WO2006104125A1 - 積層熱可塑性樹脂フィルムおよびその製造方法 - Google Patents

積層熱可塑性樹脂フィルムおよびその製造方法 Download PDF

Info

Publication number
WO2006104125A1
WO2006104125A1 PCT/JP2006/306229 JP2006306229W WO2006104125A1 WO 2006104125 A1 WO2006104125 A1 WO 2006104125A1 JP 2006306229 W JP2006306229 W JP 2006306229W WO 2006104125 A1 WO2006104125 A1 WO 2006104125A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
coating
resin
particles
drying
Prior art date
Application number
PCT/JP2006/306229
Other languages
English (en)
French (fr)
Inventor
Naoki Mizuno
Shigenori Iwade
Syuichi Nishimura
Chikao Morishige
Yasuhiro Nishino
Katsuhiko Nose
Original Assignee
Toyo Boseki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Boseki Kabushiki Kaisha filed Critical Toyo Boseki Kabushiki Kaisha
Publication of WO2006104125A1 publication Critical patent/WO2006104125A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/02Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber
    • B05D7/04Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber to surfaces of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/28Processes for applying liquids or other fluent materials performed by transfer from the surfaces of elements carrying the liquid or other fluent material, e.g. brushes, pads, rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2252/00Sheets
    • B05D2252/02Sheets of indefinite length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers

