of the pore ratio table below is increasing. In addition, No.2-17 produced by calcining the raw material granular material C at a temperature of 1000 ° C under the atmospheric pressure of the calcined material has a smaller pore specific surface area as a whole than the raw material granular material C. I understand that.
  • FIG. 9 shows a distribution curve of the pore specific surface area obtained by the BJH method
  • FIG. 10 shows a distribution curve of the pore volume obtained by the BJH method.
  • FIG. 11 shows a pore size distribution curve Ds (logd) based on the specific surface area obtained by the BJH method. From the results of FIG. 11, the calcined product No. 2-5 and the calcined product No. 2-12 according to the present invention have a pore diameter of 2 to 9 nm and a pore diameter of less than 2 nm as compared with the raw material granular material E. It can be seen that the surface area of the pore ratio is increasing.
  • calcined product No.2-19 produced by calcining raw material granular material E at a temperature of 1 000 ° C under the atmospheric pressure of the calcined material has an overall pore ratio compared to raw material granular material E.
  • FIG. 12 shows a distribution curve of the pore specific surface area obtained by the BJH method
  • FIG. 13 shows a distribution curve of the pore volume obtained by the BJH method.
  • the volume of all pores in the range is shown in Table 5 below.
  • FIG. 1 The content of acid calcium relative to the total amount of acid calcium and hydroxide calcium porous particles produced in Example 1 and the calcined product thereof. It is a figure which shows the relationship between a ratio, a BET specific surface area, and a powdery rate (10 minutes value).
  • FIG. 2 is a view showing the relationship between MgZ (Ca + Mg), BET specific surface area and load bearing strength of fired bodies No.2-1 to No.2-7 produced in Example 2;
  • FIG. 3 is a view showing the relationship between MgZ (Ca + Mg), BET specific surface area and load bearing strength of fired bodies No. 2-8 to No. 2-14 produced in Example 2;
  • FIG. 4 is a diagram showing the relationship between MgZ (Ca + Mg), BET specific surface area and load bearing strength of fired bodies No. 2-15 to No. 2-21 produced in Example 2;
  • FIG. 5 is a pore size distribution curve Ds (logd) based on the specific surface area determined by the BJH method in Example 3.
  • FIG. 6 is a distribution curve of pore specific surface area obtained by BJH method in Example 3.
  • FIG. 7 is a pore volume distribution curve obtained by BJH method in Example 3.
  • FIG. 8 Pore diameter distribution curve Ds (based on the specific surface area obtained by BJH method in Example 4 logd).
  • FIG. 9 is a distribution curve of pore specific surface area obtained by BJH method in Example 4.
  • FIG. 10 is a pore volume distribution curve obtained in Example 4 by the BJH method.
  • FIG. 11 Pore diameter distribution curve based on the specific surface area obtained by BJH method in Example 5 Ds
  • FIG. 12 is a distribution curve of pore specific surface area determined by BJH method in Example 5.
  • FIG. 13 is a pore volume distribution curve obtained in Example 5 by the BJH method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

 酸化カルシウムを含む多孔質粒子あるいは酸化カルシウムと酸化マグネシウムとを含む多孔質粒子からなる粒状物を、BET比表面積が大きく、強度の強い粒状物として提供する。  酸化カルシウムと水酸化カルシウムとを含む多孔質粒子であって、酸化カルシウム含有量と水酸化カルシウム含有量との合計量に対する酸化カルシウム含有量の比率が30~80質量%の範囲にあり、BET比表面積が40m2/g以上である多孔質粒子からなる粒状物、及び酸化カルシウム、酸化マグネシウム、水酸化カルシウム及び水酸化マグネシウムを含む多孔質粒子であって、カルシウム含有量とマグネシウム含有量との合計量に対するマグネシウム含有量の質量比が0.05~0.80の範囲にあり、粒子中の全水酸基の含有率が1~20質量%の範囲にあって、BET比表面積が50m2/g以上である多孔質粒子からなる粒状物。                                                                                 