Definitions

  • the present invention is used mainly for display-related applications, such as antireflection films, light diffusion sheets, prism sheets, infrared absorption films, transparent conductive films, and antiglare films (hard coat layers, light diffusion layers). Layer, prism layer, infrared absorption layer, transparent conductive layer, anti-glare layer, etc.), and also has excellent transparency with few optical defects due to foreign substances mainly composed of particles.
  • the present invention relates to a plastic resin film. Background art
  • the base material of an optical functional film used for a display member such as a liquid crystal display (LCD) or a plasma display panel (PDP) includes polyethylene terephthalate (PET), acrylic polymer, polycarbonate. Transparent films that have (PC), triacetylcellulose (TAC), polyolefin and the like are used.
  • a protective film hard coat layer
  • AR layer antireflection layer
  • prism layer that is used to collect and diffuse light
  • a light diffusion that improves brightness
  • a functional layer such as a layer.
  • biaxially oriented polyester films are widely used as substrates for various optical functional films from the viewpoint of excellent transparency, dimensional stability, and chemical resistance.
  • thermoplastic resin film of the base material As a method for imparting easy adhesion, for example, various types of resin such as polyester, acrylic polymer, polyurethane, and acrylic graft polyester are used as the main component of the coating layer on the surface of the thermoplastic resin film of the base material.
  • a method of providing the coating layer on the base film by a coating method is generally known.
  • copolymer polyester resin is generally used as a material for coating layers because it has excellent adhesion to biaxially oriented polyester films that are widely used as substrate films for display diffusers and prism lenses.
  • the thermoplastic resin film before completion of crystal orientation is directly or as necessary subjected to corona discharge treatment, and then the resin solution or resin is dispersed with a dispersion medium.
  • thermoplastic resin film A method in which the aqueous coating solution containing the dispersion is applied to a base film, dried, stretched at least in a uniaxial direction, and then subjected to heat treatment to complete the crystal orientation of the thermoplastic resin film (so-called in-line A coating method) and a method of drying a water-based or solvent-based coating solution after manufacturing a thermoplastic resin film (so-called offline coating method) are widely used industrially.
  • the force for incorporating particles into the coating layer for the purpose of imparting easy slipperiness In order to display images vividly, the particles are often scattered by visible light and fine particles are often used. For this reason, films that are highly transparent and have a low haze, that is, excellent optical properties, tend to be noticeable even with extremely thin continuous streaks.
  • the light source used in the liquid crystal panel is mainly a three-wavelength fluorescent tube, and even if a laminated film in which continuous coating streaks are not detected in the above-mentioned bromite inspection is used, When layered or AR film or lens film is processed, continuous coating streaks become apparent, and when they are incorporated into a display, they may be recognized as thin continuous streaks.
  • the continuous application streak defect referred to in the present invention is extremely thin, and a method of detecting using a three-wavelength fluorescent tube in a dark room under a specific condition described later, and bromolite in the same environment.
  • Fig. 12 is an enlarged view of the nucleus of Fig. 11.
  • Fig. 2 is a diagram showing irregularities including one nucleus and its surrounding crest.
  • the continuous coating streaks defined by the present invention include those having a core portion divided into a plurality of parts.
  • the continuous coating streaks defined by the present invention can be detected relatively easily using only bromolite.
  • the particle aggregates present in the coating solution are densely gathered on the film and further coarsely scattered in streaks.
  • the application stripe defect is different in size and shape, and also has a different generation mechanism.
  • the reason for the presence of the continuous application streak that is easier to detect when using bromolite and the repetitive application streak that is easier to detect using the three-wavelength fluorescent tube is the reason for the drawback of the continuous application streak defined by the present invention.
  • Such a continuous coating streaks defect is an extremely thin defect that cannot be detected by an in-line defect inspection machine, and it is extremely difficult to improve while maintaining excellent optical characteristics.
  • a biaxially oriented polyester film is mainly composed of an acrylic resin used for a prism lens nano-coat. It is known that the adhesion to the coating agent is poor. For this reason, various proposals have been made in which a coating layer made of polyurethane resin or the like is formed on the surface of a polyester film (see, for example, Patent Document 1).
  • particles are added to the coating layer in order to impart slipperiness. In order to maintain the haze and transparency of the laminated film, these particles having a relatively small average primary particle size of about 0.01-0. However, the smaller the particle size, the easier it is for the particles to aggregate, which is one factor of optical defects due to coarse aggregates.
  • Patent Document 2 and Patent Document 3 The inventors of the present invention described in Patent Document 2 and Patent Document 3 in which a polyester resin resin, a polyurethane resin, and inorganic particles having an appropriate particle diameter were added to a polyethylene terephthalate base film.
  • a laminated polyester film that can sufficiently satisfy the adhesiveness that has been required in the past and that has few optical defects is illustrated. is doing.
  • polyester resin and polyurethane resin polyyester resin solid content 20% by mass, polyurethane resin 80% by mass
  • two kinds of primary average particle diameters of 40 nm are formed on a polyester film stretched in the longitudinal direction.
  • the easy-adhesive biaxially stretched polyester film obtained by the invention described in the patent document has excellent transparency and is a coarse particle aggregate having a size of 100 / zm or more contained in the coating solution.
  • the optical defects due to can be greatly reduced.
  • the demand for reduction of extremely thin and continuous defects due to the recent increase in brightness and the increase in the size of large screens has not been fully satisfied.
  • the same applicant exemplifies an easy-adhesive film roll in which the variation in coating amount is within a specified range in order to achieve uniform adhesion.
  • the polyester film stretched in the vertical direction and polyester resin and polyurethane resin polyester resin solid content 50% by mass, polyurethane resin 50% by mass
  • polyester resin solid content 50% by mass, polyurethane resin 50% by mass with an average particle size of 1.
  • a water-dispersible coating solution containing a fluorosurfactant was applied using a reverse kiss method with a coating kiss length of 8 mm, dried in a drying oven at 120 ° C, and then stretched and heat-fixed for easy adhesion.
  • a biaxially stretched polyester film is obtained.
  • the film roll obtained by the invention described in the patent document has excellent adhesion uniformly throughout the film roll, and the thin continuous bullet defects are also improved from the invention products described in the patent documents 2 and 3.
  • the coating liquid is filtered with a polypropylene filter having a filtration accuracy of 0.2 to 3 ⁇ m, and a gravure roll that rotates backward at a peripheral speed approximately 1.2 times the film speed is used. It is used to reduce the continuous coating streaks.
  • this method can reduce the relatively sharp coating streaks that can be detected only with bromolite derived from particle aggregates present in the coating liquid, but the ultrathin coating streaks defined by the present invention can be reduced. It was not reduced sufficiently.
  • the thin repetitive coated streak defect defined by the present invention becomes more conspicuous as the haze is smaller and the transparency is higher, and the excellent optical characteristics and the reduction of the thin repetitive streak are reduced. It was extremely difficult to achieve both.
  • Patent Document 1 JP-A-6-340049
  • Patent Document 2 Japanese Patent Laid-Open No. 11-323271
  • Patent Document 3 Japanese Patent Laid-Open No. 2000-246855
  • Patent Document 4 Japanese Unexamined Patent Application Publication No. 2004-10669
  • Patent Document 5 Japanese Unexamined Patent Application Publication No. 2002-172362
  • an object of the present invention is to provide a laminated film that has excellent transparency and is extremely thin and has few repetitive coating streaks.
  • the first invention is a resin comprising a thermoplastic resin film as a base material and a copolymer polyester resin or a copolymer polyester resin and a polyurethane-based resin on at least one surface of the base material.
  • the core defined in the following formulas 1 and 2 is a laminated film having a haze of 1.5% or less formed by providing a coating layer containing components and particles. It is a laminated thermoplastic resin film characterized in that the number of continuous coating streaks that are connected in a state defined by the following formulas 3 and 4 is 30 Zm 2 or less. ⁇ ⁇ 35 ⁇ ⁇
  • n Number of cores defined by Equation 1 and Equation 2 per lmm
  • the mass ratio of the copolyester resin to the polyurethane-based resin is 7: 3 to 3: 7.
  • a third invention is the laminated thermoplastic resin film according to the first invention or the second invention, wherein the particles contained in the coating layer are particles having an oxy-silicon force. .
  • the fourth invention is the laminate according to any one of the first invention to the third invention, characterized in that the thermoplastic resin film substrate substantially does not contain particles. Thermoplastic resin film.
  • thermoplastic resin that travels a coating liquid containing a coagulated polyester resin or a coagulated polyester resin and a polyurethane resin, a particle component, and a surfactant.
  • a coating step for coating on one or both sides of the oil film a drying step for drying the coating layer, a stretching step for stretching in at least a uniaxial direction, and a heat setting processing step for heat-setting the stretched coating film, and This is a method for producing a laminated thermoplastic resin film that satisfies the following conditions (1) to (6).
  • the mixing ratio of the copolymerized polyester resin and the polyurethane-based resin is 3: 7 to 7: 3 by mass ratio.
  • the applicator roll and film kiss length during coating is at least 1 mm and less than 5 mm.
  • the film transit time from immediately after coating of the coating solution to the entrance of the drying process is less than 2 seconds.
  • the drying temperature is 120 to 150 ° C
  • the drying time is 0.1 to 5 seconds
  • the wind speed of the drying wind is 30 mZ seconds or more.
  • thermoplastic resin film for running a coating liquid containing a coagulated polyester resin or a copolyester resin and a polyurethane resin, a particle component, and a surfactant.
  • a non-ionic surfactant or a cationic surfactant is blended in an amount of 0.01 to 0.18% by mass based on the coating solution.
  • the mixing ratio of the copolymerized polyester resin and the polyurethane-based resin is 3: 7 to 7: 3 by mass ratio.
  • the applicator roll and film kiss length during coating is at least 1 mm and less than 5 mm.
  • the film transit time from immediately after coating of the coating solution to the entrance of the drying process is less than 2 seconds.
  • the drying temperature is 120 to 150 ° C
  • the drying time is 0.1 to 5 seconds
  • the wind speed of the drying wind is 30 mZ seconds or more.
  • the passage time of the film of the condition (5) is less than 1.5 seconds
  • the drying temperature of the condition (6) is 130 to 150 ° C
  • the drying time is 0.5. It is a manufacturing method of the laminated thermoplastic resin film as described in 6th invention which is-3 second.
  • An eighth invention is a laminated thermoplastic resin film roll obtained by scraping the thermoplastic resin film according to any one of the first invention to the fourth invention.
  • the laminated thermoplastic resin film of the present invention is excellent in easy adhesion, has excellent optical properties, and has few features of continuous coating streaks, and is a base film for a prism lens sheet. It can be suitably used for base films for AR and AR (anti-reflection) films.
  • a laminated thermoplastic resin film having excellent optical properties can be obtained, and the present invention, which has a strength that cannot be improved only by filtration treatment of a conventional coating solution, is regulated. It is possible to significantly reduce the extremely thin continuous bullet streaks.
  • FIG. 1-1 An image obtained by non-contact three-dimensional shape measurement on the surface of a laminated thermoplastic resin film, and displayed so that the unevenness of the film surface can be seen three-dimensionally.
  • the part surrounded by a circle is the nucleus.
  • Fig. 1-1 shows an enlarged image of the part with the core.
  • FIG. 2 Cross-sectional profile of the core.
  • FIG. 3 is a schematic view of a portion where a coating process for producing the laminated thermoplastic resin film of the present invention is performed.
  • FIG. 4 is a schematic view of a portion where a traveling film and an applicator roll are closest to each other.
  • FIG. 5 is a schematic view of a production line for producing the laminated thermoplastic resin film of the present invention.
  • the present invention provides a resin composition
  • a resin composition comprising a thermoplastic resin film as a base material, and a copolymer polyester resin or a copolymer polyester resin and a polyurethane resin on at least one surface of the base material, and A haze formed by providing a coating layer containing particles is a laminated film of 1.5% or less, and has a defect having a nucleus defined in the following formula 1 and formula 2 present in the laminated film.
  • the laminated thermoplastic resin film is characterized in that the number of continuous streak-coated streaks connected in a state defined by the following formulas 3 and 4 is 30 / m 2 or less. Equation 1 10 ⁇ ⁇ 35 ⁇ ⁇
  • n Number of cores defined by Equation 1 and Equation 2 per lmm
  • the thermoplastic resin film used as a base material refers to stretching an unoriented sheet obtained by melt extrusion or solution extrusion of thermoplastic resin in a uniaxial direction in the longitudinal direction or the width direction, as necessary.
  • it is a film that has been biaxially stretched in the biaxial direction or simultaneously biaxially stretched and heat-set.
  • thermoplastic resin film does not impair the object of the present invention! / Corona discharge treatment, glow discharge treatment, flame treatment, ultraviolet irradiation treatment, electron beam irradiation treatment, ozone treatment, etc. A surface activation treatment may be applied.
  • the thickness of the thermoplastic resin film used as the substrate can be arbitrarily determined in the range of 30-300 ⁇ m according to the specifications of the application to be used.
  • the upper limit of the thickness of the thermoplastic resin film is preferably 250 ⁇ m, particularly preferably 200 ⁇ m.
  • the lower limit of the film thickness is preferably 50 ⁇ m, particularly preferably 75 ⁇ m. If the film thickness is less than 30 ⁇ m, rigidity and mechanical strength tend to be insufficient. On the other hand, if the film thickness exceeds 300 m, the absolute amount of foreign matter present in the film increases, and the frequency of optical defects increases. In addition, the slitting property when the film is cut to a predetermined width is deteriorated, and the manufacturing cost is increased. Furthermore, since the rigidity is increased, it is difficult to wind a long film into a roll.
  • Thermoplastic resin includes polyethylene (PE), polypropylene (PP), polyolefin such as polymethylpentene (TPX), polyethylene terephthalate (PET), polyethylene 2, 6-naphthalate (PEN), polypropylene terephthalate ( Polyester resin such as PTT), polybutylene terephthalate (PBT), polyamide (PA) resin such as nylon 6, nylon 4, nylon 66, nylon 12, polyimide (PI), polyamide imide (PAI), polyether sulfone ( PES), Polyetheretherketone (PEEK), Polycarbonate (PC), Polyarylate (PAR), Cellulose propionate, Polychlorinated butyl (PVC), Polyvinylidene chloride, Polybutylalcohol (PVA), Polyetherimide (PEI), Polyphenylene sulfide (PPS), Polyphenylene oxide, Polystyrene (PS), syndiotactic polystyrene, and norbornene-based polymer
  • PE
  • thermoplastic resins may be copolymers containing a small amount of a copolymer component. In addition to using these thermoplastic resins alone, one or more other thermoplastic resins may be blended and used. [0039] Among these thermoplastic resins, polyethylene terephthalate, polybutylene terephthalate, polypropylene terephthalate, polyethylene 2,6 naphthalate, syndiotactic polystyrene, norbornene-based polymer, polycarbonate, polyarylate and the like are preferable. In addition, a resin having a polar functional group such as polyester or polyamide is preferable from the viewpoint of adhesion to the coating layer.
  • polyethylene terephthalate, polyethylene 2,6 naphthalate, polybutylene terephthalate, polypropylene terephthalate, or a copolymer mainly composed of these components of resin is preferably used for the base material.
  • a biaxially oriented film is most preferred.
  • aliphatic dicarboxylic acids such as adipic acid and sebacic acid, terephthalic acid, isophthalic acid, phthalic acid , And 2, 6 aromatic dicarboxylic acids such as naphthalenedicarboxylic acid, and polyfunctional carboxylic acids such as trimellitic acid and pyromellitic acid are used.
  • the glycol component includes fatty acid glycols such as ethylene glycol, diethylene glycol, 1,4 butanediol, propylene glycol, and neopentyl glycol; p aromatic glycols such as xylene glycol; and alicyclic glycols such as 1,4-cyclohexanedimethanol.
  • a polyethylene glycol having an average molecular weight of 150 to 20000 is used.
  • An example of the copolymer composition ratio of polyethylene terephthalate to monomer components that make up the other comonomer component below 20 mole 0/0 when the comonomer component is the force carboxylic acid component, best carboxylic acid component (The same applies when the comonomer component is a glycol component).
  • polyester copolymers are produced using Z-silicon complex oxides and germanium compounds.
  • a catalyst and various additives other than the above can be blended with the thermoplastic resin in a range not impeding the effects of the present invention.
  • additives include inorganic particles, heat-resistant polymer particles, alkali metal compounds, alkaline earth metal compounds, phosphorus compounds, antistatic agents, UV absorbers, light-resistant agents, flame retardants, heat stabilizers, and oxidation agents.
  • the inorganic particles and heat-resistant polymer particles described above are used when producing a thermoplastic resin film or when it is removed in the form of a roll. It is used to give moderate surface irregularities to the film surface from the viewpoint of the air escape characteristics of the accompanying air.
  • Examples of inorganic particles include calcium carbonate, calcium phosphate, amorphous silica, crystalline glass filler, kaolin, talc, titanium dioxide, alumina, silica-alumina composite oxide particles, barium sulfate, calcium fluoride, Examples include lithium fluoride, zeolite, molybdenum sulfate, and my power.
  • the heat-resistant polymer particles include cross-linked polystyrene particles, cross-linked acrylic resin particles, cross-linked methyl methacrylate particles, benzoguanamine 'formaldehyde condensate particles, melamine' formaldehyde condensate particles, polytetrafluoroethylene particles. Etc.
  • the silica particles are relatively close to the polyester resin and have a relatively high refractive index, so that it is easy to obtain high transparency. Most preferred. Further, the particles contained in the thermoplastic resin film may be used alone or in combination of two or more.
  • the type, average particle size, and addition amount of the particles may be determined according to the application from the viewpoint of the balance between transparency and handling properties.
  • the average particle size is 0.01-2 / ⁇ ⁇ .
  • the particle content in the film may be determined in the range of 0.01 to 5.0% by mass.
  • the coating layer contains particles without substantially containing (that is, the particles are not blended with the base material).
  • substantially no particles are contained in the thermoplastic resin film of the substrate means, for example, in the case of inorganic particles, 50 pm or less when inorganic elements are quantified by key X-ray analysis, The content is preferably 10 ppm or less, most preferably the detection limit or less. This is because contaminants derived from foreign substances may be mixed even if particles are not actively added to the base film.
  • the layer structure of the thermoplastic resin film used as a substrate in the present invention may be a single layer! / ⁇
  • a laminated structure may be used in order to provide a function that cannot be obtained by a single layer.
  • a coextrusion method is preferable.
  • thermoplastic resin film of the substrate examples include the following methods. Pellets of thermoplastic resin containing particles or substantially free of particles are sufficiently dried in the vacuum, then supplied to an extruder, melt extruded into a sheet at a temperature equal to or higher than the melting temperature, cooled, solidified, and unoriented. A thermoplastic resin sheet is formed into a film. At this time, high-precision filtration is performed at any place where the molten resin is removed in order to remove foreign substances contained in the resin. The obtained unoriented sheet is stretched 2.5 to 5.0 times in the longitudinal direction with a roll heated to a glass transition point or higher to obtain a uniaxially oriented thermoplastic resin film.
  • the intrinsic viscosity of the polyester pellets used as the base film raw material is preferably in the range of 0.45 to 0.7 dl Zg. More preferably, from the viewpoint of mechanical strength and film-forming stability, intrinsic viscosity O. 50 dl to 0.7 dl / g, more preferably 0.55 to 0.7 dl / g, most preferably 0.6 0 ⁇ 0.7 dlZg. If the intrinsic viscosity is less than 0.45 dlZg, the film tends to break during the production of the film, resulting in a decrease in productivity and a tendency to decrease in heat shrinkage characteristics. On the other hand, if the intrinsic viscosity exceeds 0.7 dlZg, the filtration pressure increases greatly, making high-precision filtration difficult, and productivity decreases.
  • the filter medium used for high-precision filtration of molten resin is not particularly limited, but aggregates mainly composed of Si, Ti, Sb, Ge, and Cu and high-melting-point organic substances in the case of stainless steel sintered filter media are removed. Excellent performance and suitable.
  • the filtration particle size (initial filtration efficiency: 95%) of the filter medium used for high-precision filtration of the molten resin is preferably 15 ⁇ m or less.
  • the filter particle size of the filter media exceeds 15 m, removal of foreign matters of 20 ⁇ m or more tends to be insufficient.
  • Productivity is reduced by high-precision filtration of molten resin using filter media with a filtration particle size (initial filtration efficiency: 95%) of 15 m or less. It is extremely important to obtain a film with few optical defects.
  • the base film does not contain particles.
  • the lower the particle content and the higher the transparency the more optical defects due to minute irregularities. It tends to be clear.
  • the obtained unoriented sheet was stretched by 2.5 to 5.0 times in the longitudinal direction with a roll heated to a glass transition point or higher to form a uniaxially oriented thermoplastic resin film (polyester film in this example). obtain.
  • the copolymerized polyester resin used in the coating layer of the present invention preferably comprises an aromatic dicarboxylic acid component and ethylene glycol and branched glycols as glycol components.
  • the branched glycol component include 2,2-dimethyl-1,3-propanediol, 2-methyl-2-ethyl-1,3-propanediol, and 2-methyl.
  • the molar ratio of the branched glycol component is preferably 20 mol%, with the lower limit being preferably 10 mol% with respect to the total glycol component.
  • the upper limit is preferably 80 mol%, more preferably 70 mol%, and particularly preferably 60 mol%. If necessary, diethylene glycol, propylene glycol, butanediol, hexanediol or 1,4 cyclohexanedimethanol may be used in combination!
  • aromatic dicarboxylic acid component terephthalic acid and isophthalic acid are most preferable.
  • Other aromatic dicarboxylic acids in particular, aromatic dicarboxylic acids such as diphenol carboxylic acid and 2,6 naphthalenedicarboxylic acid may be added and copolymerized within the range of 10 mol% or less with respect to the total dicarboxylic acid component. Oh ,.
  • a polymerization catalyst such as an antimony compound, an aluminum compound, a titanium compound, or a germanium compound can be used.
  • copolyester resin used as the resin component of the coating layer in the present invention it is preferable to use water-soluble or water-dispersible resin. Therefore, in addition to the dicarboxylic acid component, 5-sulfoisophthalic acid or an alkali metal salt thereof is used in a range of 110 mol% with respect to the total dicarboxylic acid component in order to impart water dispersibility to the polyester.
  • Preferred examples thereof include sulfoterephthalic acid, 5-sulfoisophthalic acid, 4 sulfonaphthalene-1,7 dicarboxylic acid and 5- (4-sulfophenoxy) isophthalic acid or alkali metal salts thereof.
  • the polyurethane-based resin used for the coating layer of the laminated thermoplastic resin film of the present invention is not particularly limited, but it is preferable to use a water-soluble or water-dispersible resin.
  • a water-soluble or water-dispersible resin examples thereof include heat-reactive water-soluble urethanes, which are block resins containing a isocyanate group, in which terminal isocyanate groups are blocked with hydrophilic groups (hereinafter also referred to as blocks).
  • the blocking agent for blocking the isocyanate group with a hydrophilic group include bisulfites and sulfonic acid group-containing phenols, alcohols, ratatas, oximes, and active methylene compounds. . Blocked isocyanate groups hydrophilize or water-soluble urethane prepolymers.
  • the blocking agent When thermal energy is applied to the polyurethane resin during drying or heat setting during film production, the blocking agent is dissociated from the isocyanate group, so the polyurethane resin is mixed with water in a self-crosslinked stitch. While fixing the copolymerized polyester resin, it also reacts with the end groups of the copolymerized polyester resin. The resin during adjustment of the coating solution is poor in water resistance because it is hydrophilic. However, when the thermal reaction is completed after coating, drying, and heat setting, the hydrophilic group of the urethane resin, that is, the blocking agent, is released. A coating film with good properties can be obtained.
  • bisulfites are most preferred because they can also be used in the heat treatment temperature and heat treatment time of the film production process, and the ability of the blocking agent to be removed from the S isocyanate group and industrially available.
  • the urethane prepolymer polymer used in the above-mentioned resin includes (1) an organic polyisocyanate having two or more active hydrogen atoms in the molecule, or at least 2 in the molecule.
  • a compound with a molecular weight of 200-20,000 with one active hydrogen atom (2) an organic polyisocyanate with two or more isocyanate groups in the molecule, or (3) at least two activities in the molecule
  • the compound (1) generally known is a compound containing two or more hydroxyl groups, carboxyl groups, amino groups, or mercapto groups in the terminal or molecule, and is particularly preferable as a compound.
  • Examples include polyether polyol, polyester polyol, polyether ester polyol and the like.
  • Examples of the polyether polyol include compounds obtained by polymerizing alkylene oxides such as ethylene oxide and propylene oxide, styrene oxide, epichlorohydrin, and the like, or random copolymerization or block copolymerization of two or more thereof. Compound, or obtained by addition polymerization of these with polyhydric alcohol There is a combination.
  • polyester polyol and the polyether ester polyol include mainly linear or branched compounds.
  • Polyvalent saturated or unsaturated carboxylic acids such as succinic acid, adipic acid, phthalic acid, and maleic anhydride, or anhydrides of these carboxylic acids, and ethylene glycol, diethylene glycol, 1,4 butanediol, neopentyl alcohol, 1, 6 hexanediol, polyvalent saturated or unsaturated alcohols such as trimethylolpropane, relatively low molecular weight polyethylene glycol, polyalkylene ether glycols such as polypropylene glycol, or a mixture of these alcohols Can be obtained by condensation.
  • polyester polyols polyesters obtained from the strength of latatones and hydroxy acids, and as polyether ester polyols, ethylene oxide, propylene oxide, etc. Added polyester esters can also be used.
  • the organic polyisocyanate (2) is an isomer of toluylene diisocyanate.
  • Aromatic diisocyanates such as 4,4-diphenylmethane diisocyanate, aromatic aliphatic diisocyanates such as xylylene diisocyanate, isophorone diisocyanate, and 4,4-dicyclohexylmethane diisocyanate. Aliphatic diisocyanates, hexamethylene diisocyanate and 2, 2, 4 trimethylhexamethylene diisocyanate and other aliphatic diisocyanates, or a combination of these compounds with trimethylol propane, etc. Examples include polyisocyanates added in advance.
  • the chain extender having at least two active hydrogens in the above (3) includes glycols such as ethylene glycol, diethylene glycol, 1,4 butanediol and 1,6 hexanediol; glycerin, trimethylolpropane And polyvalent alcohols such as pentaerythritol; diamines such as ethylenediamine, hexamethylenediamine and piperazine; amino alcohols such as monoethanolamine and diethanolamine; thiodiglycol such as thiojetylene alcohol Or water.
  • glycols such as ethylene glycol, diethylene glycol, 1,4 butanediol and 1,6 hexanediol
  • glycerin trimethylolpropane
  • polyvalent alcohols such as pentaerythritol
  • diamines such as ethylenediamine, hexamethylenediamine and piperazine
  • amino alcohols such as monoethanolamine and diethanolamine
  • thiodiglycol
  • the temperature is usually 150 ° C or lower, preferably 70 to 120 ° C, by a single-stage or multi-stage isocyanate polyaddition method using the above chain extender. Let it react for 5 minutes to several hours. If the mole ratio of isocyanate groups to active hydrogen atoms is 1 or more, it is necessary that free isocyanate groups remain in the urethane prepolymer obtained. Furthermore, the content of free isocyanate groups may be 10% by mass or less, but considering the stability of the urethane polymer aqueous solution after being blocked, it is preferably 7% by mass or less.
  • the urethane prepolymer obtained is blocked using the blocking agent (preferably bisulfite).
  • the blocking agent preferably bisulfite
  • the reaction temperature is preferably 60 ° C or lower.
  • it is diluted with water to an appropriate concentration to obtain a heat-reactive water-soluble urethane composition.
  • the composition is prepared to an appropriate concentration and viscosity when used, but when heated to about 80-200 ° C, the blocking agent is dissociated and the active isocyanate group is regenerated.
  • Polyurethane polymers are formed by polyaddition reactions that take place internally or intermolecularly, and have the property of causing addition to other functional groups.
  • Elastolon (registered trademark) manufactured by Daiichi Kogyo Seiyaku Co., Ltd. is typically exemplified.
  • Elastolone is made by blocking the isocyanate group with sodium bisulfite, and it has water-soluble rubamoyl sulfonate groups with strong hydrophilic properties at the molecular terminals.
  • the resin component used in the coating layer of the laminated thermoplastic resin film of the present invention is an acrylic resin used for forming a diffusion layer, prism lens, and hard coat layer from the viewpoint of adhesion to various inks. It is preferable to use a copolymerized polyester resin and a polyurethane-based resin together. When the copolyester resin and the polyurethane resin are used in combination, the mixing ratio can be selected appropriately.
  • copolymer polyester resin referred to as (A)
  • polyurethane resin referred to as (B)
  • (A) copolymer polyester resin
  • (B) polyurethane resin
  • the coating layer becomes brittle, and in the processing step after forming the attalate-based hard coat layer or the diffusion layer, the adhesive layer can withstand high-speed cutting. In some cases, sex cannot be obtained.
  • Solid content of copolymer polyester resin If the mass ratio is smaller than the above range, continuous coating streaks prescribed by the present invention are likely to occur, and the coating property, adhesion, and blocking resistance to the thermoplastic resin film as a substrate are reduced. However, it is not preferable. A preferred embodiment of the coating solution will be described in the manufacturing method.
  • the particles it is preferable that the particles having a high affinity with the copolymerized polyester resin or the polyurethane-based resin have a difference of the degree of uneven distribution in one of the phases. .
  • the particles are gathered moderately, and an excellent blocking resistance can be obtained by adding relatively few particles, that is, without significantly increasing haze. .
  • the particles to be included in the coating layer include calcium carbonate, calcium phosphate, amorphous silica force, crystalline glass filler, kaolin, talc, titanium dioxide, alumina, silica-alumina composite oxide particles, barium sulfate, Inorganic particles such as calcium fluoride, lithium fluoride, zeolite, molybdenum sulfate, My power; cross-linked polystyrene particles, cross-linked acrylic resin particles, cross-linked methyl methacrylate particles, benzoguanamine 'formaldehyde condensate particles, melamine ⁇ Examples thereof include heat-resistant polymer particles such as formaldehyde condensate particles and polytetrafluoroethylene particles.
  • the first advantage is that a highly transparent film can be easily obtained because the refractive index of the coating layer is relatively close to that of the resin component.
  • the second advantage is that the particles tend to be unevenly distributed in the phase-separated polyurethane resin phase, and the polyurethane type resin layer present on the surface of the coating layer has poor blocking resistance. It is a point that can complement the unique properties of sallow. This is thought to be because the surface energy of the particles and polyurethane-based resin is closer to that of copolymer polyester resin, and the affinity is higher.
  • the shape of the particles is not particularly limited, but from the viewpoint of imparting easy slipperiness, it is almost spherical. Particles are preferred.
  • the content of particles in the coating layer is preferably 20% by mass or less based on the coating layer, more preferably 15% by mass or less, and particularly preferably 10% by mass or less.
  • the content of the particles in the coating layer exceeds 20% by mass, the transparency is deteriorated and the adhesion of the film tends to be insufficient.
  • the lower limit of the content of particles is preferably 0.1% by mass, more preferably 1% by mass, and particularly preferably 3% by mass with respect to the coating layer.
  • two or more kinds of particles having different average particle diameters may be contained in the coating layer. Further, the same kind of particles having different average particle diameters may be contained. In any case, the average particle diameter and the total content of the particles may be within the above ranges.
  • the average particle diameter of the particles is usually preferably 20 to 150 nm, more preferably 40 to 60 nm. If the average particle size is less than 20 nm, it is difficult to obtain sufficient blocking resistance, and scratch resistance tends to deteriorate. On the other hand, if the average particle size of the particles exceeds 150 nm, the haze increases and the particles easily fall off, which is not preferable.
  • the average particle size of particles P2 having a large average particle size is preferably from 160 to 100 nm, particularly preferably from 200 to 800 nm.
  • the average particle size of the particle P2 is less than 160 nm, scratch resistance, slipping property and rollability may be deteriorated.
  • the average particle size of the particles P2 exceeds lOOOnm, the haze tends to increase.
  • the particle P2 is an aggregate particle in which primary particles are aggregated.
  • the average particle size is considered as the average particle size of the aggregate particles.
  • the ratio of the average particle size of the aggregate particles to the average particle size of the primary particles is preferably 4 or more from the viewpoint of scratch resistance.
  • the content ratio (P1ZP2) of particles P1 (average particle size: 20 to 150 nm) and particles P2 (average particle size: 160 to 1000 nm) in the coating layer is set to 5 to 30.
  • the content of the particles P2 is 0.1 to 1% by mass with respect to the solid content of the coating layer. Controlling the content of the two types of specific particle sizes within the above range optimizes the three-dimensional center plane average surface roughness of the coating layer surface, and achieves both transparency and handling resistance as well as blocking resistance. Good on Is suitable.
  • the content of the particles P2 exceeds 1% by mass with respect to the coating layer, the haze tends to increase remarkably.
  • the average particle diameter of the particles is measured by the following method.
  • the haze is an average value of values obtained by measuring at three different places on the film using a haze meter.
  • the laminated thermoplastic resin film of the present invention has a haze of 1.5% or less. It is important when used as an optical functional film or a base film of a sheet in which transparency is highly required. is there.
  • the haze is more preferably 1% or less. When the haze exceeds 1.5%, it is preferable because the sharpness of the screen decreases when the film is used as a lens film for LCD or a base film for knocklight.
  • the base film does not contain particles.
  • particles are not included in the base film, scratch resistance and handling properties when removing in a roll form (sliding property, running property, blocking property, and accompanying air during removal)
  • a specific amount of particles having an appropriate size is contained in the coating layer to form appropriate irregularities on the surface of the coating layer.
  • the film surface is ideally a completely flat force.
  • the portion where the height is higher than the average height (convex part) ) Exists.
  • the convex portion is composed of a sharp peak shape and a small height that spreads like a mountain ridge around the peak shape portion. Is mainly agglomerates of particles, and the small and high part that spreads like mountain ridges mainly has the power of sorghum.
  • the nucleus is a peak-shaped portion of a convex portion existing on the film surface and satisfies a size satisfying the following formulas 1 and 2.
  • Equation 1 10 ⁇ ⁇ 35 ⁇ ⁇
  • the major axis of the nucleus represented by Dd is the peak width of this sharp peak shape (that is, the height of one convex portion based on the average height of the film surface, and the both end forces of the convex portion).
  • the distance between the two points (the two inflection points) where the height suddenly increases), and the length is at the peak shape part of the one convex part.
  • the value is defined as the maximum value (see Figure 2).
  • the maximum nucleus height represented by Dt is the value defined by the difference between the maximum nucleus height and the average height of the film surface (see Figure 2).
  • a non-contact three-dimensional shape measuring device eg, a non-contact three-dimensional shape measuring device TYPE550 manufactured by Micromap
  • a non-contact three-dimensional shape measuring device TYPE550 manufactured by Micromap is used for a laminated thermoplastic resin film.
  • the surface shape of the field of view of 1664 X 12 48 ⁇ m is measured in the wave mode, and the contour line mode data representing the height in a pseudo color is displayed (see FIG. 1).
  • surface correction quartic function correction
  • the average height in the measurement range is Onm (the average height in the field of view is regarded as the average height of the entire film.
  • the average in the measurement range of the field of view is The average height of the entire film is sufficient, and there is no problem.) Align the cursor appropriately with the convex part to display the profile curve of the convex part, and the peak width of the nucleus (sharp peak shape part) in the field of view and Measure the peak top distance from the average height set to Onm (At this time, be sure that the peak width and the peak top distance from the average height set to Onm are the maximum value at the convex part. Force properly Combine one sol). This peak width is Dd, and the distance between the peak tops with the average height force set to Onm is Dt (see Fig. 2).
  • the above-mentioned part having a nucleus is called a defect, and in particular, a case in which the defect is connected in a state defined by the following formulas 3 and 4 is called a continuous coating streak defect. Equation 3 n ⁇ 2
  • n Number of cores defined by Equation 1 and Equation 2 per lmm
  • a line-shaped coated streak defect is formed by arranging two or more of the above defects per lmm.
  • nuclei lined within a width of 0.5 mm with respect to the width direction of the continuous application streaks are counted as the cores of the same application streak.
  • This defined repetitive streak defect is actually detected in a very thin force darkroom using a three-wavelength fluorescent tube under the specific conditions described below and using bromolite in the same environment. A combination of both methods is detected as a muscle.
  • the continuous coating streaks defined by the present invention include those in which the core portion is divided into a plurality of parts.
  • the continuous coating streaks defined by the present invention can be detected relatively easily using only bromolite. Particle aggregates present in the coating solution are concentrated on the film and scattered in streaks. The coarse coating streaks are different in size and shape, and the generation mechanism is also different. Regarding the continuous-sprayed streak defects defined by the present invention It is not clear why there are repetitive-sprayed streaks that are easier to detect when using bromolite and those that are easier to detect when using a three-wavelength fluorescent tube. However, it is inferred that the height of the nucleus and the size of the ridge that exists around the nucleus are involved.
  • Te is the laminated thermoplastic ⁇ film of the present invention, it is less duet shaped coating muscle defect number 30 present / m 2.
  • No laminated thermoplastic resin film having fewer than the number of continuous coated streak defects has been identified prior to the filing of the present application.
  • the continuous line streaks defects at the same position in the film width direction are counted as one, but when they are 100 mm or more apart, they are counted as separate continuous streaks.
  • the film length is usually at least 1 000 m or more, sometimes 2000 m or more, even for a relatively thick film having a film thickness of 100 ⁇ m or more. It is used in the process of laminating prism layers and diffusion layers in the form of rolls. On the other hand, this continuous coating streaks defect does not occur uniformly on the entire surface of the laminated thermoplastic resin film. Therefore, when the laminated thermoplastic resin film of the present invention is used as a roll, with respect to “the number of continuous coating streaks is 30 Zm 2 or less”, the continuous coating streaks are 100 m in the longitudinal direction of the film roll.
  • the maximum number of continuous applied muscle defect strengths of 10 measurement points measured at intervals of 100 m may be 30 Zm 2 or less, preferably 20 Zm 2 or less, more preferably 10 Zm 2 or less. , more preferably at five Z m 2 or less, most preferably 0 present Zm 2.
  • the coating layer is provided with a catalyst (inorganic substance, salts, organic substance, alkaline substance, acidic substance, metal-containing organic compound, etc.), antistatic agent, ultraviolet absorption, as long as the effects of the present invention are not hindered.
  • a catalyst inorganic substance, salts, organic substance, alkaline substance, acidic substance, metal-containing organic compound, etc.
  • antistatic agent antistatic agent
  • ultraviolet absorption ultraviolet absorption
  • additives such as additives, plasticizers, pigments, organic fillers and moist particles may be contained.
  • the three-dimensional center plane average surface roughness (SRa) of the covering layer is preferably 0.002 to 0.01 m force. , More preferably 0.0 025 to 0.008 / zm force, 0.03 to 0.006 m force ⁇ especially preferred! / ⁇ . SRa force ⁇ ).
  • a smooth surface of less than 002 m has a poor scratch resistance and is not preferred.
  • SRa exceeds 0.01 / zm, haze increases and transparency deteriorates, which is not preferable as an optical film.
  • the thickness of the laminated thermoplastic resin film roll of the present invention is preferably 30.2 to 30.2 m, and more preferably 50.2 to 250.2 m, as determined appropriately depending on the application.
  • a film thickness of less than 30 is not preferable because the rigidity is insufficient.
  • the film thickness exceeds 300., foreign matter that is an optical defect present in the film will be removed. This is not preferable because the possibility of increase is increased and the cost is increased.
  • the thickness of the coating layer is preferably 0.005 to 0.5 force, more preferably 0.008 to 0.15 m.
  • the thickness of the coating layer can be measured by cutting the cross section of the coating layer with a microtome and observing it with an electron microscope. However, if the coating layer is soft, it may be deformed during cutting. For simplicity, if the coating amount is known, the thickness can be converted from the density of the coating layer. For example, when the density of the coating layer is lgZcm 3 and the coating amount is lgZm 2 , the thickness corresponds to 1 ⁇ m.
  • the density of the coating layer is determined by obtaining the density of each material from the types of the resin and particles constituting the coating layer, multiplying the density of each material by the mass ratio of the material, and obtaining the sum. The thickness can be estimated.
  • the winding length and width are preferably 150 Om or more as the force winding length that is appropriately determined depending on the use of the film roll. Preferably it is 1800m.
  • the upper limit of the winding length is preferably 5000 m.
  • the width of the film roll is preferably 0.5 m or more, more preferably 0.8 m or more.
  • the upper limit of the film roll width is preferably 2. Om.
  • the laminated thermoplastic resin film is usually wound around a winding core, but there are no particular restrictions on the diameter and material of the winding core. Paper cores such as 6 inches and 8 inches, and cores with plastic and metal power can be used.
  • the production method of the laminated thermoplastic resin film of the present invention is not particularly limited.
  • a resin component containing copolyester resin resin or copolyester resin resin and polyurethane resin, particles, and surface activity A coating process in which a coating solution containing an agent is applied to one or both sides of a traveling thermoplastic resin film, a drying process to dry the coating layer, a stretching process to stretch at least uniaxially, and a stretched coating film It is produced by a method for producing a laminated thermoplastic resin film that includes a heat setting treatment step for heat setting and satisfies the following conditions (1) to (6).
  • This production method is hereinafter also referred to as the production method of the present invention.
  • a non-ionic surfactant or a cationic surfactant is blended in an amount of 0.01 to 0.18% by mass based on the coating solution.
  • the mixing ratio of the copolymerized polyester resin and the polyurethane-based resin is 3: 7 to 7: 3 by mass ratio.
  • the kiss length of the applicator roll and film during coating is at least lmm and less than 5mm.
  • the film transit time from immediately after coating of the coating solution to the entrance of the drying process is less than 2 seconds.
  • the drying temperature is 120 to 150 ° C
  • the drying time is 0.1 to 5 seconds
  • the wind speed of the drying wind is 30 mZ seconds or more.
  • the continuous-coated streaks have a 10-35 m size with mainly particle force as shown in FIG.
  • the core is the aggregate, and the thickness of the oil component is thicker than the normal part around it.Since the core is a fine defect spreading like a mountain ridge, the length of the film is shown in Fig. 1.
  • the frequency of occurrence of continuous coating streak defects depends on the composition of the coating solution, the coating conditions such as the kiss length of the coating kiss part, the coating amount, and the application to the entrance of the drying oven. It was found that the drying conditions such as the elapsed time and the wind speed during drying were greatly involved.
  • the coating solution is subjected to precise filtration using a fine opening and a filter, the continuous optical defects defined by the present invention cannot be reduced.
  • the coating solution is filtered with a very fine force of 0 or less, even the necessary particle agglomerates will be removed, which may be required in some cases! .
  • the coating streaks can generally be reduced to some extent by reducing the shearing force of the coating liquid on the roll by reducing the pressing amount of the roll against the film in the roll coater method. Therefore, the force level which is effective to some extent even in the repetitive coating streaks referred to in the present invention is not sufficient to satisfy the level required in recent years only by reducing the pressing amount of the roll and the film. That is, the repetitive coating streak defect referred to in the present invention is a force that cannot be satisfactorily reduced only by the microfiltration treatment of the coating solution and the reduction of the shearing force applied to the coating solution.
  • the coating solution composition, coating conditions, and drying conditions of the extremely thin continuous coating streaks that could not be improved only by the filtration treatment of the coating liquid are improved.
  • the coating process is preferably performed by an in-line coating method that is applied during the manufacturing process of the film.
  • the copolymer polyester or the copolymer may be formed on one side or both sides of a traveling thermoplastic resin film.
  • a coating solution containing a polyester resin and a polyurethane component containing the polyurethane resin and the particles is continuously applied.
  • the coating method include a reverse roll coating method, a gravure coating method, a kiss coating method, and an offset coating method. These methods can be used alone or in combination. These coating methods have a mechanism for scraping off excess coating liquid on the roll with a doctor blade, and are suitable for obtaining a uniform coated surface with few coating spots.
  • the coating solution for forming the coating layer can be prepared according to a known method, but it is preferable to use an aqueous coating solution from the viewpoints of environment and safety. Therefore, the copolymer polyester resin and polyurethane resin used in the present invention are water-soluble or water-dispersible. Preferably there is.
  • the solvent used in the coating solution is preferably a solvent obtained by mixing water and alcohols such as ethanol, isopropyl alcohol, and benzyl alcohol in a range of 30 to 50% by mass in the total coating solution.
  • alcohols such as ethanol, isopropyl alcohol, and benzyl alcohol
  • the organic solvent other than the alcohols may be mixed in a range that can be dissolved.
  • the total amount of alcohols and other organic solvents in the coating solution should be less than 50% by mass. If the mixing amount of alcohols (the total amount of alcohol and the organic solvent in the case of using other organic solvents) is less than 50% by mass, the drying property is improved during coating and drying, and the solvent is only water. Compared with the case, there is an effect of improving the appearance of the coating film.
  • the evaporation rate of the solvent is so fast that the concentration of the coating solution changes during coating, the viscosity increases and the coating property decreases, which may cause a poor appearance of the coating film. May also be a fire hazard.
  • the mixing amount of the alcohol is less than 30% by mass, the ratio of water is relatively increased, and the highly hydrophilic polyurethane component is prayed on the surface of the coating layer, and the continuous coating streak defect defined by the present invention is not observed. It tends to occur.
  • an alkaline substance or an acidic substance may be added as a pH adjuster.
  • the pH adjuster is not particularly limited as long as it does not adversely affect adhesion, blocking resistance, and coating properties, or can be negligible.
  • the preferred pH of the coating solution of the present invention is 4 or more and less than 8. Below pH 4, the copolyester component tends to segregate on the surface of the coating layer, and sufficient adhesion to the hard coat layer in the hard coat film, the diffusion layer in the diffusion plate, and the prism layer in the prism sheet is obtained. There is a case. If the pH is 8 or more, aggregation is likely to occur depending on the type of particles, and continuous coating streak defects are likely to occur, and haze increases, which is not preferable.
  • the particles are previously added to water or an organic solvent in an amount of 2% by mass.
  • a method of adding as a dispersion having a concentration of less than 25% by mass is preferred.
  • uniform dispersion becomes difficult.
  • particle aggregates become the core, and aggregates of particles and high affinity resin components on the applicator roll tend to grow.
  • it becomes easy to generate a continuous coating streak defect when preparing a dispersion liquid of particles, it is preferable to sufficiently disperse using a stirrer.
  • An example of a stirrer is a powder dissolver (TK homojitter M type).
  • the dispersion conditions are 5000 rpm or more, preferably lOOOOrpm or more, stirring time 30 minutes or more, preferably 60 minutes or more with respect to 10 kg of the dispersion. It is. Further, during stirring, it is preferable to stir with a force S without cooling so that the liquid temperature does not rise above 30 ° C.
  • a non-ionic surfactant or a cationic surfactant is used (condition (1)).
  • the type of these surfactants is not particularly limited as long as good coatability can be obtained, but in order to obtain good coatability with a small amount of addition, a fluorosurfactant is preferable.
  • the addition amount of the non-ionic surfactant or cationic surfactant is 0.01 to 0.18% by mass, preferably 0.02 to 0.1% by mass, based on the coating solution.
  • the addition amount is less than 0.01% by mass, good coating properties cannot be obtained, and if it exceeds 0.18% by mass, the particles contained in the coating solution tend to aggregate, which causes a problem of continuous coating streaks. The frequency of occurrence rises excessively. Moreover, it leads to the haze rise of the obtained laminated
  • a catalyst may be added to the coating solution to promote the thermal crosslinking reaction.
  • various chemicals such as inorganic substances, salts, organic substances, alkaline substances, acidic substances, and metal-containing organic compounds may be used.
  • the material is used as a catalyst.
  • various additives such as an antistatic agent, an ultraviolet absorber, a plasticizer, a pigment, an organic filler, and moist particles may be mixed in the coating solution as long as the easy adhesion is not lost. .
  • the solid content concentration in the coating solution is preferably 30% by mass or less, particularly preferably 10% by mass or less.
  • the lower limit of the solid content concentration is preferably 1% by mass, more preferably 3% by mass, and particularly preferably 5% by mass.
  • the coating liquid is preferably subjected to microfiltration in order to uniformly disperse the resin component and particles of the coating liquid and to remove foreign matters such as coarse particle aggregates and dust in the process.
  • the filter medium for microfiltration of the coating solution preferably has a filtration particle size (initial filtration efficiency: 95%) of 25 m or less, more preferably filtration performance of 15 m or less, and even more preferably filtration performance. m or less, more preferably a method using these filters in combination.
  • the filter particle size exceeds 25 ⁇ m, removal of coarse aggregates tends to be insufficient. For this reason, strong coarse aggregates that cannot be removed by filtration spread due to stretching stress in the uniaxial stretching or biaxial stretching process after coating and drying, and are recognized as aggregates of 100 m or more, causing optical defects.
  • the filtration performance is 0.5 m or less, the necessary particle aggregates are also removed, and the originally required slipperiness and blocking resistance may be lowered, which is not preferable.
  • the lower limit of the filter filtration particle size of the coating solution is 5 m, but it is not necessary for the coating solution as soon as it retains slipperiness and blocking resistance with less frequent filter clogging. It is also preferable not to apply a shearing force to.
  • the type of filter medium for finely filtering the coating solution is not particularly limited as long as it has the above performance, and examples thereof include a filament type, a felt type, and a mesh type.
  • the material of the filter medium for finely filtering the coating liquid is not particularly limited as long as it has the above-mentioned performance and does not adversely affect the coating liquid. Examples thereof include stainless steel, polyethylene, polypropylene, and nylon.
  • the coating method for the coating layer in the present invention is not particularly limited as long as it is the above-mentioned method, but the meniscus formed by bringing the base film into contact with the applicator roll in various arrangements such as horizontal or vertical to form a coating liquid.
  • a method of transferring the coating solution on the applicator roll to the substrate film is preferable.
  • a method in which the base film is run vertically is preferable.
  • the method of running the base film in the vertical direction is preferable because it is easy to apply both surfaces simultaneously.
  • the reverse coating method uses an applicator roll 2 and a metering roll 3 that rotate in the reverse direction of the film running direction as shown in Fig. 3, and the applicator roll 2 is brought into contact with the running film 1 to apply the coating solution to the film. It is the method of apply
  • the roll diameter is 10 cm to 50 cm for both the applicator roll and the metering tool.
  • the diameter ratio of the applicator roll Z metal ring tool is in the range of 0.5 to 2. It is preferable.
  • the coating liquid tank for supplying the coating liquid to the coater is divided into a mixing tank 12 and a circulation tank 11 having a smaller capacity than the mixing tank 12, and the circulation tank is arranged. It is preferable to circulate the coating solution only between the coating 11 and the coater. If a circulation tank is not provided, when the amount of liquid in the tank decreases due to consumption of the coating liquid, the number of circulations of the coating liquid between coaters increases and the balance of the solvent tends to fluctuate. This is not preferable because coarse aggregates are easily generated. On the other hand, increasing the capacity of the circulation tank 11 relative to the capacity of the tray 7 is effective in stabilizing the mixed solvent concentration balance. Specifically, the capacity of the coating liquid tray 7 is set to 1.
  • the capacity ratio of the circulation tank 11 should be 1:10 or more, preferably 1:50 or more. If the capacity of the circulation tank 11 is smaller than 1:10, the fluctuation of the mixed solvent concentration balance becomes large, which is not preferable immediately. More preferably, the ratio of the capacity of the circulation tank 11 to the capacity of the preparation tank 12 is 1:10 or more, preferably 1:20 or more. At this time, it is preferable to supply the coating solution from the preparation tank 12 to the circulation tank 11 so that the capacity of the circulation tank 11 is always constant during operation. Coating liquid It is important to supply the minimum amount of supply so that the gap between the applicator roll 2 and the metering roll 3 is filled with a sufficient coating solution.
  • Defoaming is preferably performed in order to prevent the occurrence of long coating streaks due to bubbles in the coating solution. Defoaming is performed, for example, by means for preventing air from being entrained in the coating liquid as much as possible and means for removing air in the coating liquid present in a minute amount.
  • Means to prevent air from being entrained in the coating liquid as much as possible is that the coating liquid force scraped by the doctor blade 6 from the Fountain die 4 and metallizing roll 3 falls directly on the tray 7 and air is mixed by this impact.
  • a guide plate 5 is installed under the fanten die 4 and the doctor blade 6 so that the coating liquid force smoothly flows into the tray 7 along the guide plate 5 as shown in Fig. 3.
  • the means for removing a small amount of air in the coating liquid is a cooling device (see FIG. 5) that extends upward in the middle of the pipe that supplies the coating liquid from the circulation tank 11 to the foam die 4.
  • a branch pipe 10 having a not-shown) is provided, and air contained in the coating liquid is removed from this pipe 10.
  • the temperature of the outlet of this branch pipe 10 is 20 ° C or less, preferably 10 ° C or less with a cooling device, it is possible to suppress the volatilization of a highly volatile solvent and to change the balance of the mixed solvent of the coating solution. Can be small.
  • the height of the outlet of the branch pipe 10 is preferably at least 10 cm from the liquid level of the coating liquid circulation tank 11 to prevent the coating liquid from flowing out and to obtain a sufficient cooling effect. More preferably, it is 20 cm or more.
  • air may be removed by degassing under reduced pressure.
  • the present invention is not preferable because Norrance of the mixed solvent is easily broken.
  • the temperature of the coating solution, the surface temperature of the applicator roll 2 and the metering roll 3 are preferably 10 ° C or higher and lower than 30 ° C.
  • the temperature of the coating solution is 30 ° C or higher, the coating solution becomes deteriorated, which is not preferable. If it is less than 10 ° C, the viscosity of the coating solution increases and uneasiness tends to occur. In addition, it is preferable that the difference in temperature does not exceed 10 ° C in order to obtain uniform quality.
  • a coating liquid pool 9 is formed on the contact film surface (the boundary between the coating liquid pool and the grease applied to the substrate is clearly observed visually).
  • This coating liquid reservoir 9 is a force called a coating kiss part. Means the length of the coating kiss part in a direction parallel to the running direction of the film. In order to obtain the kiss length, the force at which the boundary between the coating liquid reservoir and the grease applied to the substrate is observed as two parallel streaks can be measured by measuring the distance between the two boundaries.
  • the kiss length of the base film and applicator roll at the time of coating is generally set in the range of 5 to 20 mm, and more than 8 mm, especially in the production of laminated films for optical applications. Often set. This is because when the kiss length is less than 5 mm, the contact pressure between the base film and the applicator roll is weak, and foaming occurs at the aerodynamic portion of the coating solution, which tends to cause long coating streaks. is there. The reason why the thickness is generally less than 20 mm is that, particularly, contact between the applicator roll and the base film causes a lot of minute scratches on the base film, which can be fatal defects.
  • the kiss length between the applicator roll 2 and the base film 1 during coating is 1 mm or more and less than 5 mm (condition (3)).
  • the reason why the kiss length between the applicator roll 2 and the base film 1 is less than 5 mm is to suppress the generation of scratches due to the contact between the applicator roll 2 and the base film 1 to the maximum. If the kiss length between the applicator roll 2 and the base film 1 is less than 5 mm, coating spots due to air bubbles are likely to occur as described above.
  • the traveling direction of the base film 1 during application is made vertical. In addition, this problem was solved by the means described later, and the kiss length could be reduced to less than 5 mm.
  • the kiss length is controlled by changing the ratio of the film running speed (F) and the peripheral speed (A) of the applicator roll 2 that rotates in the reverse direction with respect to the film running direction (hereinafter referred to as the AZF ratio). It is preferable to set the AZF ratio to a range of 1.02 or more and less than 1.15, and more preferably 1.005 in order to allow the roll to fall within the above range. Above, less than 1.1. If AZF is less than 1.02, the liquid pool becomes extremely small, and the lubrication effect by the coating liquid is reduced, so that scratches due to contact between the base film and the applicator roll are less likely to occur. 1.
  • the number is 15 or more, the liquid pool becomes large as described above, and as a result, the number of continuous application streaks defined by the present invention increases.
  • the AZF ratio is less than 1.15, the liquid pool between the film and the applicator roll becomes small and scratches are likely to occur. Therefore, in the manufacturing method of the present invention, in order to suppress the above scratches, It is preferable to use a roll that has been subjected to a hard chromium plating treatment and has a surface roughness of 0.1 S or less.
  • the film running speed is not particularly limited, but is preferably 10 mZ min to lOO mZ min, more preferably 20 mZ min to 80 mZ min.
  • the productivity is low and the cost is high.
  • the application force described later increases the time to the entrance of the drying furnace, and as a result, the continuous coating streak defect defined by the present invention is likely to occur.
  • it exceeds lOOmZ air bubbles are likely to be mixed into the coating liquid and coating spots are likely to occur.
  • the kiss length can also be controlled by adjusting the pressing amount of the roll against the film, and the kiss length is set to 1 mm or more with the AZF ratio set within the above range.
  • the method of setting the pressing amount to be less than 5mm is preferred.
  • the final coating amount of the coating layer (the mass of the solid content per unit area of the film after drying and before stretching) is 0.005 to 0.2 gZm 2 (condition (4)), preferably 0.008 to 0.15 gZm 2 If the coating amount is less than 0.005 gZm 2 , sufficient adhesion cannot be obtained. If it exceeds 2 gZm 2 , continuous coating streak defects prescribed by the present invention are likely to occur, and the blocking resistance is lowered.
  • the wet coating amount (hereinafter abbreviated as wet coating amount) is preferably 2 gZm 2 or more and less than 1 OgZm 2 .
  • the film tension during coating should be 4000 to 10000 NZ original fabric width (original fabric width is 1 to 2 m). (The tension depends on the film thickness and is relatively thin! The film is kept flat by applying a lower tension), and local contact between the applicator roll and the substrate film can be prevented, In addition, the transfer amount of the coating solution is uniform in the film length direction. If it exceeds the width of 10000 NZ, the film will be deformed. The applicator roll and the base film are not preferable because a locally high contact pressure portion is formed and scratches are generated.
  • the width is less than 4000NZ
  • the flatness of the film during coating becomes insufficient, and scratches due to local contact between the applicator roll and the base film are likely to occur, and the film may meander.
  • the transfer amount of the coating liquid becomes non-uniform along the length of the film.
  • the variation in the wet coating amount of the film is not preferable because the variation in the thickness of the coating film is further increased.
  • the liquid pool 9 formed on the downstream side of the tangent line of the film 1 and the applicator roll 2 that travels as described above is minimized, and the particles and the agglomerates that have a high affinity of the saccharin component with the particles.
  • the rate of evaporation of isopropyl alcohol is higher than that of water. Therefore, the ratio of water in the coating layer increases before drying is completed, and hydrophobicity is increased.
  • the water-soluble resin component has a high affinity with water at the polyester base material interface, the resin component has a high affinity with this resin component, and the particles prejudice on the surface of the coating layer. Repetitive defects are more noticeable. Therefore, in the present invention, in order to further reduce the ultrathin and repetitive bullet-like coating streaks that occur slightly, the following measures for stabilizing the mixed solvent concentration balance in the coating solution are taken, and specific drying conditions and And heat fixing conditions are preferred.
  • a solvent volatilization prevention cover as shown in Fig. 3 is applied to an apparatus including an applicator tool 2, a metering roll 3, and a coating solution tray 7. It is effective to provide 8 and to make the inside of the solvent volatilization prevention cover 8 close to the saturated vapor pressure of isopropyl alcohol. Although it is difficult to seal completely due to the structure, the stability of the solvent concentration balance of the coating liquid on the applicator roll 2 is greatly improved by reducing the opening.
  • the mixed solvent concentration balance measures are not limited to the above.
  • the passage time of the film from immediately after coating of the coating solution to the entrance of the drying process is less than 2 seconds (condition (5)).
  • the transit time is preferably less than 1.5 seconds.
  • the force coater and the entrance of the drying oven be as close as possible to select the running speed of the film as appropriate.
  • the temperature of the drying air striking the coating surface be 120 ° C or more and less than 150 ° C, and the wind speed is 30 mZ seconds or more (condition (6)).
  • a preferable drying temperature is 130 ° C. or higher and lower than 150 ° C., and a preferable wind speed is 30 to 40 mZ seconds. If the drying temperature is less than 120 ° C or the wind speed is less than 30 mZ seconds, the drying speed becomes slow, the balance between water and alcohol as the solvent of the coating solution is lost, and the ratio of water is relatively increased.
  • the highly hydrophilic polyurethane component prays on the surface of the coating layer, and particles having a high affinity with the polyurethane component also segregate on the surface, so that the continuous coating streaks become conspicuous.
  • the base film Above 150 ° C, the base film is crystallized and breaks easily during transverse stretching. It is essential that the drying time be 0.5 to 5 seconds (condition (6)), preferably 1 second and 3 seconds. If less than 5 seconds, the coating layer will be insufficiently dried, and when passing through a roll arranged between the drying process and the transverse stretching process, the roll may be contaminated with an insufficiently dried coating surface. . In addition, if it exceeds 5 seconds, the base film is crystallized and breaks easily during transverse stretching.
  • the H EPA filter used at this time is preferably a filter with a performance that cuts 95% or more of dust with a nominal filtration accuracy of 0.5 m or more! /.
  • the edge of the film is gripped with a clip, heated to 80-180 ° C (preferably 100-140 ° C), and led to a hot air zone where the wind speed is 10-20mZ seconds. Stretch 2 to 6 times (preferably 2.5 to 5.0 times). Further, stretching may be performed in another direction.
  • the heat treatment zone is usually 220 to 240 ° C, preferably 225 ° C to 235 ° C, and the heat treatment is usually performed for 1 to 20 seconds to complete the crystal orientation. If it is less than 220 ° C, the heat shrinkage rate of the obtained laminated film becomes large, which is not preferable. On the other hand, if it exceeds 240 ° C, the adhesion to the node coat layer or the diffusion layer may decrease. In this step, a relaxation treatment of 1 to 12% may be performed in the width direction or the longitudinal direction as necessary.
  • the transverse stretching step, the heat setting step, and the cooling step are divided into 10 to 30 zones for the purpose of uniforming the temperature, and the temperature is controlled in each zone. Particularly in the latter half force of the transverse stretching zone, it is preferable to raise the temperature stepwise in the heat setting maximum temperature setting zone in order to obtain a film with uniform heat shrinkage in the width direction.
  • the laminated film obtained by caulking is excellent in easy adhesion, has excellent optical properties, and has the characteristics of wrinkles and wrinkles with few defects of repetitive coating streaks.
  • the laminated thermoplastic resin film roll of the present invention is produced.
  • the film roll may be cut into an appropriate width by a slitter or the like.
  • PET polyethylene terephthalate
  • the present invention is not limited to this.
  • the evaluation of the characteristics in this specification was based on the following method.
  • a 10 m portion was removed from the surface layer of the product film roll having a width of lm of the laminated film obtained in the examples and comparative examples, and a film having a length of lm or more was extracted and hung vertically in a dark room.
  • place a glossy, black cloth on the entire back side of the film and use a three-wave daylight fluorescent lamp (FL20SS EX-N / 18P: made by National Corporation) from the front side (coating layer side) to the film side. in the range of 10 ° force 45 ° was observed from the film front while changing the angle of the fluorescent lamp was detected by Ma one King a length of 10mm or more coating muscle defect evaluation area lm 2.
  • the markedly streaked coating streaks are present in the present invention, and in the present invention, the repetitive streaky coating streaks and the particle aggregates present in the coating solution are concentrated on the film and further streaked.
  • the surface shape of a 1664 X 1248 ⁇ m field of view was measured under the following measurement conditions using a non-contact 3D shape measurement device TYPE550 manufactured by Micromap.
  • the contour line display mode an image in which the measurement surface was color-coded according to the height was displayed.
  • surface correction quadternary function correction
  • the average height in the measurement range is set to Onm
  • the maximum height is set to 100 nm
  • the minimum height is set to lOOnm
  • protrusions with a height of lOOnm or more are displayed in red. Displayed.
  • the cross-sectional profile display mode of the same measurement visual field was displayed. On the cross-section moving screen, the both ends of the cursor were pinched and moved along the long direction of the protrusion, and the force sol passed through the maximum height position of the protrusion.
  • the height scale was adjusted so that the entire protrusion was displayed.
  • two cursors were placed at the ends of the protrusions, and the size (major axis) of the protrusions was read.
  • one cursor was placed on the highest point of the protrusion, and the other cursor was placed on the height Onm (the average height within the measurement range was Onm) to obtain the protrusion height.
  • the measurement position is shifted in the direction of the extension of the measured muscle (here, nuclei aligned within a width of 0.5 mm with respect to the width direction of the repetitively applied muscle are counted as nuclei of the same muscle). The measurement was repeated until the measured length of the muscle was 10 mm.
  • the coating muscle defect in which the defects having the nuclei defined by the following formulas 1 and 2 are connected in the state defined by the following formulas 3 and 4 is referred to as a continuous coating muscle defect. Judgment was made, and the number per film lm 2 was counted to determine the number of continuous coating streaks of the film.
  • Equation 1 10 ⁇ ⁇ 35 ⁇ ⁇
  • n Number of cores satisfying Equations 1 and 2 per mm
  • the portion of the laminated polyester film roll obtained in the example was 10 m after unwinding. , 100m section, 200m '... Defects were extracted and the number of continuous application muscle defects was counted.
  • the maximum value was defined as the maximum number of continuously applied streak defects on the film roll.
  • optically easy-adhesive films obtained in Examples and Comparative Examples were measured at three different locations using a haze meter (Nippon Denshoku model TNDH2000), and the average value was defined as haze.
  • the length of the coating liquid reservoir (coating kiss part) formed in contact with the applicator roll on the contact film surface in the direction parallel to the film running direction (longitudinal direction) was measured with a metal ruler (unit: mm).
  • the thickness of the biaxially stretched film was measured with a micrometer (ST-022 GAUGESTAND manufactured by ONO SOKKI) in the length direction of the film roll in accordance with JIS C 2151.
  • the coating solution used in the present invention was prepared according to the following method.
  • colloidal silica manufactured by Nissan Chemical Industries, Snowtex OL; average particle size 40nm
  • particle P1 2.3 mass part
  • method silica manufactured by Nippon Aerosil Co., Ltd., Aerosil OX50; average particle size 200 nm, average primary particle size 40 nm
  • coating solution A Polyethylene terephthalate resin pellets with an intrinsic viscosity of 0.62 dl / g, which does not contain particles, are dried under reduced pressure (135.3 Pa) for 6 hours at 135 ° C as the raw material polymer for the base film, and then supplied to the extruder Then, it was melt-extruded into a sheet at about 285 ° C. and rapidly cooled and solidified on a metal roll maintained at a surface temperature of 20 ° C. to obtain a cast film.
  • a stainless steel sintered filter medium having a filtration particle size (initial filtration efficiency: 95%) and a force of 15 m was used as a filter medium for removing foreign substances from the molten resin.
  • this cast film was heated to 95 ° C with a heated roll group and an infrared heater, and then stretched 3.5 times in the longitudinal direction with a roll group having a difference in peripheral speed, and a uniaxially oriented PET film ( Substrate) was obtained.
  • the coating liquid A was filtered with a filtration particle size (initial filtration efficiency: 95%) with a 10 m felt type polypropylene filter medium, and then the surface temperature was reduced to 30 ° C. or less by the reverse kiss roll method.
  • Zone No 1 temperature 135 ° C, 1.0 second
  • Zone No 2 temperature 65 ° C, 2.2 seconds
  • Zone No3 was dried at 40 ° C for 1.8 seconds and No4 at 30 ° C for 1.8 seconds.
  • the coating amount was set to 0.08 gZm 2 as the solid content.
  • the time from application to the entrance of the drying oven was 0.8 seconds.
  • the speed of the drying air in Zone Nol is 30 mZ seconds
  • the supply air volume of the drying air is 130 m 3 Z seconds
  • the exhaust air volume is 170 mZ seconds
  • the supply air volume of Zone No 2 to Zone No 4 is 100 m 3 Z seconds
  • the exhaust air is exhausted.
  • the air volume is set to 150mZ seconds, and dry air is applied to the coater. It was made not to flow.
  • the film tension was set to 7000 NZ original fabric width (m), and both ends of the film were held with pinch rolls from the coating to the drying furnace inlet.
  • Applicator roll and metering roll are both 22 ° C
  • a coating device including a solvent volatilization prevention cover 8 is used in a coating device including an applicator roll 2, a metering roll 3, and a coating liquid tray 7.
  • the amount of liquid in the circulation tank 11 was always kept constant.
  • Example 2 A laminated polyester film was obtained in the same manner as in Example 1 except that the pressing amount was changed and the applicator roll and the kiss length of the film were 4 mm.
  • a laminated polyester film was obtained in the same manner as in Example 1 except that the AZF ratio was 1.09 and the pressing amount was changed so that the kiss length was 2 mm.
  • Example 1 except that the coating force was 0.7 seconds, the drying time was 0.8 seconds, the passage time of each zone was 3.5 seconds, and the film thickness was 100 m in the heat setting process. A laminated polyester film was obtained in the same manner.
  • the coating force was 1.0 seconds, the drying time was 1.9 seconds, the passage time of each zone in the heat setting process was 6.6 seconds, and the film thickness was 188 m.
  • a laminated polyester film was obtained in the same manner as in 1.
  • Example 1 In the preparation of the coating liquid of Example 1, a laminated film was obtained in the same manner as in Example 1 except that the coating liquid B was used with 44.5 parts by weight of water and 32.8 parts by weight of isopropyl alcohol. It was.
  • Example 1 In the preparation of the coating liquid of Example 1, a laminated film was obtained in the same manner as in Example 1 except that 35.1 parts by weight of water and 42.1 parts by weight of isopropyl alcohol were used as the coating liquid C. .
  • Example 1 the same method as in Example 1 except that the mass ratio of the copolymerized polyester resin and the polyurethane resin in the coating solution was changed to the following coating solution D, which was changed to 60Z40. Thus, a laminated polyester film was obtained.
  • Example 1 the same method as in Example 1 except that the mass ratio of the copolymerized polyester resin and the polyurethane resin in the coating solution was changed to the following coating solution E, which was changed to 40Z60. Thus, a laminated polyester film was obtained.
  • a laminated polyester film was obtained in the same manner as in Example 1, except that the coating amount was 0.12 gZm 2 as the solid content.
  • Example 1 the laminated polyester film was prepared in the same manner as in Example 1 except that the amount of the surfactant in the coating liquid was changed to 0.03 mass% and the following coating liquid F was used. Got. [0175] (Formulation of coating liquid F)
  • Example 1 In preparation of the coating liquid of Example 1, 0.3 parts by mass of a 10% by mass aqueous solution of a fluorine-based nonionic surfactant (manufactured by Dainippon Ink and Chemicals, MegaFuck F142D) and 38 parts of water was added. 2 Mass parts and isopropyl alcohol were changed to 39.3 parts by mass.
  • a fluorine-based nonionic surfactant manufactured by Dainippon Ink and Chemicals, MegaFuck F142D
  • Example 1 the amount of the surfactant in the coating liquid was changed to 0.10% by mass, and the laminated polyester film was prepared in the same manner as in Example 1 except that the following coating liquid G was used. Got.
  • Example 1 In preparation of the coating liquid of Example 1, 1.0 part by mass of 10 mass% aqueous solution of fluorine-based surfactant (Dainippon Ink & Chemicals, MegaFac F142D) and 37 parts of water were added. A laminated polyester film was obtained in the same manner as in Example 1, except that 5 parts by mass and coating solution F in which isopropyl alcohol was changed to 39.3 parts by mass were used.
  • fluorine-based surfactant Dainippon Ink & Chemicals, MegaFac F142D
  • Example 1 a laminated polyester Finolem was obtained in the same manner as in Example 1 except that the pH of the coating solution was changed to the coating solution H adjusted to 7.9 using a 5% by mass aqueous sodium carbonate solution. .
  • Example 1 a laminated polyester film was obtained in the same manner as in Example 1 except that coating layers were applied to both sides of the uniaxially oriented PET film.
  • the film application time to the drying furnace was 0.8 seconds on one side and 1.0 second on the opposite side.
  • Example 1 a laminated polyester film was obtained in the same manner as in Example 1 except that the coating amount was 0.02 gZm 2 as the final solid content.
  • Example 1 a laminated polyester film was obtained in the same manner as in Example 1 except that a different coating apparatus was used in the following points. Coating equipment
  • a laminated polyester film was obtained in the same manner as in Example 1 except that the coating liquid Q in which the polyurethane-based resin (wax) was changed to the following polyurethane-based resin in Example 1 was used.
  • the polyurethane-type resin was obtained by the following method.
  • polyester diol (OHV: lll. 8eqZton, AV: 1. le qZton) composed of adipic acid ZZ1.6 hexanediol ⁇ neopentyl glycol (molar ratio: 4 ⁇ ⁇ 3 ⁇ 2), xylylene diisocyanate 22 parts by mass mixed, reacted under nitrogen flow at 95-100 ° C for 1 hour, urethane prepolymer (NCOZOH ratio: 1.50, free isocyanate group: theoretical value 3.29%, measured value 3.16% )
  • the obtained urethane prepolymer was cooled to 60 ° C, and 4.5 parts by mass of methyl ethyl ketoxime was added and reacted at 60 ° C for 50 minutes to form a free isocyanate 1
  • a urethane blocker containing 3% and partially blocked was obtained.
  • the urethane prepolymer was cooled to 55 ° C., and a mixed solvent of 9 parts by mass of isopropyl alcohol and 140 parts by mass of methanol was added and mixed uniformly.
  • a dried polyethylene terephthalate resin pellet as in Example 1 is fed to an extruder, melt-extruded into a sheet at about 285 ° C, and a metal roll maintained at a surface temperature of 30 ° C.
  • the cast film was obtained by rapid cooling and solidification. At this time, as a filter material for removing foreign matter from the molten resin
  • a stainless sintered filter medium having a filtration particle size (initial filtration efficiency: 95%) of 15 m was used.
  • this cast film was heated to 105 ° C with a heated roll group and an infrared heater, and then stretched 3.6 times in the longitudinal direction with a roll group having a difference in peripheral speed.
  • a uniaxially oriented PET film was obtained.
  • the same coating liquid A as in Example 1 was finely filtered with a 3 ⁇ m felt-type polypropylene filter medium (initial filtration efficiency: 95%), and one side of a uniaxially oriented PET film by the gravure reverse roll method After coating, it was introduced into a drying furnace and dried at a temperature of 120 ° C for 3.2 seconds.
  • the coating amount was set to 0.08 gZm 2 as the solid content.
  • the time from coating to the entrance of the drying furnace is 3.2 seconds
  • the wind speed in the first zone of the drying furnace is 15 mZ seconds
  • the wind speed in the second zone is the same as in Example 1 and the wind speed of the fourth zone is
  • the supply air volume was 70m 3 Z seconds for both the first zone force and the fourth zone, and the exhaust air was naturally exhausted before and after the drying furnace.
  • the blending tank was not used, and the coating solution was blended in the circulation tank and re-blended when the coating solution was exhausted.
  • heat setting zone Nol (temperature 200 ° C wind speed), heat setting zone No 2 (temperature 210 ° C), heat setting zone No3 (temperature 220 ° C) and heat setting zone No4 (temperature 22 5 ° C), heat setting zone No5 (temperature 230 ° C), heat setting zone No6 (temperature 235 ° C), heat setting zone No7 (temperature 240 ° C) successively pass through and further relaxed A laminated polyester film having a film thickness of 125 m was obtained.
  • Polyethylene terephthalate resin pellets similar to those in Example 1 were dried under reduced pressure (lTorr) at 135 ° C for 6 hours, then supplied to an extruder, and melt-extruded into a sheet at about 285 ° C.
  • a cast film was obtained by rapid cooling and solidification on a metal roll maintained at a surface temperature of 20 ° C.
  • a stainless sintered filter medium having a filtration particle size (initial filtration efficiency: 95%) of 15 m was used as a filter medium for removing foreign substances from the molten resin.
  • this cast film was heated to 95 ° C.
  • the coating solution is microfiltered with a 25 ⁇ m felt-type polypropylene filter medium (initial filtration efficiency: 95%) and applied to one side of a uniaxially oriented PET film by the reverse roll method under the following coating conditions. did.
  • the edge of the film was gripped with a clip, led to a hot air zone heated to 80 ° C, and stretched 4.0 times in the width direction after drying.
  • the wind speed in the tenter at this time was 15 mZ seconds, and the drying time was 20 seconds.
  • the application force was 10 seconds until the tenter entrance.
  • the coating amount was set to 0.1 lOgZm 2 as the solid content.
  • Heat fixation zone No. 1 (temperature 200 ° C wind speed), heat fixation zone No. 2
  • elastron catalyst (Daiichi Kogyo Seiyaku Co., Ltd .: trade name Cat64) 0.3 parts by mass, water 40.5 parts by mass and isopropyl alcohol 39.5 parts by mass were mixed, respectively.
  • the coating solution is microfiltered with a felt type polypropylene filter medium with a filtration particle size (initial filtration efficiency: 95%), applied to one side of a uniaxially oriented PET film by the reverse roll method, and then guided to a drying furnace. Temperature 120 ° C, 3. Dry for 2 seconds. The coating amount was set to 0.08 g / m 2 as the solid content. The coating force at this time was 3.2 seconds until the entrance to the drying furnace, the wind speed in the first zone of the drying furnace was 15mZ seconds, and the wind speed in the second zone was the same as that in Example 1, and the drying speed was the same as in Example 1. The supply air volume of the wind was 70m 3 / sec for both the first zone and the fourth zone, and the exhaust air was naturally exhausted before and after the drying furnace.
  • the coating conditions differ in the following points.
  • Example 1 a coating apparatus different from Example 1 was used in the following points.
  • a solvent volatilization prevention cover was not provided in a coating apparatus including an applicator roll, a metering roll, and a coating liquid tray.
  • Coating force A laminated polyester film having a film thickness of 125 ⁇ m was obtained in the same manner as in Example 1 except that the time until the entrance to the drying furnace was 3.2 seconds.
  • a laminated polyester film having a film thickness of 125 m was obtained in the same manner as in Example 1 except that the pressing amount was changed and the applicator roll and film kiss length were set to 20 mm during coating.
  • a laminated polyester film having a film thickness of 125 ⁇ m was obtained in the same manner as in Example 1 except that the wind speed in the drying furnace was 15 mZ seconds.
  • a laminated polyester film having a film thickness of 125 ⁇ m was obtained in the same manner as in Example 1, except that the coating amount was 0.22 gZm 2 as the solid content.
  • Tables 1 and 2 show the evaluation results of the laminated polyester films of the above Examples and Comparative Examples.
  • Mass ratio (mass%) Grain monster common to tanks (mass 3 ⁇ 4) Particle size (mass%)
  • Example 1 50/50 0.04 0.45 0.2 0.02 60/40 5.30 0.06 6.2 Yes
  • Example 2 50/50 0.04 0.45 0.2 0.02 60/40 5.30 0.06 6.2 Yes
  • Example 3 50/50 0.04 0.45 0.2 0.02 60 / 40 5.30 0.06 6.2 Yes
  • Example 4 50/50 0.04 0.45 0.2 0.02 60/40 5.30 0.06 6.2 Yes
  • Example 5 50/50 0.04 0.45 0.2 0.02 60/40 5.30 0.06 6.2 Yes
  • Example 6 50/50 0.04 0.45 0.2 0.02 65/35 5.30 0.06 6.2 Yes
  • Example 7 50/50 0.04 0.45 0.2 0.02 55/45 5.30 0.06 6.2 Yes
  • Example 8 60/40 0.04 0.45 0.2 0.02 60/40 5.30 0.06 6.2 Yes
  • Example 9 40/60 0.04 0.45 0.2 0.02 60/40 5.30 0.06 6.2 Yes
  • Example 10 50/50 0.04 0.45 0.2 0.02 60/40 5.30 0.06 6.2 Yes
  • Example 11 50
  • Example 1 1.06 2 0.08 0.8 135 1.0 30 125 1 2 0.58
  • Example 2 1.06 4 0.08 0.8 135 1.0 30 125 20-0.58
  • Example 3 1.09 2 0.08 0.8 135 1.0 30 125 10 0.57
  • Example 4 1.06 2 0.08 0.7 135 0.8 30 100 0 0.55
  • Example 5 1.06 2 0.08 0.8 135 1.0 30 125 14 One 0.72
  • Example 7 1.06 2 0.08 0.8 135 1.0 30 125 5
  • Example 8 1.06 2 0.08 0.8 135 1.0 30 125 0-0.41
  • Example 9 1.06 2 0.08 0.8 135 1.0 30 125 25 0.85
  • Example 10 1.06 2 0.12 0.8 135 1.0 30 125 22 0.65
  • Example 11 1.06 2 0.08 0.8 135 1.0 30 125 8-0.61
  • Example 12 ⁇ .06 2 0.08 0.8 135 1.0 30 125 20 0.85
  • Example 13 1.06 2 0.08 0.8 135 1.0 30 125 18 0.
  • optical substrate films such as hard coat films, antireflection films and prism lens films mainly used for display applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Laminated Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