Description

明 細 書
カルシウム及び z又はマグネシウムを含む多孔質粒子からなる粒状物 技術分野
[0001] 本発明は、吸湿材、酸性ガス、及びハロゲンィ匕炭化水素ガスの分解生成物の吸着 材として有用な、酸化カルシウムを含む多孔質粒子ある 、は酸ィ匕カルシウムと酸ィ匕マ グネシゥムとを含む多孔質粒子力もなる粒状物及びその製造方法に関する。 背景技術
[0002] 酸ィ匕カルシウム及び酸ィ匕マグネシウムは、水との反応性が高いため吸湿材として利 用されている。また、酸ィ匕カルシウム及び酸ィ匕マグネシウムは、共に塩基性酸化物で あって、酸に対して高い反応性を有するため、フッ化水素ガス、塩化水素ガス、二酸 化硫黄ガス、炭酸ガスなどの酸性ガスの吸着材 (ィ匕学吸着材)として利用されている 。さらに最近では、酸ィ匕カルシウム及び酸ィ匕マグネシウムを半導体の製造工程などに て使用されて 、るフルォロカーボンガスや消火剤として利用されて 、るハロンガスな どのハロゲンィ匕炭化水素ガスの分解生成物の吸着材として利用することも検討され ている。
[0003] 特許文献 1には、炭酸ガスとの反応性に優れた高活性酸化カルシウム多孔質粒状 物として、少なくとも 5m2Zgの比表面積及び少なくとも lmmの粒径をもつ水酸ィ匕カ ルシゥム又は炭酸カルシウムの粒状物焼成体力 なる酸ィ匕カルシウム多孔質粒状物 が開示されている。この特許文献 1には、高活性酸ィ匕カルシウム多孔質粒状物を製 造する方法として、粒径 300 μ m以下の水酸化カルシウム粉末の粒状物 (顆粒)を常 圧下にて 390〜480°Cの間を少なくとも 5分間で昇温させて焼成する方法、及び粒 径 300 μ m以下の炭酸カルシウム粉末の粒状体を 700〜780°Cの間を少なくとも 5 分間で昇温させて焼成する方法が記載されている。
[0004] 特許文献 2には、フルォロカーボンガスの分解触媒 (酸ィ匕アルミニウム)の粒状物と 酸化カルシウムや酸化マグネシウムなどのアルカリ土類金属の酸化物の粒状物とを 有効成分として含むフルォロカーボンガスの分解処理材が提案されて ヽる。このフル ォロカーボンガス分解処理材は、フルォロカーボンガスと酸化アルミニウムとの反応 により生成したフッ化アルミニウムがアルカリ土類金属酸ィ匕物と反応して酸ィ匕アルミ- ゥムに再生されるので、長時間連続でフルォロカーボンガスを分解処理することが可 能となるとされている。なお、特許文献 2の実施例ではアルカリ土類金属酸ィ匕物粒状 物は、アルカリ土類金属酸化物の粉末を加圧成形することにより製造されている。
[0005] 非特許文献 1には、酸ィ匕カルシウム、酸ィ匕マグネシウム及び酸ィ匕カルシウムと酸ィ匕 マグネシウムとの混合物のそれぞれについて、約 900°C (1173K)の温度にてハロゲ ン化炭化水素ガス (ノヽロン 1301ガス)を接触させると、酸化カルシウム及び酸化マグ ネシゥムを単独で用いた場合と比べて、酸ィ匕カルシウムと酸ィ匕マグネシウムとの混合 物の方がハロゲンィ匕炭化水素ガスの分解生成物 (フッ素、臭素)の吸着効率が高いと 報告されている。なお、非特許文献 1では、酸ィ匕カルシウムと酸ィ匕マグネシウムとの混 合物は、水酸ィ匕カルシウムと水酸ィ匕マグネシウムとの混合物を、純水で練り合わせて 成形し、これを電気炉で約 1000°C (1273K)の温度で焼成することによって製造し ている。
特許文献 1 :特開平 7— 149580号公報
特許文献 2:特開 2002— 224565号公報
非特許文献 1 :竹内章浩ほか 3名、「ハロン分解ガスの吸着に及ぼす固体吸着材組成 の影響」、 Journal of the Society of Inorganic Materials, Japan, 12, 97 - 105 (2005)
発明の開示
発明が解決しょうとする課題
[0006] 吸湿材、ある 、は酸性ガス、ハロゲンィ匕炭化水素ガスの分解生成物などのガス吸 着材として使用する酸ィ匕カルシウムを含む粒状物あるいは酸ィ匕カルシウムと酸ィ匕マ グネシゥムとを含む粒状物は、対象ガスとの接触面積 (すなわち BET比表面積)が大 きいことが好ましい。また、ガス吸着材として使用する粒状物は、一般にカラムなどの ガス処理装置に充填して使用する場合が多いが、このような場合では、ガス処理装 置への充填時ある!ヽはガス処理運転時 (ガス処理材と対象ガスとの接触時)にガス吸 着材が粉化 (崩壊)すると、ガス処理装置の圧力損失が高くなるなどの問題となる。こ のため、ガス吸着材として使用する粒状物は、物理的な衝撃に対する強度が強ぐ形 状安定性が高 、ことが望まれる。
従って、本発明の課題は、 BET比表面積が大きぐかつ物理的な衝撃に対する強 度が強!、酸ィ匕カルシウムを含む粒状物、及び酸ィ匕カルシウムと水酸ィ匕マグネシウム とを含む粒状物を提供することである。
課題を解決するための手段
[0007] 本発明は、酸ィ匕カルシウムと水酸ィ匕カルシウムとを含む多孔質粒子であって、酸ィ匕 カルシウム含有量と水酸化カルシウム含有量との合計量に対する酸化カルシウム含 有量の比率が 30〜80質量%の範囲にあり、 BET比表面積が 40m2Zg以上である 多孔質粒子力もなる粒状物にある(以下、酸ィ匕カルシウムと水酸ィ匕カルシウムとを含 む多孔質粒子力もなる粒状物を、酸ィ匕カルシウムを含む粒状物と 、うことがある)。
[0008] 上記本発明の酸ィ匕カルシウムを含む粒状物の好ましい態様は、以下の通りである。
(1) BJH法により求められる細孔径が 2〜9nmの範囲にある全細孔の比表面積が 20 〜 100m2Zgの範囲にある。
(2) BJH法により求められる、細孔径が 2〜9nmの範囲にある全細孔の比表面積が 2 0〜 1 OOm2Zgの範囲にあり、かつ細孔径が 10〜 lOOnmの範囲にある全細孔の容 積が 0. 1〜0. 6mLZgの範囲にある。
(3)酸化カルシウム含有量と水酸化カルシウム含有量との合計量が粒状物の全体量 に対して 85質量%以上である。
(4)粒子径が 1mm以下の粒子を 5質量%以上含有することなく、粒子径が 10mm以 上の粒子を 5質量%以上含有することのな 、。
[0009] 本発明はまた、 BET比表面積が 10m2/g以上である水酸ィ匕カルシウム多孔質粒 子からなる粒状物を、 300Pa以下の圧力下、 315〜500°Cの温度にて、該粒状物の 質量が、該粒状物中の水酸化カルシウムの質量に対して 8. 8〜20質量%の範囲だ け減少するまで焼成することからなる上記本発明の酸ィ匕カルシウムを含む粒状物の 製造方法にもある。
[0010] 本発明はさらに、酸化カルシウム、酸化マグネシウム、水酸化カルシウム及び水酸 化マグネシウムを含む多孔質粒子であって、カルシウム含有量とマグネシウム含有量 との合計量に対するマグネシウム含有量の質量比が 0. 05-0. 80の範囲にあり、粒 子中の全水酸基の含有率が 1〜20質量%の範囲にあって、 BET比表面積が 50m2 Zg以上である多孔質粒子力もなる粒状物にもある(以下、酸ィ匕カルシウム、酸ィ匕マ グネシゥム、水酸ィ匕カルシウム及び水酸ィ匕マグネシウムを含む多孔質粒子力 なる 粒状物を、酸ィ匕カルシウムと酸ィ匕マグネシウムとを含む粒状物と 、うことがある)。
[0011] 上記本発明の酸ィ匕カルシウムと酸ィ匕マグネシウムとを含む粒状物の好ましい態様 は、以下の通りである。
(1) BJH法により求められる細孔径が 2〜9nmの範囲にある全細孔の比表面積力 0 〜200m2Zgの範囲にある。
(2) BJH法により求められる細孔径が 2nm未満の全細孔の比表面積が 20〜200m2 Zgの範囲にある。
(3) BJH法により求められる、細孔径が 2nm未満の全細孔の比表面積が 20〜200 m2Zgの範囲にあり、細孔径が 2〜9nmの範囲にある全細孔の比表面積が 40〜20 Om2Zgの範囲にあり、そして細孔径が 10〜: LOOnmの範囲にある全細孔の容積が 0 . 1〜0. 6mLZgの範囲にある。
(4)カルシウム含有量とマグネシウム含有量との合計量の粒状物の全体量に対する 比率が 50質量%以上である。
(5)粒子径が 1mm以下の粒子を 5質量%以上含有することなく、粒子径が 10mm以 上の粒子を 5質量%以上含有することのな 、。
[0012] 本発明はさらに、 BET比表面積が 10m2/g以上である水酸ィ匕カルシウム粒子と B ET比表面積が 10m2/g以上である水酸ィ匕マグネシウム粒子とからなる多孔質粒子 であって、カルシウム含有量とマグネシウム含有量との合計量に対するマグネシウム 含有量の質量比が 0. 05-0. 80の範囲にある多孔質粒子力 なる粒状物を、 300 Pa以下の圧力下、 315〜500°Cの温度にて、焼成することからなる上記本発明の酸 化カルシウムと酸ィ匕マグネシウムとを含む粒状物の製造方法にもある。
発明の効果
[0013] 本発明の酸ィ匕カルシウムと水酸ィ匕カルシウムとを含む多孔質粒子力 なる粒状物 は、 40m2Zg以上の高い BET比表面積を有しながらも、強度が強ぐ形状安定性に 優れている、すなわち、高いガス吸着性を有していて、さらに粉ィ匕が起こりにくいので 、ガス処理装置充填用のガス処理材として有利に使用することができる。また、本発 明の製造方法を利用することにより、高い BET比表面積を有し、強度が強ぐ形状安 定性に優れた酸ィ匕カルシウムと水酸ィ匕カルシウムとを含む多孔質粒子力 なる粒状 物を工業的に有利に製造することができる。
[0014] 本発明の酸化カルシウム、酸化マグネシウム、水酸化カルシウム及び水酸化マグネ シゥムを含む多孔質粒子力もなる粒状物は、 50m2/g以上の高 BET比表面積を有 しながらも、強度が強ぐ形状安定性に優れている強度が強ぐ形状安定性に優れて いる。また、本発明の製造方法を利用することにより、高い BET比表面積を有し、か つ強度が強ぐ形状安定性に優れた酸化カルシウム、酸化マグネシウム、水酸化力 ルシゥム及び水酸ィ匕マグネシウムを含む多孔質粒子力 なる粒状物を工業的に有利 に製造することができる。
発明を実施するための最良の形態
[0015] 本発明の酸化カルシウムを含む粒状物は、酸化カルシウムと水酸化カルシウムとを 含む多孔質粒子であって、酸化カルシウム含有量と水酸化カルシウム含有量との合 計量に対して酸ィ匕カルシウム含有量が 30〜80質量%の範囲にあり、 BET比表面積 力 S40m2/g以上である多孔質粒子力もなる。
多孔質粒子は、酸化カルシウムの微粒子、水酸化カルシウムの微粒子及び酸化力 ルシゥムと水酸ィ匕カルシウムとが混在した微粒子が凝集あるいは結合して形成されて いる。
[0016] 酸化カルシウムと水酸化カルシウムとの合計量に対する酸化カルシウムの含有量の 比率 [100 X CaOZ (Ca (OH) +CaO) ]は、 30〜80質量%の範囲、好ましくは 40
2
〜70質量%の範囲、特に好ましくは 40〜60質量%の範囲にある。酸化カルシウム の含有率が上記の範囲よりも多いと、粒状物の形状安定性が低下する傾向がある。 一方、酸ィ匕カルシウムの含有率が上記の範囲よりも少ないと、 BET比表面積が低く なる傾向がある。
[0017] BET比表面積は、 40m2Zg以上、好ましくは 60〜: LOOm2Zgの範囲にある。なお、 本発明にお 、て BET比表面積は、窒素ガスを用いて測定した値を意味する。
[0018] 本発明の酸化カルシウムを含む粒状物は、酸化カルシウム及び水酸化カルシウム 以外の他のカルシウム化合物(例、炭酸カルシウム)を含んでいてもよい。但し、酸ィ匕 カルシウムと水酸ィ匕カルシウムの合計量の粒状物の全体量に対する比率は 85質量 %以上であることが好ましぐ 90質量%以上であることがより好ましい。
[0019] 本発明の酸ィ匕カルシウムを含む粒状物は、窒素ガスを用いて測定された脱離等温 線から BJH法を用いて求められる細孔分布において、細孔径が 2〜9nmの細孔と細 孔径が 10〜: LOOnmの細孔との二つに分かれるピークをもって分布していることが好 ましい。具体的には、 BJH法を用いて求められる比表面積を基準とした細孔径分布 曲線 Ds (logd)において、細孔径が 2〜9nmの範囲と細孔径が 10〜: LOOnmの範囲 とに、それぞれピークが一つ以上見られることが好ま 、。
なお、本発明にお 、て細孔径は細孔の直径を意味する。
[0020] 細孔径が 2〜9nmの細孔は、多孔質粒子を構成する微粒子の表面に形成された 細孔に相当する。従って、細孔径が 2〜9nmの範囲にある全細孔の比表面積が大き くなると、多孔質粒子を構成する微粒子のガス吸着能が向上する。 BJH法により求め られる細孔径が 2〜9nmの範囲にある全細孔の比表面積は、 20〜: L00m2Zgの範 囲にあることが好ましぐ 30〜75m2Zgの範囲にあることが特に好ましい。
[0021] 細孔径が 10〜: LOOnmの細孔は、多孔質粒子を構成する微粒子と微粒子との間の 隙間として形成された細孔に相当する。従って、細孔径 10〜: LOOnmの範囲にある 全細孔の容積が大きくなると、多孔質粒子を構成する微粒子と微粒子との間に処理 対象ガスが浸入し易くなり、多孔質粒子のガス吸着能が向上する。 BJH法により求め られる細孔径が 10〜100nmの範囲にある全細孔の容積は 0. 1〜0. 6mLZgの範 囲にあることが好ましぐ 0. 2〜0. 5mLZgの範囲にあることがより好ましぐ 0. 35〜 0. 5mLZgの範囲にあることが特に好ましい。
[0022] 本発明の酸ィ匕カルシウムを含む粒状物は、 BET比表面積が 10m2Zg以上である 水酸ィ匕カルシウム多孔質粒子力もなる粒状物を、通常は、 300Pa以下の圧力下、 31 5〜500°Cの温度にて、該粒状物の質量が、該粒状物中の水酸化カルシウムの質量 に対して 8. 8〜20質量%の範囲だけ減少するまで焼成することからなる方法により、 工業的に有利に製造することができる。
[0023] 水酸ィ匕カルシウム多孔質粒子力 なる粒状物は、水酸ィ匕カルシウム粉末が凝集あ るいは結合して形成された粒状物である。水酸ィ匕カルシウム多孔質粒状物の BET比 表面積は 40〜60m2Zgの範囲にあることが好まし 、。
[0024] 水酸ィ匕カルシウム多孔質粒子力 なる粒状物は、例えば、水酸化カルシウム粉末 に水を加えて混合造粒する方法 (湿式造粒法)により製造することができる。水酸ィ匕 カルシウム多孔質力 なる粒状物の形状安定性を向上させるために、造粒用の水に はカルボキシメチルセルロースやポリピリ-ルアルコールなどの水溶性有機バインダ 一を 0. 5〜5質量0 /0の範囲にて添カ卩してもよい。
[0025] 水酸ィ匕カルシウム粉末は、酸ィ匕カルシウム粉末と水とを混合して酸ィ匕カルシウム粉 末を水和反応 (消化反応)させることにより製造することができる。酸ィ匕カルシウム粉 末を水和反応させるのに使用する水(消化水)には、ジエチレングリコールやソルビト ールなどの公知の反応遅延剤を 1. 0〜 10質量%の範囲にて添カ卩してもよい。水酸 化カルシウムの原料として使用する酸ィヒカルシウム粉末は、 目開きが 74 μ mの篩(2 00メッシュ篩)の篩下が 50質量%以上であることが好ましぐ 70質量%以上であるこ とがより好ましい。
[0026] 湿式造粒法により得られる水酸化カルシウム多孔質粒状物は水を含んで!/ヽるため 、乾燥機に投入して、その含水率が 1質量%以下になるまで乾燥した後、次の焼成 工程に用いることが好ましい。含水水酸ィ匕カルシウム多孔質粒状物の乾燥は、水酸 化カルシウムと空気中の二酸ィ匕炭素との反応により炭酸カルシウムが生成しないよう にするために、乾燥機内に窒素ガスやアルゴンガスなどの不活性ガスを導入しながら 、あるいは真空ポンプを用いて乾燥機内を脱気しながら行なうことが好ましい。乾燥 温度は、通常は 100〜250°Cの範囲、好ましくは 150〜200°Cの範囲である。
得られた水酸ィ匕カルシウム多孔質粒状物は、焼成工程に用いる前に、分級装置を 使用して 1〜: LOmmの範囲の粒子径となるように揃えておくことが好ましい。
[0027] 本発明の酸化カルシウム含有多孔質粒状物の製造方法では、水酸化カルシウム 多孔質粒状物の焼成は、通常は 300Pa以下、好ましくは l〜200Paの範囲、より好 ましくは l〜150Paの範囲の圧力下、通常は 315〜500。C、好ましくは 350〜450。C の温度にて行なう。この水酸ィ匕カルシウム多孔質粒状物の焼成は、粒状物の質量が 、該粒状物中の水酸化カルシウムの質量に対して 8. 8〜20質量%の範囲にて減少 するまで行なう。
[0028] 本発明の酸ィ匕カルシウムと酸ィ匕マグネシウムとを含む粒状物は、酸ィ匕カルシウム、 酸化マグネシウム、水酸ィ匕カルシウム及び水酸ィ匕マグネシウムを含む多孔質粒子で あって、カルシウム含有量とマグネシウム含有量との合計量に対するマグネシウム含 有量の質量比が 0. 05〜0. 80の範囲にあり、粒子中の全水酸基の含有率が 1〜20 質量%の範囲にあって、 BET比表面積が 50m2/g以上である多孔質粒子力もなる。 多孔質粒子は、酸ィ匕カルシウムの微粒子、水酸ィ匕カルシウムの微粒子、酸化カル シゥムと水酸ィ匕カルシウムとが混在した微粒子、酸ィ匕マグネシウムの微粒子、水酸ィ匕 マグネシウムの微粒子及び酸ィ匕マグネシウムと水酸ィ匕マグネシウムとが混在した微粒 子が凝集ある 、は結合して形成されて 、る。
[0029] カルシウム含有量とマグネシウム含有量との合計量に対するマグネシウム含有量の 質量比 [Mg/ (Ca + Mg) ]は 0. 05〜0. 80の範囲にある。マグネシウム含有量の割 合が上記の範囲よりも少ないと、粒状物の BET比表面積が低くなる傾向にある。一 方、マグネシウム含有量の割合が上記の範囲よりも多いと、粒状物の強度が低下す る傾向にある。カルシウム含有量とマグネシウム含有量との合計量は、粒状物の全体 量に対して 50質量%以上、特に 52〜68質量%の範囲にあることが好ましい。
[0030] 水酸ィ匕カルシウムと水酸ィ匕マグネシウムとの合計含有率は、全水酸基 (OH)の含 有率として 1〜20質量%の範囲にある。全水酸基含有量が上記の範囲より少ないと 、粒状物の強度が低下する傾向がある。一方、全水酸基含有量が上記の範囲よりも 多いと、酸ィ匕カルシウムと酸ィ匕マグネシウムの含有量が少なくなりすぎて、ガス吸着性 が低下する傾向がある。
[0031] BET比表面積は、 50m2Zg以上、好ましくは 60〜400m2Zgの範囲にある。
[0032] 本発明の酸ィ匕カルシウムと酸ィ匕マグネシウムとを含む粒状物は、少量の炭酸塩 (炭 酸カルシウム、炭酸マグネシウム)を含んでいてもよい。但し、炭酸塩の含有量は、二 酸ィ匕炭素量含有量として 5質量%以下であることが好ましぐ 3質量%以下であること 力 り好ましい。
[0033] 本発明の酸ィ匕カルシウムと酸ィ匕マグネシウムとを含む粒状物は、窒素ガスを用いて 測定された脱離等温線力 BJH法を用いて求められる細孔分布にぉ 、て、細孔径が 2nm未満の細孔、細孔径が 2〜9nmの細孔、そして細孔径 10〜100nmの細孔の 三つに分かれるピークをもって分布していることが好ましい。具体的には、 BJH法を 用いて求められる比表面積を基準とした細孔径分布曲線 Ds (logd)において、細孔 径 2〜9nmの範囲と細孔径 10〜100nmの範囲とに、それぞれピークが一つ以上あ り、細孔径 2nm以下に一つ以上のピーク、もしくは細孔径が 2nm力 小さくなるに従 つて急激に立ち上がる曲線が見られることが好ま 、。
[0034] 細孔径が 2nm未満の細孔は、多孔質粒子を形成する微粒子 (特に、酸化マグネシ ムを含む微粒子)の表面に形成された細孔に相当する。従って、細孔径が 2nm未満 の全細孔の比表面積が大きくなると、多孔質粒子を構成する微粒子のガス吸着能が 向上する。 BJH法により求められる細孔径が 2nm未満の全細孔の比表面積は 20〜 400m2/gの範囲にあることが好ましぐ 100〜200m2/gの範囲にあることが特に好 ましい。
[0035] 細孔径が 2〜9nmの細孔は、多孔質粒子を形成する微粒子 (特に、酸化カルシゥ ムを含む微粒子)の表面に形成された細孔に相当する。従って、細孔径 2〜9nmの 範囲にある全細孔の比表面積が大きくなると、多孔質粒子を構成する微粒子のガス 吸着能が向上する。 BJH法により求められる細孔径が 2〜9nmの範囲にある全細孔 の比表面積は、 40〜200m2Zgの範囲にあることが好ましぐ 60〜150m2Zgの範 囲にあることが特に好ましい。
[0036] 細孔径 10〜: LOOnmの細孔は、多孔質粒子を構成する微粒子と微粒子との間の隙 間として形成された細孔に相当する。従って、細孔径 10〜: LOOnmの範囲にある全 細孔の容積が大きくなると、多孔質粒子を構成する微粒子と微粒子との間に処理対 象ガスが浸入し易くなり、多孔質粒子のガス吸着能が向上する。 BJH法により求めら れる細孔径が 10〜100nmの範囲にある全細孔の容積は 0. 1〜0. 6mLZgの範囲 にあること力 子ましく、 0. 2〜0. 5mL/gの範囲にあることが特に好ましい。
[0037] 本発明の酸ィ匕カルシウムと酸ィ匕マグネシウムとを含む粒状物は、 BET比表面積が 1 Om2/g以上である水酸ィ匕カルシウム粒子と BET比表面積が 10m2/g以上である水 酸ィ匕マグネシウム粒子とからなる多孔質粒子であって、カルシウム含有量とマグネシ ゥム含有量との合計量に対するマグネシウム含有量の質量比が 0. 05-0. 80の範 囲にある多孔質粒子力 なる粒状物を、通常は、 300Pa以下の圧力下、 315-500 °Cの温度にて、焼成することからなる方法により、工業的に有利に製造することがで きる。
[0038] 水酸ィ匕カルシウム粒子と水酸ィ匕マグネシウム粒子との多孔質粒子力 なる粒状物 は、水酸ィ匕カルシウム粉末と水酸ィ匕マグネシウム粉末との混合粉末に水を加えて混 合造粒する方法 (湿式造粒法)により製造することができる。原料となる水酸化カルシ ゥム粉末及び水酸ィ匕マグネシウム粉末の BET比表面積は 20〜60m2/gの範囲に あることが好ましい。混合粉末粒状物の形状安定性を向上させるために、造粒用の 水にはカルボキシメチルセルロースやポリビュルアルコールなどの水溶性有機バイン ダーを 0. 5〜5質量0 /0の範囲にて添カ卩してもよい。
[0039] 湿式造粒法により得られる粒状物は水を含んでいるため、乾燥機に投入して、その 含水率が 1質量%以下になるまで乾燥した後、次の焼成工程に用いることが好ましい 。含水混合粒状物の乾燥は、水酸ィ匕カルシウム及び水酸ィ匕マグネシウムと空気中の 二酸ィ匕炭素との反応により炭酸カルシウム及び炭酸マグネシウムが生成しないように するために、乾燥機内に窒素ガスやアルゴンガスなどの不活性ガスを導入しながら、 あるいは真空ポンプを用いて乾燥機内を脱気しながら行なうことが好ましい。乾燥温 度は、通常は 100〜250°Cの範囲、好ましくは 150〜200°Cの範囲である。
得られた粒状物は、焼成工程に用いる前に、分級装置を使用して 1〜: LOmmの範 囲で粒子径となるように揃えておくことが好ま 、。
[0040] 本発明の粒状物の製造方法では、混合粉末粒状物の焼成は、通常は 300Pa以下 、好ましくは l〜200Paの範囲、より好ましくは l〜150Paの範囲の圧力下、通常は 3 15〜500°C、好ましくは 330〜450°Cの温度にて行なう。焼成時間は、焼成温度な どの条件によっても異なるが一般に 30分〜 2時間である。
[0041] 本発明の酸化カルシウムを含む粒状物及び酸化カルシウムと酸化マグネシウムとを 含む粒状物は、吸湿剤として利用することができる。
[0042] 本発明の酸化カルシウムを含む粒状物及び酸化カルシウムと酸化マグネシウムとを 含む粒状物は、酸性ガスの吸着材として利用することができる。酸性ガスの例として は、フッ化水素ガス、塩化水素ガス、二酸化硫黄ガス及び炭酸ガスを挙げることがで きる。