明 細 書
積層熱可塑性樹脂フィルムおよびその製造方法
技術分野
[0001] 本発明は、ディスプレイ関連用途に主として用いられる、反射防止フィルム、光拡散 シート、プリズムシート、赤外線吸収フィルム、透明導電性フィルム、防眩フィルムなど の各種機能層(ハードコート層、光拡散層、プリズム層、赤外線吸収層、透明導電層 、防眩層など)との密着性に優れ、さらに、粒子を主成分とする異物による光学的欠 点が少なぐ優れた透明性を有する積層熱可塑性榭脂フィルムに関するものである。 背景技術
[0002] 一般に、液晶ディスプレイ(LCD)、プラズマディスプレイパネル(PDP)等のディス プレイの部材に用いられる光学機能性フィルムの基材には、ポリエチレンテレフタレ ート(PET)、アクリル系ポリマー、ポリカーボネート(PC)、トリアセチルセルロース(T AC)、ポリオレフイン等力もなる透明フィルムが用いられている。これらの基材フィルム を各種光学機能フィルムに用いる場合には、基材フィルムに、各種用途に応じた機 能層が積層される。例えば、表面の傷つきを防止する保護膜 (ハードコート層)、外光 の映り込みを防止する反射防止層(AR層)、光の集光や拡散に用いられるプリズム 層、輝度を向上する光拡散層等の機能層が挙げられる。これらの基材の中でも、特 に、二軸配向ポリエステルフィルムは、優れた透明性、寸法安定性、耐薬品性の点か ら、各種光学機能性フィルムの基材として広く使用されている。
[0003] 一般に、二軸配向ポリエステルフィルムや二軸配向ポリアミドフィルムのような二軸 配向熱可塑性フィルムの場合、フィルム表面は高度に結晶配向しているため、各種 塗料、接着剤、インキなどとの密着性に乏しいという欠点がある。このため、従来から 二軸配向熱可塑性榭脂フィルム表面に種々の方法で易接着性を付与する方法が提 案されてきた。
[0004] また、ポリオレフインフィルムのような極性基を有しな!/、フィルムでは、各種塗料、接 着剤、インキなどとの密着性が非常に乏しいため、事前にコロナ放電処理、火焰処理 などの物理的処理や化学処理を行った後、フィルム表面に種々の方法で易接着性 を付与する方法が提案されてきた。
[0005] 易接着性を付与する方法としては例えば、基材の熱可塑性榭脂フィルムの表面に 、ポリエステル、アクリル系ポリマー、ポリウレタン、アクリルグラフトポリエステルなどの 各種榭脂を被覆層の主たる構成成分とし、塗布法によって基材フィルムに前記被覆 層を設ける方法が一般的に知られている。中でも共重合ポリエステル榭脂は、デイス プレイの拡散板やプリズムレンズの基材フィルムとして多用されている二軸配向ポリエ ステルフィルムとの接着性に優れるため、一般に、被覆層の材料としてよく使われて いる。また、塗布法としては、結晶配向が完了する前の熱可塑性榭脂フィルムに、直 接又は必要に応じてコロナ放電処理を施してから、前記樹脂の溶液または榭脂を分 散媒で分散させた分散体を含有する水性塗布液を基材フィルムに塗工し、乾燥後、 少なくとも一軸方向に延伸し、次いで熱処理を施して、熱可塑性榭脂フィルムの結晶 配向を完了させる方法 (いわゆる、インラインコート法)や、熱可塑性榭脂フィルムの 製造後、該フィルムに水系または溶剤系の塗布液を塗布後、乾燥する方法 (いわゆ る、オフラインコート法)が工業的に広く実施されている。
[0006] LCD、 PDP等のディスプレイは年々、画像を鮮やかに表示させるために高輝度化 が進み、さらに近年特に大型化と低コストィ匕が進んできている。このような中で、前記 光学用フィルムにおいては、従来は目立たな力つた極めて薄い光学欠点までもが顕 在化するようになり、さらに、この欠点部を不良品とした場合には、ディスプレイの大 型化によって光学用フィルムの製品歩留まりが大幅に低下するため、光学欠点の低 減が求められている。この上、特に従来問題とならな力つた薄い欠点であっても、連 弹状の塗布筋欠点は目立つ傾向にあり、改善が強く求められるようになってきている
[0007] さらに、被覆層には易滑性付与を目的として粒子を含有させる力 この粒子は画像 を鮮やかに表示させるために、可視光線の光散乱が小さ 、微粒子を用いる場合が多 い。このため、高透明でヘイズの小さい、すなわち光学特性の優れたフィルム程、極 薄い連弾状の塗布筋欠点でも目立ちやすい傾向にある。
[0008] 塗布筋欠点の検出には、一般に、フィルム表面にブロムライト(写真撮影、ビデオ撮 影時用いる照明器具)を塗布面に照射し、その反射光を目視で観察する方法が採用 されているが、ブロムライトは強い光を発するため、極薄い塗布筋の場合に見落とす 場合がある。また、本発明者等は経験上、塗布面と反対側にブロムライトを照射し、 塗布面側から観察して本発明が規定する連弾状塗布筋欠点を検出する方法が高い 検出精度を得られることを把握して ヽる。
[0009] さらに、特に液晶パネルに用いられる光源は、三波長蛍光管が主流であり、前記ブ ロムライト検査で連弾状塗布筋が検出されなカゝつた積層フィルムを用いても、ハード コート層の積層や ARフィルムやレンズフィルムへの加工後に連弾状塗布筋が顕在 化し、ディスプレイに組み込まれた場合に、薄い連弾状塗布筋欠点となって視認され る場合がある。
[0010] 本発明でいう連弾状塗布筋欠点とは、極薄いものであり、後述する特定の条件下 で暗室内で三波長蛍光管を用いて検出する方法、及び同環境下でブロムライトを用 いて検出する方法の両方法を組み合わせて検出される、図 1 1に示すような核が連 なった塗布筋を意味し、一つの核の周囲に榭脂成分が山のすその状に広がってい る形態のものが多い。図 1 2は図 1 1の核の拡大図であり、図 2は一つの核及びそ の周囲の山すその部を含む凹凸を示す図である。また、本発明が規定する連弾状塗 布筋欠点は、核の部分が複数個に分割された形状のものも含まれる。尚、本発明が 規定する連弾状塗布筋欠点は、ブロムライトのみを用いて比較的容易に検出できる 塗布液中に存在する粒子凝集物がフィルム上で密集し、さらに筋状に点在した粗大 塗布筋欠点とは大きさ、形状が異なり、さらに発生メカニズムも異なるものである。本 発明が規定する連弾状塗布筋欠点について、ブロムライトを用いた方が検出されや すい連弾状塗布筋と三波長蛍光管を用いた方が検出されやすい連弾状塗布筋が存 在する理由は定かではないが、核の高さと核の周囲に存在する山すその部の大きさ が関与しているものと推察する。
[0011] このような連弾状塗布筋欠点はインラインの欠点検査機では検出できない程度の 極めて薄 、欠点であり、優れた光学特性を維持しつつ改善することは極めて困難で めつに。
[0012] 以下、従来の技術について具体的に見ていくと、一般に、二軸配向ポリエステルフ イルムは、プリズムレンズゃノヽードコート等に使用されるアクリル系榭脂を主成分とす るコート剤との密着性が悪いことが知られている。このため、ポリエステルフィルムの表 面に、ポリウレタン榭脂等よりなる被覆層を形成したものが各種提案されている(例え ば、特許文献 1参照)。
[0013] しかし、被覆層には、易滑性付与のために粒子が添加される。この粒子は、積層フ イルムのヘイズ、透明性を維持するために、平均一次粒径が 0. 01-0. 程度 の比較的小さいものが用いられる。し力しながら、粒子は粒径が小さければ小さいほ ど凝集しやすくなる傾向にあり、粗大凝集物による光学的欠点の一つの要因となって いた。
[0014] 本発明者等は、特許文献 2及び特許文献 3に、ポリエチレンテレフタレートの基材フ イルム上にポリエステル榭脂とポリウレタン系榭脂、及び適度な粒径の無機粒子を添 加した混合層を設け、さらに、光学用基材フィルムとして極めて重要な特性である光 学特性を維持しつつ、従来要求されてきた密着性を十分満足でき、且つ、光学的欠 点の少ない積層ポリエステルフィルムを例示している。具体的には、縦方向に延伸さ れたポリエステルフィルムに、ポリエステル榭脂及びポリウレタン榭脂(ポリエステル榭 脂固形分 20質量%、ポリウレタン榭脂 80質量%)、 2種類の一次平均粒径 40nmの 粒子並びにァ-オン性界面活性剤を含む水分散性塗布液を、濾過粒子サイズ (初 期濾過効率: 95%) 25 μ mのフェルト型ポリプロピレン製濾材で精密濾過して塗布し た後、テンターに導き乾燥、横延伸後、 240°Cで熱固定して易接着性 2軸延伸ポリェ ステルフィルムを得て 、る。
[0015] 同特許文献記載の発明によって得られた易接着性 2軸延伸ポリエステルフィルムは 、優れた透明性を有し、且つ、塗布液中に含まれる大きさ 100 /z m以上の粗大粒子 凝集物による光学的欠点は大幅に低減できている。し力しながら、前述のように近年 の高輝度化、大型画面化に伴う極めて薄 、連弾状の欠点低減に対する要求には十 分に満足できるものではなくなつてきて 、た。
[0016] 同出願人は、特許文献 4において、密着性の均一化を図るために塗布量のバラッ キを規定内にした易接着フィルムロールを例示している。具体的には、縦方向に延 伸されたポリエステルフィルムに、ポリエステル榭脂及びポリウレタン榭脂(ポリエステ ル榭脂固形分 50質量%、ポリウレタン榭脂 50質量%)、平均粒径 1. の粒子並 びにフッ素系界面活性剤を含む水分散性塗布液をリバースキス法を用い塗工キス長 を 8mmとして塗布した後、乾燥炉で 120°Cにて乾燥後、横延伸、熱固定して易接着 性 2軸延伸ポリエステルフィルムを得ている。しかしながら、同特許文献記載の発明 によって得られたフィルムロールは、優れた密着性をフィルムロール全体で均一に有 し、薄い連弾状欠点についても前記特許文献 2、特許文献 3記載の発明品より改善 されている力 それでも近年要求されている水準に達する物ではな力つた。
[0017] また、特許文献 5では塗布液を、濾過精度 0. 2〜3 μ mのポリプロピレン製のフィル ターで濾過し、フィルムスピードのおよそ 1. 2倍の周速で逆回転するグラビアロール を用いて連弾状塗布筋欠点の低減を図っている。しかしながら、この方法により、塗 布液中に存在する粒子凝集物に由来するブロムライトのみで検出可能な比較的鮮 明な塗布筋は低減可能であるが、本発明が規定する極薄い塗布筋が十分に低減さ れたものではなかった。
[0018] 以上のように、この本発明が規定する薄い連弾状塗布筋欠点は、ヘイズが小さく透 明性が高い程、 目立ちやすくなるものであり、優れた光学特性と薄い連弾状欠点の 低減の両立は極めて困難なものであった。
特許文献 1:特開平 6— 340049号公報
特許文献 2:特開平 11― 323271公報
特許文献 3:特開 2000— 246855号公報
特許文献 4:特開 2004— 10669号公報
特許文献 5 :特開 2002— 172362号公報
発明の開示
発明が解決しょうとする課題
[0019] そこで、本発明の目的は、前記問題点に鑑み、優れた透明性を有し、極めて薄!ヽ 連弾状塗布筋欠点の少ない積層フィルムを提供することにある。
課題を解決するための手段
[0020] 上記本発明の課題は、以下の達成手段により達成される。
[0021] 第 1の発明は、熱可塑性榭脂フィルムを基材とし、該基材の少なくとも片面に、共重 合ポリエステル榭脂又は共重合ポリエステル榭脂とポリウレタン系榭脂とを含む榭脂 成分、及び粒子を含有する被覆層を設けてなるヘイズが 1. 5%以下の積層フィルム であって、且つ、当該積層フィルム中に存在する、下記の式 1および式 2に定義され る核を有する欠点が下記式 3及び式 4に定義される状態で連なった連弾状塗布筋欠 点の数が、 30本 Zm2以下であることを特徴とする積層熱可塑性榭脂フィルムである 式 1 10 μ ΐη≤ϋά≤35 μ ΐη
式 2 30nm≤Dt≤5000nm
式 3 n≥2
式 4 t≥10mm
Dd:核の長径
Dt:核の最大高さ
n:連弾状塗布筋欠点 lmm当たりの、式 1及び式 2で定義される核の数
t :連弾状塗布筋欠点の長さ
[0022] 第 2の発明は、共重合ポリエステル榭脂とポリウレタン系榭脂とを含む榭脂成分の、 共重合ポリエステル榭脂とポリウレタン系榭脂との質量比が 7: 3〜3: 7である、第 1の 発明に記載の積層熱可塑性榭脂フィルムである。
[0023] 第 3の発明は、被覆層に含まれる粒子が酸ィ匕珪素力 なる粒子であることを特徴と する第 1の発明又は第 2の発明に記載の積層熱可塑性榭脂フィルムである。
[0024] 第 4の発明は、熱可塑性榭脂フィルム基材中には実質的に粒子が含有されていな いことを特徴とする第 1の発明から第 3の発明のいずれかに記載の積層熱可塑性榭 脂フィルム。
[0025] 第 5の発明は、共重合ポリエステル榭脂又は共重合ポリエステル榭脂とポリウレタン 系榭脂とを含む榭脂成分、粒子、及び界面活性剤を含む塗布液を、走行する熱可 塑性榭脂フィルムの片面または両面に塗布する塗布工程、塗布層を乾燥する乾燥 工程、次いで少なくとも一軸方向に延伸する延伸工程、さらに延伸された塗布フィル ムを熱固定処理する熱固定処理工程を含み、且つ、下記(1)〜(6)の条件を満足す る積層熱可塑性榭脂フィルムの製造方法である。
(1)ノ-オン系界面活性剤またはカチオン系界面活性剤を、塗布液に対し 0. 01〜0 . 18質量%配合させる。
(2)共重合ポリエステル榭脂とポリウレタン系榭脂とを併用する場合に、共重合ポリェ ステル樹脂とポリウレタン系榭脂との配合比が、質量比で 3: 7〜7: 3である。
(3)塗工時のアプリケーターロールとフィルムのキス長さが lmm以上、 5mm未満で ある。
(4)被覆層の最終塗布量が 0. 005-0. 2gZm2である。
(5)塗布液の塗布直後から乾燥工程の入口までのフィルムの通過時間が 2秒未満で ある。
(6)乾燥工程において、乾燥温度が 120〜150°Cであり、乾燥時間が 0. 1〜5秒間 であり、乾燥風の風速が 30mZ秒以上である。
第 6の発明は、共重合ポリエステル榭脂又は共重合ポリエステル榭脂とポリウレタン 系榭脂とを含む榭脂成分、粒子、及び界面活性剤を含む塗布液を、走行する熱可 塑性榭脂フィルムの片面または両面に塗布する塗布工程、塗布層を乾燥する乾燥 工程、次いで少なくとも一軸方向に延伸する延伸工程、さらに延伸された塗布フィル ムを熱固定処理する熱固定処理工程を含み、且つ、下記(1)〜(6)の条件を満足す る第 1の発明から第 4の発明のいずれかに記載の積層熱可塑性榭脂フィルムの製造 方法である。
(1)ノ-オン系界面活性剤またはカチオン系界面活性剤を、塗布液に対し 0. 01〜0 . 18質量%配合させる。
(2)共重合ポリエステル榭脂とポリウレタン系榭脂とを併用する場合に、共重合ポリェ ステル樹脂とポリウレタン系榭脂との配合比が、質量比で 3: 7〜7: 3である。
(3)塗工時のアプリケーターロールとフィルムのキス長さが lmm以上、 5mm未満で ある。
(4)被覆層の最終塗布量が 0. 005-0. 2gZm2である。
(5)塗布液の塗布直後から乾燥工程の入口までのフィルムの通過時間が 2秒未満で ある。
(6)乾燥工程において、乾燥温度が 120〜150°Cであり、乾燥時間が 0. 1〜5秒間 であり、乾燥風の風速が 30mZ秒以上である。 [0027] 第 7の発明は、条件(5)のフィルムの通過時間が 1. 5秒未満であり、条件(6)の乾 燥温度が 130〜150°Cであり、乾燥時間が 0. 5〜3秒間である、第 6の発明に記載 の積層熱可塑性榭脂フィルムの製造方法である。
[0028] 第 8の発明は、第 1の発明から第 4の発明のいずれかに記載の熱可塑性榭脂フィル ムを卷き取って得られる積層熱可塑性榭脂フィルムロールである。
発明の効果
[0029] 本発明の積層熱可塑性榭脂フィルムは、易接着性に優れ、優れた光学特性を有し 、且つ連弾状塗布筋欠点が少ないという特徴を有しており、プリズムレンズシート用 ベースフィルムや AR (アンチリフレクション)フィルム用ベースフィルム等に好適に使 用できる。
[0030] また、本発明の製造方法よれば、優れた光学特性を有した積層熱可塑性榭脂フィ ルムが得られ、且つ、従来塗布液の濾過処理のみでは改善しえな力つた本発明が規 定する極薄い連弾状塗布筋欠点を、大幅に低減することができる。
図面の簡単な説明
[0031] [図 1-1]積層熱可塑性榭脂フィルム表面の非接触 3次元形状測定により得られる画 像であり、フィルム表面の凸凹が立体的に見えるように表示されている。円で囲った 部分が核である。
[図 1-2]図 1— 1にお 、て核のある部分を拡大した画像である。
[図 2]核のある部分の断面プロファイルである。
[図 3]本発明の積層熱可塑性榭脂フィルムを製造するための塗布工程を行う部分の 略図である。
[図 4]走行するフィルムとアプリケーターロールが最も近接する部分の概略図である。
[図 5]本発明の積層熱可塑性榭脂フィルムを製造するための生産ラインの概略図で ある。
符号の説明
[0032] 1 基材フイノレム
2 アプリケーターローノレ
3 メタリングロール 4 フアウンテンダイ
5 塗布液ガイド板
6 ドクターブレード
7 塗布液受け H
8 溶媒揮散防止カバー
9 液溜まり
10 脱泡用分岐配管
11 循環用タンク
12 調合用タンク
13 ピンチローノレ
14 フイノレター
発明を実施するための最良の形態
[0033] 以下、本発明の実施の形態を説明する。
[0034] 本発明は、熱可塑性榭脂フィルムを基材とし、該基材の少なくとも片面に、共重合 ポリエステル榭脂又は共重合ポリエステル榭脂とポリウレタン系榭脂とを含む榭脂成 分、及び粒子を含有する被覆層を設けてなるヘイズが 1. 5%以下の積層フィルムで あって、且つ、当該積層フィルム中に存在する、下記の式 1および式 2に定義される 核を有する欠点が下記式 3及び式 4に定義される状態で連なった連弾状塗布筋欠点 の数が、 30本/ m2以下であることを特徴とする積層熱可塑性榭脂フィルムである。 式 1 10 μ ΐη≤ϋά≤35 μ ΐη
式 2 30nm≤Dt≤5000nm
式 3 n≥2
式 4 t≥10mm
Dd:核の長径
Dt:核の最大高さ
n:連弾状塗布筋欠点 lmm当たりの、式 1及び式 2で定義される核の数
t :連弾状塗布筋欠点の長さ
[0035] (基材フィルム) 本発明において、基材となる熱可塑性榭脂フィルムとは、熱可塑性榭脂を溶融押 出し又は溶液押出しして得た未配向シートを、必要に応じ、長手方向又は幅方向の 一軸方向に延伸し、あるいは二軸方向に逐次二軸延伸又は同時二軸延伸し、熱固 定処理を施したフィルムである。
[0036] 当該熱可塑性榭脂フィルムは、本発明の目的を損なわな!/ヽ範囲で、コロナ放電処 理、グロ一放電処理、火炎処理、紫外線照射処理、電子線照射処理、オゾン処理な どの表面活性化処理が施されてもよ ヽ。
[0037] 基材として用いる熱可塑性榭脂フィルムの厚さは、 30-300 μ mの範囲で、使用 する用途の規格に応じて任意に決めることができる。熱可塑性榭脂フィルムの厚みの 上限は、 250 μ mが好ましぐ特に好ましくは 200 μ mである。一方、フィルム厚みの 下限は、 50 μ mが好ましぐ特に好ましくは 75 μ mである。フィルム厚みが 30 μ m未 満では、剛性や機械的強度が不十分となりやすい。一方、フィルム厚みが 300 mを 超えると、フィルム中に存在する異物の絶対量が増加するため、光学欠点となる頻度 が高くなる。また、フィルムを所定の幅に切断する際のスリット性も悪ィ匕し、製造コスト が高くなる。さらに、剛性が強くなるため、長尺のフィルムをロール状に巻き取ることが 困難になりやすい。
[0038] 熱可塑性榭脂としては、ポリエチレン (PE)、ポリプロピレン (PP)、ポリメチルペンテ ン(TPX)などのポリオレフイン、ポリエチレンテレフタレート(PET)、ポリエチレン 2 , 6—ナフタレート(PEN)、ポリプロピレンテレフタレート(PTT)、ポリブチレンテレフ タレート(PBT)などのポリエステル榭脂、ナイロン 6、ナイロン 4、ナイロン 66、ナイロン 12などのポリアミド (PA)榭脂、ポリイミド (PI)、ポリアミドイミド(PAI)、ポリエーテルサ ルフォン(PES)、ポリエーテルエーテルケトン(PEEK)、ポリカーボネート (PC)、ポリ ァリレート(PAR)、セルロースプロピオネート、ポリ塩化ビュル(PVC)、ポリ塩化ビ- リデン、ポリビュルアルコール(PVA)、ポリエーテルイミド(PEI)、ポリフエ-レンサル ファイド(PPS)、ポリフエ-レンオキサイド、ポリスチレン(PS)、シンジオタクチックポリ スチレン、ノルボルネン系ポリマーなどが挙げられる。これらの熱可塑性榭脂は、共重 合成分を少量含む共重合体であってもよい。また、これらの熱可塑性榭脂は、単独 で使用する以外に、他の熱可塑性榭脂を 1種以上ブレンドして使用してもよい。 [0039] これらの熱可塑性榭脂の中でも、ポリエチレンテレフタレート、ポリブチレンテレフタ レート、ポリプロピレンテレフタレート、ポリエチレン 2, 6 ナフタレート、シンジオタ クチックポリスチレン、ノルボルネン系ポリマー、ポリカーボネート、ポリアリレートなど が好適である。また、ポリエステルやポリアミドのような極性官能基を有する榭脂は、 被覆層との密着性の観点力も好ましい。特に基材には、ポリエチレンテレフタレート、 ポリエチレン 2, 6 ナフタレート、ポリブチレンテレフタレート、ポリプロピレンテレフ タレート又はこれらの榭脂の構成成分を主成分とする共重合体が好適に用いられる 力 ポリエチレンテレフタレートから形成された二軸配向フィルムが最も好適である。
[0040] 熱可塑性榭脂フィルムを形成する榭脂としてポリエステル共重合体を用いる場合、 例えば、そのカルボン酸成分としてはアジピン酸、セバシン酸等の脂肪族ジカルボン 酸、テレフタル酸、イソフタル酸、フタル酸、及び 2, 6 ナフタレンジカルボン酸等の 芳香族ジカルボン酸、トリメリット酸及びピロメリット酸等の多官能カルボン酸等が用い られる。また、グリコール成分としてはエチレングリコール、ジエチレングリコール、 1, 4 ブタンジオール、プロピレングリコール及びネオペンチルグリコール等の脂肪酸 グリコール; p キシレングリコール等の芳香族グリコール; 1, 4ーシクロへキサンジメ タノール等の脂環族グリコール;平均分子量が 150〜20000のポリエチレングリコー ル等が用いられる。共重合体組成比の一例としては、ポリエチレンテレフタレートを構 成するモノマー成分に、他のコモノマー成分を 20モル0 /0未満(コモノマー成分が力 ルボン酸成分である場合には、全力ルボン酸成分中。コモノマー成分がグリコール成 分である場合も同様)添加するのが好ましい。 20モル%以上ではフィルム強度、透明 性、耐熱性が劣る場合がある。上記のカルボン酸成分とグリコール成分とを所定量調 合して、触媒に、例えば、アルカリ土類金属化合物、マンガンィ匕合物、コバルト化合 物、アルミニウム化合物、アンチモンィ匕合物、チタン化合物、チタン Zケィ素複合酸 化物、ゲルマニウム化合物などを使用して、ポリエステル共重合体が製造される。
[0041] また、基材を製造するにあたり、前記熱可塑性榭脂に本発明の効果を妨げない範 囲で、触媒やそれ以外にも各種の添加剤を配合することができる。添加剤としては、 例えば、無機粒子、耐熱性高分子粒子、アルカリ金属化合物、アルカリ土類金属化 合物、リン化合物、帯電防止剤、 UV吸収剤、耐光剤、難燃剤、熱安定剤、酸化防止 剤、ゲル化防止剤、界面活性剤等が挙げられる。
[0042] 前記の無機粒子、耐熱性高分子粒子は、熱可塑性榭脂フィルムの製造時やロー ル状に卷取る際 '卷出す際のハンドリング性 (滑り性、走行性、ブロッキング性、卷取り 時の随伴空気の空気抜け性など)の点から、フィルム表面に適度な表面凹凸を付与 するために用いられる。
[0043] 無機粒子としては、炭酸カルシウム、リン酸カルシウム、非晶性シリカ、結晶性のガ ラスフィラー、カオリン、タルク、二酸化チタン、アルミナ、シリカ一アルミナ複合酸ィ匕物 粒子、硫酸バリウム、フッ化カルシウム、フッ化リチウム、ゼォライト、硫ィ匕モリブデン、 マイ力などが挙げられる。また、耐熱性高分子粒子としては、架橋ポリスチレン粒子、 架橋アクリル系榭脂粒子、架橋メタクリル酸メチル系粒子、ベンゾグアナミン'ホルム アルデヒド縮合物粒子、メラミン 'ホルムアルデヒド縮合物粒子、ポリテトラフルォロェ チレン粒子などが挙げられる。
[0044] 基材フィルムとしてポリエステルフィルムを用いる場合、前記の粒子の中でも、シリカ 粒子が、ポリエステル榭脂と屈折率が比較的近く高い透明性を得やすいため、透明 性が強く要求される用途では最も好適である。また、熱可塑性榭脂フィルム中に含有 させる粒子は 1種類を使用しても複数種を併用してもよい。
[0045] 前記の粒子の種類、平均粒径、添加量は、透明性とハンドリング性とのバランスの 点から用途に応じて決めればよぐ特に、平均粒径は 0. 01〜2 /ζ πι、フィルム中の粒 子含有量は 0. 01〜5. 0質量%の範囲で決めればよい。また、本発明の積層熱可 塑性榭脂フィルムを、透明性が高度に要求される用途に使用する場合、基材の熱可 塑性榭脂フィルム中には、透明性を低下させる原因となる粒子を実質的に含有させ ず (すなわち、基材に粒子を配合しない)、被覆層に粒子を含有させる構成とすること が好ましい。「基材の熱可塑性榭脂フィルム中には、粒子が実質的に含有されていな い」とは、例えば無機粒子の場合、ケィ光 X線分析で無機元素を定量した場合に 50ρ pm以下、好ましくは lOppm以下、最も好ましくは検出限界以下となる含有量を意味 する。これは積極的に粒子を基材フィルム中に添加させなくても、外来異物由来のコ ンタミ成分などが混入する場合があるためである。
[0046] また、本発明で基材として使用する熱可塑性榭脂フィルムの層構成は単層でもよ!/ヽ し、単層では得られない機能を付与するために積層構造とすることもできる。積層構 造とする場合には、共押出法が好適である。
[0047] 基材の熱可塑性榭脂フィルムの製造方法としては、例えば、次の方法が挙げられる 。粒子を含有した又は実質的に含有していない熱可塑性榭脂のペレットを十分に真 空乾燥した後、押出し機に供給し、溶融温度以上でシート状に溶融押出しし、冷却 固化せしめて未配向熱可塑性榭脂シートを製膜する。この際、溶融樹脂が任意の場 所で、榭脂中に含まれる異物を除去するために高精度濾過を行う。得られた未配向 シートを、ガラス転移点以上に加熱したロールで長手方向に 2. 5〜5. 0倍延伸して 、一軸配向熱可塑性榭脂フィルムを得る。
[0048] さらに、熱可塑性榭脂フィルムの原料としてポリエステルを用いた場合を代表例とし て、基材フィルムを得るための製造方法について、以下で詳しく説明する。
[0049] 基材フィルム原料として用いるポリエステルペレットの固有粘度は、 0. 45〜0. 7dl Zgの範囲が好ましい。より好ましくは、機械的強度、製膜安定性の点から、固有粘 度力 O. 50dl〜0. 7dl/g、さらに好ましくは 0. 55-0. 7dl/g、最も好ましくは 0. 6 0〜0. 7dlZgである。固有粘度が 0. 45dlZg未満であると、フィルム製造時に破断 が発生しやすくなり生産性が低下する他、熱収縮特性が低下する傾向がある。一方 、固有粘度が 0. 7dlZgを超えると、濾圧上昇が大きく高精度濾過が困難となり、生 産性が低下する。
[0050] また、光学機能性フィルムまたはシートに用いる場合には、光学欠点の原因となる、 原料のポリエステル中に含まれて 、る異物を除去することが好まし 、。ポリエステル 中の異物を除去するために、溶融押出しの際に溶融樹脂が約 280°Cに保たれた任 意の場所で高精度濾過を行う。溶融樹脂の高精度濾過に用いられる濾材は、特に 限定はされないが、ステンレス焼結体の濾材の場合の Si、 Ti、 Sb、 Ge、 Cuを主成分 とする凝集物、及び高融点有機物が除去性能に優れ好適である。
[0051] 溶融樹脂の高精度濾過に用いる濾材の濾過粒子サイズ (初期濾過効率: 95%)は 、 15 μ m以下が好ましい。濾材の濾過粒子サイズが 15 mを超えると、 20 μ m以上 の異物の除去が不十分となりやすい。濾過粒子サイズ (初期濾過効率: 95%)が 15 m以下の濾材を使用して溶融樹脂の高精度濾過を行うことにより生産性が低下す る場合がある力 光学欠点の少ないフィルムを得るには極めて重要である。
[0052] 溶融樹脂の押出し工程において、濾材を通過する微細な異物であっても、シート状 溶融物の冷却工程において異物の周囲で結晶化が進み、これが配向工程において 配向の不均一性を引き起こし、微小な厚みの差異を生じせしめレンズ状態となる箇 所が生じる。ここでは、レンズがあるかの様に光が屈折又は散乱し、肉眼で観察した 時には実際の異物より大きく見えるようになる。この微小な厚みの差は、凸部の高さと 凹部の深さの差として観測することができ、凸部の高さが 1 m以上で、凸部に隣接 する凹部の深さが 0. 以上であると、レンズ効果により、大きさが 20 /z mの形状 の物でも肉眼的には 50 μ m以上の大きさとして認識され、さらには 100 μ m以上の 大きさの光学欠点として認識される場合もある。
[0053] 高透明なフィルムを得るためには、基材フィルム中に粒子を含有させな 、ことが好 ましいが、粒子含有量が少なく透明性が高いほど、微小な凹凸による光学欠点はより 鮮明となる傾向にある。
[0054] また、厚手のフィルムの表面は薄手のフィルムより急冷となりにくぐ結晶化が進む 傾向にあるため、未配向シート製造時にフィルム全体を急冷することが必要となる。 未配向シートを冷却する方法としては、溶融榭脂を回転冷却ドラム上にフアウンテン ダイのスリット部力もシート状に押し出し、シート状溶融物を回転冷却ドラムに密着さ せながら、急冷してシートとする方法が好適である。この未配向シートのエア面 (冷却 ドラムと接触する面との反対面)を冷却する方法としては、高速気流を吹きつけて冷 却する方法が有効である。
[0055] 得られた未配向シートを、ガラス転移点以上に加熱したロールで長手方向に 2. 5 〜5. 0倍延伸して、一軸配向熱可塑性榭脂フィルム(本例ではポリエステルフィルム )を得る。
[0056] (共重合ポリエステル榭脂)
本発明の被覆層に用いる共重合ポリエステル榭脂は、芳香族ジカルボン酸成分と 、グリコール成分としてエチレングリコール及び分岐したグリコールとを構成成分とす ることが好ましい。前記の分岐したグリコール成分とは、例えば、 2, 2—ジメチルー 1, 3—プロパンジオール、 2—メチルー 2—ェチルー 1, 3—プロパンジオール、 2—メチ ルー 2 ブチルー 1, 3 プロパンジオール、 2—メチルー 2 プロピル 1, 3 プロ パンジオール、 2—メチルー 2 イソプロピル 1, 3 プロパンジオール、 2 メチル 2—n キシルー 1, 3 プロパンジオール、 2, 2 ジェチルー 1, 3 プロパン ジオール、 2 ェチルー 2— n—ブチルー 1, 3 プロパンジオール、 2 ェチルー 2 —n キシルー 1, 3 プロパンジオール、 2, 2 ジ n—ブチルー 1, 3 プロノ ンジオール、 2— n—ブチルー 2 プロピル 1, 3 プロパンジオール、及び 2, 2— ジ n キシルー 1, 3 プロパンジオールなどが挙げられる。