[0043] 本発明の酸化カルシウムを含む粒状物及び酸化カルシウムと酸化マグネシウムとを 含む粒状物は、ハロゲンィ匕炭化水素ガスの分解生成物の吸着材として利用すること ができる。ハロゲンィ匕炭化水素ガスには、炭化水素の水素の一部又は全部をハロゲ ン (特に、フッ素、臭素)で置換した化合物のガスが含まれる。ハロゲン化炭化水素ガ スの例としては、フルォロカーボンガス(パーフルォロカーボンガスを含む)及びハロ ンガスを挙げることができる。ハロゲンィ匕炭化水素ガスを分解してハロゲンィ匕炭化水 素ガスの分解生成物を生成させる装置としては、プラズマ分解式排ガス処理装置が 知られている。
[0044] 本発明の酸化カルシウムを含む粒状物及び酸化カルシウムと酸化マグネシウムとを 含む粒状物は、フルォロカーボンガスの分解触媒と混合してフルォロカーボンガス ( パーフルォロカーボンガスを含む)の分解処理材として利用することができる。フルォ 口カーボンガスの分解触媒としては、酸ィ匕アルミニウム、酸ィ匕アルミニウムを 80%及 び酸ィ匕ニッケル (NiO )を 20%含むアルミナ系触媒を用いることができる。フルォロカ
2
一ボンガスの分解触媒は、水蒸気の存在下、通常は 300〜1000°C (特に、 700〜1 000°C)の温度下で、フルォロカーボンガスを分解できるものであることが好ましい。 フルォロカーボンガスの分解触媒は、多孔質粒状物であることが好ましい。フルォロ カーボンガス分解処理材中のフルォロカーボンガスの分解触媒と、本発明の酸化力 ルシゥムを含む粒状物及び酸ィ匕カルシウムと酸ィ匕マグネシウムとを含む粒状物との 配合比は、質量比で 10: 90〜90: 10の範囲にあることが好ましい。
[0045] 本発明の酸化カルシウムを含む粒状物及び酸化カルシウムと酸化マグネシウムとを 含む粒状物は、用途に応じて粒子サイズを適宜調整して使用することができる。ガス 処理装置に充填して使用する場合は、粒子径が lmm以下の粒子の含有率が 5質量 %未満 (特に、 1質量%以下)であり、粒子径が 10mm以上の粒子の含有率が 5質量 %未満 (特に、 1質量%以下)であることが好ま U、。
実施例
[0046] [実施例 1]酸ィ匕カルシウムを含む多孔質粒子力 なる粒状物
(1)水酸ィ匕カルシウム多孔質粒子の粒状物の製造 焼成生石灰 (粒径: 40〜70mm)を、目開き 74 μ mの篩(200メッシュ篩) 75質量 %以上パスとなるまで粉砕した。粉砕後の酸ィ匕カルシウム粉末の活性度は 5分値で 2 05mL、 10分値で 212mLであった。なお、活性度は下記の方法(日本石灰協会参 考試験方法の粗粒滴定法に基づく方法)により測定した。
[0047] 高速混合機プロ一シェア一ミキサー (有効容積: 75L、大平洋機ェ (株)製)内に、 上記酸化カルシウム粉末 9kgと、純水に 1. 85質量%のジエチレングリコールを溶解 させて得た消化水 9. 73kgとを投入し、両者を 5分間攪拌混合した後、さらに純水( 二次水)を 3. 2kg投入し、 5分間攪拌混合して、含水水酸化カルシウム多孔質粒状 物を製造した。得られた含水水酸ィ匕カルシウム多孔質粒状物の含水量は 30質量% であった。
[0048] 上記の含水水酸ィ匕カルシウム多孔質粒状物を、棚型真空乾燥機に投入して、真空 ポンプにて乾燥機内を脱気しながら、 180°Cの温度にて、水分 1質量%以下になるま で乾燥した。続いて、この乾燥粒状物を円形振動篩にて分級して、粒径が 2. 0〜5. 6mmの水酸ィ匕カルシウム多孔質粒状物を得た。得られた水酸ィ匕カルシウム多孔質 粒状物は、酸化カルシウム含有量が 3. 53質量%、水酸化カルシウム含有量が 90. 42質量%、炭酸カルシウム含有量が 2. 48質量%であって、 BET比表面積が 49. 1 m2Zgで、粉化率(10分値)が 0. 22質量%であった。化学成分の組成、 BET比表 面積及び粉化率の測定方法は後に記載する。
[0049] [活性度の測定方法]
30°Cの純水 500mLを容量 2Lの容器に入れ、少量のフエノールフタレイン指示薬 を加え、攪拌機にて攪拌を 350rpmにて続ける。試料の酸ィ匕カルシウム粉末を 25g 正確に計り取り、純水中に投入する。投入と同時に、その時刻を記録し、指示薬の色 が消えないように、 4Nの塩酸をビュレットから滴下し続ける。試料投入後の 5分間に 滴下した塩酸の量を活性度の 5分値とし、 10分間に滴下した塩酸の量を活性度の 1 0分値とする。
[0050] (2)水酸化カルシウム多孔質粒状物の焼成体 No. 1— l〜No. 1— 8の製造
上記(1)にて得られた水酸ィ匕カルシウム多孔質粒状物 (粒径: 2. 0〜5. 6mm)を 真空焼成電気炉に入れ、炉内圧力を、真空ポンプを用いて 50Pa以下にした後、炉 内温度を常温から 1. 5°CZ分の速度で 375°Cまで昇温し、その炉内温度を維持しな がら下記表 1 1に示す焼成時間にて焼成した。次いで、下記表 1 1に示す取り出 し温度まで炉内を冷却した後、真空焼成電気炉より取り出して焼成体 No. 1— 1〜N o. 1 8を製造した。なお、焼成時は、真空ポンプにて常に真空焼成電気炉を脱気 して、炉内圧力が 150Pa以上にならないようにした。また、焼成体の取り出しは、窒素 ガスにて炉内圧力を大気圧まで調整した後に行なった。
得られた焼成体 No. 1— l〜No. 1—8の各粒子のサイズは、焼成前の水酸ィ匕カル シゥム多孔質粒状物とほぼ同じサイズであり、 1mm以下の粒状物の含有量は 0. 1質 量%以下、 10mm以上の粒状物の含有量は 0. 1質量%以下であった。
[0051] [表 1] 表 1 1 取り出し温度 [°c] 焼成体 N o . 1 1 0分 3 7 5
焼成体 N o . 1 2 0分 2 5 0
焼成体 N o . 1 3 1 5分 2 5 0
焼成体 N o . 1 4 1時間 2 5 0
焼成体 N o . 1 5 1時間 2 0分 2 5 0
焼成体 N o . 1 6 2時間 2 5 0
焼成体 N o . 1 7 3時間 3 0分 2 5 0
焼成体 N o . 1 8 8時間 2 5 0
[0052] (3)評価及び結果
得られた水酸化カルシウム多孔質粒状物の焼成体の組成 (酸化カルシウム含有量 、水酸化カルシウム含有量及び炭酸カルシウム含有量)、 BET比表面積及び粉化率 を下記の方法により測定した。化学組成の測定結果を表 1 2に、 BET比表面積及 び粉化率( 10分値)の測定結果を表 1 3にそれぞれ示す。
[0053] [化学成分の組成の測定方法]
試料中の全酸化カルシウム量、付着水分量、強熱減量、二酸化炭素量、全二酸化 炭素量をそれぞれ下記の方法にて測定して、下記式の(1)〜(3)により酸ィ匕カルシ ゥム(CaO)、水酸化カルシウム(Ca (OH) )及び炭酸カルシウム(CaCO )の含有量
2 3 を算出する。
[0054] 全酸化カルシウム量 [質量0 /0]: JIS— R— 9011 (1993)「石灰の化学分析法の 6.
7. 1 (酸ィ匕カルシウムの定量方法)」に従って測定する。
付着水分量 [質量%]:ケット水分計にて測定する。
強熱減量 [質量%]: JIS— R— 9011 (1993)「石灰の化学分析法の 6. 1 (強熱減 量の定量方法) Jに準じた方法により測定する。
二酸ィ匕炭素量 [質量%] :JIS— R— 9011 (1993)「石灰の化学分析法 6. 11 (二酸 化炭素の定量方法) Jに従って測定する。
全二酸化炭素量 [質量%]: (株)堀場製作所製の CARBONZSULFER— ANA LYZER EMIA— 820を使用して、測定試料を酸素気流中にて 1250°Cの温度に 加熱し、生成した二酸化炭素量及び一酸化炭素量を赤外線吸収法により測定する。 二酸化炭素量の測定値と、一酸化炭素量の測定値を二酸化炭素量に換算した値と の合計値を全二酸化炭素量とする。
[0055] (1)酸化カルシウム含有量 [質量0 /0] =全酸ィ匕カルシウム量一水酸ィ匕カルシウム含有 量 X酸化カルシウムの分子量/水酸化カルシウムの分子量 炭酸カルシウム含有 量 X酸化カルシウムの分子量 Z炭酸カルシウムの分子量
(2)水酸ィ匕カルシウム含有量 [質量%] = (強熱減量 付着水分量—全二酸ィ匕炭素 量) X (水酸化カルシウムの分子量 Z水の分子量)
(3)炭酸カルシウム含有量 [質量%] =二酸化炭素量 X炭酸カルシウムの分子量 Z 二酸化炭素の分子量
[0056] [BET比表面積の測定方法]
測定試料の量は 0. 2〜0. 3gとし、 BET5点法にて測定する。測定装置には、 Qua ntachrome (株)製、全自動ガス吸着量測定装置 (Autosorb— 3B)を用いる。なお 、付着水分量が 0. 2質量%以上の試料については前処理として、真空ポンプを用い て脱気しながら 1時間、 200°Cの温度で乾燥する。
[0057] [粉化率 (10分値)の測定方法]
測定試料 60gを正確に計り取り、これを目開き 250 m、直径 75mmの円形標準篩 に投入する。円形標準篩を、電磁式振盪機 (FRITSCH (株)製、 A— 3PRO)を用い て、振幅 lmmにて 10分間振動させる。 10分後に篩目を通過した篩下の試料の質量 を測定し、以下の式にて粉化率(10分値)を算出する。なお、粉化率測定の一連の 操作はすべて、窒素ガスで置換したグローブボックス内(温度: 25°C、相対湿度: 3% RH以下)にて行ない、測定中の試料に水分や炭酸ガスとの反応による質量変化が 生じないようにする。
粉化率 (10分値) [質量%] =篩下の試料質量 [g]Z60[g] X 100
[0058] [表 2] 表 1— 2
C aO C a (ΟΙΙ)ί C a CO:i CaO/(Ca (OH) 2+CaO) [質量%] [質量%] [質量%] [質量%] 水酸化カルシゥム 3. 5 3 9 0. 4 2 2. 4 8 3. 7 6 多孔質粒状物 焼成体 No. 1 1 1 9. ί 6 7 2. 3 9 5. 9 4 2 1. 4 4 焼成体 No. 1 2 4 0. 7 5 5 1. 3 6 4. 6 6 4 4. 2 4 焼成体 No. 1 3 4 3. 2 2 4 8. 5 6 4. 8 9 4 7. 0 9 焼成体 No. 1 4 5 3. 9 5 3 7. 1 6 4. 8 0 5 9. 2 1 焼成体 N o. 1 5 5 8. 4 4 3 1. 8 5 5. 0 5 6 4. 7 2 焼成体 N o. 1 6 7 9. 7 6 1 0. 9 5 4. 2 3 8 7. 9 3 焼成体 N o. 1 7 8 6. 1 0 4. 3 2 4. 9 8 9 5. 2 2 焼成体 N 0. 1 8 8 7. 2 3 3. 6 6 5. 0 9 9 5. 9 7
[0059] [表 3]
表 1一 3
B E T比表面積 粉化率 ( 1 0分値)
[m?/g] [質量%] 水酸化カルシウム 49. 1 . 0. 22
多孔質粒状物 焼成体 No. 1— 1 45. 2 0. 26
焼成体 No. 1— 2 67. 9 0. 28
焼成体 No. 1 - 3 67. 4 0. 25
焼成体 No. 1— 4 67. 4 0. 35
焼成体 No. 1 - 5 7 1. 5 0. 53
焼成体 No. 1 - 6 7 1. 1 1. 0 1
焼成体 No. 1— 7 73. 3 0. 93
焼成体 No. 1— 8 73. 3 0. 97
[0060] 図 1に、水酸化カルシウム多孔質粒状物及びその焼成体の酸化カルシウムと水酸 化カルシウムとの合計量に対する酸ィ匕カルシウム含有量(100 X CaO/ (Ca (OH)
2
+ CaO))と、 BET比表面積及び粉化率 (10分値)との関係を示す。
図 1の結果から、酸ィ匕カルシウム含有量が 30〜80質量%の範囲にある水酸ィ匕カル シゥム多孔質粒状物の焼成体は BET比表面積が高ぐかつ粉ィ匕率が小さいことが分 かる。