[0057] 前記の分岐したグリコール成分のモル比は、全グリコール成分に対し、下限が 10モ ル%であることが好ましぐ特に好ましくは 20モル%である。一方、上限は 80モル% であることが好ましぐさらに好ましくは 70モル%、特に好ましくは 60モル%である。ま た、必要に応じて、ジエチレングリコール、プロピレングリコール、ブタンジオール、へ キサンジオールまたは 1, 4 シクロへキサンジメタノールなどを併用してもよ!、。
[0058] 芳香族ジカルボン酸成分としては、テレフタル酸およびイソフタル酸が最も好ましい 。全ジカルボン酸成分に対し、 10モル%以下の範囲で、他の芳香族ジカルボン酸、 特に、ジフエ-ルカルボン酸、 2, 6 ナフタレンジカルボン酸などの芳香族ジカルボ ン酸を加えて共重合させてもょ 、。
[0059] 共重合ポリエステルを製造するに際し、アンチモン化合物、アルミニウム化合物、チ タンィ匕合物、ゲルマニウム化合物等の重合触媒を用いることができる。
本発明で被覆層の榭脂成分として使用する共重合ポリエステル榭脂は、水溶性ま たは水分散が可能な榭脂を使用することが好ましい。そのために、前記ジカルボン酸 成分の他に、ポリエステルに水分散性を付与させるため、 5—スルホイソフタル酸類 又はそのアルカリ金属塩を、全ジカルボン酸成分に対し 1 10モル%の範囲で使用 するのが好ましぐその例としては、スルホテレフタル酸、 5—スルホイソフタル酸、 4 スルホナフタレン一 2, 7 ジカルボン酸および 5— (4—スルホフエノキシ)イソフタル 酸又はそれらのアルカリ金属塩などを挙げることができる。
[0060] (ポリウレタン榭脂)
本発明の積層熱可塑性榭脂フィルムの被覆層に用いるポリウレタン系榭脂は、特 に限定されないが、水溶性または水分散が可能な榭脂を使用することが好ましぐ例 としては、ブロック型イソシァネート基を含有する榭脂であって、末端イソシァネート基 を親水性基で封鎖(以下ブロックとも 、う)した、熱反応型の水溶性ウレタンなどが挙 げられる。上記イソシァネート基を親水性基で封鎖するためのブロック化剤としては、 重亜硫酸塩類及びスルホン酸基を含有したフエノール類、アルコール類、ラタタム類 、ォキシム類及び活性メチレンィ匕合物類等が挙げられる。ブロック化されたイソシァネ 一ト基はウレタンプレボリマーを親水化あるいは水溶ィ匕する。フィルム製造時の乾燥 あるいは熱セット過程で、上記ポリウレタン榭脂に熱エネルギーが与えられると、ブロ ック化剤がイソシァネート基からはずれるため、上記ポリウレタン榭脂は自己架橋した 編み目に、混合した水分散性共重合ポリエステル榭脂を固定ィ匕するとともに、上記共 重合ポリエステル榭脂の末端基等とも反応する。塗布液調整中の榭脂は、親水性で あるために耐水性が悪いが、塗布、乾燥、熱セットして熱反応が完了すると、ウレタン 榭脂の親水基すなわちブロック化剤がはずれるため、耐水性が良好な塗膜が得られ る。上記ブロック化剤の内、フィルム製造工程における熱処理温度、熱処理時間でブ ロック化剤力 Sイソシァネート基力もはずれる点、及び工業的に入手可能な点から、重 亜硫酸塩類が最も好まし ヽ。
[0061] 上記榭脂において使用される、ウレタンプレボリマーの化学糸且成としては、(1)分子 内に 2個以上の活性水素原子を有する有機ポリイソシァネート、又は分子内に少なく とも 2個の活性水素原子を有する分子量が 200〜20, 000の化合物、(2)分子内に 2個以上のイソシァネート基を有する有機ポリイソシァネート、あるいは、(3)分子内に 少なくとも 2個の活性水素原子を有する鎖伸長剤を反応せしめて得られる、末端イソ シァネート基を有する化合物である。
[0062] 上記(1)の化合物として一般に知られているのは、末端又は分子中に 2個以上のヒ ドロキシル基、カルボキシル基、アミノ基又はメルカプト基を含むものであり、特に好ま しい化合物としては、ポリエーテルポリオール、ポリエステルポリオール、ポリエーテル エステルポリオール等が挙げられる。ポリエーテルポリオールとしては、例えば、ェチ レンォキシド、プロピレンォキシド等のアルキレンォキシド類、スチレンォキシド、ェピ クロルヒドリン等を重合した化合物、又はそれら 2種以上をランダム共重合若しくはブ ロック共重合したィ匕合物、あるいはそれらと多価アルコールとの付加重合を行って得 られたィ匕合物がある。
[0063] ポリエステルポリオール及びポリエーテルエステルポリオールとしては、主として直 鎖状又は分岐状の化合物が挙げられる。コハク酸、アジピン酸、フタル酸、無水マレ イン酸等の多価の飽和若しくは不飽和カルボン酸、又はこれらカルボン酸の無水物 等と、エチレングリコール、ジエチレングリコール、 1, 4 ブタンジオール、ネオペン チルダリコール、 1, 6 へキサンジオール、トリメチロールプロパン等の多価の飽和 若しくは不飽和のアルコール類、比較的低分子量のポリエチレングリコール、ポリプロ ピレンダリコール等のポリアルキレンエーテルグリコール類、又はそれらアルコール類 の混合物とを縮合することにより得ることができる。
[0064] さらにポリエステルポリオールとしては、ラタトン類及びヒドロキシ酸類力 得られるポ リエステル類を、また、ポリエーテルエステルポリオールとしては、あら力じめ製造され たポリエステル類にエチレンォキシド又はプロピレンォキシド等を付加せしめたポリエ 一テルエステル類を使用することもできる。
[0065] 上記(2)の有機ポリイソシァネートとしては、トルイレンジイソシァネートの異性体類
、 4, 4ージフエ-ルメタンジイソシァネート等の芳香族ジイソシァネート類、キシリレン ジイソシァネート等の芳香族脂肪族ジイソシァネート類、イソホロンジイソシァネート及 び 4, 4ージシクロへキシルメタンジイソシァネート等の脂環式ジイソシァネート類、へ キサメチレンジイソシァネート及び 2, 2, 4 トリメチルへキサメチレンジイソシァネート 等の脂肪族ジイソシァネート類、又はこれらの化合物を単一若しくは複数でトリメチロ ールプロパン等とあら力じめ付加させたポリイソシァネート類等が挙げられる。
[0066] 上記(3)の少なくとも 2個の活性水素を有する鎖伸長剤としては、エチレングリコー ル、ジエチレングリコール、 1, 4 ブタンジオール及び 1, 6 へキサンジオール等の グリコール類;グリセリン、トリメチロールプロパン及びペンタエリスリトール等の多価ァ ルコール類;エチレンジァミン、へキサメチレンジァミン及びピぺラジン等のジァミン類 ;モノエタノールァミン及びジエタノールァミン等のァミノアルコール類;チオジェチレ ンダルコール等のチォジグリコール類;又は水等が挙げられる。
[0067] ウレタンプレボリマーを合成するには通常、上記鎖伸長剤を用いた一段式又は多 段式イソシァネート重付加方法により、 150°C以下、好ましくは 70〜120°Cの温度に おいて、 5分ないし数時間反応させる。活性水素原子に対するイソシァネート基のモ ル比は、 1以上であれば自由に選べる力 得られるウレタンプレボリマー中に遊離の イソシァネート基が残存することが必要である。さらに、遊離のイソシァネート基の含 有量は 10質量%以下であればよいが、ブロック化された後のウレタンポリマー水溶液 の安定性を考慮すると、 7質量%以下であることが好ま 、。
[0068] 得られた上記ウレタンプレボリマーは、上記ブロック化剤 (好ましくは重亜硫酸塩)を 用いてブロック化を行う。ブロック化剤水溶液と混合し、約 5分〜 1時間、よく攪拌しな 力 反応を進行させる。反応温度は 60°C以下とするのが好ましい。その後、水で希 釈して適当な濃度にして、熱反応型水溶性ウレタン組成物とする。該組成物は使用 する際、適当な濃度および粘度に調製するが、通常 80〜200°C前後に加熱すると、 ブロック化剤が解離し、活性なイソシァネート基が再生するために、プレボリマーの分 子内又は分子間で起こる重付加反応によってポリウレタン重合体が生成し、また他の 官能基への付加を起こす性質を有するようになる。
[0069] 上記に説明した熱反応型の水溶性ウレタンの 1例としては、第一工業製薬 (株)製 の「エラストロン (登録商標)」が代表的に例示される。エラストロンは、重亜硫酸ソーダ によってイソシァネート基をブロックしたものであり、分子末端に強力な親水性を有す る力ルバモイルスルホネート基が存在するため、水溶性となって!/、る。
[0070] 本発明の積層熱可塑性榭脂フィルムの被覆層に用いる榭脂成分は、拡散層やプリ ズムレンズ、ハードコート層形成に用いられるアクリル系榭脂ゃ各種インキとの密着性 の観点から、共重合ポリエステル榭脂とポリウレタン系榭脂を併用することが好ましい 。共重合ポリエステル榭脂とポリウレタン系榭脂とを併用する場合、その配合比は適 宜選定することができる。例えば本発明で使用される共重合ポリエステル榭脂とポリゥ レタン榭脂を混合して塗布液を調製する場合、共重合ポリエステル榭脂 ( (A)とする) とポリウレタン榭脂( (B)とする)の固形分質量比は (A): (B) =7: 3〜3: 7が好ましく 、更に好ましくは 6 : 4〜4: 6の範囲である。
[0071] 共重合ポリエステル榭脂の固形分質量比が上記範囲より大きいと、被覆層が脆くな りアタリレート系のハードコート層や拡散層形成後の加工工程においては、高速カツ ティングに耐える密着性が得られな 、場合がある。共重合ポリエステル榭脂の固形分 質量比が上記範囲より小さいと、本発明が規定する連弾状の塗布筋が発生しやすく なり、また、基材である熱可塑性榭脂フィルムへの塗布性及び密着性、耐ブロッキン グ性が低下し、好ましくない。なお、塗布液の好ましい実施形態は、製造方法のとこ ろで説明する。
[0072] (粒子)
被覆層に粒子を含有させ、被覆層表面に適切な凹凸を形成させることで、滑り性、 巻き取り性、耐スクラッチ性が付与される。このため、基材中に粒子を含有させる必要 がなぐ高透明性を保持することができる。
[0073] 粒子としては、共重合ポリエステル榭脂又はポリウレタン系榭脂との親和性が高い 粒子が好ましぐその両者に対する親和性に、どちらかの相に偏在する程度の差が あることが好ましい。相分離した榭脂の一方に粒子を偏在させることによって、粒子が 適度に集まり、比較的少ない粒子の添加で、すなわちヘイズを大幅に上昇させること なぐ優れた耐ブロッキング性を得ることができるのである。
[0074] 被覆層に含有させる粒子としては、炭酸カルシウム、リン酸カルシウム、非晶性シリ 力、結晶性のガラスフィラー、カオリン、タルク、二酸化チタン、アルミナ、シリカ一アル ミナ複合酸化物粒子、硫酸バリウム、フッ化カルシウム、フッ化リチウム、ゼォライト、 硫ィ匕モリブデン、マイ力などの無機粒子;架橋ポリスチレン粒子、架橋アクリル系榭脂 粒子、架橋メタクリル酸メチル系粒子、ベンゾグアナミン'ホルムアルデヒド縮合物粒 子、メラミン ·ホルムアルデヒド縮合物粒子、ポリテトラフルォロエチレン粒子などの耐 熱性高分子粒子が挙げられる。
[0075] これらの粒子の中でも、酸化珪素からなる粒子 (特に、シリカ粒子)が次の点から好 適である。第 1の利点は、被覆層の榭脂成分と屈折率が比較的近いため、高透明の フィルムを得やすいという点である。第 2の利点は、当該粒子は相分離したポリウレタ ン系榭脂相に偏在しやすいという特徴があり、被覆層表面に存在するポリウレタン系 榭脂相の耐ブロッキング性に劣ると 、う、ポリウレタン系榭脂固有の性質を補完するこ とができる点である。これは、当該粒子とポリウレタン系榭脂との表面エネルギーが共 重合ポリエステル榭脂よりも近ぐ親和性が高いためと考えられる。
[0076] また、粒子の形状は特に限定されないが、易滑性を付与する点からは、球状に近 い粒子が好ましい。
[0077] 被覆層中の粒子の含有量は、被覆層に対して 20質量%以下とすることが好ましぐ さらに好ましくは 15質量%以下、特に好ましくは 10質量%以下にする。被覆層中の 粒子の含有量が 20質量%を超えると、透明性が悪ィ匕し、フィルムの密着性も不十分 となりやすい。一方、粒子の含有量の下限は、被覆層に対して好ましくは 0. 1質量% 、さらに好ましくは 1質量%、特に好ましくは 3質量%とする。
[0078] また、被覆層中には平均粒径の異なる粒子を 2種類以上含有させてもょ 、。また、 同種の粒子で平均粒径の異なるものを含有させてもよい。いずれにしても、粒子の平 均粒径、および総含有量を前記の範囲内にすればよい。
[0079] また、粒子の平均粒径は、通常、 20〜150nmが好ましぐさらに好ましくは 40〜60 nmである。平均粒径が 20nm未満であると、十分な耐ブロッキング性を得ることが困 難な他、耐スクラッチ性が悪ィ匕する傾向がある。一方、粒子の平均粒径が 150nmを 超えると、ヘイズが上昇し且つ、粒子が脱落しやすくなるため好ましくない。
[0080] し力し、本発明では、平均粒径が 20〜150nmの粒子 P1のみでは、十分な耐ブロ ッキング性及び耐スクラッチ性が得られない場合がある。そのために、さらに耐ブロッ キング性及び耐スクラッチ性を向上させるために、さらに平均粒径の大きな粒子 P2を 少量併用することが好ましい。平均粒径の大きな粒子 P2の平均粒径は 160〜1000 nmが好ましぐ特に好ましくは 200〜800nmである。粒子 P2の平均粒径が 160nm 未満の場合、耐スクラッチ性、滑り性、巻き性が悪ィ匕する場合がある。一方、粒子 P2 の平均粒径が lOOOnmを超える場合、ヘイズが高くなる傾向がある。また、粒子 P2 は一次粒子が凝集した凝集体粒子であることが好ましぐこの場合、平均粒径は、凝 集体粒子の平均粒径で考える。さらにこの場合、凝集体粒子の平均粒径と一次粒子 の平均粒径の比が、 4以上であることが、耐スクラッチ性の点から好ましい。
[0081] 2種類の粒子を用いる場合、例えば被覆層中の粒子 P1 (平均粒径: 20〜150nm) と粒子 P2 (平均粒径: 160〜1000nm)の含有量比(P1ZP2)を 5〜30とし、かつ粒 子 P2の含有量を被覆層の固形分に対し 0. 1〜1質量%とする。 2種類の特定粒径 の粒子の含有量を前記範囲に制御することは、被覆層表面の三次元中心面平均表 面粗さを適正化し、透明性と、ハンドリング性ゃ耐ブロッキング性を両立させる上で好 適である。被覆層に対し、粒子 P2の含有量が 1質量%を超えると、ヘイズの上昇が 著しくなる傾向がある。
[0082] 前記粒子の平均粒径の測定は下記方法により行う。
[0083] 粒子を電子顕微鏡で写真を撮り、最も小さい粒子 1個の大きさが 2〜5mmとなるよう な倍率で、 300〜500個の粒子の最大径を測定し、その平均値を平均粒径とする。 また、積層フィルムの被覆層中の粒子の平均粒径を求める場合は、透過型電子顕微 鏡 (TEM)を用いて、倍率 12万倍で積層フィルムの断面を撮影し、被覆層の断面に 存在する粒子の最大径を求めることができる。粒子 P2が凝集体粒子であった場合の 平均粒径は、積層フィルムの被覆層の断面を、光学顕微鏡を用いて倍率 200倍で 3 00〜500個撮影し、それらの凝集体粒子の最大径を測定する。
[0084] (ヘイズ)
本発明においてヘイズとは、ヘイズメーターを用い、フィルムの異なる箇所 3力所に っ 、て測定して得られた値の平均値を 、う。
[0085] 本発明の積層熱可塑性榭脂フィルムのヘイズは 1. 5%以下であること力 透明性 が高度に要求される光学機能性フィルムまたはシートの基材フィルムとして使用する 際に、重要である。前記のヘイズは 1%以下であることがさらに好ましい。ヘイズが 1. 5%を超えると、フィルムを LCD用のレンズフィルムや、ノ ックライト用基材フィルム等 に用いた場合、画面の鮮明度が低下するので好ましくな 、。
[0086] 本発明の積層熱可塑性榭脂フィルムのヘイズを 1. 5%以下にするためには、基材 フィルム中に粒子を含有させな 、ことが好まし 、。基材フィルム中に粒子を含有させ な ヽ場合、被覆層に耐スクラッチ性やロール状に卷取る際ゃ卷出す際のハンドリング 性 (滑り性、走行性、ブロッキング性、卷取り時の随伴空気の空気抜け性など)を改善 するために、被覆層中に適切な大きさの粒子を特定量含有させて、被覆層表面に適 度な凹凸を形成させることが好ましい。
[0087] (核)
本発明でいう連弾状塗布筋欠点の発生条件は、今まで不明であつたが、本発明者 らは、特定の長径と高さを有するフィルム表面の、ピーク形状のように鋭く高さの変化 した部分 (隆起した部分)が特定間隔内に複数並んだ場合に、連弾状塗布筋欠点が 発生することを見出した。
[0088] フィルム表面は、理想的には完全な平面となるのである力 実際には、フィルム表 面の平均高さを取った場合に、平均高さよりも高さが高くなつた部分 (凸部)が存在す る。具体的には、多くの場合、図 1及び図 2が示すように、凸部は、鋭いピーク形状と そのまわりに山のすそののように広がる小高 、部分とからなつており、ピーク形状部 は主に粒子の凝集体、山のすそののように広がる小高い部分は主に榭脂成分力 な つている。本発明において、核とは、このフィルム表面に存在する凸部のピーク形状 部であって、下記式 1及び式 2を満たす大きさを満たすものを ヽぅ。
式 1 10 μ ΐη≤ϋά≤35 μ ΐη
式 2 30nm≤Dt≤5000nm
[0089] Ddで表される核の長径とは、この鋭 、ピーク形状のピーク幅(すなわち、フィルム表 面の平均高さを基準として 1つの凸部の高さを、凸部の両端力も見ていった場合に、 高さが急激に増大する 2つの点(2つの変曲点)の間の距離)であって、かつ、その長 さがその 1つの凸部のピーク形状部にお 、て最大となるものとして定義される値であ る(図 2参照)。 Dtで表される核の最大高さとは、核の高さの最大値とフィルム表面の 平均高さの差によって定義される値である(図 2参照)。
[0090] Dd及び Dtの測定方法について具体的に例示すると、積層熱可塑性榭脂フィルム について、非接触 3次元形状測定装置 (例、マイクロマップ社製非接触 3次元形状測 定装置 TYPE550)を用いて測定する。この装置を用いた場合、例えば、 1664 X 12 48 μ mの視野の表面形状を waveモードで測定し、高さを疑似カラーで表す等高線 モードデータを表示させる(図 1参照)。このとき、表面のうねりを除去するため、面補 正 (4次関数補正)を行っておく。測定範囲内の平均高さを Onmとし (上記視野の測 定範囲内の平均高さをフィルム全体の平均高さとみなす。フィルム全体の平滑性を 考えれば、上記視野の測定範囲内の平均で、充分にフィルム全体の平均の高さとみ なして問題ない。)、カーソルを適切に凸部にあわせて凸部のプロファイル曲線を表 示させ、視野内にある核 (鋭いピーク形状部)のピーク幅及び Onmとした平均高さか らのピークトップの距離を測定する(このとき、ピーク幅及び Onmとした平均高さから のピークトップの距離の値が、その凸部において最大の値となるよう、必ず適切に力 一ソルを合わせる)。このピーク幅が Ddであり、 Onmとした平均高さ力ものピークトツ プの距離が Dtである(図 2参照)。
[0091] (連弾状塗布筋欠点)
本発明においては、上記の核を有する部分を欠点と呼び、特に、当該欠点が下記 式 3及び式 4に定義される状態で連なっているものを連弾状塗布筋欠点と呼ぶ。 式 3 n≥2
式 4 t≥10mm
n:連弾状塗布筋欠点 lmm当たりの、式 1及び式 2で定義される核の数
t :連弾状塗布筋欠点の長さ
[0092] すなわち、 10mm以上の長さのある部分において、 lmm辺り 2個以上の上記欠点 が並んだものが連弾状塗布筋欠点である。ここで、連弾状塗布筋欠点中の核の数を 数える場合、連弾状塗布筋の幅方向に対し 0. 5mm以内の幅に並ぶ核は同一塗布 筋欠点の核として数える。この定義された連弾状塗布筋欠点は、実際に、極薄である 力 暗室内で後述する特定の条件下で三波長蛍光管を用いた検出方法及び同環境 下でブロムライトを用いて検出する方法の両方法を組み合わせて、筋として検出され る。また、本発明が規定する連弾状塗布筋欠点は、核の部分が複数個に分割された 形状のものも含まれる。尚、本発明が規定する連弾状塗布筋欠点は、ブロムライトの みを用いて比較的容易に検出できる、塗布液中に存在する粒子凝集物がフィルム上 で密集し、さらに筋状に点在した粗大塗布筋欠点とは大きさ、形状が異なり、さらに 発生メカニズムも異なるものである。本発明が規定する連弾状塗布筋欠点について ブロムライトを用いた方が検出されやすい連弾状塗布筋と三波長蛍光管を用いた方 が検出されやすい連弾状塗布筋が存在する理由は定かではないが、核の高さと核 の周囲に存在する山すその部の大きさが関与しているものと推察する。
[0093] 本発明の積層熱可塑性榭脂フィルムにお 、ては、連弾状塗布筋欠点数 30本/ m2 以下である。カゝかる本数以下の連弾状塗布筋欠点を有する積層熱可塑性榭脂フィ ルムは、本願出願以前には確認されていない。連弾状塗布筋欠点数は、少ないほど 光学特性に優れるため、好ましくは 20本 Zm2以下、より好ましくは 10本 Zm2以下、 さらに好ましくは 5本 Zm2以下であり、連弾状塗布筋欠点数が存在しない (すなわち 0本 Zm2である)ことが最も好ましい。なお、フィルム幅方向に対し同一位置にある連 弾状塗布筋欠点は一本と数えるが 100mm以上離れている場合は別個の連弾状塗 布筋欠点として数える。
[0094] レンズフィルムや拡散板等の光学用基材フィルムとして用いる場合、通常、フィルム 長さは、フィルム厚さが 100 μ m以上の比較的厚手のフィルムにおいても少なくとも 1 000m以上、時には 2000m以上のロール状の形態でプリズム層や拡散層の積層ェ 程に供される。一方で、この連弾状塗布筋欠点は、積層熱可塑性榭脂フィルムの全 表面に均一に発生するわけではない。よって、本発明の積層熱可塑性榭脂フィルム をロールとした場合には、「連弾状塗布筋欠点数が 30本 Zm2以下である」について は、連弾状塗布筋欠点をフィルムロール長手方向の 100m間隔で 10点測定した時 に、 10点の測定点とも 30本 Zm2以下であればよい。すなわち、 100m間隔で測定し た 10点の測定点のうちの最大連弾状塗布筋欠点数力 30本 Zm2以下であればよく 、好ましくは 20本 Zm2以下、より好ましくは 10本 Zm2以下、さらに好ましくは 5本 Z m2以下であり、最も好ましくは 0本 Zm2である。
[0095] 本発明において被覆層には、本発明の効果を妨げない限りにおいて、触媒 (無機 物質、塩類、有機物質、アルカリ性物質、酸性物質および含金属有機化合物等)、 帯電防止剤、紫外線吸収剤、可塑剤、顔料、有機フィラーおよび潤粒子等の種々の 添加剤が含有されて 、ても良 、。
[0096] 本発明の積層熱可塑性榭脂フィルムを光学用易接着フィルムに使用する場合、被 覆層の三次元中心面平均表面粗さ(SRa)は、 0. 002〜0. 01 m力好ましく、 0. 0 025〜0. 008 /z m力より好ましく、 0. 003〜0. 006 m力 ^特に好まし!/ヽ。 SRa力^). 002 m未満の平滑な表面では耐スクラッチ性が悪ィ匕し、好ましくない。一方、 SRa が 0. 01 /z mを超えると、ヘイズが上昇し透明性が悪ィ匕するため、光学用フィルムとし ては好ましくない。
[0097] 本発明の積層熱可塑性榭脂フィルムロールのフィルム厚みは、用途によって適宜 決定される力 30. 2〜300. 2 m力好ましく、より好ましくは 50. 2〜250. 2 mで ある。フィルム厚みが 30. 未満では、剛性が不十分となり好ましくない。一方、 フィルム厚みが 300. を超えると、フィルム中に存在する光学欠点となる異物が 増加する可能性が高くなり、また、コスト高となるため好ましくない。
[0098] 被覆層の厚みとしては 0. 005〜0. 力好ましく、より好ましくは 0. 008〜0. 1 5 mである。被覆層の厚みは、被覆層の断面をミクロトームで切断し、電子顕微鏡 で観察することにより測定できるが、被覆層が柔らかい場合、切断時に変形する場合 がある。簡便的には、塗布量が既知であれば、被覆層の密度から厚み換算すること ができる。例えば、被覆層の密度が lgZcm3の場合、塗布量が lgZm2であれば、 厚みは 1 μ mに相当する。被覆層の密度は、被覆層を構成する榭脂、粒子の種類か らそれぞれの材料の密度を求め、各材料の密度に材料の質量比を乗じ、その和を求 めることで被覆層の厚みを推定することができる。
[0099] 本発明の積層熱可塑性榭脂フィルムをロールとする場合には、その巻き長及び幅 は、当該フィルムロールの用途により適宜決定される力 巻き長として好ましくは 150 Om以上であり、より好ましくは 1800mである。また、巻き長の上限としては 5000mが 好ましい。また、フィルムロールの幅は 0. 5m以上であることが好ましぐより好ましく は 0. 8m以上である。なお、フィルムロールの幅の上限としては 2. Omが好ましい。
[0100] ロールとする場合、積層熱可塑性榭脂フィルムは、通常、巻き取りコアに巻き取られ るが、巻き取りコアの径、素材には特に制限がなぐ通常、一般に使用される 3インチ 、 6インチ、 8インチなどの紙管やプラスチックや金属力もなるコアを使用できる。
[0101] (製造方法)
本発明の積層熱可塑性榭脂フィルムの製造方法は、特に限定はないが、例えば、 共重合ポリエステル榭脂又は共重合ポリエステル榭脂とポリウレタン系榭脂とを含む 榭脂成分、粒子、及び界面活性剤を含む塗布液を、走行する熱可塑性榭脂フィルム の片面または両面に塗布する塗布工程、塗布層を乾燥する乾燥工程、次いで少なく とも一軸方向に延伸する延伸工程、さらに延伸された塗布フィルムを熱固定処理す る熱固定処理工程を含み、且つ、下記(1)〜(6)の条件を満足する積層熱可塑性榭 脂フィルムの製造方法によって製造され、当該製造方法は本発明の一部を構成する
(当該製造方法を以下、本発明の製造方法ともいう)。
(1)ノ-オン系界面活性剤またはカチオン系界面活性剤を、塗布液に対し 0. 01〜0 . 18質量%配合させる。 (2)共重合ポリエステル榭脂とポリウレタン系榭脂を併用する場合に、共重合ポリエス テル樹脂とポリウレタン系榭脂との配合比が、質量比で 3: 7〜7: 3である。
(3)塗工時のアプリケーターロールとフィルムのキス長さが下限 lmm以上、上限 5m m未満である。
(4)被覆層の最終塗布量が 0. 005-0. 2gZm2である。
(5)塗布液の塗布直後から乾燥工程の入口までのフィルムの通過時間が 2秒未満で ある。
(6)乾燥工程において、乾燥温度が 120〜150°Cであり、乾燥時間が 0. 1〜5秒間 であり、乾燥風の風速が 30mZ秒以上である。
[0102] 本発明で規定する連弾状塗布筋欠点の発生原因について鋭意研究を行った結果 、連弾状塗布筋欠点は、図 2に示すように主に粒子力もなる大きさ 10〜35 mの凝 集体を核とし、その周囲に正常部より厚さの厚い主に榭脂成分力 Sこの核を中心として 山のすそののように広がってなる微細な欠点が図 1に示すようにフィルムの長手方向 に連なっている形態を有しており、連弾状塗布筋欠点の発生頻度は、塗布液の組成 、塗工キス部のキス長さ、塗布量等の塗布条件、及び塗布から乾燥炉の入り口まで の経過時間や乾燥時の風速等の乾燥条件が大きく関与していることが判明した。従 つて、塗布時にアプリケーターロールと基材フィルムの塗工キス部に生じる液溜まり( 図 4の 9)中で、連弾状塗布筋欠点の要因となる凝集物が生成していると考えられる。 この凝集物は、まず、上記の液溜まり中で、粒子が凝集して核となり、この粒子と親和 性の高い榭脂成分が核の周囲を覆い、さらにこれが直径 20〜: L 000 m程度の集 合体を形成し、この集合体がある一定以上の大きさになったものと考えられ、これが 肖られながら、走行するフィルムに付着して連弾状塗布筋欠点が発生するのである。 このため、塗布液を目開きの細力 、フィルターを用い、精密な濾過処理をしても、本 発明が規定する連弾状光学欠点は低減できない。反対に塗布液を 0. 以下の 極度に細力 、フィルターで濾過すると、必要な粒子凝集体までも除去され、本来要 求されて!ヽる易滑性、耐ブロッキング性が低下する場合がある。
[0103] 従って、本発明でいう連弾状塗布筋欠点を低減するには、塗布液中の光学的欠点 と成り得る粒子の粗大凝集物を精密濾過等で低減するのみでは成しえないものであ り(むしろ、良好な易滑性、耐ブロッキング性を保持するには適度な粒子凝集体は必 要である。 )、液溜まり部での上記凝集物の生成を抑制することが重要なのである。
[0104] また、一般に塗布筋はロールコーター法においてフィルムに対するロールの押付け 量を小さくすることによってロール上の塗布液の剪断力を低減すればある程度低減 することが可能であることは経験上知られており、本発明で言う連弾状塗布筋におい てもある程度有効である力 ロールとフィルムの押しつけ量を小さくするのみでは近年 要求されるレベルを十分満足できるものではなカゝつた。すなわち、本発明で言う連弾 状塗布筋欠点とは塗布液の精密濾過処理や塗布液にカゝかる剪断力の低減のみで は、満足できる程度に低減できるものではな力つたのである。
[0105] し力しながら、本発明の製造方法によれば、従来塗布液の濾過処理のみでは改善 しえなかった極薄い連弾状塗布筋欠点を塗布液組成、塗布条件、及び乾燥条件を 高度に組み合わせることにより、本発明が規定する極薄い連弾状塗布筋欠点の大幅 な低減を成し得ることができ、さらに得られる積層熱可塑性榭脂フィルムは、優れた 光学特性を有するものとなる。
[0106] 以下、本発明の製造方法を具体的に説明する。
[0107] (塗布工程)
塗布工程は、該フィルムの製造工程中に塗布するインラインコート法により実施する ことが好ましぐ例えば、走行する基材熱可塑性榭脂フィルムの片面、若しくは両面 に、上記共重合ポリエステル又は上記共重合ポリエステル榭脂と上記ポリウレタン系 榭脂を含む榭脂成分、及び上記粒子を含む塗布液を連続的に塗布する。塗布方法 は例えば、リバースロール 'コート法、グラビア 'コート法、キス.コート法、オフセットコ ート法などが挙げられ、これらの方法を単独である 、は組み合わせて行うことができる 。これらの塗布方法はロール上の余分な塗布液をドクターブレードで搔き落とす機構 を有しており、塗布斑の少ない均質な塗布面を得るには好適である。本発明におい ては面質の観点からリバースキスロール'コート法を用いるのが好ましい。
[0108] 本発明にお 、て、被覆層形成のための塗布液は、公知方法に準じて調製できるが 、水性塗布液とするのが環境上及び安全上の観点力も好ましい。よって、本発明に 用いる共重合ポリエステル榭脂及びポリウレタン系榭脂は、水溶性又は水分散性で あることが好ましい。
[0109] 共重合ポリエステル榭脂とポリウレタン系榭脂とを併用する場合、その配合比は、質 量比で (A): (B) = 7 : 3〜3 : 7の範囲であり、好ましくは 6 : 4〜4: 6の範囲である。(条 件 (2) )
[0110] 塗布液に用いる溶剤は、水に、エタノール、イソプロピルアルコール、ベンジルアル コール等のアルコール類を、全塗布液に占める割合が 30〜50質量%の範囲で混合 した溶媒が好ましい。また、アルコール類の混合量が 10質量%未満である場合には 、アルコール類以外の有機溶剤を溶解可能な範囲で混合してもよい。ただし、塗布 液中、アルコール類とその他の有機溶剤との合計量は、 50質量%未満とする。アル コール類の混合量 (その他の有機溶剤を用いる場合には、アルコール類と当該有機 溶剤の合計量)が 50質量%未満であれば、塗布乾燥時に乾燥性が向上するとともに 、溶剤が水のみの場合と比較して塗布膜の外観向上の効果がある。 50質量%以上 では、溶剤の蒸発速度が速く塗工中に塗布液の濃度変化が起こり、粘度が上昇して 塗工性が低下するために、塗布膜の外観不良を起こす恐れがあり、さらには火災な どの危険性も考えられる。また、アルコール類の混合量が 30質量%未満では相対的 に水の比率が増加し、親水性の高いポリウレタン成分が塗布層表面に偏祈し、本発 明が規定する連弾状塗布筋欠点が発生しやすくなる。
[Oil 1] また塗布液の pHを調節するために、 pH調整剤としてアルカリ性物質あるいは酸性 物質を添加してもよい。 pH調整剤としては密着性、耐ブロッキング性、塗布性に悪影 響を及ぼさないもの又は影響が無視できる程度であるものであれば特に限定されな いが、例示すれば pHを上昇させる場合は重曹、炭酸ナトリウム、下げる場合は酢酸 等が挙げられる。本発明の塗布液の好ましい pHは 4以上、 8未満である。 pH4未満 では被覆層表面に共重合ポリエステル成分が偏析しゃすくなる傾向にあり、ハードコ 一トフイルムにおけるハードコート層や拡散板における拡散層、プリズムシートにおけ るプリズム層に対して十分な密着性が得られな 、場合がある。 pHが 8以上では粒子 の種類によっては凝集が起こりやすくなり、連弾状塗布筋欠点が発生しやすくなる他 、ヘイズが上昇するため好ましくない。
[0112] 粒子を調合中の液に添加する際には、予め粒子を水、または有機溶媒に 2質量% 以上、 25質量%未満の濃度の分散液として添加する方法が好ましい。調合中の液 に直接粒子を添加した場合、均一な分散が困難となり、結果として、粒子凝集体が核 となり、アプリケーターロール上で粒子と親和性の高い榭脂成分との集合体が成長し やすくなり、結果として連弾状塗布筋欠点が発生しやすくなるのである。粒子の分散 液を作製する際、攪拌機を用いて十分分散させることが好ましい。攪拌機としては例 えば粉体溶解機 (T. K.ホモジヱッター M型)が挙げられ、分散条件は分散液 10kg に対し回転数 5000rpm以上、好ましくは lOOOOrpm以上、攪拌時間 30分以上、好 ましくは 60分以上である。また、攪拌中は液温が 30°C以上に上昇しないよう冷却しな 力 Sら攪拌するのが好ましい。
[0113] 塗布液のフィルムへの濡れ性を上げ、塗布液を均一に塗布するために、ノ-オン系 界面活性剤又はカチオン系界面活性剤を用いる (条件(1) )。これら界面活性剤の種 類は良好な塗布性が得られるものであれば特に限定されな 、が、微量の添加で良好 な塗布性を得るには、フッ素系界面活性剤が好適である。ノ-オン系界面活性剤又 はカチオン系界面活性剤の添加量は、塗布液に対し 0. 01-0. 18質量%、好ましく は 0. 02-0. 1質量%である。添加量が 0. 01質量%未満であると、良好な塗布性 が得られず、 0. 18質量%を超えると、塗布液中に含まれる粒子が凝集しやすくなる ため連弾状塗布筋欠点の発生頻度が過度に上昇する。また、得られた積層フィルム のヘイズ上昇に繋がる(特に光学用基材フィルムとして問題である)。さらに界面活性 剤成分がブリードア外し、密着性に悪影響を及ぼす場合もある。
[0114] 塗布液には、熱架橋反応を促進させるため、触媒を添加しても良ぐ例えば、無機 物質、塩類、有機物質、アルカリ性物質、酸性物質および含金属有機化合物等、種 々の化学物質が触媒に用いられる。
[0115] さらに塗布液には、易接着性を消失しない限りにおいて、帯電防止剤、紫外線吸 収剤、可塑剤、顔料、有機フィラーおよび潤粒子等の種々の添加剤を混合してもよ い。
[0116] 塗布液中の固形分濃度は、 30質量%以下であることが好ましぐ特に好ましくは 10 質量%以下である。固形分濃度の下限は 1質量%が好ましぐさらに好ましくは 3質 量%、特に好ましくは 5質量%である。 [0117] 塗布液は、塗布液の榭脂成分及び粒子を均一に分散させるため、また、粗大な粒 子凝集物及び工程内埃等の異物を除去するために、精密濾過することが好ましい。 塗布液を精密濾過するための濾材は、濾過粒子サイズ (初期濾過効率: 95%)が 25 m以下であることが好ましぐさらに好ましくは濾過性能 15 m以下、さらに好まし くは濾過性能 10 m以下、さらに好ましくはこれらのフィルターを組み合わせて用い る方法である。濾過粒子サイズが 25 μ mを超えると、粗大凝集物の除去が不十分と なりやすい。そのため、濾過で除去できな力つた粗大凝集物は、塗布乾燥後の一軸 延伸又は二軸延伸工程での延伸応力により広がって、 100 m以上の凝集物として 認識され、光学欠点の原因となる。ただし、濾過性能が 0. 5 m以下の場合、必要な 粒子凝集体までも除去され、本来要求されている易滑性、耐ブロッキング性が低下 する場合があるため好ましくない。実用的には、塗布液のフィルター濾過粒子サイズ の下限は 5 mとするのが、フィルター目詰まりを発生させる頻度も少なぐ易滑性、 耐ブロッキング性を保持しやすぐさらに塗布液に不必要に剪断力をかけないために も好適である。塗布液を精密濾過するための濾材のタイプは、上記性能を有してい れば特に限定はなぐ例えば、フィラメント型、フェルト型、メッシュ型が挙げられる。塗 布液を精密濾過するための濾材の材質は、上記性能を有しかつ塗布液に悪影響を 及ばさない限り特に限定はなぐ例えば、ステンレス、ポリエチレン、ポリプロピレン、 ナイロン等が挙げられる。
[0118] 本発明における被覆層の塗工方法は前述の方法であれば特に限定されないが、 アプリケーターロールに基材フィルムを水平または垂直など種々な配置により接触さ せて、塗布液が形成するメニスカスにより、アプリケーターロール上の塗布液を基材 フィルムに転写させる方法が好ましい。特に光学用途用の積層フィルムの製造にお V、ては、走行する基材フィルムとアプリケーターロールの接線の下流側に生じる僅か に液溜まりに含まれる気泡を素早く取り除くために、図 3に見るように基材フィルムを 垂直に走行させる方法が好ましい。さらに基材フィルムを垂直方向に走行させる方式 では両面同時に塗工することが容易となり好適である。
[0119] 本発明の製造方法を詳細に説明するためにリバースコート法を例に挙げ説明する [0120] リバースコート法とは図 3に示すようにフィルム走行方向と逆回転するアプリケータ 一ロール 2とメタリングロール 3を用い、走行するフィルム 1にアプリケーターロール 2を 接触させ、塗布液をフィルムに転写させることによって塗布する方法である。
[0121] リバースコート法において、ロールの直径はアプリケーターロールおよびメタリング口 ールともに 10cm〜50cmであることが好ましぐアプリケーターロール Zメタリング口 ールの直径比は 0. 5〜2の範囲であることが好ましい。
[0122] この塗布時において基材フィルムへの塗布液供給不足による転写不良を防止し、 均一に塗布するために、走行するフィルム 1とアプリケーターロール 2の接線の下流 側に図 4に示すような僅かな液溜まり 9が生じる塗布条件を設定する必要がある。しか しながら、この液溜まり 9において、混合溶媒濃度のバランス、本発明の具体例では 水とイソプロピルアルコールの濃度バランスが変化すると、塗布液中の粒子とこの粒 子と親和性の高い榭脂成分が凝集体を形成しやすくなり、結果として本発明の規定 する連弾状塗布筋欠点が発生しやすくなるのである。このため本発明では極力液溜 まりを小さくし、且つ、塗布液の混合溶媒濃度バランスの変動を小さくすることが重要 である。
[0123] まず、塗布液をコーターに供給する塗布液タンクは、図 5に見るように調合用タンク 12と調合用タンク 12より容量の小さい循環用タンク 11とに分けて配置し、循環用タン ク 11とコーターとの間でのみ塗布液を循環させるのが好ましい。循環用タンクを設け ない場合は、塗布液の消費によりタンク内の液量が減少した場合に、コーター間での 塗布液の循環回数が増カロして溶媒のバランスが変動しやすくなる他、粒子の粗大な 凝集物が発生しやすくなるので好ましくない。一方、受け皿 7の容量に対して循環用 タンク 11の容量を大きくすることが混合溶媒濃度バランスを安定化させる上で効果的 であり、具体的には塗布液の受け皿 7の容量を 1とした時、循環用タンク 11の容量の 比は 1: 10以上、好ましくは 1: 50以上にするのがよ 、。 1: 10より循環用タンク 11の 容量が小さいと混合溶媒濃度バランスの変動が大きくなりやすぐ好ましくない。さら に好ましくは循環用タンク 11の容量と調合用タンク 12の容量の比を 1 : 10以上、好ま しくは 1 : 20以上にする。この時、循環用タンク 11の容量が稼働時常に一定になるよ うに調合用タンク 12から循環用タンク 11に塗布液を供給するのが好ま 、。塗布液 の供給において重要な点は、アプリケーターロール 2とメタリングロール 3との間隙間 が十分な塗布液で満たされるだけの供給量が最低限必要であることである。
[0124] 塗布液中の気泡による長尺塗布筋の発生を防止するために、脱泡を行うことが好ま しい。脱泡は例えば、塗布液に極力空気を巻き込まないようにする手段と、微量に存 在する塗布液中の空気を除去する手段により行う。
[0125] 塗布液に極力空気を巻き込まないようにする手段とは、フアウンテンダイ 4及びメタリ ングロール 3からドクターブレード 6によって搔き取られた塗布液力 直接受け皿 7に 落下し、この衝撃で空気が混入することを防止するために、図 3に見るように、ファゥ ンテンダイ 4とドクターブレード 6の下にガイド板 5を設置し、塗布液力このガイド板 5に 沿って滑らかに受け皿 7に流れ込むようにした手段である。また、微量に存在する塗 布液中の空気を除去する手段とは、塗布液を循環用タンク 11からフアウンテンダイ 4 に供給する配管の途中に、図 5に見るように、上方に伸びる冷却装置(図示しない)を 有する分岐配管 10を設け、この配管 10から塗布液中に含まれる空気を除去する手 段である。この分岐配管 10の出口の温度を、冷却装置によって 20°C以下、好ましく は 10°C以下にすることにより、揮発性の高い溶媒の揮散を抑制でき、塗布液の混合 溶媒のバランスの変化を小さくできる。尚、この分岐配管 10の出口の高さは、塗布液 流出を防止するため、及び十分な冷却効果を得るベぐ塗布液循環用タンク 11の液面 より少なくとも 10cm以上とすることが好ましぐさらに好ましくは 20cm以上とする。液 体の脱気方法として、減圧脱気による空気の除去が行われる場合があるが、本発明 では、混合溶媒のノランスがくずれやすくなるため好ましくない。
[0126] 塗布液の温度、アプリケーターロール 2、メタリングロール 3の表面温度は 10°C以上 、 30°C未満とするのが好ましい。塗布液の温度が 30°C以上になると、塗布液が変質 しゃすくなるため、好ましくない。 10°C未満では塗布液の粘度が高くなりゥネスジが 発生しやすい。また、それぞれの温度の差は 10°Cより大きくならないことが均一な品 質を得る上で好ましい。
[0127] フィルム 1がアプリケーターロール 2と接触することにより、接触フィルム面に塗布液 溜まり 9ができる (塗布液溜まりと基材に塗られた榭脂との境界は明確に目視で観察 される)。この塗布液溜まり 9は塗工キス部と呼ばれる力 本発明において、キス長さと は、フィルムの走行方向に平行な方向の塗工キス部の長さをいう。キス長さを求める には、塗布液溜まりと基材に塗られた榭脂との境界が、平行した 2つの筋として観察 される力 この 2つの境界間の距離を測定すればよい。
[0128] 塗工時の基材フィルムとアプリケーターロールのキス長さは、通常 5〜20mmの範 囲に設定されることが一般的であり、特に光学用途の積層フィルムの製造において は 8mm以上に設定される場合が多い。これは一般にキス長さ 5mm未満では基材フ イルムとアプリケーターロールの接圧が弱ぐ塗布液中に含まれる空気力メ-スカス部 分で発泡して長尺塗布筋欠点が発生しやすいためである。また、一般に 20mm未満 としているのは特にアプリケーターロールと基材フィルムの接触によって基材フィルム に微小なキズが多数入り致命的な欠陥と成りうるためである。しかし、本発明におい ては、塗工時のアプリケーターロール 2と基材フィルム 1のキス長さは、 1mm以上、 5 mm未満とする(条件(3) )。アプリケーターロール 2と基材フィルム 1のキス長さを 5m m未満としたのは、アプリケーターロール 2と基材フィルム 1の接触によるキズ発生を 最大限に抑制するためである。アプリケーターロール 2と基材フィルム 1のキス長さを 5 mm未満にすると前述のように気泡による塗布斑が発生しやすくなるが、本発明では 塗布時の基材フィルム 1の走行方向を垂直にする以外に、後述する手段によってこ の問題を解決し、キス長さを 5mm未満にすることを成し得たのである。
[0129] キス長さは、フィルム走行速度 (F)とフィルム走行方向に対して逆回転するアプリケ 一ターロール 2の周速 (A)の比(以下 AZF比と記す)を変化させることにより、コント ロールすることが可能であり、キス長さを上記範囲内とするために、 AZF比は、 1. 0 2以上、 1. 15未満の範囲に設定するのが好ましぐさらに好ましくは 1. 05以上、 1. 1未満である。 AZFが 1. 02未満では液溜まりが極度に小さくなり、塗布液による潤 滑作用が低下するため基材フィルムとアプリケーターロールの接触によるキズが発生 しゃすくなる。 1. 15以上では前述のように液溜まりが大きくなり、結果として本発明が 規定する連弾状の塗布筋が増加する。通常、 AZF比が 1. 15未満では、フィルムと アプリケーターロール間の液だまりが小さくなり、キズが発生しやすくなるため、本発 明の製造方法においては、上記キズの発生を抑制するために、硬質クロムメツキ処理 がなされ、且つ表面粗度 0. 1S以下の鏡面カ卩ェされたロールを用いることが好ましい [0130] フィルム走行速度としては特に制限はされないが 10mZ分〜 lOOmZ分が好ましく 、 20mZ分〜 80mZ分がより好ましい。 10mZ分未満では生産性が低ぐコスト高と なる他、後述する塗布力 乾燥炉入り口までの時間が長くなりやすぐ結果として本 発明が規定する連弾状塗布筋欠点が発生しやすい。 lOOmZ分を超えるど塗布液 に気泡が混入しやすくなる他、塗布斑が発生しやすくなるため好ましくな 、。
[0131] また、フィルムに対するロールの押付け量を調整することによつても、キス長さをコン トロールすることができ、 AZF比を上記範囲内に設定した上で、キス長さが lmm以 上、 5mm未満となるように押付け量を設定する方法が好ま 、。
[0132] 被覆層の最終塗布量 (乾燥後、延伸前のフィルム単位面積当りの固形分質量)は、 0. 005〜0. 2gZm2であり(条件(4) )、好ましくは 0. 008〜0. 15gZm2である。塗 布量が 0. 005gZm2未満では十分な密着性が得られない。 0. 2gZm2を超えると本 発明が規定する連弾状塗布筋欠点が発生しやすくなる他、耐ブロッキング性が低下 してしまう。また、未乾燥時の塗布量 (以下、ウエット塗布量と略す)は 2gZm2以上、 1 OgZm2未満が好ま ヽ。 2gZm2未満で必要な被覆層の最終塗布量を得ようとする と、塗布液の固形分濃度を高くする必要があり、この時、塗布液粘度が高くなるため、 筋状の塗布斑が発生しやすい。 lOgZm2以上では乾燥炉内の乾燥風の影響を受け やすぐ塗布斑が発生しやすい。当該塗布量の塗布液が塗布されたフィルムは、配 向および熱固定のためにテンターに導かれ、そこで加熱されて、熱架橋反応により安 定な被膜を形成し、積層熱可塑性榭脂フィルムとなる。
[0133] なお、塗布液を塗布する際は、埃付着による欠点を防止するために、クリーン度を クラス 5000以下にするのが好ま U、。
[0134] また、塗工時のフィルムテンションを 4000〜10000NZ原反幅(原反幅は l〜2m) にするのがよぐフィルムテンションが当該範囲内にあると、工業的規模でフィルムの 平面性が保持され (テンションはフィルムの厚さにより異なり、比較的薄!、フィルムは より低いテンションを掛けることで平面性が保持される)、アプリケーターロールと基材 フィルムの局所的接触が防止でき、さらに塗布液の転写量がフィルムの長さ方向で 均一となる効果が得られる。 10000NZ原反幅を超えると、フィルム原反が変形し、 アプリケーターロールと基材フィルムに局所的に接圧の高い部分ができ、キズが発生 しゃすくなるため好ましくない。 4000NZ原反幅未満においても、塗工時のフィルム の平面性が不十分となり、アプリケーターロールと基材フィルムの局所的接触による キズが発生しやすくなる他、フィルムの蛇行も発生することがあり、さらに塗布液の転 写量がフィルムの長さ方向で不均一となる。また、フィルムのウエット塗布量が大きく 変動することにより、塗膜厚さのバラツキもより大きくなるため好ましくない。
[0135] 塗工時のフィルムの平面性を向上させる手段としては、コーターと乾燥炉の間で、 フィルムの幅方向の両端にそれぞれ一対のピンチロール 13で両面を挟む方法も有 効である。
[0136] 本発明では前述のように走行するフィルム 1とアプリケーターロール 2の接線の下流 側に生じる液溜まり 9を極力小さくし、粒子とこの粒子と親和性の高い榭脂成分力 な る凝集体の発生を抑制することにより、本発明が規定する連弾状塗布筋を大幅に低 減することが可能となる。しかし、混合溶媒として、水とイソプロピルアルコールを用い た場合、水に比べイソプロピルアルコールの方が蒸発速度が大きいため、乾燥が完 了するまでの間に塗布層中の水の比率が高くなり、疎水性榭脂成分がポリエステル 基材界面に、水と親和性の高!、榭脂成分とこの榭脂成分と親和性の高!、粒子が塗 布層の表層に偏祈し、結果として前述の連弾状欠点が目立ちやすくなる。そこで、本 発明ではさらに僅か〖こ発生する極薄 、同連弾状塗布筋を低減するために、さらに以 下に示す塗布液中の混合溶媒濃度バランスの安定化策を講じ、特定の乾燥条件及 び熱固定条件とすることが好ましい。
[0137] 塗工中における混合溶媒濃度バランス策を具体的に例示すると、アプリケーター口 ール 2、メタリングロール 3、塗布液受け皿 7を含む装置に、図 3に示すように溶媒揮 散防止カバー 8を設け、溶媒揮散防止カバー 8の内部をイソプロピルアルコールの飽 和蒸気圧に近づける工夫を施すことが効果的である。構造上完全に密閉することは 困難であるが、開放部を小さくすることによって、特にアプリケーターロール 2上の塗 布液の溶媒濃度バランスの安定性は大幅に向上するのである。なお、混合溶媒濃度 バランス策は上記に限られな ヽ。
[0138] (乾燥工程) 前記塗布液を塗布後、乾燥させる際、テンターの予熱ゾーンを利用して乾燥させる 場合が多いが、この場合、製膜設備の大きさ、走行速度にも依存するが、一般に塗 布から乾燥開始までの時間(塗布液の塗布直後から乾燥工程の入口までのフィルム の通過時間)は、フィルム厚さが 30 μ m以上の比較的厚手のフィルムを製造する場 合、少なくとも 5秒程度かかり、この間に塗布液の溶媒である水とアルコールのバラン スがくずれ、これによつて親水性の高いポリウレタン榭脂成分とポリウレタン榭脂成分 と親和性の高!、粒子が塗布層表面に偏祈し、連弾状塗布筋欠点が発生しやすくな る。そこで、本発明では、塗布後直ちに乾燥させることが重要であり、塗布液の塗布 直後から乾燥工程の入口までのフィルムの通過時間は 2秒未満であることが必須で ある(条件(5) )。当該通過時間は、好ましくは 1. 5秒未満である。この塗布から乾燥 炉に入るまでの時間を 2秒未満に維持するためには、適宜フィルムの走行速度を選 択する必要がある力 コーターと乾燥炉入り口を可能な限り近づけることが好ましい。
[0139] 乾燥炉内において、塗布面にあたる乾燥風の温度は、 120°C以上 150°C未満、風 速は 30mZ秒以上であることが必須である(条件(6) )。好ましい乾燥温度は、 130 °C以上、 150°C未満であり、好ましい風速は、 30〜40mZ秒である。該乾燥温度が 120°C未満または風速 30mZ秒未満であると乾燥速度が遅くなり、塗布液の溶媒で ある水とアルコールのバランスがくずれ、相対的に水の比率が増加し、これによつて 親水性の高いポリウレタン成分が塗布層表面に偏祈し、このポリウレタン成分と親和 性の高い粒子も表面に偏析しゃすくなるため連弾状塗布筋が目立ちやすくなるので ある。 150°C以上では基材フィルムの結晶化が起こり、横延伸時に破断が発生しや すい。乾燥時間は 0. 5秒から 5秒であることが必須であり(条件(6) )、好ましくは 1秒 力 3秒である。 0. 5秒未満では塗布層の乾燥が不十分となり、乾燥工程から横延伸 工程までの間に配置されたロールを通過する際、該ロールを乾燥不十分な塗布面で 汚染する可能性がある。また、 5秒を超えると基材フィルムの結晶化が起こり横延伸 時に破断が発生しやすい。
[0140] 120°Cから 150°Cの温度で乾燥した後は、直ちに室温近くまで冷却するのが好まし い。温度が 100°C以上の高温のまま乾燥炉を出て室温近くのロールに接した場合、 フィルムの収縮によってキズが発生しやすくなる。乾燥炉内の風速を通常 30mZ秒 以上にすると、乾燥炉内で未乾燥状態の塗布面に強い乾燥風があたるため乾燥ムラ が生じやすくなるが、本発明では吹き付ける風量と同量若しくはそれ以上の風量を乾 燥炉外に排気することによって、 30mZ秒以上の風速を可能とすることができる。ま た、該排気風はコーターと反対側へ流れるようにし、コーターでの排気風による塗布 面へのムラ発生を防止することも重要である。尚、乾燥風は埃混入防止のため、 HE PAフィルターを用いて清浄ィ匕された空気を用いることが好まし 、。この際に用いる H EPAフィルタ一は、公称濾過精度 0. 5 m以上の埃を 95%以上カットする性能を有 するフィルターを用いるのが好まし!/、。
[0141] (延伸工程)
乾燥後、フィルムの端部をクリップで把持して、通常、 80〜180°C (好ましくは 100 〜140°C)に加熱され、風速が 10〜20mZ秒である熱風ゾーンに導き、幅方向に 2 〜6倍 (好ましくは 2. 5〜5. 0倍)に延伸する。さらに別方向に延伸を行ってもよい。
[0142] (熱固定処理工程)
引き続き、通常、 220〜240°C、好ましくは 225°C〜235°Cの熱処理ゾーンに導き 、通常、 1〜20秒間の熱処理を行い、結晶配向を完了させる。 220°C未満では、得ら れた積層フィルムの熱収縮率が大きくなり好ましくない。また、 240°Cを超えると、ノヽ ードコート層や拡散層に対する密着性が低下する場合がある。この工程中で、必要 に応じて、幅方向あるいは長手方向に 1〜12%の弛緩処理を施してもよい。
[0143] 一般に横延伸工程、熱固定工程、冷却工程は、温度の均一化を目的として 10〜3 0ゾーンに分割され、それぞれのゾーンにっ 、てそれぞれ温度制御がなされて 、る。 特に横延伸ゾーン後半力 熱固定最高温度設定ゾーンにおいても段階的に昇温さ せ、温度を均一化させることが幅方向の熱収縮率の均一なフィルムを得る上で好まし い。
[0144] カゝくして得られる積層フィルムは、易接着性に優れ、優れた光学特性を有し、且つ 連弾状塗布筋欠点の少な ヽと ヽぅ特徴を有しており、プリズムレンズシート用ベース フィルムや AR (アンチリフレタション)フィルム用ベースフィルム等に好適に使用できる
[0145] また、積層フィルムを、巻き取り機等によって常法によりロールイ匕することによって、 本発明の積層熱可塑性榭脂フィルムロールが製造される。当該フィルムロールは、ス リツター等により適当な幅に裁断されてもよい。
実施例
[0146] 次に、本発明の積層熱可塑性榭脂フィルムの製造方法について、ポリエチレンテレ フタレート(以下 PETと略称する)基材を例にして説明するが、当然これに限定される ものではない。また、本明細書中の特性の評価は下記の方法によった。
[0147] (連弾状塗布筋欠点検出方法)
実施例及び比較例で得られた積層フィルムの幅 lmの製品フィルムロール表層から 10mの部分を取り除き、続く長さ lm以上のフィルムを抜き出し、暗室内で垂直方向 に垂らした。次 、でフィルム背面の全面に光沢の無 、黒色の布を配置し前面 (被覆 層面)から三波長昼白色蛍光灯 (FL20SS EX-N/18P :ナショナル社製)を用い てフィルム面に対し約 10° 力 45° の範囲で該蛍光灯の角度を変えながらフィルム 正面から観察し、評価面積 lm2について長さ 10mm以上の塗布筋欠点を検出しマ 一キングを行った。(製品フィルムロールの幅が lm未満であっても評価面積が lm2 であればよい。 )尚、筋欠点の長さは定規を用いて直接フィルムに接触しない程度に 近づけ測定した。さらに評価する被覆層面と反対側にブロムライト (VIDEO LIGH T VLG301 100V 300W LPL社製)を用いて前記と同様に約 10° から 45° の範囲で照射し、ブロムライト照射面側 (反被覆層面側)から観察し塗布筋欠点を抽 出し、マーキングを行った。この時、光沢の無い黒色の布は観察者と反対側に配置し た。尚、フィルム幅方向に対し同一位置にある筋は一本と数えるが 100mm以上離れ て 、る場合は別個の筋として数えた。
[0148] このマーキングした塗布筋欠点存在部分にっ 、て、本発明で 、う連弾状塗布筋欠 点と、塗布液中に存在する粒子凝集物がフィルム上で密集しさらに筋状に点在した 粗大塗布筋欠点等とを区別するために、マイクロマップ社製非接触 3次元形状測定 装置 TYPE550を用い、 1664 X 1248 μ mの視野の表面形状を以下の測定条件で 測定した。
測定条件: waveモード
対物レンズ 10倍 0. 5倍ズームレンズ使用
[0149] 次いで等高線表示モードにて、測定面が高さによって色分けされた画像を表示さ せた。この時、表面形状のうねりを除去するため面補正 (4次関数補正)を行った。等 高線表示モードでは、測定範囲内の平均高さを Onmとし、高さ最高値を 100nm、高 さ最低値を lOOnmに設定し、高さ lOOnm以上の突起部分が赤色に表示されるよ うに表示させた。次 、で同一測定視野の断面プロファイル表示モードを表示させた。 断面移動画面で、カーソルの両端をつまんで突起の長尺方向に沿うように、かつ、力 一ソルが突起の最高高さ位置を通るように移動させた。プロット画面では、高さのスケ ールを突起全体が表示されるように調整した。プロット画面で 2本のカーソルを突起 の両端に合わせ、突起の大きさ(長径)を読みとつた。次いで一本のカーソルを突起 の最高点に、もう一本のカーソルを高さ Onm (測定範囲内の平均高さが Onmである) に合わせ、突起高さを求めた。さらに測定位置を、測定した筋の延長線方向にずらし (ここで、連弾状塗布筋の幅方向に対し 0. 5mm以内の幅に並ぶ核は同一筋の核と して数える)、同一といえる筋の測定長が 10mmとなるまで、前記測定を繰り返した。
[0150] 上記測定の結果、下記の式 1および式 2に定義される核を有する欠点が下記式 3及 び式 4に定義される状態で連なった塗布筋欠点を、連弾状塗布筋欠点と判定し、フィ ルム lm2当たりのその数を数え、そのフィルムの連弾状塗布筋欠点数とした。
式 1 10 μ ΐη≤ϋά≤35 μ ΐη
式 2 100nm≤Dt≤800nm
式 3 n≥2
式 4 t≥10
Dd:連弾状欠点部の一つ核の長径
Dt:連弾状欠点部の一つの核の最大高さ
n:連弾状塗布筋欠点 1mm当たりの式 1、式 2を満足する核の数
t :連弾状塗布筋欠点の長さ
[0151] また、フィルムの長手方向に沿って 100m間隔で lm2当たりの連弾状筋状欠点を評 価する場合は、実施例で得られた積層ポリエステルフィルムロールについて、巻きだ し後 10mの部分、 100mの部分、 200m' · ·と 100m間隔で 10箇所について、筋状 欠点の抽出を行い、連弾状塗布筋欠点の数を数えた。
[0152] この測定された 10箇所の連弾状塗布筋欠点数のうち、最大値をフィルムロールの 最大連弾状塗布筋欠点数とした。
[0153] (ヘイズの測定)
実施例及び比較例で得た光学用易接着フィルムをヘイズメーター(日本電色社製 モデル TNDH2000)を用いて異なる箇所 3力所につ!、て測定し、その平均値をヘイ ズとした。
[0154] (キス長さ)
塗工フィルムがアプリケーターロールと接触することにより接触フィルム面にできる 塗布液溜まり(塗工キス部)の、フィルム走行方向に平行方向(縦方向)の長さについ て金尺で測定した(単位: mm)。
[0155] (二軸延伸フィルムの厚さ)
二軸延伸フィルムの厚さは、 JIS C 2151に準じて、フィルムロールの長さ方向につ いてマイクロメーター(ONO SOKKI社製 ST-022 GAUGESTAND)で測定 した。
[0156] (実施例 1)
(1)
塗布液の調合
本発明に用いる塗布液を以下の方法に従って調製した。
[0157] ジメチルテレフタレート 95質量部、ジメチルイソフタレート 95質量部、エチレングリコ ール 35質量部、ネオペンチルダリコール 145質量部、酢酸亜鉛 0. 1質量部および 三酸化アンチモン 0. 1質量部を反応容器に仕込み、 180°Cで 3時間かけてエステル 交換反応を行った。次に、 5—ナトリウムスルホイソフタル酸 6. 0質量部を添加し、 24 0°Cで 1時間かけてエステル化反応を行った後、 250°Cで減圧下(10〜0. 2mmHg )で 2時間かけて重縮合反応を行い、分子量 19500、軟化点 60°Cの共重合ポリエス テル榭脂 (A)を得た。