[0061] [実施例 2]酸ィ匕カルシウム、酸化マグネシウム、水酸化カルシウム及び水酸化マグネ シゥムを含む多孔質粒子力 なる粒状物
(1)混合粉末粒状物 A〜Gの製造
下記表 2— 1に示す配合比にて、水酸化カルシウム粉末 (Ca(OH):純度 90質量
2
%以上、 BET比表面積 45.5m2Zg、宇部マテリアルズ (株)製)と、水酸化マグネシ ゥム粉末 (Mg(OH):純度 90質量%以上、 BET比表面積 25.5m2/g,宇部マテリ
2
アルズ (株)製)とを混合し、これに水をカ卩えてさらに均一になるまで混合した。得られ た含水混合粉末物を押し出し成形機を用いて、直径 3mmの円柱状に形成した。得 られた含水円柱状粒状物を棚型真空乾燥機に入れ、機内圧力 50Pa以下の減圧下 にして、 150°Cの温度で水分が 1質量%以下になるまで乾燥した。続いて乾燥円柱 状粒状物を円形振動篩にて分級して、 2. 0〜5. 6mmの粒度の混合粉末粒状物 A 〜Gを得た。
[0062] [表 4]
表 2— 1 原料粉末配合比 (質量比)
C a (Ο Π) 2: M g (O H) 混合粉末粒状物 A 1 0 0 0
混合粉末粒状物 B 9 0 1 0
混合粉末粒状物 C 7 5 2 5
混合粉末粒状物 D 5 0 5 0
混合粉末粒状物 E 2 5 7 5
混合粉末粒状物 F 5 9 0
混合粉末粒状物 G 0 1 0 0
[0063] (2)焼成体 No. 2— l〜No. 2— 7の製造
上記(1)にて製造した混合粉末粒状物 A〜Gについてそれぞれ 40gを真空焼成電 気炉に投入し、真空ポンプを用いて炉内圧力を 50Pa以下に減圧した。次いで、炉 内圧力が 150Paを超えないように真空ポンプにて炉内を脱気しながら、炉内温度を 常温 (約 25°C)から 1. 5°CZ分の昇温速度にて 350°Cまで昇温し、その温度を 1時 間保持して、混合粉末粒状物を焼成して焼成体 No. 2—l〜No. 2— 7を製造した。 得られた焼成体は、炉内温度が 200°Cになるまで放冷し、次いで窒素ガスにて炉内 圧力を大気圧に調整した後、炉内から取り出した。得られた焼成体の各粒子は、焼 成前の混合粉末粒状物とほぼ同じサイズの円柱状粒状物であり、 1mm以下の粒状 物の含有量は 1質量%以下、 10mm以上の粒状物の含有量は 0. 1質量%以下であ つた。また、得られた焼成体の X線回折パターンを測定したところ、焼成体 No. 2- 1 〜No. 2— 7のいずれについても酸化カルシウム、酸化マグネシウム、水酸化カルシ ゥム及び水酸ィ匕マグネシウムに起因する X線ピークが確認された。
表 2— 2に、焼成体 No. 2— l〜No. 2— 7の製造に用いた混合粉末粒状物、焼成 時の炉内圧力、焼成温度、焼成時間、炉内からの焼成体の取り出し温度をまとめて 示す。
[0064] (3)焼成体 No. 2— 8〜No. 2— 14の製造
混合粉末粒状物の焼成温度を 400°Cとする以外は、前記(2)の焼成体 No. 2- 1 〜No. 2— 7の製造と同様にして、焼成体 No. 2— 8〜No. 2—14を製造した。得ら れた焼成体の各粒子は、焼成前の混合粉末粒状物とほぼ同じサイズの円柱状粒状 物であり、 1mm以下の粒状物の含有量は 1質量%以下、 10mm以上の粒状物の含 有量は 0. 1質量%以下であった。また、得られた焼成体の X線回折パターンを測定 したところ、焼成体 No. 2— 8〜No. 2— 14のいずれについても酸化カルシウム、酸 ィ匕マグネシウム、水酸ィ匕カルシウム及び水酸ィ匕マグネシウムに起因する X線ピークが 確認された。
表 2— 2に、焼成体 No. 2— 8〜No. 2— 14の製造に用いた混合粉末粒状物、焼 成時の炉内圧力、焼成温度、焼成時間、炉内からの焼成体の取り出し温度をまとめ て示す。
[0065] (4)焼成体 No. 2— 15〜No. 2— 21の製造
混合粉末粒状物 A〜Gにつ 、てそれぞれ 10gを箱型電気炉に投入した。次 、で、 大気圧下にて、炉内温度を常温 (約 25°C)から 5. 0Z分の昇温速度にて 1000°Cま で昇温し、その温度を 1時間保持して、混合粉末粒状物を焼成して焼成体 No. 2- 1 5〜No. 2— 21を製造した。得られた焼成体は、炉内温度が 600°Cになるまで放冷 した後、炉内力も取り出した。得られた焼成体の各粒子は、焼成前の混合粉末粒状 物とほぼ同じサイズの円柱状粒状物であり、 1mm以下の粒状物の含有量は 1質量 %以下、 10mm以上の粒状物の含有量は 0. 1質量%以下であった。
表 2— 2に、焼成体 No. 2—15〜No. 2— 21の製造に用いた混合粉末粒状物、焼 成時の炉内圧力、焼成温度、焼成時間、炉内からの焼成体の取り出し温度をまとめ て示す。
[0066] [表 5] 表 2— 2 焼成体 混合粉末 焼成時の 焼成温度 焼成時間 取り出し
粒状物 炉内圧力 温度
No. 2- - 1 A 1 5 0 P a以下 1時問 2 0 Ot;
No. 2- B 1 5 0 P a以下 3 5 O ; 1時間 2 0 0 °C
No. 2- -3 C 1 5 0 P a以下 3 5 0°C 1時間 2 0
No. 2- -4 D 1 5 0 P a以下 3 5 0 °C 1時間 2 0 Ot:
No. 2- -5 E 1 5 0 P a以下 3 5 Ot 1時間 2 0 0 eC
No. 2- -6 F 1 5 0 P a以下 3 5 0°C 1時間 2 0 0DC
No. 2- -7 G 1 5 0 P a以下 3 5 0°C 1時問 2 0 Ot:
No. 2- -8 A - 1 5 0 P a以下 40 Ot 1時間 2 0 0°C
No. 2- 9 B 1 5 0 F a以下 40 0°C 1時間 2 0 O
No. 2- -10 C 1 5 0 P a以下 40 0 ο°C 1時間 2 0
No. 9- - 11 D 1 5 0 P a以下 40 0°C 1時間 2 o o
No. 1- -\'L E 1 5 0 P a以下 4 0 0°C 1時間 2 0 0°C
Νυ. 1- Λ'ί F 1 5 0 P a以下 4 0 0 °C 1時間 2 0 0°C
No. 2- -14 G 1 5 0 P a以下 4 0 0°C 1時間 2 0 0°C
Nu. 2- -15 A 大気圧 1 0 0 0 °C 1時間 6 0 0 °C
No. 2- -16 B 大気圧 l o o o 1時間 600°C
No. 2- -17 C 大気圧 1 0 0 o°c 1時間 6 0 0°C
No. 2- -18 D 大気圧 1 0 0 0 °c 1時間 6 0 0。C
No. 2- -19 E 大気 1 0 0 0 °c 1時間 6 0 (TC
No. 1- -20 F 大気圧 丄 000 °c 1時間 600 r,
No. 2- -ϊ\ G 大気圧 1 0 0 0 °c 1時間 6 0 0 °C
[0067] 焼成体 No.2— l〜No.2— 21ついて、カルシウム(Ca)含有量、マグネシウム(M g)含有量、全水酸基 (OH)含有量、二酸化炭素 (CO 含有量、 BET比表面積及び 耐荷重強度を、下記の方法により測定した。 Ca含有量、 Mg含有量、カルシウム含有 量とマグネシウム含有量との合計量に対するマグネシウム含有量の質量比 [MgZ (C a + Mg)]、 OH含有量及び CO含有量の測定結果を表 2— 3に、 BET比表面積及
2
ぴ耐荷重強度の測定結果を表 2— 4に、それぞれ示す。
[0068] l)Ca含有量の測定方法
全酸ィ匕カルシウム含有量を JIS—R— 9011(1993)「石灰の化学分析法の 6.7.1 (酸ィ匕カルシウムの定量方法)」に従って測定し、下記の式より Ca含有量を算出する
Ca含有量 (質量%) =全酸化カルシウム含有量 (質量%) X (カルシウムの原子量 Z酸化カルシウムの分子量)
[0069] 2) Mg含有量の測定方法
酸ィ匕マグネシウム含有量を JIS—R— 9011 (1993)「石灰の化学分析法の 6. 8 (酸 化マグネシウムの定量方法)」に従って測定し、下記の式より Mg含有量を算出する。
Mg含有量 (質量%) =酸化マグネシウム含有量 (質量%) X (マグネシウムの原子 量 Z酸化マグネシウムの分子量)
[0070] 3) CO含有量の測定方法
2
JIS—R— 9011 (1993)「石灰の化学分析法 6. 11 (二酸化炭素の定量方法)」に 従って測定する。
[0071] 4) OH含有量の測定方法
付着水分量、強熱減量及び全二酸化炭素量をそれぞれ測定し、下記式より OH含 有量を算出する。
OH含有量 (%) = [強熱減量 (質量%)—付着水分量 (質量%)—全二酸化炭素量 (質量%) ] X (OHの分子量 Z水の分子量)
なお、付着水分量、強熱減量及び全二酸化炭素量の測定方法は次の通りである。 付着水分量 (質量%):ケット水分計にて測定する。
強熱減量 (質量%): JIS-R- 901 K1993)「石灰の化学分析法の 6. 1 (強熱減 量の定量方法) Jに準じた方法により測定する:
全二酸化炭素量 (質量%): (株)堀場製作所製の CORBONZSULFUR— ANA LYZER EMIA— 820を使用して、測定試料を酸素気流中にて 1250°Cの温度に 加熱し、生成した二酸化炭素量及び一酸化炭素量を赤外線吸収法により測定する。 二酸化炭素量の測定値と、一酸化炭素量の測定値を二酸化炭素量に換算した値と の合計値を全二酸化炭素量とする。
[0072] 5) BET比表面積の測定方法
測定試料の量は 0. 2〜0. 3gとし、 BET5点法にて測定する。測定装置には、 Qua ntachrome (株)製、全自動ガス吸着量測定装置 (Autosorb— 3B)を用いる。なお
、付着水分量が 0.2質量%以上の試料については前処理として、真空ポンプを用い て脱気しながら 1時間、 200°Cの温度で乾燥する。
[0073] 6)耐荷重強度の測定方法
木屋式硬度計にて測定する。焼成体(円柱状粒状物)の底面に対し、平行な方向 に荷重を付与し、焼成体が崩壊したときの荷重を読み取る。焼成体 50個について測 定し、その平均値を耐荷重強度とする。
[0074] [表 6] 表 2— 3
(: a含有量 My含有暈 Mg/(Ca+Mg) CC 含有量 Oil含冇虽
[質量%] [質量 ¾] [質暈比] [«量 ¾] &%
No. 2- \ (参考例) 5 5. 6 1 0. 2 5 0. 0 04 0 3 1 7. 8
No. 1 'I (実施例) 5 0. 2 6 4. 6 9 0. 0 8 5 5 1 1 7. 5
No. 1 3 (実施例) 42. 8 0 1 1. 6 3 0. 2 1 4 2. 04 1 7. 0
No. 2 (実施例) 2 9. 6 1 24. 0 8 0. 449 2. 0 0 1 4. 4
No. 2 - ■5 (実施例) 1 5. 4 δ 3 8. 3 5 0. 7 1 3 2. 44 1 0. 3
No. 2- ■6 (参考例) 3. 7 2 5 0. 6 2 0. 9 3 2 2. 0 8 6. 5
No. 2- -7 (参考例) 0. 7 3 5 3. 7 5 0. 98 7 1. 04 7. 4
No.2- -8 (参考例) 6 7. 47 0. 1 3 0. 00 2 ? ' 0 1 1. 6
No. 2- 9 (実施例) 6 0. 9 3 5. 44 0. 0 8 2 2. 3 1 2. 0
No. 2- 10 (実施例) 5 1. 1 0 1 3. 3 7 0. 2 0 7 1. 7 8 2. 0
No. 2- 11 (実施例) 3 Λ. 1 3 2 7. 0 2 0. 442 2. 5 8 2. 9
Ko. 2- 12 (実施例) 1 7. 54 40. 2 5 0. 6 9 6 2. 2 7 4. 1
No. 2- 13 (参考例) 3. 9 1 5 1. 4 5 0. 9 2 9 2. 1 1 5. 0
Ko. 2- -14 (参考例) 0. 3 2 5 5. 34 0. 9 94 0. 8 H 5. 4