[0158] 得られた共重合ポリエステル榭脂 (A)の 30質量%水分散液を 7. 5質量部、重亜硫 酸ソーダでブロックしたイソシァネート基を含有する自己架橋型ポリウレタン榭脂 (B) の 20質量%水溶液 (第一工業製薬製:商品名 エラストロン (登録商標) H— 3)を 11 . 3質量部、エラストロン用触媒 (第一工業製薬製:商品名 Cat64)を 0. 3質量部、 水を 39. 8質量部およびイソプロピルアルコールを 37. 4質量部、それぞれ混合し、 さらにフッ素系ノ-オン界面活性剤 (メガファック (登録商標) F142D:大日本インキ 化学工業社製)の 10質量%水溶液を 0. 6質量部、粒子 P1としてコロイダルシリカ(日 産化学工業製、スノーテックス OL ;平均粒径 40nm)の 20質量%水分散液を 2. 3質 量部、粒子 P2として乾式法シリカ(日本ァエロジル製、ァエロジル OX50 ;平均粒径 2 00nm、平均一次粒径 40nm)の 3. 5質量%水分散液を 0. 5質量部添加した。前記 粒子 P2の 3. 5質量%水分散液を調合する際、分散液 10kgに対し、粉体溶解機 (T . K.ホモジエツター M型)を用いて回転数 lOOOOrpmで、攪拌時間 60分間攪拌した 。次いで、 5質量%の重曹水溶液で塗布液の pHを 6. 2に調整し塗布液 Aとした。 基材フィルムの原料ポリマーとして、粒子を含有していない固有粘度が 0. 62dl/g のポリエチレンテレフタレート榭脂ペレットを 135°Cで 6時間減圧乾燥(133. 3Pa)し た後、押し出し機に供給し、約 285°Cでシート状に溶融押し出して、表面温度 20°C に保った金属ロール上で急冷固化し、キャストフィルムを得た。この際、溶融榭脂の 異物除去用濾材として、濾過粒子サイズ (初期濾過効率: 95%)力 15 mのステンレ ス製焼結濾材を用いた。次に、このキャストフィルムを加熱されたロール群及び赤外 線ヒーターで 95°Cに加熱し、その後周速差のあるロール群で長手方向に 3. 5倍延 伸して一軸配向 PETフィルム (基材)を得た。次いで、前記塗布液 Aを濾過粒子サイ ズ (初期濾過効率: 95%) 10 mのフェルト型ポリプロピレン製濾材で精密濾過した 後、リバースキスロール法で表面温度が 30°C以下にされた一軸配向 PETフィルムの 片面に塗布し、コーター真上に配置した 4ゾーンに分かれた乾燥炉にてゾーン No 1 の温度 135°C、 1. 0秒間、ゾーン No2の温度 65°C、 2. 2秒間、ゾーン No3の温度 4 0°C、 1. 8秒間、 No4の温度 30°C、 1. 8秒間にて乾燥した。また、塗布量は固形分 量として 0. 08gZm2になるようにした。この時の塗布から乾燥炉入り口までの時間は 0. 8秒間であった。また、この時、ゾーン Nolの乾燥風の風速は 30mZ秒、乾燥風 の給気風量は 130m3Z秒、排気風量は 170mZ秒、ゾーン No2からゾーン No4は 給気風量を 100m3Z秒、排気風量は 150mZ秒に設定し、コーター側に乾燥風が 流れないようにした。尚、フィルムテンションは 7000NZ原反幅(m)とし、塗布から乾 燥炉入口までの間はピンチロールにてフィルム両端部を把持した。
[0160] 尚、この時の塗工条件は以下のようにした。
(a) AZF比 1. 06 ; 押付け量を以下のキス長さになるように調整
(b)塗工時のアプリケーターロールとフィルムのキス長さ: 2mm
(c)アプリケーターロール、メタリングロールの温度は共に 22°C
(d)フアウンテンダイに供給される塗布液の温度: 23°C
[0161] さらに、この時の塗工においては以下のような特徴を有する塗工装置を用いた(図 5 参照)。
(A)アプリケーターロール 2、メタリングロール 3及び塗布液受け皿 7を含む塗布装置 に溶媒揮散防止カバー 8を設けた塗布装置を使用。
(B)アプリケーターロール 2の径 φ 250mm,メタリングロール 3の径 φ 220mm
(C)アプリケーターロール 2及びメタリングロール 3の表面粗度: 0. 1S
(D)塗布液の受け皿 7の容量と循環用タンク 11の容量比 = 1: 50
(E)循環用タンク 11の容量と調合用タンク 12の容量比 = 1 :40
尚、循環用タンク 11の液量は常に一定になるようにした。
[0162] 引き続いてフィルムの端部をクリップで把持して温度 120°C風速 15mZ秒の熱風ゾ ーンに導き、幅方向に 4. 3倍に延伸した。次にその延伸された幅を保ったまま、熱固 定ゾーン No. 1 (温度 200°C風速)、熱固定ゾーン No. 2 (温度 225°C)、熱固定ゾー ン No. 3及び熱固定ゾーン No. 4 (温度 230°C)、熱固定ゾーン No. 5 (温度 210°C) 、熱固定ゾーン No. 6 (温度 170°C、幅方向に 3%の緩和)、熱固定ゾーン No. 7 (温 度 120°C)を順次連続して通過させた後、フィルム両端部のコートされていない部分 をトリミングし、巻き取り装置にて巻き取り、さらにこれを幅方向に 4等分してスリットし、 幅 lm、フィルム長さ 1500m、フィルム厚さ 125 μ mの積層ポリエステルフィルムロー ルを得た。尚、熱固定ゾーンにおける熱風の風速はすべて 15mZ秒、通過時間は 各ゾーン共 4. 5秒間、熱風を吹き出すノズル間隔は 350mm、 1ゾーン当たりのノズ ル本数は 8本とした。
[0163] (実施例 2) 押付け量を変えて塗工時のアプリケーターロールとフィルムのキス長さを 4mmとし た以外は、実施例 1と同様の方法で積層ポリエステルフィルムを得た。
[0164] (実施例 3)
AZF比を 1. 09とし、キス長さが 2mmとなるように押付け量を変えた以外は、実施 例 1と同様の方法で積層ポリエステルフィルムを得た。
[0165] (実施例 4)
塗布力も乾燥炉入り口までの時間は 0. 7秒間、乾燥時間 0. 8秒間、さらに熱固定 工程において各ゾーンの通過時間を 3. 5秒間、フィルム厚さ 100 mとした以外は、 実施例 1と同様の方法での積層ポリエステルフィルムを得た。
[0166] (実施例 5)
塗布力も乾燥炉入り口までの時間は 1. 0秒間、乾燥時間 1. 9秒間、さらに熱固定 工程において各ゾーンの通過時間を 6. 6秒間、フィルム厚さを 188 mとした以外は 、実施例 1と同様の方法で積層ポリエステルフィルムを得た。
[0167] (実施例 6)
実施例 1の塗布液の調合において、水を 44. 5質量部、イソプロピルアルコールを 3 2. 8質量部とした塗布液 Bを用いた以外は、実施例 1と同様の方法で積層フィルムを 得た。
[0168] (実施例 7)
実施例 1の塗布液の調合において、水を 35. 1質量部、イソプロピルアルコールを 4 2. 1質量部とし、塗布液 Cとした以外は、実施例 1と同様の方法で積層フィルムを得 た。
[0169] (実施例 8)
実施例 1にお 、て、塗布液中の共重合ポリエステル榭脂とポリウレタン系榭脂との 質量比を 60Z40に変更した下記の塗布液 Dに変更したこと以外は、実施例 1と同様 の方法で、積層ポリエステルフィルムを得た。
[0170] (塗布液 Dの調合)
実施例 1で用いた共重合ポリエステル榭脂 (A)の 30質量%水分散液を 9. 0質量 部、実施例 1で用いたポリウレタン系榭脂(B)の 20質量%水溶液を 9. 0質量部、エラ ストロン用触媒 (第一工業製薬製、 Cat64)を 0. 3質量部、水を 40. 6質量部、および イソプロピルアルコールを 37. 3質量部、それぞれ混合した。さらに、実施例 1で使用 した界面活性剤水溶液を 0. 6質量部、粒子 P1としてコロイダルシリカ(日産化学工業 製、スノーテックス OL ;平均粒径 40nm)の 20質量%水分散液を 2. 3質量部、粒子 P 2として乾式法シリカ(日本ァエロジル製、ァエロジル OX50 ;平均粒径 200nm、平均 一次粒径 40nm)の 3. 5質量%水分散液を 0. 5質量部添加し、 5質量%重曹水溶液 にて pH調整して塗布液 Dとした。
[0171] (実施例 9)
実施例 1にお 、て、塗布液中の共重合ポリエステル榭脂とポリウレタン系榭脂との 質量比を 40Z60に変更した下記の塗布液 Eに変更したこと以外は、実施例 1と同様 の方法で、積層ポリエステルフィルムを得た。
[0172] (塗布液 Eの調合)
実施例 1で用いた共重合ポリエステル榭脂 (A)の 30質量%水分散液を 6. 0質量 部、実施例 1で用いたポリウレタン系榭脂(B)の 20質量%水溶液を 13. 5質量部、ェ ラストロン用触媒 (第一工業製薬製、 Cat64)を 0. 3質量部、水を 38. 9質量部、およ びイソプロピルアルコールを 37. 5質量部、それぞれ混合した。さら〖こ、実施例 1で用 いた界面活性剤の 10質量%水溶液を 0. 6質量部、粒子 P1としてコロイダルシリカ( 日産化学工業製、スノーテックス OL;平均粒径 40nm)の 20質量%水分散液を 2. 3 質量部、粒子 P2として乾式法シリカ(日本ァエロジル製、ァエロジル OX50 ;平均粒 径 200nm、平均一次粒径 40nm)の 3. 5質量%水分散液を 0. 5質量部添加し、 5質 量%重曹水溶液にて pHを 6. 2に調整して布液 Eとした。
[0173] (実施例 10)
塗布量を固形分量として 0. 12gZm2となるようにした以外は、実施例 1と同様の方 法で積層ポリエステルフィルムを得た。
[0174] (実施例 11)
実施例 1において、塗布液中の界面活性剤の配合量を 0. 03質量%に変更し、下 記の塗布液 Fを用いたこと以外は、実施例 1と同様の方法で積層ポリエステルフィル ムを得た。 [0175] (塗布液 Fの調合)
実施例 1の塗布液の調合にお!ヽて、フッ素系ノ-オン型界面活性剤(大日本インキ 化学工業製、メガファック F142D)の 10質量%水溶液を 0. 3質量部、水を 38. 2質 量部、およびイソプロピルアルコールを 39. 3質量部に変更した。
[0176] (実施例 12)
実施例 1において、塗布液中の界面活性剤の配合量を 0. 10質量%に変更し、下 記の塗布液 Gを用いたこと以外は、実施例 1と同様の方法で積層ポリエステルフィル ムを得た。
[0177] (塗布液 Gの調合)
実施例 1の塗布液の調合にお!ヽて、フッ素系ノ-オン型界面活性剤(大日本インキ 化学工業製、メガファック F142D)の 10質量%水溶液を 1. 0質量部、水を 37. 5質 量部、およびイソプロピルアルコールを 39. 3質量部に変更した塗布液 Fを用いた以 外は、実施例 1と同様の方法で積層ポリエステルフィルムを得た。
[0178] (実施例 13)
実施例 1において、塗布液の pHを 5質量%の炭酸ナトリウム水溶液を用いて 7. 9に 調整した塗布液 Hに変更したこと以外は、実施例 1と同様の方法で積層ポリエステル フイノレムを得た。
[0179] (実施例 14)
実施例 1において、一軸配向 PETフィルムの両面に被覆層を塗布したこと以外は、 実施例 1と同様の方法で積層ポリエステルフィルムを得た。なお、フィルムへの塗布 力 乾燥炉入口までのフィルムの通過時間は、片面が 0. 8秒間であり、反対面は 1. 0秒、間であった。
[0180] (実施例 15)
実施例 1において、塗布量を最終的な固形分量として 0. 02gZm2となるようにした こと以外は、実施例 1と同様の方法で積層ポリエステルフィルムを得た。
[0181] (実施例 16)
実施例 1において、下記の点で異なる塗工装置を用いたこと以外は、実施例 1と同 様の方法で積層ポリエステルフィルムを得た。 塗工装置
(Α' )アプリケーターロール、メタリングロール及び塗布液受け皿を含む塗布装置に 溶媒揮散防止カバー不使用
(D' )塗布液の受け皿の容量と循環用タンクの容量比 = 1: 50
(循環用タンクとは別に調合用タンクを用いることはせず、塗布液は循環用タンクで調 合し、塗布液が無くなった時点で再調合した。 )
[0182] (実施例 17)
実施例 1において、ポリウレタン系榭脂(Β)を下記のポリウレタン系榭脂に変更した 塗布液 Qを用いたこと以外は、実施例 1と同様にして積層ポリエステルフィルムを得た 。なお、ポリウレタン系榭脂は、下記の方法で得た。
[0183] (ポリウレタン系榭脂の調製)
アジピン酸 ZZ1. 6 へキサンジオール Ζネオペンチルグリコール(モル比: 4Ζ Ζ3Ζ2)の組成からなるポリエステルジオール(OHV: l l l . 8eqZton、 AV: 1. le qZton)を 93質量部、キシリレンジイソシァネートを 22質量部混合し、窒素気流下、 95〜100°Cで 1時間反応させて、ウレタンプレポリマー(NCOZOH比: 1. 50、遊離 イソシァネート基:理論値 3. 29%、実測値 3. 16%)を得た。
[0184] 次!、で、得られたウレタンプレポリマーを 60°Cまで冷却し、メチルェチルケトォキシ ム 4. 5質量部をカ卩えて 60°Cで 50分間反応させて、遊離イソシァネート 1. 3%を含有 し、かつ部分的にブロック化されたウレタンプレボリマーを得た。引き続き、前記のウレ タンプレポリマーを 55°Cまで冷却し、イソプロピルアルコール 9質量部およびメタノー ル 140質量部カゝらなる混合溶媒を加え、均一混合した。次いで、 50質量%の重亜硫 酸ナトリウム水溶液を 9. 3質量部および、 N—メチルタウリンの 30質量%水溶液を 5. 4質量部加えて激しく撹拌を行った。約 30分後に水溶性が出始め、 2時間後には遊 離の重亜硫酸ナトリウムがほぼゼロとなり、反応が終結した。これに水をカ卩え、白濁し 、かつ粘ちような 20質量%の水溶液を得た。
[0185] (比較例 1)
実施例 1と同様に乾燥したポリエチレンテレフタレート榭脂ペレットを押し出し機に 供給し、約 285°Cでシート状に溶融押出しして、表面温度 30°Cに保った金属ロール 上で急冷固化し、キャストフィルムを得た。この際、溶融樹脂の異物除去用濾材として
、濾過粒子サイズ (初期濾過効率: 95%)が 15 mのステンレス製焼結濾材を用い た。次に、実施例 1と同様にこのキャストフィルムを加熱されたロール群及び赤外線ヒ 一ターで 105°Cに加熱し、その後周速差のあるロール群で長手方向に 3. 6倍延伸し て一軸配向 PETフィルムを得た。次いで、実施例 1と同様の塗布液 Aを濾過粒子サ ィズ (初期濾過効率: 95%) 3 μ mのフェルト型ポリプロピレン製濾材で精密濾過し、 グラビアリバースロール法で一軸配向 PETフィルムの片面に塗布後、乾燥炉に導き 温度 120°C、 3. 2秒間乾燥した。尚、塗布の際、下記に示す塗布装置及び塗布条 件を用いた。また、塗布量は固形分量として 0. 08gZm2になるようにした。この時の 塗布から乾燥炉入り口までの時間は 3. 2秒間であり、乾燥炉の第一ゾーンの風速は 15mZ秒、第二ゾーン力も第四ゾーンの風速は実施例 1と同様で乾燥風の給気風 量は第一ゾーン力も第四ゾーンとも 70m3Z秒、排気風は乾燥炉前後から自然排気 とした。
[0186] 塗工条件
(e) AZF比 1. 20; 押付け量を以下のキス長さになるように調整
(f)塗工時のグラビアロールとフィルムのキス長さ: 10mm
(g)グラビアロール温度 22°C
(h)フアウンテンダイに供給される塗布液の温度: 23°C
[0187] 塗工装置
(F)グラビアロール、及び塗布液受け皿を含む塗布装置に溶媒揮散防止カバー不 使用
(G)グラビアロール径 φ 250mm
(H)塗布液の受け皿の容量と循環用タンクの容量比 = 1: 50
(循環用タンクとは別に調合用タンクは用いることはせず、塗布液は循環用タンクで 調合し、塗布液が無くなった時点で再調合した。 )
[0188] 引き続いて、フィルムの端部をクリップで把持して 120°Cに加熱された熱風ゾーンに 導き、乾燥後幅方向に 3. 8倍に延伸した。この時のテンター内の風速は 15mZ秒、 乾燥時間は 20秒間であった。塗布力もテンター入り口までの時間は 10. 0秒間であ つた o
[0189] また、熱固定工程において熱固定ゾーン Nol (温度 200°C風速)、熱固定ゾーン N o2 (温度 210°C)、熱固定ゾーン No3 (温度 220°C)及び熱固定ゾーン No4 (温度 22 5°C)、熱固定ゾーン No5 (温度 230°C)熱固定ゾーン No6 (温度 235°C)、熱固定ゾ ーン No7 (温度 240°C)を順次連続して通過させ、さらに緩和処理は行わずフィルム 厚さ 125 mの積層ポリエステルフィルムを得た。
[0190] (比較例 2)
実施例 1で得られたポリエステル榭脂 (A)の 30質量%水分散液を 3. 0質量部、実 施例 1と同様のポリウレタン榭脂(B)の 20質量0 /0水溶液を 18. 0質量部、エラストロン 用触媒 (第一工業製薬製:商品名 Cat64)を 0. 3質量部、水を 70. 7質量部および イソプロピルアルコールを 4. 7質量部、それぞれ混合し、さらに界面活性剤としてド デシルベンゼンスルホン酸の 10質量%水溶液を 0. 6質量部、粒子 P1 (日産化学ェ 業社製:スノーテックス OL、平均粒径 40nm)の 20質量%水分散液を 2. 3質量部、 粒子 P2 (日本ァエロジル社製;ァエロジル 0X50、平均一次粒径 40nm)の 3. 5質量 %水分散液を 0. 5質量部添加し、塗布銜とした。 pHは 4. 8であった。
[0191] 実施例 1と同様のポリエチレンテレフタレート榭脂ペレットを 135°Cで 6時間減圧乾 燥(lTorr)した後、押し出し機に供給し、約 285°Cでシート状に溶融押出しして、表 面温度 20°Cに保った金属ロール上で急冷固化し、キャストフィルムを得た。この際、 溶融樹脂の異物除去用濾材として、濾過粒子サイズ (初期濾過効率: 95%)が 15 mのステンレス製焼結濾材を用いた。次に、このキャストフィルムを加熱されたロール 群及び赤外線ヒーターで 95°Cに加熱し、その後周速差のあるロール群で長手方向 に 3. 5倍延伸して一軸配向 PETフィルムを得た。次いで、前記塗布液を濾過粒子サ ィズ (初期濾過効率: 95%) 25 μ mのフェルト型ポリプロピレン製濾材で精密濾過し、 リバースロール法で一軸配向 PETフィルムの片面に次の塗布条件で塗布した。
[0192] 塗工条件
(e' )AZF比 1. 15 ; 押付け量を以下のキス長さになるように調整
(f,)塗工時のアプリケーターロールとフィルムのキス長さ: 10mm
(g,)アプリケーターロール、メタリングロールの温度共に 23°C ( )フアウンテンダイに供給される塗布液の温度: 25°C
さらに、この時の塗工においては以下の点で実施例 1と相違する塗工装置を用いた。 (F' )アプリケーターロール、メタリングロール及び塗布液受け皿を含む塗布装置に 溶媒揮散防止カバー不使用
(I)アプリケーターロール及びメタリングロールの表面粗度: 0. 3S
[0193] 引き続いて、フィルムの端部をクリップで把持して 80°Cに加熱された熱風ゾーンに 導き、乾燥後幅方向に 4. 0倍に延伸した。この時のテンター内の風速は 15mZ秒、 乾燥時間は 20秒間であった。塗布力もテンター入り口までの時間は 10. 0秒間であ つた。また、塗布量は固形分量として 0. lOgZm2になるようにした。
[0194] 熱固定工程において熱固定ゾーン No. 1 (温度 200°C風速)、熱固定ゾーン No. 2
(温度 210°C)、熱固定ゾーン No. 3 (温度 220°C)及び熱固定ゾーン No. 4 (温度 22 5°C)、熱固定ゾーン No. 5 (温度 230°C)熱固定ゾーン No. 6 (温度 235°C)、熱固 定ゾーン No. 7 (温度 240°C)を順次連続して通過させ、さらに緩和処理は行わずフ イルム厚さ 125 μ mの積層ポリエステルフィルムを得た。
[0195] (比較例 3)
実施例 1で得られたポリエステル榭脂 (A)の 30質量%水分散液を 7. 5質量部、実 施例 1と同様のポリウレタン榭脂(B)の 20質量0 /0水溶液を 11. 3質量部、エラストロン 用触媒 (第一工業製薬製:商品名 Cat64)を 0. 3質量部、水を 40. 5質量部および イソプロピルアルコールを 39. 5質量部、それぞれ混合し、フッ素系ノ-オン界面活 性剤 (メガファック F142D)の 10質量%水溶液を 0. 6質量部、粒子 C (富士シリシァ 化学社製:サイリシァ 310、平均粒径 1. の 3. 5質量%水分散液を 0. 03質量 部添カ卩し、塗布液 Kとした。尚、 pH調整は行わず pHは 4. 6であった。次いで、実施 例 1と同様に乾燥したポリエチレンテレフタレート榭脂ペレットを押し出し機に供給し、 約 285°Cでシート状に溶融押出しして、表面温度 20°Cに保った金属ロール上で急 冷固化し、キャストフィルムを得た。この際、溶融樹脂の異物除去用濾材として、濾過 粒子サイズ (初期濾過効率: 95%)が 15 mのステンレス製焼結濾材を用いた。次に 、実施例 1と同様にこのキャストフィルムを加熱されたロール群及び赤外線ヒーターで 95°Cに加熱し、その後周速差のあるロール群で長手方向に 3. 5倍延伸して一軸配 向 PETフィルムを得た。次いで、前記塗布液を濾過粒子サイズ (初期濾過効率: 95 %) 25 μ mのフェルト型ポリプロピレン製濾材で精密濾過し、リバースロール法で一 軸配向 PETフィルムの片面に塗布後、乾燥炉に導き温度 120°C、 3. 2秒間乾燥した 。また、塗布量は固形分量として 0. 08g/m2になるようにした。この時の塗布力も乾 燥炉入り口までの時間は 3. 2秒間であり、乾燥炉の第一ゾーンの風速は 15mZ秒、 第二ゾーン力も第四ゾーンの風速は実施例 1と同様で、乾燥風の給気風量は第一ゾ 一ンカも第四ゾーンとも 70m3/秒、排気風は乾燥炉前後から自然排気とした。
[0196] なお、塗工条件は、以下の点で異なる。
(e")AZF比 1. 15 ; 押付け量を以下のキス長さになるように調整
(f ")塗工時のアプリケーターロールとフィルムのキス長さ: 8mm
さらに、この時の塗工においては以下の点で実施例 1と相違する塗工装置を用いた。
(F")アプリケーターロール、メタリングロール及び塗布液受け皿を含む塗布装置に 溶媒揮散防止カバーは設けな力つた。
(1' )アプリケーターロール及びメタリングロールの表面粗度: 0. 3S
続いて横延伸倍率を 4. 0倍とした以外は、実施例 1と同様の方法で横延伸し、比較 例 1と同様の方法で熱固定、緩和を行い、フィルム厚さ 125 mの積層ポリエステル フイノレムを得た。
[0197] (比較例 4)
塗布力 乾燥炉入り口までの時間を 3. 2秒間とした以外は、実施例 1と同様の方法 でフィルム厚さ 125 μ mの積層ポリエステルフィルムを得た。
[0198] (比較例 5)
実施例 1で得られたポリエステル榭脂 (A)の 30質量%水分散液を 3. 0質量部、実 施例 1と同様のポリウレタン榭脂(B)の 20質量0 /0水溶液を 18. 0質量部、エラストロン 用触媒 (第一工業製薬製:商品名 Cat64)を 0. 3質量部、水を 37. 3質量部および イソプロピルアルコールを 37. 8質量部、それぞれ混合し、さらに実施例 1と同様の界 面活性剤水溶液を 0. 6質量部、粒子 P1 (日産化学工業社製:スノーテックス OL、平 均粒径 40nm)の 20質量%水分散液を 2. 3質量部、粒子 P2 (日本ァエロジル社製; ァエロジル 0X50、平均粒径 500nm、平均一次粒径 40nm)の 3. 5質量%水分散 液を 0. 5質量部添加し、 5質量%重曹水溶液にて pH調整し塗布液 Lとした以外は、 実施例 1と同様の方法でフィルム厚さ 125 μ mの積層ポリエステルフィルムを得た。
[0199] (比較例 6)
押付け量を変えて塗工時のアプリケーターロールとフィルムのキス長さを 20mmとし た以外は、実施例 1と同様の方法でフィルム厚さ 125 mの積層ポリエステルフィル ムを得た。
[0200] (比較例 7)
乾燥炉内の風速を 15mZ秒とした以外は、実施例 1と同様の方法でフィルム厚さ 1 25 μ mの積層ポリエステルフィルムを得た。
[0201] (比較例 8)
塗布量を固形分量として 0. 22gZm2となるようにした以外は、実施例 1と同様の方 法でフィルム厚さ 125 μ mの積層ポリエステルフィルムを得た。
[0202] (比較例 9)
実施例 1で得られたポリエステル榭脂 (A)の 30質量%水分散液を 7. 5質量部、実 施例 1と同様のポリウレタン榭脂(B)の 20質量0 /0水溶液を 11. 3質量部、エラストロン 用触媒 (第一工業製薬製:商品名 Cat64)を 0. 3質量部、水を 37. 4質量部および イソプロピルアルコールを 39. 3質量部、さらに実施例 1と同様の界面活性剤を 0. 6 質量部、それぞれ混合し、粒子 P1 (日産化学工業社製:スノーテックス OL、平均粒 径 40nm)の 20質量%水分散液を 2. 3質量部、粒子 P2 (日本ァエロジル社製;ァェ ロジル 0X50、平均一次粒径 40nm)の 3. 5質量%水分散液を 0. 5質量部添加し、 5質量%重曹水溶液にて pH調整し塗布液 Oとした。当該塗布液 Oを用いた以外は 実施例 1と同様の方法でフィルム厚さ 125 μ mの積層ポリエステルフィルムを得た。
[0203] 以上の実施例及び比較例の積層ポリエステルフィルムの評価結果を表 1及び表 2 に示す。
[0204] [表 1] 塗布液組成
共重合 無機粒子 A 無機粒子 B 水/ IPA 固形分 界面活性 塗布液 溶媒揮散防止 PEs/PU 質量比 濃度 剤の含有 の pH ■循環、 調合 平均 平均 量
質量比 (質量 %) タンク共用の 粒怪 (質量 ¾) 粒径 (質量
(質量 ¾) 有無 実施例 1 50/50 0.04 0.45 0.2 0.02 60/40 5.30 0.06 6.2 有 実施例 2 50/50 0.04 0.45 0.2 0.02 60/40 5.30 0.06 6.2 有 実施例 3 50/50 0.04 0.45 0.2 0.02 60/40 5.30 0.06 6.2 有 実施例 4 50/50 0.04 0.45 0.2 0.02 60/40 5.30 0.06 6.2 有 実施例 5 50/50 0.04 0.45 0.2 0.02 60/40 5.30 0.06 6.2 有 実施例 6 50/50 0.04 0.45 0.2 0.02 65/35 5.30 0.06 6.2 有 実施例 7 50/50 0.04 0.45 0.2 0.02 55/45 5.30 0.06 6.2 有 実施例 8 60/40 0.04 0.45 0.2 0.02 60/40 5.30 0.06 6.2 有 実施例 9 40/60 0.04 0.45 0.2 0.02 60/40 5.30 0.06 6.2 有 実施例 10 50/50 0.04 0.45 0.2 0.02 60/40 5.30 0.06 6.2 有 実施例 11 50/50 0.04 0.45 0.2 0.02 60/40 5.30 0.03 6.2 有 実施例 12 50/50 0.04 0.45 0.2 0.02 60/40 5.30 0.10 6.2 有 実施例 13 50/50 0.04 0.45 0.2 0.02 60/40 5.30 0.06 7.9 有 実施例 14 50/50 0.04 0.45 0.2 0.02 60/40 5.30 0.06 6.2 有 実施例 15 50/50 0.04 0.45 0.2 0.02 60/40 5.30 0.06 6.2 有 実施例 16 50/50 0.04 0.45 0.2 0.02 60/40 5.30 0.06 6.2 無 実施例 17 50/50 0.04 0.45 0.2 0.02 60/40 5.30 0.06 6.2 有 比較例 1 50/50 0.04 0.45 0.2 0.02 60/40 5.30 0.06 6.2 比較例 2 20/80 0.04 0.36 0.2 0.04 95/5 10.93 0.06 4.8 比較例 50/50 1.4 0.02 一 一 60/40 4.87 0.06 4.6 to 比較例 4 50/50 0.04 0.45 0.2 0.02 60/40 5.30 0.06 6.2 有 比較例 5 20/80 0.04 0.45 0.2 0.02 60/40 5.30 0.06 6.2 有 比較例 6 50/50 0.04 0.45 0.2 0.02 60/40 5.30 0.06 6.2 有 比較例フ 50/50 0.04 0.45 0.2 0.02 60/40 5.30 0.06 6.2 有 比較例 8 50/50 0.04 0.45 0.2 0.02 60/40 5.30 0.06 6.2 有 比較例 9 50/50 0.04 0.45 0.2 0.02 60/40 5.30 0.60 6.2 有 2]
塗布条件 乾燥条件 特 性
A/Fit キス長 延伸後の 通過時間 乾燥 乾燥 風速 フィルム フィルム フィルム ヘイズ
(mm) 塗布量 [塗布〜 :ロ |* 時間 (ni/s) 厚さ 連弾状塗 口一ルの (%)
(g/m2) 乾燥炉] Cc) (秒) 布筋 連弾状塗布
(秒) 欠点数 筋欠点数
(本/ ιΛ (本/
実施例 1 1.06 2 0.08 0.8 135 1.0 30 125 1 2 0.58 実施例 2 1.06 4 0.08 0.8 135 1.0 30 125 20 - 0.58 実施例 3 1.09 2 0.08 0.8 135 1.0 30 125 10 0.57 実施例 4 1.06 2 0.08 0.7 135 0.8 30 100 0 0.55 実施例 5 1.06 2 0.08 1.0 135 1.9 30 188 15 一 0.46 実施例 6 1.06 2 0.08 0.8 135 1.0 30 125 14 一 0.72 実施例 7 1.06 2 0.08 0.8 135 1.0 30 125 5 一 0.58 実施例 8 1.06 2 0.08 0.8 135 1.0 30 125 0 - 0.41 実施例 9 1.06 2 0.08 0.8 135 1.0 30 125 25 0.85 実施例 10 1.06 2 0.12 0.8 135 1.0 30 125 22 0.65 実施例 11 1.06 2 0.08 0.8 135 1.0 30 125 8 - 0.61 実施例 12 ΐ.06 2 0.08 0.8 135 1.0 30 125 20 0.85 実施例 13 1.06 2 0.08 0.8 135 1.0 30 125 18 0.73 実施例 14 1.06 2 0.08 0.8/1.0 135 1.0 30 125 8 0.78 実施例 15 t.06 2 0.02 0.8 135 1.0 30 125 5 0.78 実施例 16 ΐ.06 2 0.08 0.8 135 1.0 30 125 1 26 0.58 実施例 17 ΐ.06 2 0.08 0.8 135 1.0 30 125 3 0.59 比較例 1 ΐ.20 10 0.08 10 120 20 15 125 120 135 0.80 比較例 2 ΐ.15 10 0.10 10 80 20 20 125 120 - 0.75 比較例 3 1.15 8 0.08 3.2 120 1.0 15 125 95 0.41 比較例 4 1.06 2 0.08 3.2 135 1.0 30 125 80 一 0.73 比較例 5 1.06 2 0.08 0.8 135 1.0 30 125 78 一 0.98 比較例 6 1.06 20 0.08 0.8 135 1.0 30 125 82 一 0.59 比較例 7 1.06 2 0.08 0.8 135 1.0 15 125 55 0.70 比較例 8 1.06 2 0.22 0.8 135 1.0 30 125 41 一 0.54 比較例 9 1.06 2 0.08 0.8 135 1.0 30 125 90 1.60 産業上の利用可能性
主にディスプレイ用途に用いられるハードコートフィルム、反射防止フィルム、プリズ ムレンズフィルム等の光学用基材フィルムに好適である。

Claims

請求の範囲 [1] 熱可塑性榭脂フィルムを基材とし、該基材の少なくとも片面に、共重合ポリエステル 榭脂又は共重合ポリエステル榭脂とポリウレタン系榭脂とを含む榭脂成分、及び粒子 を含有する被覆層を設けてなるヘイズが 1. 5%以下の積層フィルムであって、且つ、 当該積層フィルム中に存在する、下記の式 1および式 2に定義される核を有する欠点 が下記式 3及び式 4に定義される状態で連なった連弾状塗布筋欠点の数が、 30本/m2以下であることを特徴とする積層熱可塑性榭脂フィルム。 式 1 10 μ ΐη≤ϋά≤35 μ ΐη 式 2 30nm≤Dt≤5000nm 式 3 n≥2 式 4 t≥10mm Dd:核の長径 Dt:核の最大高さ n:連弾状塗布筋欠点 lmm当たりの、式 1及び式 2で定義される核の数 t :連弾状塗布筋欠点の長さ [2] 共重合ポリエステル榭脂とポリウレタン系榭脂とを含む榭脂成分の、共重合ポリエス テル樹脂とポリウレタン系榭脂との質量比が 7: 3〜3: 7である、請求項 1記載の積層 熱可塑性榭脂フィルム。 [3] 被覆層に含まれる粒子が酸ィ匕珪素力 なる粒子であることを特徴とする請求項 1又 は 2記載の積層熱可塑性榭脂フィルム。 [4] 熱可塑性榭脂フィルム基材中には実質的に粒子が含有されて 、な 、ことを特徴と する請求項 1〜3のいずれかに記載の積層熱可塑性榭脂フィルム。 [5] 共重合ポリエステル榭脂又は共重合ポリエステル榭脂とポリウレタン系榭脂とを含 む榭脂成分、粒子、及び界面活性剤を含む塗布液を、走行する熱可塑性榭脂フィ ルムの片面または両面に塗布する塗布工程、塗布層を乾燥する乾燥工程、次いで 少なくとも一軸方向に延伸する延伸工程、さらに延伸された塗布フィルムを熱固定処 理する熱固定処理工程を含み、且つ、下記(1)〜(6)の条件を満足する積層熱可塑 性榭脂フィルムの製造方法。 (1)ノ-オン系界面活性剤またはカチオン系界面活性剤を、塗布液に対し 0. 01〜0 . 18質量%配合させる。 (2)共重合ポリエステル榭脂とポリウレタン系榭脂とを併用する場合に、共重合ポリェ ステル樹脂とポリウレタン系榭脂との配合比が、質量比で 3: 7〜7: 3である。 (3)塗工時のアプリケーターロールとフィルムのキス長さが lmm以上、 5mm未満で ある。 (4)被覆層の最終塗布量が 0. 005-0. 2gZm2である。 (5)塗布液の塗布直後から乾燥工程の入口までのフィルムの通過時間が 2秒未満で ある。 (6)乾燥工程において、乾燥温度が 120〜150°Cであり、乾燥時間が 0. 1〜5秒間 であり、乾燥風の風速が 30mZ秒以上である。 共重合ポリエステル榭脂又は共重合ポリエステル榭脂とポリウレタン系榭脂とを含 む榭脂成分、粒子、及び界面活性剤を含む塗布液を、走行する熱可塑性榭脂フィ ルムの片面または両面に塗布する塗布工程、塗布層を乾燥する乾燥工程、次いで 少なくとも一軸方向に延伸する延伸工程、さらに延伸された塗布フィルムを熱固定処 理する熱固定処理工程を含み、且つ、下記(1)〜(6)の条件を満足する請求項 1〜 4記載の積層熱可塑性榭脂フィルムの製造方法。
(1)ノ-オン系界面活性剤またはカチオン系界面活性剤を、塗布液に対し 0. 01〜0 . 18質量%配合させる。
(2)共重合ポリエステル榭脂とポリウレタン系榭脂とを併用する場合に、共重合ポリェ ステル樹脂とポリウレタン系榭脂との配合比が、質量比で 3: 7〜7: 3である。
(3)塗工時のアプリケーターロールとフィルムのキス長さが lmm以上、 5mm未満で ある。
(4)被覆層の最終塗布量が 0. 005-0. 2gZm2である。
(5)塗布液の塗布直後から乾燥工程の入口までのフィルムの通過時間が 2秒未満で ある。
(6)乾燥工程において、乾燥温度が 120〜150°Cであり、乾燥時間が 0. 1〜5秒間 であり、乾燥風の風速が 30mZ秒以上である。
[7] 条件(5)のフィルムの通過時間が 1. 5秒未満であり、条件(6)の乾燥温度が 130〜 150°Cであり、乾燥時間が 0. 5〜3秒間である、請求項 6記載の積層熱可塑性榭脂 フィルムの製造方法。
[8] 請求項 1〜4の 、ずれか〖こ記載の熱可塑性榭脂フィルムを巻き取って得られる積層 熱可塑性榭脂フィルムロール。
PCT/JP2006/306229 2005-03-28 2006-03-28 積層熱可塑性樹脂フィルムおよびその製造方法 WO2006104125A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005093157A JP4229077B2 (ja) 2005-03-28 2005-03-28 積層熱可塑性樹脂フィルムおよびその製造方法
JP2005-093157 2005-03-28

Publications (1)

Publication Number Publication Date
WO2006104125A1 true WO2006104125A1 (ja) 2006-10-05

Family

ID=37053381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306229 WO2006104125A1 (ja) 2005-03-28 2006-03-28 積層熱可塑性樹脂フィルムおよびその製造方法

Country Status (2)

Country Link
JP (1) JP4229077B2 (ja)
WO (1) WO2006104125A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018200447A (ja) * 2017-05-30 2018-12-20 日東電工株式会社 光学フィルムの製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5006235B2 (ja) * 2008-03-19 2012-08-22 富士フイルム株式会社 機能性フィルムの製造方法
JP6965757B2 (ja) * 2018-01-10 2021-11-10 コニカミノルタ株式会社 延伸フィルムの製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001187437A (ja) * 1999-10-19 2001-07-10 Toyobo Co Ltd 積層ポリエステルフィルム
JP2002172362A (ja) * 2000-12-05 2002-06-18 Teijin Ltd 塗布方法
JP2004010671A (ja) * 2002-06-04 2004-01-15 Toyobo Co Ltd 二軸延伸被覆ポリエステルフィルムロール

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001187437A (ja) * 1999-10-19 2001-07-10 Toyobo Co Ltd 積層ポリエステルフィルム
JP2002172362A (ja) * 2000-12-05 2002-06-18 Teijin Ltd 塗布方法
JP2004010671A (ja) * 2002-06-04 2004-01-15 Toyobo Co Ltd 二軸延伸被覆ポリエステルフィルムロール

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018200447A (ja) * 2017-05-30 2018-12-20 日東電工株式会社 光学フィルムの製造方法

Also Published As

Publication number Publication date
JP4229077B2 (ja) 2009-02-25
JP2006272675A (ja) 2006-10-12

Similar Documents

Publication Publication Date Title
TWI317324B (en) Laminated polyester film and laminated polyester film roll
KR100579633B1 (ko) 광학용 이접착필름 및 그 롤
JP3900191B2 (ja) 積層熱可塑性樹脂フィルムおよび積層熱可塑性樹脂フィルムロール
JP5261997B2 (ja) 二軸配向ポリエステルフィルム
JP4150982B2 (ja) 積層フィルム及びそれを得るための接着性改質基材フィルム
JP4797810B2 (ja) 積層熱可塑性樹脂フィルムおよび積層熱可塑性樹脂フィルムロール
TWI360477B (en) Hard-coated film and optical functional film
JP5568992B2 (ja) 光学用易接着性ポリエステルフィルム
US6649260B2 (en) Optical coating film
JP5564760B2 (ja) 接着性改質基材フィルムおよびハードコートフィルム
JP2007152591A (ja) 積層熱可塑性樹脂フィルムおよびフィルムロール
JP4174739B2 (ja) ハードコートフィルム、光学機能性フィルム、およびそれを得るための密着性改質基材フィルム
JP2000229355A (ja) 光学用易接着フィルムの製造方法
JP4315118B2 (ja) 積層熱可塑性樹脂フィルムロールおよびその製造方法
JP2006327157A (ja) 積層ポリエステルフィルム
JP5380896B2 (ja) 接着性改質基材フィルムおよびハードコートフィルム
JP5380897B2 (ja) 接着性改質基材フィルムおよびハードコートフィルム
JP2007152589A (ja) 積層熱可塑性樹脂フィルムおよびフィルムロール
JP4229077B2 (ja) 積層熱可塑性樹脂フィルムおよびその製造方法
JP2006297829A (ja) 積層熱可塑性樹脂フィルムおよびその製造方法
JP2013139151A (ja) 二軸配向ポリエステルフィルム
JP4821155B2 (ja) 積層熱可塑性樹脂フィルムの製造方法
JP4821154B2 (ja) 積層熱可塑性樹脂フィルムロールの製造方法
JP2011140531A (ja) 光学用易接着性ポリエステルフィルム
JP5445518B2 (ja) 積層熱可塑性樹脂フィルムロール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06730177

Country of ref document: EP

Kind code of ref document: A1