No. 2- 15 (参考例) 7 0. 7 1 0. i 2 0. 0 0 5 0. 1以下 0. 1以下
\o. ϊ- 16 (参考例) 6 3. 74 5. 9 5 0. 0 8 5 0. 1以ド 0. 1以下
No. 2- ■17 (参考例) 5 3. 8 8 1 4. 64 0. 2 1 4 0. 1以下 0. 1以下
No. 2- 18 (参考例) 3 6. 04 2 9. 3 1 0. 449 0. 1以下 ϋ . 1以ド
\o. 2- ■19 (参考例) 1 7. 8 7 44. 3 5 0. 7 1 3 0. 1以下 0. 1以ド
No. 2- (参考例) 4. 1 1 5 5. 9 5 0. 9 3 2 0. 1以下 0. 1以下
No. I- -21 (参考例) 0. 8 0 5 9. 0 0 0. 98 7 0. 1以下 0. 1以ド [0075] [表 7] 表 2— 4
BET比表面積 [ma/g] 耐荷重強度 [N]
No.2-1 (参考例) 43. 5 2 6. 2
No.2- (実施例) 6 3. 6 2 7. 9
No.2-3 (実施例) 9 8. 3 3 2 - 0
No.2 4 (実施例) 1 5 1. 5 24. 9
No.2-5 (実施例) 2 2 0. 9 9. 8
No.2-6 (参考例) 2 7 6. 4 0. 1
NO.2-7 (参考例) 2 8 2. 0 0. 1以下
No.2-8 (参考例) 8 8. 2 3. 0
No.2-9 (実施例) 1 1 0. 3 7. 1
No.2-10 (実施例) 丄 4 3. 5 8. 2
No.2 11 (実施例) 2 1 4. 5 1 1. 9
No.2-12 (実施例) 2 6 1. 2 8. 9
No.2~13 (参考例) 2 9 9. 5 0. 5
No.2-14 (参考例) 3 3 3. 4 0. 5
No.2- 15 (参考例) 3. 8 1 4. 2
No.2 - 16 (参考例) 4. 2 1 0. 0
No.2-17 (参考例) 4. 6 7. 6
No.2-18 (参考例) 6. 1 2. 7
No.2-19 (参考例) 7. 6 丄 . 3
No. HO (参考例) 9. 4 0. 5
No.2~21 (参考例) 6. 7 0. 5
[0076] 図 2に、焼成体 No.2—l〜No.2— 7の Mg/ (Ca + Mg)と BET比表面積及び耐 荷重強度の関係を示す。図 3に、焼成体 No.2— 8〜No.2— 14の MgZ (Ca+Mg )と BET比表面積及び耐荷重強度の関係を示す。図 4に、焼成体 No.2—15〜No .2— 21の MgZ (Ca + Mg)と BET比表面積及び耐荷重強度の関係を示す。
[0077] 図 2〜図 4に示す結果から、混合粉末粒状物を減圧下にて焼成して得られた粒状 物 (焼成体 No.2— l〜No.2— 14)と、混合粉末粒状物を大気圧下にて焼成して 得られた粒状物(焼成体 No.2—15〜No.2— 21)と比べると、減圧下にて焼成して 製造した粒状物の方が BET比表面積が大きぐかつ耐荷重強度が高くなる傾向にあ ることが分かる。また、 Mg/ (Ca + Mg)が 0. 05〜0. 80の粒状物(焼成体 No. 2— 2〜No. 2— 5、焼成体 No. 2— 9〜No. 2— 12)は、 MgZ(Ca+Mg)力 . 05未満 の粒状物(焼成体 No. 2- 1, No. 2— 8)と比べて BET比表面積が大きぐ MgZ(C a + Mg)力 SO. 80を超える粒状物(焼成体 No. 2— 6、 2— 7、 2—13、 2— 14)と i:匕べ て耐荷重強度が高 、傾向にあることが分かる。
[0078] [実施例 3]
下記の(1)〜(3)の試料について、 Quantachrome (株)製、全自動ガス吸着量測 定装置 (Autosorb— 3B)を用いて、窒素ガス吸着法により脱離等温線を測定し、そ の脱離等温線のデータから、 BJH法により比表面積を基準とした細孔径分布曲線 Ds (logd)、細孔比表面積の分布曲線、及び細孔容積の分布曲線を求めた。なお、等 温吸着線の測定に際しては、測定試料の量を 0. 1〜0. 2gとし、測定試料の付着水 分量が 0. 2質量%以上の試料については前処理として、真空ポンプを用いて脱気し ながら 1時間、 200°Cの温度で乾燥した。
(1)実施例 1にて製造した焼成物 No. 1 - 3
(2)実施例 1にて製造した焼成物 No. 1 - 5
(3)実施例 1にて製造した水酸ィ匕カルシウム多孔質粒子の粒状物 (焼成物 No. 1 3及び焼成物 No. 1— 5の製造原料として用いたもの)
[0079] 図 5に、 BJH法により求めた比表面積を基準とした細孔径分布曲線 Ds (logd)を示 す。図 5の結果から、本発明に従う焼成物 No. 1— 3及び焼成物 No. 1— 5は、その 原料として用いた水酸ィ匕カルシウム多孔質粒子の粒状物と比べて、細孔径が 2〜9n mの細孔の細孔比表面積が大きくなつていることが分かる。
[0080] 図 6に、 BJH法により求めた細孔比表面積の分布曲線を、図 7に BJH法により求め た細孔容積の分布曲線をそれぞれ示す。図 6及び図 7の結果から求めた、細孔径が 2〜9nmの範囲にある全細孔の比表面積と細孔径が 10〜100nmの範囲にある全 細孔の容積とを下記の表 3に示す。
[0081] [表 8] 表 3 試料 細孔径が 2〜 9 nmの 細孔径が 1 0〜 1 00 n m 全細孔の比表面積 [m2/g. 全細孔の容積 [mL/g] 焼成物 N o . 1— 3 36. 8 0. 38 1 焼成物 No. 1— 5 52. 4 0. 436 水酸化カルシウム
多孔質粒子の粒状物 1 3. 6 0. 285
[0082] [実施例 4]
下記の(1)〜 (4)の試料につ 、て、実施例 3と同様にして BJH法により比表面積を 基準とした細孔径分布曲線 Ds(logd)、細孔比表面積の分布曲線、及び細孔容積の 分布曲線を求めた。
(1)実施例 2にて製造した焼成物 No.2— 3 (混合粉末粒状物 Cを減圧下、 350°Cの 温度で焼成したもの)
(2)実施例 2にて製造した焼成物 No.2— 10 (混合粉末粒状物 Cを減圧下、 400°C の温度で焼成したもの)
(3)実施例 2にて製造した焼成物 No.2— 17 (混合粉末粒状物 Cを大気圧下、 100 0°Cの温度で焼成したもの)
(4)実施例 2にて製造した混合粉末粒状物 C
[0083] 図 8に、 BJH法により求めた比表面積を基準とした細孔径分布曲線 Ds (logd)を示 す。図 8の結果から、本発明に従う焼成物 No.2— 3及び焼成物 No.2— 10は、原 料の粒状物 Cと比べて、細孔径が 2〜9nmの細孔と細孔径が 2nm未満の細孔比表 面積が大きくなつていることが分かる。また、原料の粒状物 Cを焼成物大気圧下、 10 00°Cの温度で焼成して製造した No.2— 17は、原料の粒状物 Cと比べて全体的に 細孔比表面積が小さくなつて 、ることが分かる。
[0084] 図 9に、 BJH法により求めた細孔比表面積の分布曲線を、図 10に BJH法により求 めた細孔容積の分布曲線をそれぞれ示す。図 9及び図 10の結果から求めた、細孔 径が 2nm未満の全細孔の比表面積、細孔径が 2〜9nmの範囲にある全細孔の比表 面積及び細孔径が 10〜: LOOnmの範囲にある全細孔の容積を下記の表 4に示す。
[表 9] 表 4 試料 細孔径 2 nm未満の 細孔径 2〜 9 II mの 細孔径 1 0〜
全細孔比表面積 全細孔比表面積 100 nmの全細孔 [m2/fi] [m g] 容積 [mL/g] 焼成物 No. 2— 3 46. 9 47. 0 0. 2 1 7 焼成物 No. 2— 10 43. 8 1 03. 2 0. 3 19 焼成物 Ι\το. 2 - 1 7 6. 9 10. 9 0. 0 13 粒状物 C 8. 5 25. 1 0. 20 1
[0086] [実施例 5]
下記の(1)〜 (4)の試料につ 、て、実施例 3と同様にして BJH法により比表面積を 基準とした細孔径分布曲線 Ds(logd)、細孔比表面積の分布曲線、及び細孔容積の 分布曲線を求めた。
(1)実施例 2にて製造した焼成物 No.2— 5 (混合粉末粒状物 Eを減圧下、 350°Cの 温度で焼成したもの)
(2)実施例 2にて製造した焼成物 No.2— 12 (混合粉末粒状物 Eを減圧下、 400°C の温度で焼成したもの)
(3)実施例 2にて製造した焼成物 No.2— 19 (混合粉末粒状物 Eを大気圧下、 1000 °Cの温度で焼成したもの)
(4)実施例 2にて製造した混合粉末粒状物 E
[0087] 図 11に、 BJH法により求めた比表面積を基準とした細孔径分布曲線 Ds(logd)を 示す。図 11の結果から、本発明に従う焼成物 No.2— 5及び焼成物 No.2— 12は、 原料の粒状物 Eと比べて、細孔径が 2〜9nmの細孔と細孔径が 2nm未満の細孔比 表面積が大きくなつていることが分かる。また、原料の粒状物 Eを焼成物大気圧下、 1 000°Cの温度で焼成して製造した焼成物 No.2— 19は、原料の粒状物 Eと比べて全 体的に細孔比表面積が小さくなつていることが分かる。 [0088] 図 12に、 BJH法により求めた細孔比表面積の分布曲線を、図 13に BJH法により求 めた細孔容積の分布曲線をそれぞれ示す。図 12及び図 13の結果から求めた、細孔 径が 2nm未満の全細孔の比表面積、細孔径が 2〜9nmの範囲にある全細孔の比表 面積及び細孔径が 10〜: LOOnmの範囲にある全細孔の容積を下記の表 5に示す。
[0089] [表 10] 表 5 試料 細孔径 2 nm未満の 細孔径 2 ~ 9 nmの 細孔径 1 ϋ〜
全細孔比表面積 全細孔比表面積 100 nmの全細孔 [m2/ g] [m2/g] 容¾ [mL/g] 焼成物 No. 134. 7 98. 9 0. 1 84 焼成物 No. 1 58. 0 123. 0 0. 205 焼成物 No. 4. 5 10. 1 0. 0 1- 8 粒状物 E 4. 6 3 1. 5 0. 1 35
図面の簡単な説明
[0090] [図 1]本実施例 1で製造した水酸ィ匕カルシウム多孔質粒状物及びその焼成体の酸ィ匕 カルシウムと水酸ィ匕カルシウムとの合計量に対する酸ィ匕カルシウム含有量の比率と、 BET比表面積及び粉ィ匕率 (10分値)との関係を示す図である。
[図 2]本実施例 2で製造した焼成体 No.2— l〜No.2— 7の MgZ(Ca + Mg)と BE T比表面積及び耐荷重強度の関係を示す図である。
[図 3]本実施例 2で製造した焼成体 No.2— 8〜No.2— 14の MgZ(Ca + Mg)と B ET比表面積及び耐荷重強度の関係を示す図である。
[図 4]本実施例 2で製造した焼成体 No.2— 15〜No.2— 21の MgZ(Ca + Mg)と BET比表面積及び耐荷重強度の関係を示す図である。
[図 5]本実施例 3にて BJH法により求めた比表面積を基準とした細孔径分布曲線 Ds( logd)である。
[図 6]本実施例 3にて BJH法により求めた細孔比表面積の分布曲線である。
[図 7]本実施例 3にて BJH法により求めた細孔容積の分布曲線である。
[図 8]本実施例 4にて BJH法により求めた比表面積を基準とした細孔径分布曲線 Ds( logd)である。
[図 9]本実施例 4にて BJH法により求めた細孔比表面積の分布曲線である。
[図 10]本実施例 4にて BJH法により求めた細孔容積の分布曲線である。
[図 11]本実施例 5にて BJH法により求めた比表面積を基準とした細孔径分布曲線 Ds
(logd)である。
[図 12]本実施例 5にて BJH法により求めた細孔比表面積の分布曲線である。
[図 13]本実施例 5にて BJH法により求めた細孔容積の分布曲線である。

Claims

請求の範囲
[I] 酸ィ匕カルシウムと水酸ィ匕カルシウムとを含む多孔質粒子であって、酸ィ匕カルシウム 含有量と水酸化カルシウム含有量との合計量に対する酸化カルシウム含有量の比率 が 30〜80質量%の範囲にあり、 BET比表面積力 Om2Zg以上である多孔質粒子 力 なる粒状物。
[2] BJH法により求められる細孔径が 2〜9nmの範囲にある全細孔の比表面積が 20〜
100m2Zgの範囲にある請求項 1に記載の粒状物。
[3] BJH法により求められる、細孔径が 2〜9nmの範囲にある全細孔の比表面積が 20
〜 100m2Zgの範囲にあり、かつ細孔径が 10〜: LOOnmの範囲にある全細孔の容積 が 0. 1〜0. 6mLZgの範囲にある請求項 1に記載の粒状物。
[4] 酸化カルシウム含有量と水酸化カルシウム含有量との合計量の粒状物の全体量に 対する比率が 85質量%以上である請求項 1に記載の粒状物。
[5] 粒子径が lmm以下の粒子を 5質量%以上含有することなぐ粒子径が 10mm以上 の粒子を 5質量%以上含有することのな 、請求項 1に記載の粒状物。
[6] 請求項 1に記載の粒状物力 なる吸湿材。
[7] 請求項 1に記載の粒状物力 なる酸性ガスの吸着材。
[8] 請求項 1に記載の粒状物力もなるハロゲンィ匕炭化水素ガスの分解生成物の吸着材
[9] フルォロカーボンガスの分解触媒と請求項 1に記載の粒状物とからなるフルォロカ 一ボンガスの分解処理材。
[10] BET比表面積が 10m2/g以上である水酸ィ匕カルシウム多孔質粒子力もなる粒状 物を、 300Pa以下の圧力下、 315〜500°Cの温度にて、該粒状物の質量が、該粒状 物中の水酸化カルシウムの質量に対して 8. 8〜20質量%の範囲だけ減少するまで 焼成することからなる請求項 1に記載の粒状物の製造方法。
[II] 酸化カルシウム、酸化マグネシウム、水酸化カルシウム及び水酸化マグネシウムを 含む多孔質粒子であって、カルシウム含有量とマグネシウム含有量との合計量に対 するマグネシウム含有量の質量比が 0. 05〜0. 80の範囲にあり、粒子中の全水酸 基の含有率が 1〜20質量%の範囲にあって、 BET比表面積が 50m2/g以上である 多孔質粒子力 なる粒状物。
[12] BJH法により求められる細孔径が 2〜9nmの範囲にある全細孔の比表面積力 0〜
200m2/gの範囲にある請求項 11に記載の粒状物。
[13] BJH法により求められる細孔径が 2nm未満の全細孔の比表面積が 20〜200m2Z gの範囲にある請求項 11に記載の粒状物。
[14] BJH法により求められる、細孔径が 2nm未満の全細孔の比表面積が 20〜200m2
Zgの範囲にあり、細孔径が 2〜9nmの範囲にある全細孔の比表面積力 0〜200m
2Zgの範囲にあり、そして細孔径が 10〜: LOOnmの範囲にある全細孔の容積が 0. 1
〜0. 6mLZgの範囲にある請求項 11に記載の粒状物。
[15] カルシウム含有量とマグネシウム含有量との合計量の粒状物の全体量に対する比 率が 50質量%以上である請求項 11に記載の粒状物。
[16] 粒子径が lmm以下の粒子を 5質量%以上含有することなぐ粒子径が 10mm以上 の粒子を 5質量%以上含有することのな 、請求項 11に記載の粒状物。
[17] 請求項 11に記載の粒状物力 なる吸湿材。
[18] 請求項 11に記載の粒状物力 なる酸性ガスの吸着材。
[19] 請求項 11に記載の粒状物力 なるハロゲンィ匕炭化水素ガスの分解生成物の吸着 材。
[20] フルォロカーボンガスの分解触媒と請求項 11に記載の粒状物とからなるフルォロカ 一ボンガスの分解処理材。
[21] BET比表面積が 10m2/g以上である水酸ィ匕カルシウム粒子と BET比表面積が 10 m2/g以上である水酸ィ匕マグネシウム粒子とからなる多孔質粒子であって、カルシゥ ム含有量とマグネシウム含有量との合計量に対するマグネシウム含有量の質量比が 0. 05-0. 80の範囲にある多孔質粒子力もなる粒状物を、 300Pa以下の圧力下、 3 15〜500°Cの温度にて、焼成することからなる請求項 11に記載の粒状物の製造方 法。
PCT/JP2006/306749 2005-03-30 2006-03-30 カルシウム及び/又はマグネシウムを含む多孔質粒子からなる粒状物 WO2006106878A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020077025023A KR101270921B1 (ko) 2005-03-30 2006-03-30 칼슘 및/또는 마그네슘을 함유하는 다공질 입자로이루어지는 입상물
JP2007512897A JP4890444B2 (ja) 2005-03-30 2006-03-30 カルシウム及び/又はマグネシウムを含む多孔質粒子からなる粒状物
US11/910,126 US7976806B2 (en) 2005-03-30 2006-03-30 Granular material comprising porous particles containing calcium and/or magnesium
EP06730697A EP1867620A1 (en) 2005-03-30 2006-03-30 Granular material comprising porous particles containing calcium and/or magnesium
IL186444A IL186444A0 (en) 2005-03-30 2007-10-07 Granular material comprising porous particles containing calcium and /or magnesium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-099767 2005-03-30
JP2005099767 2005-03-30

Publications (1)

Publication Number Publication Date
WO2006106878A1 true WO2006106878A1 (ja) 2006-10-12

Family

ID=37073433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306749 WO2006106878A1 (ja) 2005-03-30 2006-03-30 カルシウム及び/又はマグネシウムを含む多孔質粒子からなる粒状物

Country Status (6)

Country Link
US (1) US7976806B2 (ja)
EP (1) EP1867620A1 (ja)
JP (1) JP4890444B2 (ja)
KR (1) KR101270921B1 (ja)
IL (1) IL186444A0 (ja)
WO (1) WO2006106878A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100290966A1 (en) * 2006-06-16 2010-11-18 Andrew James Seeley Method and apparatus for the removal of fluorine from a gas stream
JP2015124318A (ja) * 2013-12-26 2015-07-06 東ソー株式会社 クロロスルホン化ポリオレフィン組成物
JP2015526263A (ja) * 2012-03-30 2015-09-10 ラインカルク ゲー エム ベー ハーRheinkalk GmbH 排ガスの乾式浄化のためのアルカリ土類金属カーボネートおよびアルカリ土類金属水酸化物を含有する材料の活性化
JPWO2018142758A1 (ja) * 2017-01-31 2019-11-21 パナソニックIpマネジメント株式会社 電解コンデンサ
CN115353136A (zh) * 2022-07-28 2022-11-18 吉林新睿来科技有限公司 高比表面积高活性氢氧化钙的生产工艺

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5477561B2 (ja) * 2009-09-09 2014-04-23 戸田工業株式会社 炭化水素を分解する多孔質触媒体及びその製造方法、炭化水素から水素を含む混合改質ガスを製造する方法、並びに燃料電池システム
BE1020787A3 (fr) 2012-07-12 2014-05-06 Lhoist Rech Et Dev Compose mixte calcique et magnesien et son procede de fabrication.
ITMI20122007A1 (it) * 2012-11-26 2014-05-27 Icico S R L Metodo per controllare l'emissione di sostanze inquinanti in un effluente gassoso prodotto da un processo di combustione
WO2016035751A1 (ja) 2014-09-01 2016-03-10 国立大学法人九州大学 製品無機化合物の製造方法及び製品無機化合物
SG11201810778YA (en) * 2016-06-03 2018-12-28 Carmeuse North America Calcium oxide compositions
IT202100026225A1 (it) 2021-10-13 2023-04-13 Unicalce S P A Materiale granulare a base di calce aerea viva, relativo processo di preparazione e suoi utilizzi.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0347533A (ja) * 1989-04-17 1991-02-28 Wako Pure Chem Ind Ltd 酸性ガス吸収剤の製造法
JPH0558754A (ja) * 1991-09-03 1993-03-09 Karushiide:Kk 多孔質カルシア成形体及びその製造方法
JPH069215A (ja) * 1992-03-03 1994-01-18 Suzuki Kogyo Kk 酸化カルシウム多孔質粒状複合体及びその製造方法
JP2000070669A (ja) * 1998-08-31 2000-03-07 Hitachi Zosen Corp 排ガス中のHClの除去方法およびこれに用いるHCl吸収剤

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5223239A (en) * 1990-07-24 1993-06-29 Research Corporation Technologies, Inc. Method of preparing hydrated lime
US5705141A (en) * 1990-11-21 1998-01-06 Lhoist Researche Et Developpement S.A. Calcium and/or magnesium hydroxide, and preparation and use thereof
JP3212588B1 (ja) 2000-06-23 2001-09-25 クリオン株式会社 消臭機能を有する調湿建材及びその製造方法
JP2002224565A (ja) * 2000-12-01 2002-08-13 Japan Pionics Co Ltd フルオロカーボンの分解処理剤及び分解処理方法
CN1913956A (zh) * 2004-01-29 2007-02-14 大阳日酸株式会社 废气处理方法以及废气处理装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0347533A (ja) * 1989-04-17 1991-02-28 Wako Pure Chem Ind Ltd 酸性ガス吸収剤の製造法
JPH0558754A (ja) * 1991-09-03 1993-03-09 Karushiide:Kk 多孔質カルシア成形体及びその製造方法
JPH069215A (ja) * 1992-03-03 1994-01-18 Suzuki Kogyo Kk 酸化カルシウム多孔質粒状複合体及びその製造方法
JP2000070669A (ja) * 1998-08-31 2000-03-07 Hitachi Zosen Corp 排ガス中のHClの除去方法およびこれに用いるHCl吸収剤

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100290966A1 (en) * 2006-06-16 2010-11-18 Andrew James Seeley Method and apparatus for the removal of fluorine from a gas stream
JP2015526263A (ja) * 2012-03-30 2015-09-10 ラインカルク ゲー エム ベー ハーRheinkalk GmbH 排ガスの乾式浄化のためのアルカリ土類金属カーボネートおよびアルカリ土類金属水酸化物を含有する材料の活性化
JP2015124318A (ja) * 2013-12-26 2015-07-06 東ソー株式会社 クロロスルホン化ポリオレフィン組成物
JPWO2018142758A1 (ja) * 2017-01-31 2019-11-21 パナソニックIpマネジメント株式会社 電解コンデンサ
JP7223968B2 (ja) 2017-01-31 2023-02-17 パナソニックIpマネジメント株式会社 電解コンデンサ
CN115353136A (zh) * 2022-07-28 2022-11-18 吉林新睿来科技有限公司 高比表面积高活性氢氧化钙的生产工艺
CN115353136B (zh) * 2022-07-28 2023-09-01 吉林新睿来科技有限公司 高比表面积高活性氢氧化钙的生产工艺

Also Published As

Publication number Publication date
IL186444A0 (en) 2008-01-20
KR20080005240A (ko) 2008-01-10
US7976806B2 (en) 2011-07-12
US20090215616A1 (en) 2009-08-27
EP1867620A1 (en) 2007-12-19
KR101270921B1 (ko) 2013-06-03
JP4890444B2 (ja) 2012-03-07
JPWO2006106878A1 (ja) 2008-09-11

Similar Documents

Publication Publication Date Title
WO2006106878A1 (ja) カルシウム及び/又はマグネシウムを含む多孔質粒子からなる粒状物
US9114359B2 (en) Method for producing sorbents for CO2 capture under high temperatures
KR101383996B1 (ko) 다공질 산화칼슘 입상물 및 다공질 수산화칼슘 입상물
TW304170B (ja)
Martínez-Hernández et al. Development of novel nano-hydroxyapatite doped with silver as effective catalysts for carbon monoxide oxidation
Przepiórski et al. Porous carbon material containing CaO for acidic gas capture: Preparation and properties
JP5165213B2 (ja) 酸化カルシウム粉末及びその製造方法
Foo et al. Insights and utility of cycling-induced thermal deformation of calcium-based microporous material as post-combustion CO2 sorbents
WO2023002731A1 (ja) 酸素反応剤用鉄基粉末およびそれを用いた酸素反応剤
Dambrauskas et al. Effect of intercalated metal ions on the specific surface area and porosity of dibasic calcium silicate hydrate
JP5037066B2 (ja) 高比表面積酸化マグネシウム粉末及びその製造方法
JP4387870B2 (ja) 粒状生石灰
JPH11189481A (ja) 多孔質機能材
JP6029000B2 (ja) ケイ酸カルシウム系材料及びその製造方法
JP2003226571A (ja) 酸素ラジカル含有カルシウムアルミネートの製造方法
JP6926521B2 (ja) 銀担持ゼオライト成形体
WO2008094480A2 (en) Filtration media having a chemical reagent
JP3092477B2 (ja) 粒状活性炭及びその製造方法
JP4051399B2 (ja) 乾燥剤原料およびその製造方法
JP2006169062A (ja) 酸化カルシウム含有多孔質粒状物
US11124420B2 (en) Powdered gyrolite-type calcium silicate having high oil absorbency and large particle diameter, and production method therefor
JP3334664B2 (ja) 気体分離用吸着剤
JP2001327860A (ja) ハロゲン系酸性ガスの処理剤、その製造方法及び処理方法
JP2012213695A (ja) 鉄系水蒸気吸着剤
JP2020142955A (ja) 層状マンガン酸化物成形体及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007512897

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006730697

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 186444

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 1020077025023

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006730697

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11910126

Country of ref document: US